
Merlin 8/16··;
The Complete Macro Assembler System

For the Apple® llgs, 128K lie and lie

TM

Merlin 8/16
Complete Macro Assembler System
For the Apple Ilgs and 128K Ileffic

by Glen Bredon

Manual by Roger Wagner and Tom Bums

Produced by:

Roger Wagner Publishing, Inc.

1050 Pioneer Way, Suite P
El Cajon, California 92020

Customer Service & Technical Support:
619/442-0522

ISBN 0-927796-28-7
1M188

Customer Licensing Agreement

The Roger Wagner Publishing, Inc. software product that you have just received
from Roger Wagner Publishing, Inc., or one of its authorized dealers, is provided to
you subject to the Terms and Conditions of the Software Customer Licensing
Agreement. Should you decide that you cannot accept these Terms and Conditions,
then you must return your product with all documentation and this License marked
"REFUSED" within the 30 day examination period following the receipt of the
product.

1. License. Roger Wagner Publishing, Inc. hereby grants you upon your receipt
of this product, a nonexclusive license to use the enclosed Roger Wagner
Publishing, Inc. product subject to the terms and restrictions set forth in this
License Agreement

2. Copyright. This software product, and its documentation, is copyrighted by
Roger Wagner Publishing, Inc. You may not copy or otherwise reproduce the
product or any part of it except as expressly permitted in this License.

3. Restrictions on Use and Transfer. The original and any backup copies of this
product are intended for your personal use in connection with a single computer.
You may not distribute copies of, or any part of, this product without the express
written permission of Roger Wagner Publishing, Inc.

Limitations of Warranties and Liability

Roger Wagner Publishing, Inc. and the program author shall have no liability or
responsibility to purchaser or any other person or entity with respect to liability,
loss or damage caused or alleged to be caused directly or indirectly by this software,
including, but not limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use or operation of
this software. Some states do not allow the exclusion or limitation of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

ProDOS and DOS 3.3 are copyrighted programs of Apple Computer, Inc. licensed
to Roger Wagner Publishing, Inc. to distribute for use only in combination with
Merlin 8/16.

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS
OR IMPLIED, REGARDING THE ENCLOSED COMPUTER SOFIW ARE
PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES
IS NOT PERMITTED BY SOME STATES. THE ABOVE EXCLUSION MAY
NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH
SPECIFIC LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU
MAY HAVE WHICH VARY FROM STATE TO STATE.

Copyrights

The Merlin 8/16 docwnentation and software are copyrighted © 1987 by Roger
Wagner Publishing, Inc. This documentation and/or software, or any part thereof,

f

may not be reproduced in any form or by any means, electronic or mechanical, f
including photocopying, recording, storage in an information retrieval system, or
otherwise, without the prior written pennission of the publisher.

We have tried our best to give you a quality product at a fair price, and made the
software copyable for your personal convenience. Please recommend our product to
your friends, but respect our wishes to not make copies for others. Thanks!

Apple, ProDOS, and DOS 3.3 are trademarks or Apple Computer, Inc.

Merlin 8/16 is a trademark of Roger Wagner Publishing, Inc.

About the Manual

This manual was formatted using MacAuthor from Icon Technology, Ltd, 9 Jarrom
Street, Leicester LE2 7DH, England, and Apple's LaserWriter printer.

OUR GUARANTEE

This product carries the unconditional guarantee of satisfaction or your money back.
Any product may be returned to place of purchase for complete refund or
replacement within thirty (30) days of purchase if accompanied by the sales receipt
or other proof of purchase.

r

ABOUT THE AUTHOR

Glen Bredon is a professor at Rutgers University in New Jersey where he has taught mathematics for
over twenty years. He purchased his first computer in 1979 and began exploring its internal operations
because "I wanted to know more than my students." The result of this study was Merlin, the first in a
series of best selling assemblers (Merlin, Merlin Pro, Merlin 64, and Merlin 128) for the Apple and
Commodore personal computers. Glen has also written other utilities including Prose!, the popular
ProDOS program selector. A native Californian and concerned environmentalist, Glen spends his
summers away from mathematics and computing, preferring the solitude of the Sierra Nevada mountains
where he has helped establish wilderness reserves.

r •
I

MERLIN 8/16

Table of Contents

INTRODUCTION
System Requirements . 1
Suggested Reading . 2
Making Back-up Copies of Merlin 8/16 . 3
Personalizing Merlin 8/16 . 4

GETTING STARTED WITH MERLIN 8/16
Entering a Source Listing . 5
Editing a Source Listing . 8
Assembling a Source Listing . 9
Saving Programs . 12
Running Programs . 14
The Rest of This Manual . 16

THE MAIN MENU
The Main Menu

THE MERLIN 8 EDITOR

17

Merlin 8 Full Screen Editor Commands . 23
Merlin 8 Control Key Commands . 24
Merlin 8 Open Apple Key Commands . 27

Merlin 8 Editor Command Summary. 33
Merlin 8 Command Mode . 36

General Guidelines for the Command Mode
About the Merlin 8 Editor Documentation

Command Mode Commands
Assembling a Merlin 8 File .

THE MERLIN 16 EDITOR

36
36
37
47

Merlin 16 Full Screen Editor Commands . 48
Merlin 16 Control Key Commands . 48
Merlin 16 Open Apple Key Commands . 52

Merlin 16 Command Box . 61
General Guidelines for the Command Box Commands 61
About the Command Box Documentation . 61

Command Box Commands . 63
Merlin 16 Editor Command Summary . 70
Assembling a Merlin 16 File . 73

THE ASSEMBLER
The Assembler . 74
About the Assembler Docwnentation . 75
Prelllninary Definitions . 76
Assembler Syntax Conventions . 77

Source Code Format . 77
Local Labels . 78
Variables . 79
Number Format . 80
Expressions Allowed by the Assembler . 81
Immediate Data Syntax . 83
Addressing Modes . 83
Special Forced Non-7.ero Page Addressing . 85
Sweet 16 Opcodes . 85
65C02 and 65802 Opcodes . 86

Assembler Pseudo Opcode Descriptions . 87
Formatting Pseudo Ops . 103
String Data Pseudo Ops . 107
Data and Storage Allocation Pseudo Ops . 110

Using Data Tables in Programs. 113
Conditional Pseudo Ops . 114

Using Conditional Assembly . 116
Miscellaneous Pseudo Ops . 119

MACROS
Why Macros . 127
Macro Pseudo Ops . 127
How a Macro Works 128
More About Defining a Macro 133
Nested Macros . 134
Macro Libraries and the USE Pseudo-Op 136

THE LINKERS
The Merlin 8/16 Linkers. 137
Why a Linker ... 137
About the Linker Documentation . 138
Pseudo Opcodes for Use with Relocatable Code Files . 140
The Merlin 8 Linker . 144

LinkerNameFiles .. 145
The Linking Process. 146
Using Merlin 8 Linked Files . 147

The Merlin 16 Linkers . 150
The Absolute Linker . 151
The Linker Command File . 154
Using Merlin 16 Linked Files . 155

Multiple Output Files . 157
The GS Linker. 158
Quick Link . 159
Multiple LNK Input Files . 160
Using the GS Linker . 161
Large File GS Linker . 163

TECHNICAL INFORMATION
Technical Information . 164
General Information (DOS 3.3 only) . 164
General Information (ProDOS and DOS 3.3) . 165
Symbol Table . 165
Ultraterm Information . 165
Memory Allocation with Merlin 8/16 . 166
Configuring Merlin 8 ProDOS . 166
Configuring Merlin 8 DOS 3.3 . 166

Data Descriptions for Merlin 8 Configurations. 166
64K Merlin and Merlin 8/16 Source Files . 167
Merlin 8/16 ProDOS Notes. 168
Transferring Source Files from DOS 3.3 to ProDOS Merlin 8/16. 169
Merlin 8/16 and Speed Up Cards . 169
Merlin 8 and Corvus Hard Disks . 170
Configuring Merlin 16 ... 170

The Merlin 16 Parms File . 170
Merlin 8/16 Memory Maps 176

ERROR MESSAGES
Error Messages . 179

SOURCEROR
Using Sourceror on Merlin 16 . 184
Using Sourceror on Merlin 8 . 184
65C02 Opcodes on Older Ile/Ile Computers . 186
Disassembly Commands .. 186
Merlin 16 Sourceror Notes . 188
Sourceror XL . 188
Final Processing . 190
Modifying the Finished Source . 190
The Memory Full Message . 191
Changing Sourceror's Label Tables . 191

SOURCEROR.FP
Applesoft Source Listing . 192
Sourceror.FP . 192

Printing the Applesoft Source Listing . 193

Applesoft Source Cross Reference Listing . 195

UTILITY PROGRAMS
Auto Edit 197
Classic Desk Accessories . 197

Calendar - Notepad - Rational Calculator 197
Clock
Conv Lnk Rel
Converter: APW source to Merlin .

197

1 198
198

Using Macgen 200
Cross Reference Programs 205

Xref/XrefA . 205
Using Xref 206
XrefA Notes 208

Formatter 208
Keyboard Macro Files .. . 209

Edrnac - Keymac .. . 209
Keyboard Macro Equivalent Chart 210

Make Dump 211
Printfiler . 211

Printfiler Applications 212
Using Printfiler 212
Changing Printfiler Options . 213

Txted 214
Type.Changer .. . 214
Additional Merlin 8/16 Resource Files. 215

INDEX
Index .. . 216

f
Merlin 8/16 User's Manual Preface

MERLIN 8/16

Merlin 8/16 is an extremely powerful, comprehensive Macro Assembler system for the Apple Ilgs or
128K Ile/Ile. It consists of four main modules and numerous auxiliary and utility programs which
comprise one of the most complete assembler systems available for any personal computer. Merlin
8/16's four main modules are:

- FILE MANAGEMENT system, for disk 1/0, file management, ProDOS interpreter, etc.

- EDITOR system, for writing and editing programs with word-processor-like power.

- ASSEMBLER system, with Macros, Macro libraries, conditional assembly, linked files, etc.

- LINKER system, for generating relocatable code modules, library routines, run-time packages, etc.

However, Merlin 8/16 is more than just the sum of these four parts. Here are some of the other features
offered by Merlin 8/16:

- Merlin 8/16 comes with three assemblers: Merlin 16 (ProDOS), Merlin 8 (ProDOS), and Merlin 8
(DOS 3.3). On the Apple Ilgs, or Apple Ile or Ile computers with the 65802 or 65816 chip, Merlin
16 assembles programs written for the 6502, 65C02, 65802 and 65816 microprocessors. On the
standard 128K Ile or Ile, Merlin 8 assembles programs written for the 6502, 65C02 and 65802
microprocessors.

- Merlin 8/16 is compatible with existing Merlin and Merlin Pro source files.

- Merlin 8/16 recognizes over 50 Pseudo Opcodes for extreme programming flexibility.

- Merlin 8/16 has over 70 commands for ultimate editing and assembling power.

- Merlin 8/16 produces a fully commented, disassembled source listing of Applesoft BASIC.

- Merlin 8/16 comes with Sourceror, a powerful symbolic disassembler to generate Merlin 8/16 source
code from binary programs.

- Merlin 8/16 comes with many sample programs, libraries and other aids to get you going with
assembly language fast.

- Merlin 8/16 is copyable and hard disk compatible.

' I I ,

1 .

f

r ,

I I

!

I '

Merlin 8/16 User's Manual Introduction

INTRODUCTION

Merlin 8/16 is the most comprehensive macro assembler system for the Apple Ilgs or 128K Ile/Ile
offering virtually every feature and function that a programmer needs, thus making it unlikely that
you'll outgrow it. At the same time, Merlin 8/16's easy built-in editor and fast assemblies make it a
pleasure to use whether you're writing a few lines of code or 30,000!

SYSTEM REQUIREMENTS

To run Merlin 8/16, you'll need at least one disk drive, and one of the following:

* Apple Ilgs or
* Apple Ile or
* 128K Apple Ile or
"' Laser 128 or Laser 128 EX

Merlin 8 will run on all the computer systems listed above; Merlin 16 requires a 65802 or 65816
microprocessor such as in the Apple Ilgs, or a modified Apple Ile, Ile or compatible.

Merlin 8/16 supports a wide variety of 80 column display devices including the Apple, the Videx
standard and Ultraterm cards, the Checkmate Multi-View, the Applied Engineering Viewmaster 80, and
many others.

Merlin 8/16 works with all printers, producing formatted listings with page breaks and titles.

lf you're familiar with assembly language programming already, you will find it's easy to adapt to
Merlin 8/16. It follows the programming standards of the 65xx family of microprocessors, and its
assembler-directed commands, or pseudo-ops, are a super-set of just about every other assembler. That
is, assembler directives like HEX, ASC, DS, etc. that you've used in other assemblers are used in
Merlin 8/16, and better still, you'll find a new complement of functions to make programming easier.
These include assembling directly to or from disk files, multiple data formats for numbers and strings, a
complete set of assembler utilities such as cross-referencing and a source code generator (Sourceror),
macro capabilities and more.

lf you're new to assembly language programming, Merlin 8/16 is the easiest assembler there is.
However, the Merlin 8/16 manual does not make any attempt to teach the techniques of assembly
language programming itself. Those techniques are covered in various tutorial books available from a
number of publishers, including Roger Wagner Publishing. Because everyone has different goals and
objectives, you should seek out those books which best match your current needs and experience.

Page 1

Merlin 8/16 User's Manual Introduction

SUGGESTED READING

Some of the books we recommend include:

.. APPLE IIGS MACHINE LANGUAGE FOR BEGINNERS - Roger Wagner, COMPUTE! Books,
Greensboro, NC 27408. Approximately 600 pages of new material, this Ilgs assembly language
tutorial covers a myriad of subjects such as writing your first routines, calling machine language
routines from Applesoft, ProDOS 8 and 16, and concludes with a Ilgs drawing program using
Quickdraw, scrollable windows, and pull-down menus. The encyclopedic appendix includes examples of
all machine language instructions .

./APPLE IIGS TECHNICAL REFERENCE - Michael Fischer, Osbourne-McGraw-Hill. Filled with
relevant technical material, this book is an outstanding resource for the advanced programmer interested
software development on the Ilgs.

APPLE IIGS TOOLBOX REFERENCE - Apple Computer, Inc. This 2-volume set is a highly
technical reference for using the IIgs toolbox. Does not include programming examples or tutorial
information.

I' APPLE PRODOS - by Gary Little. Brady Communications Co., Bowie, MD 20715. A good tutorial
book on how to write assembly language programs that use ProDOS.

ASSEMBLY LINES: THE BOOK - by Roger Wagner. Roger Wagner Publishing, Inc. El Cajon, CA
92020. A tutorial on assembly language programming designed specifically for the novice. It gives a
description of all 6502 instructions, disk access, reading and writing DOS 3.3 files, sound generation,
basic math, keyboard and screen techniques and more.

ASSEMBLY COOKBOOK FOR THE APPLE II/IIE - by Don Lancaster. Howard Sams & Co.,
Indianapolis, IN 46268. This interesting book will give you real insights into Don Lancaster's view of
programming theory and practice. A good addition to any library .

..;BENEATH APPLE DOS - by Don Worth and Peter Lechner. Brady Communications Co., Bowie, MD
20715.

v BENEATH APPLE PRODOS - by Don Worth and Peter Lechner. Brady Communications Co., Bowie,
MD 20715. These two books are the classic reference books for learning about the inner workings of
DOS 3.3 and ProDOS. A must if you intend to do any programming in this area. More of a reference
than a tutorial.

ENHANCING YOUR APPLE II (Volume 1) - by Don Lancaster. Howard Sams & Co., Indianapolis,
IN 46268.

ENHANCING YOUR APPLE II AND IIE (Volume 2) - by Don Lancaster. Howard Sams & Co.,
Indianapolis, IN 46268. These two books are a continuation of Don Lancaster's unique instruction in
the art of assembly language programming. More tips here on different kinds of short programs.

Page 2

f

Merlin 8/16 User's Manual Introduction

INSIDE THE APPLE ITC - by Gary Little. Brady Communications Co., Bowie, MD 20715. An
overview of the entire Apple Ile system, from the assembly language programmer's viewpoint.

INSIDE THE APPLE IIGS - Gary Bond, Sybex. Contains a lot of important information but
by-passes some of the rules for producing code compatible with future system upgrades.

NOW THAT YOU KNOW APPLE ASSEMBLY LAN GU AGE, WHAT CAN YOU DO WITH IT? -
by Jules Guilder, Red!ig Systems, Inc., 2068 79th Street, Brooklyn, NY 11214. A good applications
tutorial with lots of good subroutines for input and output, printer drivers and more. An excellent
follow-up book to Assembly Lines: The Book.

PROGRAMMING THE 65816 - David Eyes and Ron Lichty, Prentice Hall Press, New York, NY
10023. In-depth coverage of the differences between the 65816, 6502, 65C02, and 65802 chips and how
to best utilize them from a programming standpoint. Also includes a programming tutorial, code
samples and a reference section.

1 THE APPLE IlGS TOOLBOX REVEALED - Danny Goodman, Bantam Computer Books. Details the
philosophy of the toolbox and methods of accessing it, but lacks programming examples.

THE ELEMENT ARY APPLE IlGS - William B. Sanders, COMPUTE! Books, Greensboro, NC
27408. An introductory book to the IIgs with information on Applesoft, Hi-Res and Super Hi-Res
graphics, and sound on the Ilgs.

65816/65802 ASSEMBLY LANGUAGE PROGRAMMING- by Michael Fischer. Osborne
McGraw-Hill , Berkely, CA 94710. A thorough treatment of the 6502, 65C02, 65802 and 65816
microprocessors. The size of this book (nearly 700 pages) gives you an idea of why this manual for
Merlin 8/16 does not attempt to cover programming on the 6500 family microprocessors itself.

MAKING BACK-UP COPIES OF MERLIN 8/16

The Merlin 8/16 diskettes are unprotected and copies may be made using any copy utility. It is highly
recommended that you use only the BACK-UP copy of Merlin 8/16 in your daily work, and keep the
original in a safe place.

You can copy the Merlin 8/16 diskettes using:

1) The COPY A utility program from Apple's System Master Diskette for the DOS 3.3 version of
Merlin 8/16.

2) The Copy Volume or Duplicate a Diskette function from the ProDOS System Disk for the ProDOS
versions of Merlin 8/16, or System Utilities program on the Apple IlGS System Master diskette.

Page 3

Merlin 8/16 User's Manual Introduction

PERSONALIZING MERLIN 8/16

Certain aspects of Merlin 8/16, such as printer line width, page length, default tab positions for the
fields in a source listing, turning off the bell sound, etc., can be customized by changing the file
PARMS.S on the Merlin 8/16 disk, and re-assembling the PARMS file. If you would like to change
any of these defaults of Merlin 8/16, see the discussion of the PARMS file in the Technical Informatior
section of this manual for details on making the changes. For now, though, we recommend you wait
until you're more familiar with Merlin 8/16.

Page 4

..,

f

Merlin 8/16 User's Manual Getting Started

GETTING ST AR TED WITH MERLIN 8/16

The purpose of this section is not to provide instruction in assembly language programming. Rather, it
will show you the entry and running of a short assembly language program to give you an idea of how
Merlin 8/16 works.

Many of the Merlin 8/16 commands and functions are very similar in operation. This section does not
attempt to present demonstrations of each and every command option. The objective is to present
examples of the more common operations, sufficient to get you started writing your own programs
using Merlin 8/16. You should not expect to immediately use all of the various commands that Merlin
8/16 supports in your first program. The best approach is to use the Merlin 8/16 manual in an
encyclopedia-like fashion, reading just those sections that provide some utility to a current
programming task. We suggest that you lightly skim through the manual once, to become aware of
generally what the software has to offer, and then return later to specific sections as needed.

ENTERING A SOURCE LISTING

Now, let's try your first program with Merlin 8/16. Just follow these steps:

1. Start any of the Merlin 8/16 disks (ProDOS or DOS 3.3). A title screen appears, after which the
screen changes to the Main Menu. The Main Menu is used for loading and saving files, disk
operations, and of course, entering the Merlin 8/16 Editor and Assembler itself.

2. The percent (%) prompt appears at the bottom of the Main Menu. Press F if you are using Merlin
16. If you are using Merlin 8, press E to go the Editor, then A and Return to enter the Add Mode.

3. Since we are entering an entirely new program, a 1 appears at the top right corner of the screen.
This number indicates the line the cursor is on in the listing. The 1 and all subsequent line numbers
which appear serve roughly the same purpose as line numbers in BASIC except that in assembly
source code, line numbers are not referenced for jumps to subroutines or in GOTO-like statements.

4. On line 1, type an asterisk(*). Entering an asterisk as the first character in any line is similar to a
REM statement in BASIC - it tells the assembler this is a remark line and anything after the asterisk
is to be ignored. Type the title DEMO PROGRAM 1 after the asterisk and press the Return key.

* DEMO PROGRAM 1

5. After Return, the cursor moves to the beginning of line 2.

6. An asterisk is not needed to just create a blank line. To create a blank line, with no text following
it, press Return again.

7. The cursor once again drops down one line, and a 3 appears at the top right corner of the screen.

Page 5

Merlin 8/16 User's Manual Getting Started

8. Press the space bar once and the cursor moves to the next field. Type ORG, press space again, type
$8000 and then press Return.

* DEMO PROGRAM 1

ORG $8000

The above step instructs the assembler to create the following program so that it can run at memory I
location $8000. Merlin 8/16 almost always assembles your program in the same place in memory, but
the ORO (for Origin) is used to tell Merlin 8/16 where you want the program to eventually be run.
This is so that JMPs, JSRs and other location dependent code within your program is properly written
with the final location in mind.

You'll notice that when you press the space bar, Merlin 8/16 automatically moves the cursor to the next
field on the line. You'll recall that in assembly language programming, the position of text on each line
determines what kind of information it is. Labels for routines and entry points are in the first position.
On line 3 you skipped this field by pressing the space bar first, before entering any text. The second
position is for the command itself. The command can either be a command such as LDA, RTS, etc., or
it can be a directive to Merlin 8/16 itself, to be used during the assembly to write a file to disk, create a
label, call up a macro, or any of Merlin 8/16's many assembler commands.

9. With the cursor at the beginning of line 4, type BELL and space to the next field, type EQU and
space again, then type $FBDD and press Return.

BELL EQU $FBDD

This defines the label BELL to be equal to hex FBDD. This use of a label is known as an equate or
constant. Wherever BELL appears in an expression, it will be replaced with $FBDD. Why don't we
just use $FBDD? For one thing, BELL is easier to remember than $FBDD. Also, if a later assembly
required changing the location of BELL, all that needs changing is the EQU statement, rather than all
the other $FBDD's throughout the listing.

10. At the beginning of line 5, type ST ART and press space, type JSR and space again, type BELL and
another space, then type a semicolon(;) followed by RING THE BELL and then press Return.

START JSR BELL ; RING THE BELL

Following the opcode is the operand, in this case BELL. The operand is the target information of
the opcode. Where to JSR to, what value to load, etc.

Semicolons are like asterisks, used to mark a comment. Semicolons, however, are used to mark the
start of a comment at the end of a line that contains other commands.

11. On line 6 type DONE and space, then type RTS and press Return.

Page 6

Merlin 8/16 User's Manual Getting Started

12. The program has been completely entered. If you wanted to exit the Add Mode, you would press
Open-Apple-Q ("Quit"). Since you are not done, do not exit yet.

13. The screen should now appear like this:

* DEMO PROGRAM 1

ORG
BELL EQU
START JSR
DONE RTS

$8000
$FBDD
BELL RING THE BELL

Note that throughout the entry of this program, each bit of text has been moved to a specific field. Here
is a summary of the fields as used so far:

Label Opcode Operand Comment
START JSR BELL RING THE BELL

Field One is reserved for labels. ST ART is an example of a label.

Field Two is reserved for opcodes, such as the Merlin 8/16 pseudo-opcodes or directives such as ORG
and EQU, and the JSR and RTS opcodes.

Field Three is for operands, such as $8000, $FBDD and, in this case, BELL.

Field Four contains comments which are preceded by a semi-colon(;).

It should be apparent from this exercise that it is not necessary to input extra spaces in the source file
for formatting purposes, even if these spaces seem to exist in a listing you may be using.

In summary, on each line:

1) Do not space for a label. Space once after a label or if there is no label, once at the beginning for
the opcode.

2) Space once after the opcode for the operand. Space once after the operand for the comment. If there
is no operand, type a space and a semicolon for a comment if desired.

Page 7

Merlin 8/16 User's Manual Getting Started

EDITING A SOURCE LISTING

Assmning no errors have been made in the text entered so far, you could now assemble the program
entered with Merlin 8/16. Before doing that, however, let's look at the editing abilities of Merlin 8/16.

Editing is the process of making alterations to text that you've already entered, and this ability is one of
Merlin 8/16's strong points. In a sense, an assembler is just a word processor for the text that makes
up a program. In that light, then, you can judge an assembler in part by how good its editing features
are.

Merlin 8/16 has a powerful Full Screen Editor. Powerful in the range of operations possible and, after a
little practice, remarkably easy to use. The following text describes how to use the Editor.

You can use the arrow keys to move the cursor anywhere in the listing. There are two types of cursors,
the insert and the overstrike. How and when to switch between these two cursor will be explained later.
For now, we'll use the insert cursor.

Inserting and deleting lines in the source code are both simple operations. The following example will
insert three new lines between the existing lines 5 and 6.

1. Use the arrow key to move to the beginning of line 4 (BELL etc.). Press Return to insert a blank
line.

2. Press Return.

3. Press Return again.

4. At line 7, press space once, then type TY A and press Return.

5. The listing should appear as follows:

* DEMO PROGRAM 1

ORG
BELL EQU

TYA

$8000
$FBDD

START JSR BELL
DONE RTS

RING THE BELL

The three new lines (5, 6, and 7) have been inserted, and the subsequent original source lines (now lines
8 and 9) have been moved down.

Page 8

1

Merlin 8/16 User's Manual Getting Started

Deleting lines is equally easy.

1. In Merlin 16, press a key to re-enter the Full Screen Editor.

In Merlin 8, press A and Return to enter the Add Mode (assuming you are at the command mode).

2 . Move the cursor to the beginning of line 8 (START etc.) and press Open-Apple-Delete.

You've just deleted the TY A line, and the subsequent lines have been renumbered.
Open-Apple-Delete always deletes the line above the cursor. (Open-Apple-D will delete the line the
cursor is on.)

3. Press Open-Apple-Delete twice more.

Lines 5 and 6 from the previous example have been deleted, and the subsequent lines renumbered. The
listing appears the same as when you first entered it into to the Editor.

While adding, editing, or deleting an existing line, you have many options within the line, all of which
are accessed by using Control characters. To demonstrate using our BELL routine:

1. Move the cursor to the beginning of line 6. The cursor should be over the D in DONE.

2. Type Control-D. The character under the cursor disappears, and the text of the label moves to the
left. Type Control-D again, and yet a third and fourth time. DONE has been deleted, and the cursor
is positioned at the beginning of the label field.

3. Type DONE in again and note that the text is inserted in the label field but the opcode field does not
move. The listing appears the same as when you first entered it into the Editor.

The other Control Character commands function similarly. All of the editing commands are discussed
in the Merlin 16 and Merlin 8 Editor sections of this manual.

ASSEMBLING A SOURCE LISTING

The next step in using Merlin 8/16 is to assemble the source code into object code.

1. If you are using Merlin 16, press Open-Apple-A to assemble and skip to step 3.

If you are using Merlin 8, press Open-Apple-Q to enter the Command Mode. After the colon (:)
prompt, type ;JtiSM and press Return.

Page 9

..,
I

Merlin 8/16 User's Manual Getting Started

2a. The Merlin 16 screen appears as follows:

Assembling.
1 * DEMO PROGRAM 1
2
3 ORG $8000

=FBDD 4 BELL EQU $FBDD
008000 20 DD FB 5 START JSR BELL RING THE BELL
008003 60 6 DONE RTS

End Merlin-16 assembly, 4 bytes, errors: 0 , symbol table: $1800-$181D

Symbol table - alphabetical order:

BELL =$FBDD ? DONE =$8003 ? START =$8000

Symbol table - numerical order:

? START =$8000 ? DONE =$8003 BELL =$FBDD

Press a key.

2b. The Merlin 8 screen appears as follows:

Assembling
1 * DEMO PROGRAM 1
2
3 ORG $8000
4 BELL EQU $FBDD

8000 20 DD FB 5 START JSR BELL RING THE BELL
8003 60 6 DONE RTS

--End assembly, 4 bytes, Errors: 0

Symbol table - alphabetical order:

BELL =$FBDD ? DONE =$8003 ? START =$8000

Symbol table - numerical order:

? START =$8000 ? DONE =$8003 BELL =$FBDD

Page 10

Merlin 8/16 User's Manual Getting Started

If instead of completing the above listing, the system beeps and displays an error message, note the line
number referenced in the message, and press Return until the "End assembly ... " message appears. Then
refer back to the section where the program was first entered and compare the listing with the one shown
in this manual. Look especially for elements in incorrect fields. Using the editing functions you've
learned, change any lines in your listing which do not look like those in the listing, then assemble
again.

If all went well, to the right of the column of line numbers down the middle of the screen is the now
familiar, formatted source code.

To the left of the line numbers is a series of numeric and alphabetic characters. This is the object code,
which are the opcodes and operands assembled to their machine language hexadecimal equivalents.

Merlin 16 example:

008000 20 DD FB 5 START JSR BELL ; ring the bell

Merlin 8 example:

8000 20 DD FB 5 START JSR BELL ; ring the bell

Left to right, starting on line 5, the first group of characters is the routine's starting address in memory.
See the definition of ORG in the section on the Assembler. On the left of line 5, the number 20
appears after the colon. This is the one-byte hexadecimal code for the opcode JSR.

NOTE: The label START is not assembled into object code; neither are comments, remarks, or
pseudo-ops such as ORG. Such elements are for the convenience and utility of the programmer only
and the use of the assembler program.

Each pair of hexadecimal digits is one byte. The next two bytes on line 5 bear a curious resemblance to
the last group of characters on line 4; have a look. In line 4 of the source code we told the assembler
that the label BELL was EQUated to address $FBDD. In line 5, when the assembler encountered BELL
as the operand, it substituted the specified address. The sequence of the high- and low-order bytes was
reversed, turning $FBDD into DD FB. This is a 65xx microprocessor convention.

The rest of the information presented should explain itself. The total errors encountered in the source
code was zero. If you count the bytes following the addresses, you'll see there were four bytes of object
code generated.

Page 11

Merlin 8/16 User's Manual Getting Started

SAVING PROGRAMS

There is an important step before running a program you have assembled. You should always save the
source code first in case your program crashes when you run it and causes your computer to hang. If
you save the program first, you'll be able to load it again and continue editing it. To save the source
code, you will have to return to the Main Menu, and use the SA VE SOURCE command. Then you
would use the SA VE OBJECT CODE. Note that SA VE OBJECT CODE can only be used if there has f .
been a successful assembly.

Here are the steps to follow for Merlin 16:

l. After a successful assembly, Merlin 16 returns automatically to the Main Menu. (You can also
return to the Main Menu in Merlin 16 by pressing Open-Apple-Q) If the Merlin 16 system disk is
still in the drive, remove it and insert an initialized data disk.

Press D for DISK COMMAND, then type PREFIX followed by the pathname for your data disk.
For example, if the volume name of your data disk was MYDISK, the complete line would look
like this:

Disk command :PREFIXJMYD ISK

When you press Return, Merlin 16 will change the current prefix in the Main Menu box.

2. After the per cent(%) prompt, press S to SAVE SOURCE. The system is now waiting for a
filename. Type DEMOl and press Return. After the program has been saved, the prompt returns.

3. Press C and Return to catalog the data diskette. The source code has been saved as DEMOl.S and is
a text file. The .S suffix is automatically appended by Merlin 16 to the filename by the SA VE
SOURCE command. This is a file-labeling convention which indicates the subject file is source
code.

4. After the per cent(%) prompt, press Return to go to the Main Menu and press 0 for SA VE
OBJECT CODE. To avoid confusion, the object file should be saved under the same name as was
earlier specified for the source file. Press Y to accept DEMOl as the object name. The object code
file is saved as a BIN file.

NOTE: There is no danger of overwriting the source file because no suffix is appended to the object
code file name. In our example, the object file will be saved as DEMO 1.

5. Press C to catalog again and note the files titled DEMOl.S and DEMOl.

Page 12

Merlin 8/16 User's Manual Getting Started

Here are the steps to follow for Merlin 8:

1. From the Command Mode prompt (:),press Q to Quit and Return. The system will quit the Editor
and go to Main Menu. If the Merlin 8 system disk is still in the drive, remove it and insert an
initialized data disk. If you are using the DOS 3.3 version of Merlin 8, skip to step 2.

On the ProDOS version of Merlin 8, press D for DISK COMMAND, then type PREFIX followed
by the pathname for the data disk. For example, if the volume name of your data disk was
MYDISK, the complete line would look like this:

Disk command:PREFIX/MYDISK

When you press Return, Merlin 8 will change the current prefix on the screen.

2. After the per cent(%) prompt, press S to SAVE SOURCE. The system is now waiting for a
filename. Type DEMOl and press Return. After the program has been saved, the prompt returns.

3. Press C to catalog the diskette. The source code has been saved as DEMOl.S and is a text file on
the ProDOS version, or a binary file on the DOS 3.3 version of Merlin 8. The .S suffix is
automatically appended by Merlin 8 to the filename by the SA VE SOURCE command. This is a
file-labeling convention which indicates the subject file is source code.

4. Press Return to go to the Main Menu and type 0 for SA VE OBJECT CODE. To avoid confusion,
the object file should be saved under the same name as was earlier specified for the source file. Press
Y to accept DEMOl as the object name.

NOTE: There is no danger of overwriting the source file because no suffix is appended to the object
code file name. In our example, the object file will be saved as DEMOl.

5. Press C to catalog again and note the files titled DEMOl.S and DEMOL

When looking at the Main Menu, you'll also notice that the address and length of your source code text
is displayed. If you have done a successful assembly, the address and length of the assembled object
code is also displayed. If the object code information is not displayed, Merlin 8/16 will not let you save
an object file to disk. The object code save is disabled whenever an error has occurred during an
assembly, or you have made a change to the source code and not yet re-assembled it, or the source code
is either too big to fit or not allowed to reside in the memory range you have specified for the assembly.

See the sections on ORG, OBJ and Memory allocation if this latter problem occurs.

Page 13

Merlin 8/16 User's Manual Getting Started

RUNNING PROGRAMS

There are two methods of rwming programs after you have completed a successful assembly. Method A
is the recommended procedure. It requires a little more time but it is much safer.

Method A: Running a program from BASIC

1. Save the source code.

2. Save the object code.

3. Press Q to Quit.

4. Load BASIC if necessary.

5. BLOAD the object file from the Applesoft BASIC prompt(]).

If you are using ProDOS, be sure to include the complete pathname. In our example, this would be:

BLOAD/MYDISK/DEMOl (Return)

If you are using DOS 3.3, you would type:

BLOAD DEMOl (Return)

6. To run the program, type CALL followed by the appropriate load address. The DEMO! program
had an ORG of $8000 which is 32768 in decimal. Thus, from the Applesoft prompt you would
type:

CALL 32768 (Return)

If you are running DEMO!, you will hear the beep indicating DEMO! actually works.

Method B: Running a program from the Monitor

1. If you are using Merlin 16, return to the Editor if necessary by pressing F.

If you are using Merlin 8, return to the Editor if necessary by pressing E.

Page 14

r
Merlin 8/16 User's Manual Getting Started

2. From the Merlin 16 Editor, press Open-Apple-0 to open the Command Box.

From the Merlin 8 Editor, press Open-Apple-Q to enter the Command Mode(:).

3. Type GET $8000 and press Return where $8000 is the address used in the ORG statement The
GET command tells Merlin 8/16 to take the program you've just assembled and transfer it to Main
Memory at the specified location.

4. From the Merlin 16 Editor, press Open-Apple-0 to open the Command Box, and type MON and
press Return and the Monitor prompt (*) appears.

In Merlin 8, type MON and press Return and the Monitor prompt (*) appears.

5. Type the ORG ad ress followed by a G and press Return to run the program. In our example, you
would type 80000 and press Return. A beep is heard. The demonstration program DEMO 1 was
responsible for it. It works!

NOTE: With Method B, do not forget to use the GET command to move the code to Main Memory.
If you assemble your program and then go directly to the Monitor you will not see your program. It
only gets there after you move it to Main Memory or run it. Also, if your program is loaded in one
location but runs in another, you must run the program before you can use the Monitor to examine the
code at the final location.

6. You can return to the Main Menu from the Monitor by pressing Control-Y and Return.

APPLE HGS USERS: Method B cannot be used to test programs that call Applesoft or Monitor
routines in the address range $DOOO-$FFFF (such as DEMO PROGRAM #1 that calls the BELL
routine at $FBDD). This is because on the GS, these routines are actually located in bank $FF of
memory, while the routine you're testing, at that point, is in bank $00. When your routine calls the
Applesoft or Monitor routine, it will not jump to the proper bank, and the results are unpredictable.
You can use Method A to test this type of program, or use whatever instructions may be provided for
testing the program, as will likely be the case with listings from magazines or other sources.

Page 15

Merlin 8/16 User's Manual Getting Started

THE REST OF THIS MANUAL ...

The preceding section was a simple look at how to enter, assemble, save, and run a Merlin 8/16
program.

The remainder of this manual is an encyclopedic reference of the various commands that are available
within Merlin 8/16 to make writing an assembly language program easier. Remember that the
commands and directives available within Merlin 8/16 are merely the building blocks from which you
can create your own programs. It is up to you to decide when and where they are to be used.

The manual describes the following aspects of Merlin 8/16:

1) The Main Menu: This level of Merlin 8/16 is used for loading and saving files, disk operations,
and entering the Editor/Assembler.

2) The Merlin 16 Editor and The Merlin 8 Editor: These sections describes the functions
available for creating and editing a source listing for an assembly language program.

3) The Assembler: This section covers assembler directives within Merlin 8/16. Remember that
these are not editing or direct user commands, but rather, text commands included within a source listing
to tell the assembler to do something special while your program is being assembled. This might
include using a Macro definition, writing a file to disk, or other functions.

4) Supplemental Sections: There are a number of additional sections in this manual that describe
the use of Macros, the Relocating Linker, Error Messages, Sourceror and Utility Programs, and many
other aspects of Merlin 8/16's operation. These can be consulted as necessary.

Page 16

Merlin 8/16 User's Manual Main Menu

THE MAIN MENU

The Merlin 8/16 Main Menu is used for file maintenance operations such as loading or saving code or
cataloging the disk. The following sections summarize each command available in this mode.

C (Catalog - ProDOS)

When you press C, you will be asked for the pathname of the directory you wish to catalog. At the
Prefix: prompt, enter a pathname or press Return. The catalog of the current directory will be shown.
The Main Menu prompt (%) is displayed after the catalog is shown. You can then issue any Main Menu
command such as L for Load Source. This pennits you to give a Main Menu command while the
catalog is still on the screen. In addition, if any key is typed during the catalog printing, the ProDOS
catalog will pause until any other key is pressed.

After using the C command to show the catalog, you can press=, =l, or =2 where the number
corresponds to the desired drive number. Merlin 8/16 will set the prefix to the volume found in the
current or specified drive and then catalog that volume.

If you press Open-Apple during the catalog, Merlin 8/16 lists onJy the directory files present in the
specified pathname.

If you press Closed-Apple during the catalog, Merlin 8/16 lists onJy the Text (usually source) files
present.

If you press both Open- and Closed-Apple keys simultaneously during a catalog, Merlin 8/16 lists only
the BIN (usually object) files present. Note that these keys must be pressed and held throughout the
entire catalog listing process.

If you enter a 1 as the first character of a pathname, or just 1 and Return, then the catalog will be sent
to the printer in slot 1.

If Merlin 8/16 cannot find a disk volume specified in the current prefix for a catalog, it will ask for the
correct volume to be inserted. This can be aborted by pressing Control-C.

Page 17

Merlin 8/16 User's Manual Main Menu
r

C (Catalog- DOS 3.3 Merlin 8 only)

When you press C, the catalog of the current diskette will be shown. The Command: prompt appears
to let you enter a DOS command if desired. This facility is provided primarily for locking, unlocking
and deleting files. Unlike the Load Source, Save Source, and Append File commands, you must type
the .S suffix when referencing a source file from this prompt. Do not use it to load or save files. If
you do not want to give a disk command, just press Return. You can use Control-X to cancel a
partially typed command. If you press Control-C and Return after the Command: prompt, you will be r
returned to the Main Menu prompt (%). You can then issue any Main Menu command such as L for
Load Source. This permits you to give a Main Menu command while the catalog is still on the screen.
In addition, if Control-C is pressed at the catalog pause point, printing of the remainder of the catalog is
aborted.

L (Load Source)

This is used to load a source file from disk. This is a text file for ProDOS, or binary file for Merlin 8
DOS 3.3 version. You will be prompted for the name of the file. You do not have to append .S since
Merlin 8/16 does this automatically. To cancel the Load Source command, just press Return and the
command will be cancelled without affecting any file that may be in memory.

After a Load Source or Append Source command, you are automatically placed in the Editor. The
source will automatically be loaded to the correct address.

NOTE: Subsequent Load Source or Save Source commands will display the last filename used,
followed by the? prompt. If you press Y, the current file name will be used for the command. If you
press the space bar, the cursor will be placed on the first character of the filename, and you may type in
the desired name. You can cancel the command by pressing Return without typing a file name. In
Merlin 16, pressing the TAB key will move the cursor to the end of the default filename. Merlin 16
also lets you add a slash (/) character to the end of the name to tell Merlin not to add the .S suffix for a
Load or Save operation. This is provided to save and load files to and from other editors that do not use
the .S suffix.

S (Save Source)

Use this to save a source file to disk . This will save a text for ProDOS and a binary file for the DOS
3.3 version. As with the load command, you do not include the .S suffix.

NOTE: The address and length of the current source file are shown on the Main Menu, and are for
information only. You do not need use these for saving; Merlin 8/16 does this automatically. As in
the Load Source command above, the last loaded or saved filename will be displayed. You can press Y
to save the same filename, or the space bar for a new file name. You can cancel the command by
pressing Return.

Page 18

Merlin 8/16 User's Manual Main Menu

A (Append File)

This loads in a specified source file and places it at the end of the file currently in memory. It operates
in the same way as the Load Source command, and does not affect the default file name. It does not
save the resultant combined (appended) file; you are free to do that if you wish.

D (Drive Change - DOS 3.3 Merlin 8 only)

When you press D, the drive used for saving and loading will toggle from one to two or two to one.
The currently selected drive is shown on the menu. When Merlin 8 is first started, the selected drive
will be the one used at startupt. To change the slot number, press C for to display the current disk's
catalog. Then give the disk command CATALOG,Sn, where n is the slot number. This action will
catalog the newly specified drive.

See the C command for the method of changing drive specification with the ProDOS versions.

D (Disk Command - ProDOS)

This allows you to issue disk-related commands. The following commands are available:

BLOAD
BRUN

BSA VE
DELETE
LOCK
~NLINE
vPFX
.1POP

PREFIX
RENAME
SLOT
UNLOCK.

pathname [,A$]
pathname [,A$]
pathname [,A$
pathname,A$adrs,L$len
pathname
pathname

pathname

pathname
old pathname.new pathname
slot number
pathname

(only hex addresses allowed)
(only hex addresses allowed)
(only hex addresses allowed)

(shows the volumes currently on line and their names)
(shorthand for Prefix)
("pops" Prefix level)
(sets the prefix to pathname)

(set new slot # used by PFX= command)

A disk command returns to the disk command mode. You can then issue another disk command or just
press Return to go back to the Main Menu.

Bload, Brun and •

Bload, Brun and"-" accept both BIN and SYS files. In Merlin 8, the difference between Brun and"-"
is in the state of the softswitches when control is passed to the program. Brun leaves Merlin 8 up;
that is, auxiliary zero page and language card RAM are selected. The"-" command switches in the

Page 19

Merlin 8/16 User's Manual Main Menu

main zero page and the $DOOO-$FFFF ROMs. In Merlin 16, Brun and "-" act the same and both
switch in the main zero page and the $DOOO-$FFFF ROMs. Using an RTS from such a program
will return to Merlin 8/16. Most of the utility programs supplied with Merlin 8/16 such as
Sourceror, XREF, etc. can be run by either method. You cannot use Brun to run programs such as
the ProDOS FILER. In addition, such programs do not return to Merlin 8/16 and the /RAM./
volume is left disconnected by this procedure.

Online

This command scans all attached disk devices, including RAM disks and hard disks, and reports each
volume name. This is handy for identifying the volume name of all available ProDOS disk devices.

Pfx, Prefix

If you are not sure of the volume or subdirectory pathname, you can type PFX= or PFX=l to
specify Slot 6, Drive 1, or PFX=2 for Slot 6, Drive 2.

When Prefix or Pfx is entered without a pathname, this command sets the prefix to the volume part
of the current prefix. For example, if the current prefix is /MERLIN/LIB and you type Pfx and
press Return at the disk command prompt, the prefix will revert to /MERLIN.

Pop

Typing POP as a disk command "pops" the directory level in the current prefix by one level. For
example, if the current prefix was "/MERLIN.16/SAMPLES/GRAPHICS", typing POP would
change the prefix to "/MERLIN.16/SAMPLES".

Slot

Slot is used to set the slot which subsequent PFX= commands will use to set the prefix from. That
is to say, it does not itself set the prefix to a given slot, but rather identifies which constant slot
future PFX= commands will use. For example, the following steps would set a prefix to that of the
disk in a specified slot:

1) Press D for Disk Command, then type Online. This will help remind you know which slots,
drives, and pathnames are currently active. (This is an optional step).

2) While still at the Disk Command prompt, type Slot n where 'n' is the desired slot and press Return.

3) At the Disk Command prompt type PFX=n where 'n' is the desired drive number and press Return.

4) Finally, press Return alone at the prompt. Note that the Prefix now shows the pathname of the
specified slot and drive. Simply put, typing the Disk Commands Slot 5 then PFX=
will set the prefix to slot 5.

Page 20

r
I

Merlin 8/16 User's Manual Main Menu

E (Enter Editor/Assembler • Merlin 8 only)
F (Enter Full Screen Editor/Assembler • Merlin 16 only)

This command places you in the Editor/Assembler mode. It automatically sets the default tabs for the
editor to those appropriate for source files.

NOTE: If you wish to use the editor to edit an ordinary (non-source) text file, you can type TABS and
press Return to zero all tabs, once you are in the Editor.

0 (Save Object Code)

This command is valid only after the successful assembly of a source file. In this case you will see the
address and length of the object code on the menu. As with the source address, this is given for
information only.

NOTE: The object address shown is the program's ORO (or $8000, bank 0, by default) and not that
of the actual current location of the assembled code, which is ordinarily $8000 in auxiliary memory.
When using this command, you are asked for a name for the object file. Unlike the Save Source
command, no suffix will be appended to this filename.

Thus you can safely use the same name as that of the source file since the .S will not be appended to
the filename. When this object code is saved to the disk its address will be the correct one, i.e., the one
shown on the menu. Then when you Bload or Brun it, the program will load at that address, which can
be anything ($300, $8000, etc).

R (Read Text File • DOS 3.3 Merlin 8 only)

This reads text files into Merlin 8. They are always appended to the current buffer. To clear the buffer
and start fresh, type NEW in the editor. If no file is in memory, the name given will become the
default filename. The Append command is similar, but does not change the default filename.

When the read is complete, you are placed in the Editor. If the file contains lines longer than 255
characters, these will be divided into two or more lines by the Read command. The file will be read
only until it reaches HIMEM, and will produce an Out Of Memory error if it goes beyond. Only the
data read to that point will remain.

The Read Text File and Write Text File commands will automatically add a T. prefix to the beginning
of the filename you specify unless you precede the filename with a space or any other character in the
ASCII range of $20 to $40 (% ... 0 ... 9 ... ?). This character will be ignored and not used by DOS in the
actual filename. For example:

Page 21

Merlin 8/16 User's Manual Main Menu f
Read File:TEST will read a file called T.TEST

but,

Read File:?TEST will read a file called TEST

If you are trying to read a file called TEST and you get a File Not Found error, you can also use the r.
Merlin 8 Catalog/Disk Command to rename the file to T.TEST.

