

APPLE@ BASIC:
DATA FILE PROGRAMMING

More than a million people have learned to program, use, and enjoy microcomputers
with Wiley paperback guides. Look for them all at your favorite bookshop or
computer store:

BASIC, 2nd ed., Albrecht, Finkel, & Brown
BASIC for Home Computers, Albrecht, Finkel, & Brown
IRS-80 BASIC, Albrecht, Inman, & Zamora
More IRS-80 BASIC, Inman, Zamora, & Albrecht
AIARI BASIC, Albrecht, Finkel, & Brown
Data File Programming in BASIC, Finkel & Brown
Data File Programming for the Apple Computer, Finkel & Brown
AIARI Sound & Graphics, Moore, Lower, & Albrecht
Using CP/M, Fernandez & Ashley
Introduction to 8080/8085 Assembly Language Programming, Fernandez & Ashley
8080/Z80 Assembly Language, Miller
Personal Computing, McGlynn
Why Do You Need a Personal Computer? Leventhal & Stafford
Problem-Solving on the IRS-80 Pocket Computer, Inman & Conlan
Using Programmable Calculators for Business, Hohenstein
How to Buy the Right Small Business Computer System, Smolin
The IRS-80 Means Business, Lewis
ANS COBOL, 2nd ed., Ashley
Structured COBOL, Ashley
FORIRAN IV, 2nd ed., Friedmann, Greenberg, & Hoffberg
Job Control Language, Ashley & Fernandez
Background Math for a Computer World, 2nd ed., Ashley
Flowcharting, Stern
Introduction to Data Professing, 2nd ed., Harris

APPLE@) BASIC:
DATA FILE PROGRAMMING

LEROY FINKEL

San Carlos High School

and

JERALD R. BROWN

Educational Consultant

John Wiley & Sons, Inc.

New York • Chichester • Brisbane • Toronto • Singapore

Publisher: Judy V.Wilson
Editor: Dianne Littwin
Composition and Make-up: Trotta Composition

Copyright © 1982, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work
beyond that permitted by Sections 107 or 108 of the 1976
United States Copyright Act without the permission of
the copyright owner is unlawful. Requests for permission
or further information should be addressed to the
Permissions Department, John Wiley & Sons, Inc.

Library of Congress Cataloging in Publication Data

Finkel, LeRoy.
Apple BASIC, data file programming.

(Wiley self-teaching guides)
Includes index.
1. Basic (Computer-program language) 2. Apple

computer-Programming. I. Brown, Jerald, 1940-
II. Title. III. Series: Self-teaching guide.
QA76.73.B3F52 001.64'24 81-13100
ISBN 0-471-09157-X

Printed in the United States of America

82 83 10 9 8 7 6 5 4 3 2 1

How To Use This Book

When you use the self-instruction format in this book, you will be actively involved in
learning data file programming in APPLESOFT BASIC. Most of the material is
presented in sections called frames, each of which teaches you something new or
provides practice_ Each frame also gives you questions to answer or asks you to
write a pmgram or program segment.

You will learn best if you actually write out the answers and try the programs
on your APPLE II computer (with at least one disk driv.e). The questions are carefully
designed to call your attention to important points in the examples and explanations
and to help apply what is being explained or demonstrated.

Each chapter begins with a list of objectives - what you will be able to do after
completing that chapter. At the end of each chapter is a self-test to provide valuable
practice.

The self-test can be used as a review of the material covered in the chapter. You
can test yourself immediately after reading the chapter. Or you can read a chapter,
take a break, and save the self-test as a review before you begin the next chapter. At
the end of the book is a final self-test to assess your overall understanding of data me
programming.

This book is designed to be used with an APPLE computer close at hand. What
you learn will be theoretical only until you actually sit down at a computer and apply
your knowledge "hands-on." We strongly recommend that you and this book get
together with a computer! Learning data me programming in BASIC will be easier
and clearer if you have regular access to a computer so you can try the examples and
exercises, make your own modifications, and invent programs for your own purposes.
You are now ready to teach yourself to use data mes in BASIC.

v

Preface

This text will teach you to program data fIles in APPLESOFT BASIC. As a pre­
requisite to its use, you should have already completed an introductory course or
book in BASIC programming and be able to read program listings and write simple
programs: This is not a book for the absolute novice in BASIC. You should already
be comfortable writing your own programs that use statements including string vari­
ables, string functions, and arrays. We do start the book with a review of statements
that you already know, though we cover them in more depth and show you new ways
to use them.

The book is designed for use by readers who have little or no experience using
data fIles in BASIC (or elsewhere, for that matter). We take you slowly and carefully
through experiences that "teach by doing." You will be asked to complete many
programs and program segments. By doing so, you will learn the essentials and a lot
more. If you already have data fIle experience, you can use this book to learn about
data fIles in more depth.

The particular data fIles explained in this text are for APPLESOFT BASIC. Data
fIles in other versions of BASIC will be similar, but not identical, to those taught in
this book. * You will find this book most useful when used in conjunction with the
reference manual for your computer system.

Data fIles are used to store quantities of information that you may want to use
now and later; for example, mailing addresses, numeric or statistical information, or
tax and bookkeeping data. The examples presented in this book will help you use
fIles for home applications, for home business applications, and for your small
business or profession. When you have completed this book, you will be able to
write your own programs, modify programs purchased from commercial sources, and
adapt programs using data fIles that you find in magazines and other sources.

*For programming data files in TRS-80 BASIC, MICROSOFT BASIC-80, and Northstar BASIC,
read our other book, Data File Programming in BASIC, Finkel, LeRoy and Brown, Jerald R.,
John Wiley & Sons, Inc., Self·Teaching Guide, N.Y., 1981.

vii

Contents

Chapter 1 Writing BASIC Programs for Clarity, Readability,
and Logic

Chapter 2 An Important Review of BASIC Statements 15

Chapter 3 Building Data Entry and Error Checking Routines 49

Chapter 4 Creating and Reading Back Sequential Data Files 79

Chapter 5 Sequential Data File Utility Programs 134

Chapter 6 Random Access Data Files 198

Chapter 7 Random Access File Applications 252

Final Self-Test 281

Appendix A ASCII Chart Code 294

Appendix B List of Programs 296

Index 302

ix

CHAPTER ONE

Writing BASIC Programs for
Clarity, Readability, and Logic

Objectives: When you have completed this chapter you will be able to:

1. describe how a program can be written using a top-to-bottom format.
2. write an introductory module using REMARK statements.
3. describe seven rules to write programs that save memory space.

INTRODUCTION

This text will teach you to use data files in APPLESOFT BASIC. You should have
already completed an introductory course or book in BASIC programming, and be able
to read program listings and write simple programs. This is not a book for the abso­
lute novice in BASIC, but is for those who have never used data files in BASIC (or
elsewhere, for that matter). The particular data files explained in this text are for the
APPLE II computer and the BASIC languages found on it.

Data files in other versions of BASIC and for other computers will be similar,
but not identical, to those in this book. (If you are using a computer other than the
APPLE II, you may want to read Data Files Programming in BASIC, available at your
local computer store or bookstore.) You will find this text most useful when used
in conjunction with the APPLE II reference manuals and the Disk Operating System
(DOS) Manual: It is not a substitute for your careful reading of the APPLE II DOS
Manual, though the workings of sequential and random access files are explained here
in far more depth and with more examples.

Since it is assumed you have some knowledge of programming in BASIC and have
practiced by writing small programs, the next step is for you to begin thinking about
program organization and clarity. Because data file programs can become fairly large
and complex, the inevitable debugging process - making the program actually work
- can be proportionately complex. Therefore, this chapter is important to you be­
cause it provides some program organization methods to help make your future
programming easier.

2 APPLE BASIC: DATA FILE PROGRAMMING

THE BASIC LANGUAGE

The computer language called BASIC was developed at Dartmouth College in the early
1960s. It was intended for use by people with little or no previous computer experi­
ence who were not necessarily adept at mathematics. The original language syntax
included only those functions that a beginner would need. As other colleges, computer
manufacturers, and institutions began to adopt BASIC, they added embellishments to
meet their own needs. Soon BASIC grew in syntax to what various sources called
Extended BASIC, Expanded BASIC, SUPERBASIC, XBASIC, BASIC PLUS, and so on.
Finally, in 1978 an industry standard was developed for BASIC, but that standard was
for only a "minimal BASIC," as defined by the American National Standards Institute
(ANSI). Despite the ANSI standard, today we have a plethora of different BASIC
languages, most of which "look alike," but each with its own special characteristics
and quirks.

In the microcomputer field, the most widely used versions of BASIC were
developed by the Microsoft Company and are generally referred to as MICROSOFT
BASICs. These BASICs are available on a variety of microcomputers but, unfortu­
nately, the language is implemented differently on each computer system. The
APPLE version of MICROSOFT BASIC is called APPLESOFT.

The programs and runs shown in this text were actually performed on an
APPLE II and an APPLE II PLUS computer using Disk Operating System (DOS) 3.3.
(They will work in DOS 3.2, as well.) We wrote all of our programs using APPLE­
SOFT BASIC. To use the programs in INTEGER BASIC, you will have to make the
usual APPLESOFT to INTEGER modifications described in your reference manual.
The file commands described in this text may be used in APPLESOFT or INTEGER
BASIC. For INTEGER BASIC you may have to modify the file input and output
statements, as described in your DOS Manual.

Where possible, we use BASIC language features that are common to all versions
of BASIC, regardless of manufacturer. We do not attempt to show off all of the
bells and whistles found in APPLES OFT BASIC, but rather to present easy-to-under­
stand programs that will be readily adaptable to a variety of computers.

THE BASIC LANGUAGE YOU SHOULD USE

Conservative Programming

Since you will now be writing longer and more complex programs, you should adopt
conservative programming techniques so that errors will be easier to isolate and locate.
(Yes, you will still make errors. We all do!) This means that you should NOT use
all the fanciest features available in APPLESOFT BASIC until you have tested the
features to be sure they work the way you think they work. Even then, you still
might decide against using the fancy features, many of which relate to printing or
graphic output and do not work the same on other computers. Some are special
functions that simply do not exist on other computers. Leave them out of your
programs unless you feel you must include them. The more conservative your pro­
gramming techniques, the less chance there is of running into a software "glitch. "

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 3

This chapter discusses a program format that, in itself, is a conservative programming
technique.

One reason for conservative programming is that your programs will be more
portable or transportable to other computers. "Why should I care about portability?"
you ask. Perhaps the most important reason is that you will want to trade programs
with friends. But do all of your friends have a computer IDENTICAL to yours?
Unless they do, they will probably be unable to use your programs without modifying
them. Conservative programming techniques will minimize the number of changes
required.

Portability is also important for your own convenience. The computer you use
or own today may not be the one you will use one year from now; you may replace
or enhance your system. In order to use today's programs on tomorrow's computer be
conservative in your programming.

Use conservative programming to:

• Isolate and locate errors more easily.
• Avoid software "glitch."
• Enhance portability.

WRITING READABLE PROGRAMS

Look at the sample programs throughout this book and you will see that they are easy
to read and understand because the programs and the individual statements are written
in simple, straight-line BASIC code without fancy methodology or language syntax. It
is as if the statements are written with the READER rather than the computer in mind.

Writing readable BASIC programs requires thinking ahead, planning your program
in a logical flow, and using a few special formats that make the program listing easier
to the eye. If you plan to program for a living, you may find yourself bound by your
employer's programming style. However, if you program for pleasure, adding readable
style to your programs will make them that much easier to debug or change later, not
to mention the pride inherent in trading a clean, readable program to someone else.

A readable programming style provides its own documentation. Such self­
documentation is not only pleasing to the eye, it provides the reader/user with suffi­
cient information to understand exactly how the program works. This style is not as
precise as "structured programming," though we have borrowed features usually
promoted by structured programming enthusiasts. Our format organizes programs in
MODULES, each module containing one major function or program activity. We also
include techniques long accepted as good programming, but for some reason forgotten
in recent years. Most of our suggestions do NOT save memory space or speed up the
program run. Rather, readability is our primary concern, at the expense of memory
space. Later in this chapter, we will present some procedures to shorten and speed
up your programs. Modular style programs will usually be better running programs
and will effectively communicate your thought processes to a reader.

4 APPLE BASIC: DATA FILE PROGRAMMING

THE TOP-TO-BOTTOM ORGANIZATION

When planning your program, think in terms of major program functions. These might
include some or all of the functions from this list:

DATA ENTRY
DATA ANALYSIS
COMPUTATION
FILE UPDATE
EDITING
REPORT GENERATION

Using our modular process, divide your program into modules, each containing
one of these functions. Your program should flow from module one to module two
and continue to the next higher numbered module. This "top-to-bottom organiza­
tion" makes your program easy to follow. Program modules might be broken up into
smaller "blocks," each containing one procedure or computation. The size or scope of
a program block within a module is determined by the programmer and the task to be
accomplished. Block style will vary from person to person, and perhaps from program
to program.

USE A MODULAR FORMAT AND TOP-TO-BOTTOM APPROACH

REMARK Statements

Separate program modules and blocks from each other using REMARK statements or
nearly blank program lines. In general, programs designed for readability make liberal
use of REMARK statements, but don't be overzealous. A nearly blank program line
can be created by typing a line number followed by a colon (150:). A line number
followed by REM (ISO REM) can also be used.

100 REM DATA ENTRY MODULE
110 REM tttt READ DATA FROM DATA STATEMENTS 9000-9090
120
130 REM
200 REM COMPUTATION MODULE
210 REM ARK

(Note: Your Apple computer will split the word REMARK into two words, as shown
in line 210. Because this looks awkward, we encourage use of the word REM in
place of the complete word.)

Begin each program module, block, or subroutine with an explanatory REM
statement (line 100 and 11 0) and end it with a nearly blank line (line 120) or blank
REM statement (line 130) indicating the end of the section.

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 5

Consistency in your use of REMs enhances readability. Use either REM or the
nearly blank line with a colon, but be consistent. Some writers use the asterisks
(****) shown in line 110 to set off REM statements containing actual remarks from
blank REM statements; others use spaces four to six places after the REM before they
add a comment (line 200). Both formats effectively separate REM statements from
BASIC code.

You can place remarks on the same line as BASIC code using multiple statement
lines, but be sure your REM is the LAST statement on the line. Such "on-line"
remarks can be used to explain what a particular statement is doing. A common
practice is to leave considerable space between an on-line remark and the BASIC code,
as shown below.

ZZO LET C(X) C(X) + U: REM ••• COUNT UNITS IN C ARRAY

Z40 LET T(X) T(X) + C(X): REM ••• INCREASE TOTALS ARRAY

Using REMs to explain what the program is doing is desirable, but don't overuse
it. (LET C = A + B does not require a REM or explanation!) REM should add
information, not merely state an obvious step.

Like everything else said in these first chapters, there will be exceptions to
what we say here. Keep in mind that we are trying to get you to think through your
programming techniques and formats a little more than you are probably accustomed
to doing. Thus, our suggested "rules" are just that - suggestions to which there will
be exceptions.

GOTO STATEMENTS

Perhaps the most controversial statement in the BASIC language is the unconditional
GOTO statement. Its use and abuse causes more controversy than any other statement.
Purists say you would NEVER use an unconditional GOTO statement such as GOTO
100. A more realistic approach suggests that all GOTOs and GOSUBs go DOWN the
page to a line number larger than the line number where the GOTO or GOSUB appears.
This is consistent with the "top-to-bottom" program organization. This same ap­
proach-down the page-also applies to using IF ... THEN statements (there will be
obvious exceptions to this rule).

140 GOTO ZIO
150 IF X (Y THEN 800
160 GOSUB 8000

A final suggestion: A GOTO, GOSUB, or IF ... THEN should not go to a state­
ment containing only a REM. If you or the next user of your program run short of
memory space you will delete extra REM statements. This, in turn, requires you to
change all of your GOTO line numbers, so plan ahead first. Some BASICs do not
even allow a program to branch to a statement starting with REM.

6 APPLE BASIC: DATA FILE PROGRAMMING

Bad Good

ISO GOTO 300 ISO GOTO 300

300 REM DATA ENTRY
310 INPUT "ENTER NAME;";NS

Z99 REM DATA ENTRY
300 INPUT "ENTER NAME;";NS

A FORMAT FOR THE INTRODUCTORY MODULE

The first module of BASIC code (lines 100 through 199 or 1000 through 1999)
should contain a brief description of the program, user instructions when needed, a
list of all variables used, and the initialization of constants, variables, and arrays.

The very first program statement should be a REM statement containing
the program name. Carefully choose a name that tells the reader what the program
does, not just a randomly selected name. After the program's name comes the author's
or programmer's name and the date. For the benefit of someone else who may like
to use your program, include a REM describing the computer system and/or
software system used when writing the program. Whenever the program is altered or
updated, the opening remarks should reflect the change.

100 REM
110 REM
lZO REM
130 REM
J40 REM
150 REM

PAYROLL SUBSYSTEM
COPYRIGHT CONSUMER PROCRAMMINC CORP. 9/82

HP ZOOO BASIC
MODIFIED FOR APPLESOFT BASIC BY J. BROWN
ON APPLE II, 48X

Follow these remarks with a brief explanation of what the program does,
contained either in REM statements or in PRINT statements. Next add user
instructions. F or some programs you might offer the user the choice of having
instructions printed or not. If instructions are long, place the request for instructions
in the introductory module and the actual printed instructions in a subroutine toward
the end of your program. That way, the long instructions will not be listed each time
you LIST your program.

J70 REM THIS PROGRAM WILL COMPUTE PAY AND PRODUCE PRINTED PAYROLL
180 REM REGISTER USINC DATA ENTERED BY OPERATOR
190 REM
ZOO INPUT "DO YOU NEED INSTRUCTIONS?";RS
ZIO IF R$ = "YES" THEN COSUB 800
ZZO REM

Follow the description/instructions with a series of statements to identify the
variables, string variables, arrays, constants, and files used in the program. Again,
these statements communicate information to a READER, making it that much easier
for you or someone else to modify the program later. We usually complete this
section AFTER we have completed the program so we don't forget to include any­
thing.

Assign a variable name to all "constants" used. Even though a constant will not
change during the run of the program, a constant may change values between runs.
By assigning it a variable name, you make it that much easier to change the value;

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 7

that is, by merely changing one statement in the program. It is a good idea to jot
down notes while writing the program so important details do not slip your mind or
escape notice. When the program has been written and tested (debugged), go back
through it, bring your notes up-to-date, and polish the descriptions in the REMs.

ZZO REM VAR lABLES USED
230 REM C=CROSS PAY
240 REM N=NET PAY
250 REM Tl=FEDERAL INCOME TAX
260 REM T2=STATE INCOME TAX
270 REM F=SOC.SEC.TAX
Z80 REM D=DISABILITY (SDI) TAX
290 REM X,Y,Z=FOR-NEXT LOOP CONTROL VARIABLE
300 REM H(X)=HOURS ARRAY
310 REM NS=EMPLOYEE NAME (20 CHAR)
320 REM PNS=EMPLOYEE NO. (S CHAR)
330 REM
340 REM CONSTANTS
350 LET FR = . 0613 : REM SOC.SEC. RATE
360 LET DR = . 01: REM SDI RATE
370 REM
3SO REM FILES USED
390 REM ITM=FEDL. TAX MASTER FILE
400 REM STM=STATE TAX MASTER FILE
410 REM

(Notice the method used to indicate string length in lines 310 and 320.)
(Notice the use of on-line remarks in lines 350 and 360.)

The final part of the introductory module is the initialization section. In this
section, dimension the size of all single and double arrays and all string arrays, even
though DIMENSION is not required by your computer. This is valuable information
for a reader. Any variables that need to be initialized to zero should be done here for
clear communication, even though your computer initializes all variables to zero auto­
matically. This section also includes any user-defined functions before they are used
in the program.

410
420
430
440
450

REM INITIALIZE

DIM H(7),R(10,13),N$(30)

REM

THE MODULES THAT FOLLOW THE INTRODUCTION

The remainder of your program consists of major function modules and subroutines
(and DATA statements, when they are used). Remember to separate each module
from others by a blank line REM statement and a remark identifying the module.
These modules can be further divided into user-defined program blocks, each separated
by a blank line REM statement.

A typical second module would be for data entry. Data can be operator-entered
from the keyboard or entered directly from DATA statements, a file, or some other device.
Chapter 3 discusses in detail how to write data entry routines with extensive error­
checking procedures to ensure the accuracy and integrity of each data item entering
the computer.

For now, we suggest that you write data entry routines so that even a completely

8 APPLE BASIC: DATA FILE PROGRAMMING

inexperienced operator would have no trouble entering data to your program. This
means the operator should ALWAYS be prompted as to what to enter and provided
with an example when necessary.

240 INPUT "ENTER TODAY'S DATE (MM/DD/YY)";DS

If data are entered from DATA statements, place the DATA statements near the
end of your program (some suggest even past the END statement) using REM state­
ments to clearly identify the type of data and the order of placement of items within
the DATA statements.

9400 REM DATA FOR CORRECT ANSWER ARRAY IN QUESTION NUMBER ORDER.
9410 REM 10 ANSWERS, MULT.CHOICE 1-5
9UO
9430 DATA 4,5,1,3,2,1,1,4,4,5
9440
9450 REM RESPONDENTS ANSWERS TO QUIZ
9460 REM DATA STATEMENT FORMAT:
9470 REM RESP. I D • FOLLOWED BY 10 RESPONSES TO QUIZ QUESTIONS
9480
9490 DATA 17642, 4,5,1,3,2,2,1,4,4,4
9500 DATA 98126, 3,5,2,3,2,1. 5 ,4,5,2
9560

You can think of DATA statements as comprising a separate program module.
The "inbetween" program modules might do computations, data handling, me reading
and writing, and report writing. Modular programming style dictates that all printing
and report generation, except error messages, be done in one program module .labeled
as such. This limits the use of PRINT statements to one easy-to-find location within
your program. (There might be more than one print module.) This makes it that
much easier for you to make subsequent changes on reports when paper forms change
or new reports are designed. In the print module your program should NOT perform
any computations except trivial ones. Make important computations BEFORE the
program executes the print module(s). This may require greater use of variables
and/or arrays to "hold" data pending report printing, but your programs will be
much cleaner and easier to debug, since everything will be easy to find in its own
"right" place.

SUBROUTINES

Program control flows smoothly from one module to the next. A well-designed
module has one entry point at its beginning and one exit point at its end. The
exception to this is a mid-module exit to a subroutine.

290
300
310
no
330
340
350
360
370

REM COMPUTATION MODULE

LET T = (V * X) I 0
LET T9 = T9 + T
GOSUB 800

REM REPORT PRINTING MODULE

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 9

A subroutine exit from a module always RETURNs to the next statement in the
module. The use of subroutines is desirable provided you don't overdo it. Some
program stylists recommend that the entire main program consist of nothing but
GOSUB statements "calling up" a series of subroutines located later in the program.
Such a technique is probably guilty of overkill. Strive for a happy medium between
the two extremes of no subroutines and nothing but subroutines.

Technically, you need use a subroutine only to avoid duplicating the same
program statements in two or more places in your program. A subroutine should be
called from MORE than one place in your program. Otherwise, why use a formal
subroutine? Program stylists now agree that subroutines enhance readability and
clarity and can be used at the convenience of the programmer (you!). However, again
the caution - don't overdo it. Use subroutines to enhance the flow and readability
of your program. Stylists also agree that subroutines should be clearly identified
using REM statements and set off from other program sections with blank
REM statements. Program stylists disagree, however, on where to place the
subroutines. There are two schools of thought. Placement of subroutines can be
either immediately past the end of the module that calls the subroutine or in one
common module toward the end of the program.

EITHER

300
310
320
330
340

REM COMPUTATION MODULE

COSUB 41 0
COSUB 460

400 REM
410

450 REM
460

330 COSUB
340 COSUB

SOD REM
810

900 REM
910

NUMBER CONVERSION SUBROUTINE

COMPUTATION SUBROUTINE

OR

810
910

NUMBER CONVERSION SUBROUTINE

COMPUTATION SUBROUTINE

10 APPLE BASIC: DATA FILE PROGRAMMING

JUST FOR LOOKS

You can do a host of things to your programs to enhance looks and clarity. These
techniques are generally called "prettyprinting." Your Apple computer automatically
performs many "prettyprinting" activities. All statement lines are evenly spaced.
Extra spaces are added to BASIC statements to enhance readability of your program,
even if you type the statements with no spaces at all. In fact, extra spaces that you
typed accidentally-or on purpose-may be deleted automatically by your Apple
computer.