The Read Text File and Write Text File commands are used to load or create PUT files, or to access files
from other assemblers or text editors.

W (Write Text File • DOS 3.3 Merlin 8 only)

This writes a Merlin 8 source file into a text file instead of a binary file. The speed of the Read Text
File and Write Text File commands is approximately that of a standard DOS Bload or Bsave. The Write
Text File routine does a Verify after the write.

@ (Set Date • ProDOS)

This allows you to set the current date for ProDOS. Note that this option does not set the date on a
clock card. If you have a clock, the date stamping is automatic (provided you have a Thunderclock or
have installed the proper clock driver). The Set Date provision is intended for people who do not have a
clock. In that case, you may use this to set the current date and this date will then be used for date
stamping. You may also just use this to check on the current date. Press Return alone to exit the Set
Date routine.

Q (Quit • DOS 3.3 Merlin 8 only)

This exits to BASIC. You may re-enter Merlin 8 by typing ASSEM and pressing Return. This
re-entry will not destroy the source file currently in memory. This exit can be used to give disk
commands, test machine language programs, run BASIC programs, etc.

Q (Quit • ProDOS)

This exits the Merlin Interpreter. If you launched Merlin 8/16, it will quit to the program that started
up Merlin 8/16. If you cold started Merlin 8/16, you must specify the prefix for the next volume name
and then the pathname of the next SYS file. In most cases this will be the BASIC.SYSTEM
interpreter.

Page 22

r
Merlin 8/16 User's Manual The Merlin 8 Editor

THE MERLIN 8 EDITOR

There are two modes in the Merlin 8 Editor: the Full Screen Editor, which includes all editing
corrunands, and the Corrunand Mode from which assemblies and other functions are done.

From the Merlin 8 Main Menu, you can press E to enter the Command Mode of the Editor. The
Merlin 8 Command Mode is indicated by the colon(:) prompt. No actual editing is done at this level.
Rather, you can either type a command which will start up the Full Screen Editor, or you may use a
number of specific Command Mode operations, which are of a general utility nature, such as to print a
listing, assemble a file, convert number types, etc.

When you type an editing command such as A to Add etc. from the Command Mode, the colon prompt
will disappear and the screen display will change to the Full Screen Editor.

MERLIN 8 FULL SCREEN EDITOR COMMANDS

From the Merlin 8 Main Menu, press E to enter the Command Mode, then A to Add to source listing.

The current line number is shown at the upper right comer of the screen. To the left of the line number
is a vertical bar which is the End-of-Line Marker. It indicates the position at which an assembly listing
will overflow the printer line. You can put characters beyond this mark, but they should be for
information only, and will not be printed within a printer listing.

The fields are tabbed, and the arrow keys can be used to move the cursor to the next tab position.

The Edit Mode commands are divided into two types: Control key commands which are line oriented,
and Open-Apple key commands which are global, i.e. oriented to the entire listing. The control key
commands edit text and move the cursor on just the line the cursor is presently on. Use the
Open-Apple key commands to make changes to groups of lines, or to move about in the listing. All
editing commands work whether the Full Screen Editor was started up using the Add, Insert or Edit
comands. When you are through editing, press Open-Apple-Q. The line is accepted as it appears on the
screen, no matter where the cursor is when you exit the Edit Mode.

To get the most out of the Merlin 8 Full Screen Editor, you should keep in mind that a full screen
editor is like a word processor. That is, any character you type is immediately entered into whatever
line the cursor is on.

With the Merlin 8 Full Screen Editor, if you can see it on the screen, you can edit it, and moving to a
line is a simple matter of using the arrow keys or other special commands to move to the part of the
listing you want to edit. Just remember, when you are using the Full Screen Editor, think of yourself
as using a word processor where you can freely scroll to whatever part of the page you want to edit, and
the final document is just your source listing.

Page 23

Merlin 8/16 User's Manual The Merlin 8 Editor

MERLIN 8 CONTROL KEY COMMANDS
(Line oriented)

Control-B (Beginning of line)

Moves the cursor to the beginning of the line.

Control-D (Delete character)

Deletes the character under the cursor. Also see Delete.

Control-F (Find)

Finds the next occurrence on the current line of the character typed after the Control-F. The cursor
changes to an inverse F to indicate the Find Mode. To move the cursor to the next occurrence on the
line, press the desired character key again. Typing any other character will exit the Find Mode and enter
the text typed at that positioIL

Control-I or TAB (Toggle insert cursor)

Toggles the cursor mode between the insert cursor designated by an inverse I, and overstrike cursor
which appears as an inverse block. The insert mode of the cursor should not be confused with entering
the Full Screen Editor using the Add and Insert commands. The cursor can be in the insert mode
regardless of whether lines are being added or inserted. The insert mode of the cursor refers only to
whether individual characters are being inserted or typed over.

The character insert mode defaults to ON upon entry. When you change it with Control-I, it remains
that way until changed again. Thus, moving from one line to another has no effect on this status.

Control-L (Lower case convert)

The Merlin 8/16 PARMS file can be configured so that unless the cursor is in a comment or an ASCII
string, lower case characters will be converted to UPPER CASE characters. To override this conversion,
or to reinstate it, just use the Control-L command. This conversion is also in effect when you use the
Open-Apple-F, Open-Apple-W, or Open-Apple-L find commands to specify the text to find. Even if
enabled in the PARMS file, this conversion is defeated when the tabs are zeroed.

Page 24

f

Merlin 8/16 User's Manual The Merlin 8 Editor

Control-N (End of line)

Moves the cursor to the end of the line.

Control-0 (Other characters)

This is used as a special prefix key from the Command Mode. For example, if you wanted to type a
Control-I or an Escape as part of a PRTR initialization string, you would press Control-0, followed by
the control character you desire. The control character will appear in inverse. For multiple control
characters, Control-0 must be typed before each character is entered.

Control-R (Restore)

This command restores the original line. For example, if you have used Control-Y to delete all
characters to the end of the line, you can press Control-R to undo the effects of the Control-Y
command.

Control-S (Status box)

This command displays a status box showing the number free and used bytes.

Control-T (Set marker on current line • Vertical "Tab")

This command can be used to set a marker at the current line for recall by the Open-Apple-T command.

Control· W (Find word)

This command moves the cursor to the beginning of each word in the line (alphanumeric).

Control-X (Exit global exchange, etc.)

This command can be used to cancel any global exchange, text selection, or string search while it is in
progress.

Control-Y (Delete to end of line)

Deletes all characters from the cursor to the end of the line.

Page 25

Merlin 8/16 User's Manual The Merlin 8 Editor

Arrow keys (Cursor movement)

The arrow keys move the cursor in the specified direction.

Delete (Delete character)

Deletes the character to the left of the cursor. Also see Control-D.

Escape (Move to beginning of next line)

This command moves the cursor to the beginning of the next line. This is similar to Return except
that Escape does not insert a blank line.

Return (Insert blank line)

Pressing Return anywhere in the line causes the cursor to move to the beginning of the next line and
insert a blank line.

TAB (Toggle insert cursor)

Toggles the cursor mode between the insert cursor, which is shown as an inverse I, and the overstrike
cursor, which is shown as an inverse block.

Moving from one line to another has no effect on the status of the cursor; it only changes when toggled
with TAB. Also see Control-I.

Page 26

Merlin 8/16 User's Manual The Merlin 8 Editor

MERLIN 8 OPEN APPLE KEY COMMANDS
(Entire listing oriented)

In addition to the line-oriented commands (control key commands), the Merlin 8 Full Screen Editor uses
Open-Apple (0) key commands to move within the listing, and to edit entire lines of text. These

commands are as follows:

OB (Beginning of source)

This command moves the cursor to the beginning of the source listing.

OD (Delete current line)

This command deletes the current line and places it in a special 'undo' buffer which is independent of the
clipboard.

The OR command replaces the current line with the contents of the 'undo' buffer. Therefore, to move a

single line to another location, you could place the cursor on the line to be moved, and then type OD to
delete the line. Then move the cursor to another line, press Return, 01 or OTab to create an empty
line, and press OR to replace that line with the deleted line. Also see ODelete.

OE (Global Exchange, also called 'Find & Replace)

Sometimes called 'Find & Replace,' this command will let you search for a group of words, and replace
them with another. The L>E command opens a dialog box that asks for the text to change, and the new
text to replace it. If you press Return alone for either of these, the command is canceled.

If you enter the text in both fields and press Return, the file is then searched for the change text Unlike
the FIND command, it looks only for full words. That is, the text found must be bounded by
non-alphanumeric characters or it will be ignored.

If text is found with this method, the screen is reprinted with the replacement made and the cursor is
placed on the first character of the replacement. Now you must press a key to continue. Pressing
Return (or most any other control character) will defeat the change and the command will look for the
next occurrence of the text to change. Pressing the space bar or any other character, except A, will
accept the change and the routine will continue.

You can back out of the global exchange while the cursor is on an entry by pressing Control-X. You
can also press the A key, which will cause all occurrences to be changed.

Page 27

Merlin 8/16 User's Manual The Merlin 8 Editor

You can tell when the routine is finished by the fact that during the exchange sequence, the line number
at the top right is missing. The line number will return when there are no more matches for the change
text, or when you press Control-X.

(j F (Find text)

The (jp command opens a window which asks for the text to find. It then finds the first occurrence of
the text in the entire text file. The text can be anywhere on a line. After the first find, you can find
the next occurrence by typing another (jF. You can edit the line.and then type (jp to go to the next
occurrence.

During the search function, one or more plus (+) signs will be shown next to the line number at the top
right of the screen. This is only an indicator that the search function is active. The number of plus signs
shown is arbitrary, and has no relation to the total number of occurrences.

In Merlin 16, if the (jp command is used after text has been selected, only the selected text will be
searched for the text to be found. When the search has been completed, the text is no longer selected.
Thus, you can use the (jy, (jc or (jX commands to search just a portion of your listing.

The (jB command and the Control-S status command both cancel the Find mode, as does failure to find
the text below the current line.

The (jw command is identical to (jp except that it finds only whole words bounded by non­
alphanumeric characters. If you type either (jW or (jp to find the next occurrence, this mode will
change accordingly.

In all cases the line containing the text is moved to the center of the screen, unless it is within the first
10 lines of the start of the source.

(jJ (Insert line)

Pressing {jJ will insert a blank line at the cursor. Also see (jT AB.

(jL (Locate label, marker or line number)

This command will locate the first occurrence of a label or any text in the label column. Only the
characters typed are compared with the labels. Thus the search string LOOP would jump to the label
LOOP2 if LOOP did not occur first. To find a specific label when there may be another similar label,
end the input with a single space.

Page 28

Merlin 8/16 User's Manual The Merlin 8 Editor

If a number is entered after this command, the cursor will move to the beginning of the line number
specified. This is particularly handy when editing a source file from a printed listing.

The intended use for t'. is command is to move rapidly to a particular place in the source. You can use
create your own 'mark..:rs' lo enhance the capability of this command. Thus, if a line has *7 in it, you
can specify *7 as the text to find for this command and it will locate it.

In all cases the line containing the text is moved to the center of the screen, unless it is within the first
l 0 lines of the start of the source.

ON (End of source)

This command moves the cursor to the end of the source listing.

OQ (Quit full screen editor)

This command returns to the Command Mode.

OR (Replace)

This command exchanges the current line with the contents of the 'undo' buffer. Therefore, pressing
OR a second time will cancel the effect of the first press.

Using OR when the cursor is on blank line will piace the contents of the 'undo' buffer on the line and
place the empty line in the 'undo' buffer.

The OR command can be used to move a single line. Place the cursor at the beginning of the line to
be moved and press OR. Move the cursor to the desired location, press Return to insert a blank line,
and press OR again.

OR can be used by itself to easily interchange two lines. Just place the cursor on the first line, press
OR, move the cursor to the second line and press OR again. Then move the cursor back to where the
first line was and press OR for the third, and final time. Also see OD.

OT (Return to line marker (vertical "Tab")

This command returns to the line marked by the last Control-T command.

Page 29

Merlin 8/16 User's Manual The Merlin 8 Editor

OV (Paste)

Pastes the contents of the clipboard at the line containing the cursor. Only full lines are moved. Using
this command does not change the contents of the clipboard, so this command can be used to replicate a
range of lines.

If the OV paste command is issued when a range of text has been selected, the text on the dipboard will

be inserted before the last line of selected text.

0 W (Find word)

The OW command is identical to OF except that it finds only whole words bounded by non­
alphanumeric characters. If you type either OW or OF to find the next occurrence, this mode will
change accordingly.

If the OW command is used after text has been selected, only the selected text will be searched for the
word to be found. When the search has been completed, the text is no longer selected. The search can
be cancelled with Control-X.

OX (Cut to Clipboard)

OX starts the select mode to cut text. The first time OX is pressed, the current line is selected and is
shown in inverse. Use the down arrow or Escape keys to extend the selection if desired, or press any
other key to cancel the selection. Additional selected lines are shown in inverse. Use the up arrow key
to adjust the range selected if you go too far. The select mode will be canceled if you move the cursor
above the first selected line or past the top of the current screen.

The second time OX is pressed the selected text is cut from the listing and is placed on the clipboard.
Merlin 8 has no "copy" command, but if you immediately follow the OX command that cuts a portion
of text with OV (for paste), the desired text will be on the clipboard, and the original listing will be
restored.

If you are unfamiliar with the idea of a "clipboard", this is just an analogy to how you might put a
piece of paper clipped from a magazine, letter, etc. on a clipboard, to hold it temporarily while you were
gelling ready to put it in its final location. In Merlin 8, the clipboard refers to a memory buffer that
holds the text you have cut while you decide where you want the final text placed. Using the clipboard,
you can cut tet from one source file, load another, and then paste the text into a second file. The
clipboard is cleared when a file is assembled.

Page 30

r

Merlin 8/16 User's Manual The Merlin 8 Editor

0 Y (Select all text)

This command selects all text to be cut from the current line to the end of the listing. OX will cut the
text, while pressing any other key will cancel the selection. This technique can be used to move the
entire listing to the clipboard.

0 Z (Center screen)

This command repositions the screen so that the line the cursor is on becomes the center line on the
screen.

0 Delete (Delete)

This command deletes the line above the cursor and places it in a special 'undo' buffer which is
independent of the clipboard.

The OR command replaces the current line with the contents of the 'undo' buffer. Therefore, you could
use ODelete to delete a line, move the cursor to another line, press Return, 01 or OTab to insert a
line, and press OR to replace that line with the deleted line.

OTAB (Insert line)

Pressing OT AB will insert a blank line at the cursor. Also see 01

0 Down arrow (Move half-screen down)

Moves the cursor down 10 lines; that line then becomes the center line on the screen. This command
has the effect of moving the current line to the top of the screen and then moving the cursor to what
was the bottom line on the screen.

OUp arrow (move half-screen up)

Moves the cursor up 10 lines; that line then becomes the center line on the screen. This command has
the effect of moving the current line to the bottom of the screen and then moving the cursor to what
was the 1st line on the screen.

Page 31

Merlin 8/16 User's Manual The Merlin 8 Editor

0 8 (Asterisk)

Produces a line of 32 asterisks. Overstrikes existing :tine, if any. Undo with Control-R.

09 (Box)

Produces an asterisk, 30 spaces, and then another asterisk. This and the 08 conunand can be used to
produce a large box for titles and other information. Overstrikes existing line, if any. Undo with
Control-R.

0- (Hyphen)

Produces a line of 1 asterisk and 31 hyphens. Overstrikes existing line, if any. Undo with Control-R.

0= (Equal sign)

Produces a line of 1 asterisk and 31 equal signs. Overstrikes existing line, if any. Undo with
Control-R.

Page 32

r

r
Merlin 8/16 User's Manual The Merlin 8 Editor

MERLIN 8 EDITOR COMMAND SUMMARY

CONTROL KEY COMMANDS (line oriented)

The Control Key commands consist of cursor moves and line oriented commands.

Control-B Moves cursor to beginning of line
Control-C Cancel assembly and return to Command Mode
Control-D Deletes character under the cursor
Control-F
Control-I
Control-L
Control-N
Control-0
Control-R
Control-S
Control-T
Control-W
Control-X
Control-Y
Arrows
Delete
Escape
Return
TAB

Finds next occurrence of next character typed
Toggles insert and overstrike cursor
Toggles lower case conversion
Moves cursor to end of line
Prefix key for typing optional characters
Restores original line
Displays status box
Set marker on current line for recall by c:jT (vertical "Tab")
Finds next occurrence of word in line
Exits global exchange, etc. while in progress
Delete characters to end of line
Moves the cun;or in the specified direction
Deletes character to left of cursor
Moves cursor to beginning of next line
Moves cursor down and inserts blank line
Toggles insert and overstrike cursor

Page 33

Merlin 8/16 User's Manual The Merlin 8 Editor

OPEN-APPLE KEY COMMANDS (entire listing oriented)

The Open-Apple Key commands are global commands, which means they are generally oriented to the
whole listing as opposed to just the current line (or a single character).

OB
OD

OE ·················
OF
01
OL
ON
OQ
OR
OT
ov -..... .
ow
ox
OY
oz
ODelete
OTAB
ODown
OUp
08
09
0-
0=

Moves to beginning. Cursor on center line
Deletes line and places it in 'undo' buffer
Global Exchange (Search & Replace)
Finds next occurrence of text entered
Inserts blank line at cursor
Finds first occurrence of label or line
Moves cursor to end of listing
Returns editor to Command Mode
Swaps current line with 'undo' buffer
Goes to line of last Control-T (go to vertical "Tab")
Pastes contents of clipboard on current line
Finds next occurrence of whole word
Start text selection/Cut selected text to clipboard
Selects text from current line to end of file
Current line becomes center line on screen
Deletes line above cursor; puts in 'undo' buffer
Inserts a blank line at cursor
Moves cursor down 10 lines
Moves cursor up 10 lines
Produces a line of 32 asterisks
Produces 1 asterisk, 30 spaces, and 1 asterisk
Produces a line of 1 asterisk followed by 31 hyphens
Produces a line of 1 asterisk followed by 31 equal signs

MERLIN 8 GENERAL REMARKS

When you move the cursor between lines, its horizontal position will jump around. This is because it
is based on the actual position in the line and not on the screen position. If the tabs are zeroed you will
not notice this, except for the fact that the cursor is never beyond the last character in the line.

The maximum line length is 80 characters. Lines longer than that will be truncated IF they are edited.

You must return to the Command Mode (OEscape) in order to use the ASM command to assemble,
MON to use the Merlin 8 Monitor, or to Quit and go to the Main Menu, etc. An assembly will delete
the contents of the clipboard.

Page 34

r
Merlin 8/16 User's Manual The Merlin 8 Editor

OOPS

Virtually any Editor action can be undone. You should remember that the proper undo command is of
the same 'type' as the command you want to undo. Thus, any Control key command is undone by
Control-R. This includes the d8, d9, d-, and Ls= commands which are considered line oriented
commands for this purpose.

The line deletion commands do and dDelete are undone by creating an empty line with dTab
followed by dR. If you forget to create the empty line, type another dR and then insert the empty
line to receive the undo buffer contents.

The dR command undoes itself.

A Cut (LsX) is undone by a Paste (LsV) without moving the cursor off its line.

If you are entering a line of text in response to a prompt, such as a filename, PRTR initialization, or
dialog box, you can press Control-C or Control-X to cancel the line.

ED.16

The full screen editor in Merlin 8 can be replaced with a version written specifically for the 65802 or
65816 chip. This editor is named ED.16 on both DOS 3.3 and ProDOS Merlin 8 disks. To enable
ED.16 on the DOS 3.3 disk, change line 80 of the HELLO program to BRUN ED.16 instead of ED as
is now done. On the ProDOS disk, you will have to rename ED to ED.OLD, and rename ED.16 to
ED. Although ED.16 is provided on the Merlin 8 disks, it is unlikely you will ever need it. We
recommend that if you do have the 65802 or 65816 that you use Merlin 16 instead of Merlin 8.

EDMAC and KEYMAC

These are macro utilities that will automatically type entire phrases or lines in your source file with a
single keystroke. EDMAC is for use with the full screen editor, KEYMAC is for use with the line
editor (presuming that ED has not been loaded). See the Utilities section of this manual for a description
of the actual keyboard definitions in these files. EDMAC and KEYMAC can be activated within Merlin
8 by typing BRUN EDMAC or BRUN KEYMAC from the Main Menu, as appropriate.

Editor Technical Information

The ED and ED.16 files have been arranged so that certain parameters can be changed with a little effort.
At relative byte 3 in the file there is an address that points to the main part of the program, hereinafter
referred to as ST ART, that is past a relocating header. At ST ART+ 10 is a table of command characters
used without the cj key. This table ends in a zero. Following this is the table of the key commands
used with the d, again ending in zero. If you are inclined, you can change these definitions to change
the command keys of the editor.

Page 35

Merlin 8/16 User's Manual The Merlin 8 Editor

MERLIN 8 COMMAND MODE

GENERAL GUIDELINES FOR THE COMMAND MODE

The Command Mode is used for assemblies, printing the source listing, and other general-purpose
functions. The command mode is entered by pressing E at the Main Menu, or by pressing OQ while in
the Full Screen Editor.

For most of the Merlin 8 Command Mode operations, only the first letter of the command is required,
the rest being optional. This manual will show the required command characters in UPPER case and the
optional ones in lower case.

ABOUT THE MERLIN 8 COMMAND MODE DOCUMENTATION

For each of the commands available in the Merlin 8 Command Mode, the documentation consists of
three basic parts:

1) the name and syntax of the command
2) examples of the use of each available syntax
3) a description of the function of each command

When the syntax for each command is given:

PARENTHESES O indicate a required value
ANGLE BRACKETS<> indicate an optional value or character
SQUARE BRACKETS []are used to enclose comments about the commmand

Line Numbers in Command Mode

With some commands, you must specify a line number, a range of line numbers, or a range list. A line
number is just a number. A range is a pair of line numbers separated by a comma. A range list consists
of several ranges separated by a slash (j).

Line Number examples:

10
10,30
10,30/50,60

LINE#
RANGE
RANGE LIST

[a single line number]
[the range of lines 10 to 30]
[ranges 10 to 30 AND 50 to 60]

If a line number in a range exceeds the number of the last line in the source, the editor automatically
adjusts the specified line to the last line number. For example, if you wanted to Delete all the lines
past 100 in a source listing, entering Dl00,9999 would do it.

Page 36

Merlin 8/16 User's Manual The Merlin 8 Editor

Delimited Strings (or d-strings)

Several commands allow specification of a string. The string must be delimited by a non-numeric
character other than tLe slash or comma. Such a string is called a delimited or d-string. The usual
delimiter is single or double quote marks(' or").

Delimited string examples:

'this is a delimited string'
"this is a delimited string"
@this is another d-string@

Note that the slash(/) cannot be used as a delimiter since it is the character that delimits range lists in
the Editor.

Wild Card Characters in Delimited Strings

For all of the commands that use delimited strings or d-strings, the "" character acts as a wild card
character. For example, the d-string 'Jon"s' is equivalent to both 'Jones' and 'Jonas' d-strings.

Upper and Lower Case Control

The shift and caps lock keys work as you would expect. While editing or entering a line of text, you
can also use the Control-L command, described earlier in this section.

COMMAND MODE COMMANDS

Following are the commands recognized by Merlin 8 in the Command Mode of the Editor. The
Command Mode is indicated by the colon prompt(:).

A (Add)

A [only option for this command]

The Add command places you in the Full Screen Editor at the end of the existing source listing, if any.
Adding lines is much like entering additional BASIC lines with auto line numbering. To exit from
ADD mode, press OQ.

You may enter an empty line by pressing space then Return. This is useful for visually blocking off
different parts of a listing.

Page 37

Merlin 8/16 User's Manual

E (Edit)

Edit (line number)
E 10 [edits line number 10]

This enters the full screen editor, with the cursor on the specified line.

C (Change)

Change (d-string d-string)
Change (line number) <d-string d-string>
Change (range) <d-string d-string>
Change (range list) <d-string d-string>

The Merlin 8 Editor

C "hello"goodbye [finds "hello" and if told to do so will change it to "goodbye"]
C 50 "hello"bye [changes in line 50 only]
C 50,100 "Hello"BYE [changes lines 50 through 100]
C 50,60/65,66 "AND"OR [changes in lines 50 through 60 and lines 65 and 66]

This changes occurrences of the first string to the second string. The strings must have the same
delimiters. For example, to change occurrences of speling to spelling throughout the range 20,100, you
would type C 20,100 "speling"spelling. Ifno range is specified the entire source file is used.

Before the change operation begins, you are asked whether you want to change all or some. If you
select some by pressing the S key, the editor stops whenever the first string is found and displays the
line as it would appear with the change.

If you then press the Y key, the change will be made. If you press Return, the change will not be
made. Typing any control character such as Escape, Return or any others will result in the change not
being made. Any other key, such as Y or even N, will accept the change. Control-C or the slash(/)
key will abort the change process.

COPY

COPY (line number) TO (line number)
COPY (range) TO (line number)

COPY lOTO 20
COPY 10,20 TO 30

[copies line 10 to just befor line 20]
[copies lines 10 through 20 to just before line 30]

This copies the line number or range to just above the specified number. It does not delete anything.

Page 38

Merlin 8/16 User's Manual

CW (Change word)

Change (d-string d-string)
Change (line nwnbers) <d-string d-string>
Change (range) <d-string d-string>
Change (range list) <d-string d-string>

CW "PTR"PRT [change all "PTR"s to "PRT"s]
CW 20 "PTR"PRT (as above but only in line 20]

The Merlin 8 Editor

CW 20,30 "PTR"PRT [do the same as the above but for lines 20 through 30]
CW 1,9/20,30 "PTR"PRT [same as above but include lines 1 through 9 in the range]

This works similar to the CHANGE command with the added features as described under Find Word
(FW).

D (Delete)

Delete (line nwnber)
Delete (range)
Delete (range list)

D 10
D 10,32
D 20,30/10,12

[deletes line number 10]
[deletes lines 10 through 32]
[deletes ranges of lines 10 through 12 and 20 through 30]

This deletes the specified lines. Unlike BASIC, the line nwnbers are fictitious; they change with any
insertion or deletion.

NOTE: When deleting several blocks of lines at the same time, you must specify the higher range
first for the correct lines to be deleted.

F (Find)

Find (d-string)
Find (line nwnber) <d-string>
Find (range) <d-string>
Find (range list) <d-string>

F "A String"
F 10 "STRING"
F 10,20 "HI"
F 10,20/50,99 "HI"

[finds lines with "A String"]
[finds "STRING" if in line 10]
[finds lines in range of 10 through 20 that contain "HI"]
[finds lines that contain "HI" in range of 10 through 20 and

50 through 99]

Page 39

Merlin 8/16 User's Manual The Merlin 8 Editor

FIX

FIX [only option for this command]

This undoes the effect of the TEXT command. It also does a number of technical housekeeping chores.
It is recommended that FIX be used on all source files from external sources that are being converted to
Merlin 8 source files, after which the file should be saved.

NOTE: The TEXT and FIX commands are somewhat slow. Several minutes may be needed for their
execution on large files. FIX will truncate any lines longer than 255 characters.

FW (Find Word)

FW (d-string)
FW (line number) <d-string>
FW (range) <d-string>
FW (range list) <d-string>

FW"LABEL"
FW 20 "LABEL"
FW 20,30 "PTR"
FW 20,30/50,99 "PTR"

[find all lines with "LABEL"]
[try to find "LABEL" in 20]
[find all lines between 20 and 30 that contain "PTR"]
[find all lines between 20 and 30 and between 50 and 99 that
contain the word "PTR"]

This is an alternative to the FIND command. It will find the specified word only if it is surrounded, in
source, by non-alphanumeric characters.

Therefore, FW "CAT" will find:

CAT
CAT-1
(CAT,X)

but will not find CATALOG or SCAT.

Page 40

Merlin 8/16 User's Manual

GET

GET (obj adrs)
GET

GET $4000

The Merlin 8 Editor

[put object code in Main Memory at the address specified in the
source's ORG]

[put object code at location $4000 in Main Memory]

This command is used Lo move the object code, after an assembly, from its location in Auxiliary
Memory to its ORG location in Main Memory. The address must be above the existing source file, if
any, and it will not be allowed to overwrite DOS. You can do a NEW if you want to load it lower in
memory than allowed, but you must remember to save the source first. You cannot use GET to put
object code at memory locations lower than $901, but you can go to the Monitor afterwards and use it
to move the object to any desired location. However, any such move using the Monitor may destroy
your source or other data necessary to Merlin S's operation. Caution should be used.

The GET command does not check if a valid object code has been assembled.

This command is supplied for convenience only. The recommended method for testing a program is to
save the source code first, save the object code, and then run the program from BASIC or with the G
command from the Monitor.

HEX-DEC CONVERSION

128 = $0080
$80 = 128

If you type a positive or negative decimal number in the Command Mode, the hex equivalent is
returned. If you type a hex number using the$ prefix, the decimal equivalent is returned. All
commands accept hex numbers.

L (List)

List
List (line number)
List (range)
List (range list)

L
L20
L 20,30
L 20,30/40,42

(list entire file]
(list line 20 only]
[list 20 through 30]
{ list 20 through 30 and then list lines 40 through 42]

Lists the source file with line numbers. Control characters in source are shown in inverse, unless the
listing is being sent to a printer or other non-standard output device.

Page 41

Merlin 8/16 User's Manual The Merlin 8 Editor

The listing can be aborted by Control-C or with the slash (/) key. You may stop the listing by
pressing space and then advance a line at a time by pressing space again. By holding down space, the
auto-repeat feature of the Apple will result in a slower listing. Any other key will resume the normal
speed. This space bar technique also works during assembly and the symbol table printout. Any other
key will restart it. The space bar pause also works during assembly and the symbol table printout.

LEN (Length)

LEN [only option for this command)

This gives the length in bytes of the source file, and the number of bytes free.

MON (Monitor)

MON [only option with this command]

This exits to the Monitor. You may return to the Merlin 8 Main Menu by pressing Control-C,
Control-B, or Control-Y. These commands re-establish important zero page pointers from a safe area
inside Merlin 8. Thus Control-Y will give a correct entry even if you have damaged the zero page
pointers while in the Monitor. DOS is not connected while using this entry to the Monitor.

You may return to the editor directly by typing OG and pressing Return but unlike the above
commands, this uses the zero page pointers stored at $0A-$0F. Therefore, you must be sure that these
pointers have not been altered. For normal usage, any of the three Control commands should be used to
return to Merlin 8.

When you exit to the Monitor with the MON command, the RAM-based $DOOO-$FFFF memory is
enabled, and therefore, Merlin 8 and it's symbol table if any. If you want to examine the ROM
memory that would normally correspond to Applesoft and the F8 Monitor, you should quit Merlin 8
with the Main Menu Quit command, and enter the Monitor with Call -151. Under ProDOS, this
procedure necessitates loading BASIC.SYSTEM which removes Merlin 8 from memory.

MOVE

MOVE (line number) TO (line number)
MOVE (range) TO (line number)

MOVE lOT020
MOVE 10,20 TO 30

[Move line 10 to just before 20)
[Move lines 10 through 20 to just before line 30 J

This is the same as COPY but after copying, automatically deletes the original range.

Page 42

r

Merlin 8/16 User's Manual The Merlin 8 Editor

NEW

NEW [only option for this command]

Deletes the present source file in memory.

P (Print without format)

Print
Print (line nwnber)
Print (range)
Print (range list)

p
P50
P50,100
Pl, 10/20,30

[print entire file]
[print line 50 only]
[print lines 50 through 100]
[print 1 through 10 and then print lines 20 through 30]

This is the same as LIST except that line nwnbers are not added. See PRTR for formatted printouts.

PRTR (Formatted printout)

PRTR (command)
PRTR 1
PRTR 1 ""Page Title"

PRTR 1 "<Control-l>80N"
PRTR 3

[activate printer in slot 1 with no printer init string]
[printer in slot 1, no printer init string, "Page Title"
is the page header]

[as above, add Control-ISON to initialize the printer]
[send formatted listing to screen]

This command is for sending a listing to a printer with page headers and provision for page boundary
skips. No header is printed on the first page of the printout. See the section on Configuration for
details on setting up default parameters, also TTL in the section on The Assembler.

The entire syntax of this command is:

PRTR # "(string)"<page header>"

If the page header is omitted, the header will consist of page nwnbers only.

The initialization siring may nor be omitted if a page header is to be used. If no special string is
required by the printer, use a null string of two quotes only (""), as in the example showing "Page
Title" in which case a carriage return will be used.

Page 43

Merlin 8/16 User's Manual The Merlin 8 Editor

No output is sent to the printer until a LIST, PRINT, or ASM command is issued. See Control-0 for
information on inserting Control characters in the printer init string. The PRTR command only affects
the next output command, and is canceled at the end of the listing.

Q (Quit)

Q [only option for this command]

Exits to Main Menu.

TABS

TABS <number><, number><,. .. > <'tab character'>
TABS [clear all tabs]
TABS 10,20 [set tabs to 10 & 20]
TABS 10,20 " " [as above, space is tab character]

This sets the tabs for the editor, and has no effect on the assembler listing. Up lo nine tabs are
possible. The default tab character is a space, but any may be specified. The assembler regards the
space as the only acceptable tab character for the separation of labels, opcodes, and operands. If you
don't specify the tab character, then the last one used remains. Entering TABS and a Return will set all
tabs to zero.

TEXT

TEXT [only option for this command]

This converts all spaces in a source file to inverse spaces. The purpose of this is for use on word
processing type text files so that it is not necessary to remember to zero the tabs before printing such a
file. This conversion has no effect on anything except the Editor's tabulation. The command FIX
undoes the effect of the TEXT command.

TROF (Truncate Off)

TROF [only option for this command]

When used as an hnmediate command, returns Lo the default condition of the lruncation flag which also
happens automatically upon entry to the editor from the Main Menu or from the Assembler. All source
lines when listed or printed will appear normal.

Page 44

[

r
Merlin 8/16 User's Manual The Merlin 8 Editor

TRON (Truncate On)

TRON [only option for this command]

When used as an Command Mode command, sets a flag which, during LIST or PRINT, will suppress
printing of comments that follow a semicolon. It makes reading of some source files easier.

USER

USER
USER 1
USER 0: FILENAME

[example for use with XREF]
[example for use with PRINTFILER]

This does a JSR to the routine at $3F5. This is the location of the Applesoft ampersand vector which
normally points to a RTS. USER is designed to connect the various utilities supplied with Merlin 8
and for user defined printer drivers. You must be careful that your printer driver does not use zero page
addresses, with the exception of the J/O pointers and $60-$6F, because this is likely to interefere with
Merlin 8's heavy usage of zero page. Several supplied utilities operate through the USER command.

VAL

VAL "expression"
VAL "PTR
VAL "LABEL"

VAL "$1000/2"
VAL "%1000"

(return value of label "PTR"]
[gives the address (or value) of LABEL for the last assembly

done or "unknown label" if not found.]
[returns $0800]
[returns $0008]

This will return the value of the expression as the assembler would compute it. All forms of label and
literal expressions valid for the assembler are valid for this command. Note that labels will have the
value given them in the most recent assembly.

VID (VIDeo)

YID (slot number)
VID3 [turns on 80 column display]

This command selects an 80 column display device. To tum off the display, use Escape Ctrl-Q for the
Apple Ile, Ile or Ilgs video; use Escape-0 for the Videx Ultra Term. VID 3 is required to re-activate the
display if you have set the PARMS file to switch to 40 columns for the PRTR command.

Page 45

Merlin 8/16 User's Manual

W (Where)

Where (line nwnber)
W50
WO

[where is line 50 in memory]
[where is end of source file]

The Merlin 8 Editor

This prints in hex the location in memory of the start of the specified line. Where 0 or WO will give
the location of the end of source.

[period]

[only option for this command]

Lists starting from the beginning of the last specified range. For example, if you type LJ0,100, lines
10 to 100 will be listed. If then you use the period(.) command, the listing will start again at 10 and
continue until stopped. The end of the range is not remembered.

I (slash)

I <line nwnber>
I
/50

[start to list at last line listed]
[start listing at line 50]

This command continues the listing from the last line number listed, or, when a line number is
specified, from that line. This listing continues to the end of the file or until it is stopped as in LIST.

Page 46

r

Merlin 8/16 User's Manual The Merlin 8 Editor

ASSEMBLING A MERLIN 8 FILE

Once you have entered and edited your source listing, you will want to assemble it ASM does that
Remember to exit the Full Screen Editor by pressing OEscape. When you see the colon (:) prompt,
type ASM and press Return.

ASM (Assemble)

ASM [only option for this command]

This passes control to the assembler, which attempts to assemble the source file.

If you wish to have a formatted printed listing of an assembly, just use the PR TR command
immediately before typing in the ASM command.

Control-C (Cancel assembly)

Terminates assembly and returns to the Command Mode.

Control-D (Toggle Display Status)

Control-D [only option for this command]

During the second pass of assembly, pressing Control-D will toggle the list flag, so that the listing
will either stop or resume. The next LST opcode in the source overrides this, but another Control-D
can be used again.

Page 47

Merlin 8/16 User's Manual The Merlin 16 Editor

THE MERLIN 16 EDITOR

From the Merlin 16 Main Menu, you can press Flo enter the Full Screen Editor, or if you have loaded
a source file, you will enter the Full Screen Editor automatically.

At the upper right hand comer of the screen, the number of the line on which the cursor is located is
shown. Somewhat to the left of this you may see a vertical bar. 1bis bar is the End-of-Line Marker
and it indicates the position at which an assembly listing will overflow the printer line. You can put
characters beyond this mark, but they should be for information only, and will not be printed within a
printer listing.

The fields are tabbed, and the arrow keys can be used to move the cursor lo the next tab position.

The commands are divided into two types: Control key commands which are line oriented, and Open­
Apple key commands which are global and thus oriented lo the entire listing. The Control key
commands edit text and move the cursor on just the line the cursor is presently on. Use the Open­
Apple key commands to make changes to groups of lines, or lo move about in the listing. When you
are through editing, the line is accepted as il appears on the screen, no matter where the cursor is. The
file is assembled by pressing (jA; (jQ will return you lo the Main Menu. Other commands are
available in the Command Box ({jQ).

To gel the most out of the Merlin 16 Full Screen Editor, you should keep in mind that a full screen
editor is like a word processor. That is, any character you type is immediately entered into whatever
line the cursor is on.

With the Merlin 16 Full Screen Editor, if you can see it on the screen, you can edit it, and moving to a
line is a simple matter of using the arrow keys or other special commands to move to the part of the
listing you want to edit. Just remember, when you are using the Full Screen Editor, think of yourself
as using a word processor where you can freely scroll to whatever part of the page you want to edit, and
the final 'document' is just your source listing.

MERLIN 16 CONTROL KEY COMMANDS
(Line oriented)

Control-B (Beginning of line)

Moves the cursor to the beginning of the line.

Control-C (Cancel assembly)

Cancels assembly and returns to the Editor with cursor on line where assembly was interrupted.

Page 48

Merlin 8/16 User's Manual The Merlin 16 Editor

Control-D (Delete character)

Deletes the character under the cursor. Also see Delete.

Control-F (Find)

Finds the next occurrence on the current line of the character typed after the Control-F. The cursor
changes to an inverse F to indicate the Find Mode. To move the cursor to the next occurrence on the
line, press the desired character key again. Typing any other character will exit the Find Mode and enter
the text typed at that position.

Control-I or TAB (Toggle insert cursor)

Toggles the cursor mode between the insert cursor (inverse D and overstrike cursor (inverse block). The
cursor can be in the insert mode regardless of whether lines are being added or inserted. The insert mode
of the cursor refers only to whether individual characters are being inserted (inverse n or typed over
(inverse block).

The character insert mode defaults to ON upon entry. When you change it with Control-I, it remains
that way until changed again. Thus, moving from one line to another has no effect on this status.

Control-L (Lower case convert)

The Merlin 16 PARMS file can be configured so that, unless the cursor is in a comment or an ASCII
string, lower case characters will be converted to UPPER CASE characters. To override this
conversion, or to reinstate it, just use the Control-L command. This conversion is also in effect when
you use the Open-Apple-F, Open-Apple-W, or Open-Apple-L find commands to specify the text to find.
Even if configured in the PARMS file, this conversion is defeated when the tabs are zeroed.

Control-N (End of line)

Moves the cursor to the end of the line.

Control-0 (Other characters)

This is used as a special prefix key. For example, if you wanted to type a Control-I or an Escape as
part of an ASC string, you would press Control-0, followed by the control character you desire. For
multiple control characters, Control-0 must be typed before each character is entered.

Page 49

Merlin 8/16 User's Manual The Merlin 16 Editor

Control-R (Restore)

This command restores the original line. For example, if you have used Control-Y to delete all
characters to the end of the line, you can press Control-R to undo the effects of the Control-Y
command.

Control-S (Status box)

This command displays a status box showing the number free and used bytes in the current source
listing workspace.

Control·T (Set marker on current line • Vertical "Tab")

This command can be used to set a marker at the current line for recall by the Open-Apple-T command.

Control· W (Find word)

This command moves the cursor to the beginning of each word in the line (alphanumeric).

Control·X (Cancel global Exchange, etc.)

This command can be used to cancel any global exchange, text selection or string search while it is in
progress.

Control· Y (Delete to end of line)

Deletes all characters from the cursor to the end of the line.

Arrow keys (Cursor movement)

The arrow keys move the cursor in the specified direction.

Delete (Delete character)

Deletes the character to the left of the cursor. Also see Control-D.

Page SO

f

Merlin 8/16 User's Manual The Merlin 16 Editor

Escape (Move to beginning of next line)

This command moves the cursor to the beginning of the next line. This is similar to Return except
that Escape does not insert a blank line.

Return (Insert blank line)

Pressing Return anywhere in the line causes the cursor to move to the beginning of the next line and
insert a blank line.

TAB (Toggle insert cursor)

Toggles the cursor mode between the insert cursor (inverse I) and overstrike cursor (inverse block).

Moving from one line to another has no effect on the status of the cursor; it only changes when toggled
with TAB. Also see Control-I.

Page 51

Merlin 8/16 User's Manual The Merlin 16 Editor

MERLIN 16 OPEN APPLE KEY COMMANDS
(Entire listing oriented)

In addition to the line-oriented commands (control key commands), the Merlin 16 Full Screen Editor
uses Open-Apple (0) key commands to move within the listing, and to edit entire lines of text. These
commands are as follows:

OA (Assemble)

This command passes control to the assembler which attempts to assemble the source file.

OB (Beginning of source)

This command moves to the beginning of the source listing, cursor on line 1.

OC (Copy)

OC starts the select mode to copy text. The first time OC is pressed, the current line is selected and is
shown in inverse. Use the down arrow or Escape keys to extend the selection if desired, or press any
other key to cancel the selection. Additional selected lines are shown in inverse. Use the up arrow key
to adjust the range selected if you go too far. The select mode will be canceled if you move the cursor
above the first selected line or past the lop of the current screen.

The second time OC is pressed the selected text is copied and placed on the clipboard.

If you are unfamiliar with the idea of a clipboard, this is just an analogy to how you might put piece of
paper clipped from a magazine, letter, etc. on a clipboard, to hold it temporarily while you were getting
ready to put it in its final location. The clipboard just refers to a memory buffer that holds the text you
have selected while you decide where you want the final text placed. Using the clipboard, you can cut tel
from one source file, load another, and then paste the text into a second file. The clipboard is cleared
when a file is assembled.

If text has been selected, you can press the Right arrow key and the selection will be extended to the
middle of the next page. This method can be used to quickly select a large section of the listing. Do
not hold the Right arrow down continuously or the keyboard buffer will fill and the selection will
continue after you release the Right arrow key.

Page 52

Merlin 8/16 User's Manual The Merlin 16 Editor

OD (Delete current line)

This command delete.~ the current line and places it in a special 'undo' buffer which is independent of the
clipboard.

The OR command replaces the current line with the contents of the 'undo' buffer. Therefore, to move a
single line to another location, you could place the cursor on the line to be moved, and then type OD to
delete the line. Then move the cursor to another line, press Return, QI or OTab to create an empty
line, and press OR to replace that line with the deleted line. Also see ODelete.

OE (Global Exchange, also called 'Find & Replace')

Sometimes called 'Find & Replace,' this command will let you search for a group of words, and replace
them with another. The OE command opens a dialog box that asks for the text to change, and the new
text to replace it. If you press Return alone for either of these, the command is cancelled.

If you enter the text in both fields and press Return, the file is then searched for the change text. Unlike
the FIND command, it looks only for full words. That is, the text found must be bounded by non­
alphanumeric characters or it will be ignored. However, if you press and hold the Open-Apple key down
when you press the Return key, the exchange will operate on all strings found, not just on full words.

If text is found with this method, the screen is reprinted with the replacement made and the cursor is
placed on the first character of the replacement. Now you must press a key to continue. Pressing
Return, or most any other control character, will defeat the change and the command will look for the
next occurrence of the text to change. Pressing the space bar or any other character, except A, will
accept the change and the routine will continue.

You can back out of the global exchange while the cursor is on an entry by pressing Control-X. You
can also press the A key, which will cause all occurrences to be changed.

You can tell when the routine is finished by the fact that during the exchange sequence, the line number
at the top right is missing. The line number will return when there are no more matches for the change
text, or when you press Control-X.

Normally, the Exchange function will find and replace all occurrences of a word throughout the source
listing. This can be modified in several ways.

1. To search only the listing, and ignore words in the comments field, use the TRON command before
starting the search and replace. See Command Box Commands for details.

2. To search just a portion of a listing, first select just the portion you wish to search as though you
were going to copy it, that is, use QC and the arrow keys. Then instead of copying the text with
another OC, use OE, OF, etc. to search just the highlighted text.

Page 53

l

Merlin 8/16 User's Manual The Merlin 16 Editor

3. Normally, the Exchange function searches for complete words, that is, characters bounded by spaces
or other non-alphanumeric characters. Suppose, however, that you wished to replace LDA #LABEL
with LDA LABEL. Because this is a search siring of two words, a variation is required. To search for a
literal character siring that may be part of a larger word, hold down the closed Apple or Option key as
you press the Return key afler you've input the replacement siring. Thus, for our example, you could
enter:

Change: LDA #L

To: LDAL

0 F (Find text)

The OF command opens a window which asks for the find text. It then finds the first occurrence of the
text in the entire text file. The text can be anywhere on a line. After the first find, you can find
the next occurrence by typing another OF. You can edit the line and then type OF to go to the next
occurrence.

If there are more occurrences to be found, one or more plus (+) signs will be shown next to the line
number at the top right of the screen. This starts from the line below the current line, and only indicates
the number of lines remaining with occurrences, and not the total number of occurrences.

If the OF command is used after text has been selected, only the selected text will be searched for the
text to be found. When the search has been completed, the text is no longer selected. Thus, you can
use the OY, OC or OX commands to search just a portion of your listing. You can also use the
TRON command before starting the search to ignore comments during the search.

Control-X, and the OB command and Control-S status command both cancel the Fmd mode, as does
failure to fmd the text below the current line.

The OW command is identical to OF except that it finds only whole words bounded by non­
alphanumeric characters. If you type either OW or OF to fmd the next occurrence, this mode will
change accordingly.

In all cases the line containing the text is moved to the center of the screen, unless it is within the first
10 lines of the start of the source.

OH (Half screen)

Pressing OH toggles the half or split screen mode. In this mode, the bottom ten lines are frozen in a
window. A bar is shown above these lines to separate the frozen text from the scroll window. Pressing
OH will cancel the half screen mode and refresh the screen.

Page 54

r

Merlin 8/16 User's Manual The Merlin 16 Editor

cjI (Insert line)

Pressing cjJ will insert a blank line at the cursor. Also see cjT AB.

cjL (Locate label, marker or line number)

This command will locate the first occurrence of a label or any text in the label column. Only the
characters typed are compared with the labels. Thus, the search string LOOP would jump to the label
LOOP2 if LOOP did not occur first. To find a specific label when there may be other similar labels,
end the input with a single space.

If a number is entered after this command, the cursor will move to the beginning of the line number
specified. This is particularly handy when editing a source file from a printed listing.

The intended use for this command is to move rapidly to a particular place in the source. You can use
create your own 'markers' to enhance the capability of this command. Thus, if a line has *7 in it, you
can specify *7 as the text to find for this command and it will locate it.

In all cases the line containing the text is moved to the center of the screen, unless it is within the first
10 lines of the start of the source.

cjN (End of source)

This command moves the cursor to the end of the source listing.

cjo (Open Command Box)

This command opens the Command Box, from which various non-editing commands are issued. See
the section on Command Box Commands for details. Pressing Return alone will cancel this command.