Spacing

One way to make your programs look nice is to use line numbers of equal length
throughout the program. If your program is small, use line numbers 100 through 999.
If long, start the program at 1000 and continue to 9999. When your program is
listed, it will be aligned neatly. It also improves the appearance if the entire program
is incremented by steps of ten. Without a resequence command this is virtually im­
possible to do. A partial solution is to enter statements in sequence increments of
ten when you first enter your program. When you have completed the program, even
with changes, MOST of the program will still be in increments of ten. Learn how to
use the RENUMBER program that is provided on your Apple System Master diskette.
The RENUMBER INSTRUCTION PROGRAM will teach you how to renumber pro­
grams and program parts in "prettyprinting."

Other Techniques To Enhance Looks and Readability

You can do still more to make your program clearer to you and another reader. These
few ideas are the "finishing touches."

Using the LET statement, even when unnecessary, enhances readability. The
absence of LET can be confusing, especially in a multiple-statement line.

CONFUSING

Z60 X Y:C = X ~ Y: IF X N THEN X = C

BETTER

140 LET X = O:Y O:C = 0

BEST

Z60 LET X = Y: LET C = x ~ Y: IF N = X THEN LET X = C

Arrange BASIC statements so that they read smoothly from left to right, just as
the readers' eyes flow across the paper. This includes placing A before Band 1 before
2. Some stylists recommend that in IF ... THEN statements, you place the least vary­
ing variable last, as shown in lines 270 and 300 below.

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 11

150 IIEAD A,B,C

Z60 FOil I z 1 TO 8
270 IF H(X) () N THEN 290
Z80 LET H(I) = N
290 NElT I
300 IF OS • "STOP" THEN 999

If your typed statement is long, it is probably confusing, especially if it is a
mathematical equation. Break it into two or more pieces so it is easy to read. Read
the stataments aloud to test their readability.

CONFUSING

ZSO LET T (N * 3.75) + «N - 40) * 3.Z5) + lIN - 60) I 3) I «0 • N) * A)

CLEARER

2S0 LET T (N' 3.75) + ((N 40)' 3.25)
2 SOL ET T T + (I N - SO) I 3) I I I D • N) • A)

UNDOING IT ALL TO SAVE SPACE AND SPEED UP RUN TIME

After reading all these rules and ways to enhance readability, you are probably wonder­
ing how you will remember them all. Chances are you won't, but we hope we
have at least sensitized you to the need for writing clear, readable programs. You will
adopt your own typing style based on some of these techniques, plus others that you
devise for convenience.

Nearly every technique illustrated in this chapter uses what some would consider
to be unnecessary memory space. You may in fact find that your computer memory
is filled before you have completely entered your program. When this happens, either
rethink your entire problem-solving technique or look for ways to save memory space
by making changes to your program. A well-written, readable program takes up more
memory space than a poorly written, less readable program. Thus, to save memory
space, you may have to undo some of the things you did to enhance readability.

To save large numbers of memory "bytes:"

1. Use multiple statements per line.
2. Delete all REM statements beginning with the introductory module.

For further space saving:

1. Use one-letter variable names.
2. Delete unnecessary parentheses.
3. Reuse variables when possible (normally a terrible technique).
4. Dimension arrays sparingly.
5. Use GOTO, not GOSUB, for a routine accessed from only one place in a program.

12 APPLE BASIC: DATA FILE PROGRAMMING

If you are concerned about the speed of your program run, you can use some
techniques to shave microseconds, even seconds, off the run time. Some of these
overlap with the space-saving techniques.

1. Delete all REMs and/or move the introductory module to the end.
2. Use multi-statement lines.
3. Use variables rather than constants (as recommended earlier).
4. Define the most commonly used variables first.
5. Place subroutines before the main program.
6. Use FOR NEXT loops whenever possible.
7. Remove extra parentheses.
8. Limit the use of GOSUBs.

Remember, these techniques may speed up your run, but they are generally
considered to be bad programming techniques and contrary to nearly everything said
in this chapter.

I:o save space and lessen distraction we have not followed ALL the rules suggest­
ed in this chapter in the rest of this book. However, you will still find our programs
easy to read and self-documenting.

CHAPTER 1 SELF -TEST

1. Will a useful program written in BASIC on one computer system also RUN on a
different brand of computer that uses BASIC? Why or why not?

2. How can you be most certain that a program you write will also run on another
person's computer?

3. What is meant by the portability of a computer program?

WRITING BASIC PROGRAMS FOR CLARITY, READABILITY, AND LOGIC 13

4. Name at least three types of information to include in REM statements in a
program's introductory module.

5. Describe the "top-to-bottom format" for organizing programs.

6. When branching statements such as GOIO and GOSUB are used, what statements
should not be branched to and why?

7. Define "initializing."

8. What is the most important reason for designating a segment of a program as a
subroutine accessed by GOSUB?

9. When writing a self-documenting, easy to read program, what sacrifices are made?

10. In a multiple statement line with three statements, the first being a REM
statement, how many statements will be executed?

14 APPLE BASIC: DATA FILE PROGRAMMING

Answer Key

1. The program might not run on a different brand of computer, because different
computers use different versions of BASIC.

2. Use conservative programming techniques and the least fancy statements in your
version of BASIC.

3. Portability means that the program is likely to run on many computers with few
or no modifications.

4. Variables used and what they stand for, fIles used, descriptive name for program,
description of program if necessary, author of program, last revision of program,
version of BASIC and/or system used. (any three answers)

5. To the extent possible, the program is written so that it begins execution at the
smallest line number and procedes toward the largest, with a minimum of con­
fusing branching within the program.

6. REM statements, in case they are removed from a program to save computer
memory space.

7. The first time in a program that value(s) are assigned to variables or elements in
an array (often means assignment of zeros); DIMENSIONING where needed.

8. The segment would otherwise have to be repeated because it is used more than
once in executing the program.

9. Amount of memory used and possibly speed of program execution.

10. None. The computer goes on to the next line numbered statement if it sees that
the first statement in the line is a REM.

CHAPTER TWO

An Important Review of
BASIC Statements

Objectives: To review important aspects of BASIC. When you finish this chapter,
you will be able to write BASIC statements using: LET, READ, DATA, INPUT,
IF ... THEN, FOR NEXT. GOSUB, RETURN, ON ... GOTO, LEN, ASC, MID$,
LEFT$, RIGHT$, and ONERR. .GOTO.

INTRODUCTION

We assume you have used BASIC to write programs and that you can read and under­
stand a listing of a BASIC program (are you BASICly literate?); this information serves
as a review. Many of the programming techniques in this and the next chapter will
be used over and over again in programming data fIles. Even masters at programming
in BASIC should give the material a quick run through. This is important information
and skill to have under your belt so that you can give your fullest attention to learning
fIle-handling BASIC statements and techniques in Chapter 4.

VARIABLE NAMES

In early versions of BASIC, the names you could choose for a variable were limited to
one letter, or one letter and one number only. A, AI, Z7, Zf/), B$, and Bl$ were all
acceptable variable names: while AA, A25, SALARY, or NAME$ were unacceptable
to the computer. In contrast, APPLESOFT BASIC and other new dialects of BASIC
permit the use of multi-letter variable names. The unacceptable variable names men­
tiones above are all acceptable in APPLESOFT BASIC, as are NETPA Y, GUESS,
OLDNAME$, and many others you may think of. The temptation to use long variable
names may be overwhelming, but beware! APPLESOFT BASIC recognizes and identi­
fies the variable using only the first two letters of the variable name. Thus, the vari­
ables SALES and SALARY are not really two variables, but rather one - SA. PAY­
MENT and PAYROLL are also really the same variable - PA - in APPLESOFT
BASIC. Be extremely cautious selecting variable names to avoid unusual errors that
are hard to detect. Also note that longer variable names take up more computer

15

16 APPLE BASIC: DATA FILE PROGRAMMING

memory space, which may become a problem as the programs you write become longer
and more complex.

Another limitation when using long variable names is that you cannot use a
combination of letters that are also used for a BASIC statement, command, or function.
A Reserved Word List in your reference manual tells you which words cannot be a
part of a long variable name. Examples are:

FOR, DATA, NOT, LIST, PRINT, DIM, IF, THEN

Use of simple variable names (A, II, Y$) precludes having to debug a program when
the problem is a reserved word accidentally used (embedded) in a long variable name.
Notice in our examples, that even with simple variables we have selected names that
are more likely to be remembered and make sense to someone reading the program.
We encourage you to do the same. Use T for total, T9 for grand total, S for salary,
N$ for name, etc.

The letters 0 and I are poor variable names since they are easily confused with
the number (/1 (zero), the number I (one), or the lower case letter I (el). Some experi­
enced programmers reserve a few variables and use them the same way in all programs
they write. X, Y, and Z are popular as control variables in FOR NEXT loops. K and
C are popular for counting in statements like LET C = C + 1.

Variables, also called variable names or labels, identify for the computer a
particular place in its memory where information is stored. The information may be
numeric (a value) or alphanumeric (a string, discussed more fully later). A value or
string is first stored by an assignment statement (LET, READ, INPUT), and sub­
sequent references to the variable tell the computer to use the value or string assigned
to (and identified by) that variable. Assignment statements are included in this review
of BASIC.

(a) Give two reasons for using simple variable names such as A, X3, and Y$.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 17

(a) 1. Conserves computer memory space.
2. No reserved words are accidentally embedd'ed in the variable.
3. Portability of programs between different versions of BASIC.

(any two answers)

String Variables

The rules for constructing names for string variables are the same as for numeric
variables, except that a string variable always has a dollar sign ($) as its last character.
A is a numeric variable, whereas A$ is a string variable. A string is one or more letters,
symbols, or numbers that can be used as information in a BASIC program. Strings
are stored in the computer's memory with an assignment statement such as LET B$ =
"EXAMPLE OF A STRING." The string variable B$ acts as a label in the computer's
memory for the place where the string assigned to B$ is stored. A reference to B$
elsewhere in the program automatically tells the computer to use the string assigned
to B$. The string assigned to a string variable is often referred to as the "value" of
the string variable.

String variables act much like numeric variables and can generally be manipulated
just like numeric variables. The crucial difference is that you cannot use string
variables in arithmetic expressions and calculations, even if numeric information is
assigned to the string variable. For example, LET F$ = "8.99" does not let you use
F$ in numeric calculations, even though the string is comprised of numbers.

String variables and the strings assigned to them take up space in your computer's
memory. You can visualize this as a box or compartment that contains alphanumeric
information identified by a string variable. For example, the assignment statement
LET N$ = "ALPHA PRODUCTS COMPANY" can be thought of as creating a storage
compartment in the computer's memory like this:

I N$ ALPHA PRODUCTS COMPANY I
t ,

the string variable the string

Remember that a string assigned to a string variable in this way has the string enclosed
in quotation marks. Only the information between the quotation marks comprises
the string; the quotes themselves are not part of the string.

Many, if not most, business and personal applications of data files make much
greater use of alphanumeric data (strings) than numeric data (numbers or values), so
we are taking this opportunity to reinforce and extend your understanding of the use
of string variables. Notice the word "alphanumeric." This term comes from the data
processing industry and refers to data that may consist of alphabetic characters, numeric
characters, and/or special characters. For example, the product identification number
FC 1372 appearing in a catalog is alphanumeric data consisting of two alphabetic
characters followed by four numeric characters. An address or hyphenated phone
number is also alphanumeric data. To use and store such information in BASIC,
assign it to a string variable (LET P$ = "FC1372") because a simple numeric variable
would not accept the two alphabetic characters. If an identification number is mostly

18 APPLE BASIC: DATA FILE PROGRAMMING

numeric, but includes a hyphen, asterisk, or even a space (e.g., 84992*, where the "*,,
denotes a special location, price, etc.), then it too requires the use of a string vari­
able.

One string variable can have from zero to 255 characters, including all spaces,
punctuation, and special characters. A string with no characters (zero characters) is
called a null string or empty string. An assignment statement for a null string would
be: 1 0 LET Z $ = "". (There is no space between the two sets of quotation
marks.)

There is a crucial difference between the maximum length of a string (255
characters) and its actual length. The actual length is the number of alphanumeric
characters presently assigned to the string variable and stored in the computer's
memory. Remember, spaces count as characters. Consider the lengths of the follow­
ing strings assigned to string variables.

ALPHA PRODUCTS I

MENLO PARK, CA. 94025 I
Now you do this one:

Actual length: Fourteen characters

Actual length: Twenty-one characters
(includes comma, period, and spaces)

A$ 161 DAWN ST. SUITE 3

(a) What is the maximum length for a string assigned to A$?

(b) What is the actual length of the string shown as assigned to A$ above?

(a) 255 characters
(b) Twenty characters

Since APPLE SOFT BASIC automatically assumes that a string variable can
be assigned a string with up to 255 characters, there is no need to DIMENSION
string variables. However, we recommend that you show a person using your program
what the string size (maximum actual size) is for all string variables listed in the
program. Do this by including REM statements in the introductory module,
as shown:

140 REM
1S0 REM
160 REM
170 REM
180 REM
190

AN IMPORTANT REVIEW OF BASIC STATEMENTS 19

STRINC VARIABLES
NS=CUSTOMER NAME(ZO)
AS=CUST.STREET ADDRESS(ZS)
CS=CUST.CITY(1S).STATE(Z).ZJP(S)
CS HAS Z6 CHAR. TOTAL INCLUDINC SPACES

(a) How many characters are contained in a null string assigned to a string variable?

(b) In the actual length of a string, how many characters does a space use?

(a) zero (none)
(b) one

As noted earlier, you can assign a string to a .string variable using the LET
statement. Remember to place the string inside quotation marks, or the computer
will reject the statement; it will tell you that an error has been made. Example:

Z40 LET NS = "TYPE A POSITIVE"

Almost all versions of BASIC allow omitting the word LET from an assignment
statement. For this reason, LET statements are sometimes called direct assignment
statements to distinguish them from INPUT and READ assignment statements. A
variable (numeric or string) followed by an equal sign (=) implies LET to BASIC; thus,
the "implied LET" direct assignment statement can save a bit of typing and a little
memory space. We generally include LET for clarity in reading a program listing. This
statement:

Z40 NS = "TYPE A POSITIVE"

means the same in BASIC as the example before this paragraph.

READ-DATA ASSIGNMENT STATEMENTS

DATA statements are like data mes in that they hold data to be assigned to variables
and are then used in a program. The difference is that a DATA statement holds data
that can be used only by the program in which the DATA statement appears, whereas
a data me can be created and the data used by a variety of different programs, since
it is separate from the program itself. This will be explained in greater detail later.

20 APPLE BASIC: DATA FILE PROGRAMMING

The READ statement, which must have one or more DATA statements in the
same program to READ from, is an assignment statement. One or more data items
from a DATA statement are assigned to one or more variables by a READ statement.

10 READ A
10 DATA 15, 76.5, 1891, -999

The statement READ A assigns a numeric value from the DATA statement to variable
A.

10 READ A,B
10 DATA lS, 76.S, 1891, -999

The statement READ A, B assigns two consecutive values from the DATA statement;
the first to variable A, the second to B.

A program can also use the READ and DATA statements to assign strings to
string variables. A DATA statement can contain strings as data items, and these
strings are assigned to string variables by a READ statement using the same procedure
as for reading numeric values.

110 READ AS,B$,CS

910 DATA BLUE, CREEN, COLD

In APPLESOFT BASIC, the individual string items in the DATA statement do
not have to be enclosed in quotation marks unless the string data idem includes a
comma, semicolon, or one or more leading spaces (blank spaces that are tei be included
and considered part of the string). In the latter cases, enclose the string data item in
quotation marks, just as for a LET direct assignment statement. Any trailing spaces
left between a string data item and the comma separating it from the next item in the
same data statement are accepted as part of the string and duly assigned to the string
variable. Note that the actual length of such a data item includes these trailing spaces,
even though they seem invisible.

In the following example, quotation marks are necessary around each data it~m
because a comma is part of the string data items themselves.

120 READ N.

910 DATA "BRO\ffl, JERALD R.", "FINKEL, LEROY P."

ANIMPORTANT REVIEW OF BASIC STATEMENTS 21

Try this test program to see how the "trailing space" rule works on your APPLE.

Z20 IlEAD NS ,AS
230 PIIINT N';AS
910 DATA TEST ITEMS

IRUN
TEST ITEMS

There should be only three spaces between the words TEST and ITEMS because
the leading spaces before items are not included, while the trailing spaces after TEST
and before the comma are included. Now change line 910 as shown below and RUN
the program segment again.

91C DATA "TEST II II , ITEMS"

(a) How many spaces should now appear between the strings when the program is

RUN?

(a) six spaces

The computer uses an internal "pointer" system to keep track of items in a
DATA statement that are "used up" or already assigned to variables in a program
RUN. When executing READ-DATA statements, each time a data item is read and ,
assigned to a variable the internal pointer advances one position in the DATA state-
ment to the next data item. If the pointer is pointed at alphanumeric data (a
string) and the READ statement is looking for numeric information to assign to a
numeric variable, the program will terminate in an error condition. For example:

ZlO READ A
910 DATA ALPHA.NUMEIIIC

An error condition would result from executing this program segment because
the statement READ A is "looking" for numeric data to assign to the numeric variable
A, but the pointer is pointing at alphanumeric information.

What will happen if this program is RUN?

ZlO IlEAD AS ,BS
220 PRINT AS;B'
910 DATA 17926, NUMEIIIC

(a) Will the program RUN without an error condition?

(b) What will be assigned to A$ and why?

22 APPLE BASIC: DATA FILE PROGRAMMING

(a) Yes
(b) A$ = 17926, since a number can be assigned as a string to a string variable (but

not vice versa)

UNDERSTANDING INPUT,
AN IMPORTANT ASSIGNMENT STATEMENT

You can enter numeric or alphanumeric information to be assigned to a numeric
variable or a string variable using the INPUT statement. When using INPUT statements,
make certain that the data entry person using your program at a computer terminal
knows exactly what kind of information to enter for assignment to a variable by the
INPUT statement. To do so, you must fully understand how INPUT works in
APPLESOFT.

The INPUT statement should always include a prompting string (a message that
appears on the printer or display screen) to tell the user exactly what sort of informa­
tion is to be entered. A typical format for an INPUT statement is:

160 INPUT "ENTER YOUR NAME. FIRST NAME THEN LAST:" ;N$

An INPUT statement without a prompting message (the part enclosed by quotes)
causes the computer to print or display a question mark; the computer then waits for
a response from the keyboard. There is nothing more frustrating to a computer user
than an INPUT question mark with no hint as to what sort of response is requested.
Always use a prompting string in an INPUT statement. If necessary, use PRINT
statements preceding the INPUT statement to explain to the user what information
to enter.

Another source of user frustration is the funny responses the computer can make
when incorrect data are entered. Consider the following example:

360 INPUT "ENTER PRODUCT NUMBER AND OUANTITY:";N.O

lRUN
ENTER PRODUCT NUMBER AND OUANTITY:137
??

The user entered the number 137 after the prompting message and then pressed the
RETURN key. The computer responded with a double question mark (n), indicating
that more data were expected. Notice that the INPUT statement had two variables
to assign values to but only one value (137) was entered. An inexperienced user
would not know that.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 23

RUN the same program segment again ana enter three items of data.

lRUN
ENTER PRODUCT NUMBER AND QUANTITY:137,lZ,164
?EXTRA ICNORED

This general error message doesn't provide any help to the user since it doesn't pin­
point the problem. To make matters worse, the computer may accept incorrect data
and assign it to the INPUT variables! Consider this example!

110 INPUT "ENTER T1oIO VALUES:";A,B
120 PRINT A,S

lRUN
ENTER T1oIO VALUES:3
11
?f!EENTER
ENTER T1oIO VALUEs:=m ?REENTER
ENTER T1oIO VALUES:~

USER ENTERS ONE VALUE ONLY AND PRESSES RETURN.

USER ENTERS NO VALUE AND PRESSES RETURN.

IT'S BACK LOOKING FOR A VALUE FOR 'A' AGAIN!

The same error conditions and input problems can occur in string data with an
additional peculiarity. Consider the following program segment:

180 INPUT "ENTER CUSTOMER NUMBER AND NAME:";C,NS
190 PRINT C,NS

JRUN
ENTER CUSTOMER NUMBER AND NAME:13726
? ?
13726

Here the user entered the customer number (13726) and pressed RETURN, and the
number was duly assigned to variable C. But when the ?? appeared, indicating that
the computer expected yet another entry, the user pressed the RETURN key again
without making another entry. While the computer wanted a second entry to assign
to N$, it accepted "nothing" as an entry; that is, it accepted a null string and assigned
it to N$. If we changed the INPUT variables to C$ and N$ (instead of C and N$),
the computer would accept null strings for assignment to both string variables. In that
case, the computer interprets two presses on the RETURN key as meaning that it
should assign null strings to both variables.

Our insistence on the importance of understanding INPUT should now be hitting
home. So what do you do for the accidental null string entry and the other eccentri­
cities of the INPUT statement.

Two programming techniques can help eliminate errors. First, ask the user to
enter only one value or string per INPUT statement, period! This makes data entry
(and data checking, as we will discuss in the next chapter) nice and clean. For
example:

24 APPLE BASIC: DATA FILE PROGRAMMING

RUN
ENTER CUSTOMER NUMBER:137
ENTER CUSTOMER NAME:BISHOP BROTHERS
ENTER PRODUCT NUMBER: 18625
ENTER QUANTITY ORDERED:106

Second, to have all input entries, whether string or numeric, assigned to string
variables. This eliminates error messages for numeric variables that cannot accept
alphanumeric information for assignment. In the next chapter you will learn to test
for null strings (no entry made) and appropriately advise the user with explicit mes­
sages as to the proper entry to be made. Numbers (numeric values) assigned to string
variables can be converted from strings to numeric values for arithmetic operations using
the VAL function. If Q$ = 106 (a string), then V AL(Q$) converts 106 to a numeric
value that can be assigned to a numeric variable and/or used directly as a numeric
value in a BASIC expression. VAL is discussed in the next chapter.

(a) Write an INPUT statement that will result in the following RUN:

RUN
ENTER YOUR HOME ADDRESS:

(a) 100 INPUT "ENTER YOUR HOME ADDRESS; ";AS (Your line number and string
variable may be different.)

CONCATENA nON

Strings can be joined to form longer strings; a process called concatenation. Strings
are concatenated in BASIC using the plus (+) sign. The process, however, is one of
joirting, not of arithmetic addition. For example, the strings assigned to F$ and L$
can be concatenated and the new, longer string assigned to another variable N$ in an
assignment statement like this:

110 LET NS = FS + LS

Strings assigned to variables can be concatenated with string constants, like this:

lZ0 LET CS = NS + "CUSTOMER"

AN IMPORTANT REVIEW OF BASIC STATEMENTS 2S

or

150 LET NS • FS + " " + LS

The statement above concatenates the strings associated with F$ and L$ and assigns
them to N$, but it also places a space in the new N$ string between the parts of N$
that were assigned to F$ and L$. Look at the following program and show what will
be printed when it is RUN.

(a) 10 LET FS = "JANET"
20 LET LS = "BARRINCTON"
30 LET NS • FS + " " + LS
40 PRINT NS

RUN

(a) JANET BARRINGTON

IF ... THEN STATEMENTS

The IF ... THEN statement in BASIC gives the language real power. Its syntax varies
from one BASIC system to another. Some BASICs permit only a GOTO statement
to follow an IF ... THEN expression.

140 IF J < Y THEN COTO 800

However, the GOTO can be, and usually is, omitted. The simplest form of IF ... THEN
is a COMPARISON between two numeric values or expressions. IF the comparison is
true, THEN (GOTO) a given line number and continue executing the program with the
statement at that line number. Since GOTO is usually omitted, just the line number
follows THEN. The possible comparisons are:

26 APPLE BASIC: DATA FILE PROGRAMMING

equals

< less than

> greater than

< = less than or equal to

> = greater than or equal to

< > not equal to

APPLESOFT BASIC also includes in the IF ... THEN family of statements:

IF ... THEN LET ...

IF ... THEN GOSUB .. .
IF ... THEN RETURN .. .
IF ... THEN PRINT .. .

IF ... THEN INPUT .. .
IF ... THEN READ .. .

IF ... THEN STOP .. .
IF ... THEN END .. .
IF ... THEN IF .. .THEN ...

(Follow rules for regular LET statements.
LET can be omitted.)

(Line number follows GOSUB.)
(Unusual, but possible.)
(Follow all the rules for regular PRINT
statements.)

(These two are possible, but are not recom­
mended because of confusion and debugging
complications.)

(possible, but confusing and unnecessary.)

(a) What statement is implied after the THEN in the simplest form of the IF ... THEN

statement? _____ _

(b) List at least five BASIC statements that can be part of an IF ... THEN statement
and that will be executed if the condition (comparison) is true.