OQ (Quit to Main menu)

This command quits the Editor and returns to the Main Menu.

Page 55

Merlin 8/16 User's Manual The Merlin 16 Editor

LJR (Replace)

This command exchanges the current line with the contents of the 'undo' buffer. Therefore, pressing
LJR a second time will cancel the effect of the first press.

Using LJR when the cursor is on a blank line will place the contents of the 'undo' buffer on the line and
place the empty line in the 'undo' buffer.

The LJR command can be used to move a single line. Place the cursor at the beginning of the line to
be moved and press LJR. Move the cursor to the desired location, press Return to insert a blank line,
and press LJR again.

LJR can be used by itself to easily interchange two lines. Just place the cursor on the first line, press
LJR, move the cursor to the second line and press LJR again. Then move the cursor back to where the
first line was and press LJR for the third, and final time. Also see LJD.

LJT (Jump to marker line • Vertical "Tab")

This command returns to the line 'remembered' by the last Control-T command.

LJV (Paste)

Pastes the contents of the clipboard at the line containing the cursor. Only full lines are moved. Using
this command does not change the contents of the clipboard, so this command can be used to replicate a
range of lines.

If the LJV paste command is issued when a range of text has been selected, the text on the clipboard will
be inserted before the last line of selected text.

LJW (Find word)

The LJW command is identical to LJF except that it finds only whole words bounded by non­
alphanumeric characters. If you type either LJW or LJF to fmd the next occurrence, this mode will
change accordingly. Either search mode can be cancelled by pressing Control-X.

If the LJW command is used after text has been selected, only the selected text will be searched for the
word to be found. When the search has been completed, the text is no longer selected.

Page 56

Merlin 8/16 User's Manual The Merlin 16 Editor

OX (Cut)

This command is similar to Copy (Ge), but selected text is removed from the screen after being copied
to the clipboard. The first time OX is pressed, the current line is selected and is shown in inverse. Use

the down arrow or Escape keys to extend the selection if desired, or press any other key to cancel the
selection. Additional selected lines are shown in inverse. Use the up arrow key to adjust the range
selected if you go too far. The select mode will be canceled if you move the cursor above the first
selected line or past the top of the current screen.

The second time OX is pressed the selected text is cut and is placed on the clipboard.

One use for this command is to use OB to move to the beginning of the listing, then OY to select all
of the text to the end of the listing, and then OX to cut the entire listing and place it on the clipboard.
Pressing any other key will cancel the select mode.

If text has been selected, you can press the Right arrow key and the selection will be extended to the
middle of the next page. This method can be used to quickly select a large section of the listing. Do
not hold the Right arrow down continuously or the keyboard buffer will fill and the selection will
continue after you release the Right arrow key.

0 Y (Select text)

This command selects all text to be cut or copied from the current line to the end of the listing. OX or

OC will cut or copy the text, while pressing any other key will cancel the selection.

This technique can be used to move the entire listing to the clipboard.

OZ (Center screen)

This command repositions the screen so that the line the cursor is on becomes the centered line on the
screen.

0 Delete (Delete)

This command deletes the line above the cursor and places it in a special 'undo' buffer which is
independent of the clipboard.

Page 57

Merlin 8/16 User's Manual The Merlin 16 Editor I
OEscape (Exit Full Screen Editor]

This command will exit the Full Screen Editor to a line-oriented Command Mode, but only if the
controlling parameter in the PARMS file has enabled this function. Unless you have a strong desire to
use a Command Mode similar to that for Merlin 8, this should never be needed.

0 TAB (Insert line)

Pressing OT AB will insert a blank line at the cursor. Also see 01.

ODown arrow (Move half-screen down)

Moves the cursor down 10 lines; that line then becomes the center line on the screen. This command
has the effect of moving the current line to the top of the screen and then moving the cursor to what
was the bottom line on the screen.

OUp arrow (move half-screen up)

Moves the cursor up 10 lines; that line then becomes the center line on the screen. This command has
the effect of moving the current line to the bottom of the screen and then moving the cursor to what
was the 1st line on the screen.

ORight arrow (Move one page down)

Moves the cursor down 24 lines; that line then becomes the center line on the screen.

OLeft arrow (move one page up)

Moves the cursor up 24 lines; that line then becomes the center line on the screen.

01 (PRTR 1 + Assemble)

This combination command issues a PRTR 1 followed by an OA to assemble. Thus 01 will activate
the printer with the PRTR 1 command and then assemble and print the current listing. The default
printer init string from the PARMS file, if any, is used with 01 and there will be no page break title
unless the source file sets one with the TTL opcode. This command is provided for convenience.

Page 58

r
Merlin 8/16 User's Manual The Merlin 16 Editor

02 (PRTR 1 + USER + Assemble)

This combination command issues a PRTR 1 followed by USER and an OA to assemble. 02 will
activate the printer with the PRTR 1 command, send the USER command, and then assemble and print
the current listing. This command is provided for convenience. See the USER description in the
Utility Programs section.

03 (PRTR 3 + Assemble)

This combination command issues a PRTR 3 followed by an OA to assemble. Thus 03 will activate
the screen with the PRTR 3 command and then assemble and print the current listing to the screen
instread of the printer. This command is provided for convenience.

04 (PRTR 3 + USER + Assemble)

This combination command issues a PRTR 3 followed by an USER and an OA to assemble. 04
will activate the screen with the PRTR 3 command, send the USER command, and then assemble and
print the current listing to the screen instead of the printer. This command is provided for convenience.
See the USER description in the Utility Programs section).

06 (LINK for LINKER.GS only)

This command is the equivalent of typing LINK in the Command Box. 06 can be used with the
LINKER.GS only. This command is provided for convenience.

0 8 (Asterisk)

Produces a line of 32 asterisks. Overstrikes existing line, if any. Undo with the Control-R command.

09 (Box)

Produces an asterisk, 30 spaces, and then another asterisk. This and the 08 command can be used to
produce a large box for titles and other information. Overstrikes existing line, if any. Undo with the
Control-R command.

Page 59

Merlin 8/16 User's Manual The Merlin 16 Editor

~- (Hyphen)

Produces a line of 1 asterisk and 31 hyphens. Overstrikes existing line, if any. Undo with the
Control-R command.

~= (Equal sign)

Produces a line of 1 asterisk and 31 equal signs. Overstrikes existing line, if any. Undo with the
Control-R command.

9 [Closed Apple]

This command speeds up cursor movement and keyboard input. For example, pressing and holding
down the down arrow key will scroll the listing. If you press and hold down the Closed Apple key
while you press the up or down arrow key, the scroll rate will be increased.

Page 60

r

Merlin 8/16 User's Manual The Merlin 16 Editor

MERLIN16COMMANDBOX

GENERAL GUIDELINES FOR THE COMMAND BOX COMMANDS

The Command Box is used for various commands not directly related to editing the current listing. To
open the Command Box from the Full Screen Editor, you would press 00, and then type in the desired
command. For most of the Merlin 16 Command Box operations, only the first letter of the command
is required, the rest being optional. This manual will show the required command characters in UPPER
case and the optional ones in lower case.

ABOUT THE COMMAND BOX DOCUMENTATION

For each of the commands available from the Merlin 16 Command Box, the documentation consists of
three basic parts:

1) the name and syntax of the command
2) examples of the use of each available syntax
3) a description of the function of each command

When the syntax for each command is given:

PARENTHESES O indicate a required value
ANGLE BRACKETS <>indicate an optional value or character
SQUARE BRACKETS [] are used to enclose comments about the commmand

Delimited Strings (or d-strings)

Several commands allow specification of a string. The string must be delimited by a non-numeric
character other than the slash or comma. Such a string is called a delimited or d-string. The usual
delimiter is single or double quote marks (' or "). Delimited string examples:

'this is a delimited string'
"this is a delimited string"
@this is another d-string@

Note that the slash'/ cannot be used as a delimiter since it is the character that delimits range lists in
line number-related commands.

Page 61

Merlin 8/16 User's Manual The Merlin 16 Editor

Wild Card Characters in Delimited Strings

For all of the commands that use delimited strings (d-strings), the '11' character acts as a wild card
character. For example, the d-string 'Jon11s' is equivalent to both 'Jones' and 'Jonas' d-strings.

Upper and Lower Case Control

The shift and caps lock keys work as you would expect. While editing or entering a line of text, you can
also use the Control-L command, described earlier in this section.

Line Numbers in Command Box

With some commands, you must specify a line number, a range of line numbers, or a range list. A line
number is just a number. A range is a pair of line numbers separated by a comma. A range !isl consists
of several ranges separated by a slash ('/).

Line Number examples:

10
10,30
10,30/50,60

LINE#
RANGE
RANGE LIST

r a single line number]
[the range of lines 10 to 30]
[ranges 10 to 30 AND 50 to 60]

If a line number in a range exceeds the number of the last line in the source, the editor automatically
adjusts the specified line to the last line number. For example, if you wanted to List all the lines past
100 in a source listing, entering Ll00,9999 would do it.

Page 62

r

r
Merlin 8/16 lJser's Manual The Merlin 16 Editor

COMMAND nox COMMANDS

Following are the commands recognized by Merlin 16 in the Command Box of the Full Screen Editor.
The Command Box is opened by pressing 00 from within the Full Screen Editor. Pressing Return
alone will cancel and ciose the Command Box. Pressing Return after entering one of the following
commands will execute the command.

NOTE: UPPER case characters shown in command are required, lower case characters are optional and
are listed for purposes of clarity only.

A (Add)

A [only option for this command]

The Add command places you at the end of the existing source listing, if any, and is equivalent to the
dN command.

ASM (Assemble)

ASM [only option for this conunand]

This passes control to the assembler, whic~ then assembles the source file.

Assembly may be terminated at any point by pressing Control-C or Escape.

During the second pass of assembly, pressing Control-D will toggle the list flag, so that the listing
will either stop or resume. The next LST opcode in the source overrides this, but another Control-D
can be used again.

FIX

FIX
FIXS

[undoes the TEXT command l
[same but removes rnulliple spaces except in comments

and ASCII strings]

This undoes the effect of the TEXT command. It also does a number of technical housekeeping chores.
It is recommended that FIX be used on all source files from external sources that are being converted to
Merlin 16 source files, after which the file should be saved.

NOTE: FIX will truncate any lines longer than 255 characters.

Page 63

Merlin 8/16 User's Manual

GET

GET (obj adrs)
GET

GET$4000

The Merlin 16 Editor

[put object code in Main Memory at the address specified in the
source's ORG]

[put object code at location $4000 in Main Memory]

This command is used to move the object code, after an assembly, from its location in Auxiliary
Memory to its ORG location in Main Memory. The address must be above the existing source file, if
any, and it will not be allowed to overwrite DOS. You can do a NEW if you want to load it lower in
memory than allowed, but you must remember to save the source first. You cannot use GET to put
object code at memory locations lower than $901, but you can go to the Monitor afterwards and use it
to move the object to any desired location. However, any such move using the Monitor may destroy
your source or other data necessary to the assembler's operation. Caution should be used.

The GET command does not check if a valid object code has been assembled.

This command is supplied for convenience only. The recommended method for testing a program is to
save the source code first, save the object code, and then run the program from BASIC or with the G
command from the Monitor.

HEX-DEC CONVERSION

128 = $0080
$80 = 128

If you type a positive or negative decimal number in the Command Box, the hex equivalent is returned.
If you type a hex number using the $ prefix, the decimal equivalent is returned. All commands accept
hex numbers.

L (List)

List
List (line number)
List (range)
List (range list)

L
L20
L 20,30
L 20,30/40,42

Page 64

[list entire file]
[list line 20 only]
[list 20 through 30]
[list 20 through 30 and then list lines 40 through 42]

r
Merlin 8/16 User's Manual The Merlin 16 Editor

Lists the source file with line numbers. Control characters in source are shown in inverse, unless the
listing is being sent to a printer or other nonstandard output device.

The listing can be aborted by Control-Corwith the slash (j) key. You may stop the listing by
pressing the space bar and then advance a line at a time by pressing the space bar again. By holding
down the space bar, the auto-repeat feature of the Apple will result in a slower listing. Any other key
will resume the normal speed. This space bar technique also works during assembly and the symbol
table printout. Any other key will restart it.

MON (Monitor)

MON [only option with this command]

This exits to the Monitor. You may return to the Merlin 16 Main Menu by pressing Control-C,
Control-B, or Control-Y. These commands re-establish important zero page pointers from a safe area
inside Merlin 16. Thus Control-Y will give a correct entry even if you have damaged the zero page
pointers while in the Monitor. DOS is not connected while using this entry to the Monitor.

You may return to the editor directly by typing OG and pressing Return, but unlike the above
commands, this uses the zero page pointers stored at $0A-$0F. Therefore, you must be sure that these
pointers have not been altered. For normal usage, any of the three Control commands should be used to
return to Merlin 16.

NOTE: When you exit to the Monitor with the MON command, the RAM-based $DOOO-$FFFF
memory is enabled, and therefore, Merlin 16 and its symbol table if any. If you want to examine the
ROM memory that would normally correspond to Applesoft and the F8 Monitor, you should quit
Merlin 16 with the Main Menu Quit command, and enter the Monitor with Call -151. This procedure
necessitates loading BASIC.SYSTEM which removes Merlin 16 from memory.

NEW

NEW [only option for this command]

Deletes the present source file in memory . Also see UNNEW.

Page 65

Merlin 8/16 User's Manual The Merlin 16 Editor

P (Print without line numbers)

Print
Print (line nwnbcr)
Print (range)
Print (range list)

p
P50
P50,100
Pl,10/20,30

[print entire file]
[print line 50 only]
[print lines 50 through l 00]
[print I through l 0 and then print lines 20 through 30]

This is the same as LIST except that line nwnbers are not added. See PR TR for formatted printouts.

PRTR (Formatted printout)

PRTR (command)
PRTR l
PRTR l ""Page Title"

PRTR 1 "<Control-l>80N"
PRTR 3

[activate printer in slot 1 with no printer init string]
[printer in slot 1, no printer init string, "Page Title"

is the page header]
[as above, add Control-ISON to initialize the printer]
[send formatted listing to screen)

This command is for sending a listing to a printer with page headers and provision for page boundary
skips. See the section on Configuration for details on setting up default parameters, also TIL in the
Assembler section. The entire syntax of this command is:

PRTR # "(string)"<page header>"

If the page header is omitted, the header will consist of page numbers only.

The initialization string may not be omilted if a page header is to be used. If no special string is
required, use a null string of two quotes(""), as in the example showing "Page Title" in which case a
carriage return will be used. No output is sent to the printer until a LIST, PRINT, or ASM command
is issued. See Control-0 for information on inserting Control characters in the printer init string. The
PRTR command only affects the next output command, and is canceled at the end of the listing.

Q (Quit)

Q [only option for this command)

Exits lo Main Menu.

Page 66

Merlin 8/16 User's Manual The Merlin 16 Editor

S YM (Symbol table)

SYM
SYM'TR'
SYM:
SYM:'TR'

[print symbol table from last assembly]
[print only those labels starting with 'string' specified]
[print local labels in symbol table]
[print local labels with 'string' specified]

'foe SYM command will print the symbol table from the last assembly to be printed. Care should be
taken to ensure that a valid symbol table exists before this command is used.

The SYM: command inverts the print locals flag and then prints the symbol table with local labels
first. Thus, it is not necessary to change this bit in the PARMS file to sec the local label list.

If a string is specified with either SYM and SYM:, only those labels starting with the string will be
printed

NOTE: If the printing is aborted and the SYM command is reissued, only a partial listing will result.
This is because symbol flagging is done during the sorting of the table. However, if the printing is
allowed to continue to the end, the entire symbol table will be printed the next lime SYM or SYM: is
used. If aborted during an alphabetical printout, the SYM command will restart where it left off.

TABS

TABS <number><, number><,. .. > <'tab character'>
TABS [clear all tabs]
TABS 10,20 l set tabs to 10 & 20]
TABS 10,20 " " [as above, space is tab character]

This sets up lo 9 tabs for the editor, and has no effect on the assembler listing. The default tab character
is a space, but any may be specified. Space is the only acceptable tab character for the separation of
labels, opcodes, and operands. If you don't specify the tab character, then the last one used remains.
Entering TABS and a Return will set all tabs to zero.

TEXT

TEXT [only option for this command]

This converts all spaces in a source file to inverse spaces. The purpose of this is for use on word
processing type text files so that it is not necessary to remember to zero the tabs before printing such a
file. This conversion has no effect on anything except the Editor's tabulation. The command FIX
undoes the effect of the TEXT command.

Page 67

Merlin 8/16 User's Manual The Merlin 16 Editor

TROF (Truncate Off)

TROF [only option for this command]

This command returns to the default condition of the truncation flag which also happens automatically
upon entry to the editor from the Main Menu or from the Assembler. All source lines when listed or
printed will appear normal.

TRON (Truncate On)

TRON [only option for this command]

This command sets a flag which, during LIST or PRINT, will suppress printing of comments that
follow a semicolon. It makes reading of some source files easier. Typing TRON before using dE or
dF also causes the search to ignore text within comments.

UNNEW

UNNEW [only option for this command]

This command restores a text file cleared by a NEW command. Note that the first two characters of the
source file cannot be restored, so some additional editing will be necessary. Also see NEW.

USER

USER
USER 1
USER 0: FILENAME

[example for use with XREF]
[example for use with PRINTFlLER]

This does a JSR to the routine at $3F5. This is the location of the Applesoft ampersand vector which
normally points to a RTS. USER is designed to connect the various utilities supplied with Merlin 16
and for user defined printer drivers. You must be careful that your printer driver does not use zero page
addresses, with the exception of the I/0 pointers and $60-$6F and $90-$9F, because this is likely to
interefere with Merlin 16's heavy usage of zero page. Several supplied utilities operate through the
USER command. Specifically, XREF is a USER type utility. Also see the description of USER files
supplied with Merlin 8/16 as described in the Utilities section of this manual.

Page 68

r

Merlin 8/16 User's Manual

VAL

VAL "expression"
VAL"LABEL"

VAL "$1000/2"

The Merlin 16 Editor

(gives the address (or value) of LABEL for the last assembly
done or "unknown label" if not found.]

(returns $0800]

This will return the value of the expression as the assembler would compute it (or was used in the last
assembly). All forms of label and literal expressions valid for the assembler are valid for this command.

VID (VIDeo)

VID (slot number)
VID3 [turns on 80 column display]

This command selects an 80 column display device. To turn off the display, use Escape Ctrl-Q for the
Apple Ile, Ile or Ilgs video; use Escape-0 for the Videx UltraTerm. VID 3 is required to re-activate the
display if you have set the PARMS file to switch to 40 columns for the PRTR command.

W (Where)

Where (line number)
W50
WO

(where is line 50 in memory]
[where is end of source file]

Tilis prints in hex the location in memory of the start of the specified line. Where 0 or WO will give
the location of the end of source.

[period]

[only option for this command]

Lists starting from the beginning of the last specified range. For example, if you type LJ0,100, lines
10 to 100 will be listed. If you then use the period(.) command, the listing will start again at 10 and
continue until stopped. The end of the range is not remembered.

I (slash)

I <line number>
I
/50

[start to list at last line listed]
[start listing at line 50]

This command continues the listing from the last line number listed, or, when a line number is
specified, from that line. This listing continues to the end of the file or until it is stopped as in LIST.

Page 69

Merlin 8/16 User's Manual The Merlin 16 Editor

MERLIN 16 EDITOR COMMAND SUMMARY

CONTROL KEY COMMANDS (line oriented)

The Control Key commands consist of cursor moves and line oriented commands.

Control-B Moves cursor to beginning of line
Control-C Cancel assembly and return to Editor at last line assembled
Control-D Deletes character under the cursor
Control-F Finds next occurrence on current line of next character typed
Control-I Toggles insert and overstrike cursor
Control-L Toggles lower case conversion
Control-N.......... Moves cursor to end of line
Control-0 Prefix key for typing optional characters
Control-R Restores original line
Control-S Displays status box
Control-T Remember current line for recall by OT
Control-W.... Fmds next occurrence of word in line
Control-X Exits global exchange, etc. while in progress
Control-Y Delete characters to end of line
Anows
Delete
Escape
Return
TAB

Page 70

Moves the cursor in the specified direction
Deletes character to left of cursor
Moves cursor to beginning of next line
Moves cursor down and inserts blank line
Toggles insert and overstrike cursor

Merlin 8/16 User's Manual The Merlin 16 Editor

OPEN-APPLE KEY COMMANDS (entire listing oriented)

The Open-Apple Key commands are global commands, which means they are generally
oriented to the whole listing as opposed to just the current line (or a single character).

OA
OB
oc
OD
OE
OF
OH
OI
OL
ON
00
OQ
OR
OT

ov ·················
ow
ox
OY
oz
ODelete
OTAB
ODown
OUp
01
02
03
04
06
08
09
0-
0=

Assembles the current source listing
Moves cursor to beginning of listing
Start text selection/Copy selected text to clipboard
Deletes line and places it in 'undo' buffer
Global exchange (Find & Replace)
Finds next occurrence of text entered
Toggles half or split screen mode
Inserts blank line at cursor
Finds first occurrence of label or line
Moves cursor to end of listing
Opens Command Box
Quits Editor and returns to Main Menu
Swaps current line with 'undo' buffer
Goes to line of last Control-T
Pastes contents of clipboard on current line
Finds next occurrence of whole word
Start text selection/Cut selected text to clipboard
Selects text from current line to end of file
Current line becomes eleventh line on screen
Deletes line above cursor; puts in 'undo' buffer
Inserts a blank line at cursor
Moves cursor down 10 lines
Moves cursor up 10 lines
Issues 'PRTR l' +'Assemble'
Issues 'PRTR I'+ 'USER'+ 'Assemble'
Issues 'PRTR 3' +'Assemble'
Issues 'PRTR 3' +'USER'+ 'Assemble'
Issues 'LINK' command to LINKER.GS
Produces a line of 32 asterisks
Produces I asterisk, 30 spaces, and 1 asterisk
Produces a line of 1 asterisk followed by 31 hyphens
Produces a line of 1 asterisk followed by 31 equal signs
Increases speed of cursor movement and keyboard input

Page 71

Merlin 8/16 User's Manual The Merlin 16 Editor

COMMAND BOX COMMANDS

The Command Box commands are a series of commands not directly related to editing the listing.
These commands are always preceded by an Open-Apple-0 [00] which opens the Command Box.

After entering the desired command, press Return. UPPER case characters are required, lower case
characters are optional and are listed for purposes of clarity.

Adi
ASM
FIX
GET
Link
List
MON
NEW
Print
PRTR
Quit
SYM
TABS
TEXT
TROF
TRON
UNNEW
USER
VAL
Where
. (period)
I (slash)

Moves to the end of the current listing
Assembles the current source file
Undoes the effect of the TEXT command
Place object code in Main Memory at specified address
Assemble and link last source file worked on.
Lists line or range of lines
Exits Editor and enters Monitor
Clears current source file from memory
Prints listing without formatting
Prints formatted listing. See command for complete syntax
Exits to Main Menu
Prints symbol table of last assembly
Sets tabs used by the Editor
Zeroes all tabs in text file
Turns off UUncation of comments field in printout
Turns on UUncation of comments field in printout
Restores text file deleted by the NEW command
Connects various utilities and user defined printer drivers
Returns value of expression or address of label
Prints memory location of specified line
Lists from beginning of last specified range
Continues listing from last specified line

CUSTOMIZING MERLIN 16 COMMANDS

Almost all of the Merlin 16 Editor command keys can be changed if you have a preference for an
alternate definition. See the description of the PARMS file for Merlin 16 in the Technical Information
section of this manual.

GENERAL REMARKS ON MERLIN 16 EDITOR

When you move the cursor between lines, its horizontal position may vary. This is because the cursor
position is based on the actual position in memory in the line, and not on the screen position. If the
tabs are zeroed you will not notice this, except for the fact that the cursor is never beyond the last
character in the line.

Page 72

r

Merlin 8/16 User's Manual The Merlin 16 Editor

The maximum line length is actually 192 but you can only edit the first 80 characters. Lines longer
than 80 characters will be truncated if they are edited. This can be important if you are using TXTED as
mentioned in the Utilities section.

An assembly will delete the contents of the clipboard.

EDMAC, TXTED, and AUTO.EDIT

A macro program called EDMAC is also included on the Merlin 16 disk, which will automatically
generate phrases like "LDA #$" in your source file with a single key 9 command. TXTED is a
modified full screen editor that breaks lines when you press Return, and can delete Returns as well.
AlffO.EDIT is an automated text editor that can speed up making the same change in a number of
places in a source file where the Find or Exchange commands would not be appropriate. See the
description of these utilities in the Utilities section of this manual for more ionforrnation.

OOPS

Virtually any editor action can be undone. You should remember that the proper undo command is of
the same 'type' as the command you want to undo. Thus, any Control key command is undone by
Control-R. This includes the 08, 09, 0-, and 0= commands which are considered line oriented
commands for this purpose.

The line deletion commands OD and ODelete are undone by creating an empty line with OTab
followed by OR. If you forget to create the empty line, type another OR and then insert the empty line
to receive the undo buffer contents.

The OR command undoes itself.

A Cut (OX) is undone by a Paste (OV) without moving the cursor off its line.

If you are entering a line of text in response to a prompt, such as a filename, PRTR initialization, or
dialog box, you can press Control-C or Control-X to cancel the line.

ASSEMBLING A MERLIN 16 FILE

Once you have entered and edited your source listing, you will want to assemble it. Just press Open­
Apple-A. This passes control to the assembler, which attempts to assemble the source file.

If you wish to have a formatted printed listing of an assembly, just use the PR TR command
immediately before using the Open-Apple-A command.

Pressing Control-C terminates the assembly and returns to the Editor with the cursor on the line where
assembly was interrupted.

Page 73

Merlin 8/16 User's Manual The Assembler

THE ASSEMBLER

In Merlin 8/16, the Editor is used to create and edit the source listing from which the final program, or
object code, will be assembled. The Assembler is that part of Merlin 8/16 which actually interprets
your source code to create the final program.

The Assembler portion of Merlin 8/16 is distinct only in concept. In practice, both the Editor and
Assembler are resident in the machine at all times, and thus both are available without having to be
aware of which is in operation at any given time. This is in contrast to many other assemblers, in
which the Editor and Assembler are completely separate programs, necessitating the switching between
them by loading and running independent programs, and often requiring that you save the source file to
disk before an assembly can even be done.

This section of the documentation explains the syntax of those commands, or directives, that can be
used in the source listing itself, and which direct Merlin 8/16 to perform some function while
assembling the object code. These are in contrast to the Editor commands which are used primarily to
edit an existing line of text.

For example, in the simplest assembler possible, only commands like LDA, JSR, etc. would be
recognized by the assembler. However, the first time you want to create a data table, an instruction is
required by the assembler which will define one or more bytes that are a pure number value, as opposed
to specific opcodes. This is addressed in virtually all assemblers by creating the assembler directive, or
pseudo opcode HEX.

Thus the assembler can create a byte of data like this:

1 LABEL HEX F7 ; STORES BYTE '$F7'

Now, suppose the data you wanted to store was an ASCII character string. With only the HEX
directive, you'd have to look up all the ASCII character equivalents, and encode them in your program
with individual HEX statements.

Wouldn't it be nice, though, if the assembler itself had a larger repetoire of new commands or directives
that included ones for defining character strings? You bet! And Merlin 8/16 has a lot of them.

The simplest is ASC, and a typical line would look like this:

1 LABEL ASC 'THIS IS A TEST' ; STORE ENTIRE CHARACTER STRING

When assembled, Merlin 8/16 would automatically look up the ASCII character equivalents, and store
the bytes in memory at wherever that statement occurred in your program. Along with the Editor, the
variety and power of assembler directives is the other biggest factor in determining the power of a given
assembler. Merlin 8/16 is outstanding in this area with a wide complement of directives for every
occasion.

Page 74

r
Merlin 8/16 User's Manual The Assembler

This section of the documentation will explain the syntax to use in your source files for each directive,
and document the features that are available to you in the assembler.

ABOUT THE ASSEMBLER DOCUMENTATION

The assembler documentation is broken into three main sections:

1) Preliminary Definitions
2) Assembler Syntax Conventions
3) Assembler Pseudo Opcode Descriptions

The last two sections are each broken down further into the following:

Assembler Syntax Conventions:
1) Number Format
2) Source Code Format
3) Expressions Allowed by the Assembler
4) Immediate Data Syntax
S) Addressing Modes
6) Sweet 16 Opcodes
7) Native vs. Emulation mode in Merlin 16

Assembler Pseudo Opcode Descriptions:
1) Assembler Directives
2) Formatting Pseudo Ops
3) String Data Pseudo Ops
4) Data and Storage Allocation Pseudo Ops
S) MiscellAneous Pseudo Ops
6) Conditional Pseudo Ops
7) Pseudo Ops for Macros
8) Variables

The Assembler Syntax Conventions illustrate the syntax of a line of assembly code, the proper method
to specify numbers and data, how to construct assembler expressions and the proper syntax to use to
specify the different addressing modes allowed by the 6Sxx microprocessors. This section should be
understood prior to using the assembler, otherwise it is will be difficult to determine the acceptable
methods to construct a proper expression as the operand for a pseudo op.

The Assembler Pseudo Opcode Descriptions illustrate th~ functions of the many Merlin 8/16 pseudo
ops, the correct syntax to use and examples of each pseudo op's use.

Page 75

Merlin 8/16 User's Manual The Assembler

PRELIMINARY DEFINITIONS

The type of operand for almost all of Merlin 8/16's pseudo ops and the 65xx microprocessors can be
grouped into one of four categories:

1) Expressions
2) Delimited Strings (d-strings)
3) Data
4) Filenames or Pathnames

Expressions

Expressions are defined in the Assembler Syntax Conventions section of this Chapter.

Delimited Strings

Delimited Strings are defined in the Editor section of the manual, but that definition is repeated here for
continuity.

Several of the pseudo opcodes, and some of the 65xx opcodes such as LDA, allow their operand to be a
string. Any such string must be delimited by a non-nwneric character other than the slash (j) or comma
(,). Such a string is called a "d-string" or delimited string. The usual delimiter is a single or double
quote mark (" or ').

Examples:
"this is a d-string"
'this is another d-string"
@another one@
Zthis is one delimited by an upper case iZ
"A"
'A'

NOTE: Delimited strings that are used as the object of any 65xx opcode must be enclosed in single or
double quotes. If not, the assembler will interpret the d-string to be a label, expression or data instead.

Take special note that some of the pseudo ops as well as the 6502 and 65C02 opcodes use the delimiter
to determine the hi-bit condition of the resultant string. In such cases the delimiter should be restricted
to the single or double quote.

Data

Data is defined as raw hexadecimal data composed of the digits 0 through 9 and the letters A through F.

Page 76

Merlin 8/16 User's Manual The Assembler

Filenames (DOS 3.3 only)

Filenames are defined as the name of a DOS 3.3 file without any delimiters, e.g. no quotes surrounding
the name. Source file names are suffixed with a .S while a T. is used as the prefix for Text files, USE
files and PUT files. The applicable suffix or prefix should not be used as part of the filename when
loading, saving, reading or writing.

Pathnames (ProDOS only)

Pathnames are defined as ProDOS pathnames and are restricted to the definition of pathnames as
described in the ProDOS User's Manual. Pathnames as used by Merlin 8/16 do not have delimiters, e.g.
no quotes surrounding the pathname. The .S suffix is used for source, USE, and PUT pathnames. This
suffix should not be used as part of the pathname when loading or saving.

ASSEMBLER SYNTAX CONVENTIONS

SOURCE CODE FORMAT

Syntax of a Source Code Line

A line of source code typically looks like:

LABEL OPCODE OPERAND ;COMMENT

and a few real examples:

1 START LDA #50 ;THIS IS A COMMENT
2 * THIS IS A COMMENT ONLY LINE
3 ; TABBED BY EDITOR

A line containing only a comment can begin with an asterisk (*) as in line 2 above. Comment lines
starting with a colon (;), however, are accepted and tabbed to the comment field as in 3 above. The
assembler will accept an empty line in the source code and will treat it just as a SKP 1 instruction,
except that the line number will be printed. See the section on pseudo opcodes for details.

The number of spaces separating the fields is not important, except for the editor's listing, which
expects just one space.

Source Code Label Conventions

The maximum allowable LABEL length is 26 characters in Merlin 16 or 13 characters in Merlin 8, but
more than 8 will produce messy assembly listings unless you change the tab settings. A label must
begin with a character at least as large, in ASCII value, as the colon, and may not contain any characters
less, in ASCII value, than the number zero. Note that periods(.) are not allowed in labels since the
period is used to specify the logical OR in expressions.

Page 77

Merlin 8/16 User's Manual The Assembler

A line may contain a label by itself. This is equivalent to equating the label to the current value of the
address counter.

Source Opcode and Pseudo Opcode Conventions

The assembler examines only the first 3 characters of the OPCODE, with certain exceptions such as
macro calls and the DEND opcode. For example, you can use PAGE instead of PAG. However,
because of the exception, the fourth letter should not be a D. The assembler listing will not be aligned
with an opcode longer than five characters unless there is no operand or you change the tab settings.

Operand and Comment Length Conventions

1be maximum allowable combined OPERAND+ COMMENT length is 64 characters. You will get
an OPERAND TOO LONG error if you use more than this. A comment line by itself is also limited
to 64 characters.

LOCAL LABELS

A local label is any label beginning with a colon (:). A local label is attached to the last global label
and can be referred to by any line from that global label to the next global label. You can then use the
same local label in other segments governed by other global labels. You can choose to use a
meaningless type oflocal label such as :1, :2, etc., or you can use meaningful names such as :LOOP,
:EXIT, and so on.

Example of local labels:

1 START LOY #0
2 LOX #0
3 :LOOP LOA (JUNK) I y ;:loop is local to start
4 STA (JUNKOEST) I y
5 INY
6 CPY noo
7 BNE :LOOP ;branch back to :LOOP in 3
8 LOOP2 LOY #0
9 :LOOP LOA (STUFF) I y ;:loop is now local to loop2
10 STA (STUFFOEST),Y
11 INY
12 CPY #100
13 BNE :LOOP ;branch back to :LOOP in 9
14 RTS

Page 78

(

(

I

1

Merlin 8/16 User's Manual The Assembler

Some restrictions on use of local labels are:

l) Local labels cannot be used inside macros.
2) You cannot label a MAC, ENT or EXT with a local label and you cannot EQUate a local label.
3) The first label in a program cannot be a local label.

Local Labels, Global Labels and Variables

There are three distinct types of labels used by the assembler. Each of these are identified and treated
differently by Merlin.

Global Labels
Local labels
Variables

: labels not starting with "]" or ":"
: labels beginning with ":"
: labels beginning with "]"

Note that local labels do not save space in the symbol table, while variables do. Local labels can be
used for forward and backward branching, while variables cannot Good programming practice dictates
the use of local labels as branch points, variables for passing data, etc.

VARIABLES

Labels beginning with a right bracket (]) are regarded as variables. They can be redefined as often as you
wish. The designed purpose of variables is for use in macros, but they are not confined to that use.

Forward reference to a variable is impossible, that is, with correct results, but the assembler will assign
some value to it Therefore, a variable should be defined before it is used.

It is possible to use variables for backwards branching, using the same label at numerous places in the
source. This simplifies label naming for large programs and uses much less space than the equivalent
once-used labels.

For example:

1
2]JLOOP
3
4
5
6
7 NOGOOD
8]JLOOP
9

10
11

LDY #0
LDA TABLE,Y
BEQ NOGOOD
JSR DOIT
INY
BNE]JLOOP
LDX #-1
INX
STA DATA,X
LDA TBL2,X
BNE]JLOOP

;BRANCH TO LINE 2

;BRANCH TO LINE 8

Page 79

Merlin 8/16 User's Manual The Assembler

NUMBER FORMAT

The assembler accepts decimal, hexadecimal, and binary numerical data. Hex numbers must be preceded
by the dollar sign($) and binary numbers by the per cent sign(%), thus the following four numbers are
all equivalent:

Dec
100

Hex
$64

Binary
%1100100

Binary
%01100100

as indicated by the last binary number, leading zeros are ignored.

Immediate Data vs. Addresses

In order to instruct the assembler to interpret a number as immediate data as opposed to an address, the
number should be prefixed with a pound sign (#). The# here stands for number or data. For example:

LOA flOO LDA #$64 LOA #%1100100

These three instructions will all load the accumulator with the number 100, decimal.

A number not preceded by # is interpreted as an address. Therefore:

LOA 1000 LOA $3EB LDA %111110100 0

are equivalent ways of loading the accumulator with the byte that resides in memory location $3E8.

Use of Decimal, Hexadecimal or Binary Numbers

We recommend that you use the number format that is appropriate for clarity. For example, the data
table:

DA $1
DA $A
DA $64
DA $3EB
DA $2710

is a good deal more mysterious than its decimal equivalent:

DA 1
DA 10
DA 100
DA 10 00
DA 10000

Page 80

(

r

Merlin 8/16 User's Manual The Assembler

Similarly,

ORA #$80

is less informative than

ORA #%10000000

which sets the hi-bit of the number in the accumulator.

EXPRESSIONS ALLOWED BY THE ASSEMBLER

Primitive Expressions

Expressions are built up from "primitive expressions" by use of arithmetic and logical operations. The
primitive expressions are:

1. A label.
2. A number (either decimal, $hex, or %binary).
3. Any ASCII character preceded or enclosed by quotes or single quotes.
4. The asterisk character(*) which stands for the current address.

All number formats accept 16-bit data and leading zeros are never required. In case 3, the "value" of the
primitive expression is just the ASCII value of the character. The hi-bit will be on if a quote (")is used
and the value greater than $7F. The hi-bit will be off if an apostrophe (') is used and the value less than
$80. .

Arithmetic and Logical Operations in Expressions

The assembler supports the four arithmetic operations: +, -, I (integer division), and * (multiplication).
Italso supports the three logical operations: ! (Exclusive OR), . (OR), and & (AND).

Building Expressions

Expressions are built using the primitive expressions defined above, either with or without arithmetic
and/or logical operations. This means that expressions can take the form of primitives or primitives
operated on by other primitives using the arithmetic and logical operators.

Some examples of legal expressions are:

#01
#$20
LABEL
#"A"
•

(primitive expression= 1)
(primitive expression= 32 dee)
(primitive consisting of a label)
(primitive consisting of letter "A")
(primitive = current value of PC)

Page 81

Merlin 8/16 User's Manual

The following are examples of more complex expressions

LABEL1-LABEL2
2*LABEL+$23 l
1234+% IO 111
"K"-"A"+l
"O"!LABEL
LABEL&$7F
•-2
LABEL.% 10000000

(LABELl minus LABEL2)
(2 times LABEL plus hex 231)
(1234 plus binary 10111)
(ASCII "K" minus ASCII "A" plus 1)
(ASCII "O" EOR LABEL)
(LABEL AND hex 7F)
(current address minus 2)
(LABEL OR binary 10000000)

The Assembler

By clever use of the simple arithmetic and logical operators in carefully designed expressions, you can
create other functions that may not be immediately obvious.

For example, for a conditional assembly, you might want to see if one label had a value greater than
that of another. Although Merlin 8/16 doesn't have a specific < or> function, you can still do the
equivalent test using the division operator:

DO LABEL1/LABEL2 0 IF LABELl < LABEL2 = DON'T DO
1 IF LABELl >= LABEL2 = DO

DO LABELl/5 DO IF LABELl >= 5
DO LABELl-1/-1 DO IF LABELl 0
DO 5-1/LABELl DO IF LABELl < 5
DO LABELl/6 DO IF LABELl > 5

As another example, use of the AND operator(&) makes it simple to define a control character:

CHK LOA CHAR
CMP #$9F&"A"
BNE NEXT

; INPUT CHARACTER
; CONTROL-A

$9F AND $Cl ("A")= $81 ("Control-A)"

Checking for equality is a simple subtraction:

DO LABELl-5-1/-1 ; DO ONLY IF LABELl 5

Parentheses and Precedence in Expressions

Parentheses are not normally allowed in expressions. They are not used to modify the precedence of
expression evaluation. All arithmetic and logical operations are evaluated left to right. Thus, 2+3*5
would assemble as 25 and not 17.

Parentheses are used to retrieve a value from the memory location specified by the value of the
expression within the parentheses, much like indirect addressing. This use is restricted to certain pseudo
ops, however.

Page 82

Merlin 8/16 User's Manual The Assembler

For example:

DO ($300)

will instruct the assembler to generate code if the value of memory location $300 is non-zero at the
time of assembly.

Example of Use of Assembler Expressions

The ability of the assembler to evaluate expressions such as LAB2-LAB 1-1 is very useful for the
following type of code:

COMPARE
LOOP

DATA
EODATA

LDX
CMP
BEQ
DEX
BPL
JMP
HEX
EQU

#EODATA-DATA-1
DATA,X
FOUND ;found

LOOP
REJECT
CACFCSD9
*

;not found

With this type of code, you can add or delete some of the DAT A and the value which is loaded into the
X index for the comparison loop will be automatically adjusted.

IMME DIA TE DAT A SYNTAX

For those opcodes such as LDA, CMP, etc., which accept immediate data, i.e. numbers as opposed to
addresses, the immediate mode is signed by preceding the expression with#. An example is LDX #3.
When programming the 65802 or 65816, the interpretation of an immediate data expression may depend
on the assembler status of the Mand X bits at that point in the assembly. In general:

#expression
#expression
#<expression
#<expression
#>expression
#>expression
#"expression

ADDRESSING MODES

produces the low byte of the expression in 8 bit mode
produces the low word of the expression in 16 bit mode
produces the low byte of the expression in 8 bit mode
produces the low word of the expression in 16 bit mode
produces the high byte of the expression in 8 bit mode
produces the high word of the expression in 16 bit mode
produces the bank byte of the expression always.

Because of the different processors in use in the Apple Ile, Ile, and Ilgs machines, Merlin 8/16 not only
supports all the addressing modes of the 65xx microprocessors, but the different assemblers are
customized to the systems they are most likely to be used on.

Page 83

Merlin 8/16 User's Manual The Assembler

Merlin 8

When either version of Merlin 8 is started, the assembler assumes a 6502 microprocessor state for
assemblies. If you are assembling code for a 65C02 processor, you must use the assembler XC opcode
once at the beginning of the listing anywhere before an actual 65C02 opcode is used. The requirement
for the XC enable directive is a safety feature, so that you don't inadvertently use a 65C02 opcode like
STZ or INC in a program designed for a 6502 machine. Because the assembler would otherwise
generate no errors with the extended opcodes, a program that unwittingly used an improper code would
be very hard to debug.

If you are using Merlin 8 to write a program for the 65802, you must use two XC pseudo-ops at the
beginning of the source listing to enable the 65802 instructions. Because the 65802 does not support
more than 64K of addressable memory, Merlin 8 does not feature any long addressing modes, although
macros to duplicate these functions can be written.

Merlin 16

Because Merlin 16 is most likely to be used on an Apple IIgs, the startup default for the assembler logic
is to have 65816 opcodes enabled, thus avoiding the need for using the XC directives. If you will be
using Merlin 16 to assemble code for Apple Ile compatible computers, you may want to consider
changing the PARMS file for Merlin 16 to require the use of the XC directives as a safety device to
prevent accidental use of 65816 opcodes in programs written for the Apple Ile. Even Apple Computer
is not above these hazards, as evidenced by the use of a 65C02 instruction in a version of ProDOS that
was intended to have been compatible with 6502 machines.

In regards to the M and X bits of the 65816, the assembler logic of Merlin 16 starts out assuming the
processor will be in the Emulation Mode, since this is the power-up state of the microprocessor.
Remember, this is an assumption about your source code, and has nothing to do with the actual
program code of Merlin 16 itself. Like the XC default, you can change the PARMS file to start a
source listing in any setting of the M and X bits you prefer.

When programming for the 65816, Merlin 16 uses the following definitions for address expressions:

LDA
LDA
LDA
PEA
LDA

expression
<expression
>expression
"expression
!expression

use one (low) byte of the expression
use one (low) byte of the expression
use two bytes (low word) of the expression
use two bytes (high word) of the expression
use three bytes (complete address) of the expression

this last example is equivalent in Merlin 16 to:

LDAL expression use three bytes (complete address) of the expression

Page 84

r

Merlin 8/16 User's Manual The Assembler

Merlin 16 allows the use of the 4th character in the opcodes ADC, AND, CMP, EOR, LDA, ORA,
SBC and ST A to force the long addressing modes, as shown by the previous example.

In addition, the instructions JML and JSL are always assembled in the long form, and JSR and IMP are
always assembled in the short or 64K address form.

Special Forced Non-Zero Page Addressing

There is no difference in syntax for zero page and absolute modes. The assembler automatically uses
zero page mode when appropriate. Merlin 8/16 provides the ability to force non-zero page addressing.
The way to do this is to add anything except Din Merlin 8, or Lin Merlin 16, to the end of the opcode.
Example:

LDA $10 assembles as zero page (2 bytes: A5 10)

while,

LDA: $10 assembles as non-zero page (3 bytes: AD 10 00)

Also, in the indexed indirect modes, only a zero page expression is allowed, and the assembler will give
an error message if the "expr" does not evaluate to a zero page address.

NOTE: The Accumulator Mode does not require an operand (the letter "A"). For example, to do an
LSR of the accumulator, you can use:

LABEL LSR ; LOGICAL SHIFT RIGHT

Some assemblers perversely require you to put an "A" in the operand for this mode.

Merlin 8/16 will decide the legality of the addressing mode for any given opcode.

Sweet 16 Opcodes (Merlin 8 only)

The Merlin 8 assembler accepts all Sweet 16 opcodes with the standard mnemonics. The usual Sweet
16 registers RO to R15 do not have to be EQUated and the R is optional. For the SET opcode, either a
space or a comma may be used between the register and the data part of the operands; that is, SET
R3,LABEL is equivalent to SET R3 LABEL. It should be noted that the NUL opcode is assembled as a
one-byte opcode the same as HEX OD, and not a two byte skip, since this would be interpreted by ROM
Sweet 16. This is intentional, and is done for internal reasons.

NOTE: The Sweet 16 opcodes will not be recognized by Merlin 8 unless the SW pseudo opcode has
been previously assembled. This pseudo op will enable assembly of Sweet 16.

Page 85

Merlin 8/16 User's Manual The Assembler

65C02 and 65802 Opcodes

The Merlin 8 and Merlin 16 assemblers accept all the 6502, 65C02 and 65802 opcodes with standard
mnemonics. It also accepts BLT (Branch if Less Than) and BGE (Branch if Greater or Equal) as
pseudonyms for BCC and BCS, respectively. The XC pseudo opcode activates these features. This
opcode is discussed in the following section on pseudo ops.

You will have problems if you do not use the standard 65C02 opcodes as specified by GTE, NCR, and
Rockwell. In creating the Ile Reference Manual, Apple apparently did not check with the manufacturers
regarding the final set of opcodes. Thus, Apple refers to two rwn-standard opcodes, INA and DEA.

To increment and decrement the Accumulator, use INC and DEC with no operand, as is consistent with
other Accumulator directed commands such as LSR, ASL, etc.

Branch on Bit Set (BBS) and Branch on Bit Reset (BBR) are also rwn-standard Rockwell opcodes and are
not supported by the NCR and GTE chips.

Merlin 16 supports the alternate opcodes:

Page 86

Standard Opcode:

TCS
TSC
XBA
TCD
TDC
BCC
BCS

Alternate Opcode:

TAS
TSA
SWA
TAD
TDA
BLT
BGE

f
r

~-~"-"''-~-~-"'···"-~-'",::O:<"l,~<<.,..<,...,..,.,..,.,::o:.,.,.."""..,.....,.._....,, ,.~.~·---- ---~....,.-,_ • .,_...,._,.,_~-~"'~-S~5-"'.-"--~~~;;"x"%-..A-<<"-"''"'CS::""'>~"'--"'·'"'·'"'"'·(Jl".,.._ .. ;:'l't~4l"J"'l!!~'l'l'!l'!Oe!e!"""''l'!.'t'1"~-~1

Merlin 8/16 User's Manual The Assembler

ASSEMBLER PSEUDO OPCODE DESCRIPTIONS

EQU or (=) (EQUate)

Label EQU expression
Label = expression (alternate syntax)

START EQU $1000 [equate START to $1000]
CHAR EQU "A" (equate CHAR to ASCII value of A]
PTR = * (PTR equals present address in the assembled source listing]
LABEL = 55 [LABEL equals the decimal value of 55]

LABEL EQU $25
LDA LABEL

This will load the accumulator with the value stored in location $25.