(a) GOTO
(b) PRINT, GOTO (assuming a line number appears after THEN),

LET (direct assignment statement, with the option of omitting the word LET),
READ, INPUT, another IF ... THEN statement (not recommended),
GOSUB, RETURN (any 5 answers)

AN IMPORTANT REVIEW OF BASIC STATEMENTS 27

IF ... AND ... THEN ... and IF ... OR ... THEN ... are called the logical AND
and logical OR. They allow you to put more than one comparison in a single
IF ... THEN statement. The comparisons on both sides of an AND must be true for
the entire IF ... THEN comparison to be true. Only one comparison on either side
of an OR must be true for the comparison to be true. You can use more than one
AND and more than one OR between IF and THEN, and you may use both AND
and OR in the same IF ... THEN statement, which allows three or more comparisons
in one IF ... THEN statement! Be certain you understand -how to use the logical
AND and OR to produce the results you want. We fmd they are useful for certain
checks on user INPUT entries. If an INPUT value should be between five and twenty,
then the following statement would check that the value was within these parameters.

ISO IF F (5 OR F) 20 THEN PRINT "ENTRY IS INCORRECT"

Alternately, the following line would check for "within bounds" parameters for the
value assigned to F, instead of "out of bounds" values.

150 IF F) = 5 AND F (= 20 THEN PRINT "ENTRY IS WITHIN BOUNDS"

Note: Be very careful to have your logic straight or such comparison statements will
not do what you want. For some, flow charts help visualize the alternatives so you
can properly construct your comparison statements. Thoroughly testing programs
and program segments for every conceivable mistake that you could enter is a must.

(a) Write two IF ... THEN statements, one using a logical AND and another using a
logical OR. The statement should test to see if the value assigned to variable Y
is greater than, but not equal to, zero, and less than, but not equal to, one. When
the comparison is true, one statement should print the message BETWEEN ZERO
AND ONE, and the other should print NOT BETWEEN ZERO AND ONE.

(a) 60 IF Y) 0 AND Y (1 THEN PRINT "BETWEEN ZERO AND 1"

70 IF Y (,,0 OR Y) = 1 THEN PRINT "NOT BETIJEEN ZERO AND 1"

Having seen how more than one comparison can be made within a single
IF ... THEN statement, now consider the other end of the comparison statement and
how to have more than one instruction executed in the case of a true IF ... THEN
comparison.

APPLESOFT BASIC permits you to do nearly anything after an IF ... THEN
expression, frequently encouraging you to place multiple statements on one line.

28 APPLE BASIC: DATA FILE PROGRAMMING

ISO IF I < Y THEN PRINT "TOO LOW": LET C = C + 1: COTO 10
160 IF I) Y THEN LET c = C + 1: LET C 0: COTO 10

When you use this APPLES OFT BASIC feature, keep in mind that you may be
hindering the portability of your program. If this doesn't concern you, forget it! We
do urge you to complete your entire "activity" on one line after an IF ... THEN
statement, otherwise the program is extremely awkward to follow. If you cannot
complete your activity on one line, then GOTO a section where all of the activity can
be done together. Follow the acceptable example:

BAD

ISO IF I Y THEN LET I I + D: LET Y = YIN: COTO lOO
160 IF I Y THEN LET X X - D:Y = YIN: COTO 10

lOO LET C C + 1: PRINT "TOO LOW": COTO 10

ACCEPTABLE

150 IF I Y THEN ZOO
160 IF I Y THEN 250

lOO LET I = I + D
210 LET Y = YIN
l20 LET C = C + 1
230 PRINT "TOO LOW"
240 COTO 10

... or all on one line

Most of us who program for fun ignore what is going on inside the computer
because we don't have to pay attention. However, on occasion, little "bugs," in­
consistencies, and our own ignorance can cause some interesting (and frustrating)
problem~. BASIC software sometimes does funny things, barely detectable because
the problem exists at the seventh or eighth decimal location, which may be invisible
to the BASIC user. We once spent hours trying to fIx a "money changing" program
that kept giving us 4.9999 pennies change instead of a nickel. (This points out a very
important lesson: Your BASIC language interpreter does not always do things with
the accuracy and consistency you might expect. Therefore, when you are comparing
numeric values, especially numbers that have been computed by your computer, try
to compare using less than (<), greater than (», or not equal « ».

GOOD

IF X<1125.75 THEN •••
IF X>1125.75 THEN •••
IF X <> 1125.75 THEN •••..

NOT WISE

IF- X 1125.75 THEN ••••

AN IMPORTANT REVIEW OF BASIC STATEMENTS 29

(a) Why should you avoid IF ... THEN comparisons for equality?

(a) Internal round-off errors may produce very slightly inaccurate values in calcula­
tions. Therefore, a comparison for equality might fail (be false) where you would
expect the comparison to be true.

IF .. THEN String Comparisons and the ASCII Code

So far the only comparisons used in IF ... THEN examples have been between two
numeric expressions or values. Comparing strings in IF ... THEN statements begins to get a
little tricky. However, comparisons for equality or inequality are fairly straightforward.
Examine these statements:

ZZO INPUT "ENTER YOUR LEGAL NAME:";NS
Z30 IF NS • "STOP" THEN 999

Notice that in line 230 a string variable (N$) is compared with a string constant
("STOP"). A string constant in a comparison must be enclosed in quotation marks.
In order for a comparison for equality between two strings to be true, each and every
character in the two strings must be identical (upper and lower case are different), and
the length of the strings and any leading or trailing spaces must be the same. Any
difference whatsoever will make the equality comparison false.

In line 230 above, the string assigned to a string variable was compared to a
string constant. Likewise, the contents of two string variables can be compared.

310 INPUT "ENTER OLD TITLE:";TS
3Z0 IF TS () DS THEN PRINT "IoIRONG TITLE. TRY ANOTHER."

The difficulty in string comparisons comes with the "less than" or "greater
than" comparisons. These have application in sorting strings, alphabetizing data, or
inserting new information into an alphabetically organized data file. In IF ... THEN
comparisons, BASIC compares the two strings one character at a time, from left to
right.

Rather than comparing within the construct of a twenty-six-character alphabet,
BASIC uses a standard code that represents every possible signal a terminal keyboard
can send to the computer (and vice versa). Each key and each permitted combination
of keys, such as the shift or CONTROL key along with another key, sends a
unique electronic code pattern to the computer. These patterns are represented by

30 APPLE BASIC: DATA FILE PROGRAMMING

the decimal numbers 0 through 127 in the ASCII Code chart. Mercifully, here is one
instance of standardization throughout the computer industry. ASCII stands for
American Standard Code for Information Interchange. The ASCII code's 128-character
set includes the upper and lower case letters of the alphabet, numbers, punctuation,
and other special characters and special function keys. The ASCII code also includes
128 other special codes that are numbered 129 through 255, that do not concern us.
Refer to the ASCII chart in the Appendix for your understanding of the following.

Notice that the numbers 0 through 9 have ASCII codes of 48 to 57. The alpha­
bet has ASCII codes of 65 to 90 for upper case letters; lower case starts at 96. There­
fore, the lower case equivalent of an upper case letter is the upper case letter's ASCII
code number plus 31.

A = 65, so a = 65 + 31 = 96

This fact will be of use later.
What actually happens in an IF ... THEN string comparison? BASIC compares

the ASCII code number for each character in the two strings, comparing just one
character at a time. As soon as an inequality exists between characters, the string
with the character that has the lower ASCII code number will be considered "less
than" the other string. BASIC does not add up the ASCII code values for the two
strings being compared to determine "less than" or "greater than." The following
chart shows the results of comparing a series of strings assigned to A$ and B$.

A$ B$

ABC ABD A$ IS LESS THAN B$
MN! MNO A$ IS LESS THAN B$
STOP STO B$ IS LESS THAN A$ (A$ is greater than B$)
123A 123a A$ IS LESS THAN B$

In the comparison process, if one string ends before the other and no other
difference has been found, then the shorter string is said to be "less than" the longer
one. One result is that a null string is always "less than" a non-null string, since the
ASCII code for null is zero. Here are some more examples of string comparisons:

A$ B$

SMITH SMITHE A$ IS LESS THAN B$
ALCOTJONES ALCOT A$ IS GREATER THAN B$ (B$ is less than A$)
JOHNSEN JOHNSON A$ IS LESS THAN B$
KELLOG KELLOGG A$ IS LESS THAN B$
EO-8 EO 8 B$ IS LESS THAN A$

Now it's your turn to familiarize yourself with ASCII code comparisons. Fill in the
blanks with the appropriate string variable. Of course you can refer to the Appendix!

C$

(a) JACOB

(b) LOREN

(c) SMITH-HILL

(d) ABLE12

(e) Theater

(f) 95.2

(a) D$,O

(b) D$. 0

(c) D$,C$

(d) D$,O

(e) D$,O

(f) D $, C $

AN IMPORTANT REVIEW OF BASIC STATEMENTS 31

D$

JACOBS is greater than

LORAN is less than

SMITH HILL is less than

ABLE~12 is less than

THEATER is less than

95-2 is less than

D$ has more characters, others being equal
Letter A is less than letter E
A space is less than a hyphen
A hyphen is less than the number 1
Uppercase letters are less than lower case letters
A hyphen is less than a decimal point

Two string functions are used in conjunction with the ASCII code. The ASC ()
function gives the ASCII code number for the first character of the string contained
in the parentheses or for the first character of the string assigned to the string variable
contained in the parentheses. The ASCII number produced by ASC () may be assigned to
a variable, displayed by a PRINT statement, used in aritlunetic expressions, and used as a
value in an IF ... THEN comparison. The following examples illustrate these points.

LET X = ASC(A$)
LET x = ASCC"ANTWERP")
PRINT ASCCA$)
IF ASCCN$) = 0 THEN •••

Give the ASCII number or value that will be printed for each of these program
segments. Refer to the ASCII chart in the appendix.

(~ LET DS = "DOLLAR" (b) PRINT ASC ("YES")
PRINT ASC (OS) RUN
RUN

32 APPLE BASIC: DATA FILE PROGRAMMING

(c) 10 LET Ft • "FRANX"
20 LET Lt • "JONES"
3D LET Nt • L. + ". " + F.
40 PRINT ASC (F')
50 PRINT ASC (L')
60 PRINT ASC (N')

RUN

(a) 68
(b) 89
(c) 70

74
74

(d) 32

(d) 10 PRINT ASC (" ")
RUN

Describe the string that must be assigned to A$ in order for the following IF ... THEN
comparisons to be true.

(a) IF ASC(A$) = 53 THEN 510

(b) IF ASC(A$) < > 48 THEN 810

(c) IF ASC(A$) = ~ THEN 950 ___________ _

(a) First character in A$ is 5
(b) First character in A$ is not zero
(c) A$ must be a null string

The opposite of the ASC() function is the CHR$() function. An ASCII number
is placed in the parentheses: It causes the computer to send that ASCII code signal
to the terminal, which can cause the printing of an alphanumeric character. CHR$()
is also used to send special control signals to the CRT screen or printer (ASCII num­
bers 0 through 31) or in a PRINT statement to print characters corresponding to the
ASCII number in the CHR$() parentheses.

840 PJlJNT CMU (69); CMII. (78); CMIIS (68)

AN IMPORTANT REVIEW OF BASIC STATEMENTS 33

(a) By running this program or by reference to the ASCII chart, what will this

program line print? ______ _

(a) END

CHR$(7) sounds the beeper on the APPLE keyboard. CHR$(34) produces
quotation marks in situations where they would not otherwise be printed around a
string. Remember these possibilities. Check the ASCII codes, especially 0 through
31, in your APPLESOFT reference manual. There may be some interesting capa­
bilities to explore.

When a program user has limited options for a response to input statements, it
is necessary to check the input for the options available. For example, it is often
useful to have the computer user answer yes or no, or to select from a specific list
of options for the response to an input statement. Examine the following program
segment:

330 INPUT "DO YOU WISH TO CONTINUE DATA ENTIIY (Y 011 N)P";IIS
340 IF III () "Y" AND liS () "N" THEN P III NT CHIIS (7);"PLEASE TYPE 'Y'

tOil YES 011 'N' FOil NO.": COTO 330
350 IF liS • "Y" THEN 450

If line 340 were omitted and the user typed YES instead of Y, the program
would not operate as the programmer intended. Suppose a program displays the
following "menu" or list of possible responses!

ENTER 'I' TO INSERT DATA
ENTER 'C' TO CHANGE DATA
ENTER 'D' TO DELETE DATA
ENTER 'N' FOR NO CHANGE OF DATA
YOUR CHOICE:

The selection of each option directs the computer to branch to a different section of
the remaining program to accomplish this activity.

Z10 INPUT "YOUII CHOICE:";IIS
ZZ 0 I FilS • "I" TH EN 51 0
130 IF liS = "c n THEN 610
Z40 IF liS • "D" THEN 710
Z50 IF liS "N" THEN 150

If the user entered a response other than I, C, D, or N, this program would not
detect the error. If the user pressed RETURN with no response, the computer would
not catch the error either.

34 APPLE BASIC: DATA FILE PROGRAMMING

(a) Now write a statement for line 215 that ensures that the response entered was
among the list of options on the menu, and, if not, informs the user of the
options available and branches back to the INPUT statement.

(a)

215

Zl5 IF R. (> "I" AND RI () "C" AND RS () "D" AND R. () "N" THEN
PRINT "PLEASE TYPE ONLY THE LETTER I, C, D, OR N.": COTO 210

THE LEN FUNCTION

Recall that while the maximum length of a string that can be assigned to a string
variable is 255 characters, the actual length of the string is the number of characters
currently assigned to a string variable. BASIC provides a function to "count" and
report the actual length of a string, or of a string assigned to a particular variable; a
function appropriately called the LEN (for LENgth) function. LEN can be used in
a print statement to print the number of characters in the string in question. Since
the execution of LEN results in a numeric value, it can be assigned as a value to a
numeric variable, used as a value in an IF ... THEN comparison, or used in calcula­
tions.

For example:

10 LET GI = "WHAT A GAS"
20 PRINT LEN (CS)

lRUN
10

100 PRINT LEN ("NORTHERN MUSIC")

JRUN
14

10 LET H •• "1582 ANCHORAGE DRIVE"
20 LET A = LEN eHS)
30 PRINT A

lRUN
20

150 LET R. • "YES"
160 IF LEN CRS) = 3 THEN PRINT "GO ON TO THE NEXT QUESTION."

JRUN
CO ON TO THE NEXT QUESTION

10 LET MS = "AMERICAN"
20 LET NS = "FOREICN"

AN IMPORTANT REVIEW OF BASIC STATEMENTS 35

30 PRINT LEN (M') + LEN (NS)
RUN

IS

Show the results of executing each of the following program segments:

(a) 10 LET C S = " "

(b)

20 PRINT LEN (C$)

RUN

10 LET FS = "FRANK"
20 LET L$ = "JONES"
30 LET N S = L $ + ", " + F $

40 PRINT NS
SO PRINT LEN (NS)

RUN

(a) 1

(b) JONES, FRANK

12

SUBSTRING FUNCTIONS:
VERSATILE TOOLS TO MANIPULATE STRING DATA

Three APPLESOFT BASIC string functions (MID$, RIGHT$, LEFT$) allow you to
manipulate the parts of a string called substrings. The MID$ function is by far the
most useful substring manipulating function. It allows you to select substrings from
within a larger string. The MID$ selection function has the following forms:

(1) MID$("CHARGE IT", 1,6)

(2) MID $ (T$, 3, 15)

(3) MID$(D$, 10)

(4) MlD$(W$, A, C*D)

In example 0), the MID$ function selects characters 1 through 6 inclusive as the
substring within the string constant CHARGE IT, with the substring starting at char­
acter position 1 (the C) and including six characters total, making the substring

36 APPLE BASIC: DATA FILE PROGRAMMING

CHARGE. Example (2) assumes that a string has been assigned to T$, and the sub­
string comprises fifteen characters of the T$ string, starting with the third character
in the string and continuing on to the 15th character after the third one. In example
(3), the "last character position" notation (the last value inside the MID$ parentheses)
has been omitted, which tells the computer that the substring will start at character
position 10, and will include all the rest of the string to the right of the character at
position 10. Example (4) shows that the starting position for the substring, as well
as the number of characters to be included in the substring, can be represented by
variables or expressions that evaluate to a numeric value. Of course, these variables
must have been previously assigned values, just as the string variable must have pre­
viously been assigned a string. So in general, the MID$ function has the form

MID$ (string variable or constant, substring starting position, how many
characters in the substring from the start position)

Note that the three parameters in the MID$ function are separated by commas.
The first is usually a string variable to which a string has previously been assigned.
The second parameter is the starting position for the substring. The third parameter
does not tell the last character position number in the substring, but rather tells how
many characters to include in the substring - a point that sometimes confuses people.

Notice the use of the MID$ selection function in PRINT statements in the
program below. Remember, it allows you to select and print any part or substring of
the string assigned to the string variable in the MID$ parentheses. The other two
values or parameters inside the parentheses still indicate where the substring to be
printed starts and how many characters it includes.

150 LET NS = "FOCHORNE IJHILDEFLOIJER"
160 PRINT HID$ (NS,I,S)
170 PRINT HIDS (NS,10,lZ)
ISO PRINT NS

)RUN
FOCHORNE
IJHILDEFLOIJER
FOCHORNE IJHILDEFLOIJER

Notice the use of MID$ as a selection function in lines 160 and 170 above. This
same selection function can be used to assign a substring from a string assigned to a
string variable, without changing the original string from which the substring was
selected. Notice in the program segment below that a substring from an existing
string can be assigned to a new variable without changing the string from which it
was selected. F$ (for first name) and L$ (for last name) are selected from the entire
name (N$) without changing N$.

150 LET NS = "FOCHORNE IJHILDEFLOIJER"
160 LET FS = HIDS (NS,I,S)
170 LET LS = MIDS (NS,10,lZ)
180 PRINT NS
190 PRINT "FIRST NAME IS "iFS
200 PRINT "LAST NAME IS "iLS

AN IMPORTANT REVIEW OF BASIC STATEMENTS 37

(a) Show the RUN for the program segment above.

(b) Which character in N$ is not selected for inclusion in either F$ or L$?

(a) RUN
FOGHORNE WHILDFLOWER
FIRST NAME IS FOGHORNE
LAST NAME IS WHILDEFLOWER

(b) The space at character position 9 of N$

The LEFT$ and RIGHT$ string functions are not as versatile as MID$ and are
not used as much in our programming. They both work the same way, however, as
shown in these program segments:

160 PRINT LEFTS (AS,S)

170 LET R = 12
180 LET B$ = RIGHTS (At,R)

means print the left-most eight characters of A$ (the
first eight characters in the string assigned to A$)

means assign to B$ the twelve right-most characters
of A$ (the last twelve characters in the string
assigned to A$)

These exal1!ples demonstrate the substring selection capabilities of LEFT$ and
RIGHT$. They are strictly selection functions, selecting one or more characters
from one end or the other of an existing string to treat as a substring.

We often use LEFT$ for convenience to check for a user's YES or NO response
to an INPUT prompting question. Using an IF ... THEN statement, we have the
computer look at the first character of the response string to determine whether or
not the answer was YES, as shown in the following program segment:

240 INPUT "DO YOU NEED INSTRUCTIONS (YES OR NO)?",RS
ZSO IF LEFTS IRS,l) = "Y" THEN 600

38 APPLE BASIC: DATA FILE PROGRAMMING

(a) What responses could a user make to the INPUT prompt above in order for the
IF ... THEN comparison to be true?

(a) Could type YES or Y or any string that started with the letter Y

We have found less use for the RIGHT$ function than for MID$ or for LEFT$,
but here is an example. Remember, the numeric value inside the RIGHT$ function's
parentheses means to start counting the characters for the substring at the right-most
end of the string from which the substring is being selected, counting toward the
beginning of the string.

240 INPUT "WHICH HIGH SCHOOL CLASS DID YOU GRADUATE FROJ1?";YS
2S0 PRINT "YOU GRADUATED IN 19"; RIGHTS (YS,Z)

Assume that several people responded to the INPUT prompting question when the
above program segment was RUN. Show what the computer will print for each user's
response.

(a) User responds: CLASS OF 1938

Line 250 prints:

(b) User responds: CLASS OF '64

Line 250 prints:

(c) User responds: 1958

Line 250 prints:

(d) User responds: FORTY EIGHT

Line 250 prints:

(a) YOU GRADUATED IN 1938
(b) YOU GRADUATED IN 1964

MULTI-BRANCHING WITH ON ... GOTO

(c) YOU GRADUATED IN 1958
(d) YOU GRADUATED IN 19HT

The ON ... GOTO statement allows the computer to branch to a number of different
statements throughout a program. The format for the statement is a list of line numbers:

AN IMPORTANT REVIEW OF BASIC STATEMENTS 39

10 ON X GOTO 310,450,660,660,660,720,830,910

Note: X = any variable or expression from which a value will result.

If the value of X is 1 when the ON ... GOTO statement is encountered and
executed, the computer branches (goes to) the first line number in the list of line
numbers (in our example, line 310). If the value of X is 2, the second line number
in the list is branched to. As many line numbers can follow GOTO as will fit in a
statement line. Notice also in our example that if X = 3, 4, or 5, the same line
number (660) will be branched to.

If the value of X is a zer9, a negative number, or larger than the number of
line numbers in the list, then the ON ... GOTO statement will be skipped without
execution and the next statement executed.

Here is a method to arrive at an ON ... GOTO value in a menu-section situation.
In the following program segment, the ASC() function is used to convert a letter
entered by the user to an ASCII value that is used to determine the value for an
ON ... GOTO statement. The ON ... GOTO is a multi-branching instruction. In line
260, if the value of R is 1, then the program goes to the first line number given after
GOTO. If R = 2, then the program branches to the second line number given, and
so on. The value of R must be greater than 1 and no higher than the number of line
numbers that follow GOTO.

200
ZlO
HO
23~ lNPUT "ENTER YOUR CHOlCE, A-E:";RS
240 LET R = ASC (RS) - 64
250 IF R (1 OR R) 5 THEN 270
260 ON R GOTO 300,400,500,600,700
270 PRlNT "ENTRY ERROR. PLEASE REENTER AS REOUESTED": GOTO 230
Z80
290

(a) In the program above, why is line 250 included?

(a) If R evaluates to less than 1 due to a data entry error or larger than 5, an error
would occur; so the checking is done by line 250.

FOR NEXT STATEMENTS

It is preferable to use a FOR NEXT loop when you have a controlled, repeating
sequence of instructions.

40 APPLE BASIC: DATA FILE PROGRAMMING

PREFERRED UNDESIRABLE

100 FOR X • 1 TO N
110 PRINT X,X A 2
120 NEXT I

100 LET X • 1
110 PRINT X,X A 2
120 LET I • I + 1
130 IF I } N THEN 200
140 GOTO 110

As you can see, the FOR NEXT loop is more space-efficient (it could even have been
done in one line), looks better, and is easier to read.

A general rule when using FOR NEXT loops is: DO NOT EXIT from the middle
of a FOR NEXT loop, except to GOSUB to a subroutine. Leaving the controlled
loop makes the program difficult to read and hard to understand. Further, internally
your computer wants to complete the entire FOR NEXT sequence. If you exit
prematurely, there is no certainty that your computer will behave "normally" the next
time it encounters the loop variable (X in the example above). This uncertainty can
cause some very serious program errors that are extremely hard to detect. An exit to a
subroutine is acceptable because a subroutine will RETURN the program to the inside
of the FOR NEXT loop to continue in sequence, as if there was no exit at all.

NEVER

100 FOR I • 1 TO N
110 IF A(X) = B(X) THEN 200
120 NEXT I

NOT DESIREABLE

100 FOR I = 1 TO N
110 IF A(X) • B(X) THEN 130
120 NEXT I
130 LET S • S + 1
140 GOTO 120

PREFERRED

100 FOR X • 1 TO N
110 IF A(X} () B(X) THEN 130
120 LET S • S + 1
130 NEIT X

You can usually write your program to include everything you need to do inside the
loop, rather than leaving the loop. (There will be exceptions.)

(a) Write a program segment using nested FOR NEXT loops that will print the word
HELLO three times, but will print the word GOODBY four times after each
appearance of the word HELLO.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 41

(a) 10 FOR X = 1 TO 3
ZO PRINT "HELLO"
3D FOR Y = 1 TO 4
40 PRIiiT "COODBY"
SO NEXT Y
60 NEXT X

MULTIPLE-STATEMENT LINES

Many language features in APPLESOFT BASIC are not available on other computer
systems. Some of these features speed up the program's run time, others save memory
space, and some do both. Some features enhance program readability while others
confuse the reader. A popular feature is the ability to place multiple BASIC statements
on one line separated by a colon, as we showed earlier in discussing IF ... THEN.

140 FOR X = 1 TO 10: PRINT X,X A 2: NEXT X

or

ZOO IF X = Y THEN PRINT "YOU \JON!": COTO 10
Z10 PRINT "SORRY, \JRONC NUMBER": COTO 60

A few cautions and suggestions are applicable as you use multiple·statement
lines:

1. Multiple-statement lines are often hard to read and sometimes hard to understand.
If you later change a program, readability may be a problem. It is more clear
to use one statement to a line.

2. If you must use multiple-statement lines, carry out a complete procedure or
action on one line, whenever possible. Carryover to other lines makes reading
more difficult and less clear.

3. Finding program errors buried in multiple·statement lines is difficult.
4. Understand completely how IF ... THEN statements work in a multiple-statement

line. In line 200 above, if X does equal Y, then "You won" will be printed and
the program will branch to line 10. If the X=Y condition is false, line 210 will
be executed next. Some people incorrectly presume that GOTO 10 will be
executed whether the condition is true or false.

5. REM statements must be the last statement on a multiple-statement line. Any
executable statement after a remark will not be executed.

Special consideration of the GOSUB statement in multiple-statement lines is
warranted. Remember that each GOSUB statement must have a corresponding
RETURN statement that appears as the last statement in the subroutine which the
GOSUB branches to.

Say, a GOSUB is executed when an IF ... THEN condition is true. After com-

42 APPLE BASIC: DATA FILE PROGRAMMING

pleting the subroutine, the computer must always be instructed to RETURN. The
statement it returns to will be:
(1) the next statement after GOSUB if it is a multiple-statement line, or
(2) the next lined numbered statement in normal line number order.

(a) Assume that the comparison in line 120 below is true and the GOSUB statement
is executed. Which statement will be executed next after the RETURN from
subroutine execution?

(a) GO TO 360

IZO IF I = Z THEN COSUB SIO: COTO 380
130 PRINT "I IS LESS THAN TWO."

TRAPPING ERRORS WITH ONERR GOTO

APPLESOFT BASIC has the ability to detect errors while your program is executing.
If you wish, you can have the program stop execution altogether and print an error
message. Or you can "trap" the error using the ONERR GOTO statement and then
determine if you want the program to continue, terminate, or print a message to the
program user.

The main reason for using the ONERR trap procedure is to avoid having your
program terminate unexpectedly in the middle of execution. This is especially im­
portant when using data files in your programs. If you do not use the error trapping
procedure, any programming or data entry errors will cause your program to terminate
with an error message. And most error messages do not do an adequate job of
explaining what is wrong toa naive computer user.

ONERR GOTO works much like an IF ... THEN statement; if there is an error,
THEN GOTO the statement number indicated.

10 ONERR COTO 300

If there is no error, then continue program operation.
The ONERR statement sets what we call a "flag." ANY error that occurs after

the ONERR statement has been executed will cause the statement to execute. In that
regard it is unlike an IF ... THEN statement. You need execute the ONERR state­
ment only once and the flag is "set" for the rest of the program or until the flag is
"unset," or reset with another ONERR statement that may direct the computer to a
different line number than the first ONERR.

To "unset" the ONERR flag, use the statement POKE 216, O. Alternatively, a

AN IMPORTANT REVIEW OF BASIC STATEMENTS 43

second ONERR statement executed after the first one in a program will cancel the
first one.

Here is an example of the use of ONERR. The program reads information from
DATA statements into an array. We do not know exactly how much data is contained
in the DATA statements; less than fifty items is assumed. When we run "out of data"
(an error condition), we wish to continue operation of the program at line 200, where
the array information will then be used in some way.

100
110
120
130
140
ISO
160
170
180
190
200
ZIO

~ ONERR DEMO PROCRAM

DIM A(SO)
LET K = 1

ONERR COTO 200
READ A(K)
LET K = K + 1
COTO 160

POKE 216.0: REM RESET ERROR TRAP
REM PROCRAM CONTINUES

Notice that the ONERR statement is only executed once (line 150). That sets the
flag until the flag is "unset" or reset at line 200. As the program continues at line
200, you may have wanted to set another error trap to send the program to line 300
if an error occurs.

(a) Write the statement that will set another error trap in line 200 to send the
program to line 300.

200

(a) 200 ONERR GOTO 300

A NOTE ON POKE AND PEEK

The BASIC statements PEEK and POKE provide the BASIC user with a way to get
"inside" of the computer and observe or change the machine language codes.

You are aware that all data, even BASIC programs, are translated in the compu­
ter into a binary code. This code is called "machine langauge." The PEEK statement
will show you the numeric machine language code-value at a particular memory
location. These locations are numbered. For example, the following program segment
"looks at" the numeric code found at memory location 222, assigns it to the variable
A, and then displays it on the screen.

10 LET A PEEK (2ZZ)
ZO PRINT A

44 APPLE BASIC: DATA FILE PROGRAMMING

The POKE statement, on the other hand, allows you to change the numeric
machine langauge code found at a particular memory location. You need not learn
machine langJage to use PEEK and POKE to accomplish specific jobs when you are
provided with the necessary machine language code and/or memory location. Here
is an example of a POKE statement.

SO POKE 216, 0

This statement tells the computer to place a zero value at memory location 216.
A zero at this memory location turns off, or cancels, a previous ONERR instruction.
This is discussed further in the next section.

USING ONERR

You can use ONERR to trap bad data in data entry routines (discussed in more detail
in Chapter 3). If a user responds with alphabetic information when numeric data is
requested, that is a trapable error. Look these program segments over carefully.

100 1fn! DATA ENTIIY EIIIIOIl TIIAP
110
lZ0 ONE 1111 GOTO ZOO
130 INPUT "ENTEII YOUII COKPLETE NAKE:";NS
140 INPUT "ENTEII YOUII AGE IN YEAIIS:";A
1 50
160 IIEK PIIOGIIAK CONTINUES

ZOO PIIINT "YOU HAVE KADE A DATA ENTIIY EIIIIOIl. PLEASE TIIY AGAIN."
Z10 IIESUKE
ZZO

If the user makes a trapable error, the message at line 200 is printed. The
RESUME statement in line 210 sends the computer back to the line in which the
error was originally made (where the error was trapped). We do not normally en­
courage the use of the RESUME statement, however, as you will see in Chapter 3.

Each normal error message has a numeric error code. The code for "out of
data" is 42. For "bad response to INPUT statement," the code is 254. Other error
codes are in your reference manual and DOS manual. We will point out particular
error codes as we use them. The numeric code for a particular error encountered
by the ONERR error trap is saved in the computer memory in location 222. To
see the error code, or to check to see if it is the one you expected, use PEEK(222)
in a BASIC statement. For instance, in line 200 we might have said:

ZOO IF PEEK (ZZZ) = Z54 THEN PIIINT "YOU HAVE KADE A DATA ENTIIY EIIIIOIl.
PLEASE TIIY AGAIN.": IIESUKE

Z05 PIIINT "UNUSUAL EIIIIOIl CONDITION. PLEASE IIEENTEII."

Now line 200 checks to be sure that it is a data entry error before the message is
printed. If it is not a data entry error, the message in line 205 is displayed to caution
the operator of an unusual error.

AN IMPORTANT REVIEW OF BASIC STATEMENTS 4S

(a) Rewrite the error trapping routine for the first example to trap for bad data
(alphabetic information) and for out of data. Print an appropriate message if
the data are bad, then continue to the next data item.

(a) 100
110
no
130
140
150
180
170
180
190
zoo
Z05
ZlO
ZZO

REM SECOND ONERR DEMO PROCRAM

DIM A(50)
LET K = 1

ONERR COTO zoo
READ A(K)
LET K .. K + 1
COTO 160

IF PEEK (UZ) .. Z54 THEN PRINT "BAD DATA ITEM REJECTED.": COTO 160
IF PEEK (111) ~ 4Z THEN 110
PRINT "UNUSUAL ERROR CONDITION": STOP
REM PROCRAM CONTINUES

46 APPLE BASIC: DATA FILE PROGRAMMING

CHAPTER 2 SELF-TEST

1. Why do the authors recommend using "greater than" and "less than" compari­
sons in IF ... THEN numeric comparisons, rather than comparisons for equality?

2. When must quotation marks be placed around string data items in a DATA
statement?

3. How can a null string be assigned to an INPUT string variable?

4. Show the results of a RUN of the following program:

lU LET AS = "ALFRED"
ZO LET SS • "CONTRACT"
30 LET C. = "3ZC"
40 PRINT Ase CAS), Ase CBS), Ase CCS>
RUN

5. Describe the string that must have been assigned to D$ for each of these com­
parisons to be true:

(a) 10 IF ASC CDS> (48 OR ASC cns)) 57 THEN 660

(b) 30 IF ASC CDS>) 64 AND ASC cns) (91 THEN COSUS 15ZD

(a)

(b)

6. What value will the LEN function show for a string to which fifteen spaces have
been assigned?

AN IMPORTANT REVIEW OF BASIC STATEMENTS 47

7. Write a statement to check that the user response to an INPUT is among the
options requested. The INPUT prompt asks: DO YOU WANT INSTRUCTIONS
(yES OR NO):

8. Give an example of a simple numeric variable and a simple string variable.

9. Give a reason for avoiding multiple-statements in one program line.

10. Examine the following statement:

120 IF X > 10 THEN GOSUB 810 : GOTO 110

After executing the subroutine starting at like 810, to which statement will the
computer return?

11. If a variable name has more than two alphanumeric characters, how many of
those characters does the computer use to identify the value assigned to that
variable?

48 APPLE BASIC: DATA FILE PROGRAMMING

Answer Key

1. Round-off error in the computer's computational process may introduce tiny
errors that make expected values slightly more or less. Therefore, an equality
comparison may fail where you would expect it to succeed.

2. When the string data item includes a comma as part of the string or leading
spaces are to be included as part of the string.

3. By pressing the ENTER key without entering anything else from the keyboard.

4.

5. (a)
(b)

65 67 57

First character of D$ must not be a number (f/J to 9).
First character of D$ must be a capital letter (A to Z).

6. 15 (Spaces count as characters in a string.)

7. 220 IF lIS (> "YES" AND liS (> "NO" THEN PIiINT "PLEASE TYPE 'YES' Oli
'NO"': GOTO 310

8. Numeric variable: A (or any letter of the alphabet); string variable: A$ or any
letter of the alphabet followed ~y a dollar sign.

9. May make it harder to read the program; may make errors in programming
harder to detect. (either answer)

10. GOTO 110

11. Only the first two characters.

CHAPTER THREE

Building Data Entry and
Error Checking ROll tines

Objectives: When you finish this chapter, you will be able to write statements in a
data entry program module to check the following aspects of data items:

Proper length
Non-response (null strings)
Type of data (numeric or alphanumeric)
Inadvertant inclusion of wrong characters
Parameters for numeric data

In addition, you will be able to write data entry modules that:

Have clearly stated prompts
Use reasonable data fields
Concatenate data items into a single field
Check and "pad" entries, as necessary, for proper field length
Remove excess spaces from data taken from data fields
Replace data items contained in a data field
Provide complete explanations of a data entry error to the user

INTRODUCTION

If you are wondering when you are going to get into data mes themselves, be patient.
Experience has shown that you need a good background in some special techniques
associated with data me programming which use BASIC statements you already know.
This will make it much easier and faster to learn the new BASIC statements and func­
tions specifically applied to data me handling. You shouldn't have to struggle to
understand a new use for a familiar BASIC statement while trying to absorb the data
me statements and techniques, so please don't gloss over this material.

Concern for data entry procedures was introduced in the section on INPUT
in the previous chapter. For our purposes data are defined as any information that
is or will be stored in a data me on disk. Common examples of data include mail­
ing, subscription, or billing lists; inventories of retail merchandise; accounting infor­
mation; mes of books, recordings, journal articles, or notes for a book; statistical

49

SO APPLE BASIC: DATA FILE PROGRAMMING

information. Data entry includes the process of getting such information into the
computer so that it can be stored in a data file. Data files usually contain large
amounts of data, which, to be useful, must be accurate, valid, and error-free in con­
tent and format. The accuracy and usefulness of your program output depends en­
tirely on the accuracy of the data in these files. Furthermore, inaccurate or invalid
data in a data file (or any place in a program) can cause your program to interrupt,
halt, or abort in an error condition in the middle of its run. If your program ter­
minates unexpectedly, there may be no telling what is happening inside the compu­
ter. Printed reports can be only partially completed, entered data can be lost or
destroyed, data in the files can be half processed; the list goes on.

The result of an unexpected program interruption can be catastrophic, though
it may not always be so. It is almost impossible to predict exactly what will happen.
Therefore, always do everything you can in your programming to avoid errors that
can precipitate program interruptions.

Unfortunately most errors occur at data entry time. That is why we emphasize
the use of data entry checking procedures in this chapter - procedures to guarantee
that data are entered as clean, valid, and accurate in content and format as your
ingenuity and knowledge of programming techniques can make it. Throughout the
remainder of this book "error-traps" and places where programming errors are likely
to occur are illustrated.

This chapter focuses on constructing the data entry module of a program. This
is where, usually with INPUT statements, the computer user is instructed to type in
information that is going to be placed in a new data file, or to tell the computer to
locate information in an already existing data file. After each response to an INPUT
statement we will use one or more statements to check the response for possible
errors. These error-checking statements comprise the largest part of a data entry
program module.

DATA FIELD LENGTH

Many data entry problems are avoided by establishing a certain amount of space; a cer­
tain number of character positions into which a given element of data or data item is
placed. Establish strings, or defined substring positions within one string, where data
must be located (data fields). A data field can be thought of as a string that contains
more than one data item. These data items always fit between two defined character
positions within the string. A simple example would be one string variable to which
both a customer's first and last names are assigned like this:

N$ = "VIVIAN VANCE"

The first name field is a six-character field in N$, occupying the first six character
positions of that string (1 through 6). The separator field is a one-character field,
located at character position 7.

The last name field has (a) characters and occupies character positions

(b) in the string assigned to (c) ______ _

(a) five
(b) 8 to 12
(c) N$

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 51

Below is a graphic look at the fields in N$ with a slash (n marking the field designa­
tion:

N$=------I-I----­__ ,_ ! t
first name last name

separating
space

This particular data field works for the name in the example. However, the goal
is to establish reasonable data fields. In this case, a reasonable data field should hold
ANY first or last name that might be assigned to N$. Certainly, many names contain
more than six letters for the first name and five letters for the last. On one hand, you
want to provide reasonably sized fields for the data. On the other hand, much storage
space will be wasted if you try to cover all possibilities. There really may be someone
named John Jacobjingleheimerschmidt, but reserving twenty-four character positions
for a last name data field would waste storage space; if 95 percent of the last names
in a data file has twelve letters or less, then half or more of the last name data
field goes unused 95 percent of the time. In a file of 1,000, 10,000, or 100,000
names, such as a mailing list, this can amount to a vast amount of unused string and
disk storage space.

Data field lengths must be adequate and reasonable. If all the catalog numbers
in an inventory data file are five characters, then obviously a five-character data field
is sufficient.

To review, use a slash(!) to mark off the fields in a twenty-six character string
assigned to A$, where the data fields hold the city, state, and zip code (the last line
in a mailing address). Place a number in each field indicating which of the following
data items are to occupy that field.

1. City name (fifteen characters maximum)
2. Two separator spaces
3. State code (standard two-letter postal abbreviation)
4. Two separator spaces
5. Zip code (five characters)

W A$= _________________________ _

52 APPLE BASIC: DATA FILE PROGRAMMING

(a) CD (D00 ®
A$=---------------�--�--�--�-----

Next, consider the following data entry module to enter the city, state, and
zip code. These data are to be placed into the data fields you just defined above.

100 INPUT "ENTER NAME OF CITY:";CS
110 INPUT "ENTER STATE COOE:";SS
lao INPUT "ENTER ZIP COOE:";ZS
130 LET AS • CS + " " + SS +" "+ ZS
140 PRINT AS

Notice the concatenating statement in line 130 - an attempt to get the data items into
data fields. But these two RUNs demonstrate a serious problem that relates to the
length of the city name.

(a)

(b)

JRUN
ENTER NAME OF CITY: IOWA CITY
ENTER STATE COOE:IA
ENTER ZIP COOE:saZ40
IOWA CITY IA sza40

JRUN
ENTER NAME OF CITY:SOUTH SAN FRANCISCO
ENTER STATE CODE:CA
ENTER ZIP CODE:94080
SOUTH SAN FRANCISCO CA 94080

Fill in the spaces to show the results of line 130 in the program for each of the sample
RUNs:

(a) A$ = -- ------- ______ 1-- 1-- I --1-----
~) A$= _______________ I--I--I--I-----

(a) A$ = ~f!.i.:l~_t1£IX __ !!l. __ 1 ~~I g,!il Q_I -----

(b) A$ = ~Q!1.:Lt!_~!1~_£5~!it.1 ~§.I ~QI--I 51!! __ tz ¥tJ80

The fact that all cities don't have fifteen letters means that simple concatenation
of this data does not place it into the defined character positions for the data fields.

Checking Data Entries for Acceptable Length

One programming technique to check data entries for acceptable length uses the LEN
function in an IF ... THEN comparison. If the data requested always have a defined
number of characters, then an important check for mistakes in data entry would be

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES S3

to see whether the entry has the exact length it should. A U. S. zip code always has
five characters, so a check for that data item would look like line 170:

160 INPUT "ENTER ZIP CODE:"iZ.
170 IF LEN (ZS) () 5 THEN PRINT "REENTER AS 5 DIGIT CODE": PUNT

GOTO 160

lRUN
ENTER ZIP CODE:9543
REENTER AS 5 DIGIT CODE

ENTER ZIP CODE:954316
REENTER AS 5 DIGIT CODE

ENTER ZIP CODE:
REENTER AS 5 DIGIT CODE

If the entry for the zip code does not have exactly five characters, then a mistake has been
made, the user is so advised, and the computer repeats the prompting message and waits
for another entry. With new zip code formats, a bit of reprogramming will be necessary.

Now you write a statement to check for proper length of the entry for the
INPUT statement below:

(a) 14D INPUT "ENTER STATE CODE:",S'

150

(a) 150 IF LEN (5$) () Z THEN PRINT "REENTER AS STANDARD Z-LETTER CODE.":
PRINT : GOTO 140

How can you check something like a city name, which is allowed fifteen charac­
ters or less? The city name could have less than fifteen characters, exactly fifteen, or
more than fifteen. If it has more, you must advise the user that a shorter entry is
needed and allow the user to reenter the data item with an intelligent abbreviation.

no INPUT "ENTER CITY NAI'fE:"iCS
130 IF LEN (CS)) 15 THEN PRINT "REENTER USING 15 CHARACTERS OR LESS. ":

PRINT : GOTO lZO

]RUN
ENTER CITY NAI'fE:SOUTH SAN FRANCISCO
REENTER USING 15 CHARACTERS OR LESS.

ENTER CITY NAI'fE:

Write a statement (similar to line 130 above) to check the entry for the INPUT
statement below, where the data field for the entry is twenty characters maximum;

(a) 31D INPUT "ENTER STREET ADDRESS: ",SS

320

S4 APPLE BASIC: DATA FILE PROGRAMMING

(a) no IF LEN (SS)) 20 THEN PRINT "REENTER USING 20 CHARACTERS OR LESS.":
PRINT: GOTO 310

''Padding'' Entries With Spaces to Co"ect Field Lengths

You are probably wondering how to increase the length of an entry that has fewer
characters than its data field. The solution involves automating the addition of spaces
to "pad" the short entry (say, a short city name) with trailing spaces, so that the
resulting city name string, which includes the padding spaces, exactly fits the data field.
Remember, spaces occupy character positions and count as characters in the length of
the string. Line 140 shows how to pad with spaces:

120 INPUT" ENTER C lTY NAME:"; C S
130 IF LEN (CS)) 1S THEN PRINT "REENTER USING 1S CHARACTERS OR LESS. ":

PRINT : GOTO 120
140 IF LEN (CS) (1S THEN LET CS = CS + " ": GOTO 140

In line 140, if the city name entered and assigned to C$ has less than fifteen char­
acters, then a space is concatenated on to the end of the string. The new string
assigned to C$ is the old string plus a space. The statement "goes back to itself'
(GOTO 140) and keeps adding another space to the end of the C$ string until the
string contains exactly fifteen characters, including the spaces. Clever?

Now you write a statement to pad an entry with spaces if it has less than the
eight characters required to fit in its data field.

(a) 12 0 INPUT" ENTER YOUR FIRST NAME:"; F S
130 IF LEN (FS>) 8 THEN PRINT "SHORTEN ENTRY TO 8 CHARACTERS OR LESS. ":

PRINT: GOTO 120

140 __ _

(a) 140 IF LEN (Ff) (8 THEN LET FS = FS + " ": GOTO 140

Now apply the techniques you have been using in a data entry module.

(a) Write a program routine to request that a user enter an alphanumeric product
identification code with three characters, plus a product description with up to
twenty characters maximum, followed by a two-character code identifying the
person making the entries, using their first and last name initials. Once these
three data items have been entered and tested, combine the data into one string
of twenty-five characters assigned to a single string variable.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 55

(a) 100 REM DATA ENTRY MODULE
110
120 INPUT "ENTER A THREE CHARACTER CODE:";C$
130 IF LEN (C$) () 3 THEN PRINT "ENTRY MUST BE 3 CHARACTERS. PLEASE

REENTER.": PRINT: COTO lZO
140 INPUT "ENTER DESCRIPTION: ";DS
lSQ IF LEN (DS>) 20 THEN PRINT "ENTRY TOO LONC. PLEASE REENTER USINC

20 CHARACTERS OR LESS.": PRINT: COTO 140
160 IF LEN (DS) (20 THEN LET D$ E D$ + " ": COTO 160
170 INPUT "ENTER YOUR TlJO INITIALS: ";NS
180 IF LEN (NS> () 2 THEN PRINT "PLEASE USE THE FIRST LETTERS OF YOUR

FIRST AND LAST NAME ONLY.": PRINT: COTO 170
190 LET R. s CS + D. + NS
200 REM FOR DEMONSTRATION PURPOSES ONLY WE DISPLAY RS
ZlO PRINT : PRINT RS

What's the advantage in setting up data fields in a single string and putting more
than one data item into it? The reasons will become clear in later chapters. For now,
the answer has to do with how data files can store information using some automated
data entry procedures and equipment and with the ease with which BASIC allows the
manipulation of substrings using MID$ for particular applications.

56 APPLE BASIC: DATA FILE PROGRAMMING

100
110
120
130

140
150
160

170
ISO

190
200
210
220

(a)

Examine the program below and answer the questions that follow it.

REM EXAMPLE DATA ENTRY MODULE

INPUT "ENTER CITY NAME:";TS
IF LEN (TS)) 15 THEN PRINT "REENTER USING IS CHARACTERS OR LESS.":
PRINT: GOTO 1Z0
IF LEN (TS) < 15 THEN LET TS = TS + " ": GOTO 140
INPUT "ENTER STATE CODE:";S$
I F LEN (SS) <) Z THEN PRINT" PLEASE REENTER AS Z CHARACTERS.":
PRINT: GOTO ISO
INPUt "ENTER ZIP CODE:";Z$
IF LEN (ZS) <) 5 THEN PRINT "REENTER AS A 5 DIGIT CODE": PRINT
GOTO 170
LET CS = TS + " " + S5 +" "+ zs
REM FOR DEMONSTRATION PURPOSES ETC.
PRINT : PRINT C$

What is the purpose of line 130?

(b) What does T$ = T$ +" "in line 140 do?

(c) In line 190, what is the purpose of" "in the concatenation?

(a) Tests to be sure user has not entered more than the acceptable number of char­
acters (fifteen) for the city name field

(b) Fills in, adds on, or concatenates spaces from the last character of the T$ string'
up to and including character field position 15. Changes T$ to a fifteen-character
string if there were fewer than fifteen characters in the string entered for T$.

(c) Places spaces in the C$ string, one between the fields for city and state and two
between state code and zip code.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 57

Stripping the Padding Spaces From Substrings in Fields

You know how to pad a string with extra spaces to arrive at the proper field length
for that data item. Now let's explore a way to eliminate the extra blank spaces when
you extract data packed into a string. In the example where we wanted to change a
person's last name, it was necessary to pad names with spaces to the proper field length
so that corrections could be made, if necessary, and so the first and last names could
be found separately. But for name printing purposes, you want to eliminate all the
extra blank spaces. The method shown below uses the MID$ function. In our exam­
ple, N$ really consists of eight characters, one space separating the two fields, twelve
characters for L$, and one fmal space. If the name concatenated into N$ is Jenny
Smiles, then:

N$ = "JENNY SMILES"

This includes the field-separating space at character position 9. The string N$ has this
format:

----t----I t l -----1------1 t
first name space last name space

The procedure used in the following example is called "parsing." It means search­
ing through the string variable, one character at a time, until you find the character(s)
you are seeking. We use a FOR NEXT loop to help us "parse" the string variable N$
to find the first space in the first name field and first space in the last name field. If
no padding spaces were used, the spaces at the end of each field are found. The exam­
ple program below shows how to use first and last names separately, without extra
spaces, in a computer-printed "thank you" letter.