LABEL EQU #$25
LDA LABEL

This will load the accumulator with the value of $25.

IMPORTANT: Forgetting to include the # symbol to load an immediate value is
probably the number-one cause of program bugs. If you're having a problem,
double check immediate value syntax first!

EQU is used to define the value of a label, usually an exterior address or an often used constant for
which a meaningful name is desired. All'EQUates should be located at the beginning of the
program.

NOTE: The assembler will not permit an EQUate to a zero page number after the label equated has
been used, since bad code could result from such a situation . Also see the section on Variables.

(1) For Example:
1 LABEL LDA
2 LABEL DFB
3 DFB
4 LEN EQU

HEN
$00
$01
* - LABEL

When assembled, this will give an "ILLEGAL FORWARD REFERENCE IN LINE 4" ERROR
message. The solution is as follows:

1 LDA
2 LABEL DFB
3 DFB
4 END

#END - LABEL
$00
$01

Page 87

Merlin 8/16 User's Manual The Assembler

Note that labels are CASE SENSITIVE. Therefore, the assembler will consider the following labels
as different labels:

START
Start
start

EXT (EXTernal label)

label EXT
PRINT EXT

[upper case label]
[mixed case label]
[lower case label]

[label is external labels name]
[defme PRINT as external]

This pseudo op defmes a label as an external label for use by the Linker. The value of the label, at
assembly time, is set to $8000, but the final value is resolved by the Linker. The symbol table will
list the label as having the value of $8000 plus its external reference number (O-$FE). See the
Linker section of the manual for more information on this opcode.

ENT (ENTry label)

label ENT
PRINT ENT [defme PRINT as entry label]

This pseudo-op will defme the label column as an ENTRY label. An entry label is a label that may
be referred to as an EXTernal label by another REL code module, which may refer to the ENT label
just as if it were an ordinary label. It can be EQUated, jumped to, branched to, etc. The true address
of an entry label will be resolved by the Linker.

See The Linker section of the manual for more information on this opcode.

Page 88

r

Merlin 8/16 User's Manual

ORG (set ORiGin)

ORG expression
ORO

ORG $1000
ORO START+END
ORO

[start code at $1000]
[start at value of expression]
[re-ORG]

The Assembler

Establishes the address at which the program is designed to run, and where it will be automatically
BLOADed in memory if it is a BINary type object file. This is not necessarily where Merlin 8/16
will actually assemble the code with the ASM command. ORO defaults to $8000. Ordinarily there
will be only one ORG and it will be at the start of the program. If more than one ORO is used, the
first one establishes the BLOAD address, while the second actually establishes a new origin for any
code that follows it. This can be used to create an object file that would load to one address though
it may be designed to run at another address.

NOTE: If you need to back up the object pointers you must use DS-1 . This cannot be done by
OR0*-1.

ORG without an operand is accepted and is treated as a "REORG" type command. It is intended to
be used to re-establish the correct address pointer after a segment of code which has a different ORO.
When used in a REL file, all labels in a section between an "ORO address" and an "ORG noaddress"
are regarded as absolute addresses. This should only be used in a section that is to be moved to an
explicit address.

Example of ORG without an operand:

1 ORG $1000
1000: AO 00 2 LOY !10
1002: 20 21 10 3 JSR MOVE ;"MOVE" IS
1005: 4C 12 10 4 JMP CONTINUE ;NOT LISTED.

5 ORG $300 ;ROUTINE TO
0300: SD OS CO 6 PAGE3 STA MAINZP ;BE MOVED
0303: 20 ED FD 7 JSR COOT
0306: SD 09 CO s STA AUXZP
0309: 60 9 RTS

10 ORG ;REORG
1012: A9 Cl 11 CONTINUE LOA il"A"
1014: 20 00 03 12 JSR PAGE3

Sometimes, you will want to generate two blocks of code with separate ORGs in one assembly.
There are four ways of doing this involving four different directives. These are DSK, SAV, DS and
REL. All four are described later in this manual, and are presented here in the interest of continuity.

Page 89

Merlin 8/16 User's Manual The Assembler

METHOD #1: USING THE DSK OPCODE

In this first example, two separate disk files are created with independent ORG values by using the
DSK command. This command directs the assembler to assemble all code to disk following the
DSK command. The file is closed when either the assembly ends or another DSK command is
encountered.

1 ******************
2 * MULTIPLE ORG'S *
3 * SOLUTION I 1 *
4 * OSK COMMAND
5 ******************
6
7 OSK FILEONE
8 ORG $8000
9 LOA #0

10
11 OSK FILETWO
12 ORG $8100
13 LOY #1

CREATE lST FILE
DEFINE ITS LOAD ADDRESS
SAMPLE PROGRAM LINE

CLOSE lST FILE, START 2ND
DEFINE ITS LOAD ADDRESS
ANOTHER PROGRAM, FILE CLOSED AT END

METHOD #2: USING THE SA V OPCODE

In this second example, two separate disk files are again created with independent ORG values, but
this time by using the SA V command. This command directs the assembler to save all code
assembled previous to the SA V code disk.

1 ******************
2 * MULTIPLE ORG'S *
3 * SOLUTION # 2 *
4 SAV COMMAND
5 ******************
6
7 ORG $8000
8 LOA #0
9 SAV FILEONE

10
11 ORG $8100
12 LOY #1
13 SAV FILETWO

LOAD ADDRESS FOR lST FILE
SAMPLE PROGRAM LINE
SAVE lST FILE

LOAD ADDRESS FOR 2ND FILE
SAMPLE PROGRAM LINE
SAVE 2ND FILE

METHOD #3: USING THE DS OPCODE

In this third example, just one file is created on disk, but the two blocks of code are separated by
approximately a $100 byte gap, less the size of the first code block.

Page 90

r
Merlin 8/16 User's Manual l he Assembler

This might be useful, for example, if you wanted your code to skip over the Hi-Res page 1 area of
memory. Please read the section on SA V for more information about multiple OR Gs in a program.

1 ******************
2 * MULTIPLE ORG'S *
3 SOLUTION # 3
4 * DS COMMAND *
5 ******************
6
7 ORG $8000
8 LOA 10
9 OS \

10
11 LOY 11
12

LOAD ADDRESS OF FILE
SAMPLE PROGRAM LI NE
FIL ITH $0 - 0 NEX PG. BOUNDARY
or could hav~ been OS $8100-~
SAMPLE LINE OF 2ND SEGMENT
THIS WILL START AT $8100

METHOD #4: USING THE REL OPCODE

The REL directive is used to create relocatable files. The Linker use these REL files to create the
final object code to run at a given location. The Merlin 16 Linker supports multiple output files,
and so can be used to create two or more files with independent ORO values.

1 ******************
2 * MULTIPLE ORG'S *
3 * SOLUTION #4A *
4 * REL COMMAND *
5 ******************
6
7 REL RELOCATABLE FILE TYPE (LNK)
8 DSK FILEONE.L CREATE lST LNK FILE
9 LDA #0 SAMPLE PROGRAM LINE

1 ******************
2 * MULTIPLE ORG'S *
3 * SOLUTION #4B *
4 * REL COMMAND *
5 ******************
6
7 REL RELOCATABLE FILE TYPE (LNK)
8 DSK FILETWO.L CREATE 2ND LNK FILE
9 LDA #0 SAMPLE PROGRAM LINE

Page 91

Merlin 8/16 User's Manual The Assembler

This example is for the Merlin 16 Linker only. These two files would be linked for the desired
ORG addresses with a Link command file like this:

1 ******************
2 * MULTIPLE ORG'S *
3 * LINKER
4 * COMMAND FILE *
5 ******************
6
7 ORG $8000
8 LNK FILEONE.L
9 SAV FILEl

10
11 ORG $8100
12 LNK FILETWO.L
13 SAV FILE2

SPECIFY lST ADDRESS
LINK lST FILE
SAVE lST OBJECT FILE

SPECIFY 2ND ADDRESS
LINK 2ND FILE
SAVE 2ND OBJECT FILE

Although the Linker is normally used to combine several source files, or to communicate label
values between programs, it can be used to assemble even unrelated files.

REL (RELocatable code module)

REL
REL [only option for lhis opcode]

This opcode instructs the as~embler to generate code files compatible with the relocating linker.
This opcode must occur prior to the use or definition of any labels. See the Linker section of this
manual for more information on this opcode.

OBJ (set OBJect)

OBJ expression
OBJ $4000
OBJ START

[use of hex address]
[use wilh a label]

The OBJ opcode is accepted only prior to the start of the code and it only sets the division line
between the symbol table and object code areas in memory, which defaults to $8000. The OBJ
address is accepted only if ii lies between $4000 and $BFEO. This may cause a problem if you try to
assemble a listing OBJ'ed to $300, for example.

Nothing disastrous will happen if OBJ is out of range; when you return to the Main Menu to save
your object file, no object file address and length values will be displayed on the screen, and Merlin
8/16 will simply beep at you if you try to save an object file.

Page 92

Merlin 8/16 User's Manual The Assembler

The main reason for using OBJ is to be able to quit the assembler directly, test a routine in memory,
and then be able to immediately return to the assembler to make any corrections. If you want to do
this, simply use the GET command (Example: GET $300) in the DOS 3.3 version of Merlin 8
before quitting to BASIC.

Jn the ProDOS version of Merlin 8/16, this isn't an option because you can't temporarily quit
Merlin 8/16 to BASIC. For ProDOS, it is recommended that you disregard the use of OBJ entirely.
To test a program from the Main Menu, you should save the source code, save the object code, then
quit to BASIC.SYSTEM. Then BLOAD the object file. The file will automatically load at the
proper location.

Most people should never have to use OBJ. If the REL opcode is used then OBJ is disregarded. If
DSK is used then you can, but may not have to, set OBJ to $BFEO to maximize the space for the
symbol table.

Jn Merlin 16, the address range of the symbol table is printed in hex, at the end of an assembly.
This allows you to see when a new OBJ value may be needed. You can also use the DSK command
should the object file become too big.

PUT (PUT a text file in assembly)

PUT filename

DOS 3.3 Examples:
PUT SOURCEFlLE
PUT !SOURCE
PUT !SOURCE,D2

ProDOS Examples:
PUT SOURCEFlLE
PUT /PRE/SOURCE

[PUTs file T.SOURCEFILE]
[PUTs file SOURCE]
[PUTs file SOURCE from drive 2]

[PUTs file SOURCEFlLE.S]
[PUTs file SOURCE.S from subdirectory PRE]

"PUT filename" reads the named file and inserts it at the location of the opcode.

Occasionally your source file will become too large to assemble in memory. This could be due to a
very long program, extensive comments, dummy segments, etc. In any case, this is where the PUT
opcode can make life easy. All you have to do is divide your program into sections, then save each
section as a separate text file. The PUT opcode will load these text files and insert them in the
"Master" source file at the location of the PUT opcode. This "Master" source file usually only
contains equates, macro definitions (if used), and all of your PUT opcodes.

Page 93

Merlin 8/16 User's Manual

A Master source file might look something like this:

* Master Source *

* LABEL DEFINITIONS

LABELl
LABEL2
COUT

EQU $00
EQU $02
EQU $FDED

* MACRO DEFINITIONS

SWAP MAC
LOA] 1
STA]2
<<<

* SAMPLE SOURCE CODE

LOA #LABELl
STA LABEL2
LOA #/LABELl
STA LABEL2+1
LOA LABELl
JSR COUT
RTS

* BEGIN PUTFILES

PUT FILEl
PUT FILE2
POT FILE3

FIRST SOURCE FILE SEGMENT
SECOND SOURCE FILE SEGMENT
THIRD SOURCE FILE SEGMENT

The Assembler

NOTE: You cannot define macros from within a PUT file. Also, you cannot call the next PUT file
from within a PUT file. All macro definitions and PUT opcodes must be in the Master source file.
There are other uses for PUT files such as PUTting portiom of code as subroutines, PUTting a file
of ProDOS global page equates, etc. The possibilities are almost endless.

Here's an example of a Master program that uses 3 PUT files to create a final object file called
FINAL.OBJ, which is called from an Applesoft BASIC program. The DSK command is not
required when using PUT files, but may be needed for object files that are too large to fit in
memory, or where a special filetype, other than BIN, is desired for the object file.

1 * MASTER CALLING PROGRAM
2
3 COUT EQU $FDED
4 HOME EQO $FC58
5

Page 94

r
Merlin 8/16 User's Manual The Assembler

6 ORG $8000
7
8 DSK FINAL.OBJ OUTPUT FILE
9 JSR HOME

10 PUT FILEl Named "T .FILEl" on disk (Merlin 8, DOS 3.3)
11 PUT FILE2 Named "T.FILE2" on disk
12 PUT FILE3 Named "T.FILE3" on disk
13 Named "FILEl .S, etc. on ProDOS disk)

And here are the text files that the Master program calls in by using the PUT commands:

1 * FILEl
2
3 LOX #0
4 LOOPl LOA STRINGl,X
5 BEQ FILE2
6 JSR COUT
7 INX
8 BNE LOOPl
9 STRINGl ASC "THIS IS FILE l"

10 HEX 8000

1 * FILE2
2
3 FILE2 LDX #0
4 LOOP2 LOA STRING2,X
5 BEQ FILE3
6 JSR COUT
7 INX
8 BNE LOOP2
9 STRING2 ASC "NOW ITS FILE 2"

10 HEX 8DOO

1 * FILE3
2
3 FILE3 LDX #0
4 LOOP3 LOA STRING3,X
5 BEQ DONE
6 JSR COUT
7 INX
8 BNE LOOP3
9 DONE RTS

10 STRING3 ASC "FINALLY FILE 3"
11 HEX 8000

Each PUT file (FILEl, FILE2, FILE3) prints a message identifying which file is in operation.

Page 95

Merlin 8/16 User's Manual

The final assembly is tested by this Applcsoft program:

10 TEXT : HOME
20 PRINT CHR$ (4); "BLOAD FINAL.OBJ"
25 CALL 32768
30 VTAB 10: HTAB 10: PRINT "IT REALLY WORKS!"
40 VTAB 15: LIST : END

When this program is run, the following lines of text should appear on the screen:

THIS IS FILE 1
NOW ITS FILE 2
FINALLY FILE 3
IT REALLY WORKS!

The Assembler

DOS 3.3 NOTE: Drive and slot parameters are accepted in the standard DOS syntax. The
"filename" specified must be a text file with the "T." prefix. If it doesn't have the "T." prefix in the
disk catalog, the "filename" specified must start with a character less than"@" in ASCII value.
This tells Merlin 8/16 to look for a file without the "T." prefix. The"!" character can be used for
this purpose. For example:

Disk file name = T.SOURCE CODE [name in catalog]
PUT file name = SOURCE CODE [name in PUT opcode]

Disk file name = SOURCE CODE [name in catalog]
PUT file name= !SOURCE CODE [name in PUT opcode]

ProDOS NOTE: Drive and slot parameters are not accepted; pathnames must be used. Note that
the above name conventions do not apply to ProDOS, since all source files under ProDOS are text
files.

NOTE: "Insert" refers to the effect on assembly and not to the location of the source. The file
itself is actually placed just following the main source. These files are only in memory one at a
time, so a very large program can be assembled using the PUT facility.

There are two restrictions on a PUT file. First, there cannot be macro definitions inside a file which
is PUT; they must be in the Master source file or in a USE file. Second, a PUT file may not call
another PUT file with the PUT opcode. Of course, linking can be simulated by having the Master
program just contain the macro definitions and call, in tum, all the others with the PUT opcode.

Any variables, such as]LABEL, may be used as "local" variables. The usual local variables] 1
through]8 may be set up for this purpose using the VAR opcode.

The PUT facility provides a simple way to incorporate often used subroutines, such as SENDMSG
or PRDEC, in a program.

Page 96

Merlin 8/16 User's Manual

USE (USE a text file as a macro library)

USE filename
USE MACRO LIBRARY
USE !MACROS
USE MACROS,SS,Dl
USE /LIB/MACROS

[DOS 3.3 example]
[DOS 3.3, no "T." prefix]
[DOS 3.3 with slot/drive]
[ProDOS pathname]

The Assembler

This works similarly to PUT but the file is kept in memory. It is intended for loading a macro
library that is USEd by the source file.

It can also be used for including a common library of equates in source files to avoid having to type
them into every new program you write. For example, this equate file:

* COMMON EQUATE FILE *

HOME
VTAB
CH
Etc ...

EQU $FC58
EQU $FC22
EQU $24

MONITOR CLEAR SCREEN ROUTINE
MONITOR VERTICAL TAB ROUTINE
HORIZ. CURSOR POSITION

Could be included in every program you write using the USE command:

* SAMPLE PROGRAM

PTR EQU $06
USE EQUATES

BEGIN JSR HOME
Etc.

POINTER FOR MY PROGRAM
USE PRE-DEFINED EQUATES
CLEAR SCREEN (USE HOME LABEL)

Normally, the assembled listing will print out all the labels defined in the EQUATES file, but you
could use LST ON and LST RTN at the beginning and end of the EQUATES file to suppress the
listing of just the defined labels.

Page 97

Merlin 8/16 User's Manual The Assembler

VAR (setup V ARiables)

VAR expr;expr;expr ...
VAR 1;$3;LABEL [set up V AR's 1,2 and 3]

This is a convenient way to equate the variables]1 -]8. For example, VAR 3;$42;LABEL will set
] 1 = 3,]2 = $42, and]3 = LABEL. This is designed for use just prior to a PUT. If a PUT file uses
] 1 -]8, except in lines for calling macros, there must be a previous declaration of these.

SA V (SA Ve object code)

SA V filename
SAY FILE
SA V /OBJ/PROG

[ProDOS or DOS 3.3 syntax]
[ProDOS pathname syntax]

SA V filename will save the current object code under the specified name. This acts the same as the
Main Menu object saving command, but it can be done several times during assembly.

This pseudo-op provides a means of saving portions of a program having more than one ORO. It
also enables the assembly of extremely large files. After a save, the object address is reset to the last
specification of OBJ or to $8000 by default.

Files saved with the SA V command will be saved to BLOAD at the correct address.

SAV allows you to save sections of assembled object code during an assembly. It saves all
assembled code in the current assembly at the point at which the SA V opcode occurs. This applies
only to the first SAV in a source. With each additional SAV, Merlin 8/16 only saves the object
code generated since the last SAV. This feature allows you to use one source file to assemble code
and then SA V sections in separate files. Together with PUT and DSK, SA V makes it possible to
assemble extremely large files.

For example, suppose you have a program that uses Hi-Res graphics and is located in memory at
two different places. The first part is located at $800 and the second part is at $6000. Your program
is divided this way because it is 16K bytes long and thus the Hi-Res pages fall in the middle of your
program.

When you first assembled your program you didn't realize the Hi-Res pages were a problem. Your
program worked for about two seconds, but when it cleared the Hi-Res screens, it bombed to the
Monitor. Clearing the Hi-Res screens also cleared your program! What do you do now?

Just determine in your program where address $2000 is, since this is the start of the Hi-Res Page 1.
Once you find this point, it is a simple matter to put in a JMP opcode, follow it immediately with
an ORO to $6000, then reassemble the program. You look at the assembly listing and sure enough,

Page 98

r
Merlin 8/16 User's Manual The Assembler

all of the code that used to reside al $2000 is shown at $6000. Then you run your program and il
crashes again!

You go into the Monitor and find that none of your code is at $6000. It's just a bunch of hex
garbage! The answer is that when more than one ORG statement is used, Merlin 8/16 dtJes not
physically move the generated code to the new address, it adds il to the end of the previous code.
Therefore, the code that should have started at $6000 was assembled with all of its addresses correct
for $6000, but its actual location was still down at $2000.

Merlin 8/16 SA Y's the day! You need to assemble your source as one file since the two sections
refer to each other, but each section needs to be put in different memory locations. The answer is to
assemble the entire file with SA V's. Each section will be saved as a binary file with the proper load
address. Thus in the following example, when the entire file is assembled, two binary files will be
generated and saved. The first will be called FILEl and will have a load address of $800. The second
will be called FILE2 and will have a load address of $6000.

Therefore, SAV is used to save sections of code to separate individual binary files during an
assembly. With SAV, you can assemble code that may not be continuous in memory but which
must be assembled all at once because the sections refer to each other, and may share labels, data,
and/or subroutines.

See the example of the multiple-ORO files using SA V at the beginning of this section for an
illustration of ilie SA V command.

NOTE: The Linker provides an alternate way of acheiving this same result. A linker is used more
often for large programs because the each segment can be individually created, assembled, and then
linked into the final program without re-assembling the other segments, thus saving time during
program development

TYP (set ProDOS file type for DSK and SA V)

TYP expression
TYP $00
TYP $06

[no file type]
[binary file type]

This sets the file type to be used by the DSK or SA V opcodes. The default is the BIN type. Valid
file types for Merlin 8 are 0,6,$FO-$F7, and $FF (no type, BIN, CMD, user defined, SYS). In
Merlin 16, there are no restrictions on the filetypes available.

Page 99

Merlin 8/16 User's Manual The Assembler

DSK (assemble directly to DiSK)

DSK filename (or pathname for ProDOS)
DSK PROG [DOS 3.3 or ProDOS)
DSK /OBJ/PROO [ProDOS pathname example)

"DSK filename" will cause Merlin 8/16 to open a file specified in the opcode and place all assembled
code in that file. It is used at the start of a source file before any code is generated. Merlin 8/16
then writes all the following code directly to disk. If DSK is already in effect, the-old file will be
closed and the new one opened. This is useful primarily for extremely large files.

NOTE: Files intended for use with the Linker must be saved with the DSK pseudo op. See the
REL opcode for details.

The DSK opcode has three basic purposes:

1) It allows you to assemble programs that result in object code larger than Merlin 8/16 can
normally keep in memory.

2) It allows you to automatically put your object code on disk without having to remember to use
the Main Menu Object save command.

3) It is used in conjunction with the TYP command to create object files with a filetype other than
BIN.

The first purpose is the most often used reason for utilizing the DSK opcode.

NOTE: Using DSK will slow assembly significantly. This is because Merlin 8/16 will write a
sector to disk every time 256 bytes of object code have been generated. If you don't need a copy of
the object code on disk, you should not use the DSK opcode, or use a conditional to defeat it. This
is illustrated in the APPLESOFT.S source also.

The assembly speed of source programs that use DSK, PUT, USE or SA V can be improved
significantly by putting the referenced files on a RAM disk.

Here is an example listing of a program that creates two separate object files using the DSK
command:

1 * DSK SAMPLE *
2 DSK FILEONE ;ASSEMBLE 'FILEONE' TO DISK
3 ORG $300 ;'FILEONE' AT $300 (CALL 768)
4 COUT EQU $FDED
5 HOME EQU $FC58
6 JSR HOME
7 LOX #0
B LOO Pl LDA STRINGl,X

Page 100

r
Merlin 8/16 User's Manual

9 BEQ DON El
10 JSR COUT
11 INX
12 BNE LOOPl
13 DON El RTS
14 STRINGl ASC "THIS IS ONE"
15 HEX BDOO
16
17 OSK FILETWO ;ASSEMBLE 'FILETWO' TO DISK
18 ORG $8000 ;'FI~ETWO' AT $8000
19
20 LOX #0
21 LOOP2 LOA STRING2,X
22 BEQ DONE2
23 JSR COUT
24 INX
25 BNE LOOP2
26 DONEZ RTS
27 STRING2 ASC "NOW IT'S TWO"
28 HEX 8DOO

This can be tested with the following Applesoft program.

10 PRINT CHR$ (4); "BLOAD FILEONE"
15 CALL 768
2 0 PRINT CHR$ (4); "BLOAD FILETWO"
25 CALL 32768
30 END

When run, the following text should appear on the screen:

THIS IS ONE
NOW IT'S TWO

END (END of source file)

END
END [only option for this opcode]

(CALL 32768)

The Assembler

This rarely used or needed pseudo opcode inslructs the assembler to ignore the rest of the source.
Label<> occurring after END will not be recognized.

DUM (DUMmy section)

DUM expression
DUM $1000
DUMLABEL
DUM END-START

[start DUMmy code at $1000]
[start code at value of LABEL]
[start at val of END-ST ART]

Page 101

Merlin 8/16 User's Manual The Assembler

This starts a section of code that will be examined for the values of labels but will produce no object
code. The expression must give the desired ORG of this section. It is possible to re-ORG such a
section using another DUMMY opcode or using ORG. Note that although no object code is
produced from a dummy section, the text output of the assembler will appear as if code is being
produced, so you can see the addresses as they are referenced.

DEND (Dummy END)

DEND
DEND [only option for this opcode]

This ends a dummy section and re-establishes the ORG address to the value it had upon entry to the
dummy section.

DUM and DEND are used most often to create a set of labels that will exist outside of your
program, but that your program needs to reference. Thus, the labels and their values need to be
available, but you don't want any code actually assembled for that particular part of the listing.

Sample usage of DUM and DENO:

1 ORG $1000
2
3 IO BAD RS $B7EB
4
5 OUM IO BAD RS
6 IOBTYPE DFB 1
7 IOBSLOT DFB $60
8 IOBDRV DFB 1
9 IOBVOL DFB 0

10 IOBTRCK DFB 0
11 IOBSECT DFB 0
12 DS 2 ;pointer to OCT
13 IOBBUF DA 0
14 DA 0
15 IOBCMD DFB 1
16 IOBERR DFB 0
17 ACT VOL DFB 0
18 PREVSL DFB 0
19 PREVDR DFB 0
20 DENO
21
22 START LDA iSLOT
23 STA IOBSLOT
24 * And so on

Note that no code is generated for lines 5 through 20, but the labels are available to the program
itself, for example, on line 23.

Page 102

r

r
Merlin 8/16 User's Manual The Assembler

FORMATTING PSEUDO OPS

AST (send a line of ASTerisks)

AST expression
AST 30
ASTNUM

[send 30 asterisks to listing]
[send NUM asterisks]

This sends a number of asterisks (*) to the listing equal to the value of the operand. The number
format is base 10, so that ASTIO will send decimal 10 asterisks, for example. The number is treated
modulo 256 with 0 being 256 asterisks.

CYC (calculate and print CYCie times for code)

CYC
CYC OFF
CYCAVE
CYC FLAGS

CYC [print opcode cycles & total]
(stop cycle time printing]
[print cycles & average]

CYC OFF
CYCAVE
CYC FLAGS [print cycles & current mx flag status - Merlin 16 only]

This opcode will cause a program cycle count to be printed during assembly. A second CYC opcode
will cause the accumulated total to go to zero. CYC OFF causes it to stop printing cycles. CYC
A VE will average in the cycles that are underterminable due to branches, indexed and indirect
addressing.

The cycle times will be printed or displayed to the right of the comment field and will appear similar
to any one of the following:

5 , 0 32 6 or 5' ,0326 or 5' ',0326

The first number displayed, the 5 in the example above, is the cycle count for the current
instruction. The second number displayed is the accumulated total of cycles in decimal.

An apostrophe or single quote after the cycle count indicates a possible added cycle, depending on
certain conditions the assembler cannot forsee. If this appears on a branch instruction then it
indicates that one cycle should be added if the branch occurs. For non-branch instructions, the single
quote indicates that one cycle should be added if a page boundary is crossed.

Page 103

Merlin 8/16 User's Manual The Assembler

A double quote after the cycle count indicates that the assembler has determined that a branch would
be taken and that the branch would cross a page boundary. In this case the extra cycle is displayed
and added to the total.

The CYC opcode will also work for the extra 65C02 opcodes in Merlin 8/16. It will not work for
the additional 65C02 opcodes present in the Rockwell 65C02, i.e. RMB#, SMB#, BBR# and BSS#.
These opcodes are not supported by Merlin 8/16, except when USEing the ROCKWELL macro
library. All of these unsupported opcodes are 5-cycle instructions with the usual possible one or
two extra cycles for the branch instructions BBS and BBR.

In Merlin 8, the CYC opcode will also work for the 65802 opcodes, but it will not add the extra
cycles required when M=O or when X=O. In Merlin 16, there is an additional option, CYC FLAGS,
that will print out the current assembler status of the registers sizes, M and X. This can be useful
for verifying that register states are as you want them throughout a listing. The CYC function in
Merlin 16 does correctly take the M and X bits into account when calculating cycle times.

DAT (DATe stamp assembly listing - ProDOS only)

DAT
DAT [only option for this opcode]

This prints the current date and time on the second pass of the assembler. Available only in the
ProDOS versions of Merlin 8/16.

EXP ON/OFF/ONLY (macro EXPand control)

EXP ON or OFF or ONLY
EXP ON
EXP OFF
EXP ONLY

[macro exapand on]
[print only macro call]
[print only generated code]

EXP ON will print an entire macro during the assembly. The OFF condition will print only the
PMC pseudo-op. EXP defaults to ON. This has no .::ffcct on the otject code generated. EXP
ONLY will cause expansion of the macro to the listing omitting the call line and end of macro line.
However, if the macro call line is labeled, it is printed. This mode will print out just as if the macro
lines were written out in the source.

Page 104

r
Merlin 8116 User's Manual The Assembler

LST ON/OFF/RTN (LiSTing control)

LST ON or OFF or RTN
LSTON
LST OFF
LST
LST RTN

[turn listing on]
[tum listing off]
[tum listing on, optional]
[return LST state to that in effect before previous LST command.

Merlin 16 only]

This controls whether the assembly listing is to be sent to the Apple screen, or other output device,
or not. For example, you may use this to send only a portion of the assembly listing to your
printer. Any number of LST instructions may be in the source. If the LST condition is OFF at the
end of assembly, the symbol table will not be printed.

The assembler actually only checks the third character of the operand to see whether or not it is a
space. Therefore, LST will have the same effect as LST ON. The LST directive will have no effect
on the actual generation of object code. If the LST condition is OFF, the object code will be
generated much faster, but this is recommended only for debugged programs.

LST RTN is available in Merlin 16 only and will return the LST status to what it was previous to
the last instance of LST. For example, if a macro library had LST OFF at the beginning and LST
RTN at the end, the library would not be listed in an assembly, but in addition, the list status of the
main source file, either on or off, would not be disturbed by the included LST commands of the
macro library.

NOTE: Control-D from the keyboard toggles this flag during the second pass, and thus can be used
to manually tum on or off the screen or printer listing during assembly.

LSTDO or LSTDO OFF

LSTDO
LSTDO OFF

LSTDO
LSTDO OFF

(LiST DO OFF areas of code)

[list the DO OFF areas]
[don't list DO OFF areas]

This opcode causes the listing of DO OFF areas of code to be printed in listings or not to be printed.

Page 105

Merlin 8/16 User's Manual

PAG (new PAGe)

PAG
PAG

The Assembler

[only option for this opcode]

nus sends a fonnfeed, i.e. $8C, to the printer. It has no effect on the screen listing even when
using an 80 column card.

TTL (define Title heading • Merlin 16 only)

TIL string
TIL "Segment Title" [only option for this opcode]

nus has the same syntax as the ASC pseudo op, and sets the page title in use by the PRTR
command. This is used for changing the title at the top of the page during a source listing printout,
and is usually followed by a PAG pseudo op.

SKP (SKiP lines)

SKP expression
SKP 5
SKP LINES

[skip 5 lines in listing]
[skip "LINES" lines in listing]

This sends the number of carriage returns in "expression" to the listing. The number format is the
same as in AST.

TR ON/OFF (TRuncate control)

TR ON or OFF or ADR
TR ON
TR OFF
TR ADR

[limit object code printing]
[don't limit object code print]
[suppress bank byte of addresses - Merlin 16 only]

TR ON or just TR limits object code printout to three bytes per source line, even if the line
generates more than three. TR OFF resets it to print all object bytes.

TR ADR can be used in Merlin 16 to suppress the bank byte part of the address listing at the left of
an assembly listing.

Page 106

r

Merlin 8/16 User's Manual The Assembler

STRING DATA PSEUDO OPS

GENERAL NOTES ON STRING DATA AND STRING DELIMITERS

Different delimiters have different effects. Any delimiter with an ASCII value less than the apostrophe
(') will produce a string with the high-bits on, otherwise the high-bits will be off. For example, the
delimiters!"#$%& will produce a string in negative ASCII, and the delimiters'()+? will produce one in
positive ASCII. The quote(") and apostrophe (') are the usual delimiters of choice, but other delimiters
provide the means of inserting a string containing the quote or apostrophe as part of the string.
Example delimiter effects:

"HELLO"
!HELLO!
#HELLO#
&HELLO&
!ENTER "HELLO"!
'HELLO
(HELLO(
'ENTER "HELLO"'

[negative ASCII, hi bit set)
[negative ASCII, hi bit set)
[negative ASCII, hi bit set)
[negative ASCII, hi bit set J
[string with embedded quotes - negative ASCII)
(positive ASCII, hi bit clear J
[positive ASCII, hi bit clear)
[string with embedded quotes - positive ASCII)

All of the opcodes in this section, except REV, also accept hex data after the string. Any of the
following syntaxes are acceptable:

ASC "string"878DOO
FLS "string",878DOO
DCI "string",87,SD,OO
STR "STRING",878DOO
INV "string",878DOO

ASC (define ASCH text)

ASC d-string
ASC "STRING"
ASC 'STRING'
ASC "Bye,Bye",8D

[negative ASCII string)
[positive ASCII string J
[negative with added hex bytes)

This puts a delimited ASCII string into the object code. The only restriction on the delimiter is that
it does not occur in the string itself.

Page 107

Merlin 8/16 User's Manual

DCI (Dextral Character Inverted)

OCI d-string
OCI "STRING"
OCI 'STRING'
OCI 'Hello',8780

[negative ASCII, except for the "G"]
[positive ASCII, except for the "G"]
[positive with two added hex bytes]

The Assembler

This is the same as ASC except that the string is put into memory with the last character having the
opposite high bit to the others. When a hex suffix is added, the bit inversion will still be on the last
character of the delimited string. Thus, only the 'o' in Hello will have the high bit inverted.

INV (define INVerse text)

INV d-string
INV "STOP!"
INV 'EN0',8780

[negative ASCII, inverse on printing]
[positive, added bytes]

This puts a delimited string in memory in inverse format.

FLS (define FLaShing text)

FLS d-string
FLS "The End"
FLS 'The End' ,8DOO

[negative ASCII, flash on printing]
[positive, flash with added bytes]

This puts a delimited string in memory in flashing format.

REV (REVerse)

REV d-string
REV "Insert"
REV 'Insert"

[negative ASCII, reversed in memory]
[same as above but positive]

This puts the d-string backwards in memory. Example:

REV "DISK VOLUME"

gives EMULOV KSID (delimiter choice as in ASC). HEX data may nol be added after the string
terminator.

Page 108

Merlin 8/16 User's Manual

STR (define a STRing with a leading length byte)

STR d-string
STR "IP A TH/"
STR "HI"
STR 'Hl',8D

[positive ASCII, (ProDOS pathname?)]
[result= 02 C8 C9]
[result= 02 48 49 SD]

The Assembler

This puts a delimited string into memory with a leading length byte. Otherwise it works the same
as the ASC opcode. This facility is mainly intended for use with ProDOS which uses this type of
data extensively.

Note that following HEX bytes, if any, are not counted in the length. Thus, although the third
example above will not generate an error, it should not be used since any hex bytes appended to the
end of a defined string would not be printed or otherwise recognized by a routine using the length
byte as part of the descriptor for the string data.

Page 109

Merlin 8/16 User's Manual The Assembler

DATA AND STORAGE ALLOCATION PSEUDO OPS

DA or DW (Define Address or Define Word)

DA expression or DW expression
DA $FDFO [results: FO FD in memory]
DA 10,$300 [results: OA 00 00 03]
DW LAB 1,LAB2 (example of use with labels]

This stores the two-byte value of the operand, usually an address, in the object code, low-byte first.

These two pseudo ops also accept multiple data separated by commas (such as DA 1, 10, 100).

DDB (Define Double-Byte)

DOB expression
DOB $FDED+l
DDB 10,$300

[results: FD EE in memory]
[results: 00 OA 03 00]

As above with DA, but places high-byte firsL DDB also accepts multiple data (such as DDB
1,10,100).

DFB or DB (Define Byte or Define Byte)

DFB expression or DB expression
DFB 10 [results: OA in memory J
DFB $10 f results: 10 in memory)
DB >$FDED+2 [results: FD in memory)
DB LAB [example of use with label]

This puts the byte specified by the operand into the object code. It accepts several bytes of data,
which must be separated by commas and contain no spaces. The standard number format is used and
arithmetic is done as usual.

The pound sign (#) is acceptable but ignored, as is the less-than sign (<). The greater-than sign (>)
may be used to specify the hi-byte of an expression, otherwise the low-byte is always taken. The>
should appear as the first character only of an expression or immediately after#. That is, the
instruction DFB >LAB1-LAB2 will produce the hi-byte of the value ofLAB1-LAB2.

For example:

DFB $34,100,LAB-LAB2,%011,>LAB 1-LAB2

Page 110

I

Merlin 8/16 User's Manual

is a properly formatted OFB statement which will generate the hex object code:

34 64 DE OB 09

assuming that LAB 1=$81A2 and LAB2=$77C4.

ADR (Define Long Address • 3 bytes • Merlin 16 only)

AOR expression
AOR $01FDFO
AOR 10,$020300
AOR LAB1,LAB2

[results: FO FD 01 in memory]
[results: OA 00 00 00 03 02]
[example of use with labels]

The Assembler

This stores the three-byte value of the operand, usually an address, in the object code, low-byte, hi­
byte, then bank byte. This pseudo op also accepts multiple data separated by commas such as ADR
1,10,100).

ADRL (Define Long Address • 4 bytes • Merlin 16 only)

ADRL expression
ADRL $01FDFO
AORL 10,$020300
AORL LAB1,LAB2

[results: FO FD 01 00 in memory]
[results: OA 00 00 00 00 03 02 00]
[example of use with labels]

This stores the four-byte value of the operand, usually an address, in the object code, low-byte, hi­
byte, bank byte, then hi-byte of the high word. This pseudo op also accepts multiple data separated
by commas (such as ADR 1,10,100).

The decision as to whether to use ADR or ADRL will depend largely on whether the addresses
defined are to be used as an indirect pointer (for example, JSR [PTR]), or as a address to be accessed
with two LDA type instructions (LOA LABEL, LOA LABEL+2).

HEX (define HEX data)

HEX hex-data
HEX 0102030F
HEX FD,ED,CO

[results: 01 02 03 OF in memory]
[results: FD ED CO in memory]

This is an alternative to DFB which allows convenient insertion of hex data. Unlike all other cases,
the $ is not required or accepted here. The operand should consist of hex numbers having two hex
digits, thus you would use OF, not F. They may be separated by commas or may be adjacent. An
error message will be generated if the operand contains an odd number of digits or ends in a comma,
or in any case, contains more than 64 characters.

Page 111

Merlin 8/16 User's Manual

DS (Define Storage)

DS experesssion
DS expressionl, expression2
DS\

DS 10
DS 10,$80
DS\
OS \$80
OS \expression2

[zero out 10 bytes of memory]
[put $80 in 10 bytes of memory]
[zero memory to next memory page]
[put $80 in memory to next page]
(put expresson2 in memory to next page]

The Assembler

This reserves space for string storage data. It zeros out this space if the expression is positive. DS
10, for example, will set aside 10 bytes for storage.

Because OS adjusts the object code pointer, an instruction like OS-1 can be used to back up the
object and address pointers one byte.

The first alternate form of DS, with two expressions, will fill expressionl bytes with the value of
the low-byte of expression2, provided expression2 is positive. If expression2 is missing, 0 is used
for the fill.

The second alternate form, DS \ will fill memory with zeroes until the next memory page. The
"DS \expression2" form does the same but fills using the low-byte of expression2.

Notes for REL files and the Linker

The back slash(\) options are intended for use mainly with REL files and work slightly differently
with these files. Any DS \opcode occurring in a REL file will cause the linker to load the next file
at the first available page boundary, and to fill with zeroes or the indicated byte. Note that for REL
files, the location of this code has no effect on its actioIL To avoid confusion, you should only use
this co<h at the end of a file.

Page 112

l

Merlin 8/16 User's Manual The Assembler

USING DATA TABLES IN PROGRAMS

Merlin's various data commands are used by the programmer to store pure data bytes, as opposed to
executable program instruction bytes, in memory for use by the program. As an example, here is a
program that prints the square of three numbers.

1 * DATA TABLE DEMO *
2
3 ORG $8000
4
5 HOME EQU $FC58
6 COUT EQU $FDED
7
8 START JSR HOME ;CLEAR SCREEN
9 LDY #0 ;SET Y TO ZERO
10
11 PRINTl LDA DATAl, Y ;PRINT NUMBER TO BE SQUARED
12 JSR COUT
13 LDX #0 ;SET X TO ZERO
iq LOOPl LDA DATA2,X ;LOOP TO PRINT TEXT
15 BEQ PRINT2
16 JSR COUT
17 INX
18 BNE LOOPl
19 PRINT2 LDA DATA3,Y ;PRINT SQUARED VALUE
20 JSR COUT
21 LDA f$8D
22 JSR COUT
23 !NY
24 CPY #$03 ;ARE 3 LOOPS COMPLETED?
25 BCS DONE ;IF SO WE'RE DONE
26 JMP PRINTl ;IF NOT BEGIN AGAIN
27 DONE RTS
28 DAT Al DFB 1177,178,179
29 DATA2 ASC " SQUARED IS "
30 HEX 00
31 DATA3 DFB #177, 180, 185

Notice how thedata portion of the program (DAT Al, DATA2, DATA3) is referenced in the main body
of the program. Also notice that for the purpose of illustration several data definition styles have been
used. The actual numbers printed by the program (example, 3 SQUARED IS 9) are stored in the
program as defined bytes (DFB) on lines 28 and 31. This could just as easily been done with the ASC
pseudo-op. The pseudo-op HEX is also used on line 30 to create the zero byte that terminates the string
"SQUARED IS".

Page 113

Merlin 8/16 User's Manual

DO (DO if true)

DO expression
DO 0
DO 1
DO LABEL
DO LAB1/LAB2
DO LAB1-LAB2
DOLABEL-1

CONDITIONAL PSEUDO OPS

[turn assembly off]
[turn it on]
[if LABEL<>O then on]
[if LAB 1 <LAB2 then off]
[ifLABl=LAB2 then off]
[if LABEL = 0, only if LABEL = 0 or 1]

The Assembler

11tls together with ELSE and FIN are the conditional assembly pseudo ops. If the operand evaluates
to zero, then the assembler will stop generating object code (until it sees another conditional). See
the section on "Building Expressions" for more examples of testing for certain values. Except for
macro names, it will not recognize any labels in such an area of code. If the operand evaluates to a
non-zero number, then assembly will proceed as usual. This is very useful for macros.

It is also useful for sources designed to generate slightly different code for different situations. For
example, if you are designing a program to go on a ROM chip, you would want one version for the
ROM and another with small differences as a RAM version for debugging purposes. Conditionals
can be used to create these different object codes without requiring two sources.

Similarly, in a program with text, you may wish to have one version for Apples with mousetext
characters and one for those without. By using conditional assembly, modification of such programs
becomes much simpler, since you do not have to make the modification in two separate versions of
the source code.

Every DO should be terminated somewhere later by a FIN and each FIN should be preceded by a DO.
An ELSE should occur only inside such a DO/FIN structure. DO/FIN structures may be nested up
to eight deep, possibly with some ELSE's between. If the DO condition is off, i.e. value 0, then
assembly will not resume until its corresponding FIN is encountered, or an ELSE at this level
occurs. Nested DO/FIN structures are valuable for putting conditionals in macros.

ELSE (ELSE do this)

ELSE
ELSE [only option for this opcode]

This inverts the assembly condition for the last DO. Thus, ON becomes OFF and OFF becomes
ON.

Page 114

r

Merlin 8/16 User's Manual The Assembler

IF (IF so then do)

IF char,]var (IF char is the first character of]var)
IF MX plus expression

IF (,]1
IF ",]TEMP
IF "=]1
IFMX

[if first char of] 1 is "(" then assemble following code]
[if first char is ", assem]
[alternate use with "="]
[if MX = 1, 2 or 3; Merlin 16 only]

This checks to see if char is the leading character of the replacement string for]var. IF cannot be
used for testing whether a label is equal to a value, etc. Use the DO pseudo-op for value tests.

NOTE: Position is important since the assembler checks the fust and third characters of the
operand for a match. If a match is found then the following code will be assembled. As with DO,
this must be terminated with a FIN, with optional ELSEs between. The comma is not examined,
so any character, such as the equal sign, may be used there. For example:

IF "=] 1

could be used to test if the first character of the variable] l is a double quote(") or not, perhaps
needed in a macro which could be given either an ASCII or a hex parameter.

In Merlin 16, IF can be used to check the status of the assembler M & X bits. MX is interpreted as
though it has a value in the range 0-3, depending on the current MX flag. The MX can then be
included in an expression to control a conditional assembly. This is intended for use in macros to
determine register length. For example:

IFMX/2
IF MX/2-1
IFMX&l
IF MX&l-1
IFMX/3
IFMX!3/3
IFMX-2/-1
IFMX-3/-1
IF MX+1&3
IFMX

FIN (FINish conditional)

FIN
FIN

; DO if M is short
; DO if M is long
; DO if X is short
; DO if X is long
; DO if both M and X are short
; DO if both M and X are long
; DO if M is long and X is short
; DO if M is short and X is long
; DO if either M or X or both are long
; DO if either M or X or both are short

[only option for this opcode]

This cancels the last DO or IF and continues assembly with the next highest level of conditional
assembly, or it cancels ON if the FIN concluded the last or outer DO or IF.

Page 115

Merlin 8/16 User's Manual The Assembler

USING CONDITIONAL ASSEMBLY

Here's a short example that shows how different program segments can be controlled with
conditional assembly:

* CONDITIONAL ASSEMBLY EXAMPLE *

HOME
COUT
BELL

FLAG

BEGIN

PARTl

PART2

BELL

PART2A

PARTlA

DONE

Page 116

EQU $FCSB
EQU $FDED
EQU $FBDD

EQU 1

JSR HOME

DO FLAG

LDA #"A"
JSR COUT

ELSE

LDA il"B"
JSR COUT

FIN

JSR BELL

DO FLAG-1

LDA #"b"
JSR COOT

ELSE

LDA #"a"
JSR COOT

FIN

RTS

MONITOR CLEAR SCREEN ROUTINE
MONITOR PRINT ROUTINE
MONITOR "BELL" ROUTINE

FLAG = 1 = DO THIS VERSION
IN YOUR PROGRAMS, FLAG CAN HAVE ANY NAME AND
HAVE WHATEVER RANGE OF VALUES YOU NEED FOR THE
NUMBER OF POSSIBLE ASSEMBLIES YOU WISH.

CLEAR SCREEN - ALL PROGRAMS DO THIS

ASSEMBLE THIS PART IF FLAG = 1

PRINT LETTER "A"

DO PART2 IF FLAG 0

PRINT LETTER "B"

END OF CONDITIONAL SEGMENT

RING BELL IN ALL VERSIONS

DO NEXT PART IF FLAG = 0
THIS SHOWS HOW TO DO INVERSE LOGIC OF 'FLAG'
(ASSUMES FLAG = 0 OR FLAG = 1)

PRINT LETTER "b"

DO THIS PART IF FLAG 1

PRINT LETTER •a•

END OF CONDITIONAL SEGMENT

ALL VERSIONS END HERE

r
Merlin 8/16 User's Manual The Assembler

Using IF to test the first character of a parameter passed to a macro lets you add a variety of possible
addressing modes to a macro that will depend on the input parameters. Assume we start with a
simple macro to move data from one location to another:

The MOV macro moves data from]I to)2:

MOV MAC
LOA) 1
STA)2
<<<

We can then construct a more sophisticated macro that uses MOV, but which supports a wide
variety of addressing modes:

The MOYD macro moves data from] 1 to)2 with many available syntaxes

MOVD MAC
MOV) 1;) 2
IF (,) 1 Syntax MOVD (ADRl) , Y; ? ? ? ?
INY
IF (,) 2 MOVD (ADRl),Y; (ADR2),Y
MOV) l;) 2
ELSE MOVD (ADR1),Y;ADR2
MOV) l;) 2+ 1
FIN
ELSE
IF (,) 2 ;Syntax MOVD ? ? ? ? ; (ADR2) , Y
INY
IF #,) 1 MOVD #ADRl; (ADR2),Y
MOV) 1/$100;) 2
ELSE MOVD ADRl; (ADR2),Y
MOV) 1+l;)2
FIN
ELSE ;Syntax MOVD ????;ADR2
IF #,] l MOVD #ADR1;ADR2
MOV] l/$100;] 2+1
ELSE MOVD ADRl;ADR2
MOV]1+1;]2+1
FIN ;MUST close ALL
FIN ;conditionals, Count DOs
FIN ;& IFs, deduct FINs . Must
<<< ;yield zero at end.