58 APPLE BASIC: DATA FILE PROGRAMMING

100
110
lZO
130
140
ISO
160
170
180
190
ZOO
Z10
ZZO

Z30
Z40
Z50

Z60
Z70
zeD
290
300
310
320
330
340
350

360
370
380
390

400
410
4Z0
430
440
450
460

lRUN

REM PARSINC DEMO PROCRAM

REM VARIABLES USED
REM FS=FIRST NAME
REM LS=LAST NAME
REM NSzCONCATENATED NAMES
REM SAND SI=CHARACTER POSITION OF SPACE
REM X=FOR-NEXT LOOP CONTROL VARIABLE

REM DATA ENTRY MODULE

INPUT "ENTER FIRST NAME:";FS
IF LEN (FS)) 8 THEN PRINT "NAME TOO LONC. REENTER USINC 8
CHARACTERS OR LESS.": PRINT: COTO 210
IF LEN (FS) (8 THEN LET FS = FS + " ": COTO 230
INPUT "ENTER LAST NAME:";LS
IF LEN CLs)) 12 THEN PRINT "NAME TOO LONC. REENTER USINC lZ
CHARACTERS OR LESS.": PRINT: COTO 240
IF LEN (Ls) (lZ THEN LET LS = LS + " ": COTO ZSO

REM CONCATENATES ENTIRE NAME INTO NS

LET NI = FS + " " + LS +

REM PARSINC ROUTINE TO DETECT FIRST SPACE IN FIELD

FOR I = 1 TO 9
IF MIDS (NS,I,I) = " "THEN LET S = X: COTO 380: REM
S=CHAR.POSITION OF FIRST SPACE FOUND IN FIRST NAME FIELD
NEXT I

FOR X = 10 TO Z3
IF MIDS (NS,X,I) = " "THEN LET SI
SPACE FOUND IN LAST NAME FIELD
NEIT I

REM LETTER PRINT ROUTINE

PRINT : PRINT : PRINT

I: COTO 440: REM SI IS FIRST

PRINT "DEAR "; MIDS (NS,I,S - 1);",": REM PRINTS FIRST NAME IN SALUTATION
PRINT "IT SURE WAS COOD TO SEE YOU AND MRS. "; MIDS (NS,IO,SI - 10);"
AT THE CET TOCETHER THE OTHER EVENINC."

ENTER FIRST NAME:DANIEL
ENTER LAST NAME: ROBERTS

DEAR DAN I £L,
IT SURE WAS COOD TO SEE YOU AND MRS. ROBERTS AT THE CET TOCETHER THE OTHER

EVENINC.

NOTE: Lines 350 and 390 are one of those exceptions when the program leaves or
exits a FOR NEXT loop without necessarily completing all of the loops.

(a) In lines 350 and 390, what does the MID$ function search for?

(b) What value is assigned to Sand S 1 in the same lines?

(c) In line 450, why does S appear in the MID$ function?

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES S9

(d) In line 460, why is 10 subtracted from Sl in the MID$ function?

(a) Looks for the first space in each name field
(b) Character position number of first space in each field
(c) Counts the number of characters in the first name field, with the space at the

end subtracted from the character count
(d) Subtracts the characters in the first name field (B), the space at character posi­

tion nine (I), and the first space in the last name field (I) from the MID$
character count.

CHECKING ENTRIES FOR NULL STRINGS

One idiosyncracy of the INPUT statement already pointed out is that if the user mere­
ly presses the RETURN key when the computer is waiting for a response to an INPUT
statement, a null string is assigned to the string variable. If the computer then encoun­
ters a checking statement that pads the entry with spaces to the proper field length,
the entire entry would end up as a string of spaces and be duly included in the data
field for that entry. So checking data entries for null string assignments is a must and
should be part of your data entry program modules.

You can use two different techniques to test whether a string variable has been
assigned a null value. They work equally well.

IF A$ = THEN •••

or

IF LEN(A$) = 0 THEN •••

The decision the programmer must make (and it will vary with each situation) is what
to do after the THEN when the IF ... THEN condition is true and a null assignment
has been mistakenly made. Whatever you do, do not have the computer merely repeat
the INPUT prompt, as in the "what-not-to-do" example below.

170 INPUT "ENTER CUSTOMER NUMBER:";C$
180 IF LEN (CS) = 0 THEN 170
JRUN
ENTER CUSTOMER NUMBER
ENTER CUSTOMER NUMBER
ENTER CUSTOMER NUMBER
ENTER CUSTOMER NUMBER

60 APPLE BASIC: DATA FILE PROGRAMMING

A user who persists in not entering the customer number gets no information as to
what is wrong. Always provide a helpful error message, perhaps even a beep, bell, or
other sound if available on the terminal, so the user knows something is amiss with
the present response or entry.

170 INPUT "ENTER CUSTOMER NUMBER:";CS
J80 IF LEN (CS) = 0 THEN COSUS JOJO

1010 PRINT "PLEASE. WE MUST HAVE THE CUSTOMER NUMBER TO CONTINUE."
1010

lRUN
ENTER CUSTOMER NUMBER:
PLEASE. WE MUST HAVE THE CUSTOMER NUMBER TO CONTINUE.

With this information in mind, write the data entry routine that will produce the
prompts shown below. Test each data item for null response immediately after it is
entered with a message to the user that if reentry is made then all data entered are
assigned to string variables.

(a) ENTER CUSTOMER NUMBER:
ENTER CUSTOMER NAME:
ENTER PRODUCT NUMBER:
ENTER QUANTITY ORDERED:

(a) 110
ZZO
230

240
250

260
270

Z80
Z90

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 61

INPUT "ENTER CUSTOMER NUMBER:";C$
IF LEN CCS) " 0 THEN PRINT "ENTRY ERROR. PLEASE REENTER.": PRINT
COTO ZZO
INPUT "ENTER CUSTOMER NAME:";NS
IF LEN CNS> " 0 THEN PRINT "PL.EASE RESPOND AS REOUESTED.": PRINT
COTO 240
INPUT "ENTER PRODUCT NUMBER:";PS
IF LEN CPS> .. 0 THEN PRINT "WE CANNOT CONTIUE WITHOUT THIS DATA. ":
PRINT: COTO_260
INPUT "ENTER OUANTITY:";OS
IF LEN COS) = 0 THEN PRINT "PLEASE ENTER THE CORRECT VALUE.": PRINT
COTO 280

(or some similar messages)

Depending upon the program user's sophistication, even more detailed error
messages for problems like the null string entry and others may be necessary. Our
examples have given minimum messages to keep the examples short, uncluttered, and
easy to understand, but they may not be adequate to ensure a proper response.
Return to this example.

170 INPUT "ENTER CUSTOMER NUMBER:";CS
180 IF LEN CCS) = 0 THEN COSUB 1010: PRINT: COTO 170

1010 PRINT "YOU APPARENTLY PRESSED THE 'RETURN' KEY WITHOUT MAXING AN
ENTRY."

10Z0 PRINT "WE NEED A CUSTOMER NUMBER WITH THIS FOR1UT: A-l21."
1030 RETURN

Another example:

Z30 INPUT "ENTER COMPANY NAME:";C$
240 IF LEN CCs)) 12 THEN COSUB 1010: PRINT COTO 230

1010 PRINT: PRINT: PRINT "YOU ENTERED: ";CS
1 0 2 0 PR INT "PLEASE ABBREVIATE THE COMPANY NAME TO 12 CHARACTERS OR LESS."
1030 PRINT "EXAMPLE: ALPHA PRODUCTS COMPANY COULD BE SHORTENED TO 'ALPHA

PRO CO'"
1040 RETURN

Subroutines need to be protected from the main program that calls or branches
to them. Depending on how a program is constructed, a subroutine could be encounter­
ed and executed as if it were part of the main program, especially if the subroutine
section is one of the program's last modules. Use a STOP or END statement between
the main program and the moduZe(s) containing the subroutines. This protects the
first subroutine in the subroutine module from being executed in normal line number
order. If the first subroutine is executed, the computer will stop executing the
program and give an error message when it encounters a RETURN statement for which
the program has no matching GOSUB statement that sent it to the subroutine.

62 APPLE BASIC: DATA FILE PROGRAMMING

(a) Write an error message subroutine accessed by a GOSUB statement executed after
a true IF ... THEN comparison; one that displays an INPUT entry and describes
how to comply with the limit of twenty characters (because of data field length)
for entries to the following statement:

320 INPUT "ENTER PRODUCT DESCRIPTION:";P5

Sample entry to above statement:

RUN
ENTER PRODUCT DESCRIPTION:LEFT HANDED MONKEY WRENCH

(a) Your solution should be similar to this:

330 IF LEN (PS)) 20 THEN COSUB 1120: PRINT: COTO 320

1110 STOP
1120 PR INT : PR INT .: PR INT "YOU ENTERED » "; P s ;" « FOR PRODUCT

DESCRIPTION. "
1130 PRINT "PLEASE REENTER, BUT SHORTEN YOUR ENTRY BY USINC ABBREVIATIONS"
1140 PRINT "SO THAT THE PRODUCT DESCRIPTION IS 20 CHARACTERS OR LESS IN

LENCTH, "
11S0 PRINT "INCLUDINC THE SPACES AND PUNCTUATION."
llSO RETURN

REPLACEMENT OF DATA ITEMS CONTAINED IN A DATA FIELD

You may encounter problems when you attempt to change a data item in a data field.
The most practical solution is always use data fields of predefined lengths for each
data item in a string. That way any changes or replacements with MID$ will be com­
plete, rather than partial, as happened above.

Now design program modules to accomplish assignment and extraction of data in
fields within strings, using first and last names as examples.

Step 1. Define the field for the first name to have eight characters and that for the
last name, twelve characters, with a space after each name field.

Step 2. Create the data entry routine.

100
110

120

130
140
ISO

160

170
180
190
200
210
220
230

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 63

INPUT "ENTER FIRST NAME:";FS
IF LEN (FS) = 0 THEN PRINT PRINT "PLEASE, liE MUST HAVE THE NAME. ":
PRINT: GOTO 100
IF LEN IFS)) a THEN PRINT PRINT "FIRST NAME TOO LARGE. a CHAR.
MAX.": PRINT: GOTO 100
IF LEN (FS) (a THEN LET FS = FS + " ": GOTO 130
INPUT "ENTER LAST NAME:";LS
IF LEN (LS> = 0 THEN PRINT: PRINT "PLEASE, liE MUST HAVE THE LAST
NAME.": PRINT: GOTO 140
IF LEN (LS)) 12 THEN PRINT: PRINT "LAST NAME TOO LONG. JZ
CHAR.MAX.": PRINT: GOTO 140
IF LEN (LS) (JZ THEN LET 1$ = 1$ + " ": GOTO 170

REM CONCATENATED NAMES

LET NS • FS + + LS + " "
PRINT: PRINT NS: PRINT

Step 3. Replacement routine for last name field.

240 REM NEli LAST NAME TO REPLACE OLD LAST NAME
250
260 INPUT "ENTER NEli LAST NAME: ";LlS
270 IF LEN ILlS) = 0 THEN PRINT: PRINT "PLEASE, liE MUST HAVE A LAST

NAME.": PRINT.: GOTO 260
280 IF LEN ILlS)) 12 THEN PRINT: PRINT "LAST NAME TOO LONG. 12

CHAR.MAX.": PRINT.: GOTO 260
290 IF LEN (LIS) (12 THEN LET LIS = LIS + " ": GOTO 2S0
300 LET NS = MIDS (NS,l,S) + LIS + " ..
310

Step 4. Name printing routines.

no REM NAME PRINTING ROUTINE
330
340 REM TO PRINT FIRST NAME ONLY
350
360 PRINT : PRINT MIDS (NS,l,a)
370
380 REM TO PRINT LAST NAME ONLY
390
400 PRINT : PRINT MIDS (NS,lO,JZ)
410
420 REM TO PRINT COMPLETE NAME
430
440 PRINT : PRINT NS

Check your understanding of the routines above by answering the following
questions.

(a) In line 170, what is the purpose of L$ = L$ +" "?

(b) What does line 210 do?

64 APPLE BASIC: DATA FILE PROGRAMMING

(c) In line 300, what does the MID$ function do?

(d) If F$ = "VAL" and L$ = "JEANS", how will N$ appear when printed or dis­

played by line 220?

(a) Fills in unused character positions with blanks to the correct field length (same
technique used in lines 160 and 420)

(b) Packs first and last names into N$
(c) Concatenates the first nine characters of original N$ with the new last name

(Fl$), creating a new N$ assignment
(d) VAL JEANS

(All "padding" spaces are included when N$ is printed.)

THE VAL FUNCTION IN DATA ENTRY CHECKS

If the product number and quantity ordered in a program must be numeric quantities,
VAL() can easily convert these numbers stored as strings to numeric values.

330 LET A. = "lZS.S5"
340 PRINT VAL CAS)
350 LET A VAL CAS)
360 PRINT A

lRUN
us. ss
Hs.as

In the conversion, either a leading space is added for the implied plus sign, or a minus
sign is provided if the quantities were negative.

But the V AL() function does not completely solve the problem of converting
string numbers to numeric values. For example, alphabetic information included in a
string you wish to convert to a numeric value presents a very real problem that can
range from accidentally using the letter 0 (oh) for a zero, to a quantity that includes
the units that measure that quantity (12 quarts). Therefore, always test to be sure
that if numeric values are needed, that is what was entered.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 6S

Following are some sample values run on our APPLE II.

The RUN:

100
110
lZO
130
ltD
150
160
170
180
110
ZOO
ZIO
no
230
UO
250
aBO
Z70

REM VAL FUNCTION TEST.l

LET A. " "ABC"
PRINT AS, VAL (A')

REM TEST.Z-NULt STRING

LET A
PRINT At, VAL CAS)

REM TEST.J

LET AS • "lZ3ABC"
PRINT At, VAL (At)

REM TESTI4
LET AS = "ABCIZ3"
PRINT AS, VAL (AS)

lRUN
ABC

lZ3ABC
ABClZ3

o
o
123
o

Notice in the RUN above that alphabetic characters result in a value of f/J, as do
a null string and the mixed alphanumeric data where the alpha information precedes
the numeric (ABCI23). Notice also that the mixed data 123ABC results in a value of
123. The APPLESOFT BASIC's VAL function disregards the alphabet information
that follows numeric information in the same string. This is convenient if you wish to
enter the quantity and the units, such as 14 gallons, but inconvenient if you wish to
check for the validity of the data entered. Here, you want to ascertain that the data
entered are numeric, so when the VAL function entry test is used you get valid numer­
ic values. At this point, for mixed numbers and letters, assume that the user did enter
the correct value.

The test to validate numeric information would be:

100 IF VAL CAS> ,. 0 THEN PRINT "ENTER NUMERIC VALUES ONLY."

Note that the entry passes the test if only the first character entered is numeric.

(a) Now do some programming. For the data entry problem on page 60, you wrote a
program to produce a data entry sequence with null string checks added. Now add
data checks that ensure that the product number and quantity ordered are numeric
values. Also include a data check to be certain that the product number is a four­
digit number.

66 APPLE BASIC: DATA FILE PROGRAMMING

(a) Z10
ZZO
230

HO
250

Z60
Z70

Z7Z

274

Z80
290

295

INPUT "ENTER CUSTOMER NUMBER:";CS
IF LEN (CS) = 0 THEN PRINT "ENTRY ERROR. PLEASE REENTER.": PRINT
COTO HO
INPUT "ENTER CUSTOMER NAME:";NS
IF LEN (NS) " 0 THEN PR INT "PLEASE RESPOND AS REOUESTED.": PR INT
COTO 240
INPUT "ENTER PRODUCT NUHBER:";PS
IF LEN (Ps) = 0 THEN PRINT "WE CANNOT CONTINUE WITHOUT THIS DATA.":
PRINT : COTO Z60 .
IF VAL (PS) " 0 THEN PRINT: PRINT "PLEASE ENTER NUMBERS ONLY.":
PRINT : COTO 260
IF LEN (PS) () 4 THEN PRINT: PRINT "THIS ENTRY MUST BE A 4-DICIT
NUMBER, SO REENTER.": PRINT: COTO 260
INPUT "ENTER OUANTITY:-;OS
IF LEN (aS) = 0 THEN PRINT "PLEASE ENTER THE CORRECT VALUE.":
PRINT: COTO zao
IF VAL (as) • 0 THEN PRINT: PRINT "ENTER NUMBERS ONLY, PLEASE.":
PRINT : COTO 280

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 67

USING STR$ TO CONVERT VALUES TO STRINGS

The STR$() function serves the opposite purpose of the V AL() function. It converts
numeric values into strings. This allows you to manipulate numbers with string func­
tions. You can use it to convert numeric values to strings assigned to variables, in
concatenating several small strings into a string variable, as done earlier in this chapter.
For example, you may have combined product number, product description, and
quantity in inventory into one long string. You may then need the quantity in inven­
tory for an accounting procedure or another calculation. Such operations require a
numeric value. You would convert the string to a numeric value by using the VAL()
of the entry string. When the quantity is stored, you can convert back to a string by
taking the STR$() of the numeric value to place it into the P$ string.

P$ 17633 BOOK TITLE

P$ P$ + STR$(Q)

or

Q$ STR$(Q)
P$ P$ + Q$

144

When the computer converts a numeric value to a string with STR$(), a minus
sign is included in the string if the value is negative.

Try this demonstration program:

140 LET 1 ~ 847.25
ISO LET XS = STRS (X)
160 PRINT "I =";1
170 PRINT "IS =";X$

lRUN
1 .. 847.25
XS =847. ZS

In the example above, the LEN(X$) is six - five numeric characters and the
decimal point. (Remember, blank spaces, decimal points, and other punctuation marks
are characters.) If you fail to provide enough string length or field space, you will in­
advertently lose significant digits or characters due to computer truncation. A six­
digit number with a decimal point does not fir in a six-character field.

How many characters will the following data items have if they are converted
from values to strings with the STR$ function?

(a) 171.83 ___ _

(b) 2001 ___ _

(c) -999 ___ _

68 APPLE BASIC: DATA FILE PROGRAMMING

(a) 6
(b) 4
(c) 4

CHECKING FOR II.,LEGAL CHARACTERS

Using the ASC function in a data entry checking statement is a powerful tool to
determine whether illegal or unlikely characters have been included in an INPUT
string. Checking is done by a combination of the ASC function, the MID$ function,
an IF ... THEN statement, and a FOR NEXT loop. First the length of the entry is
determined by the LEN function, which is used as the upper limit of the FOR control
variable, like this:

350 INPUT "ENTEJI 6 CHAJIACTEJI CATALOG CODE:";C$
360 FOR X a 1 TO LEN (CS)

Then the MID$ function, using the FOR control variable (value of X for any iteration)
to determine which character to examine, selects each character in the string for
comparison to an ASCII number, like this:

nD IF ASC (MIDS (CS,X,l» = 3Z THEN PRINT "JlEENTEJI BUT DO NOT INCLUDE
SPACES. ": PRINT: GOTO 350

380 NEXT x

(Note: Here is one of those exceptions when the computer leaves or exits a FOR
NEXT loop before completing all iterations of the loop.)

Notice that any character that can be entered as part of a string can be checked to see
that legal characters that should be there are included, or that illegal characters are not
included. Notice, too, that the error message could be located in a subroutine outside
of the FOR NEXT loop. In addition, you can use the logical AND and OR to check
for more than one character or group of characters in the same IF .. .THEN statement.

What if a user made the following response to line 350 in the example above?
Answer the questions based on this response and this program segment:

] JlUN
ENTER 6 CHAJIACTEJI CATALOG CODE:A - 1341
REENTER BUT DO NOT INCLUDE SPACES.

ENTEJI 6 CHAJIACTEJI CATALOC CODE:A-1341

(a) What is the length of the substring selected by the MID$ function in line 370?

(b) What ASCII value is compared to 32 the first time through the FOR NEXT

loop? ________________ __

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 69

(c) The second time through?

(d) On which iteration of (time through) the FOR NEXT loop is the comparison in

line 370 true? ___________ _

(e) What value does the FOR statement control variable have as an upper limit for

this user's response? _______________ _

(a) 1
(b) 64 (for A)
(c) 32 (for a space)
(d) second iteration
(e) LEN(C$) = 8

(a) Write a data entry checking routine similar to the one before that prints an
error message if an illegal character is encountered. Use more than one IF .. .
THEN statement with the ASC function in the comparison, or a single IF .. .
THEN statement that uses the logical AND and OR. The only legal characters
for the entry are the digits f/J (zero) through 9 inclusive and the decimal point,
such as would be entered for a dollar and cents entry without a dollar sign.
Include a null entry test.

70 APPLE BASIC: DATA FILE PROGRAMMING

(a) 100
110

lZO
130

140

150
160

INPUT "ENTER A VALUE:";VS
IF LEN (VS) = 0 THEN PRINT: PRINT "PLEASE ENTER AS REOUESTED.":
PRINT : COTO 100
FOR I = 1 TO LEN (VS)
IF ASC (MIDS (VI,I,l») = 49 AND ASC (MIDS (VS,I,l» (= 57 OR
ASC (MIDI(V$,X,l» = 46 THEN 150
PRINT" INVALID ENTRY. ENTER NUMBERS AND DECIMAL PT. ONLY.": PRINT:
COTO 100
NEIT I
REM PROCRAM CONTINUES

THE HOME INSTRUCTION

It is sometimes desireable to remove "clutter" from the screen, especially when asking
the computer user for specific input, or after a data entry or data display operation is
completed. Use APPLESOFT HOME instruction to accomplish this. HOME should
generally be used just before a new display operation. (If HOME is placed in the pro­
gram after a display or entry instruction, the screen may be cleared before the user has
a chance to absorb the information). HOME may also be used in direct mode to clear
a screen.

100 HOME
110 INPUT "ENTER A VALUE:";VS
120 HOME
130 IF LEN (VIi 0 THEN PRINT PRINT "PLEASE ENTER AS REOUESTED.":

HOME: PRINT COTO 110
140 Hom:
150 FOR I = 1 TO LEN (VS)
160 IF ASC (MIDS (VI,I,l») = 49 AND ASC (MIDS (VS,I,l» (= 57 OR

ASC (MIDS(VS,I,l» = 46 THEN 190
170 HOME: PRINT "INVALID ENTRY. ENTER NUMBERS AND DECIMAL PT. ONLY.":

PRINT: HOME: COTO 110
180 HOME
190 NEXT X
200 REM PROCRAM CONTINUES

(a) The HOME instruction appears five times in this segment. Which ones should be

removed so that adequate information is displayed for the user.? _____ _

(a) All except line 100.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 71

A DISCUSSION OF DATA ENTRY AND CHECKING PROCEDURES

This chapter has included recommendations, hints, and techniques for dealing with
and checking data. This section describes and summarizes procedures used to check
and validate all data en tries.

There are two schools of thought regarding at what point incoming data should
be checked for errors. One states that since the data entry operator's time is costly,
the operator should merely enter data using the fastest possible procedures, with no
checks for accuracy at the time data are entered. This position requires that more
time be spent training the data-entry operator in fast, accurate computer entry
techniques .. Then, later, another program does the error checking on the data at fast
computer speeds. Whenever a data error is encountered, the computer "kicks out"
or rejects the entire data entry transaction for that set of data and prints the rejected
information in a special report. The rejected data set is then reprocessed or reentered
by the data-entry staff. This procedure works well if the number of rejects is low.

In contrast, we prefer the second approach - checking data on the way in. As
each item is entered, it is error-checked immediately. If an error is detected, the
computer operator is advised to reenter the data. One advantage is that the person
making the entry error is responsible for correcting it. This method also gives man­
agement a better measure of an operator's work flow since only accurate, accepted
information is completed during a work day. In the alternate method, data entry rates
may seem high, but so may be the reject rate, and special procedures are need to ver­
ify who is making the entry errors. A less subtle technique is to signal an entry error
with a terminal beeper or bell. Each time faulty data are detected, the sound signals
the operator (and the manager, if present) that an error was made and draws attention
to the "culprit." But these are concerns in a business environment. The immediate
error check is more in keeping with the small business or personal nature of most
programming applications presented here. And since all the error checking routines
follow the data entry immediately, you can easily read the program to see what kinds
of error checks are being made.

Two general data entry techniques are universally accepted. One uses a graphic
reproduction on the video screen of the paper form from which data are entered. It
makes sense to reproduce that form on the screen and have the computer prompt the
operator to "fill in the blanks" just as they appear on the paper form or data source
sheet.