*The call syntaxes supported by MOYD are:

MOVD ADR 1; ADR2
MOVD (ADR1),Y;ADR2
MOVD ADRl; (ADR2),Y
MOVD (ADRl) , Y; (ADR2) , Y
MOVD #ADRl;ADR2
MOVD #ADRl; (ADR2), Y

Page 117

Merlin 8/16 User's Manual

MOVD #ADRl;ADR2
MOVD #ADRl; (ADR2) I y

The Assembler

Here's a macro that can be created for use with the 65816 to push an irrunediate value on the stack [
using PEA, or to first load the contents of another memory location, and then push that value on the
stack with a PHA. This type of operation is very corrunon when programming on the Apple Ilgs.

PushWord MAC
IF #=]l
PEA] 1
ELSE
LOA) l
PHA
FIN
EOM

DEFINE MACRO
IF FIRST CHARACTER OF]l IS A'#'
PUSH VALUE OF]l ON STACK
OTHERWISE
GET contents OF)1
PUSH THAT ON STACK
END OF CONDITIONAL PART OF MACRO
END OF MACRO DEFINITION

Thus, the Push Word macro could be used in any of these forms:

or,

Page 118

PushWord #$80
PushWord #LABEL

PushWord $80
PushWord LABEL

PUSH VALUE $80 ON STACK
PUSH VALUE LABEL ON STACK

PUSH CONTENTS OF LOCATION $80 ON STACK
PUSH CONTENTS OF LOCATION LABEL ON STACK

Merlin 8/16 User's Manual The Assembler

MISCELLANEOUS PSEUDO OPS

CHK (place CHecKsum in object code)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

CHK
CHK [only option for this opcode]

This places a checksum byte into object code at the location of the CHK opcode. This is usually
placed at the end of the program and can be used by your program at runtime to verify the existence
of an accurate image of the program in memory.

The checksum is calculated with Exclusive-ORing each successive byte with the running result.
That is, byte 1 is EORed with byte 2 and the result put in the accumulator. Then that value is
EORed with byte 3 and the process continued until the last byte in memory has been involved in the
calculation. It is not a foolproof error checking scheme, but is adequate for most uses. If you will
be publishing your source listing in a magazine, or loading object code in any situation in which
you want to assure that a functional copy of the object code has been loaded, then the use of the
checksum pseudo-op is recommended.

The following program segment will confirm the checksum at run time:

STARTCHK LOA #<STARTCHK
STA PTR
LOA #>STARTCHK
STA PTR+l
LOY #$00
LOA #$00
PHA PUSH ZERO ON STACK

LOOP PLA RETRIEVE CURRENT CHKSUM
EOR (PTR), Y
PHA PUT TEMP BACK
INC PTR
BNE CHK WRAP AROUND YET?
INC PTR+l YEP

CHK LOA PTR+l
CMP #>PROGEND SEE IF WE'RE DONE YET ...
BCC LOOP NOT YET ...
LOA PTR
CMP #<PROGEND
BCC LOOP NOPE
BEQ LOOP

CHKCS PLA RETRIEVE CALCULATED VALUE
CMP CHKSUM COMPARE TO MERLIN'S VALUE
BNE ERROR ERROR HANDLER

FALL THROUGH IF O.K.
REALS TART ??? REAL PROGRAM STARTS HERE

???

Page 119

Merlin 8/16 User's Manual

998 PROGEND RTS
999 CHKSUM CHK

ERR (force ERRor)

ERR expression
ERR \expression

ERR ($300)-$80
ERR *-1/$4100
ERR \$5000

END OF FUNCTIONAL PROGRAM
Merlin 8/16 CHECKSUM DIRECTIVE

[error if $80 not in $300]
[error if PC> $4100]
[error if REL code address exceeds $5000]

The Assembler

"ERR expression" will force an error if the expression has a non-zero value and the message
"BREAK IN LINE???" will be printed. This may be used to ensure your program does not exceed,
for example, $95FF by adding the final line:

ERR *-1/$9600

NOTE: The above example would only alert you that the program is too long, and will not
prevent writing above $9600 during assembly, but there can be no harm in this, since the assembler
will cease generating object code in such an instance. The error occurs only on the second pass of
the assembly and does not abort the assembly.

Another available syntax is:

ERR ($300)-$4C

which will produce an error on the first pass and abort assembly if location $300 in main memory
does not contain the value $4C. The primary purpose for this function is to allow your source file to
check to see if a USR defined opcode routine has been loaded prior to the assembly. This does not
check a memory location in the object code.

NOTES ON REL FILES AND THE ERR PSEUDO OP

The "ERR \expression" syntax gives an error on the second pass if the address pointer reaches
expression or beyond. This is equivalent to ERR *-1/expr, but when used with REL files, it
instructs the Linker to check that the last byte of the current module does not extend to expression or
beyond. The expression must be absolute. If the Linker finds that the current module does extend
beyond expression, linking will abort with a message "Constraint error:" followed by the value of
expression in the ERR opcode. You can see how this works by linking the Pl files which are a
series of sample file on the Merlin 8/16 disks. They should be linked to an add:-ess over $81 C.
Note that the position of this opcode in a REL file has no bearing on its action, so that it is best to
put it at the end.

Page 120

r
Merlin 8/16 User's Manual The Assembler

KDD (define label from KeyiloarD)

label KBD
label KBD d-string

OUTPUT KBD [get value of OUTPUT from keyboard]
OUTPUT KBD "send to printer" [prompt with the d-string for the value of OUTPUT]

This allows a label to be equated from the keyboard during assembly. Any expression may be input,
including expressions referencing previously defined labels, however a BAD lNPUT error will occur
if the input cannot be evaluated.

The optional delimited string will be printed on the screen instead of the standard "Give value for
LABEL:" message. A colon is appended to the string.

KBD generated labels are used most often to control conditional assemblies. For example, this ccxle
segment asks the user to press 0 or 1 to signify which version of a program should be assembled:

FLAG KBD "Assemble Part 1 or Part 2? (Q/l) II

DO FLAG-1 DO IF FLAG = 0
PARTl LDA #"A"

JSR COUT PRINT "A"
FIN
DO FLAG DO IF FLAG

PART2 LDA #"B"
JSR COUT PRINT "B"
FIN

DONE RTS

Instead of pressing 0 or 1, you can use the fact that KBD will accept a label as input to accept a Y or
N input:

N
y

EQU 0
EQU 1

NO = 0
YES = 1

FLAG KBD "Assemble Part 1 or Part 2? (Y/N)"

Page 121

Merlin 8/16 User's Manual The Assembler

LUP (begin a loop)

LUP expression (Loop)
--" (end of LUP)

The LUP pseudo-opcode is used to repeat portions of source between the LUP and the --"
"expression" number of times. An example of this is:

LOP 4
ASL

which will assemble as:

ASL
ASL
ASL
ASL

and will show that way in the assembly listing, with repeated line numbers.

Perhaps the major use of this is for table building. As an example:

)A 0
LUP $FF

)A]A+l
DFB]A

will assemble the table 1, 2, 3, ... ,$FF.

The maximum LUP value is $8000 and the LUP opcode will simply be ignored if you try to use
more than this.

NOTE: The above use of incrementing variables in order to build a table will not work if used
within a macro. Program structures such as this must be included as part of the main program
source.

In a LUP, if the@ character appears in the label column, it will be increased by the loop count,
thus A,B,C ... etc. Since the loop count is a countdown, these labels will go backwards, i.e. the last
label has the A. This makes it possible to label items inside a LUP. This will work in a LUP with
a maximum length of 26 counts, otherwise you will get a BAD LABEL error and possibly some
DUPLICATE LABEL errors.

Page 122

r
I
I

r
Merlin 8/16 User's Manual

MX (long status Mode of 65802)

MX expression
MX %00
MX %01
MX %10
MX %11
MX 3

[M & X = 16 bit modes]
[M = 16 bits, X = 8 bits]
[X = 8 bits, M = 16 bits]
[X = 8 bits, M = 8 bits]
[same as MX %11]

The Assembler

This pseudo-op is used to inform Merlin 8/16 of the intended status of the long status of the 65802
or 65816 processor. In Merlin 8, it functions only when the assembler is in the 65802 mode, i.e.
when two consetutive XC opcodes have been given. The assembler cannot determine if the
processor is in 16 bit memory mode (M status bit=O) or 16 bit index register mode (X status bit=O).
The purpose of the MX opcode is to inform the assembler of the current status of these bits.

Three of the above examples use binary expressions as the operand of the MX opcode. Note that
any valid expression may be used as long as it is within the range of 0-3.

NOTE: This opcode must be used when using 65802 or 65816 instructions on either Merlin 8 or
Merlin 16 to inform the assembler of the proper mode to use in order to insure proper assembly of
immediate mode commands such as LDA #expression, etc.

At startup, Merlin 16 assumes the MX setting to be MX %11, that is, Emulation Mode with both
Accwnulator and Memory register sizes set to 8 bits, although this default can be changed in the
Merlin 16 PARMS file.

PAU (PAUse)

PAU
PAU [only option for this opcode]

On the second pass, PAU causes assembly to pause until a key is pressed. This can also be done
from the keyboard by pressing the space bar. This is handy for debugging.

SW (SWeet 16 opcodes - Merlin 8 only)

SW
SW [only option for this opcode]

This enables Sweet 16 opcodes available in Merlin 8 only. If SW, and similarly for XC, is not
selected then those opcode names can be used for macros. Thus, if you are not using Sweet 16, you
can use macros named ADD, SUB, etc.

Page 123

Merlin 8/16 User's Manual

USR (USeR definable op-code)

USR optional expressions
USR expression [examples depend on defmition]

The Assembler

This is a user-definable pseudo-opcode. It does a JSR $B6DA. This location will contain an RTS
after a boot, a BRUN MERLIN or BRUN BOOT ASM. To set up your routine you should BRUN
it from the Main Menu as a disk command. This should just set up a JMP at $B6DA to the your
main routine and then RTS.

The following flags and entry points may be used by your routine:

USRADS $B6DA ;must have a JMP to your routine
PUTBYTE $E5F6 ;see below
EVAL $E5F9 ;see below
PASSNUM $2 ;contains assembly pass number
ERRCNT $10 ;error count
VALUE $55 ;value returned by EVAL
OPNDLEN $BB ;contains combined l ength of

;ope rand and comment
NOTFOUND $FD ;see discussion of EVAL
WORK SP $280 ;contains the operand and

;comment in positive ASCII

Your routine will be called by the USR opcode with A=O, Y=O and carry set. To direct the
assembler to put a byte in the object code, you should JSR PUTBYTE with the byte in A.

PUTBYTE will preserve Y but will scramble A and X. It returns with the zero flag clear so that
BNE always branches. On the first pass PUTBYTE only adjusts the object and address pointers, so
that the contents of the registers are not important. You must call PUTBYTE the same number of
times on each pass or the pointers will not be kept correctly and the assembly of other parts of the
program will be incorrect!

If your routine needs to evaluate the operand, or part of it, you can do this by a JSR EV AL. The X
register must point to the first character of the portion of the operand you wish to evaluate, thus set
X=O to evaluate the expression at the start of the operand. On return from EV AL, X will point to
the character following the evaluated expression. The Y register will be 0, 1, or 2 depending on
whether this character is a right parenthesis, a space, a comma, or the end of an operand.

Any character not allowed in an expression will cause assembly to abort with a BAD OPERAND or
other error. If some label in the expression is not recognized then location NOTFOUND will be
non-zero. On the second pass, however, you will get an UNKNOWN LABEL error and the rest of
your routine will be ignored. On return from EV AL, the computed value of the expression will be
in location VALUE and VALUE+ l, low-byte first. On the first pass this value will be insignificant
if NOTFOUND is non-zero.

Page 124

r

Merlin 8/16 User's Manual The Assembler

Appropriate locations for your routine are $300-$3CF and $8A0-$8FF. You must not write to
$900.

You may use zero page locations $60-$6F, but should not alter other locations. Also, you must not
change any thing from $226 to $27F, or anything from $2C4 to $2FF. Upon return from your
routine with an RTS, the USR line will be printed on the second pass.

When you use the USR opcode in a source file, it is wise to include some sort of check in source
that the required routine is in memory.

If, for example, your routine contains an RTS at location $310 then:

ERR ($310)-$60

will test that byte and abort assembly if the RTS is not there. Similarly, if you know that the
required routine should assemble exactly two bytes of data, then you can roughly check for it with
the following code:

LABEL USR OPERAND
ERR *-LABEL-2

This will force an error on the second pass if USR does not produce exactly two object bytes.

It is possible to use USR for several different routines in the same source. For example, your
routine could check the first operand expression for an index to the desired routine and act
accordingly . Thus "USR 1, whatever" would branch to the first routine, "USR 2,stuff" to the
second, etc.

In Merlin 16, the USR opcode has been extended to allow up to 10 USR opcodes, USRO through
USR9. The Merlin 8 USR is equivalent to USRO and is upward compatible. The number 0-9 is
doubled and placed in the X Register and then a JSR $B6DA is done, the standard USR vector. At
$B6DA you can place a IMP (VECTORTBL,X) instruction, where VECTORTBL is a list of
addresses of your routines placed at any free spot such as page 3. To use routines that would not fit
on page 3, you could set the source address at $A,B higher though you may have to copy this to
$EOOA,$EOOB, or you could set HIMEM lower. To do the latter, set both $C,D and $73,74 to the
lower address.

USR routines are entered in native 8 bit mode and can be exited in any mode. The documented
routines that can be called must be entered in native 8 bit mode.

An example source file with 3 USR routines is provided in the Merlin 16 file
SOURCE/USR. EXAMPLE.S.

Page 125

Merlin 8/16 User's Manual

XC (eXtended 65C02, 65802 and 65816 opCodes)

xc
xc
XC (twice in a row)

[enable the 65C02 option]
[enable the 65802/65816 option]

The Assembler

NOTE: On Merlin 8, if XC is used at the beginning of the listing, the 65C02 opcodes are enabled.
If XC is used twice, that is, if it is used on the first two lines of the listing, the 65802/65816 codes
can also be assembled.

On Merlin 8, some of the 65802 long addressing codes are not enabled since they have no
application on the 65802. In Merlin 16, all 65816 opcodes are enabled. With Merlin 16, you will
nol have to use the XC pseudo-ops unless you have altered lhe PARMS file to require their use.

The XC pseudo-op will not enable the extended BIT opcodes used on the Rockwell 65C02 chip.
There is, however, a macro library file included on the Merlin disk that can be USEd to implement
these additional codes.

To use Sourceror to disassemble 65C02 code with the older (unenhanced) Ile ROMs, you must first
BRUN MON.65C02. See the section on Sourceror for details. This utility is not needed with the
newer Ile (enhanced) or Ile (Unidisk 3.5 compatible) ROMs.

Whether you are using the ProDOS or DOS 3.3 version of Merlin 8, you must use the XC opcode
as the very first line in your code. This serves as a flag to tell Merlin 8 that you are using the
65C02 or 65802 opcodes.

You may wonder why the XC opcode is needed. After all, if simply using it on a line within a
source listing enables the extended opcodes within Merlin 8/16, surely the ability to assemble the
opcodes are there all along. Why burden the user with an extra requirement? The reason is in the
interest of efficient de-bugging and ultimately, your sanity. Merlin 8 does its best to alert you to
possible errors in a source listing, but what happens if you use 65C02 opcodes on the older 6502
microprocessor? The 6502 will perform quite unpredictably, and yet Merlin 8 can't tell what system
your program ultimately is destined for, so an error is not necessarily in order.

The solution is to make the programmer deliberately set a flag signifying that he knows he's using
the extended codes. That way you're less likely to get in the habit of using codes like INC
(Increment accumulator directly, available on the 65C02), and then accidentally use the same opcode
on a 6502.

Page 126

r
Merlin 8/16 User's Manual Macros

MACROS

WHY MACROS?

Macros represent a shorthand method of programming that allows multiple lines of code to be generated
from a single statement, or macro call. They can be used as a simple means to eliminate repetitive
entry of frequently used program segments, or they can be used to generate complex portions of code
that the programmer may not even understand.

Examples of the first type of macro call are presented throughout this manual and in the files called
MACROS.Sand MACROS.816.S on the Merlin 16 disk, MACROS.Son the Merlin 8 ProDOS disk,
and T.MACRO LIBRARY on the Merlin 8 DOS 3.3 disk. Examples of the second, more complex
type, can be found in the FPMACROS.S on the Merlin 8 ProDOS disk and in the T.FP MACROS
and T.RWTS MACROS libraries found on the DOS 3.3 disk.

Macros can also be used to simulate opcodes from other microprocessors such as the Rockwell 65C02
extended bit-related opcodes, as shown in the ROCKWELL.S file on the Merlin 8 ProDOS disk and the
T.ROCKWELL MACROS file on the DOS 3.3 disk.

Macros literally allow you to write your own language and then turn that language into machine code
with just a few lines of source code. Some people even take great pride in how many bytes of source
code they can generate with a single macro call.

MACRO PSEUDO OPS

MAC (begin MACro definition)

Label MAC

This signals the start of a macro definition. It must be labeled with the macro name. The nam~ is
then reserved and cannot be referenced by anything other than that macro pseudo-op. For example,
DA NAME will not be accepted ifNAME is the label assigned to MAC.

EOM (End of Macro
<<< (Alternate form)

EOM
<<< (alternate syntax)

This signals the end of the definition of a macro. It may be labeled and used for branches to the end
of a macro.

Page 127

Merlin 8/16 User's Manual Macros

PMC (Put Macro Call)
>>> (alternate form)

PMC macro-name
>>>macro-name (alternate syntax #1)
macro-name (alternate syntax #2)

This instructs the assembler to assemble a copy of the named macro at the present location. It may r
be labeled.

HOW A MACRO WORKS

A macro is simply a user-named sequence of assembly language statements. To create the macro, you
indicate the beginning of a definition with the macro name in the label field, followed by the definition
of the macro itself.

The macro definition ends with a terminator command in the opcode field of either EOM or the alternate
form(<<<).

For example, suppose in your program that locations $06 and $07 need to be incremented by one, as in
this listing:

l
2
3
4

INCR INC
BNE
INC

DONE ???

$06
DONE
$07

INCREMENT LO BYTE

INCREMENT HIGH BYTE
PROGRAM CONTINUES HERE ...

If this is to be done a number of different times throughout the program, you could make the operation
a subroutine, and JSR to it, or you could write the three lines of code every time you need it.

However, a macro could be defined to do the same thing like this:

l INK MAC ; DEFINE A MACRO NAMED INK
2 INC $06
3 BNE DONE
4 INC $07
5 DONE NO OPCODE NEEDED
6 «< THIS SIGNALS THE END OF THE MACRO

Now whenever you want to increment bytes $06,07 in your program, you could just use the macro call:

100 INK ; use the macro "INK"

Page 128

Merlin 8/16 User's Manual Macros

You could also use either of these alternate fonns:

100 PMC INK ; alternate form of macro call

or:

100 >>> INK ; alternate form of macro call

Now, suppose you notice that there are a number of different byte-pair locations that get incremented
throughout your program. Do you have to write a macro for each one? Wouldn't it be nice if there was
a way to include a variable within a macro definition? You could then define the macro in a general
way, and when you use it, via a macro call, "fill in the blanks" left when you defined it. Here's a new
example:

1 INK MAC
2 INC]l
3 BNE DONE
4 INC]l+l
5 DONE
6 <«

define a macro named INK
increment 1st location

increment location +
NO OPCODE NEEDED
this signals the end of the macro

This can now be called in a program with the statement:

100 INK $06

In the assembled object code, this would be assembled as:

100 INC $06
100 BNE DONE
100 INC $07
100 DONE NO OPCODE NEEDED

Notice that during the assembly, all the object code generated within the macro is listed with the same
line number. Don't worry though, the bytes are being placed properly in memory, as will be evidenced
by the addresses printed to the left in the actual assembly.

Later, if you need to increment locations $0A,OB, this would do the trick:

150 INK $0A

In the assembled object code, this would be assembled as:

150 INC $0A
150 BNE DONE
150 INC $OB
150 DONE ; NO OPCODE NEEDED

As you can see, once a macro has been defined, you can use it just like any other assembler opcode.

Page 129

Merlin 8/16 User's Manual Macros

Let's suppose you want to use several variables within a macro definition. No problem! Merlin 8/16
lets you use 8 variables within a macro,]1 through]8. Here's another example:

MOVE MAC
LDA] l
STA]2
«<

define a macro named MOVE
load accum with variable]l
store accum in location]2
this signals the end of the macro

This is a macro that moves a byte or value from one location to another. fu this example, the variables
are] 1 and]2. When you call the MOVE macro you provide a parameter list that "fills in" variables] 1
and)2. What actually happens is that the assembler substitutes the parameters you provide at assembly
time for the variables. The order of substitution is detennined by the parameter's place in the parameter
list and the location of the corresponding variable in the macro definition. Here's how MOVE would be
called and then filled in:

MOVE $00;$01

MOVE: macro being called
$00: takes place of]1 (1st variable)
$01: takes place of)2 (2nd variable)

Then, the macro will be expanded into assembly code:

MOVE
LDA
STA

$00;$01
$00
$01

{$00 in place of]l)
{$01 in place of]2)

It is very important to realize that anything used in the parameter list will be substituted for the
variables. For example,

MOVE f"A";DATA

would result in the following:

MOVE f"A";DATA
LDA #"A"
STA DATA

You can get even fancier if you like:

MOVE #"A"; (STRING), Y
LDA #"A"
STA (STRING),Y

As illustrated, the substitution of the user supplied parameters for the variables is quite literal. It is also
possible to get into trouble this way, but Merlin 8/16 will inform you with an error message if you get
too carried away.

Page 130

Merlin 8/16 User's Manual Macros

One common problem encountered is forgetting the difference between immediate mode numbers and
addresses. The following two macro calls will do quite different things:

MOVE 10;20
MOVE #10;#20

The first stores the contents of memory location 10 (decimal) into memory location 20 (decimal). The
second macro call will attempt to store the number 10 (decimal) in the number 20! What has happened
here is that an illegal addressing mode was attempted. If it were possible, the illegal macro call would
have been expanded into something like this:

MOVE #10;#20
LDA #10
STA #20

*** BAD ADDRESS MODE ***

call the MOVE macro
nothing wrong here
oops! can't do this!
Merlin will let you know!

In order to use the macros provided with Merlin, or to write your own, study the macro in question and
try to visualize how the required parameters would be substituted.

The number of values must match the number of variables used in the macro definition. A BAD
VARIABLE error will be generated if the number of values is less than the number of variables used.
No error message will be generated, however, if there are more values than variables.

Note that in giving the parameter list, the Macro is followed by a space, and then each parameter
separated with a semicolon. When used in the opcode column, the macro name cannot be the same as
any regular opcode or pseudo opcode, such as LDA, STA, ORO, EXP, etc. Also, it cannot begin with
the letters DEND or POPD.

The PMC and>>> fonns of a macro call are not subject to the above restrictions. In that case, the
macro name will be in the operand column, and a comma is usually used to separate the macro from the
parameter list. For example,

»> MOVE,#10;#20

The assembler will accept some other characters in place of the comma between the macro name and the
expressions in a macro call. You may use any of these characters:

. I , - (and the space character

The semicolons are required, however, between the expressions, and no extra spaces are allowed.

NOTE: When the assembler sees a macro name in the opcode field like FIND, it first looks to see if
there is a macro defined by that name. If, for example, the needed macro library was not included with
the USE function, or wasn't defined at the beginning of the source listing, and thus the macro was not
found, then the first three characters (FIN) are taken as the opcode. If this is a legal opcode or pseudo
opcode, and in this example FIN is, then it is treated as such, and no error is generated. This can be a

Page 131

Merlin 8/16 User's Manual Macros

source of confusion, but fortunately there are few such potential conflicts in the macro definitions. This
can also be avoided by using, for example, an underscore as the first character of a macro, as in
_Find Control.

Macros will accept literal data. Thus the assembler will accept the following type of macro call:

MUV MAC
LOA] 1
STA] 2
«<

MUV (PNTR),Y;DEST
MUV #3;FLAG,X

MACRO DEFINITION

with the resultant code from the above two macro calls being:

MUV
LOA
STA

and,

MUV
LDA
STA

(PNTR),Y;DEST
(PNTR) I y
DEST

#3;FLAG,X
#3
FLAG,X

macro call
substitute first parm
substitute second parm

macro call
substitute first parm
substitute second parm

Variables passed can be used as the operand to pseudo-ops like ASC:

MACRO DEFINITION RESULTANT CODE EXAMPLE

PRINT MAC PRINT "Example"
JSR SENDMSG
ASC "Example"
BRK

JSR SENDMSG
ASC]1
BRK
«<

Some additional examples of the PRINT macro call:

PRINT
PRINT
PRINT

!"quote"!
'This is an example'
"So's this, understand?"

NOTE: If such strings contain spaces or semicolons, they must be delimited by single or double
quotes. Also, literals in macros such as PRINT "A" must have the final delimiter. This is only true in
macro calls or VAR statements, but it is good practice in all cases.

Page 132

Merlin 8/16 User's Manual Macros

MORE ABOUT DEFINING A MACRO

A macro definition begins with the line:

Name MAC (no operand)

with Name in the label field. Its definition is terminated by the pseudo-op EOM or<<<. The label
you use as Name cannot be referenced by anything other than a valid macro call: NAME, PMC NAME
or>>> NAME.

Forward reference to a macro definition is not possible, and would result in a NOT MACRO error
message. That is, the macro must be defined before it is called by NAME, PMC or>>>.

The conditionals DO, IF, ELSE and FIN may be used within a macro.

Although it is possible to define and invoke a macro at the same time, it is not recommended. The
more common approach is to Lum off assembly, define the macros to be used later, then tum assembly
back on. The DO 0 ... FIN conditional assembly opcodes are used to enclose the macro definitions as
follows:

****************** * SAMPLE PROGRAM * ******************

*
ERROR

DO 0 ;TURN OFF ASSEMBLY

MAC
LOA #$88
JSR COUT
JSR COUT
JSR COUT
«<

;GIVE THE MACRO A NAME
;ASCII CODE FOR CTRL-G (BELL)
;PRINT TO SCREEN (CAUSES A BEEP)
; DO IT AGAIN
;ONE MORE TIME
;END OF MACRO *

FIN ;TURN ASSEMBLY BACK ON* *PROGRAM CONTINUES HERE ...

You can also give the EOM or <<< opcode a label so you could branch to it:

****************** * SAMPLE PROGRAM * ******************
*

DO 0
*
ERROR MAC

LOA #$88
LOY #$04

ERRORl DEY
BEQ FINISH
JSR COUT
JMP ERRORl

FINISH «<

FIN
*
* PROGRAM CONTINUES HERE

;TURN OFF ASSEMBLY

;GIVE THE MACRO A NAME
;ASCII CODE FOR CTRL-G (BELL)

;BEGIN COUNTDOWN
;IF Y = 0 THEN EXIT
;BEEP THE SPEAKER
;GO BACK FOR ANOTHER
;END OF MACRO

;TURN ASSEMBLY BACK ON

Page 133

Merlin 8/16 User's Manual Macros

Labels inside macros are updated each time the macro NAME, PMC or>>> NAME is encountered.
Error messages generated by errors in macros usually abort assembly because of possibly harmful
effects.

NOTE: Such messages will usually indicate the line number of the macro call rather than the line
inside the macro where the error occurred. Thus, if you get an error on a line in which a macro has been
used, you should check the macro definition itself for the offending statement.

NESTED MACROS

Macros may be nested to a depth of 15. Here is an example of a nested macro in which the definition
itself is nested. This can only be done when both definitions end at the same place.

TRDB MAC
TR]1+1;]2+1

TR MAC
LOA]l
STA]2
<<<

In this example TR LOC;DEST will assemble as:

LOA LOC
STA DEST

and TRDB LOC;DEST will assemble as:

LDA LOC+l
STA DEST+l
LOA LOC
STA DEST

A more common form of nesting is illustrated by these two macro definitions:

CH EQU $24
POKE MAC

LOA f]2
STA] l
«<

HTAB MAC
POKE CH;] l
<<<

The HT AB macro could then be used like this:

HTAB 20 ; htab to column 20 decimal

Page 134

Merlin 8/16 User's Manual

and would generate the following code:

LDA #20
STA CH

]2 in POKE macro
]1 in POKE macro, 1st parm
in HTAB macro

Flexible Variable Lists (Merlin 16 only)

Macros

Merlin 16 supports an additional macro variable,]O, which returns the number of variables in the
parameter list of the macro call. This lets you create macros with a flexible input. For example, here's
a macro that uses the number of input variables to decide whether to store a value just pulled off the
stack:

PullByte MAC
PLA
DO]O
STA]1
FIN
EOM

Thus, the macro call:

PullByte

MACRO DEFINITION
PULL BYTE (OR WORD) OFF STACK
IF A LABEL IS GIVEN
STORE VALUE FROM STACK IN]1
END OF CONDITIONAL PART
END OF MACRO DEFINITION

could be used to pull a value off the stack and leave it in the accumulator, whereas

PullByte LABEL

would pull the value off the stack and then store it in location LABEL. You could even get more fancy
by adding the IF MX tests to see whether one or two PLAs and ST As were needed to get a two-byte
word off the stack in the 8 bit mode, as opposed to a single PLNST A pair in the 16 bit mode.

Page 135

Merlin 8/16 User's Manual Macros

MACRO LIBRARIES AND THE USE PSEUDO OP

There are a number of macro libraries on the Merlin 8/16 disks. These libraries are examples of how
one could set up a library of often used macros.

The requirements for a file to be considered a macro library are:

1) Only Macro definitions and label definitions exist in the file.
2) The file is a text file.
3) If it is a DOS 3.3 library, the file name must be prefixed with "T."
4) The file must be accessable at assembly time, i.e. it must be in an active disk drive.

The macro libraries included with Merlin 8/16 include:

DOS 3.3

T.MACRO LIBRARY

T.FPMACROS

T.OUTPUT
T.PRDEC
T.ROCKWELL MACROS

T.RWTS

<none>

ProDOS

MACROS.S
MACROS.816.S
TOOL.MACROS

FPMACROS.S

<none>
PRDEC.S
ROCKWELL.S

<none>

Macro Libary functions

Often used macros for general use.
General use macros for 65816 programs.
Directory of IIgs Toolbox macros. Must be
used with MACROS.816.S.
Allow easy access to Applesoft floating point
math routines.
To be used with SENDMSG.
Prints A,X in decimal.
Implements extended bit related opcodes on the
Rockwell 65C02.
Allow easy access to DOS 3.3's RWTS disk
routines.

TOOL.EQUATES Directory of llgs label equates for use with
toolset data structures.

Any of these macro libraries may be included in an assembly by simply including a USE pseudo op
with the appropriate library name. There is no limit to the number of libraries that may be in memory
at any one time, except for available memory space. See the documentation on the USE pseudo op for
a discussion on its use in a program.

Page 136

r

Merlin 8/16 User's Manual The Linkers

THE MERLIN 8/16 LINKERS

WHY A LINKER?

The linking facilities built into Merlin offer a number of advantages over assemblers without this
capability:

1) Extremely large programs may be assembled in one operation.

2) Large programs may be assembled much more quickly with a corresponding decrease in development
time.

3) Libraries of subroutines, i.e. for disk access, graphics, screen/modem/printer drivers, etc., may be
developed and linked to any Merlin program.

4) Programs may be quickly re-assembled to run at any address.

With a linker, you can write portions of code that perform specific tasks, such as general disk 1/0
handler, and perform whatever testing and debugging is required. When the code is correct, it is
assembled as a REL file and placed on a disk. Whenever you need to write a program that uses disk 1/0
you won't have to re-write or re-assemble the disk VO portion of your new program. Just link your
general disk 1/0 handler to your new program and away you go. This technique can be used for a variety
of often-used subroutines.

Wouldn't a PUT file or macro USES library serve the same purpose? A PUT file comes the closest to
duplicating the utility of REL files and the linker, but there are a few rather large drawbacks for certain
programs. First, using a PUT file to add a general purpose subroutine would result in slower assembly
because the entire program has to be assembled even when changes are made only to the subroutine.
Second, any label definitions contained in the PUT file would be global within the entire program.
This means the person writing the subroutine would have to be careful not to use a label like LOOP
that might occur in one of the other modules, or in the main program itself. With a REL file, only
labels defined as ENTry in the REL file, and EXTemal in the current file, would be shared by both
programs. There is no chance for duplicate label errors when using the Linker. Consider the following
simple example:

A REL file has been assembled that drives a plotter. There are six entry points into the driver: PENUP,
PENDOWN, NORTH, SOUTH, EAST, WEST. To further illustrate the value of a linker, assume the
driver was written by a friend who has moved 2000 miles from you. Your job is to write a simple
program to draw a box.

Page 137

Merlin 8/16 User's Manual

The code would look something like this:

1
2 PENUP
3 PENDOWN
4 NORTH
5 SOUTH
6 EAST
7 WEST
8
9 BOX

10
11 LOOP
12
13
14
15
16 LOOP2
17
18

REL
EXT
EXT
EXT
EXT
EXT
EXT

LDY
JSR
JSR
INY

too
PENDOWN
NORTH

CPY #lOO
BNE LOOP
LDY #00
JSR EAST
INY

;RELOCATABLE CODE
;EXTERNAL LABEL
;ANOTHER ONE

INITIALIZE Y
GET READY TO DRAW
MOVE UP
INC COUNTER
100 MOVES YET?
NOTICE LOCAL LABEL
INIT Y AGAIN
NOW MOVE TO RIGHT

19
20

CPY HOO
BNE LOOP2

* YOU GET THE IDEA, DO
; FINISH MOVING RIGHT

SOUTH, THEN WEST, AND DONE!

The Linkers

This simple sample program illustrates some of the power of RELocatable, linked files. Your program
doesn't have to concern itself with conflicts between its labels and the REL files labels, you don't
concern yourself with the location of the EXTernal labels, your program listing is only 30 to 40 lines
and it is capable of drawing a box on a plotter. Also, notice that you are free to use the label LOOP
because it is local to your module, and will not be known to any of the other modules.

In addition, changes to your module will not require re-assembly of the plotter driver. In short, with
REL files and a linker, changes to large programs can be made quickly and efficiently, greatly speeding
the program development process.

ABOUT THE LINKER DOCUMENTATION

There are three pseudo opcodes that deal directly with relocatable modules and the linking process. These
are:

REL - instructs the assembler to generate relocatable files.
EXT - defmes a label as external to the current file.
ENT - defines a label in the current file as accessable to other REL files.

Page 138

r

Merlin 8/16 User's Manual The Linkers

There are two other pseudo opcodes that behave differently when used in a REL file, relative to a normal
file. These are:

DS - define Storage opcode.
ERR - force an ERRor opcode.

Each of these five pseudo opcodes will be defined or redefined in this section as they relate to REL files.
Also, an Editor command unique to REL files will be defined: LINK.

In order to use the Linker, the files to be linked must be specifed. The Linker uses a file containing the
names of lhe files to be linked for this purpose. The format of this linker name file differs from DOS
3.3 and ProDOS. These differences will be illustrated here.

Page 139

Merlin 8/16 User's Manual The Linkers

PSEUDO OPCODES FOR USE WITH RELOCATABLE CODE FILES

REL (generate a RELocatable code file)

REL [only options for this opcode]

This opcode instructs the assembler to generate a relocatable code file for subsequent use with the
relocating Linker.

This must occur prior to definition of any labels. You will get a BAD REL error if not. REL files
are not compatible with the SA V pseudo-op and with the Main Menu's Save Object Code command.
To get an object file to the disk you must use the DSK opcode for direct assembly to disk.

There are additional illegal opcodes and procedures that are normally allowed with standard files, but
not with REL files. For example, an ORO at the start of the code is not allowed. The ORO address
is specified at link time. A further restriction on REL files is that multiplication, division or
logical operations can be applcd to absolute expressions, but not to relative ones.

Examples of absolute expressions are:

-An EQUate to an explicit address
- The difference between two relative labels
- Labels defined in DUMMY code sections

Examples of relative expressions that are not allowed are:

- Ordinary labels
- Expressions that utilize the current Program Counter (PC), like: LABEL= *

The initial reference address of a REL file is $8000. Note that this is only a fictional address, since
it will later be changed by the Linker. It is for this reason that no ORO opcode is allowed.

There are some restrictions with the Merlin 8 Linker involving use of EXTemal labels in operand
expressions. No operand can contain more than one external. For operands of the following form:

#>expression
or

>expression

where the expression contains an external, the value of the expression must be within 7 bytes of the
external labels' value.

Page 140

r
Merlin 8/16 User's Manual

For example:

LOA #>EXTERNAL+8
DFB >EXTERNAL-1

[illegal expression]
[legal expression]

The Linkers

Object files generated with the REL opcode are given the file type LNK under ProDOS. This is the
type that will show if the disk is cataloged by Merlin 8/16. This type is file type $F8. These
restrictions do not apply to the Merlin 16 Linkers.

EXT (define a label EXTernal to the current REL module)

label EXT
EXT labell, label2, etc.

PRINT EXT [define label PRINT as EXT]
EXT LABELl, LABEL2 [define LABELl and LABEL2 and entries - Merlin 16 only]

This defines the label in the label colwnn as an external label. This means that references to this
label within the source will assume the value for LABEL is an as-yet undefined address, presumably
found in another module that will be ultimately linked with this source file. Any external label
must be defined as an ENTry label in its own REL module, otherwise it will not be reconciled by
the Linker since the label would not have been found in any of the other linked modules. The
EXTernal and ENTry label concepts are what allows REL modules to communicate and use each
other as subroutines, etc.

The value of the label is set to $8000 and will be resolved by the Linker. In the symbol table
listing, the value of an external will be $8000 plus the external reference number ($0-$FE) and the
symbol will be flagged with an X.

In Merlin 16, the EXT and ENT opcodes accept the following syntax:

ENT LABELl, LABEL2, LABEL3

This makes it possible to declare absolute symbols as entries. Thus, if LABELl was an equate
instead of a location in the code, then it can still be used as an external by other modules.
Thus, it does not have to be equated in all the files using it. For example, if all three modules in a
linked system used the labels HOME, COUT and BELL, the first module could define these labels
with the usual HOME EQU $FC58, etc. equates, and then use ENT HOME, COUT, BELL to make
these equates available to the other modules being linked. This would avoid having to define the
labels in each of the other modules.

With this particular syntax, you must not use a label in the label column. That will cause the
assembler to assume you are using the more usual syntax.

Page 141

Merlin 8/16 User's Manual The Linkers

NOTE: Using this function instead of putting all the common equates in all the source files, most
easily accomplished by a common USE file, does take more space in the Linker symbol library, and
hastens the time of a memory overflow.

ENT (define a label as an ENTry label in a REL code module)

label ENT
ENT labell, label2, etc.

PRINT ENT [define label PRINT as ENTry]
ENT LABEL!, LABEL2 [define LABEL! and LABEL2 and entries - Merlin 16 only]

This defines the label in the label column as an ENTry label. This means that the label can be
referred to by an EXTernal label in another source file somewhere. This facility allows other REL
modules to use the label as if it were part of their source file. If a label is meant to be made
available to other REL modules it must be defined with the ENT opcode, otherwise other modules
wouldn't know it existed and the Linker would not be able to reconcile it.

The following example of a REL module segment illustrates the use of this opcode:

21 STA POINTER ;some meaningless code
22 INC POINTER ;for our example
23 BNE SWAP ;CAN BE USED AS NORMAL
24 JMP CONTINUE
25 SWAP ENT ;MUST BE DEFINED IN THE
26 LDA POINTER ;CODE PORTION OF THE
27 STA PTR ;MODULE AND NOT USED
28 LDA POINTER+! ;AS AN EQUated label
29 STA PTR+l
30 * etc.

Note that the label SW AP is associated with the code in line 26 and that the label may be used just
like any other label in a program. It can be branched to, jumped to, used as a subroutine, etc.

ENT labels will be flagged in the symbol table listing with an E.

Page 142

Merlin 8/16 User's Manual

DS (Define Storage)

DS \
DS \expression

DS\

DS \1

The Linkers

[skip to next REL file, fill mem with zeros to next
page break]

[skip to next REL file, fill mem with the value 1 to
next page]

When this opcode is found in an REL file, it causes the Linker to load the next file in the linker
name file at the first available page boundary, and to fill memory either with zeros or with the value
specified by the expression. If used, this opcode should only be placed at the end of your source file.
Notice that DS expression , for example DS 5, still has the usual function even in REL files.

ERR (force an ERRor)

ERR \expression
ERR \$4200 [error if current code passes address $4200]

This opcode will instruct the Linker to check that the last byte of the current file does not extend to
"expression" or beyond. The expression must be absoulute and not a relative expression.

If the Linker finds this is not the case, linking will abort with the message: CONSTRAINT
ERROR: followed by the value of the expression in the ERR opcode.

The position of this opcode in a REL file has no bearing on its action. It is recommended that it be
put at the end of a file.

You can see how this works by trying to link the sample PI files on the Merlin 8/16 disks to an
address greater than $81 C.

Page 143

Merlin 8/16 User's Manual The Linkers

THE MERLIN 8 LINKER

In Merlin 8, linking is done by using the LINK command in the Command Mode to specify the address
at which the final file will be loaded, i.e. the non-linker equivalent to the ORG function, and the name
of the file which contains a list of the REL files created by the individual assemblies of the files that
make up the complete application. The Linker is part of the Editor/Assembler system, and is available
at any time with the LINK command.

The general use of the LINK command looks like this:

LINK $1000 "NAMES
LINK $2000 "/VOL/NAMES"

[link files in NAMES - DOS 3.3]
[link files in NAMES - ProDOS]

The LINK command invokes the linking loader. For example, suppose you want to link the object
files whose names are held in a "linker name file" called NAMES. Suppose the start address desired for
the linked program is $1000. Then you would type: LINK $1000 "NAMES" and press Return. If you
are using the ProDOS version, this assumes the prefix has been set. The final quote mark in the name
is optional. You can use other delimiters such as the apostrophe(') or colon (;). The specified start
address has no effect on the space available to the Linker.

To provide space for the Linker, any source file must be removed from memory with the NEW
command. This command is only accepted if there is no source file in memory.

LINKER NAME FILES (DOS 3.3)

The linker name file is just a text file containing the file names of the REL object modules to be
linked. It should be created with the Merlin editor and written to the disk with the Write Text File from
the Main Menu. Remember to type a space to start the filename for the W command if you don't want
the T. prefix appended to the start of the filename. Thus, if you want to link the object files named
MYPROG.ST ART, MYPROG.MID, and LIB.ROUTINE,02, you would create a text file with these
lines:

MYPROG.START
MYPROG.MID
LIB.ROUTINE,D2

In this example, you would write this to disk using the W command under the filename
MYPROG.NAMES. You can use any filename you wish here; it is not required to call it NAMES.
Then you would link these files with a start address of $1000 by typing NEW and then issuing the
editor command as follows:

LINK $1000 "MYPROG.NAMES"

Page 144

Merlin 8/16 User's Manual The Linkers

The Linker will not save the object file it creates. Instead, it sets up the object file pointers for the
Main Menu Save Object Code command and returns directly to the Main Menu upon the completion of
the linking process.

LINKER NAME FILES (ProDOS)

The linker name file is just a specially formatted file containing the pathnames of the LNK files to be
linked. This file is most easily created by assembling a source file with the proper format, as follows:

Each pathname in the source file should be given the form STR "pathname" ,00

NOTE: The 00 must be include at the end. The entire source file must end with a BRK, i.e. another
00. This tells the Linker that there are no more pathnames in the file. Thus, if you want to link the
LNK files names /MYDISK/ST ART, /MYDISK/MID, AND /OTHERDISK/END, you would make a
source file containing these lines:

STR "/MYDISK/START,00
STR "/MYDISK/MID",00
STR "/OTHERDISK/END" ,00
BRK

It is best to use full pathnames as shown, but this is not required. You should then assemble this file
and save the object code as, for example, /MY DISK/MYPROG/NAMES. You can use any pathname
you want here; it is not necessary to have NAMES in a subdirectory nor to call it NAMES. Then you
can link these files to address $803 by typing NEW and then:

LINK $803 "/MYDISK/MYPROG/NAMES"

The file type used by the Save Object Code command is always the file type used in the last assembly.
Thus it is BIN unless the last assembly had a TYP opcode and then it will be that type. This will be
used by the Save Object Code command after you link a group of files. That is, the Linker does not
change this type. If you make a mistake and the file gets saved under a type you did not want, just
assemble an empty file, which would reset the object type to BIN ($06). You will, however, have to
link the files again.

Page 145

Merlin 8/16 User's Manual The Linkers

THE LINKING PROCESS

Various error messages may be sent during the linking process See the ERRORS section of this
manual for more information. If a DOS error occurs involving the file loading, then that error message
will be seen and linking will abort. If the DOS error FILE TYPE MISMATCH occurs after the
message "Externals:" has been printed then it is being sent by the Linker and means that the file
structure of one of the files is incorrect and the linking cannot be done.

The messsage MEMORY IN USE may occur for two reasons. Either the object program is too large to
accept, i.e. the total object size of the linked file cannot exceed about $A 100, or the linking dictionary
has exceeded its allotted space, i.e. it is greater than $BOOO in length. Each of these possibilities is
exceedingly remote.

After all files have been loaded, the externals will be resolved. Each external label referenced will be
printed to the screen and will be indicated to have been resolved or not resolved. An indication is also
given if an external reference corresponds to duplicate entry symbols. With both of these errors, the
address of the one or two byte field effected is printed. This is the address the field will have when the
final code is BLOADed.

If you use the TRON command prior to the LINK command, only the errors will be printed in the
external list, i.e. NOT RESOLVED and DUPLICATE errors.

This listing may be stopped at any point using the space bar. The space bar may also be used to single
step through the lisL If you press the space bar while the files are loading then the Linker will pause
right after resolving the first external reference.

The list can be sent to a printer by using the PRTR command prior to the LINK command. At the end,
the total number of errors, i.e. external references not resolved and references to duplicate entry symbols,
will be printed. After pressing a key, you will be sent to the Main Menu and can save the linked object
file with the Save Object Code command, using any desired filename or pathname. You can also return
to the Editor and use the GET command to move the linked code to main memory.

Page 146

r

Merlin 8/16 User's Manual The Linkers

USING MERLIN 8 LINKED FILES

The following example shows how two source files are used to generate the LNK files that will be
combined by the Linker into a final application:

* RELOCATING LINKER SAMPLE
* PART ONE *

REL
DSK FILEl .L

HOME EQU $FC58
COUT EQU $FDED

BEGIN2 EXT EXTERNAL LABEL

BEGIN JSR HOME CLEAR SCREEN

LDX #$00 INITIALIZE COUNTER
LOOP LDA STRING,X GET CHARACTER

BEQ DONE END OF STRING
JSR COUT
INX
BNE LOOP ALWAYS

DONE JMP BEGIN2 JUMP TO 2ND SEGMENT ...

STRING ASC "THIS IS FILE H"
HEX 8D,OO ; END OF STRING
LST OFF

And this is the second part:

* RELOCATING LINKER SAMPLE *
* PART TWO *

REL
DSK FILE2 .L

HOME EQU $FC58
COUT EQU $FDED

BEGIN2 ENT ENTRY LABEL
LDX #$00 INITIALIZE COUNTER

LOOP LDA STRING,X GET CHARACTER
BEQ DONE END OF STRING
JSR COUT

Page 147

Merlin 8/16 User's Manual The Linkers

INX
BNE LOOP ALWAYS

DONE RTS END OF PROGRAM

STRING ASC "THIS IS FILE #2"
HEX BD,00 ; END OF STRING
LST OFF

Having entered and assembled each of the source files, FILEl.L and FILE2.L will be created on the disk.
These are the intermediate REL files that will be linked to create the final application program. Now
you need to create the file containing the list of files to be linked. In this example, the file will be
called NAMES and it will link the FILEI.L and FILE2.L files.

For the DOS 3.3 version of Merlin 8, you would just use the editor to type in the lines:

FILEl.L
FILE2. L

There are no leading spaces; the names FILEl.L and FILE2.L go in the label column of the Editor.
This file is then saved as a text file using the Write Text File command from the Main Menu.
Remember to add a space at the beginning of the filename to save under if you wish to avoid the T.
prefix in the name.

To link the file, type NEW to clear the source workspace, then type LINK $8000 "NAMES" and press
Return. The file NAMES will be read to determine which files to link. If there are no errors, you will
be returned to the Main Menu when the link is complete. At that point, use the Save Object Code
command to save the object file to disk under the name FINAL.OBJ.

To test the program, use this Applesoft BASIC program:

10 TEXT: HOME
20 PRINT CHR$(4);"BLOAD FINAL.OBJ"
30 CALL 32768: REM $8000
40 VTAB 12: HTAB 15: PRINT "IT REALLY WORKS!"
50 LIST: END

To create the names file for the ProDOS version of Merlin 8, you will need to create a separate source
file for the names list. This is because the ProDOS Linker requires that the names list be in a special
format. Remember that each name in the ProDOS Merlin 8 names list must be defined with the STR
pseudo-op, terminated with a zero, and that the list itself is terminated with a zero also. To create the
names list, type in this text:

Page 148

r

r
Merlin 8/16 User's Manual

* MERLIN 8 LINKER NAMES FILE *

ProDOS *

DSK "NAMES"
STR, "FILEl.L",00
STR "FILE2.L",00
BRK

CREATE NAMES FILE
lST LINK FILE
2ND LINK FILE
ZERO TO TERMINATE LIST

The Linkers

Assemble this file, which will create the actual NAMES file for the Linker, and save the source file
under the file name NAMES. This will actually be saved on the disk as NAMES.S, so you needn't
worry about any confusion when you use NAMES in the Linker.

To link the files under ProDOS, type NEW to clear the workspace, and then type LINK $8000
"NAMES" and press Return. When the link is complete, use the Save Object Code command at the
Main Menu and save it under the name F1N AL.OBJ. You can use the same Applesoft program shown
for the DOS 3.3 example to test the program.

In looking at the example, notice how the ENT and EXT pseudo-ops are used to communicate the label
BEGIN2 between the two programs. Also notice how there is no conflict over the use of the labels
LOOP, DONE and STRING.

Compare this example to the sample program shown for the PUT directive. Notice how the same result
of combining separate source files is achieved, but without the disadvantages of PUT files discussed at
the beginning of this chapter.

Page 149

Merlin 8/16 User's Manual The Linkers

THE MERLIN 16 LINKERS

The Merlin 16 assembler supports three different linkers. These are separate and distinct from the
built-in Linker in Merlin 8, and are as follows:

LINKER: This Linker combines multiple relocatable LNK files into a file that runs at a specified
address, such as a ProDOS 8 BINary or SYStem type file. This is also referred to as the Absolute
Linker, since the final output file must be run at a specified location.

LINKER.GS: This is a Linker specifically for creating Object Module Format (OMF) files to be run
on the Apple Ilgs under ProDOS 16 and the System Loader. On the Apple Ilgs, applications have no
way of knowing where in memory they will ultimately be loaded and run, and so must contain a
relocation dictionary as part of the final output file. If you wish to write Apple IIgs ProDOS 16
programs, you should use Linker GS or Linker.XL, discussed next.

LINKER.XL: This is special version of Linker GS which makes two passes and links to disk to
produce a multi-segment file. This feature is a trade-off with linking speed, that is, Linker XL is slower
than Linker GS, and so you will normally want to use Linker GS unless you specifically require
multi-segment files. A multi-segment file is where one program is broken up into multiple segments
on the disk, but which ultimately all come together to form the final program in memory. This is
different from a program which just happens to have other segments that it loads under its own control,
such as printer drivers or program overlays.

Linker.GS is automatically loaded into memory when Merlin 16 is run, and so is available for
immediate use. You can manually set up either of the other two Linkers by just typing -LINKER or
-LINKER.XL as a Disk Command from the Main Menu. Alternatively, you can also change the
PARMS.S file to load any version of the Linker that you wish. See the discussion of the PARMS file
in the Technical Information section.

The Linkers use the same space as USER programs. LNK files that you may have created on Merlin
Pro, an earlier version of Merlin 8, should be upward compatible as long as they do not have externals
or entry declarations. If your programs have external or entry declarations, or you are in doubt or
encounter difficulties, just re-assemble the source files with Merlin 16 to create updated LNK files.

As was discussed for the Merlin 8 Linker, creating an output file consists of several steps. First, source
files are created using the Merlin editor. These are assembled and the output file (type $F8 = LNK) is
created using the REL and DSK or SA V directives. This intermediate file is not usable in and of itself.
Rather, it is to be used as the input for the next step, which is the actual linking of several LNK files to
create the final object file. This file may be a stand-alone BIN or SYS file for ProDOS 8, or it may be
an OMF file for ProDOS 16, such as a SYS16, CDA (Classic Desk Accessory), or any other ProDOS
16 loadable file.

Page 150

r
Merlin 8/16 User's Manual The Linkers

The linking process in Merlin 16 is controlled by a linker command.file. The linker command files are
a more advanced form of the Merlin 8 NAME files, and have much more flexibility. They support
comments, are able to do batch assemblies before linking, and are able to create multiple output files.
Let's look at each Mcr.lin 16 Linker:

THE ABSOLUTE LINKER (LINKER)

To start the link, you must first delete any source file in memory to provide the memory for reading the
Link command file. Remember to save the file first if necessary. To start the link, type Open-Apple-0
to open the Command Box, and then type LINK "FILENAME" and press Return, where FILENAME is
the name of the linker command file. The LINK command from the Merlin 16 editor has slightly
different syntax from the Merlin 8 Linker in that you do not specify an address. Instead, the address is
provided within the command file with an ORG directive.

NOTE: The command file is just a text file looking very much like a standard source file, but you do
not assemble it.

The command file can have comments in the usual comment format for source files. Commands to the
Linker are put in the opcode field. Commands supported are:

ASM, PUT, OVR, LNK (or LINK), ORG, ADR, SA V, TYP, EXT, ENT, DAT, LKV, END, and
LIB.

These have the following syntax and meanings:

ASM pathname
ASM FILENAME.S

Assemble the source file specified in pathname. The source should do a DSK or SA V to create the
LNK file to ultimately be used by the Linker. All ASMs must be done before any other linker
commands. The ASM command is a conditional operation, and only assembles those source files that
have been changed since the last time the files were linked. This is a convenience feature that lets you
create a command file to build a final application. Re-assemblies will only be done on just those parts
of the application that have changed since your last linking.

To determine whether to do an assembly, the ASM command checks bit 0 of the "aux type" of the
source file. It does not do the assembly if this set. Otherwise it sets that bit and does the assembly.
You can defeat this by zeroing the appropriate bit in the PARMS file. See the Technical Information
section for details. This bit is cleared whenever you save a source file, so this will force assembly of
that file. Also see the PUT command below.

Page 151

Merlin 8/16 User's Manual

PUT pathname
PUT FILENAME.S

The Linkers

Check and set aux.type bit 0 of this file, presumably a PUT file in the next source. If the file has been
modified then force the assembly of the next ASM instruction. This should precede the ASM command
for any files that use a particular PUT file, and is used to cause a re-assembly in the event you change a
PUT file used by a particular master file. This command is not needed if your source files do not use
PUT files, or you don't wish to use the feature.

OVR [ALL]
OVR or OVR ALL

Override the auxtype 0-bit check and force assembly of the next ASM instruction. This flag is reset by
any ASM. With the OVR ALL syntax, it will force assembly of all files in the linker list, so you
don't have to use OVR before each ASM instruction if you want all assemblies to be done.

LNK pathname
LNK FILENAME.L

Link the LNK file specified. Generally you will have several of these in a row.

ORG hex address
ORO $2000

Sets the run time address of the following LNKs. Must be used between each SA V and the next group
of LNKs. The address will also be put in the auxtype if no ADR command follows.

NOTE: The Linkers have only hexadecimal address calculation ability. All addresses must be in hex
and preceded with the $ sign.

ADR address
ADR $2000

Sets the load address of the next linked file. Must be used only after an ORO setting the run time
address. The ORO automatically sets this address, so you don't have to have an ADR command if it is
the same as the ORO. The load address is the address put in the aux.type of the file. For non-BIN files
it could have some other meaning.

Page 152

r
Merlin 8/16 User's Manual The Linkers

SA V pathname
SA V FINAL.SYSTEM

Saves the linked file. This musl be in the command file or there will be no resulting linked file. It
should come after all the LNKs for a given output file. The Absolute Linker supports up to 64 separate
output files.

SA V must only be used after one or more LNKs. It is not to be used to save the object code after an
ASM. The assembly source should do this with the SA V or DSK command, or DSK if linking is to
be done and the Linker is not just being used to do batch assemblies. All ASMs must precede any
LNKs and SA Vs.

TYP byte
TYP $06

Sets the file type for the next linked file. If all the SA Vs are to use the same type output file, this need
only be used once in the command file.

EXT
EXT

Tells the Linker to print addresses of all resolved externals and not only the ones with errors. This is
turned off after each SAV.

ENT
ENT

Tells the Linker to print the entry list. This should come after all the linking of all output files.

DAT
DAT

Causes the Linker to print the current date and time.

END
END

Marks end of linker command file. Optional.

Page 153

Merlin 8/16 User's Manual

LIB directory name
LIB TOOL.LIBR

The Linkers r

If used, this should come after all LNKs and before the last SAV. It tells the Linker to look for any
unresolved (at that point) external labels and search the given directory for corresponding files. The files [
must be LNK files of the same name as the entry label to which they correspond. Any such files found
will be linked to the present module. Not finding a file will not cause an error because some other file
linked this way may contain the entry in question. If not, an error will result when the final external
resolution is done. This feature could have been made automatic, but was not because that would
substantially impair performance when it is not needed. Making it an option in the command file
provides more versatility.

For example, suppose one of the linked files has the label PRINT declared as an external. The Linker
comes to the line LIB LIBRARY, and suppose that at that point, none of the linked files has an entry
called PRINT. The Linker will look in the directory LIBRARY for a file called PRINT, and if that file
is found, it will be linked to the present module. Then the Linker will search for further unresolved
externals, including those from the file PRINT just linked, and act on them in a similar way.

LKVbyte
LKV $02

Verifies that the cortrect version of the Linker in us. LINKER is version 0, LINKER.GS is version 1,
and LINKER.XL is version 2. For example, if you want to guarantee that LINKER.XL is the Linker
in use, you would put the command LKV $02 in the linker command file.

THE LINKER COMMAND FILE

The linker command file is a standard Merlin 16 source file, i.e. BUILD.S, but it is not assembled
itself. Instead, the linker command file is executed with the LINK command.

A simple linker command file would look like this:

ORG $2000
LNK FILE.L
SAV FILE

; DEFINE LOAD ADDRESS
; SPECIFY LNK FILE
; SA VE THE OBJECT FILE

This would take the LNK file FILE.Land adjust all internal address references, i.e. JMPs, JSRs, etc. for
a load address of $2000. The final object file would be saved on the disk under the name FILE.

Page 154

r
Merlin 8/16 User's Manual The Linkers

The default filetype for SAV is BIN, i.e. type $06. Thus, if you were writing a SYStem file, you
would have to add a TYP command to tell the Linker to save the final object file with the appropriate
file type:

ORG $2000
LNK FILE.L
TYP $FF
SAV FILE

; DEFINE LOAD ADDRESS
; SPECIFY LNK FILE
; SYSTEM FILETYPE
; SA VE THE OBJECT FILE

If TYP is used, all succeeding SA Vs, within a given Link operation, use the current TYP value.

ASM is added to a command file to automatically re-assemble a file that might have been changed
without a re-assembly of a new copy of the corresponding LNK file:

ORG $2000
ASM FILE.S
LNK FILE.L
TYP $FF
SAY FILE

; DEFINE LOAD ADDRESS
; RE-ASSEMBLE IF CHANGED
; SPECIFY LNK FILE
; SYSTEM FILETYPE
; SA VE THE OBJECT FILE

USING MERLIN 16 LINKED FILES

Although linked files may be of any filetype and are not restricted to use by BASIC, here's an example
that combines the output from two assemblies to create an object file that is loaded and called from
BASIC. Compare this to a similar PUT file example. This is the first part of the program:

RELOCATING LINKER SAMPLE *

* PART ONE *

REL
OSK FILEl. L

HOME EQU $FC58
COUT EQU $FDED

BEGIN2 EXT EXTERNAL LABEL

BEGIN JSR HOME CLEAR SCREEN

LOX #$00 INITIALIZE COUNTER
LOOP LOA STRING, X GET CHARACTER

BEQ DONE END OF STRING
JSR COUT
INX
BNE LOOP ALWAYS

Page 155

Merlin 8/16 User's Manual

DONE JMP BEGIN2 ; JUMP TO 2ND SEGMENT ...

STRING ASC "THIS IS FILE #1"
HEX
LST

80,00 ; END OF STRING
OFF

And this is the second part:

* RELOCATING LINKER SAMPLE *
* PART TWO *

HOME
COOT

BEGIN2

LOOP

DONE

STRING

REL
OSK

EQU
EQU

ENT
LOX
LOA
BEQ
JSR
INX
BNE

RTS

ASC
HEX
LST

FILE2 .L

$FC58
$FDED

ENTRY LABEL
#$00 INITIALIZE COUNTER
STRING,X GET CHARACTER
DONE END OF STRING
COOT

LOOP ALWAYS

END OF PROGRAM

"THIS IS FILE #2"
8D,OO ; END OF STRING
OFF

The Linkers

Having entered and saved these source listings, you would then enter and save this Linker command file:

* MERLIN 16 LINKER NAMES FILE *

LKV $00 OPTIONAL CHECK FOR "LINKER"

ASM PARTl.S ASSEMBLE IF NEEDED
ASM PART2.S ASSEMBLE IF NEEDED

ORG $8000 SPECIFY LOAD ADDRESS

LNK FILEl. L LINK FILE
LNK FILE2. L LINK FILE

TYP $06 BINARY
SAV FINAL.OBJ

Page 156

f

f
Merlin 8/16 User's Manual The Linkers

These are assembled and linked together by typing LINK "FILENAME" where FILENAME is
whatever name the command file has been saved under on the disk. Before linking the command file,
remember to clear the workspace with NEW from the Command Box.

The generated object file, FINAL.OBJ could be tested with this Applesoft program:

10 TEXT: HOME
20 PRINT CHR$ (4); "BLOAD FINAL.OBJ"
30 CALL 32768: REM $8000
40 VTAB 12: HTAB 15: PRINT "IT REALLY WORKS!"
50 LIST: END

Things to notice in the linker command file are the way that all the assemblies are done first, before any
use of ORO or LNK instructions. In general, all ASMs should be done at once, followed by ORO and
all LNK.s.

The ORO $8000 specifies the load address of the final object file. This is used when linking the two
LNK files called FILEl.L and FILE2.L into the final output file called FINAL.OBJ.

Both ASM and the check for the proper version of Linker with LKV are optional, and are not
specifically required for this example. The main reason for including LKV in a command file is to
make sure that the proper Linker is used for linking a particular command file. If you are developing
both ProDOS 8 and ProDOS 16 applications at the same time, it would be easy to accidentally have the
wrong Linker in the machine when you were trying to link a file for the other operating system.

In looking at the example, notice how the ENT and EXT pseudo-ops are used to communicate the label
BEGIN2 between the two programs. Also notice there is no conflict over the use of the lables LOOP,
DONE and STRING.

Compare this example to the sample program show for the PUT directive. The same result of
combining separate source files is achieved, but without the disadvantages of PUT files discussed at the
beginning of this Chapter.

MULTIPLE OUTPUT FILES

For applications running under ProDOS 8, you can use the Absolute Linker to generate separate output
files during the linking process. The advantage is that each output file has access to the values of any
entry point definitions in the other modules. Thus, if you wanted to write a program with other
modules that needed to know the address of entry points within the main program, you could use the
Absolute Linker to generate all the files at the same time.

For multiple output files, start each group of LNK.s with an ORO and end it with a SA V. External
references will be resolved between such groups by a second linker pass.

Page 157

Merlin 8/16 User's Manual

For example:

* MERLIN 16 LINKER NAMES FILE *
* MULTIPLE OUTPUT SAMPLE *

LKV $00 OPTIONAL CHECK FOR

ASM PROGlA.S ASSEMBLE IF NEEDED
ASM PROGlB.S ASSEMBLE IF NEEDED

"LINKER"

ORG $2000 SPECIFY LOAD ADDRESS

LNK FILElA.L LINK FILE
LNK FILElB.L LINK FILE

TYP $FF FILETYPE SYSTEM
SAV PROGRAMl SAVE lST OUTPUT FILE

ASM PROG2A.S ASSEMBLE IF NEEDED
ASM PROG2B.S ASSEMBLE IF NEEDED

ORG $8000 SPECIFY LOAD ADDRESS

LNK FILE2A.L LINK FILE
LNK FILE2B.L LINK FILE

TYP $06 FILETYPE ; BINARY
SAV OVERLAY SAVE 2ND OUTPUT FILE

THE GS LINKER (LINKER.GS)

The Linkers

The GS Linker, on the Merlin 16 disk as LINKER.GS, works in the same way as the Absolute Linker
except that it creates OMF (Object Module Format) files for the Apple Ilgs only. The ORG is accepted,
but should not be used, since memory is assumed to be assigned on an "as-available" basisin the Apple
Ilgs. However, you can use the ORG if you want to specify a specific load address for an object file.

NOTE: For Linker GS, the default SAV type is S16. Only one output file is supported, and there is a
maximum length of the final file of about 32K for the code portion and another 32K for the relocation
dictionary. LINKER.XL does not have these restrictions.

The main reason for using the GS Linker will be for creating application programs to run under
ProDOS 16. Such files cannot be called from an Applesoft program, since ProDOS 16 is not available
to Applesoft. In addition, the file format is such that a relocating dictionary is included as part of the
final output object file. Thus, BLOADing it and listing it in the Monitor would reveal a certain
amount of additional data saved with the file.

Page 158

r
Merlin 8/16 User's Manual The Linkers

In addition to the linker commands of the standard Linker, the GS Linker has the following commands:

VER (version)
VER $01

This is used to specify the version of the OMF, i.e. the System Loader, that is to be used with the
output object file. Versions 1 and 2 are supported. Thus, the operand must be $1 or $2. The VER
instruction should come before any other linking instructions except ASMs, which are not dependent on
the version of the Loader in use. ProDOS 16 version 1.2 uses version 2 of the loader format, and this
is the default version used by the GS Linker if VER is not specified. You will have to decide what
OMF version to use. If you specify OMF version l, your file can be loaded by any version of ProDOS
16. If you specify OMF version 2, ProDOS 16 vers. 1.2 or later will be required.

KND address
KND $80
KND $8000

This specifies the value that you want put in the KIND location of the OMF header. You would use 1
byte for VER $1 and 2 bytes for VER $2. This must come after the VER so that the format is known
to the Linker. If in doubt, ignore this command and accept the default.

ALI address
ALI $10000

This specifies the ALIGN field in the file header. It defaults to 0. Use only $10000 to align to a bank
boundary or $100 to align to a page boundary. In most cases, you should leave this at the default 0.

NOTE: Our tests indicate that the bank align does not work on OMF version 1.

DS address
DS $2000

This tells the Linker to reserve this number of bytes to be zeroed by the loader at the END of the
program. This number is put in the RESSPC field of the header. Using this instead of reserving space
with a DS in the source file will result in smaller object files.

QUICK LINK (LINKER.GS ONLY)

In LINKER.GS, but not in the other Linkers, the command LINK=, or simply LINK without a file
name, from the Command Box will assemble the file given by the default file name, i.e. the name
appearing when you give the Load or Save commands from the Main Menu, then will link the resulting
file. This assumes that a LNK. file wa8 produced by the DSK and REL opcodes. The linked file will
then be saved using the name of the LNK. file with the last two characters cut off.

Page 159

Merlin 8/16 User's Manual The Linkers

It is suggested that you add a .L suffix to the DSK filename, i.e. MYFILE.L, so the saved file will be
MYFILE. For example, a source file with the lines:

REL
DSK MYFILE.L

could be saved to disk, and then assembled and linked with the Editor LINK command, and the final
object file will be saved on the disk under the name MYFILE.

NOTE: This command does not require a linker command file, and that it uses the defaults in the Link
which produces an S 16 filetype in object module format version 2, and of "kind" $1000, i.e. code
segment that cannot be loaded to special memory. This syntax should not be used if you wish load
preferences different than the defaults, or if you require the advanced features of a command file. The
command LINKl can be used to produce a file in object module format 1 of "kind" 0 and type S 16.

If there is a source file in memory when this command is issued, you will be asked if it is OK to save
the source file to disk using the current name. If you agree, that file will automatically be saved under
the default file name Caution: this can be dangerous. If the workspace is empty when the LINK
command is used, then the file given by the default file name will be loaded, assembled, linked and the
object file saved.

MULTIPLE LNK INPUT FILES

If you have multiple LNK files being linked to create the final object file, you should use a command
file. However, Linker.GS does provide a short-cut way of linking up to 10 LNK files without requiring
a command file. If the LNK file produced by the assembly has a name ending in" .x" where xis a digit
from 0 to 9, i.e. MYFILE.3, then the Linker will not immediately link that file into the output file.
Instead, it will look for the file with the same name but ending in .0, i.e. MYFILE.O, and will link that
file with subsequently numbered LNK object files, i.e. MYFILE.l, MYFILE.2, MYFILE.3, etc., until
it finds no more.

Up to 10 files can be linked without using a linker command file with this method. Note that only the
default name source file is re-assembled. The source files for the other LNK files in the sequence are not
assembled; only the LNK files are used as is, in the final object file. If a file is missing from the
sequence, i.e. MYFILE.2 not present on the disk, the linking is terminated at that point, although no
error is generated. Thus some care must be taken to make sure that all the needed files are on the disk.

Page 160

Merlin 8/16 User's Manual The Linkers

USING THE GS LINKER

Because the GS Linker is used most often for linking a single input file, and creating a ProDOS 16
application of some sort, this example will demonstrate a simple ProDOS 16 program that waits for a
keypress, and then returns to whatever program launched it.

Notice that the characteristic ENT and EXT, etc. items do not show up, since the primary goal is to just
produce a single OMF file that can be loaded and run by a ProDOS 16 program launcher.

1 ********************************
2 * SIMPLE P16 SYSTEM FILE
3 * MERLIN 16 ASSEMBLER *
4 ********************************
5
6 MX %00 FULL 16 BIT MODE
7 REL ; RELOCATABLE OUTPUT
8 DSK Pl6.SYSTEM.L
9

10 PRODOS EQU $ElDDA8 PRODOS 16 ENTRY POINT
11 KYBD EQU $DDCDDD
12 STROBE EQU $DDCD1D
13 SCREEN EQU $000400 LINE 1 ON SCREEN
14
15 ENTRY PHK GET PROGRAM BANK
16 PLB SET DATA BANK
17
18 PRINT LDX #$00 INIT X-REG
19 LOOP LOA MSSG,X GET CHAR TO PRINT
20 BEQ GETKEY END OF MSSG.
21 STAL SCREEN,X "PRINT" IT
22 INX NEXT TWO CHARS
23 INX x = x + 2
24 BNE LOOP WRAP-AROUND PROTECT
25
26 GETKEY LDAL KYBD CHECK KEYBOARD
27 AND #$DOFF CLEAR HI BYTE
28 CMP #$0080 KEYPRESS?
29 BCC GETKEY NOPE
30 STAL STROBE CLEAR KEYPRESS
31
32 QUIT JSL PRODOS DO QUIT CALL
33 DA $29 QUIT CODE
34 ADRL PARMBL ADDRESS OF PARM TABLE
35 BCS ERROR NEVER TAKEN
36 BRK $00 SHOULD NEVER GET HERE ...
37
38 PARMBL ADRL $0000 PTR TO PATHNAME
39 FLAG DA $00 ABSOLUTE QUIT
40
41 ERROR BRK $00 WE'LL NEVER GET HERE?
42
43 MSSG ASC "PLEASE PRESS A KEY -> " ; EVEN NUMBER OF' CHARACTERS

Page 161

Merlin 8/16 User's Manual

44
45
46

DA $0000

LST OFF

The Linkers

TWO ZEROS

First, enter and save this source file. Do not worry about assembling it yet. Once it is saved, use Open­
Apple-0 to open the Command Box and type NEW to erase the source file.

To link the file, just press Open-Apple-6. The source will automatically be loaded, assembled, the
intermediate REL file written to disk, and the final output file, P16.SYSTEM, written to disk.

To test your program, just type -P16.SYSTEM as a disk command from the Main Menu. When the
program quits, it will return to whatever program launcher started Merlin.16. You can alternatively quit
Merlin to either the Apple DeskTop, Finder, or the Program Lawicher, and select the file
Pl6.SYSTEM. When you press a key, control should return to the program selector. Note that either
approach requires that you have first started up using a ProDOS 16 disk, so that the ProDOS 16
operating system is available.

That's all there is to writing and assembling an Apple Ilgs ProDOS 16 program using Merlin 16. For
more complex files that require several input REL files, a command file can be used with the GS
Linker. Also, try loading the P16.SYSTEM file, and type Open-Apple-6 with the source file in
memory. The GS Linker will automatically save the source file before starting the link process. Tilis
is so that you can make changes to a program, and then automatically do the whole save-assemble-link
process with a single keystroke.

NOTE: If you have the Roger Wagner Publishing Ilgs program switcher called SoftSwitch, you may
also want to put Merlin 16 in one Workspace and the Apple DeskTop program selector in another.
With this combination, it is possible to assemble and link a program, save Merlin 16 intact in a
Workspace, and switch instantly to the DeskTop to launch your ProDOS 16 program. When the
program quits and returns to the DeskTop, you can switch back to Merlin 16 with the proper ProDOS
prefixes set, ready to load the source file for further changes. With SoftSwitch and Merlin 16, it is
possible to assemble, link and test a ProDOS 16 program, and to be back in Merlin 16 making changes
in less than 60 seconds for the total cycle time!

Page 162

r

Merlin 8/16 User's Manual The Linkers

LARGE FILE GS LINKER (LINKER.XL)

LINKER.XL is a version of LINKER.GS which makes two passes and writes the output file to disk to
produce a multi-segment file. Use of the SAY command will cause the Linker to process the code to
that point as one segment of a load file. This can produce much larger object files than the other
Linker. However it is also much slower, so the other version is probably what you'll want to use most
ofteIL LINKERJCL does not have the command box LINK= capability of Linker.GS discussed earlier,
so a command file is always required to use it. The maximum number of segments in the output file is
25, each with up to about 32K of code, excluding the relocation dictionary.

For LINKER.XL, the filename in the first SAY command is taken as the output file name. The rest,
including the first, are placed in the segment name field of their respective segment header. If the name
is more than the allowed 10 character space in the header, it is truncated to 10 characters.

LINKER.GS and LINKER.XL do not support the EXT or ENT linker commands that print the resolved
address of labels, since these are generally meaningless on the Apple Ilgs. The linker EXT and ENT
commands should not be confused with the assembler EXT and ENT commands which are, of course,
supported in all versions.

Page 163

Merlin 8/16 User's Manual Technical Information

TECHNICAL INFORMATION

The source is placed at ST ART OF SOURCE when loaded, regardless of its original address.

The important pointers are:

START OF SOURCE in
HIMEM in

END OF SOURCE in

$A,$B
$C,$D

$E,$F

(set to $901 unless changed)
(defaults to $9853 in DOS 3.3,
defaults to $AAOO in ProDOS)

Note that HIMEM does not change unless a USER routine or utility program changes locations $73,
$74. Such a change will be copied automatically into locations $C, $D.

GENERAL INFORMATION (DOS 3.3 ONLY)

When you exit to BASIC or to the Monitor, these pointers are saved on the RAM card at $EOOA­
$EOOF. They are restored upon re-entry to Merlin 8/16.

Entry into Merlin 8/16 replaces the current 1/0 hooks with the standard ones and reconnects DOS. This
is the same as typing PR#O and IN#O from the keyboard. Entry to the Editor disconnects DOS, so that
you can use labels such as INIT without disastrous consequences. Re-entry to the Main Menu
disconnects any 1/0 hooks that you may have established via the editor's PR# command, and reconnects
DOS. Exit from assembly due to completion of assembly or Control-C also disconnects 1/0 hooks.

Re-entry after exit to BASIC is made by the ASSEM command. Simply use ASSEM wherever a DOS
command is valid, for example, at the BASIC prompt. A BRUN MERLIN or a disk boot will also
provide a warm re-entry and will not reload Merlin 8 if it is already there. A reload may be forced by
typing BRUN BOOT ASM which would then be a cold entry, erasing any file in memory.

The DOS 3.3 version does not perform the same volume checking as the ProDOS version. However, it
is possible to simulate this with the following code:

LST
XXX KBD "INSERT MYFILE DISK AND TYPE 0 <RETURN>"

PAUSE

The assembler will stop at KBD on the first pass and assign a 0 value to XXX where XXX is any
dummy label you desire. PAUSE will force a pause on the second pass and LST makes sure you will
see the KBD line. On the second pass, assembly resumes when you press any key. It is not necessary
to type 0 and press Return.

Page 164

Merlin 8/16 User's Manual Technical Information

GENERAL INFORMATION (ProDOS AND DOS 3.3)

In Merlin 8, if during assembly the object code exceeds usable RAM then the code will not be written
to memory, but asserr:bly will appear to proceed as normal and its output sent to the screen or printer.
The only clue that this has happened, if not intentional, is that the Save Object Code command at Main
Menu is disabled in this event. There is ordinarily a 16K space for object code, which can be changed
with the OBJ opcode. In Merlin 16, an object code overflow generates an error message.

SYMBOL TABLE

The symbol table is printed after assembly unless LST OFF has been used. It is displayed first sorted
alphabetically and then sorted numerically. The symbol table can be canceled at any time by pressing
Control-C. Stopping it in this manner will have no ill effect on the object code which was generated.
The symbol table is flagged as follows:

Macro Definition MD=
M = Label defined within a Macro
v
?
x
E

= Variable (symbols starting with"]")
= A symbol that was defined but never referenced

External symbol
= Entry symbol

Local labels are not shown in the symbol table listing. In Merlin 16, this can be enabled by changing
the PARMS file.

When in EDIT mode, Merlin 8/16 takes total control of input and output. The effect of typing a control
character will be as described in this manual and not as described in the manual for your 80 column card.
For example, Control-L will not blank the screen, but is the case toggle. Control-A, which acts as a
case toggle on many 80 column cards, will not do this in the Editor and simply produces a Control-A in
the line being edited.

ULTRA TERM INFORMATION

The Ultraterm is an 80 column display card manufactured by Videx. If you do not have this card, skip
to the next page. When in the Editor, the Ultraterm mode can be altered by the ESCAPE sequence
given in the Ultraterm manual. Thus, the following commands give the indicated effects:

ESC 0
ESC 1
ESC 2
ESC 3
ESC 4
ESC 5

......... 40 x 24 same effect as VID $10 or 16

.. 80 x 24 standard character set

......... 96x24

......... 160 x 24

......... 80 x 24 high quality character set

.... 80 x 32

Page 165

Merlin 8/16 User's Manual

ESC6
ESC 7
ESC 8

········· 80 x 48
......... 132 x 24
......... 128 x 32

Technical Information

Exit to the Main Menu will return to the default state as set up in the HELLO program for DOS 3.3 or
the PARMS file for ProDOS. The same is true of a VID 3 command.

Except for the normal 24 x 80 format, support for the Ultraterm depends on the card being in slot 3.

There may be problems if you try to send things to the printer while in some of the Ultraterm modes.
It is recommended that you switch to 40 columns before doing this. Using a PRTR1"<Control-1>80N"
command sometimes overcomes the problem.

MEMORY ALLOCATION WITH MERLIN 8/16

The memory areas $300-$3EF in main memory and $800-$FFF in auxiliary memory are available for
user supplied USER and USR routines. The page 3 area in main memory is intended for 1/0 interface
routines. One cannot send a character to COUT, for example, from auxiliary memory. Merlin does not
use these areas. Zero page locations $90-$9F are not used by Merlin and are reserved for USER routines
(note that the XREF program uses these locations). Zero page locations $60-$6F are reseived for user
supplied routines and may be used as you wish. No other zero page locations are available.

CONFIGURING MERLIN 8 (ProDOS)

Configuration data is kept in a file called PARMS which is loaded when the assembler is run. To
change the data just change the \+Italic\source\-Italic\file PARMS.Sand reassemble it.

To load the file, set the prefix to /MERLIN 8 and type L to load a source file. Then type
SOURCE/PARMS at the prompt. When you are done making changes, reassemble the file. Use S to
SA VE the source code as/MERLIN/SOURCE/PARMS. Remember that Merlin 8 adds the .S suffix
automatically. Then save the object code as /MERLIN/PARMS by using the 0 command.

CONFIGURING MERLIN 8 (DOS 3.3)

The data statements in the Applesoft boot program HELLO contain the configuation information. To
change the data just LOAD HELLO, change the data in the DAT A statements and SA VE HELLO.

DATA DESCRIPTION FOR MERLIN 8 CONFIGURATIONS

DATA f DEFAULT

1 60
2 0

3 80

Page 166

PURPOSE

Number of lines per page (for PRTR) .
Lines to skip at page perforation (0 sends a form feed

character.
Number of characters per line (for PRTR).

r

Merlin 8/16 User's Manual Technical Information

DATA # DEFAULT

4 $80

5 $83

6, 7 $901
8, 9 $AAOO
10, 11 $901

12 $DE """
13 4
14 $AF II I II

15,16,17 14,20,31

18 8
19 5

20 $40

21 0

22 72

23 $EC

24-44 "$Fl to $F7"

PURPOSE

Must be $80 if printer does its own CR at end of line,
otherwise should be 0.

80 column flag. Should be $80+3 if 80 column card is in slot 3
(or Apple 80 col card) is to be selected upon boot. Otherwise
0. MUST BE $83 WITH ProDOS.

Source file start address, must not be less than $901.
SHOULD NOT BE CHANGED.
End of source pointer. Must equal the Source file start

address.
The editor's wild card character.
Number of fields per line in symbol table printout.
Character searched for by "UPDATE SOURCE" entry to assembler.

If this is 0 the question will be bypassed.
The default tabs for editor and assembler, note that these

values are relative to the left side of screen.
Number of object bytes/line after the first line.
Error/bell flag and Ultraterm start parameters. To disable the

bell, set this value to 197. The high bit, if on, will force
the assembler to pause forever for a keypress at an error; if
off, a sound continues for 20 seconds and then assembly
continues. The V bit, if set disables some bells. The low
nibble determines the default mode of the Ultraterm if you
are using that. The value 5 or $85 gives the 32X80 mode.

Cursor flag. Gives regular cursor if this is $40 and block
cursor if 0. The Apple 80-col card must have the block
cursor and this flag will be overridden if you are using that
card.

LSTDO default: O,l=LSTDO ON, >l=LSTDO OFF. Bit O, if clear,
causes shift to 40 columns when a PRTR command is issued.

Column at which the cycle count will be printed when using the
CYC opcode.

Cursor type for Ultraterm. Must be changed if the Ultraterm
mode is changed (see byte 19).

File type names for the user defined file types $Fl through
$F7. These names will be shown in the directory when
cataloged by Merlin. ProDOS ONLY.

64K MERLIN AND MERLIN 8/16 SOURCE FILES

Source files from the original 64k version of Merlin for the Apple II+ can be loaded directly into DOS
3.3 Merlin 8. To use 64k Merlin source files with ProDOS Merlin 8/16 you must use the CONVERT
utility supplied with the ProDOS User's Disk. Some changes may be required to the source due to
some of the missing pseudo opcodes in Merlin 8/16. H your program uses HTh1EM: or SYM, they
should be deleted. H your program uses the ERR opcode to check whether SYM or HTh1EM: have been
set, they should be deleted. H your program uses Sweet 16 then the enabling opcode SW will have to
be inserted. Also, any OBJ opcodes will have to be removed since the meaning of this opcode has been
changed.

Page 167

Merlin 8/16 User's Manual Technical Information

MERLIN 8/16 ProDOS NOTES

The ProDOS version uses TXT files exclusively for source files. This includes files intended for the
PUT or USE opcodes, and all such files must have the .S suffix in the file name, which is
automatically appended by Merlin 8/16 for all loads and saves. It is suggested that you keep files
intended for PUT or USE in a subdirectory. For example, you could save a file named MY PUT under
the pathname LIB/MYPUT. It would then be called in an assembly program by: PUT LIB/MYPUT, or
PUT /PREFIX/LIB/MYPUT if the PUT file is in the volume called PREFIX.

If you save a file under a directory name that does not exist, a subdirectory will be created under that
name. Suppose you want to save your current source SRC in the volume MYVOL and in the
subdirectory SUB which does not exist in the MYVOL directory. Then type /MYVOL/SUB/SRC when
the pathname is requested, or just SUB/SRC if /MYVOL/ is the prefix, and the subdirectory SUB will
be automatically created and the file SRC placed in it.

It is wise to use a full pathname in operands of the SAV, USES and PUT opcodes, since otherwise the
current prefix will be attached to the name and that may not be the prefix you want.

Slot and drive parameters are \+Italic\not\-Italic\ acceptable by any commands or opcodes. You
\+Italic\must\-ltalic\ use pathnames.

Since the ProDOS version of Merlin 8/16 runs under its own interpreter rather than the BASIC
interpreter, there is no warm re-entry as with the DOS 3.3 version.

There is no equivalent of the BASIC CAT or CAT A LOG commands as Disk Commands. The
interpreter automatically selects the catalog format for the C command according to whether you are in
40 or 80 column mode on Merlin 8.

The ProDOS volume /RAM/ is disconnected by Merlin 8/16 since it uses all of auxiliary memory.

If Merlin 8/16 cannot find a disk volume required for linking or assembly, it will ask for the correct
volume to be inserted. This request can be aborted by pressing Control-C. This only applies to
volumes, and not files. Thus, if you want a PUT opcode to prompt you to switch disks, you must use
the full pathname with the PUT opcode. Note that this feature will not work with the Linker when
using one disk drive.

If the present prefix does not correspond to any volume online, Merlin 8/16 will give a VOLUME NOT
FOUND error.

Page 168

Merlin 8/16 User's Manual Technical Information

TRANSFERRING SOURCE FILES FROM DOS 3.3 TO ProDOS MERLIN 8/16

There are two methods of transferring files from the DOS 3.3 versions of Merlin to the ProDOS
versions. Since the ProDOS version uses text files only, you could load files into the DOS 3.3 version
and write them as text files and then transfer them with Apple's CONVERT program. Unfortunately,
CONVERT is not a literal transfer, as it will clear the high bits in the file. The ProDOS version of
Merlin 8/16 will set the high bits again, but the tabbing in the editor will be fouled up by this
procedure. However, you merely have to type FIX in the editor and resave the source to remedy this
problem. Files intended for PUT or USE should be resaved because, otherwise, assembly will be
slowed.

Another method is to transfer the files as binary files from DOS 3.3 and use the fact that the ProDOS
version of Merlin has the ability to load any type of file including binary files. This does not apply to
saving. After loading a binary source file, it should be deleted and saved back as a TXT file. The Load
command automatically permits loading of TXT or BIN files. Other types of files can be loaded by
changing the byte used to designate source file type which is kept in location $BE5D which ordinarily
holds a 4.

Since the ProDOS version of the assembler does not use the T. prefix of the DOS 3.3 version for PUT
files, there will be some renaming of such files that will be necessary.

MERLIN 8 AND SPEED UP CARDS

Merlin 8 will work either in main or auxiliary memory, aux being the default. If you are using the
main memory version, you will get about a 1.6 times speed improvement with the SpeeDemon card,
and about a 2x speed improvement with the Titan Accelerator the Applied Engineering Transwarp card.
The difference is due to the speed up of auxiliary memory during assembly.

To select the main memory version of Merlin 8 with DOS 3.3, change the HELLO program to BLOAD
MERLIN.X instead of MERLIN.

To select the main memory version of Merlin 8 with ProDOS, use a $C3 as the fifth byte in the
PARMS file. The V -bit of that location is used as a flag to instruct the interpreter to make the main
memory modifications.

A plus sign(+) after the Merlin 8 Version number on the Main Menu screen indicates the main
memory version is active.

Some utilities do not work with the ProDOS main memory version. This is because ProDOS is
moved to auxiliary memory. Programs that do not switch zero pages will work correctly. Programs
designed to be run in 64K will most likely run properly. The Filer and Convert programs will run as
long as the"-" command is used to run them, and all Merlin 8 utilities will function correctly. The
QUIT command moves ProDOS back to main memory.

Page 169

Merlin 8/16 User's Manual Technical Information

MERLIN 8 and DOS 3.3 HARD DISKS or RAM disks

On the DOS 3.3 version of Merlin 8 are files called MERLIN.CORVUS and MERLIN.CORVUS.X.
Normally, the DOS 3.3 version of Merlin 8 makes certain patches to DOS 3.3 to allow faster file
loading, and the optional cancelling of a Catalog at the screen pause. With hard disks, RAM disks,
DOS 3.3 for 3.5" disks, or any other custom version of DOS 3.3, the standard version of Merlin 8 may
not work properly. The files MERLIN.CORVUS and MERLIN.CORVUS.X are versions of Merlin 8
which do not modify DOS 3.3 in any way, and are thus compatible with the Corvus and other custom
DOS 3.3 software. To use the file called MERLIN.CORVUS, rename the file called MERLIN to
TEMP.MERLIN and then rename MERLIN.CORVUS to MERLIN. MERLIN.CORVUS.Xis a main
memory version of MERLIN.CORVUS, which you may want to use if you are using the SpeeDemon
accelerator card instead of MERLIN.X

CONFIGURING MERLIN 16

Merlin 16 can be customized by re-assembling the file PARMS.Sin the SOURCE directory of the
Merlin 16 diskette. The object file, PARMS, must be saved to the same directory that Merlin.System
is located in.

THE MERLIN 16 PARMS FILE

Here is a listing of the PARMS.S file for Merlin 16. By examining the comments, you can see which
attributes of the assembler can be changed.

1 *=======================
2 * PARMS for Merlin.16
3 *-----------------------
4
5 TR ADR
6 TR
7
8 y EQU 1
9 y EQU 1

10 N EQU 0
11 n EQU 0
12
13 SAVO BJ KBD "Save object code? (Y ,N) H

14
15 ORG $8000
16
17 DATA ORG $E4F3
18
19 DFB 60 ;Jt lines/page for PRTR
20 DFB 0 ;Page skip (formfeed if 0)
21 DFB 80 ;Jt printer columns
22 DFB $80 ;- if printer does CR at

Page 170

Merlin 8/16 User's Manual

ORG
ORG $E009

end of ~ columns 23
24
25
26
27
28
29
30
31
32
33

DFB $83 ;80 col flag (DO NOT CHANGE
except V-bit which will
cause ProDOS to be moved
to aux memory and Merlin
to load into main memory.
I.e., use $C3 for this.)

34 *==
35
36
37
38
39

* Source address must be $901 or above.
* It can be set higher to protect an area
* of RAM above $900 for any purpose:
*--

40 SOURCE
41

$901

42 DA SOURCE ;Start of source
43 DA $9EOO ; Reserved
44 DA SOURCE ;End of source
45
46 DFB 0 ;main menu accepts RTN as
47 ; if this is set to $FF
48 DFB 4 ;# of symbol columns
49
50 *===
51 * Following flags byte has all bits significant:
52 *
53 * Bit 7 = print date on page header of assembly.
54 * Bit 6 = return to main menu after a key press
55 * at end of an assembly, or to full screen editor
56 * at point of error if an assembly abort occurs
57 * (or also if REL is active). If this bit is 0,
58 * and bit 0 is 1, then it goes to the command line
59 * editor.
60 * Bit 5 = linkers should check auxtype bit 0 of
61 * source files to decide whether to do assemblies.
62 * Bits 4,3 = default XC mode:
63 * 00 defaults to 6502
64 * 10 = 65C02 mode
65 * 11 = 65816 mode
6 6 * (Do not use other values.)
67 * Bits 2,1 = default MX mode on entry:
68 * 00 full 16-bit mode on entry
69 * 10 = short M, long X
70 * 01 = long M, short X
71 * 11 = 8 bit mode
72 * Bit O, if set, enables command line editor access.
73 *---
74
75 DFB %11111110 ;Misc flags, see above

uy11

Technical Information

Page 171

Merlin 8/16 User's Manual

76
77
78
79
80

DFB

DFB

9, 15, 26 ; Default tabs

4 ;# obj bytes/line after 1st

81 *===
82 * Following flags byte has 3 high bits significant:
83 *
84 * Bit 7
85 * Bit 6
86 * Bit 5
87 *
88 *

wait forever for key upon assembly error.
defeat most bells if set.
do not pause or sound alarm on an assembly

error (must also have bit 7 clear for this).

89 * Low nibble is Ultraterm entry mode:
90 *
91 * Eg., $05, $45, $85, etc give 32x80 interlace mode.
92 *---
93
94
95
96
97
98
99

100
101
102
103
104
105

DFB

DFB

$05

%01000000

;Bell flags & UT mode.

;Upper case convert mode
when entering full screen
editor if negative.
(Conversion is done for
label, opcode and operand
fields only and only when

; tabs are not zeroed.)
;V-bit = default cursor
; mode, !=insert cursor

106 *===
107 * Following flags byte has 5 significant bits:
108 *
109 * Bit 7 assembler is label case insensitive if on.
110 * Bit 6 defeat screen ed screen blank, if on.
111 * Bit 5 enable list of local labels, if on.
112 * Bit 1 LSTDO default, DO off areas not listed if
113 * this bit is on (and default not overridden).
114 * Bit 0 = defeat shift to 40 columns on PRTRl, if
115 * bit is on (shift only occurs when Ultraterm
116 * is active with more than 24 rows, so it is
117 * best to leave this bit as is (off)).
118 *---
119
120
121
122
123
124
125
126
127
128

Page 172

DFB

DFB

ORG
ORG

DFB

%01000000

80-8

$B23E

$9F& II (II

; case senst., no blanking

;Column for cycle count

;Catalog abort key, now ESC

r

Technical Information

r

Merlin 8/16 User's Manual

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
14 9
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

ORG

ERR *-DATA-23 ;23 data bytes to here.