A second generally accepted technique is one that repeats back to the operator
one or more sets of data entered. The operator is then given the chance to reenter
any incorrect items, even after the entry checking has been performed by the computer.
This is the "last chance" to pick up spelling errors, number transpositions, typographi­
cal errors, and anything else for which entry error checks cannot be designed into the
program itself. An example of such a post-data entry display appears below:

72 APPLE BASIC: DATA FILE PROGRAMMING

THANK YOU. HERE IS THE DATA YOU ENTERED.

CUST. /I

- 98213
2 - 98213
3 - 98213

PROD. /I

17892
24618
81811

QUANTITY

18
12
144

ARE THERE ANY CHANGES (YES OR NO)? YES
ENTER THE NUMBER OF THE LINE IN WHICH A CHANGE IS NECESSARY:

Before a summary report such as the one above is displayed, clear the screen of
previously displayed information. If fact, clearing the screen before each new entry
or after the entry of a data set is important in the entire concept of avoiding errors.
If the graphic display of a data source form is used, then the screen should be cleared
and the form redisplayed with the just-entered data. The operator can then double
check with the option to make any corrections directly on the new form.

Many error-checking procedures depend on personal preference or company
policy. Either way, plan ahead. Look carefully at the complete problem or job for
which you are using your computer. In what form and format should the data be
entered? Are there subtle limits or tests that you can apply to data to detect operator
errors? For instance, if you are entering addresses with zip codes and a large percentage
of your business is in California, then you know that most zip codes should start with
the number 9. It would be appropriate to test whether the entered zip code value be­
gins with a 9, and if not, to inform the operator of a possible error.

140 INPUT "ENTER ZIP CODE:";Zt
150 IF LEN (H) () 5 THEN PRINT: PRINT "ZIP CODE MUST BE EXACTLY 5

DIGITS. PLEASE REENTER.": PRINT: GOTO 140
160 IF LEFTS (H,l) = "9" THEN ZIO
170 PRINT: PRINT "THE ZIP CODE YOU ENTERED, ";ZS;" IS NOT FOR CALIFORNIA."
180 INPUT "IS IT CORRECT ANYVAY?";Rt
190 IF LEFTS (Rt,l) () "Y" AND LEFTS (RS,ll () "N" THEN PRINT

PRINT "ENTER 'Y' FOR YES OR 'N' FOR NO.": PRINT: GOTO 170
ZOO IF LEFTS (RS,l) () "Y" THEN PRINT "PLEASE REENTER.": PRINT:

GOTO 140
ZIO REM PROGRAM CONTINUES

We also strongly recommend consistency in your data entry formats, especially
for such things as data field lengths. Don't confuse yourseif or others who use your
programs. If you write several programs that use personal names, use the same size
delimiters or data fields. This also allows you to have compatible data files for
various uses. The same goes for address sizes and formats, product descriptions, and
other alphanumeric data. Remember, your company may have already made the
decision for you, so be sure you know the policies!

For numeric values, quantities, and entries involving monetary values, you may
have to dig a little to discover the limits for which the data should be tested. Company
policy, common sense, and actual experience may give you the logical limits for a
"not less than" or "not to exceed" data entry check. And you can always use the
operator override procedure for possibly erroneous data, as shown below:

330
340.
350

380
370
380
390
400
410
410
430
440

450

460

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 73

INPUT "ENTER aUANTITY ORDERED: ";as
IF VAL (as) (• 98 THEN 400
PRINT: PRINT "THE aUANTITY ENTERED EXCEEDS ORDER LII'!IT OF 98 UNITS.
PLEASE REENTER.": PRINT : COTO 330

REI'! ANOTHER PROCEDURE

INPUT "ENTER PRICE aUOTED:";P.
IF VAL (PS) (• 7S.00 THEN 480
PRINT: PRINT "THE PRICE aUOTED EXCEEDS NORI'!AL LII'!ITS OF "S. 00."
INPUT "IS IT CORRECT ANYWAY?";R.
IF LEFT. CRf.l) () "Y" AND LEFT. CR',l) () "N" THEN PRINT
PRINT "D'EASE ENTER 'Y' OR 'N'.": PRINT: COTO 420
IF LEFT. CRt,l) () "Y" THEN PRINT: PRINT "PLEASE REENTER.":
PRINT: COTO 400
REI'! PROCRAI'! CONTINUES

Let's review the general data entry error-checking procedures for alphabetic and
numeric information.
1. Enter all data into string variables after a clearly stated prompt request from the

computer.
2. Enter only one data item per prompt.
3. If you are going to pack a number of data items (a data set) into one string,

enter the data into separate string variables and then concatenate after all check­
ing has been accomplished. Do not enter data directly into a substring position.

4. Checking should include a test for non response (a null string) of the type IF
LEN(R$) = f/J •.•

5. When an error is discovered, include a message not only to tell the operator that
an error was made, but also to describe as completely as possible what the error
was. Do not merely request a reentry.

6. Check alphabetic data for field length using the LEN function.
7. It may be necessary to pad the entry with spaces to the proper field length,

especially for alphabetic data.
8. Thoroughly test numeric data (which we recommend be entered into a string

variable) in this order:
(a) for non-response (a null string)
(b) for excess string length, if applicable
(c) for the inadvertent inclusion of alphabetic characters in numeric values,

using VAL or ASC
(d) for any company policy tests or size limit
(e) if the datum is an integer value, test the value to see if it is an integer with

a statement like IF X < > INT(X)
(f) for negative values if they are not acceptable.
If this sounds like a lot of work, remember that your otherwise excellent pro­

gram must have valid and accurate data to do its job. Don't skimp. Be complete. For
example, the capability of the IF ... THEN statement to PRINT a message may lull
you into trying to oversimplify an error message in order to fit it into the same pro­
gramming line as the IF ... THEN statement. Don't fall into this trap. Use GOSUBs
and provide complete, clear messages to the operator.

You may want to place all error tests and messages into subroutines. This gives
your program neatness and clarity. Various entries may be put to the same tests,
allowing the check statements to work for various entries if variables and other factors
are compatable.

74 APPLE BASIC: DATA FILE PROGRAMMING

Be alert to other occasions throughout your programs where data errors may
occur. While we encourage sensitivity to errors at data entry time, always check for
data errors later in your program, especially if the data are subject to various mani­
pulations after the entry routines. Watch for strange results from functions such as
VAL. Get to know the version of BASIC you are using inside and out by thoroughly
exploring the reactions of statements and functions in various circumstances. The
error conditions you encounter will depend largely on your programming skills and
the kinds of applications you program. Be alert to the errors that occur and include
tests for them. Don't get psychologically locked in to your first, second, or third
version of a program or programming technique.

Finally, be aware that many programmers test their programs with only sensible
data, neglecting the ridiculous mistakes that can, and without a doubt will, be made.
When you think you have covered every possibility, let a child with no computer
experience try it out. If the program survives, you've checked it all out!

CHAPTER 3 SELF -TEST

1. Write an IF ... THEN comparison that will be true if:
(a) the entry has exactly seven characters.
(b) the entry does not have exactly seven characters.
(c) the first character in any entry is not a number.
(d) the first character in an entry is a number other than zero.
(e) the entry is not a null string.

(a)

(b)

(c)

(d)

(e)

2. Write a statement line that checks to see if an entry has less than twelve char­
acters, and if so, pads the entry with spaces so that the resulting string has
exactly twelve characters.

3. Write a data entry checking routine that checks to see that no numbers have been
included in a string entry. Write an accompanying subroutine, to be called when
a number is found, that tells the user what was entered, and to reenter without
including numbers in the entry.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES 75

4. You now have the background to write a data entry module for most kinds of
data to be later placed into a data file (covered in the next chapter). Write the
data entry module and complete it with data entry error checks, as described
below:

(a) Write a data entry routine that prompts the use to enter:
(l) a five-character alphanumeric product code (must always have five

characters)
(2) a product name with a twelve-character maximum length
(3) the quantity ordered into a three-digit field with a limit of 288 per

order
(4) the price, into a five-digit field, with no price exceeding $99.99

(b) Pack the information entered into one long string (M$) with the following
fields:

M$ / /

C$ N$

Note: Do not include slashes in the data field string.

Q$
/ - - -

P$

(c) Print parts of M$ in a "report" with the format shown below:

JPRICE: 1. Z5
QUANTITY: Z4
PROD. CODE: 11Z34

Refer back through this chapter for ideas, and try debugging your solution
program before looking at our way of doing it. Our solutions are not the
only ones possible. The real test is whether the program works, and how
foolproof it is.

76 APPLE BASIC: DATA FILE PROGRAMMING

l.

2.

3.

BUILDING DATA ENTRY AND ERROR CHECKING ROUTINES

Answer Key

(a) IF LEN (AS) " 7 THEN

(b) IF LEN (AS) () 7 THEN .. , ..

(c) IF ASC (AS) (48 AND ASC (AS)) 57 THEN

(d) IF VAL (AS) () 0 THEN

(e) IF LEN (AS> () 0 THEN

no IF LEN (A') (n THEN LET AS = AS + II II; COTO 1%0

(Your string variable and line number may be different, of course.)

100
110
300
310

REM SOLUTION, CH3, PROB3, SELF-TEST

INPUT "ENTER YOUR NAME:",AS
IF LEN (AS> " 0 THEN PRINT: PRINT "NO ENTRY MADE. PLEASE TRY
ACAIN.": PRINT: COTO 300
FOR I = 1 TO LEN (AS)

77

3Z0
330 IF ASC (MIDS (AS,I,l») 47 AND ASC (MIDS (AS,I,l» (58 THEN

COSUB 1100: PRINT: COTO 300
340 NEXT I

1090 STOP
1100 PRINT; PRINT "YOU ENTERED: ",AS
1110 PRINT "PLEASE REENTER, BUT DO NOT INCLUDE ANY NUMBERS.": PRINT
11 ZO RETURN

78 APPLE BASIC: DATA FILE PROGRAMMING

4. 100
llO
JZO
130
140
150
160
170
180
190
UO
ZlO
ZZO

230
Z35

Z40

ZSO
HO
Z63

265

170

Z80
no
300
305

310

no
330
340
3 SO
360
370
380
390
400
460
470
480
490

REM SOLUTION, CH3, PROB4 SELF-TEST

REM VARIABLE LIST
REM C$.. PRODUCT CODE(S CHAR.)
REM NS.PRODUCT NAME(lZ CHAR.HAX.)
REH OS"OUANTITY ORDERED(3 CHAR.MAX.)
REM PS"PRICE(5 CHAR.MAX.)
REM HS"CONCATENATED DATASET(ZS CHAR.)

REM DATA ENTRY HODULE

INPUT "ENTER PRODUCT CODE:";C$
IF LEN (Cs) () 5 THEN PRINT: PRINT "CODE MUST BE 5 CHARACTERS
EXACTLY. PLEASE.REENTER.": PRINT: COTO ZlO
INPUT "ENTER PRODUCT NAME:";NS
IF LEN (Ns) " 0 THEN PRINT: PRINT "NO ENTRY MADE. PLEASE ENTER AS
REOUESTED.": PRINT: COTO Z30
IF LEN (Ns)) JZ THEN PRINT: PRINT "ENTRY TOO LONC. PLEASE REDU£E
TO JZ.CHARACTERS HAX.": PRINT: COTO Z30
IF LEN (Ns) (lZ THEN LET NS c NS + " ": COTO Z50
INPUT "ENTER OUANTITY ORDERED:";OS
IF LEN (oS) " 0 THEN PRINT PRINT "PLEASE ENTER AS REOUESTED.":
PRINT: COTO zeD
IF VAL (aS) " 0 THEN
PLEASE.": PRINT: COTO
IF LEN (as)) 3 THEN
PRINT : COTO Z60

PRINT
zeD
PRINT

PRINT "ENTRY ERROR. NUHBERS ONLY,

PRINT "TOO HANY DICITS. 3 MAX.":

IF LEN (as) (3 THEN LET as" as + " ": COTO zeD
IF VAL (aS)) U8 THEN PRINT: PRINT "ORDER EXCEEDS LIMIT OF U8
UNITS. PLEASE, REENTER. ": PR INT : COTO Z6 0
INPUT "ENTER UNIT PRICE:";PS
IF LEN (Ps) " 0 THEN PRINT: PRINT "NO ENTRY MADE. PLEASE ENTER AS
REOUESTED.": PRINT: COTO 300
It VAL (Ps)) 99.99 THEN PRINT: PRINT "PRICE ERROR. MAXIHUM PRICE
MUST BE LESS THAN 100.": PRINT: COTO 300
IF LEN (Ps) (5 THEN LET P$ = PS + " ": COTO 3Z0

REM CONCATENATE DATA

LET MS " CS + NS + 0$ + PS

REM DISPLAY DATA

HOHE
PRINT "PRICE: "; RICHTS (MS,S)
PRINT "OUANTITY: "; HIDS (HS,18,3)
PRINT "PROD. CODE: "; LEFTS (HS,5)

CHAPTER FOUR

Creating and Reading Back
Sequential Data Files

Objectives: When you complete this chapter, you will be able to store and retrieve
numeric and/or alphanumeric data in sequential disk data files, using the following
BASIC data file statements in their special formats: OPEN, CLOSE, DELETE, READ
and INPUT, and WRITE and PRINT.

INTRODUCTION

A data file is stored alphanumeric information that is separate and distinct from any
particular BASIC program. It is located (recorded) on either a magnetic disk, diskette,
or cassette tape. This chapter discusses using sequential (also called serial) data files on
disks and diskettes.

In your previous BASIC programming experiences you probably hand-entered all
data needed by your programs using INPUT statements. You did this each time you
ran your programs. Or, if you had larger amounts of data, you might have entered
the data with DATA statements and used the READ statement to access and mani­
pulate the data. In either case, the data were program-dependent; that is, they were
part of that one program and not usable by other programs ..

A data file is program-independent. It is separate from anyone program and
can be accessed and used by many different programs. In most cases, you will use
only one program to load a data file with information. But once your data file is
loaded (entered and recorded) on a disk, you can read the information from that file
using many different programs, each performing a different activity with that file's
data.

For example, perhaps you have computerized your personal telephone and
address directory using data files stored on a disk. You may need just one program
to originally load information into that file and add names to it. (This chapter will
show you how.) Another program allows you to select phone numbers from the file
using NAME as the selection criterion. You can use still another program to change
addresses or phone numbers for entries previously made in the file. Another program
could print gummed mailing labels in zip code order using the same data file. You
could design yet another program to print names and phone numbers by phone num-

79

80 APPLE BASIC: DATA FILE PROGRAMMING

ber area code. The possibilities go on and on. Notice that one data file can be
accessed by many different computer programs. The data file is located separately on
the disk in a defined place. Each program mentioned above copies the information
from the disk into the electronic memory of the computer as it is needed by that
particular program. Alternatively, the program could transfer information from the
computer's memory to be recorded onto the disk.

If you already use your disk to SAVE and/or LOAD BASIC programs, then you
have some experience with disk files. When you SAVE a BASIC program, it is re­
corded on this disk in a file. Such files containing BASIC programs are called pro­
gram files. In contrast, the files discussed in this chapter contain data and are there­
fore called data files or text files. Program files and data files are different and
are used differently. A BASIC program file contains a copy of a BASIC program that
you can LOAD, RUN, LIST, and SAVE. A data file contains information only. You
access this information using a BASIC program that includes special BASIC statements
that access data files; that is, transfer all or part of the data from the magnetic record­
ing on the disk into the computer's electronic memory so the program can use it. You
cannot LOAD, RUN, LIST, or SAVE a data file. You can access the information only
by using a BASIC program.

You can tell what type of files is contained on your diskette by listing a CAT A­
LOG on your screen or printer. Type the word CATALOG and press RETURN. Here
is a CATALOG of one of our diskette contents:

*A 002 HELLO
*1 002 APPLESOFT
*B 027 MUFFIN
A 013 RENUMBER

*T 023 QUIZ
T 015 APPLE CHAPTERS

The column to the far left with the letter A, I, B, or T indicates whether the file
is an Applesoft BASIC program file, Integer BASIC program file, Binary program file,
or Text (or data) file. The asterisk (*) indicates whether or not the file is "locked,"
If it is, you cannot accidentally erase that file. See the APPLE II DOS Manual for the
locking procedures.

The numeric entry in the second column indicates how many "sectors" of disk
space are taken by the file, and, of course, the file name. A file name can be from
one to thirty characters in length. The only "rule" is that the file name must begin
with a letter. "Sectors" are explained in next section.

(a) Describe in general-terms how you can access data in a data file.

CREATING AND READING BACK SEQUENTIAL DATA FILES 81

(a) Using a BASIC program that includes special file accessing BASIC statements.

DAT A STORAGE ON DISKS

A magnetic disk (or diskette) has limited data storage capacity that varies from one
computer to another, from one size disk to another, and from one recording system
to another. For our APPLE II computer using version 3.3 DOS with sixteen-sector
diskettes, the user storage capacity of the diskette is nearly 127,000 bytes of infor­
mation. (The term "byte" will be explained shortly.) Using the 3.2 DOS, with
diskettes of only thirteen sectors, the storage capacity is slightly over 103,000 bytes
of information.

A disk refers to several styles of magnetic storage. Floppy disks are made of a
flexible, magnetic-coated plastic, and come in two sizes - 8-inch and 5\4-inch. The
smaller is often called a diskette. Hard disks are also available for microcomputers.
Although more expensive, they have larger data storage capacities. Fortunately, these
physical variations do not affect the BASIC statements used to store and access data
files.

Other variations occur in the way data are recorded on disks. A disk can be
recorded on one or both sides and in more or less space, depending on the disk drive
system. A double-density system records twice as much data in the same space as a
single-density system. A quad-density system is double-density recording on a system
that can record both sides of a disk without "turning it over." Again, such variations
do not affect the BASIC statements used to store and access data files.

Let's take a closer look at the single-density, 5-\4 inch diskette that is used by
the standard disk drive available with your APPLE computer. The disk is divided into
thirty-five concentric circles called tracks. Each track, in turn, is divided into thirteen
or sixteen sectors, depending on whether you use DOS 3.2 or 3.3 Each sector has
the capacity to store 256 bytes of information. The DOS uses three complete tracks.
Therefore, the DOS 3.3 diskette has a user capacity of 496 sectors, while the DOS 3.2
user has only 403 sectors of storage capacity.

What is this thing called a byte? A byte is computer jargon for both a unit of
computer memory and a unit of disk storage. Each byte has an electronic pattern
that corresponds to one alphanumeric character of information. One letter of the
alphabet, one special character, or one numeric character entered as a string (such as
LET B$ = "3") takes up one byte of storage space. A twenty-character name takes
twenty bytes of disk storage space. The general rule for storing strings in data files is
that the amount of storage needed for each string is equal to the actual length of the
string plus one byte for "overhead."

(a) How many bytes of disk storage are required by the string assigned to N$?

N$ = "BASIC DATA FILES ARE FUN"

82 APPLE BASIC: DATA FILE PROGRAMMING

(a) Twenty-four, plus one for "overhead" (Spaces also take one byte.)

Keeping track of disk storage requirements for alphanumeric data in strings is
easy, since one character equals one byte. Numeric values not entered as strings work
in much the same way. Each character in the number, the sign (if negative), and the
decimal point all take one byte, plus one byte for "overhead." The trick is knowing
in advance about how large each number will be so that you can approximate how
much storage space will be needed for numeric entries. With string entries you can
limit the size of the data field, as we showed you in Chapter 3. You cannot, how­
ever, limit the size of a numeric entry. Therefore, you must plan ahead and estimate
the space requirements for your numeric file entries. The examples below give the
space requirements for each entry.

234 = 3 characters + 1 = 4 bytes
-127 .5 = 6 characters + 1 = 7 bytes
12.509 = 6 characters +1 = 7 bytes
.0002 = ~ characters + 1 = 6 bytes

For a personal telephone and address directory application, let's see how much
disk storage space is required for each person on file. Each data item has a defined
field length.

Name 20 characters
Address (street) 25
City 10
State 2
Zip code 5
Phone (xxx-xxx-xxxx) 12
Age 2 (Entered as an integer number)
Birthdate (xx/xx/xx) 8

Subtotal 84
Overhead 7

Total 91

(a) How many bytes would be required to store the zip code as numeric value

instead of a string?

(b) Why was a twelve-character string rather than a numeric value used for the phone

number?

CREATING AND READING BACK SEQUENTIAL DATA FILES 83

(c) How many sectors would 150 entries in the address and phone directory take up

in storage? _________________________ _

(d) What is the maximum number of people you could file in your directory on one

disk with a capacity of 103,000 bytes?

(a) 5, plus 1 "overhead"
(b) Could not have included hyphens, which make number easier to read
(c) 92 times 150 = 13,800 bytes. 13,800 divided by 256 = 53.9, or 54 sectors

(Note that if you placed all eight data items into one long string, you could
save seven bytes of overhead, leaving eighty-five bytes per entry for a total of
fifty sectors. This technique can save bytes per entry and, therefore, valuable
storage space.)

(d) 103,000 divided by 92 = 1119

The eight items in each entry in the personal directory are called a dataset. A dataset
consists of all data that are included in one complete transaction or entry into a data
file. Grouping information by dataset and then accessing or otherwise manipulating
the dataset as a group of data items makes programming and reading programs much
easier.

Sequential data files can be visualized as one long, continuous stream of informa­
tion, with datasets recorded one after the other. Imagine datasets recorded continuous­
lyon a magnetic tape cassette (a single, long ribbon of tape) and you have a fairly
accurate image of how a sequential file looks in theory. That is how you as a file user
should think of it. The truth is, a file can be partially located on one track or one
sector, and partially on another, depending on the computer system and how the file
was filled. Fortunately, the physical location of the file on a disk is "invisible" to the
user. All you need remember is the long, continuous stream of information.

SEQUENTIAL VS RANDOM ACCESS DATA FILES

Data filing systems can use sequential data files or random access data files. The latter
are explained fully in Chapters 6 and 7. Sequential data files use disk storage space
more efficiently than random access data files. It will quickly become clear to you
that a disk is easy to fill to capacity, despite the seemingly large number of bytes that
can be stored on it. Thus, sequential files are sp(lce-efficient. However, it is somewhat
difficult to change data stored in a sequential file. Sequential files are designed for
"permanent" information that changes infrequently. You can change data in sequen-

84 APPLE BASIC: DATA FILE PROGRAMMING

tial files, but it is not as easy or efficient as in random access files, Thus, another
criterion for choosing between sequential and random access data files is how often
changes in data can be expected.

A third consideration is the time it takes to access information stored on a disk.
When you have a large data file with loads of information, it takes more computer
time to find or access a particular dataset at the end of a sequential file than it would
in a random access file. To access the 450th data set in a sequential file of 475 data
sets, the computer must sequentially search through 449 datasets before coming upon
the 450th dataset. Using random access files, the computer can immediately access
the 450th dataset without having to search through the other 449 datasets. Therefore
access time is another factor in selection of sequential or random access data files.

(a) What are three factors to consider when choosing between sequential and random
access data files? _______________________ _

(a) Storage space efficiency, changing data, and time for accessing data

INITIALIZING SEQUENTIAL DATA FILES

To prepare to use data files, you must first tell your APPLE how many different data
files you plan to use at one time in your programs. When you first load the DOS,
your APPLE assumes that you will use no more than three separate data files at one
time and reserves enough buffer memory space for those three files. If you know that
you will use more than three files at the same time in one BASIC program, then you
must execute a MAXFILES command.

APPLE will allow up to sixteen files to be used at one time. The MAXFILES
command tells the computer how many files you plan to use. To allocate space for
eight files, use this format:

MAXFILES8

You should execute the MAXFILES command before you even load your BASIC
program, since its execution will sometimes interfere with the internal pointers (ex­
plained later) set by your program. If you must execute a MAXFILES command as
part of a program, make the MAXFILES command the first executable statement in
your program.

The MAXFILES command actually sets aside 595 bytes of memory for each file
that will be used. This space is called a buffer; it acts as a go-between for the compu­
ter and the disk data file (see Figure 1). Input information accessed from a disk file is
first copied into the buffer, 256 bytes at a time. It is then available for manipulation

CREATING AND READING BACK SEQUENTIAL DATA FILES 85

by the program. Likewise, data to be output from the computer for recording onto
the disk are first accumulated in the buffer. When the buffer is full, the information
is copied from the buffer to the disk file. The buffer is a holding area for all data
coming to or from a data file.

diskette

o

t
Buffers

#2 is Input Buffer
#1 is Output Buffer

Figure 1: Data flow through buffers.

APPLESOFT BASIC statements that deal with data files fall into a special cate­
gory of BASIC statements that require an unusual format to execute. These statements
look like PRINT statements but are not really the same. The special format requires a
PRINT followed by a CONTROL D character, followed by the executable statement:

100 PRINT "CONTROL D" ;MUFILES'

While this looks easy, when you see a line such as 100 in a program listing, you will
not see the CONTROL D. Control characters do not print in a program listing, so at
some later time you may forget what you were trying to do. To establish a clean,
readable procedure, we do the following in our programs:
1. Define the string variable D$ with the Control D character in the initialization

routine at the beginning of each program, as shown below.