* User file type names:

ORG $B6B6

ASC "$Fl"
ASC "$F2"
ASC "$F3"
ASC "$F4"
ASC "$F5"
ASC "$F6"
ASC "$F7"

ORG

ERR *-DATA-44

;Adrs subject to change

*==
* Screen editor variable parameters:
* Cursors are: insert, find in insert mode,
* overstrike, find in overstrike mode.
*--

ORG $DFBC

CURSORS INV 'IF F'

DFB $AO ;Cursor blink rate

*===
* Screen editor cmd chars:
* The cursor keys (although here) must NOT
* be changed or the editor will not work
* correctly.
*---

DFB $9F&"U"
DFB $88
DFB $9F&"I"
DFB $9F&"T"
DFB $9F&"B"
DFB $9F&"N"
DFB $9F&"R"
DFB $9F&"S"
DFB $9F&"F"
DFB $9F&"W"
DFB $9F&"L"
DFB $9F&"D"
DFB $FF
DFB $9F&"Y"

;Don't change
• II
I

;Tab key insert toggle
;AT (remember this place)
;Go to line beginning
; Go to line end
;Cancel changes
;Status box
;Find char
;Next word
;Toggle uc/lc auto shift
;Delete char under cursor
;Delete previous char
;Clear to end-of-line

Technical Information

Page 173

Merlin 8/16 User's Manual

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

DFB $9F&"0 11 ;Accept next key literal

* Open-apple key cmds, must be upper case:

DFB #"X"
DFB f"C"
DFB i"V"
DFB #11F11

DFB #"W 11

DFB #"E 11

DFB #"T 11

DFB $9F& 11 I"
DFB #"I II
DFB $9F&"[11

DFB #"B"
DFB #11 N"
DFB $DF
DFB i"L"
DFB #"Z II
DFB $9F& 11 J 11

DFB $9F&"K 11

DFB #"Y 11

DFB $9F&"U"
DFB $9F&"H"
DFB #"D"
DFB #" 8 II
DFB #"9"
DFB #"-"
DFB #"="
DFB #"1 11

DFB Jl"2"
DFB #11 311

DFB #11 411

DFB #"A 11

DFB #"Q"
DFB #"H"
DFB #"0"
DFB i" 6"
DFB il"R"

ORG

ERR *-DATA-99

;Cut
;Copy
;Paste
;Find
;Find word
;Exchange text
;Go to AT selected point
;Insert line at cursor
• II ,
;Go to cmd line ed if enabled
;Go to beginning
;Go to end
;Delete preceding line (DEL)
;Locate text
;Center line with cursor
;Don't change
• II ,
;Select from here on
;Don't change
• II ,
;Delete this line
;Line of asterisks
;Line bordered by asterisks
;Line of dashes
;Line of equal signs
;PRTRl + assemble
;PRTRl + USER + assemble
;PRTR3 + assemble
;PRTR3 + USER + assemble
;ASM command
;Quit to main menu
;Toggle split screen
;Open command box
;LINK (for LINKER.GS only)
;Replace line

*====================================
* Printer init string, used when PRTR
* issued with empty first string.
* A CR is always issued after the
* string, so none need be here.
*------------------------------------

ORG $DBFO

Page 174

Technical Information

Merlin 8/16 User's Manual

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
2 60
2 61
262

DS 15 ;PRTR init default string

ORG

ERR *-DATA-114

*=========================
* Default STARTUP file:
*-------------------------

ORG $2006

STUP STR "LINKER.GS" ;You can change this string

DS $40-*+STUP ; but not this line

ORG

ERR *-DATA-178

*================================
* The PARMS file must be in the
* SAME DIRECTORY as MERLIN.SYSTEM
*--------------------------------

DO SAVOBJ
SAV PARMS
FIN

Screen Blanking

Technical Information

The PARMS file for Merlin 16 supports an optional setting for telling Merlin 16 to blank the screen if
nothing is typed for an extended period. Pressing any key, such as Return, will restore the normal
screen display.

This is intended to protect your monitor screen in situations where the computer is left unattended for
long periods of time, and Merlin 16 is the only program generally run on that computer. Any video
image will tend to "burn" itself into a monitor screen if left on continuously for several hours a day,
every day, for a period of many months. Note this is not a specific problem to Merlin 8/16.

You should not concern yourself with this unless you are in a working environment where the Merlin
16 menu is left on all day when the computer is unattended.

Because it can be disconcerting to have the screen suddenly go blank if you are not aware of this feature,
Merlin 16 is shipped with this feature disabled. To enable screen blanking, set the high bit of the flag
near line 120 of the Merlin 16 PARMS.S file. See the comments in the source listing for details.

Page 175

Merlin 8/16 User's Manual Technical Information

$FFFF

$0000

$COOO

$9EOO

$900

$800
$400

$3FO

$300

$200
$100

$0

Page 176

i;;i-

ti

h_

MERLIN 8/16 MEMORY MAPS

Merlin 16 - ProDOS

Banko

Pro DOS

I/O locations

$FFFF
$F800

$DOOO

$COOO

~

b_

b_

b.

Bank 1

Monitor

Merlin 16

1/0 locations

Merlin ProDOS interpreter

b_

Macros
(USE files) 1•

Unused space

4~

Source file

b_

Editor & Assembler

b_
Workspace

b_ Text screen use

b_
Misc. Vectors

I/O intetf aces for

b_
USER routines

1:1
Input Buffer

b_
Stack

b_ Zero Page

$8000

$1800

$800

$400

$300
$200

$100
$0

b_

b.

h

b_

h

b._

b_

b_

Object code and
linking dictionary

Symbol table
or Clipboard

USER programs
(XREF, etc.)

or
(free space)

80 col. screen use

Free space

Merlin's Stack

Merlin's '.Zero Page

Merlin 8/16 User's Manual

$FFFF

$D(XX)

$COOO

µ

b.
b._

Bank 0

Pro DOS

J/O locations

Merlin 8 - ProDOS

$FFFF
$F800

$0000

$COOO

p-

t:1

h

h

Merlin ProDOS interpreter

b_ $A600
($9E00wi

Screen Edito
thj
r)

$900 l'1

b_

t1

$800

$400

$3F Ob_

$300
$200

$100

t:1

b._

b..
$ On

Macros
(USE files)

Unused space

Source file

Editor & Assembler
Workspace

Text screen use

Misc. Vectors

IJO interlaces for
USER routines

Input Buffer

Stack

Zero Page

,,

~

$8000

$1000

$800

$4-00

$300
$200

$100
$0

p.

h

CL

h

h

h

h
b._

Technical Information

Bank 1

Monitor

Merlin8

VO locations

Object code and
linking dictionary

Symbol table
or Clipboard

USER programs
(XREF, etc.)

or
(free space)

80 col. screen use

Free space

Merlin's Stack

Merlin's Zero Page

Page 177

\ .

Merlin 8/16 User's Manual

$FFFF
$F800

p-
h

$0000

$COOO

$9853

$900

$800
$400

$3FO

$300
$200

$100
$0

Page 178

ti

1:1

h

b.

1:1
b_

ti

Ii

1:1

1:1

h

Bank 0

Monitor

Int~er BASIC
C loaded)

IJO locations

DOS 3.3

Macros
(USE files)

Unused space

Source file

Editor & Assembler
Workspace

Text screen use

Misc. Vectors

I/O interfaces for
USER routines

Input Buffer

Stack

Z.Cro Page

Merlin 8 - DOS 3.3

,,

A~

$FFFF
$F800

$DOOO

$COOO

$8000

$1000

$800
$400

$300
$200

$100
$0

I-'
h

h

ti

h

b.

1:1

1:1

b.

h

1:1

1:1

Technical Information

Bank 1

Monitor

Merlin 8

1/0 locations

Object code and
linking dictionary

Symbol table
or Clipboard

USER programs
(XREF, etc.)

or
(free space)

80 col. screen use

Free space

Used by XREF

Merlin's Stack

Merlin's z.ero Page

Merlin 8/16 User's Manual Error Messages

ERROR MESSAGES

BAD ADDRESS MODE

The addressing mode is not a valid 6502 instruction; for example, JSR (LABEL) or LDX
(LABEL),Y.

BAD BRANCH

A branch (BEQ, BCC, etc.) to an address that is out of range, i.e. further away than +127 bytes.

NOTE: Most errors will throw off the assembler's address calculations. Bad branch errors should
be ignored until previous errors have been resolved.

BAD EXTERNAL

EXT or ENT in a macro or an equate of a label to an expression containing an external, or a branch
to an external (use JMP).

BAD INPUT

This results from either no input, i.e. Return alone or an input exceeding 37 characters in answer to
the KBD opcode's request for the value of a label.

BAD LABEL

This is caused by an unlabeled EQU, MAC, ENT or EXT, or a label that is greater than 13
characters, or one containing illegal characters. A label must begin with a character at least as large
in ASCII value as the colon and may not contain any characters less than the digit zero.

BAD OBJ

An OBJ after code start or OBJ not within $4000 to $BFEO.

BAD OPCODE

Occurs when the opcode is not valid, or misspelled, or the opcode is in the label column.

BAD ORG

Results from an ORG at the start of a REL file.

Page 179

Merlin 8/16 User's Manual Error Messages

BAD PUT

This is caused by a PUT inside a macro or by a PUT inside another PUT file.

BAD REL

A REL opcode occurs after some labels have been defined.

BAD SAV

This is caused by a SAV inside a macro or a SA V after a multiple OBJ after the last SA V.

BAD VARIABLE

This occurs when you do not pass the number of variables to a macro that the macro expects. It can
also occur for a syntax error in a string passed to a macro variable, such as a literal without the final
quote.

BREAK

This message is caused by the ERR opcode when the expression in the operand is found to be non­
zero.

DICTIONARY FULL

Overflow of the relocation dictionary in a REL file.

DUPLICATE SYMBOL

On the first pass, the assembler finds two identical labels.

FILE TYPE MISMATCH

A file specified to be loaded, such as a source file, or REL file during a Link, does not have the
expected file type.

FORMAT ERROR

A command has been incompletely typed, for example, typing PRTR instead of PRTR 1.

ILLEGAL CHAR IN OPERAND

A non-math character occurs in the operand where the assembler is expecting a math operator. This
usually occurs in macro calls with improper syntax resulting from the textual substitution.

Page 180

r

Merlin 8/16 User's Manual Error Messages

ILLEGAL FILE TYPE (ProDOS version only)

TYP opcode used with an illegal operand.

ILLEGAL FORWARD REFERENCE

A label equated to a zero page address after it has been used. This also occurs on the first pass when
an unknown label is used for some things that must be able to calculate the value on the first pass,
e.g. ORG< OBJ DUM. It also occurs if a label is used before it is defined in a DUM section on
zero page.

ILLEGAL RELATIVE ADRS

In REL mode a multiplication, division or logical operation occurs in a relative expression. In
Merlin 8, this also occurs for an operand of the type #>expr or a DFB >expr when the expr contains
an external and the offset of the value of the expr from that of the external exceeds 7.

MEMORY FULL Errors

There are three common causes for the MEMORY FULL error message.

MEMORY FULL IN LINE: xx. Generated during assembly.

CAUSE #1: Too many symbols in the symbol table, causing it to exceed available space.
REMEDY #1: Make the symbol table larger by setting OBJ to $BFEO and use DSK to assemble
directly to disk.

CAUSE #2: If the combined size of the source file and a PUT file is too large.
REMEDY #2: Split either file into two smaller files.

ERR:MEMORY FULL. Generated immediately after you type in one line too many.

CAUSE: The source code is too large and has exceeded available RAM.
REMEDY: Break the source file up into smaller sections and bring them in when necessary by
using the PUT pseudo-op.

ERROR MESSAGE: None, but no object code will be generated. There is no OBJECT
information displayed on the Main Menu.

CAUSE: Object code generated from an assembly would have exceeded the available 16K space.
REMEDY: Set OBJ to an address less than its $8000 default or use the DSK psuedo-op.

Page 181

Merlin 8/16 User's Manual Error Messages

MEMORY IN USE

This error results from trying to load a file into a part of memory already in use. This could be by
loading a tool-large PUT file, appending a file without sufficient remaining memory, or loading a
USE library. It can also occur from loading a USER function when one is already in memory. In
Merlin 8, the error occurs if you try to load a utility like SOURCEROR when the Editor (ED) is
already loaded. Use REMOVE.ED before loading another utility.

MISALIGNMENT • MERLIN 16

This means that the value of a label on the second pass differs from what it was on the first pass and
should indicate a forward reference that the assembler could not resolve. The most common cause is
a forward reference to a zero page equate or dummy section. Misalignment may also be caused by a
previous error. A misalignment error is given only once in order to avoid the error routine on all
subsequent labels, all of which are likely to be misaligned.

NESTING ERROR

Macros nested more than 15 deep or conditionals nested more than 8 deep will generate this error.

NOT A MACRO

A Macro name has been used that has not been previously defined.

NOT RESOLVED

This is a Linker error that alerts you to the fact that an EXT label reference in one of the linked files
could not be not be found in any of the other linked files.

OBJECT SPACE OVERFLOW. MERLIN 16 ONLY

If the available object file space has been exceeded, the assembler prints this message. This disables
the Object file save command at the Main Menu.

OUT OF MEMORY

This is a memory error from the Full Screen Editor. It is caused by trying to cut or copy more text
to the clipboard, or to paste more text into the document than there is free memory to accomodate.

Page 182

(
Merlin 8/16 User's Manual Error Messages

RANGE ERROR

When saving a source file larger than 32K, you may get this error, in particular if are using a
standard DOS 3.3 and have not booted on the Merlin 8 DOS 3.3 diskette. This is due to a
limitation of DOS itself. The problem can be temporarily fixed however by changing byte $A964
in memory from $7F to $FF. (For those experienced with a disk sector editor, you can change Track
1, Sector 8, Byte $64 from $7F to $FF to make this change permanent on whatever DOS 3.3 disk
you wish).

SYNTAX ERROR

The proper syntax has not been used in a command, either because of typing errors, or extra or
omitted characters or parameters.

TWO EXTERNALS

Two or more externals in an operand expression.

UNKNOWN LABEL

Your program refers to a label that has not been defined. This also occurs if you try to reference a
MACRO definition by anything other than PMC or>>>. It can also occur if the referenced label is
in an area with conditional assembly OFF. The latter will not happen with a MACRO definition.

256 EXTERNALS

The file has more than 255 externals.

NOTE: When an error occurs that aborts assembly, the line containing the error is printed to the
screen. This may not have the same form as it has in the source, since it shows any textual
substitutions that may have occurred because of macro expansion. If it is in a macro call, the line
number will be that of the call line and not of the line in the macro which is unknown to the assembler.

Page 183

Merlin 8/16 User's Manual Sourceror

SOURCEROR

Sourceror is a sophisticated and easy to use co-resident disassembler designed to create Merlin 8/16
source files out of binary programs, usually in a matter of minutes. There are two versions of
Sourceror in Merlin 8/16. Sourceror on the Merlin 16 disk disassembles 6502, 65C02, 65802 and
65816 object code. Sourceror on the Merlin 8 diskettes disassembles 6502, 65C02, and 65802 object
code and is not designed for use on the Ilgs.

USING SOURCEROR ON MERLIN 16

To use Sourceror on the Merlin 16 diskette, follow these steps:

1. From the Main Menu, press D for Disk Command.

2. At the Disk Command prompt type: BRUN SOURCEROR/OBJ

3. Press F to enter the Editor.

4. Press Open-Apple-0 to open the Command Box.

5. Type DIS "MYFILE" where MYFlLE is the name of the object file to be disassembled.

The DIS command is available in Merlin 16 only and uses the following syntaxes:

DIS "MYFlLE" [disassemble MYFILE at the original running address]

DIS $ lOOO"MYFlLE" [disassemble MYFILE at the specified address of $1000]

SYS files are always assumed to have a running address of $2000. If a non-zero address is specified in
the DIS command, that address is taken as the initial running address. If the address is not specified,
the Merlin 16 Sourceror uses the information in the AUXTYPE field for the running address.

USING SOURCEROR ON MERLIN 8

NOTE: On the ProDOS version of Merlin 8, the Full Screen Editor uses the same part of memory as
Sourceror. Therefore you will have to temporarily deactivate the Full Screen Editor. This is not
necessary with the DOS 3.3 version of Merlin 8.

To deactivate the Full Screen Editor on Merlin 8 ProDOS version:

1. From the Main Menu, press D for Disk Command.

Page 184

r

Merlin 8/16 User's Manual Sourceror

2. At the Disk Command prompt type: BRUN /MERLIN.8/UTJLITIES/REMOVE.ED

To use Sourceror on the Merlin 8 diskette, follow these steps:

1. Merlin 8 DOS 3.3 version
From the Main Menu, press C to Catalog.
At the Command prompt, type BRUN SOURCEROR and press Return.

Merlin 8 ProDOS version
After deactivating the editor as shown above, you should be at the Disk Command prompt.
At the Disk Command prompt, type BRUN /MERLIN.8/SOURCEROR/OBJ and press Return.

2 . Merlin 8 DOS 3.3 version
Press E to enter the Editor.

Merlin 8 ProDOS version
Press Return to go back to the Main Menu.
Press E to enter the Editor.

3. Press Escape Control-Q to set the screen to 40 columns.

The USER command will be ignored and Sourceror will not run if the 80 column screen is in effect.
Do not use Escape 4 to change to 40 columns.

4 . From the 40 column screen, type USER and press Return.

5. You will be prompted to "Load an object file?"

If you have loaded the object file prior to using Sourceror, press N.

If you have not loaded an object file yet, press Y and enter the filename. It will be loaded showing
the load address and end of program address. After you have noted these addresses, press any key.

NOTE: If you type Control-S after the filename to be loaded, files using a RAM version of SWEET
16 can be disassembled.

7. If you have loaded a file prior to using Sourceror you will be prompted regarding the location of the
object code.

Press Return if the program to be disassembled is at its original (running) location.

If not, you must specify in hex the present location of the code to be disassembled. You will also
be prompted to give the original location of that program.

Page 185

Merlin 8/16 User's Manual Sourceror

8. The Sourceror Main Menu appears.

Your first command must include a hex address. Thereafter this is optional, as explained shortly.
You may now start disassembling or use any of the other commands.

r

NOTE: When disassembling, you must use the original address of the program, not the address
where the program currently resides. It will appear that you are disassembling the program at its f
original location, but Sourceror is actually disassembling the code at its present location and translating
the addresses.

65C02 OPCODES ON OLDER IIE/IIC COMPUTERS

To disassemble 65C02 codes with the older Ile/Ile ROMs, you must first BRUN the file called
MON.65C02 on the Merlin 8 diskette.

If you are using Merlin 8 DOS 3.3, before using Sourceror, you must quit to BASIC from the Main
Menu, then type BRUN MON.65C02 and press Return.

For the ProDOS version of Merlin 8, type in D for Disk Command at the Main Menu, and then BRUN
/MERLIN/UTIL/MON.65C02 and press Return.

See the information on using the XC opcode for details on assembling 65C02 programs.

This utility is not needed with the enhanced Ile or Ile (Unidisk 3.5 compatible) ROMs.

DISASSEMBLY COMMANDS

Your first command must include a hex address. Therefore, if you wanted to list the first 20 lines and
the starting address was $8000, at the $ prompt you would type 8000L and press Return. All
commands accept a 4-digit hex address before the command letter. If this number is omitted after the
first command, the disassembly continues from its present address.

If you specify a number greater than the present address, a new ORG will be created.

More commonly, you will specify an address less than the present default value. In this case, the
disassembler checks to see if this address equals the address of one of the previous lines. If so, it simply
backs up to that point. If not. then it backs up to the next used address and creates a new ORG.
Subsequent source lines are erased. It is generally best to avoid new OR Gs when possible. If you get a
new ORG and don't want it, try backing up a bit more until you no longer get a new ORO upon
disassembly.

Page 186

Merlin 8/16 User's Manual Sourceror

This backup feature allows you to repeat a disassembly if you have, for example, used a HEX or other
command, and then change your mind.

H (Hex)

This creates the HEX data opcode. It defaults to one byte of data. If you insert a one byte hex number
using one or two digits after the H, that number of data bytes will be generated.

L (List)

This is the main disassembly command. It disassembles 20 lines of code. It may be used in multiples,
thus 2000LLL will disassemble 60 lines of code starting at $2000. In the Merlin 8 Sourceror, if a JSR
to the SWEET 16 interpreter is found, disassembly is automatically switched to the SWEET 16 mode.

The L command always continues the present mode of disassembly, SWEET 16 or normal.

NOTE: If an illegal opcode is encountered, the bell will sound and opcode will be printed as three
question marks in flashing format. This is only to call your attention to the situatioIL In the source
code itself, unrecognized opcodes are converted to HEX data, but are not displayed on the screcIL

N (Normal - Merlin 8 only)

This is the same as L, but forces disassembly to start in normal 6502 mode.

0 (Org - Merlin 16 only)

This command can be used to change the ORO on the fly during disassembly. It is useful for programs
that move code to other locations after loading. The syntax for this command is address 0 new address.
Do not use any spaces in this command syntax, and note that it uses the letter 0 and not zero.

ADRSONEW ADRS [backup to ADRS and place and ORO to NEW ADRS there]

Therefore a command of 10450300 followed by a Return would tell Sourceror to backup to address
1045 and place an ORO $300 there.

Q (Quit)

This ends disassembly and goes to the final processing which is automatic. If you type an address
before the Q, the address pointer is backed to, but does not include, that point before the processing.
For example, if at the end of the disassembly, the lines included:

Page 187

Merlin 8/16 User's Manual

2341- 4C 03 EO
2344- A9 BE 94

JMP $E003
LDA $94BE,Y

Sourceror

and the last line was garbage, you could type 2344Q and press Return. This would cancel the last line,
but retain all the previous lines.

R (Read)

In Merlin 8, this allows you to look at memory in a format that makes imbedded text stand out. For
example, to look at the data from $1000 to $10FF, you would type lOOOR and press Return. After
that, R and Return will bring up the next page of memory. The numbers you use for this command are
totally independent of the disassembly address.

You may also disassemble, then use (address)R and Return, then Land Return, and the disassembly will
proceed just as if you never used R at all. If you don't intend to use the default address when you return
to disassembly, it may be wise to note where you wanted to resume, or to use the I command before the
R command. Merlin 16 prints ASCII during disassembly.

S (SWEET 16 • Merlin 8 only)

This is similar to L, but forces the disassembly to start in SWEET 16 mode. SWEET 16 mode returns
to normal 6502 mode whenever the SWEET 16 RTN opcode is found .

T or TT (Text)

This auempts to disassemble the data at the current address as an ASCII string. Depending on the form
of the data, this will automatically be disassembled under the pseudo-opcode ASC, DCI, INV or FLS.
The appropriate delimiter (" or') is automatically chosen. The disassembly will end when the data
encountered is inappropriate, or when 62 characters have been treated, or when the high bit of the data
changes. In the last condition, the ASC opcode is automatically changed to DCI.

Sometimes the change to DCI is inappropriate. This change can be defeated by using TT instead of T
in the command.

Occasionally, the disassembled string may not stop at the appropriate place because the following code
looks like ASCII data to Sourceror. In this event, you may limit the number of characters put into the
string by inserting a one or two digit hex number after the T command.

T or TT may also have to be used to establish the correct boundary between a regular ASCII string and a
flashing one. It is usually obvious where this should be done.

Page 188

Merlin 8/16 User's Manual Sourceror

W, WW, or W- (Word)

This disassembles the next two bytes at the current location as a DA opcode. Optionally, if the
corrunand WW is used, these bytes are disassembled as a DDB opcode.

If W- is used as the command, the two bytes are disassembled in the form DA LABEL-1. The latter is
often the appropriate form when the program uses the address by pushing it on the stack. You may
detect this while disassembling, or after the program has been disassembled. In the latter case, it may
be to your advantage to do the disassembly again with some notes in hand.

I (Cancel)

This essentially cancels the last corrunand. More exactly, it re-establishes the last default address (the
address used for a command not necessarily attached to an address). This is a useful convenience which
allows you to ignore the typing of an address when a backup is desired.

As an example, suppose you type T to disassemble some text. You may not know what to expect
following the text, so you can just type L to look at it. Then if the text turns out to be followed by
some HEX data such as $8D for a carriage return, simply type I to cancel Lli.e L and type the appropriate
Hcommand.

MERLIN 16 SOURCEROR NOTES

Sourceror on the Merlin 16 disk is fully 65816 compatible. It attempts to follow the flow of the
program in assigning the length of immediate operands, thus changing REP, SEP, and XCE when
appropriate. Since this cannot always be successful, you can reset this mode by using an address with
the L corrunand. When an address is used with the L command, the M and X status bits are taken from
the byte following the L. The default is MX = 00. Thus, 1012L01 and Return would restart the
disassembly at $1012 with a long Mand a short X, and MX would be set to 01.

The reversed DDB is not supported in the Merlin 16 version of Sourceror. Instead, you can use the WW
command to generate a 4-byte long address using the psuedo-op ADRL.

The Merlin 16 Sourceror only uses the 80 column screen.

SOURCEROR XL

For large object files, there is an alternative version of Sourceror on the Merlin 16 disk. To load it
from the Main Menu Disk Command prompt, you would type BRUN SOURCEROR/XL and press
Return. This version disassembles to disk instead of memory. The files are placed in the current prefix
directory active at the time the DIS command is issued.

Page 189

Merlin 8/16 User's Manual Sourceror

FINAL PROCESSING

After the Q command, the program does some last minute processing of the assembled code. If you
press Reset at this time, you will return to Merlin 8/16 and lose the disassembled code.

The processing may take from a second or two for a short program and up to several minutes for a long
one. Be patient.

When the processing is done, you are returned to Merlin 8/16 with the newly created source in the
Editor. You can use the Editor to edit or assemble the listing. After a successful assembly, you can
save the new code with the Main Menu Save Source and Save Object Code commands.

NOTE: If you are using the Pro DOS version of Merlin 8, you can enter the Editor and type USERl to
get rid of Sourceror and free up the memory used by the disassembler. This is not necessary in the
DOS 3.3 version.

MODIFYING THE FINISHED SOURCE

In most cases, after you have some experience and assuming you used reasonable care, the source will
have few, if any, defects.

You may notice that some DA's would be more appropriate in a DA LABEL-1 or a DDB LABEL
format. In such cases, it may be best to do the disassembly again with some notes in hand. The
disassembly is so quick and painless that it is often much easier than trying to alter the source directly.

The source will have all the exterior or otherwise unrecognized labels at the end in a table of equates.
You should look at this table closely. It should not contain any zero page equates except ones resulting
from DA's, JMP's or JSR's. This is almost a sure sign of an error in the disassembly (yours, not
Sourceror's). It may have resulted from an attempt to disassemble a data area as regular code.

NOTE: If you try to assemble the source under these conditions, you will get an error as soon as the
equates appear. If, as eventually you should, you move the equates to the start of the program, you will
not get an error, but the assembly may not be correct.

It is important to deal with this situation immediately since trouble could occur if, for example, the
disassembler finds the data AD008D. It will disassemble it correctly, as LDA $0080. The assembler
always assembles this code as a zero page instruction, giving the two bytes AS SD. Occasionally you
will find a program that uses this form for a zero page instruction. In that case, you will have to insert
a character after the LOA opcode to have it assemble identically to its original form. Since it was data
in the first place rather than code, it must be dealt with to get a correct assembly.

Page 190

Merlin 8/16 User's Manual Sourceror

THE MEMORY FULL MESSAGE

When the source file reaches within $600 bytes of the end of its available space you will see MEMORY
FULL and be prompted to HIT A KEY. Sourceror will then go directly to the final processing. The
reason for the $600 byte gap is that Sourceror needs a certain amount of space for this processing.
There is an optional override provision at the memory full point. If you press Control-0 for override,
then Sourceror will return for another command. You can use this to specify the desired ending point.
You can also use it to go a little further than Sourceror wants you to, and disassemble a few more lines.
Obviously, you should not carry this to extremes. If you get too close to the end of available space,
Sourceror will no longer accept this overide and will automatically start the final processing.

CHANGING SOURCEROR'S LABEL TABLES

The label tables used by Sourceror are just assembled Merlin 8/16 source files. The source file is called
LABELS and is on the Merlin 8/16 diskettes. It can be modified directly by the user. It must be
assembled and saved under the same name as the previous label file, i.e. you have to replace the old
existing file.

If you have several label tables you wish to use, you may want to just rename them. For example, you
could keep TABLE.DOS, TABLE.PRO DOS, etc. on the disk, and then just rename the file as you
needed it to LABELS.

Page 191

Merlin Pro User's Manual Sourceror.FP

APPLESOFT SOURCE LISTING

SOURCEROR.FP

A fully labeled and commented source listing of Applesoft BASIC can be generated by the program
called Sourceror.FP which is on side 2 of the Merlin 8 ProDOS diskette. Please note that Sourceror
and Sourceror PP are two entirely different programs. Sourceror is the disassembler in Merlin 8/16;
Sourceror.FP is a separate program that produces the source listing of Applesoft BASIC. If you are
looking for details on the disassembler, see the section on Sourceror.

Sourceror.FP works by scanning the resident copy of Applesoft present in your computer and generating
text files called Aplsoft.A, Aplsoft.B, Aplsoft.C, and Aplsoft.D.

To conserve space, these files contain macros that are defined in another file on the disk entitled
Applesoft.S. This file, when assembled using the PRTR command, will print out a nicely formatted
disassembly of Applesoft, automatically bringing in and using the Apsoft files as necessary. Exact
details on doing this are outlined below.

NOTE: This is not an official source listing from Apple Computer, Inc., but rather a product of the
Author's own research and interpretation of the original Applesoft ROM. Apple Computer, Inc. was not
in any way involved in the preparation of this data, nor was the final product reviewed for accuracy by
that company. Use of the term Apple should not be construed to represent any endorsement, official or
otherwise, by Apple Computer, Inc.

Additionally, Roger Wagner Publishing, Inc. makes no warranties concerning the accuracy or usability
of this data. It is provided solely for the entertainment of users of the Merlin 8/16 assembler.

WARNING: Sourceror.FP and some temporary work files will be deleted when
Sourceror.FP is BRUN. For this reason, you should make a backup copy of the
SOURCEROR.FP side of the Merlin 8 disk before proceeding. Use the backup
copy to make the Applesoft listing as explained next.

Page 192

Merlin Pro User's Manual Sourceror.FP

PRINTING THE APPLESOFT SOURCE LISTING

To get a printed source listing of Applesoft BASIC, follow these steps:

1. Start the Merlin 8 ProDOS diskette.

2. The Merlin 8 Full Screen Editor uses the same part of memory as Sourceror.FP. To use
Sourccror.FP, you will have to temporarily deactivate the Full Screen Editor.

Press D for Disk Command.

3. At the Disk Command prompt type: BRUN /MERLIN.8/UTILITIES/REMOVE.ED and press
Return.

4. Tum the disk over to the Sourceror.FP side.

5. At the Disk Command prompt type: BRUN /APPLESOFT/SOURCEROR.FP and press Return.

A prompt appears to remind you that files will be deleted if you proceed (see warning above).
If you arc using a backup copy of Sourceror.FP, press Y to continue.

6. When SOURCEROR.FP finishes, type L to LOAD a source file.

7. At the Load prompt type: /APPLESOFT/APPLESOFT and press Return.

8. To format the listing type: PRTRl ""APPLESOFT LISTING and press Return.

9. Type ASM and press Return.

The assembler will prompt you to answer several questions about the format of the printout. You
have the options of:

a) PRINT THE DO OFF AREAS? (Y /N). Depending on whether you select the new ROM version
(sec next question), this choice gives you the option of printing those parts that are not actually
assembled within the listing. Since the completed listing with XREF listings is on the order of 150
pages long, you probably won't want to print this listing too many times. We recommend
answering Y to this first option.

b) ASSEMBLE NEW ROM VERSION? (Y/N). If you answer N, you'll get the Apple II+ version of
Applesoft. If you answer Y, you will be prompted with:

c) ASSEMBLE IIC VERSION? (Y /N). If you have an Apple Ilgs, Ile or Enhanced Ile, you will want
to answer Y to this. If you want the original Ile version, answer N.

Page 193

Merlin Pro User's Manual Sou rceror .FP

For each question, remember to just press the Y or N keys. You do not have to type "Yes" or "No."

In the example above, the PRTR command will send output to slot 1 and will print "APPLESOFf
LISTING" as a header at the top of every page.

Merlin 8 will then ask "GIVE VALUE FOR SA VEOBJ :" This refers to whether or not you want
to save object code generated by the assembly. It is recommended that you answer 0. This is all
you need to do to begin the printing process. If you answer 1 instead, you will save object code at
the cost of slowing down the system. Saved object code allows you to verify it against where it was
taken from.

Merlin 8 will now execute the first assembler pass. The disk will be accessed a few times,
sometimes with long periods between accesses. This is normal. The entire first pass takes about 2
minutes.

Merlin 8 will then begin to print out a completely disassembled and commented listing of
Applesoft. It will take about 105 pages including the symbol tables and nearly an hour and a half to
print out at a printer rate of 80 characters per second.

Page 194

r
Merlin Pro User's Manual Sourceror.FP

APPLESOFT SOURCE CROSS REFERENCE LISTING

Although 105 pages of Applesoft source would seem like enough to keep one busy for at least a year,
Merlin 8 also offers another source of Applesoft internal information - Applesoft internal address,
subroutine and zero page cross references. By using the XREFA utility with the Applesoft source you
can produce a listing of every subroutine, zero page address and where they are used and called. This is
invaluable information for the programmer who desires to make use of the routines inside Applesoft in
his own programs.

Assume, for example, that a user program is called by a running Applesoft program. Also assume that
the programmer makes calls to some internal Applesoft routines and that the programmer wishes to use
zero page locations $50 and $51 as temporary registers or pointers. This cross reference will
immediately inform the programmer whether or not the routines that his program uses will destroy the
contents of these two locations and cause difficult to find bugs in his program.

IMPORT ANT: You must produce the source files before they can be cross-referenced. This is done by
following the instructions on pages 192-194. Do this now if you have not already done so.

Steps to print an Applesoft cross reference:

1. Start the Merlin 8 ProDOS diskette.

2. Insert the Sourceror.FP diskette.

3. Press L to LOAD, then type: /APPLESOFf/APPLESOFf and press Return.

4. Type Q to quit the Editor, and return to the Main Menu.

5. Insert the Merlin 8 ProDOS diskette.

6. Press D for Disk command, then type: BRUN /MERLIN.8/UTILITIES/XREFA and press Return.

7. Enter the Editor, the type: PRTRl""APPLESOFf XREF and press Return.

8. Then type: USER 3 and press Return.

9. Type ASM and press Return.

You'll be prompted as follows:

Print DO OFF areas ? (YIN)
You may answer Y or N. {See the previous section for an explanation of these

questions ... }

Page 195

Merlin Pro User's Manual

Assemble new ROM version ? ('{IN)

If you answer N, you'll get the Apple II+ version.
If you answer Y, you'll be prompted with:

Assemble /le version ? ('{IN)
Answer Y for the Ilgs, Ile and Enhanced Ile version.
Answer N for the original Ile version.

11) Insert the Sourceror.FP diskelte at the prompt:
"Insert /APPLESOFf/APLSOFf.A.S"

12) Press Return to start the cross-reference process.

Sourceror.FP

The Applesoft source will again be assembled. This time, however, the XREFA program will limit
your printed output to the cross reference table. Note that this process also takes quite a bit of time
prior to printing.

Page 196

Merlin 8/16 User's Manual Utility Programs

UTILITY PROGRAMS

AUTO EDIT (MERLIN 16 ONLY)

This is a powerful utility but caution should be used with Auto Edit. It can be used from the Main
Menu by typing BRUN UTIL/AUTO.EDIT and pressing Return. Another version called
AUTO.EDIT.2 can also be loaded in a similar manner. It is more interactive and less dangerous but it
is also much slower.

This utility creates an Open-Apple-\ command which is only accepted if a range is currently selected.
This command lets you input an auto-edit string which will act on all lines of the selected range except
comment lines. You can use" and an alpha character for control character commands. For example, the
string 11U11U11D01 will move the cursor over twice, delete the next character and then insert the 01
characters, assuming the insert cursor is active.

Auto Edit 2 changes each line according to the edit string and then waits for a keypress. Pressing
Escape, Control-C, or Control-X will cancel the entire process. Any non-control character such as
Space will accept the change and move to the next line. Any control character such as Return will
reject the change and move to the next line in the selected text.

CLASSIC DESK ACCESSORIES

Calendar - Notepad - Rational Calculator

The Merlin 16 disk contains commented source files for three Classic Desk Accessories. These are
Calendar, Notepad, and Rational Calculator and the various files are located in the Library subdirectory.
Please note these files are only offered as demonstrations of Classical Desk Accessories on the Ilgs.
You may use these files in your own programs but they may not be used in any program intended for
commercial distribution. As noted in the source files for these programs, Glen Bredon reserves the
commercial rights and copyrights for these and all related files.

CLOCK - MERLIN 8 (ProDOS only)

This Merlin 8 utility is an interrupt driven software clock designed for the Ile which lacks a clock to do
the time stamping available in ProDOS. It requires the Ile because it uses the VBLINT interrupt
provision. THIS UTILITY SHOULD BE USED WITH CAUTION! If it is overwritten, anything can
happen and probably will. Press Reset to turn off interrupts. The source files are provided in the
SOURCE directory on the Merlin 8 ProDOS version.

Page 197

Merlin 8/16 User's Manual Utility Programs

CONV.LNK.REL (MERLIN 8 ProDOS ONLY)

This makes the Merlin 8 REL files compatible with Apple's RLOAD and RBOOT programs. It will
convert a Merlin 8 LNK file to Apple's REL format only if there are no externals. You can BRUN it
from the Main Menu. If there is a source file in memory already, it will just return. Thus, enter NEW
first in the Editor if necessary before using iL You will be prompted for the pathname of the file to be
converted. The program will do the conversion and set up the converted file for the Merlin 8 object save
command. The CONV.LNK.REL utility does not write anything to disk and does not delete or
otherwise damage the original file.

You will be prompted for the pathname of the file you want to convert. The program will do the
conversion and set up the converted file for the Merlin 8 object save command. The CONV .LNK.REL
utility does not write anything to disk and does not delete or otherwise damage the original file.

CONVERTER: APW Source Files to Merlin 16 Format

Source files created by the APW (Apple Programmer's Workshop) and ORCA/M assemblers can be
loaded directly into the Merlin 16 editor, but they usually require some editing before assembly. This is
primarly due to differences in the pseudo-ops used by each assembler to define things such as data
storage. For example, Merlin 16 can define a hex byte with the statement:

LABEL HEX FF

whereas APW would use:

LABEL DC I1 I $FF'

to achieve the same result.

If the file name of the APW source file does not have the ".S" suffix, remember to put the reverse slash
(/)at the end of the name you enter at the Main Menu of Merlin 16. For example, if the source file you
wanted to load was named FILE.SRC, you would enter FILE.SRC/ as the file to load.

For short files, you can load the APW source file into the Merlin 16 editor, and edit or use the search &
replace (OE) or find (OF) functions to change any offending syntax in each line. In the case of the
above example, you could use the (OE) command to replace DC 11' with HEX. Notice the space is
included in both the search and replace strings. You will have to hold down the Open-Apple key when
you press Return to start the search & replace to tell Merlin 16 to do the search on parts of words in the
source file. In addition, in this particular case, you will want to go back through and remove the single
quote from the end of the $FF operand.

In addition, APW source files expand the space between each field in the source files with as many
spaces as it takes to fill the gap. In Merlin 16, a single space character automatically tabs the text to
the next field. Thus, source files in APW are up to 50% larger than the equivalent file in Merlin 16.

Page 198

Merlin 8/16 User's Manual Utility Programs

To remove the extra spaces in an APW source file, use the Command Box (00) command FIXS lo
remove unneeded spaces in the file.

Finally, save the converted source file lo disk under a new name. Merlin 16 will automatically add the
".S" suffix. For example, entering FILE as the name lo save under would appear as FILE.S in the disk
directory.

Using CONVERTER

Rather than manually editing an entire source file, it is usually easier to use a utility provided on the
Merlin 16 disk called CONVERTER. This utility will automatically make many of the changes
necessary to convert an APW source file to a form more acceptable to Merlin 16. Converter is an
Applesoft BASIC program that can be run from either a file selector like ProSel, the DeskTop, etc., or
by first selling the prefix to /MERLIN.16/UTILITIES at the BASIC prompt, and then typing RUN
CONVERTER.

When the Converter runs, the first step is to place the disk containing the APW file to be converted into
a disk drive. Then choose menu item #1, Select a file from disk.

The program will then present a list of all the on-line disk volumes. Press the m.mber key or use the
arrow keys to select the disk you want to look at, and press Return.

The program will then display all the files in the main directory of that disk. Subdirectories are
indicated by a slash at the end of the filename, for example, ITTILITIES/. Selecting a subdirectory will
then list all the files in that subdirectory. You can back out of a given subdirectory by pressing the
Escape key.

When you see the file that you want to convert, press the number key and press Return.

The program will then load the existing source file into memory, make the necessary changes, and then
write a new file back to disk. The suffix ".s'' will automatically be added to the new filename.

After the conversion, you may either select another file to change, or you can press Open-Apple-Escape
to go back to the Main Menu. From there, you can either exit to BASIC, a program selector, or select
another file to change.

Most Apple IIgs programs make extensive use of the Apple Ilgs Toolset macros. At the beginning of a
converted program you'll probably find an instruction similar to USE FILE.MACROS. This tells the
assembler to use a library of macro definitions stored on the disk. Rather than try to convert a macro
file for a given program, it is better to use another Merlin 16 utility, MACGEN, to create a new library
of the macros needed for the program you're converting. The next section describes how to use
MACGEN.

Page 199

Merlin 8/16 User's Manual Utility Programs

Using MACGEN

The Merlin 16 disk contains a complete set of Apple Ilgs Toolset macro definitions, along with other
macro libraries such as MACROS.816 and UTIL.MACS. The brute-force way of using these libraries
is to add whatever lines are necessary to use the particular macros you need. For example:

USE /MERLIN.16/TOOL.MACROS/MEM.MACS
USE /MERLIN.16/TOOL.MACROS/MISC.MACS
etc.

The disadvantage to this approach is that the entire macro library is read into memory, leaving Ii ttle
remaining free memory for your actual program.

Usually you would write the program using whatever macro calls you wish, and then run the program
utility MACGEN. MACGEN looks through an entire source file, and makes a list of every macro call.
It then compares this with all the calls in any existing macro libraries, and creates a new and condensed
macro file of just those definitions used in your program. MACGEN must be used when converting an
APW source file in order to create the condensed macro file needed by a particular program.

When converting an APW source file, or when using MACGEN in your own program, here's what to
do:

1) MACGEN will need to be installed in Merlin 16. This is done by typing:

-/MERLIN.16/UTILITIES/MACGEN

from the Main Menu.

2) Now load the source file to be scanned for macros. For an Apple Ilgs, ProDOS 16 program, the
first two actual instructions in your program, disregarding comment lines, should be:

REL
DSK FILE NAME. 1

where FILENAME is the name of the final object file you wish to create, and FILENAME.L will be
the intermediate relocatable link file. This LNK file will be used by the linker to create the final object
file, presumably named FILENAME.

Following the REL and DSK instruction will be the USE FILENAME instruction that loads the
condensed macro definition file, which would look something like this:

USE FILE. MACROS

For now, this should be either deleted, or you can add a semi-colon(;) to temporarily make it a
comment, since the file has not been created yet. After making these changes, save the file to disk.

Page 200

Merlin 8/16 User's Manual Utility Programs

3) The editor workspace must be empty for MACGEN to operate, so type NEW in the Command Box
to erase the source listing. Then, go to the Command Box again and type:

MAC "FILENAME"

where FILENAME.Sis the source file to be scanned.

4) The source file will be read from the current disk directory, and the Macro Generator menu will
appear:

[S]earch directory for macros.
[D]isplay unresolved macro names.
[C]atalog directory.
[Q)uit macro generator.

Select:

MACGEN has already made a list of all the macro calls in your program, and pressing D will display
them. This step is not required, but it may be of interest to you. You will now tell MACGEN where
the macro libraries are that you want reconciled with the source listing.

Press S to start the search. MACGEN will ask what directory you want it to search within for existing
macro libraries. In most cases, you will probably enter:

/MERLIN.16/TOOL.MACROS

but this can be any directory that has macro definition files in it.

As the macro files are read and compared to the source file, each filename will be printed on the screen.
When the directory is processed, the menu above will be repeated. Since you will probably want to use
MACROS.816 also, press S again and type in:

/MERLIN.16/ GEN.MACROS

At this point, all macro definitions that could be found are copied into a new source file in the Merlin
16 editor. Before quitting MACGEN, you may want to press D Lo display any macros definitions that
were not found. You can either make a note of them to add later, or you can press S again to scan
another directory for more macros. Note that unresolved macros may be due to UPPER/lower case use
that is inconsistent with the actual definitions. For example, _TLStartup might not be resolved because
the actual name is _TLStartUp. Setting the PARMS file so that Merlin 16 is case insensitive is one
way to eliminate this source of unresolved macros.

When you quit MACGEN, you'll want to save the condensed macro file for use by the converted APW
program. For example, for the program SAMPLE, you might want to save the macro file under the
name SAMPLE.MACROS. This would be referenced in the source program with a line like this:

Page 201

Merlin 8/16 User's Manual Utility Programs

USE SAMPLE.MACROS

Once the macro file is created, you can load the source file, and put in the active USE instruction to
include the macro file in your source, or remove the semi-colon you put in to temporarily make that
instruction a comment.

Note #1: Upper/lower case of the filename is not important in Merlin 16 opcodes and filenames.

Note #2: The Merlin 16 pseudo-op USE cannot be used in a Put file. It can only be called from
within the "master" calling program. If the program you are assembling has a USE macro library
reference, try moving it to the master calling program. See the Merlin 8/16 manual regarding Put files.

Nested Macros: MACGEN looks within macros to see if other macros are called. Thus, if the
macro _QDStartUp uses the macro Tool, the name Tool will be added to the list of unresolved macros.
Usually, the macro will be found in other files, and so will be removed from the unresolved macro
names before you even see it. However, if a macro definition is encountered in a library before it is
referenced from within a later macro, you will have to make a second pass through that directory so that
MACGEN will pick it up the second time. In practice, this is rarely needed.

Final Editing

There are certain further substitutions and editing that will need to be done to complete the conversion
process. The easiest way to find the lines that need changes is to try to assemble the file (OA), and sec
where the errors occur. Remember that before you can use Linker.GS, you will have to re-install
Linker.GS by typing "-/MERLIN.16/LINKER.GS" from the Main Menu, since MACGEN displaces
Linker.GS when it is loaded.

Some APW functions are duplicated in macro functions included in the UTIL.MACS and
MACROS.816 files. Other functions in APW may have no equivalents, and so are converted to
comments by the Converter program. Following is a list of points to look for:

Comment/Line length: The Converter program automatically shortens lines to the 64 character
limit of the Merlin editor. Any text that is too long is turned into a comment with an asterisk or a
semi-colon, and is made into a new line. This may make title boxes in the listing look uneven.

Case Sensitivity: In its original condition, Merlin 16 is case sensitive in its handling of labels.
That is, it considers the label NAME to be different from Name or name. Case sensitivity gives you
more versatility in labels, for example, using the macro QUIT for ProDOS 16 and Quit for ProDOS 8.
It also results in faster assembly speeds. APW, however, is not specifically case sensitive unless the
CASE directive is used. In addition, many sample programs available for the Apple Ilgs written with
APW use a wide variety of conflicting-case labels. For example, a single program may use pulllong,
PULLLONG, Pulllong and PullLong in different parts of the program, all referring to the same macro.

Page 202

Merlin 8/16 User's Manual Utility Programs

When converting an APW source file, you may either manually edit any conflicting labels to be
consistent, or you may alternatively change the PARMS file for Merlin 16 to make Merlin 16 case
insensitive (about line #120 in PARMS.S).

Duplicate Labels: APW blocks groups of labels in each START/END segment and considers all
labels in that segment to be local, unless declared "known" to another segment by the APW using
pseudo-op. In Merlin 16, all labels are global unless preceded with a colon, as in :LOOP. In
assembling a program, you may get "Duplicate Label" errors as Merlin 16 encounters labels that were
used repeatedly in many different segments. To resolve these, you may either rename offending labels,
i.e. LOOPl, LOOP2, etc., or you may put a colon in front of the offending label, i.e. :LOOP.

The main caution has to do with when a label is declared "known" to one segment, but may be local in
all others. For example, suppose you have a program with three program segments, and the label
LOOP was used in segments #2 and #3, but only the LOOP in segment #3 was known to segment #1
through APW's using pseudo-op. Since Converter turns it into a comment, you would have to pay
particular attention to the preserved using instruction and to the corresponding START/END segment it
referenced when editing the source listing. In this example, you might leave the label LOOP in
segment #3 alone, and change LOOP in segment #2 to :LOOP. Note that references to local labels
such as :LOOP cannot cross global labels. Thus, the following code segment would not work:

BNE :DONE

TEST2 CMP #$7F
BEQ AGAIN

:DONE RTS

Processor Mode: Merlin 8 and Merlin 16, as configured in the original package, start assembling a
file assuming that the microprocessor is in the 8-bit mode (MX % 11). In the case of Merlin 16, this is
done to minimize errors when assembling source files written with earlier (8-bit) versions of Merlin,
such as Merlin, Merlin Pro, Merlin 8 or Big Mac. When assembling programs to run under ProDOS
16, it is very important that you make sure the assembler starts assembling the source in the full 16-bit
(MX %00) mode. There are two ways to handle this. The first is to just include the Merlin pseudo-op
MX %00 on one of the first lines of each source file. You may alternatively use the macro M65816 1,
as defined in the Macros.816 file, which accomplishes the same function. The Converter program
automatically puts the proper instructions in when converting an APW program, so this is only a
concern when manually converting a program, or writing a ProDOS 16 program from scratch.

The other choice is to permanently change the appropriate bit in the flag in the Merlin 16 PARMS file
(approx. line #75) so that Merlin 16 always starts in the 16-bit mode. Important: If you do make this
change, you will have to be careful to remember to use an MX % 11 (8-bit mode) instruction in any of
your older ProDOS 8, etc. source files before assembling them with the altered Merlin 16.

In addition, here are some of the APW pseudo-ops that are automatically handled by the Converter, but
which may be of some interest:

Page 203

Merlin 8/16 User's Manual Utility Programs

65816 ON In APW, this enables the 65816 assembly mode. In Merlin 16, this is equivalent to two
XC instructions, plus an MX %00. This is automatically added to converted APW source files by
Converter, but there is also a macro named M65816 in MACROS.816 that can be used.

LONGI ON/OFF Merlin 16 uses 0 and 1 as substitutes for APW's ON and OFF operands. LONGI
and LONGA have equivalent macros in MACROS.816.

START/END APW delimits each program segment within a listing with a START and END
pseudo-op. All labels within a segment are considered local by APW except for the label that is
associated with the ST ART instruction. Local labels in APW within a segment may be made known to
other segments with the APW "using label" instruction, which is not the same as Merlin 16's "using"
instruction. The Converter program changes ST ART to ENT so that the particular label on that line
can be referenced by other Merlin 16 source files, if needed. END is converted to a comment, since
END in Merlin 16 would signify the end of the entire source file. This structure may have to be
considered when handling local/global labels and label conflicts.

SYMBOL ON/OFF In APW this determines whether the symbol table should be printed at the end
of the source listing. In Merlin 16 this is controlled by the presence of LST ON/OFF at the end of the
listing.

GEN ON/OFF In APW, GEN ON tells the assembler to print the expanded form of macros.
EXPMAC is an equivalent function macro in Merlin 16 that duplicates this. Note: EXP is the actual
Merlin 16 directive. See EXP in the Merlin 8/16 manual.

Programmer's Note: The Converter uses the file DICTIONARY in the UTILITIES subdirectory in
part of the conversion process. The Dictionary file contains search & replace entries that translate APW
opcodes to Merlin 16 equivalents. For example, the file Dictionary has the entry:

COPY#PUT

This tells the converter to replace the opcode COPY with PUT. Thus the APW source line:

COPY HIRES.STUFF

would become:

PUT HIRES.STUFF

The pound sign(#) is the delimiter between the search and replacement strings. Replacement strings
may include spaces and semi-colons to move the new statements to the comment field, as is done with
END becoming ;END. A pseudo-op can be removed completely by leaving the replacement field blank.

You can edit the Dictionary file with Merlin 16 to add new search & replace definitions. Remember to
use the filename DICTIONARY/ when loading or saving. You will probably also want to tum off the
formatting (tabbing to assembler fields) with the Command Box TAB command.

Page 204

r

Merlin 8/16 User's Manual Utility Programs

The Converter changes ON and OFF arguments to certain APW directives, such as absaddr, 65816, case,
longa, longi, etc., to 1 and 0 so that the ON/OFF argument can be handled by an equivalent Merlin 16
macro. These macro3 are presently defined in the file MACROS.816 in the GEN.MACROS
subdirectory on the Merlin.16 disk.

The source files for the Converter utility are also included on the Merlin.16 disk. Although we do not
provide specific technical support for making alterations to this program, the source files are
well-commented, and you may wish to make changes to the program for your own use.

Sample APW Program: A sample program, called SIMP.SRC, is included on the Merlin 16 disk
in the directory SAMPLES.APW. You may want to try the procedure described here to practice
converting an APW source file before tackling other files. A copy of the SIMP.SRC in converted
Merlin format, and the final output file, SIMP, is included in the SAMPLES.M16 directory. SIMP is
a ProDOS 16S16 type file that can be launched from the Finder or DeskTop.

As a general exercise in assembling, linking and running a ProDOS 16 application that uses many
Apple Ilgs tools, there is also a program in the Samples.M16 directory called BRICKOUT. This file
can be assembled, linked and saved by linking the command file GAME.CMD.S. This file was
converted from a listing originally in the APW format

CROSS REFERENCE PROGRAMS

Xref - Xrefa

These utilities provide a convenient means of generating a cross-reference listing of all labels used
within a Merlin 8/16 source program.

Such a listing can help you quickly find, identify and trace values throughout a program. This becomes
especially important when attempting to understand, debug or fine tune portions of code within a large
program.

Merlin 8/16 provides a printout of its symbol table only at the end of a successful assembly, provided
that you have not defeated this feature with the LST OFF pseudo op code. While the symbol table
allows you to see what the actual value or address of a label is, it does not allow you to follow the use
of the label through the program.

This is where the XREF programs come in.

XREF gives you a complete alphabetical and numerical printout of label usage within an assembly
language program. XREFA gives a cross reference table by address. This is more useful for large
sources containing lots of PUT files. It also does not use as much space for its cross-reference data and
therefore can handle larger source files than XREF.

Page 205

Merlin 8/16 User's Manual

Sample Symbol Table Printout

Symbol table - alphabetical order:

ADD =$F786 BC =$F7BO BK

Symbol table - numerical order:

BK =$F706 ADD $F786 BC

Sample Xref Printout

Cross referenced symbol table - alphabetical order:

ADD
BC
BK

=$F786 101
=$F7BO 90
=$F706 104

185*
207*
121*

Cross referenced symbol table - numerical order:

BK
ADD
BC

=$F706 104
=$F786 101
=$F7BO 90

121*
185*
207*

Utility Programs

=$F706

=$F7BO

As you can see from the above example, the definition or actual value of the label is indicated by the
equal(=) sign, and the line number of each line in the source file that the label appears in is listed to the
right of the definition. In addition, the line number where the label is either defined or used as a major
entry point is suffixed or flagged with an asterisk (*).

An added feature is a special notation for additional source files that are brought in during assembly with
the PUT pseudo opcode. For example, 134.82 indicates line number 134 of the main source file is the
line containing the PUT opcode and line number 82 of the PUT file is where the label is actually used.

Using Xref

1. From the Main Menu, make sure you have saved the file and Merlin 8/16 is in the currently selected
drive.

2. Merlin 16: Press D for Disk Command.
At the Disk Command prompt type BRUN /MERLIN.16/UTILITIES/XREF and press Return.

Merlin 8 ProDOS version: Press D for Disk Command.
At the Disk Command prompt type BRUN /MERLIN.8/UTIL/XREF and press Return.

Merlin 8 DOS 3.3 version: From the Main Menu press C to catalog the disk. At the Command
prompt type BRUN XREF and press Return.

Page 206

Merlin 8/16 User's Manual Utility Programs

3. Enter the Editor, then type the appropriate USER command:

USER 0 - Print assembly listing and alphabetical cross reference only. USER has the same effect as
USER 0.

USER 1 - Print assembly listing and both alphabetical an nwnerically sorted cross reference listings.

USER 2 - Do not print assembly listing but print alphabetical cross reference only.

USER 3 - Do not print assembly listing but print both alphabetical and nwnerical cross reference
listings.

For example, to print a cross-reference listing only to your printer, you could type in:

PRTR 11111

USER 3
ASM

USER commands 0-3 cause labels within conditional assembly areas with the DO condition OFF to
be ignored and not printed in the cross reference table.

You can also use USER commands 4-7 which are identical to USER 0-3 except that they cause
labels within conditional assembly areas to be printed regardless of the DO setting. The only
exception to this is that labels defmed in such areas and not elsewhere will be ignored.

NOTE: You may change the USER command as many times as you wish, i.e. from USER 1 to
USER 2 and so on. The change is not permanent until you enter the ASM command.

4. Merlin 16: Press Open-Apple-A to begin the assembly and printing process.

Merlin 8: Type ASM and press Return to begin the assembly and printing process.

Since the XREF programs require assembler output, code in areas with LST OFF will not be processed
and labels in those areas will not appear in the table. In particular, it is essential to the proper working
of XREF that the LST condition be ON at the end of assembly since the program also intercepts the
regular symbol table output. For the same reason, the Control-D flush command must not be used
during assembly. The program attempts to determine when the assembler is sending an error message
on the first pass and it aborts assembly in this case, but this is not 100% reliable.

NOTE: When using macros with XREF, labels defined within macro defmitions have no global
meaning and therefore are not cross-referenced.

Page 207

l

Merlin 8/16 User's Manual

DEF MAC
CMP #) 1
BNE DONE
ASL

DONE «<

DEF GLOBAL

<---Macro definition

<---Beg. of program
<---Macro call

Utility Programs

In the above example, variable GLOBAL will be cross referenced, but local label DONE will not.

XREFA Notes

This is an address cross reference program and is handy when you have lots of PUT files. Since this
program needs only four bytes per cross reference instead of six, it can handle considerably larger
sources. The "where defined" reference is not given here because it would equal the value of the label.
The exception is EQUated labels where it would indicate the address counter when the equate is done.
This also saves considerable space in the table for a larger source.

FORMATTER

This program is provided to enhance the use of Merlin 8/16 as a general text editor. It will
automatically format a file into paragraphs using a specified line length. Paragraphs are separated by
empty lines in the original file.

To use Formatter, you should first BRUN it from Main Menu. Formatter will then load itself into
high memory.

This will simply set up the editor's USER vector. To format a file which is in memory, issue the
USER command from the editor.

The formatter program will request a range to format. If you just specify one number, the file will be
formatted from that line to the end. Then you will be asked for a line length, which must be less than
250. Fmally, you may specify whether you want the file justified on both sides, rather than just on the
left.

The first thing done by the program is to check whether or not each line of the file starts with a space.
If not, a space is inserted at the start of each line. This is to be used to give a left margin using the
editor's TAB command before using the PRINT command to print out the file.

Formatter uses inverse spaces for the fill required by two-sided justification. This is done so that they
can be located and removed if you want to reformat the file later. It is important that you do not use the
FIX or TEXT commands on a file after it has been formatted unless another copy has been saved. For
files coming from external sources, it is desirable to first use the FIX command on them to make sure

Page 208

Merlin 8/16 User's Manual Utility Programs

they have the form expected by Formatter. For the same reason, it is advisable to reformat a file using
only left justification prior to any edit of the file.

Don't forget to use the TABS command before printing out a formatted file.

KEYBOARD MACRO BLES

Edmac - Keymac

Edmac and Keymac are keyboard macro files for use with the Merlin 8/16 Editors. Edmac is for use
with Merlin 8 and Merlin 16 full screen editors. Keymac is for the Merlin 8 line editor. A macro
definition lets you type one key, and get a string of characters on the screen. This should not be
confused with the assembler macros that Merlin 8/16 also supports.

An assembler macro is a definition of a set of assembler instructions, usually with variables, that you
define within a given source listing. When the program is assembled, the assembler replaces the macro
call with the series of lines that have been assigned to that macro.

A keyboard macro is only a substitute for a small amount of typing that you might do while you're in
the editor itself.

For example, you've probably typed LOA many times in assembly language programs. With Edmac or
Keymac installed, you could type Solid-Apple-3 (Option-3 on the Apple Ilgs) and the characters LDA #
would appear on the screen.

To install Edmac or Keymac, just BRUN it from the Main Menu, then enter the Editor and type USER
from the Merlin 16 Command Box or Merlin 8 Command Mode. When you type one of the Edmac or
Keymac Solid-Apple (Option- on the GS) commands shown on the following pages, the corresponding
text will be inserted.

Page 209

Merlin 8/16 User's Manual Utility Programs

KEYBOARD MACRO EQUIVALENT CHART

What You Type: To Get: Comments

SA 1 AND
S B 2 BVC
• c 3 CMP
S D 4 DFB
SE 5 EOR
SF N/A Keyboard Macro Not Assigned ...
S G N/A Keyboard Macro Not Assigned ...
S H 6 HEX
S I N/A Keyboard Macro Not Assigned ...
• J 7 JSR
SK 8 JMP
S L 9 LDA
SM 10 BMI
SN 11 BNE
• 0 12 ORA
• p 13 BPL
• Q 14 BEQ
SR 15 RTS ; PLUS CARRIAGE RETURN
• s 16 STA
S T N/A Keyboard Macro Not Assigned ...
• u N/A Keyboard Macro Not Assigned ...
sv 17 BVS
• w N/A Keyboard Macro Not Assigned ...
• x 18 LDX t
• y 19 LDY #0 ; LEAVES IN INSERT MODE
• z 20 LD #0 ; LEAVES IN INSERT MODE
• 1 N/A Keyboard Macro Not Assigned ...
• 2 N/A Keyboard Macro Not Assigned ...
• 3 21 LDA i
• 4 22 LABEL = $; FOR HEX EQUATES
• 5 23 LABEL DFB % ; FOR BINARY EQUATES
• 6 24 N/A Keyboard Macro Not Assigned ...
• 7 25 • II & $ 9F ; USED TO DEFINE A CONTROL CHAR.
• 8 26 *------------------------------
• 9 27 ()I y ; WITH INSERT MODE ON ...
• 0 28 (,X) ; WITH INSERT MODE ON ...

• AJ 29 PLA SAVE A,X,Y ON STACK
(down arrow) 30 TAY ALL 5 LINES WITH ONE MACRO.

31 PLA (MACRO KEY = DOWN ARROW)
32 TAX
33 PLA

• AK 34 PHA RETRIEVE A,Y,Y FROM STACK
(up arrow) 35 TXA ALL 5 LINES WITH ONE MACRO.

36 PHA (MACRO KEY = UP ARROW)
37 TYA
38 PHA

Page 210

r
Merlin 8/16 User's Manual

••
• II

• • • • . -
•1
ti[

39
40
41
42
43
44
45
46
47

ASC ''
ASC ""
ERR \
MAC
EOM
ADC
SBC
)LOOP
[]

Utility Programs

SINGLE QUOTE WITH CURSOR BETWEEN QUOTES
DOUBLE QUOTE WITH CURSOR BETWEEN QUOTES
FOR 'ERR' CHECK VALUE
DEFINE A MACRO.
FINISH DEFINITION.
= (SAME KEY AS '+')
"-" FOR SUBTRACTION.
VARIABLE FOR A LOOP.
INDIRECT LONG ADDRESSING MODE.

Macros can be added or edited by adding or changing the data statements in KEYMAC.S or EDMAC.S.
The only requirement for each definition is that it begin with the macro key itself, and that the assigned
string end with a "high bit off' (value< $80) ASCII character.

MAKE DUMP

This Merlin 8/16 program will make a hex dump text file from an object file after a valid assembly of
the source. Before using Make Dump, you should have already assembled and saved the source code.
This is important because the existing source code in memory is destroyed when Make Dump is used.
To use Make Dump, BRUN it from the Main Menu. Then load the desired source file and assemble it.
Finally, type USER from the Command Box or Command Mode of the Editor.

The current source in memory will be replaced with a hex dump of the previously assembled object file.
The last line of the file will contain a BSA VE with the correct address and length but without a
filename. You can use the Editor to insert the desired filename. You can then save the file for use as an
EXEC file. If you forget to insert the filename, Merlin 8/16 will give you a SYNTAX ERROR when
the file is EXECed.

PRINTFILER

Printfiler is a utility designed to save an assembled listing to disk as a sequential text file. It optionally
allows you to also select "file packing" for smaller space requirements and allows you to tum video
output off for faster operation.

Text files generated by Printfiler can include the object code portion of a disassembled listing,
something not normally available when saving a source file. This allows a complete display of an
assembly language program and provides the convenience of not having to assemble the program to see
the object code.

Printfiler can also be used to save a source listing to disk as a text file with the high bit clear (Merlin
source files normally have the high bit set), and with the option of each tab field filled with spaces for
compatibility with the APW (ORCA) assembler.

Page 211

Merlin 8/16 User's Manual Utility Programs

Printfiler Applications

Other examples of where Printfiler might be used include:

- Incorporating the assembled text file in a document being prepared by a word processor.

- Sending the file over a telephone line using a modem.

- Mailing the file to someone such as a magazine editor who wants to work with the complete
disassembly without having to assemble the program.

Using Printfiler

1. Make sure that you've saved the source file before using Printfiler.

Merlin 16 version: Press D for Disk Command.
At the Command prompt type BRUN /MERLIN.16/UTILITIES/PRINTFILER and press Return.

Merlin 8 ProDOS version: Press D for Disk Command.
At the Command prompt type BRUN /MERLIN.8/UTILITIES/PRINTFILER and press Return.

Merlin 8 DOS 3.3 version: Press C to catalog the Merlin 8 disk.
At the Command prompt type BRUN PRINTFILER and press Return.

2. Press L to load the desired source file.

3. From the Main Menu select the drive to save the assembly to if necessary.

Merlin 16 version: Enter the Editor and press Open-Apple-0 to open the Command Box.
From the Command Box type USER "FILENAME" where FILENAME is the name of your file.
You may also use the PRTR command if you wish page headers to be sent with your listing. In
that case enter the following instead of the USER command: PRTR 1 "T.MYFILE" MY PAGE
HEADER and press Return.

Merlin 8 version: Enter the Editor by pressing E from the Main Menu. From the Command Mode
prompt(:) type USER "FILENAME" where FILENAME is the name of your file. You may also
use the PRTR command if you wish page headers to be sent with your listing. In that case enter the
following instead of the USER command: PRTR 1 "T.MYFILE" MY PAGE HEADER and press
Return.

There will be a short disk access and the name of the file used for the text save will appear on the
screen.

Page 212

Merlin 8/16 User's Manual Utility Programs

4. Merlin 16 version: Press Open-Apple-A to begin the assembly and Printfiler will automatically
assemble the source file directly to disk. Note that you will not see anything on your video screen
because Printfiler is preconfigured to operate with the video output turned off for faster operation.

Merlin 8 version: From the Command Mode prompt type ASM and Printfiler will automatically
assemble the source file directly to disk. Note that you will not see anything on your video screen
because Printfiler is preconfigured to operate with the video output turned off for faster operation.

NOTE: You should not use a filename that already exists on the disk as an object file for the
output file. Printfiler uses the exact filename with no prefix or suffix that you enter. Thus, if you
had the source file PROGRAM.S and the object file PROGRAM on a disk, you would not want to
use the name PROGRAM for the PRINTFILE name. PROGRAM.TEXT would be the
recommended name.

Printfiler will also print the output from the Merlin 16 "L" (list with line numbers) and "P" (Print
without line numbers) commands. To output a text file for the APW (ORCA) assembler with each
tab field automatically filled with spaces, just use the "P" command in the command box after
opening the text file to print the source file to a formatted text file with the high bit clear. This file
can then be directly loaded by APW.

Changing Printfiler Options

Printfiler has two options that you may change: file packing and video output or echoing. In addition,
you can make the change temporary or permanent.

File packing reduces the size of the text file saved to disk by replacing blanks from the source file with
a single character with its high bit turned off. A listing of a packed file will display the packed blank
characters as an inverse letter. Thus inverse A=l blank, inverse B=2 blanks, inverse C=3 blanks, etc.

Unpacking means restoring the text file to its original appearance. Note that while you cannot
assemble such a file, you can at least read it.

Echoing means printing on the screen what is sent to the disk. The time it takes to do this can slow
Printfiler down.

The process of turning off video output or echoing makes Printfiler run approximately 25% faster.
Additional speed can be gained by using packed files.

In addition, unpacked files are nearly twice as large as packed files and nearly three times the size of the
original source file.

Page 213

Merlin 8/16 User's Manual Utility Programs

Changing Printfiler Options (temporarily)

To temporaily change the Printfiler options you can go to the Monitor from the Merlin 8/16 Editor
with the MON command. Enter the following:

300:00 00
300:00 80
300:80 00
300:80 80

for packed, video off, or.
for packed, video on, or
for unpacked, video off, or
for unpacked, video on

The Printfiler standard values are 300:80 00 (Wlpacked, video off)

Press Return, then Control-Y, then Return again to go back to Merlin 8/16. The values you select will
stay in effect until you BRUN PRINTFILER again.

Changing Printfiler Options (permanently)

1. Load Printfiler as above and assemble with it. During assembly, it will prompt you with the
following questions:

2. GIVE VALUE FOR FORMAT
Press 0 to tum on the Pack option.. Press 1 to tum off the Pack option.

3. GIVE VALUE FOR MONITOR
Press 0 to tum video output or echoing off. Press 1 to tum echoing on.

Printfiler will then immediately assemble into object code.

4. Quit the editor and save the Object code. Any time you BRUN this object code, it will use the
values you specified in steps 2 and 3. Thus, it is possible to use different versions of Printfiler
instead of setting options.

TXTED (MERLIN 16 ONLY)

This is an alternate version of the Merlin 16 Full Screen Editor which will break a line upon a carriage
return, and carriage returns are deletable. TXTED can be substituted from the Main Menu by typing
BRUN UTIL{fXTED and pressing Return.

TYPE.CHANGER

This utility will change the ProDOS file type of any file on a disk. It is an Applesoft BASIC program
that can be run from either a file selector like ProSel, the DeskTop, etc., or by first setting the prefix to
/MERLIN.16/UTILITIES at the BASIC prompt, and then typing RUN TYPE.CHANGER.

Page 214

Merlin 8/16 User's Manual Utility Programs

When Type.Changer runs, the first step is to place the disk containing the file whose type is to be
changed into a disk drive. Then do the following:

1) Choose menu item #1, Select a file from disk.

2) The program will then present a list of all the on-line disk volumes. Press the number or use the
arrow keys to select the disk you want to look at, and press Return.

3) The program will then display all the files in the main directory of that disk. Subdirectories are
indicated by a slash at the end of the filename, i.e. UTILITIES/. Selecting a subdirectory will then
list all the files in that subdirectory. You can back out of a given subdirectory by pressing the
Escape key.

4) When you see the file whose type you want to change, press the number key and press Return.

5) The program will then display the current filetype of that file showing both abbreviated file code and
hex filetype. For example, an Applesoft BASIC file would be listed with a file code BAS and a
filetype of $FC.

6) You can enter the new filetype you want as either the "official" file code, such as BIN, S 16, etc., or
the hex code, such as $FF. If entering the hex code, you must include the dollar sign at the
beginning of the number.

7) After the change, the new file code and type will be displayed. Pressing a key will return to the
Main Menu. At that point you can either exit to BASIC, a program selector, or select another file
to change.

NOTE: The file codes and types are all contained in DAT A statements within the Type.Changer
program. These may be added to or edited as you desire to support new and/or custom file types.

ADDITIONAL MERLIN 8/16 RESOURCE FILES

The Merlin 8/16 disks contain a number of source files for your reference including PUT file examples,
general macros that can be used in any program, Classic Desk Accessories, and Toolbox macros for the
Ilgs. These files are provided as resource material and can be helpful in understanding how these tools
are designed and implemented.

Page 215

Merlin 8/16 User's Manual

INDEX
"!",Exclusive OR 81
"&",Logical AND 81
"/ (, - .",in Macros 131

. '
"f',

as a logical OR 77, 81

to abort a Change 38
Division operator 81
Editor - to List from last line 46, 69, 72
Editor - to abort List 42
in file names 18
to abort a Find 39
Line Range Delimiter 36, 37, 61, 62
in Macros 131
Sourceror (Cancel) 189

* for Comments 5, 77, 78
. (period),

Listings 46, 69, 72
in Macros 131

256 Externals 183

A

A:Append File 19
About the Assembler Documentation 75
About the Command Mode Documentation 36
About the Command Box Documentation 61
About the Linker Documentation 138
Absolute addresses, and Linker 140, 144, 151
Accumulator mode addressing 83-85
Add/Insert Mode Editing Commands 5-7, 8-9,
37,63, 72
Addition operation, in operands 81
Addressing Modes 83-85
ADR 111

Linker command 152
ADRL 111
ALI 159
All text, to select 29, 34, 57, 71
AND operation, in operands 81-82
Angle brackets in Documentation 36, 61
Append a file 19

Page 216

Apple Keys (0)
OA 9, S2, 71
OB 27, 34, S2, 71
OC 52, 71
OD 27, 34, S3, 71
OE 27, 34, S3, 71
OF 28, 34, S4, 71
OH S4, 71
01 28, 34, SS, 71
OL 28, 34, SS, 71
ON 29, 34, S5, 71
00 8, 5S, 71
OQ 8, 12, 29, 34, S5, S8, 71
OR 29, 34, S6, 71
OT 30, 34, S6, 71
ov 30, 34, S6, 71
ow 30, 34, 56, 71
ox 30, 34, S7, 71
OY 31, 34, S7, 71
oz 30, 34, S7, 71
0 Up 31,34,S8, 71
0 Down31, 34,58, 71
0 Right71
0 DEL 31, 34, 57, 71
0 TAB 31, 34, 55, 58, 71
0 - 31, 34, 60, 71
0 = 31, 34, 60, 71
01 S8, 71
02 59, 71
03 59, 71
04 59, 71
06 59, 71
08 32, 34, 59, 71
09 32, 34, 71
• 60, 71

Applesofl source listing 192
APW to Merlin Converter 198-205
Arithmetic and Logical Expressions 81-82
ASC 107

Index

r Merlin 8/16 User's Manual

Assembler,
to Pause 121, 123
Pseudo Opcode Descriptions 87
Syntax Conventions 77, 83

Assembling large files, and PUT, SAV, DSK
93-96, 98-99, 100-101, 147-148, 152, 153,
155-157

Assembly 9-11, 47, 52, 63, 73
ASM,

Command 9-11,47,63, 72
and PRTR 43-44, 47, 66, 72
Linker command file 151, 152

AST 103
Asterisks (*),

Comments 5, 77, 78
Line of in a comment 31, 34, 59, 71, 103

Auto edit 73, 197

B

Back-up copies of Merlin 3
Backing up Program Counter (DS) 89, 112
Backwards DELETE, in EDIT mode 26, 33, 50,

70 (see also Control-D)
Bad,

Address mode 179
Branch 179
External 179
Input 179
Label 179
OBJ 179
Opcode 179
ORG 179
PUT 180
REL 180
SAV 180
Variable 180

Beginning, move to,
of line of text 24, 33, 48
of source file 27, 34, 52

Bell, turning off 167, 172
BINary files 12, 13, 17

Binary numbers 80
BGE opcode 86
BLOAD 14, 19, 20, 21, 89
Block cursor 24, 26, 49, 167
BLT opcode 86
Branching,

to Variables and Local Labels 79, 86
BRK 180
BRUN 19, 20, 21
BSAVE19
Bugs, common cause of 87
Building Expressions 81-82

c

C: Catalog 17-18
pause 17-18

CALL 14
Case sensitive labels 88
Center screen 30, 57
Change 38
Change drive 19
Change ProDOS filetype 214-215
Change Word 39
Changing Printfiler's Options 213-214
Changing Sourceror's Label Table 191
Character case change 24, 33, 49, 62
Character insert mode 24, 26, 33, 49, 70
Characters per line 34, 63, 73, 77, 167, 170,

172
Checksum, in object code 119-120
CHK 119-120
Classic Desk Accessories 197
Clipboard 30, 34, 52, 73
Clock 197
Command box 8, 55, 61
Command mode (Merlin 8) 15, 34, 36
Command summary 33-34, 70-72
Comments 5, 77
Comment length 34, 63, 73
Conditional Assembly 82-83, 116-118, 151,

152

Index

Page 217

Merlin 8/16 User's Manual

Conditional Pseudo Ops 114-118
Configuration 4, 72, 166
Control characters 25, 33, 49, 70

Control-B (go to line begin) 24, 33, 70
Control-C,

during Catalog Command 17
to abort assembly 33, 47, 48, 70, 73
to abort List 42
to abort a Change 38
to abort a Find 39
or Control-X (to cancel lines) 34

Control-D (delete) 9, 24, 33, 49, 70
LST ON/OFF 4 7

Control-F (find) 24, 33, 49, 70
Control-I (insert) 24, 26, 33, 49, 70
Control-L 24, 33, 49, 70
Control-N (go to line end) 25, 33, 49, 70
Control-0 (insert "other" character) 25, 33,

49, 70
Control-R (restore line) 25, 33, 70
Control-S (status box) 25, 50, 70
Control-T 25, 33, 50, 70
Control-W 25, 33, 50, 70
Control-X (to Cancel global exchange) 25,

33,50, 70
Control-Y 25, 33, 50, 70
Control-Y, to return to Main Menu 15

Conv .Ink.rel 198
Converter, APW to Merlin source 198-205
Copy,

Command Mode, Editor 38
Full Screen Editor 52, 71

Copying Merlin 3
Cursor keys 26, 31
Cursors,

appearance/types 24, 26, 49, 70, 167
moving 26, 33, 50

Customizing Merlin 4, 72, 166
Cut 30, 33, 56, 57
CW (Change Word) 39
CYC 103-104
Cycle times, 103-104

Page 218

column to print 167, 172

D

Disk Commands 19
D:Drive Change 19
DA 110
DAT 104, 153
Data,

definition of 76
immediate 76, 83
string 74, 107-109
storage 110-113
tables in programs 113

Data and Storage Allocation Pseudo Ops 76
Date, to set 22
DB 110
DCI 108
DDB 110
Decimal numbers 80
Defining,

a keyboard macro 209-211
a local label 78-79
a local variable 79
a Macro 127, 128-132, 133-134

Delete,

Index

characters in a line 9, 24, 26, 33, 49, 50, 70
lines in Editor Command Mode 39
lines in Full Screen Editor 9, 27, 52
to end ofline 25, 33, 50
entire Source File (New) 21, 43, 65
files on disk 19

Delete key 26, 33, 50, 70
Delimited Strings, 37, 61, 76

as an operand 76
DEND 102
DFB 110
Dictionary full 180
Disassembling,

raw object code (Sourceror) 184-191

Merlin 8/16 User's Manual

Disk files,
names - see "filenames"
renaming 19

Division operation, in operands 81
DO 114
DOS 3.3 teclmical information 164
Drive change 19
DS 90, 112

and Linker 112, 139, 143, 159
DSK 90, 100

and the Linker 147, 149, 155-156
OUM 101
Duplicate symbol 146, 180
Duplicating Merlin disk 3
ow 110

E

Edit command 38
Edit Mode Commands 33-34, 70-72
Editor 5-8, 21
Edmac 35, 73, 209-211
ELSE 114
END 101, 153
End of line,

marker 23, 48
move to 25, 33, 49

End of source, move to 29, 34, 55
ENT 88, 141, 142, 153
EOM or <<< 127
EQU (=) 87
ERR 120

andLinker 120-121, 139, 143
ERR: Memory Full 181
Error Messages (general) 179-183
Escape 26,33,50, 70
Evaluation of expressions 45, 69, 72, 81
Exchange, global 27, 34, 53
EXCLUSIVE OR operation, in operands 81-82
EXP ON/OFF/ONLY 104
EXT 141, 153
Expressions Allowed by the Assembler 81-83

F

Fast keys 50
Filenames,

ASM 151
OSK 90, 91, 100-101, 147, 155-156, 161
LIB 154
Link 144
Linker command files 154-155
Linker name files 144-145, 148-149
LNK 147, 152, 155-156
Multiple LNK files 160
object 12, 13, 14, 19, 2
OVR 152
PUT 77, 93-96, 152
Quick Link 159-160
REL 147, 155-156, 161
SA V 90, 92, 98-99, 153
source 12, 13, 18, 19, 21, 22, 77
USE 77, 97, 136

Filetype mismatch error 146, 180
FIN 115
Find,

a character 24, 33, 49, 70
a string 25, 28, 39, 54, 71
a word 25, 28, 30, 39, 40, 50, 54, 56

Index

Find and Replace (global exchange) 25, 27, 34,
38, 53

FIX 40, 63, 72
FLS 108
Forced Assembly Errors 120, 121, 143
Forrnfeed, printer 166, 170
FW (Find Word) 40
Format error 180
Formatter 208-209
Formatting Pseudo Ops 103-106
Full Screen Editor,

commands 8-9
Merlin 8 23-35
Merlin 16 48-60
entering 5, 21, 23, 48
quitting 7, 44, 66, 71

Page 219

Merlin 8/16 User's Manual

G

GET 15, 41, 64, 72
GET Command, and Linked files 146
GlobalExchange 25,27,34,38,53
GS Linker 158, 161-162, 163

H

Half-screen editing 54
H (Hex) 187
Hard disks 170
HEX 111
Hex-Dec Conversion 41, 64
Hex data 80, 107, 110

I

IF 115
Illegal,

char in operand 180
file type 181
forward reference 181
relative adrs 181

Initialization string, for printer 43, 66, 175
Insert,

with TAB key 24, 26, 28, 49, 50
character mode 9, 26, 49, 50
lines 8, 26,28, 55, 58
control characters 25, 49

Integer division, in operands 81
Inverse spaces 44, 67
Immediate Data Syntax 80, 83
Immediate Data vs. Addresses 80
INV 108

K

KBD 121
Keyboard input during assembly 121
Keymac 35, 209-211
KND 159

Page 220

L

L (list - Sourceror) 187
L: Load Source 18
Labels,

proper form of 6, 77
length 77
tables, changing Sourceror's 191
case sensitivity 88
jump to 28, 34, 55, 70

LENgth 42
LIB 154
Line length 34, 73, 78
Line numbers,

in Command box 62
in Command mode 36

Lines of text,
to delete 9, 27, 31, 34, 39, 52, 57, 70
to insert 9, 18, 28, 33, 34, 55, 70
to replace 25, 29, 30, 34, 50, 56, 70

Lines per page 166, 170
Link 72, 139
Linker 137-163

and DS opcode 139, 142
andDSKopcode 147-149
and ENT opcode 138, 142
and ERR opcode 139, 143
and EXT opcode 138, 141
and ORG opcode 144, 152
and REL opcode 138, 140-141
and SAY opcode 153
File Names 144-145

Linking process 146
List 8, 41, 64, 72

and PRTR 43
from last listed line 46, 69, 72
from last specified line 46, 72
to printer, formatted 41, 64, 72
to screen, formatted 41, 64, 72
without line numbers 43, 66, 72
to abort 41
to pause 41

Index 1

Merlin 8/16 User's Manual

Listing,
CYCLE times 103-104, 167, 172
DO OFF 114, 167, 172
Macros 104
limiting bytes printed in 167, 172

LKV 154
LNK 152
Load a source file 18
Local Labels, Global Labels & Variables 78-80
Local Variables,

defining 79-80
and PUT files 96

Locate a label or line 28, 34, 55
Lock file on disk 19
Logical operations, in operands 81
Lower case/upper case,

to change 24
in labels 88

LST ON/OFF 105
LSTDO or LSTDO OFF 105
LSTDO, configuring 167, 172
LUP 122

M

MAC 127
Macgen (utility) 200-202
Macros 127-136

defining 127, 128-132, 133-134
and PUT files 96
libraries, and USE opcode 97, 136
libraries, provided with Merlin 136
listings 104
nested 134
Pseudo Ops for, 127-129
variables 129-133

Main menu 5, 17, 55
Making Back-up Copies of Merlin 3
Make dwnp 211
Markers 28-29, 55, 56
Maximum,

length of comments 34, 63, 73

length of labels 77
Memory,

IN USE 146, 182
full 181

full error, in Sourceror 191
status 25, 33, 50, 70
use by Merlin 166

Merlin,
Memory Map 176-178
internal entry points 124

Misalignment error 182
Miscellaneous Pseudo Ops 119-126
Mistakes, fixing 25, 29, 34 (see also
Control-R and cjR)
MONitor 42, 65, 72
MOVE 42 (see Cut, Copy & Paste)
Moving,

the cursor 26, 33, 48, 49, 50
text 29, 42

Multiple input LNK files 160
Multiple output files 157
Multiplication operation, in operands 81
MX 84, 123

N

N (Normal - Sourceror) 187
Nesting error 182
Nested Macros 134
New 21, 43, 65, 72
Not macro error 182
Not resolved error 146

Index

Nwnber Format (Binary, Decimal, Hex) 80

0

0: Object Save Command 12, 21
command, and Linker 146, 153

0 (ORG - Sourceror) 187
OBJ 92
Object code 13, 21
Online command 19, 20

Page 221

l

Merlin 8/16 User's Manual

Opcode and Pseudo Opcode Conventions 78
Operand and Comment Length Conventions 78
OR operation, in operands 81-82
ORO 6, 21, 89

and the Linker 91, 152
Out of Memory 21, 182

p

PAO 106
Page Header, in listing 106
Parentheses,

and Precedence in Expressions 82
PARMS file 4, 34, 55, 72, 170
Paste 30, 34, 56
Pathnames 77
PAU 123
Personalizing Merlin 4, 72, 166
PFX 19, 20
PMC or »> 128
Precedence, in operand expressions 82
Prefix, ProDOS 13, 19, 20
Preliminary Definitions 75-76
Primitive expressions 81
Print command,

and PRTR 43, 59, 66
without line numbers 43, 66

Printer,
slot#, in PRTR command 43, 66
string, in PRTR command 43, 175
to print Catalog 17

Printfiler 211-214
PRinTeR 43, 59, 66, 175 (see also TTL, pg

106; PAO, pg 106)
ProDOS technical information 168
PUT 93-96, 137

linker command 152

Q

Q (Quit),
to BASIC or program selector 22, 66

Page 222

to Main Menu 7, 44, 72
Sourceror 187

Quick Link 159

R

R: Read Text File 21
R (Read - Sourceror) 188
Range Error 183
REL Files 91, 92, 140

and the ERR Pseudo Op 143
and the Linker 112
and OBJ opcode 91

Relative expressions, and Linker 140
Renaming disk files 19
Replace 29, 56
Restoring lines in Edit mode 25
Return key 18, 33, 70
REV 108
Reversed string data 108
RTS return to Merlin 6
Running a program 14

s

S: Save source file 10, 13
SA V 90, 98, 153
".S",

suffix in file names 10, 18, 96, 97
Select all text 29
Semicolon,

for comments 6
in macros 131

SKP 106
Slot 19, 20
Source code format 7, 77-78
Sourceror,

Merlin 8 184-191
Merlin 16 189
XL version 189

Spaces in a text line 7
Special macro variables 129-133

r

Index

r

Merlin 8/16 User's Manual

Split screen editing 54
Status, memory 25, 33, 50, 70
STR 109
String Delimiters 37, 61
Suggested reading 2-3
SW 123
Sweet 16 85, 123
SYM 67, 72
Symbol table, description of 10-11, 165
Syntax error 183
Syntax, Source code 7, 75, 77
System requirements 1

T

T (Text - Sourceror) 188
TAB Key 18, 24, 26, 33, 50, 70
Tabs,

to set Tabs 44, 67, 72, 167, 172
to zero Tabs 21, 67, 72
and word processing text files 44, 67

Technical Information 164-178
TEXT 44, 67, 172
Text files 17, 21
Text, select all 29, 57
TR ON/OFF/ADR 106
TRuncOFf 44, 68, 72
TRuncON 45, 68, 72
TTL 106 (see PRTR also)
Two Externals 183
Txted 73, 214
TYP 99, 153
Type.Changer (utility) 214-215

u

Ultraterm information 165
Undo (fixing mistakes) 29, 34, 56, 73
Unknown Label 183
Unlocking files 19
Unnew 68, 72
Upper case I lower case,

to change 24, 37
labels 88

USE, 97
and Macro Libraries 97

USER 45, 68, 72
USR 97, 124-125
Using Sourceror 184-191
Utilities 197-215

v

VAL 45, 69, 72
Value of labels 45
VAR 98
Variables 79-80, 98, 115, 122, 131, 135
VER 159
Vertical Tabs 30, 33, 34, 56, 70, 71
VIDeo 45, 69

w

W: Write Text File, 21
W (Word - Sourceror) 189
W 0 command 46, 69
Word find 25, 28, 30, 39, 40, 50, 56
Where 45, 69, 72
Why Macros? 127
Why a Linker? 137
Wild Cards,

in Delimited Strings 37
character, changing the 167

Word processing text files 44, 67

x

xc 84, 123
XREF 205-207
XREFA 208

Index

Page 223

Merlin 8/16 User's Manual

z

Zero Page Addresses used by Merlin for USR
commands 124

Zero page addressing, forced 85

Page 224

Index r

r

r

I
ASCII Character Chart

Hex Dec Binary Hex Dec Binary ASCII Character
$00 0 0000 0000 $80 128 1000 0000 A(! NUL Null
$01 1 0000 0001 $81 129 1000 0001 AA SOH start of heading
$02 2 0000 0010 $82 130 1000 0010 AB STX start of text
$03 3 0000 0011 $83 131 1000 0011 AC ETX End of text
$04 4 0000 0100 $84 132 1000 0100 AD EOT End of transmission
$OS s 0000 0101 $8S 133 1000 0101 AE ENO Enquiry
$06 6 0000 0110 $86 134 1000 0110 AF ACK Acknowledge
$07 7 0000 0111 $87 135 1000 0111 AG BEL Bell
$08 8 0000 1000 $88 136 1000 1000 AH BS Backspace
$09 9 0000 1001 $S9 137 1000 1001 AI HT Horiz. TAB
$0A 10 0000 1010 $SA 13S 1000 1010 AJ LF Linefeed
$OB 11 0000 1011 $SB 139 1000 1011 AK VT Up Arrow
$0C 12 0000 1100 $SC 140 1000 1100 AL FF Formfeed
$OD 13 0000 1101 $SD 141 1000 1101 AM CR Return
$OE 14 0000 1110 $8E 142 1000 1110 AN so Shift out
$OF 15 0000 llll $8F 143 1000 1111 AO SI Shift in
$10 16 0001 0000 $90 144 1001 0000 AP DLE Data link escape
$11 17 0001 0001 $91 14S 1001 0001 Ao DCl XON
$12 lS 0001 0010 $92 146 1001 0010 AR DC2 AUXON
$13 19 0001 0011 $93 147 1001 0011 AS DC3 XOFF
$14 20 0001 0100 $94 14S 1001 0100 AT DC4 AUXOFF
$1S 21 0001 0101 $9S 149 1001 0101 Au NAK Negative Ack. (Right Arrow)
$16 22 0001 0110 $96 150 1001 0110 Av SYN synchronous file
$17 23 0001 0111 $97 151 1001 0111 Aw ETB End of transmission block
$1S 24 0001 1000 $9S 152 1001 1000 Ax CAN Cancel line
$19 25 0001 1001 $99 153 1001 1001 Ay EM End of medium
$1A 26 0001 1010 $9A 154 1001 1010 AZ SUB Substitute
$1B 27 0001 1011 $9B 15S 1001 1011 A [ESC Escape
$1C 2S 0001 1100 $9C 1S6 1001 1100 A\ FS File or form separator
$1D 29 0001 1101 $9D 157 1001 1101 AJ GS Group separator
$1E 30 0001 1110 $9E lSS 1001 1110 RS Record separator
$1F 31 0001 1111 $9F 159 1001 1111 us Unit separator
$20 32 0010 0000 $AO 160 1010 0000 space
$21 33 0010 0001 $Al 161 1010 0001 !
$22 34 0010 0010 $A2 162 1010 0010
$23 3S 0010 0011 $A3 163 1010 0011 #
$24 36 0010 0100 $A4 164 1010 0100 $
$2S 37 0010 0101 $AS 165 1010 0101 ' $26 3S 0010 0110 $A6 166 1010 0110 &
$27 39 0010 0111 $A7 167 1010 0111
$2S 40 0010 1000 $AS 16S 1010 1000
$29 41 0010 1001 $A9 169 1010 1001
$2A 42 0010 1010 $AA 170 1010 1010 *
$2B 43 0010 1011 $AB 171 1010 1011 +
$2C 44 0010 1100 $AC 172 1010 1100
$2D 4S 0010 1101 $AD 173 1010 1101
$2E 46 0010 1110 $AE 174 1010 1110
$2F 47 0010 1111 $AF 175 1010 1111 I
$30 48 0011 0000 $BO 176 1011 0000 0
$31 49 0011 0001 $Bl 177 1011 0001 1
$32 so 0011 0010 $B2 17S 1011 0010 2
$33 51 0011 0011 $B3 179 1011 0011 3
$34 52 0011 0100 $B4 lSO 1011 0100 4
$35 53 0011 0101 $BS lSl 1011 0101 s
$36 54 0011 0110 $B6 182 1011 0110 6
$37 SS 0011 0111 $B7 1S3 1011 0111 7
$38 S6 0011 1000 $BS 1S4 1011 1000 s
$39 S7 0011 1001 $B9 1S5 1011 1001 9
$3A SS 0011 1010 $BA 1S6 1011 1010
$3B 59 0011 1011 $BB 1S7 1011 1011
$3C 60 0011 1100 $BC 18S 1011 1100 <
$3D 61 0011 1101 $BD 1S9 1011 1101
$3E 62 0011 1110 $BE 190 1011 1110 >
$3F 63 0011 1111 $BF 191 1011 1111 ?

,

$40 64 0100 0000 $CO 192 1100 0000 @

$41 6S 0100 0001 $Cl 193 1100 0001 A
$42 66 0100 0010 $C2 194 1100 0010 B
$43 67 0100 0011 $C3 19S 1100 0011 c
$44 68 0100 0100 $C4 196 1100 0100 D
$4S 69 0100 0101 $CS 197 1100 0101 E
$46 70 0100 0110 $C6 198 1100 0110 F
$47 71 0100 0111 $C7 199 1100 0111 G

$48 72 0100 1000 $CB 200 1100 1000 H
$49 73 0100 1001 $C9 201 1100 1001 I
$4A 74 0100 1010 $CA 202 1100 1010 J

$4B 7S 0100 1011 $CB 203 1100 1011 K
$4C 76 0100 1100 $CC 204 1100 1100 L
$4D 77 0100 1101 $CD 20S 1100 1101 M

$4E 78 0100 1110 $CE 206 1100 1110 N
$4F 79 0100 1111 $CF 207 1100 1111 0
$SO 80 0101 0000 $DO 208 1101 0000 p

$Sl 81 0101 0001 $Dl 209 1101 0001 a
$S2 82 0101 0010 $D2 210 1101 0010 R
$S3 83 0101 0011 $D3 211 1101 0011 s
$S4 84 0101 0100 $D4 212 1101 0100 T
$55 8S 0101 0101 $DS 213 1101 0101 u
$S6 86 0101 0110 $D6 214 1101 0110 v
$S7 87 0101 0111 $D7 21S 1101 0111 w
$58 88 0101 1000 $D8 216 1101 1000 x
$S9 89 0101 1001 $D9 217 1101 1001 y

$SA 90 0101 1010 $DA 218 1101 lQlO z
$SB 91 0101 1011 $DB 219 1101 1011 (

$SC 92 0101 1100 $DC 220 1101 1100 \
$SD 93 0101 1101 $DD 221 1101 1101 l
$SE 94 0101 1110 $DE 222 1101 1110
$SF 9S 0101 1111 $DF 223 1101 1111
$60 96 0110 0000 $EO 224 1110 0000

-;--

$61 97 0110 0001 $El 22S 1110 0001 a
$62 98 0110 0010 $E2 226 1110 0010 b
$63 99 0110 0011 $E3 227 1110 0011 c
$64 100 0110 0100 $E4 228 1110 0100 d
$6S 101 0110 0101 $ES 229 1110 0101 e
$66 102 OllO 0110 $E6 230 1110 0110 f
$67 103 0110 0111 $E7 231 lllO 0111 g
$68 104 OllO 1000 $E8 232 1110 1000 h
$69 lOS 0110 1001 $E9 233 1110 1001 i
$6A 106 OllO 1010 $EA 234 1110 1010 j
$6B 107 0110 1011 $EB 235 1110 1011 k
$6C 108 0110 1100 $EC 236 1110 1100 1
$6D 109 0110 1101 $ED 237 1110 1101 m
$6E 110 0110 1110 $EE 238 1110 1110 n
$6F 111 0110 1111 $EF 239 1110 1111 0

$70 112 0111 0000 $FO 240 1111 0000 p
$71 113 0111 0001 $Fl 241 1111 0001 q
$72 114 0111 0010 $F2 242 1111 0010 r
$73 llS 0111 0011 $F3 243 1111 0011 s
$74 116 0111 0100 $F4 244 1111 0100 t
$7S 117 0111 0101 $FS 24S 1111 0101 u
$76 118 0111 0110 $F6 246 1111 0110 v
$77 119 0111 0111 $F7 247 1111 0111 w
$78 120 0111 1000 $F8 248 1111 1000 x
$79 121 0111 1001 $F9 249 1111 1001 y
$7A 122 0111 1010 $FA 2SO 1111 1010 z
$7B 123 0111 1011 $FB 2Sl 1111 1011
$7C 124 0111 1100 $FC 2S2 1111 1100
$70 12S 0111 1101 $FD 2S3 1111 1101
$7E 126 0111 1110 $FE 254 1111 1110
$7F 127 0111 1111 $FF 255 1111 1111 Delete/rubout