SET CONTROL D

2. Use D$ in all special file statements.

ZOO PRINT Df;"MAJFILES '"

Notice the punctuation in line 200. A semicolon (;) follows the PRINT state­
ment and the BASIC file statement is inside quotations marks.

86 APPLE BASIC: DATA FILE PROGRAMMING

Normally, the first statement in your program that relates directly to data files is
the OPEN statement(s) that identify to the computer the names of the files that will
be used in the program. The OPEN statement causes the computer to assign one of
the buffers to the file named in the OPEN statement. A buffer is needed for each file
that is open at the same time in the program. The buffer assignment is done auto­
matically on execution of the OPEN statement; the user and programmer need do
nothing. The OPEN statement searches the disk to see if the named file aready exists.
If not, it readies the disk to accept a new me with the indicated home. The OPEN
statement has the following form:

H 0 PR INT D.; "OPEN NAHESl"

This statement opens a sequential file with the name NAMESI if none already exists,
and assigns a buffer to it. Another example:

140 INPUT "ENTER FILE NAHE:";F'
1'0 PRINT D';"OPEN"F'

This shows that the file name can be assigned with a string variable. Line 150 opens
the file designated by the user in F$.

Just as every file must be OPENed by the program, every OPEN file must be
CLOSEd with a CLOSE statement before the program finishes execution. As soon as
your program is through using a file, and always before the program terminates, in­
clude a CLOSE statement to close each of the files or to close all of them at once.
This also completes any transaction inside the computer system that the buffer was
involved in, as explained in more detail in the next section. Once a file has been
closed and the buffer unassigned, the same buffer may be used again by the program
if you open new files. Here are some examples of CLOSE statements:

SOD PRINT D';"CLOSENAHESl"

810 PRINT DS; "CLOSE"FS

8Z0 PRINT DS;"CLOSE"

The Buffer Problem

CLOSE is a vitally important statement and, in most cases, is used to maintain the
integrity and accuracy of your data files. Recall that the buffer acts as a go-between
for the computer and the disk system. When you output data from the computer to
the disk file, the data go first to the buffer. Then, when the buffer is full (256 bytes),
the data are output and recorded onto the disk. This is often referred to as updating
the disk file.

What happens if the buffer is only partly full of data and there are no more data
to fmish filling it? You might expect the half-full buffer to simply transfer its contents
to the disk for recording when the program finishes execution. But it won't do that.
The data in the half-filled buffer will not necessarily be recorded into the file; your
me, therefore, may not contain all the information you expected. One important pur­
pose of the CLOSE statement is to force the buffer to transfer its contents to the data
file even though the buffer is not full. As a rule of thumb, any program with an

CREATING AND READING BACK SEQUENTIAL DATA FILES 87

OPEN statement should have a CLOSE statement that is always executed before the
program terminates. If you get trapped with a program that aborts or terminates and
the buffer still contains data, CLOSE can be executed in direct mode, forcing the
buffer to transfer its contents to the disk file. However, to have to do so indicates
poor programming technique and would be completely unacceptable in a work
environment. Further instructions on writing your programs to always execute a
CLOSE statement are given later in the chapter.

(a) What are two purposes of the CLOSE statement?

(a) To unassign the buffer and to force the buffer to transfer its contents to the disk
data file.

Our APPLE reference material states that the buffer will automatically "flush"
(transfer its contents to the disk data file) under normal conditions if the program
executes an OPEN to the same file, CLOSE or MAXIFILES, or if the user switches
languages by typing INT or FP (for Integer Basic or Floating-Point Basic). Don't count
on anything else to flush the buffer! To repeat: Always include a CLOSE statement
that is executed before the program terminates, so that buffer-flushing is automatic.
You should only force buffer-flushing under emergency conditions, and then you should
use the CLOSE statement in direct mode.

The buffer-flushing problem - and it is a real problem - makes it imperative that
you never remove a disk from the disk drive if the disk contains an open file. Be
certain all files are closed before you remove the disk from the drive, or you may find
yourself with data from a half-filled buffer placed in the wrong file on the wrong disk,
which can create some nasty errors. Be cautious, and remember that data go first to
the buffer. They then transfer to the disk file once the buffer is full. If the buffer
is not full, force it to transfer the data to the disk file with the CLOSE statement.

(a) If you are outputting data in a program to a data file and the program accidental­
ly terminates without executing a CLOSE statement, what should you do?

(a) Close the file with a CLOSE statement in direct mode.

88 APPLE BASIC: DATA FILE PROGRAMMING

WRITING DATA TO A SEQl.lENTIAL DATA FILE

You have learned to set up communication between your APPLE and the disk system
with the OPEN and CLOSE statement. Now you will learn how to place data into a
ftle; that is, actually record data onto the disk. APPLESOFT BASIC does this using a
special WRITE statement followed by a PRINT statement. The procedure is a little
tricky, mainly because you have to plan the sequence of operation in your program.

To write to a ftle, you must use a PRINT D$ statement with a WRITE statement
to begin the WRITE operation.

360 PRINT D$; "WRITE DEM01"

Once you start the WRITE operation, any normal PRINT statement that follows will
cause data to be printed to the ftle, rather than printed to the screen or printer. You
can see how this is done in the next program segment in lines 360 and 370. The
PRINT statement, then, actually causes the data to be printed to the ftle (after going
first to the buffer). The WRITE operation is terminated by a blank PRINT D$ state­
ment, like this:

410 PRINT D$

An INPUT statement INPUT N$ by itself will also terminate the ftle WRITE
operation. However, an INPUT with a prompt string (INPUT "ENTER NAME:"; N$)
will place unwanted data in your ftle by printing the prompt string message (ENTER
NAME:) to your ftle before terminating the write-to-ftle operation.

In our example, we want to enter data from the keyboard, and then write the
data to the disk ftle. We then enter more data and write it to the fIle. We will con­
tinue this procedure until we "signal" the computer that no more data are forthcom­
ing, then close the fIle. The program creates a data fIle containing the information
found in a school transcript showing classes taken, grades received, and units of college
credit for the course. The general programming steps are shown below.

1. OPEN the ftle.
2. Enter the data.
3. Tell the computer to start the WRITE procedure.
4. PRINT to the fIle.
5. Terminate the WRITE operation.
6. Return to step 2 above.
7. CLOSE the fIle.

Here is our program. Read it over carefully.

CREATING AND READING BACK SEQUENTIAL DATA FILES 89

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
ZSO
260
270
zao
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

REM FILE PRINT DEMO .1

REM VARIABLES USED
REM NS.COURSE NAME
REM CS.COURSE CRADE
REM N.NUMBER OF ACADEMIC UNITS

REM FILES USED
REM SEQUENTIAL FILE NAME: DEMOI
REM DATASET FORMAT:N'.CS.N

REM INITIALIZE

LET DS z CHRS (4)
PRINT DS;"OPEN DEMOI"

REM 'BARE BONES' DATA ENTRY MODULE

PRINT "TYPE 'STOP' INSTEAD OF COURSE NAME
INPUT "ENTER COURSE NAME:";NS
IF NS = "STOP" THEN 460
INPUT "ENTER COURSE CRADE:";CS
INPUT "ENTER NUMBER OF UNITS:";N

REM START FILE WRITE OPERATION

PRINT D.;"WRITE DEMOl"
PRINT NS: PRINT CS: PRINT N

REM TERMINATE WRITE OPERATION

PRINT D.
PRINT COTO zeD

REM CLOSE FILE

PRINT DI;"CLOSE DEMOl"
END

TO END DATA ENTRY."

(a) What is the name of the file used in this program? __________ _

(b) Data entry takes place in what statements? _____________ _

(c) What signal is used to tell the computer there are no more data forthcoming?

(d) What is the purpose of line 4l0?

(a) DEMOI
(b) 290,310, 320
(c) STOP
(d) It turns OFF the file write operation before you return for more data entry.

Line 360 tells the computer to begin the write-to-file operation, also referred to
as print-to-file, copy-to-file, or record-to-file operations. The PRINT statements in line

90 APPLE BASIC: DATA FILE PROGRAMMING

370 actually cause the data to be printed to the file (buffer). You can only PRINT
one data item to the file with each PRINT statement. You cannot easily use one state­
ment to print all three items as you would likely do if you were using a PRINT state­
ment to display data on the screen or printer. Rather than use three separate PRINT
statements on three different lines, we have chosen to complete the file PRINTing on
one multiple-statement line (see line 370). The three data items are called a dataset,
PRINTed to the file by us on one line. This method creates one file PRINT statement
in the program, making it easier to check the program for errors.

Before the program returns for more data entry, the WRITE operation must be
terminated. The blank or empty PRINT D$ statement at line 410 terminates the
WRITE. Notice that there is no punctuation following the D$. Strange happenings
can occur in programs when you accidentally place a semicolon after the D$.

The fmal operation is the CLOSE routine at line 460.

(a) What causes the program to execute line 460?

(a) The operator enters "STOP" as the course name: line 300 tests for "STOP" and
branches to 460 to CLOSE the file.

There are other ways to use PRINT statements to print to a file. We mention
them here in case you encounter them in programs written by other people. We do
NOT recommend these procedures, primarily because it is too easy to make errors as
you type the statements.

For numeric data only, you can use either of the PRINT statements shown be­
low to print to a file. Notice that this procedure requires only one PRINT statement
to print three data items.

IDD PRINT A;",";B;",";C

IlD PRINT A;";";B;";";C

(a) What is the difference between the two statements?

(a) Line 100 uses commas (",") to separate the variables; line 110 uses semicolons
(";").

CREATING AND READING BACK SEQUENTIAL DATA FILES 91

Notice the use of semicolons and quotations. With all that typing, you are bound to
make errors. We think the procedure described earlier is easier and clearer: use one
PRINT statement for each numeric variable holding data for the file.

For alphanumeric data, you must use separate PRINT statements for each string variable,
as described before:

130 PRINT AS; PRINT BS; PRINT CS

A possible problem arises when you want to write information that includes commas to
your file.

210 LET BS .. "PUBLIC. JOHN 0."

You would expect that the file print sequence below would cause the complete name to
be printed to the file:

no PRINT DS; "WRITE FILENAHE"
230 PRINT BS

But it doesn't: The quotation marks are essentially ignored. The computer accepts the
word "Public" and rejects the words ""John Q .. " The only item placed on your file is
the word "Public." Replacing line 210 with this statement compounds the problem
even more:

ZIO INPUT "ENTER NAHE;";NS

When RUN, the operator responds with:

lRUN
ENTER NAHE;"PUBLIC.JOHN 0."

Enclosing the name in quotes, you would expect the complete name to be written
to the file. Again, the computer confounds us by accepting the word "PUBLIC," reject­
ing "JOHN Q.," printing the error message "EXTRA INPUT IGNORED," and placing
both the word PUBLIC and the error message on your file! And you thought this was
going to be easy!

As you might expect, there is a way to program the APPLE to accept alphabetic
data that includes embedded commas. The solution is to "force" quotation marks on
either side of the name string variable by using the CHR$O function. CHR$(34) is the
ASCII code for the quote (") symbol. Here is a PRINT statement that will accept and
print to the file any alphabetic information that includes commas:

230 PRINT CHRS (34);; PRINT NS;; PRINT CHRS (34)

Note carefully the format and the use of semicolons and colons. The typing alone in the
statement above may cause you anxiety. However, you need to worry about forcing

92 APPLE BASIC: DATA FILE PROGRAMMING

quotation marks only when your string includes commas. This should not happen
often and with careful planning it may never be necessary.

As noted earlier, using files requires planning. Your plan should consider:
1. What to include in each dataset.
2. How large each data item or dataset will be.
3. Whether technical points, such as· imbedded commas in strings, must be handled

with special techniques.
4. How to test each data item in the dataset as completely as possible for accuracy

and validity.
With these considerations in mind, here is a program to help you place a

simple inventory from your home or business into a disk file. The introductory
module and possible checks for data validity are included.

100
110
lZO
130
ltD
150
110
170
110
110
ZOO
UO
ZlO
no
%40
250
zeD
270
ZlO
ZlO
300
310

310

330
3to

350

380
370
380
380
toO
410
4%0
430
UO
450
410
470

480

490
SOD
510
520
530
540
550

BE" INVENTOBY FILE LOAD PBOCBA"

BE" VABIABLES USED
RE" Tt.DESCBIPTION(ZO CHAR."AI.)
BE" N • NU"BEB OF ITE"S
RE" V • DOLLAB VALUE
BE" Dt • CONTBOL D
BE" B •• USEB BESPONSE

IE" FILES USED
RE" SEQUENTIAL FILE NA"E: PROPERTY
BE" DATASET FOB"AT: T'.N.V

BE" INITIALIZE

LET Dt. CHBt (4)
PRINT D';"OPEN PROPERTY"

BE" DATA ENTBY BOUTINES

INPUT "ENTEB ITE" DESCBIPTION:";T'
IF LEN (T.> • 0 THEN PBINT: PBINT "PLEASE ENTER AS BEQUESTED.":
PBINT : COTO 300
IF LEN (T')) ZO THEN PRINT: PRINT "PLEASE ABBREVIATE TO ZO
CHARACTERS OB LESS.": PBINT : COTO 300
INPUT "HOW "ANY ITE"S:";N
IF N () INT (N) THEN PBINT: PBINT "ENTER INTECERS ONLY. PLEASE. ":
PBINT : COTO 331
IF N (• 0 THEN PBINT: PBINT "THERE "UST BE SO"E UNITS I PLEASE
ENTER A QUANTITY." : PRINT: COTO 330
INPUT "WHAT IS THE DOtlAR VlIUE OF EACH:";V
IF V (• 0 THEN PRINT: COTO 4.0
PBINT Dt;"WBITE PBOPEBTY"
PRINT T.: PRINT N: PRINT V
PBINT D.

PBINT : COTO 300

BE" EBBOB "ESSACE "ODULE

INPUT "DID YOU BEALLY "UN ZERO VALUE. YES OB NO; ";B'
IF LEFT. (B',1) () "Y" AND LEFT. IR'.1) () "N" THEN PRINT
PRINT "PLEASE, TYP.E 'Y' FOR YES OB 'N' FOR NO."; PBINT : COTO 410
IF· l.EFT. (R', 1) • "N" THEN PR INT ; PRINT "REENTER THE CORRECT
VALUE.": PRINT; COTO 3&0
COTO 3.0

BE" FILE CLOSE ROUTINE

PBINT D';"CLOSE PROPERTY"

END

CREATING AND REA. lING BACK SEQUENTIAL DATA FILES 93

(a) What is the purpose of the blank PRINT D$ statement in line 400?

(b) The above program has one small but important "bug." Find and describe the
error.

(a) To turn OFF the WRITE operation so you can resume data entry
(b) The program never executes the me closing routine at line 530; the CLOSE

statement is needed to assure flushing the last data items from the buffer to
the me.

The problem of how to indicate to the program when to close the me is part
of replanning. The program should include a way for the user to indicate to the
computer that the user is done with the program for now, or that all data have been
entered. Either of the two procedures shown below could be included in the previous
program for this purpose. The choice is yours.

29S PRINT "TYPE 'STOP' IF NO HORE DATA·. OTHERWISE,"

3IS IF TS .. "STOP" THEN S30

or

US INPUT "IS THERE HORE DATA TO ENTER (Y OR N)?";RS
406 IF LEFTS (RS,I) () "Y" AND LEFTS (RS,I) () "N" THEN PRINT

PRINT "PLEASE.TYPE 'Y' FOR YES OR 'N' FOR NO": PRINT: GOTO 40S
407 IF LEFT. (Rt,l) • "N" THEN S30

Now enter and RUN the program, creating a sequential data me named
PROPERTY, which you will use later. This procedure works for terminating a pro­
gram and closing files which contain discrete datasets, as have been described in the
inventory program. But what about a variable length dataset - one with no prede­
fmed field lengths, such as a data me of recipes or a file of letters? How do you
indicate to the program when one recipe or letter ends and another begins? And then,

94 APPLE BASIC: DATA FILE PROGRAMMING

how can the computer "sense" the end of such data when inputting or reading back
from the recorded data file?

One popular procedure is to place a flag or "dummy" character at the end of
each dataset as a separator. The dummy character could be any character that would
never be part of or found in the data. An asterisk (*) is often used as. a dummy sepa­
rator. Here is one way to insert such markers into the data file.

3ZZ INPUT "IS THIS THE END OF ONE DATASET,niR.
313 RE" Y OR N DATA TEST COES HERE
3Z4 IF· LEFT. CR'.l) • "Y" THEN PRlNT D'i"WRITE FILENA"E": PRINT :

PRINT D.: COTO 410

A word of advice! When you write file programs (or any program for that
matter) prepare some written documentation for yourself and other users. At least
some description of the file layout is needed. Without written documentation, even
you may have trouble seeing how the program works six months from now. A good
procedure is to include such information in REM statements in the program itself as
part of the introductory module.

(a) Why is it important to inform the computer that all data to be included in the
data file have been entered?

(a) so that a CLOSE statement can be executed to flush an unfilled buffer

And a word of extreme caution: When you WRITE to a file after an OPEN
statement, you destroy any previous data that may be in that file! If you reuse a file,
and place data into it from the beginning, you destroy the previous information that
was placed in the file - but not completely. What happens is that some of the new
data overwrite the old data (old data are erased and new data are recorded on the
same disk space), but some of the old data may still be in the file! That means that
when you use the file, you may have some of the new data you want and some old
data you thought were destroyed. There is a way out of this mess. Follow these
steps when you first initialize your file and you can be sure you have completely
destroyed all previous data. Remember though, reuse only data files in which the old
data are no longer of use.

140 PRINT D'i"OPEN FILENA"E"
150 PRINT DSi"DELETE FILENAME"
liD PRINT DS i "OPEN FILENA"E"

You must first OPEN the file before you DELETE it. This is done because the
DELETE instruction first looks for a data file with the specified file name. If there is
no file by that name, the DELETE statement will cause an error message and your

CREATING AND READING BACK SEQUENTIAL DATA FILES 95

program will stop altogether. You can see that using the first OPEN statement prevents
the potential error condition. The moral of this lesson is think twice before you begin to
WRITE to a file. Make sure the file is either new or deleted before you start to write new
data into it; otherwise, you may end up with a file that contains a lot of "garbage."

Now you create a data file using the inventory program shown above. The data file
should include several datasets and a procedure to inform the computer that 'Ill data have
been entered, so that the file can be properly closed. Do NOT include a routine that
places a dummy separator between datasets. The file you create will be used in another
program later in this chapter.

READING DATA FROM A FILE

Now that you can output data from the computer to the data file, let's examine how to
input or read data back into the computer's memory from an existing disk file. To do
this, the most important thing to know is how the data were placed in the file in the first
place; that is, what order and format a dataset has in the file. After that, reading from a
file is simple and straightforward, with none of the complications that can accompany
writing to a file.

To read from a me, first OPEN the me as you did for the PRINT to me operation.
You then use a PRINT D$ statement to begin the READ operation. Any INPUT state­
ments that follow the READ statement will input data to the computer from the me.
The READ operation is terminated by a blank PRINT D$ statement, as before.

lZO PRINT DS; "OPEN FILENAME"
130 PRINT os; "READ FILENAME"
ItO INPUT AS.B.CS
ISO PUNT OS

Notice the use of commas to separate the variables in line 140 above.

It is important that the variables in the INPUT statements be the correct variable
type (string or numeric) to match the data that appear next in the file. If the INPUT
statement "looks" for numeric data in the me to assign to a numeric variable (B), and
the next file data item is alphanumeric, then your program may terminate in an error
condition or, perhaps worse, it will continue with bad data. If the INPUT statement
looks for string data and the next me item is numeric, the number will be accepted and
assigned to the string variable.

Is that good or bad? While the problem of having an open file and the program
stopping in an error condition is avoided and the new problem of having invalid data
takes its place - and after all that error checking at data entry time to place accurate
data into the file in the first place! To avoid such hassels, be sure you know how the
data were initially placed into the file, whether numeric or string data; and if strings, how
long. Your documentation should show the format of your dataset, at least in the section
of the program showing the variables used.

Returning to the simple inventory me named PROPERTY described earlier in the
chapter, recall that the alphanumeric description (T$), followed by number of units (N),
followed by value (V) were placed in the file in that order. The variable names T$, N,

96 APPLE BASIC: DATA FILE PROGRAMMING

and V were used in the program when the data were printed to the fIle. The variable
names themselves are separate from the data items. Therefore, you can use any appro­
priate string or numeric variable name in the INPUT statement when data are read
from the fIle, as long as they match the variable type in the fIle, numeric or string.

(a) Which of the following statements is appropriate to input data from the inven-
tory data fIle named PROPERTY?

1) 270 INPUT A,8,C
2) 270 INPUT A$,8,C
3) 270 INPUT 01$,0,0

(a) Statements 2 and 3 are both acceptable.

Below is the companion program to the property inventory file program, to read the
PROPERTY file and print a simple screen report with the data. Enter and RUN the
program. Make sure the disk containing the data file called PROPERTY is in the disk
drive.

100
110
HO
130
140
150
160
170
180
190
ZOO
Z10
HO
ZlO
Z40
ZSO
zeD
Z70
UO
ZSO

300
310
3 to
330
340
350
360
370
380
390
400
410
410

II EM IIEAD DATA FIIOM PIIOPEIITY FILE

IIEM VARIABLES USED
IIEM T ... OESCU PTI ON
IIEM N.NUMBEII OF ITEMS
IIEM V.DOLLAII VALUE
IIEM D ... CONTIIOL D

IIEM FILES USED
IIEM SEQUENTIAL FILE NAME: PIIOPEIITY
IIEM DATASET FOIIMAT:TS,N,V

JlEM INITIALIZE

LET D... CHIIS (4)
PUNT 0.; "OPEN PIIOPEIITY"

IIEM PIIINT HEADINGS

PJlINT PIIINT "DESCJlIPTION"; TAB(U); "QUANTITY"; TAB(33); "VALUE":
PIIINT

JlEM FILE liE AD 1I0UTINE/PIIINT IIEPOIIT

PJlINT D';"IIEAD PIIOPEIITY"
INPUT TS,N,V
PIIINT O'
PIIINT T', TAB(tZ);N; TAB(33);V
GOTO 330

IIEM CLOSE FILE 1I0UTINE

PJlINT O';"CLOSE PIIOPEIITY"
END

CREATING AND READING BACK SEQUENTIAL DATA FILES 97

RUN
DESCRIPTION QUANTITY VALUE

FILES Z 49
COMPUTERS 1 4S00
CLASSES 14 5
DISKS IS 4.15

(a) What is the line number of the statement that begins the READ operation?

(b) What is the line number of the statement that terminates the READ operation?

(c) What is the purpose of line 360?

(a) line 330
(b) line 350
(c) Displays the report on the screen

This RUN terminated in an error condition with the message END OF DATA.
This was an aborted end to the program execution. What if you wanted to do more
with the data and did not want the program to terminate when the end of the data
file was reached? A technique exists that allows the program to read to the end of
the file without the program stopping at that point. To understand the technique, you
must know how the data file "pointer" works. What follows is not an exact explana­
tion of how the APPLE works, but it serves to explain how to detect the end of the
file. The procedures used do, indeed, work on the APPLE.

Just as with regular READ and DATA statements in BASIC, the data file uses a
pointer to point "to" the next data item available in the buffer holding data from the
disk file. When a file is opened, the pointer is positioned automatically at the begin­
ning of the file and points to the first data item. Each execution of a file INPUT
statement or a file PRINT statement pushes that pointer forward as many places as
there are variables in the statement-variable list.

10 PRINT A. moves the pointer one position, to the place where the second data
item may be recorded.

20 INPUT N,N' moves the pointer past data items 1 and 2 to item 3. The pointer
is always looking at the position of the next available data ietm.

30 INPUT W, J, Y, Z moves the pointer four places, so the next data item read by an
INPUT statement will be the fifth data item

98 APPLE BASIC: DATA FILE PROGRAMMING

When your program uses a PRINT statement to add data to a file, each PRINT
statement moves the pointer and an end-of-file marker ahead one position. When all
data have been entered, the end-of-file marker is located just past the last data item.
The end-of-file marker is automatically put in place by the computer.

When you INPUT data from the file, the file pointer is always looking at the next
data item available in the file (or in the buffer, to be more exact). An attempt to
INPUT the end-of-file marker or anything beyond the last item of data results in an
error condition that can be detected using the ONERR statement. The end-of-file
error number is number five (5). Here are the statements needed to detect the end-of­
file condition.

ZZO ONERR GOTO 300
230 PRINT DS;"READ FILENAME"
UO INPUT AS ,B

300 IF PEEK (HZ) E S THEN PRINT DI; "CLOSE": GaTO 800

Line 220 sets the error condition test. Notice that we placed it before the READ
operation, since it does not have to be set more than once. One execution of line 220
sets the error condition trap, which continues in effect until the program stops execu­
tion or until another ONERR statement is executed during the program RUN. Line
300 tests to be sure that the error detected is the end-of-file condition. If it is, the
file is closed.

You can modify the previous program so that it does not terminate with an END­
OF-DATA error condition. Make these changes to your program.

3Z5 ONERR GOTO 410

410 IF PEEX (2ZZ) E 5 THEN 430
420 PRINT "UNUSUAL FILE ERROR. PROGRAM TERMINATED."
430 PRINT DI;"CLOSE PROPERTY"
440 END

An alternative modification would be as follows:

410 IF PEEX (HZ) • S THEN PRINT DI; "CLOSE PROPERTY": GOTO 440

With either "fix," the file will be properly closed.

A reminder: This is NOT a precise description of how the end-of-file mark works on
the APPLE. However, while the explanation has been simplified, the procedures
described to detect the end of a file do work correctly on your APPLE.

(a) In the program to read and display PROPERTY, with the end-of-data error trap
included, under what conditions is line 420 executed?

CREATING AND READING BACK SEQUENTIAL DATA FILES 99

(a) If the error detected by ONERR is not the out-of-data error

PERMANENTLY REMOVING FILES FROM DISKS

Situations will arise when you want to erase a data me from a disk. It may be a
temporary me such as those created for demonstration programs in this book or a me
that is of no further use to you for other reasons. Use the DELETE command. Using
this command deletes the me named after the command from the disk, destroying the
me's contents and deleting all reference to the me from the disk me directory.
DELETE is a system command that is entered and executed like RUN or LIST.
DELETE can also be used in an executable statement in APPLESOFT BASIC, but we
discourage this use except, perhaps, for very temporary meso Here is the form:

DELETE FILENAME

Use the me destroying command very carefully, as the action is irreversible. Once the
me has been deleted, there is no going back. Accidentally destroying the wrong file,
especially if you have not made a backup copy, can mean that you wasted hours or
days entering data into a me. Think carefully before using DELETE.

Be sure you understand the difference between DELETE and CLOSE. CLOSE
merely disassociates a buffer from the me it was assigned to and flushes the buffer
contents onto the disk if you are outputting data. After a CLOSE statement, the
data me is still recorded on the disk. DELETE eliminates the me entirely from the
disk, as well as all reference to it in the file directory.

We have used the word "copy" to describe how the INPUT statement works
when data are transferred from the disk data me into the computer's memory. Copy
implies that the data in the me do not change when they are input into the part of
the computer's electronic memory designated as the buffer. The data in the me are
unaffected and unchanged and remain in the file for another use. The only way to
change data in a data file is with a WRITE and PRINT statement.

You can fill a me with data and read from the same me in the same program.
But you must always CLOSE a me after outputting or recording information into it
before you can reopen the file for input or copying data back into the computer
memory. You must OPEN to output, then CLOSE and OPEN to read back the data.
This procedure resets the me pointer to the beginning of the me.

100 APPLE BASIC: DATA FILE PROGRAMMING

The following program illustrates the procedure to open and close the files at
the appropriate times. Quality assurance data are entered from a manufacturing pro­
cess into a file. The program will read the QA values from the file and accumulate
the number of responses in each category (1 through 6) in an array, and then print
the results. The program is self-documented by REM statements.

RUN
QUALITY CONTROL MEASUREMENTS:
ACCUMULATED RESULTS

QA NUMBER

1
Z
3 • 5 •

QUANTITY

• 5
Z
10 • Z

100
110
120
130
140
150
180
170
180
190
200
210
%20
230
ltD
250
260
270
280
ZlO
300
310
320
330
3tO
350
380
370
380
390
400
410
no
430
440
450
460
470
460
490
500
510
520
530
540
550
510
570
seD
seD
600
610
820
630
840
650
680
670
680
690
700
710
710
730
740
7S0
760
770
780
790
800
810
820
830
840
SSO

CREATING AND READING BACK SEQUENTIAL DATA FILES 101

REM FILE INPUT/OUTPUT DEMO

REM PROGRAM TO ENTER QUALITY CONTROL RESULTS
REM INTO FILE. PREPARE SIMPLE REPORT
REM FROM FILE

REM VARIABLES USED
REH FS • FILE
REH N • QUALITY ASSURANCE MEASURE
REM V • QUALITY ASSURANCE MEASURE
REM CI) • COUNTING ARRAY
REH DS • CONTROL 0

REM FILES USED
REM SEQUENTIAL FILE NAME IUSER ENTERED): QUALITY CONTROL
REM DATASET FORMAT:N lEACH DATASET IS ACTUALLY ONE NUMERIC VALUE)

REM INITIALIZE

LET D.. CHRS (4)

INPUT "ENTER FILE NAME:";F'
PRINT DS;"OPEN"FS

REM DATA ENTRY ROUTINE

PRINT PRINT "ENTER INTEGER NUMBERS 1-6 ONLY "
PRINT "ENTER '99' WHEN DONE ENTERING DATA.": PRINT
INPUT "QA NUMBER:";N
IF N • 99 THEN 510
IF N (1 OR N) 6 THEN PRINT "PLEASE ENTER 1-6 ONLY": GOTO 380

REM WRITE-TO-FILE ROUTINE

PRINT DS; .. WRITE .. U
PRINT N
PRINT DS
COTO 380

REM CLOSE FILE

PRINT DS;"CLOSE"F'

REM OPEN FILE TO READ

PRINT D';"OPEN"F'

REM READ FILE AND ACCUMULATE IN ARRAY

ONERR COTO 670
PRINT DS;"READ"F'
INPUT V
LET CIV) • CIV) +
GOTO 610

REM ERROR TEST

IF PEEK (222) = S THEN 730
PRINT "UNUSUAL ERROR. STOP PROCRAM"
STOP

. REM PRINT REPORT FROM ARRAY

POXE 216.0
HOME
PRINT: PRINT "QUALITY CONTROL 'MEASUREMENTS:"
PRINT "ACCUMULATED RESULTS": PRINT
PRINT "OA NUMBER OUANTITY": PRINT
FOR V " 1 TO 6
PRINT V.CIV)
NEXT V

REM CLOSE FILE

PRINT DS;"CLOSE"FS
END

102 APPLE BASIC: DATA FILE PROGRAMMING

Refer to the program on p. 101 to answer the following questions:

(a) Through which statement does the computer obtain the name of the data file?

(b) Which statement checks the parameters for the quality control numbers?

(c) How does the computer know that all data have been entered? _____ _

(d) Why are two CLOSE statements used in the same program?

(e) What does line 590 do? ___________________ _

(f) In line 620, how many different values can V have? __________ _

(a) line 310
(b) line 400
(c) user enters 99 as input value
(d) the data file must be closed after output and after input
(e) sets trap for end-of-data error
(f) six (1 to 6)

Help us write another program that first creates a data file called TEST, and
then displays the contents of that data file. Complete lines 280, 320, 410, 470, 550,
590, 630, 670, 710, and 750. (Read the REMs and comments.)

100
llO
120
130
140
ISO
160
170
180
190
ZOO
210
HO
230
240
ZSO
Z60
270
Z80
HO
300
310
3Z0
330
HO
350
360
370
380
390
400
410
4Z0
430
440
450
460
470
480
490
SOD
SIO
S 20
530
540
SSO
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
no
730
740
7S0
760
770
780
790
800
810
8Z0
830
840

CREATING AND READING BACK SEQUENTIAL DATA FILES 103

REM DATAFILE DEMONSTRATION

REM VARIABLES USED
REM AS = OUTPUT VARIABLE
REM BS = INPUT VARIABLE
REM DS • CONTROL D
REM X " FOR NEXT LOOP CONTROL VARIABLE

REM FILE USED
REM SEOUENTIAL FILE NAME: TEST
REM DATASET FORMAT: A. (DATASET IS ONE STRING DATA ITEM)

REM INITIALIZE

LET D." CHR. (4)

REM OPEN THE FILE

REM START WRITE OPERATION

REM USING A FOR-NEXT LOOP, PLACE 8 STRINGS INTO A DATA FILE

FOR X = 1 TO 8
LET AS = "TEST" + STRS (X)

REM PRINT TO THE FILE

NEXT X

REM CLOSE THE FILE

REM A PRINT STATEMENT TO TELL US ALL IS WELL, SO FAR

PRINT "FILE WRITTEN AND CLOSED"

REM REOPEN THE FILE

REM SET END-OF-DATA ERROR TRAP

REM START THE READ OPERATION

REM INPUT DATA ITEM

REM TERMINATE READ OPERATION

REM PRINT TO THE SCREEN

----------------_._---- ._--.. -
COTO 630

REM CLOSE FILE

IF PEEK (ZZZ) = 5 THEN 8Z0
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED."' PRINT
PRINT DS;"CLOSE TEST"
PRINT "FILE CLOSED."
END

104 APPLE BASIC: DATA FILE PROGRAMMING

(a) 280 PRINT DS;"OPEN TEST"
(b) 320 PRINT DS;"WRITE TEST"
(c) 410 PRINT At

(d) 470 PRINT DS;"CLOSE TEST"

(e) SSO PRINT DS;"OPEN TEST"

(f) S80 ONERR COTO 100

(g) 830 PRINT DS;"READ TEST"
(h) 870 INPUT BS

(i) 710 PRINT DS

G) 7S0 PRINT Sf

(a) Now show everything that will be printed or displayed when this program is
RUN,

(a) lRUN
FILE WRITTEN AND CLOSED
TESTl
TEsn
TEST3
TEST4
TESTS
TEST8
TEST7
TESTS
FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 105

One unique feature of file programs is that sometimes nothing appears to be hap­
pening when the program is RUN. There may be no printed report or any CRT dis­
play other than RUN and READY. To the novice, this seeming lack of activity may
be alarming. Be forewarned.

(a) Which statements in the previous program help assure the user that "invisible"

data file activity has taken place?

(a) lines 290 and 450

A final word about the blank PRINT D$ statement that we have used to termi­
nate the READ or WRITE operation: If you follow our examples and procedures in
your own programming, everything should work in your file-related programming.
However, when you start to deviate from our procedures, you can run into some real
problems.

We have been repeatedly warned by other people that there are times when the
blank PRINT D$ statement will not work. On investigation (it never happened to us),
we discovered that file PRINT statements must always end with a carriage return. If
your most recent PRINT to file statement ends with a comma or semicolon, then a
blank PRINT D$ statement will not terminate the WRITE operation. As a matter of
fact, it will place the code for a Control D in your file and your file will end up filled
with garbage.

ZSO PRINT D'; "WRITE FILENAME"
280 PRINT At.
Z70 PRINT D.

Line 270 does NOT turn off the WRITE operation because of the comma at the end
of line 260.

If you ignore our file programming procedures, which never use a PRINT to file
statement that ends with a comma or semicolon, you must use the ASCII code signal
for a carriage return, which is CHR$(l3), before a READ or WRITE operation can be
terminated. The procedure is to first PRINT CHR$(13), to force a carriage return,
and then to PRINT D$. This forces a carriage return into your file. Some program­
mers do the following:

ltD PRINT CHRt (13) + CHR. (4)

CHR$(13) puts in the carriage return. CHR$(4) turns off the READ or WRITE condi­
tion.

Now you are probably saying, "I'll just always use the CHR$(l3) + CHR$(4)
technique. That will solve the problem forever." Not so! If you always print a

106 APPLE BASIC: DATA FILE PROGRAMMING

carriage return before the blank PRINT D$, you will be placing an "extra" carriage
return in your file. This could ruin your future file reading because of the dataset
format problem (the extra carriage return here and there looks like a distinct data
item to the computer) and would certainly foul the operation of the end-of-file check
that you use. The easiest way to resolve this problem is to make sure your program
is nice and "clean."

CHAPTER 4 SELF -TEST

The problems in this self-test require you to write programs to store data in data files
and then to write companion programs to display the data in those data files. All
data files that you create in this self-test will be used in Chapter 5, so don't skip this
section. The introductory module is given so your solutions will look something like
the solution provided. Save the programs and files for later use, modification, and
reference. Try your solutions (and debugging the programs) before looking at the
solutions provided. Believe me, our "first draft" programs had to be debugged, too!
Good luck and keep on hackin'.

1 a. Write a program to fill a data file with the information and format specified
below:

Four data items per dataset.
First two data items are strings.
Second two data items are numeric values entered as strings.
Include data entry checks for null strings.
For the numeric values assigned to strings, include data entry tests to see

that only numeric values were entered. Then convert these strings to
numeric values assigned to numeric variables before storing them in the
data file.

Place at least three datasets in the data file. Name this file CUST.

100 REI'I SOLUTION TO CH4 SELFTEST PROB lA
110
aD REI'I VARIABLE LIST
130 REI'I AI. SI .. ALPHA DATA
140 REI'I 1'11.1'1. NI.N "NUI'IERIC DATA
150 REI'I DI .. CONTROL D
180 REI'I RS s USER RESPONSE
170
180 REI'I FILE USED
180 REI'I SEQUENTIAL FILE NAI'IE: CUST
ZOO REI'I DATASET FORI'IAT: A •• B' .I'I.N

CREATING AND READING BACK SEQUENTIAL DATA FILES 107

108 APPLE BASIC: DATA FILE PROGRAMMING

1 b. Write a companion program to display the contents of the data me named CUST
that you created in 1 a.

2 a. Write a program to make a data me called GROCERY that stores your grocery
shopping list. Include the description or name of each grocery item (maximum
of twenty characters) and a numeric value telling the quantity of that item to
buy. Store at least six datasets in the me.

CREATING AND READING BACK SEQUENTIAL DATA FILES 109

lOG REM SOLUTION CHt SELFTEST PROB U
110
aD REM VARIABLES USED
13D REM NI • ITEM DESCRIPTION
ltD REM Q • QUANTITY TO ORDER
15D REM Dt • CONTROL D
liD REM RI • USER RESPONSE
17D REM FI • USER ENTERED FILE NAME
liD
liD REM FILES USED
UD REM SEOUENTIAL FILE NAME: CROCERY (USER ENTERED)
UD REM DATASET FORMAT: NI,Q

110 APPLE BASIC: DATA FILE PROGRAMMING

2 b. Write a companion program to display the contents of GROCERY.

IRUN
EHTER HAME OF FILE:CROCERY

ITEM

BEAHS
BREAD
MILX
BUTTER

FILE CLOSED

QUANTITY

80
3
S
3

CREATING AND READING BACK SEQUENTIAL DATA FILES 111

3 a. Write a program to enter the following data in a data me for a customer credit
file maintained by a small business. Each dataset consists of three items:
1. five-digit customer number (must have exactly five digits)
2. customer name (twenty characters maximum)
3. customer credit rating (a single digit number 1, 2, 3, 4, or 5)
Include data entry checks for null entries and for the parameters set forth in the
list above. Enter at least three datasets in the data file. Remember, the customer
numbers must be different for each customer and should be in ascending order,
i.e., each larger than the previous one, such as 19652, 19653, 19654, etc. Name
this file CREDIT.

100 REM
110 REM
UD
130 REM
140 REM
150 REM
110 REM
170 REM
180 REM
110 REM
ua
ZlO REM
ZZO REM
UO REM
ztO

SOLUTION CH4 SELFTEST PROB 3A
CREDIT FILE LOADER

VARIABLES USED
Ft • FILE NAME
C' • CUSTOMER. (5 CHAR.)
N •• CUST. NAME (ZO CHAR.MAI.)
R. AND R • CREDIT RATINC (1 CHAR)
D. • CONTROL D
O' • USER RESPONSE

FILES USED
SEOUENTIAL FILE NAME: CREDIT (USER ENTERED)

DATASET FORMAT: C'.Nt.R

112 APPLE BASIC: DATA FILE PROGRAMMING

CREATING AND READING BACK SEQUENTIAL DATA FILES 113

114 APPLE BASIC: DATA FILE PROGRAMMING

3 b. Write a companion program to display the contents of the file named CREDIT.
Our RUN looks like this.

ENTER FILE NAME:TRANSACTION-l
1078 Z
1
S7

18lOZ
Z
6.lZ

43611
1
4.34

43611
Z
H.9S

43611
Z
88. S

80ZZ3
1
4S0

9870Z
Z
43.4S

ALL DATA DISPLAYED AND FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 115

4 a. Write a program to enter data into a transaction data file. A transaction file is
the data on a business transaction, such as that of a bank, a retail store, or a
mail-order business. For our example, each transaction produces a dataset with
three items, as shown below:

Account number = five characters
Transaction code = two characters (for a bank, 1 = check, 2 = deposit, etc.)
Cash amount = seven characters (9999.99 maximum amount)

Include data entry checks for null entries and for the parameters set forth above.
Check cash amount entries for non-numeric characters, except the decimal point.
Your program should allow the user to select (input) a name for the data file.

Create two different data files with your program, with seven datasets
(seven transactions) in each data file. Name file #1, TRANSACTION-I, and
name file #2, TRANSACTION-2. Use the account numbers given below for the
two files. For duplicate account numbers, make a complete dataset entry, so
that each of the two files contain seven datasets.

file #1

10762
18102
43611
43611
43611
80223
98702

file #2

10761
18203
43611
80111
80772
80772
89012

Note: Only the account numbers are shown here; the complete datasets also include
transaction codes and amounts.

110
120
130
140
150
liD
170
180
180
ZOO
ZIO
no
Z30
Z4D

REM VARIABLES USED
REM FS z USER ENTERED FILE NAME
REM DIS a DATASETS FROM FILE I,Z
REM AS z ACC'T NUMBER (5 CHAR.)
REM TS = TRANSACTION CODE (1 CHAR.)
REM CS z CASH AM'T (9999.99 OR 7 CHAR.MAI.)
REM I = FOR NEIT LOOP CONTROL VARIABLE
REM DS • CONTROL D

REM FILES USED
REM SEQUENTIAL FILE NAMES: TRANSACTION I, TRANSACTION Z (USER
SELECTED AND ENTERED)
REM DATASET FORMAT: AS,TS,CS

116 APPLE BASIC: DATA FILE PROGRAMMING

CREATING AND READING BACK SEQUENTIAL DATA FILES 117

118 APPLE BASIC: DATA FILE PROGRAMMING

4 b. Write a companion program to display the contents of a data file with the above
dataset format. Again, the file name should be user entered so that it can be
used to display the contents of TRANSACTION-lor TRANSACTION-2.

Our sample RUN:

lRUN
FILE NAME:TRANSACTION-Z

A/C.

10761
18 20 3
43611
80111
80772
80772
89012
FILE PRINTED

T-CODE

1
Z
2
1
1
1
2

AND CLOSED

AMOUNT

33. 33
Zl
500
54. 58
54.68
88. 88
485.77

CREATING AND READING BACK SEQUENTIAL DATA FILES 119

5 a. Write a program to load a data file named ADDRESS with (surprise!) names and
addresses. The data has the format shown below, with each dataset containing
five items in fields with one string

55
/1 20/21 40/41 50/12/53 57/ ------------------------------------ -------

name address city state zip code

Include appropriate data entry checks and field padding routines. Enter at least
four addresses in the data file.

100 REM SOLUTION CH4 SELFTEST PROB SA
110
HO REM VARIABLES USED
130 REM NS = NAME(ZO)
140 REM AS = STREET ADDRESS(ZO)
ISO REM CS " CITY(10)
160 REM S5 STATE(Z)
170 REM zs ZIP CODE(S)
180 REM ES CONCATENATED DATASET(57)
190 REM DS CONTROL D
200 REM R$ = USER RESPONSE
210
ZZO REM FILE USED
230 REM SEQUENTIAL FILE NAME: ADDRESS
240 REM DATASET FORMAT:C5 (ONE STRINC)

120 APPLE BASIC: DATA FILE PROGRAMMING

5 b. Write a companion program to display the contents of ADDRESS. Here is our
sample RUN.

lRUH
JERALD R. BROVH
13140 FRATI LANE
SIBASTOPOL
CA
.5471

REGGJE JACKSON
II BALLPARK RD
EVERYYJfERE
US
00000

JACK SPRAT
1 LEAN DRIVE
SXIHHYVILL
EA
00003

FILE CLOSED

CREATING AND READING BACK SEQUENTIAL DATA FILES 121

6 a. Write one program and use it to create three different data files called LETTER I ,
LETTER2, and LETTER3. Each file should contain the text of a form letter with
at least three lines of text per letter. Each line of text in the letters is to be entered
and stored as one dataset.

100 REM SOLUTION CM4 SELFTEST PRO~6A
110
1%0 REM VARIABLES USED
130 REM TS • TEIT LINE
140 REM FS • FILE NAME
150 REM DS • CONTROL D
180 REM RS • USER RESPONSE
170
180 REM FILES USED
190 REM SEQ. FILE NAME: LETTER.
ZOO REM (I, I S USER SELECTED & ENTERED)
ZIO

122 APPLE BASIC: DATA FILE PROGRAMMING

6 b. Write a companion program to display the data files above selected by the user.
Our sample RUN:

JRUN
ENTER FORM LETTER NUMBER: 1
YOU ARE HEREBY INFORMED THAT ALL ELECTRICAL SERVICE TO YOUR AREA WILL BE
DISCONTINUED AS Of JAN. 1. WE HOPE THIS WILL NOT INCONVENIENCE YOU.
FILE CLOSED

1 a.

100
110
110
130
ltD
150
liD
170
180
180
ZOO
210
ZZO
UO
ltD
ZSO
ZlO
Z70
zeD
ZlO
300
310
3Z0
330
ltD

3S0

380
370
380

380

4D0
410
4%0
430
.. 0 .'0
480
470
480

490
'00
510
'ZO
530
540
5'0

CREATING AND READING BACK SEQUENTIAL DATA FILES 123

Answer Key

REM SOLUTIOH TO CH4 SELFTEST PROB lA

REM VARIABLE LIST
REM AS. BS • ALPHA DATA
REM MS.M. HS.H -HUMERIC DATA
REH OS • CONTROL 0
REH RS • USER RESPOHSE

REH FILE USED
REH SEQUEHTIAL FILE NAHE: CUST
REM DATASET FORMAT: AS.BS.M.H

REM IHITIALIZE

LET 01. CHRS (t)

PRINT OS; "OPEH CUST"

REH DATA ENTRY ROUTIHE

INPUT "ENTER DATA ITEM:";At
IF LEN (At) • 0 THEN PRINT "PLEASE EHTER SOHETHING": GOTO ZlO
INPUT "ENTER DATA ITEH Z:";BS
IF LEN (BS) • 0 THEN PRINT "LEASE ENTER SOHE DATA": GOTO 310
INPUT "ENTER HUHERIC DATA:";HS
IF LEH (Hs) • 0 THEN PRINT PRINT "PLEASE EHTER SOMETHIHG": PRINT
GOTO 330

• 0 THEN PRINT : PRIHT
330
(Hs)

IF VAL (HI)
PRINT : GOTO
LET H. VAL
IHPUT "ENTER
IF LEN (Ns)
GOTO 370

NUHERI C ITEH Z:" ;NS

IF VAL (HS)
PRINT: GOTO
LET N. VAL

• 0 THEN

• 0 THEN
370
(H')

REH WRITE TO FILE

PRINT 01; "WRITE CUST"

PRINT PRINT

PRIHT : PRINT

PRINT At: PRINT BS: PRINT H: PRINT H
PRINT 01
INPUT ""ORE DATA1";RS

"PLEASE EHTER HUMBERS OHLY":

"PLEASE ENTER SOHETHING" : PRINT

"PLEASE ENTER HUHBERS OHLY":

IF LEFTI (RS.l) () "Y" AND LEFTS (R"l) ("N" THEN PRINT
PRINT "TYPE 'Y' FOR YES OR 'H' FOR HO.": PRIHT GOTO 470
IF R, • "Y" THEN zeD

REH CLOSE FILE

PJlINT DI; "CLOSE CUST"
PRINT "FILE CLOSED"
END

124 APPLE BASIC: DATA FILE PROGRAMMING

1 b.

100
110
1%0
130
ltD
1S0
110
170
180
190
200
ZIO
UO
230
HO
250
%80
270
zeD
210
300
310
310
330
340
350
380
370
380
390
400
410

REM SOLUTION TO CH4 SELFTEST PROB IB

REM VARIABLES USED
REM AI,BI • ALPHA DATA
REM M,N • NUMERIC DATA
REM DI ~ CONTROL D

REM FILE USED
REM SEQUENTIAL FILE NAME: CUST
REM DATASET FORMAT:AI,BI,M,N

REM INITIALIZE

LET DI. CHU (4)
PRINT DI; "OPEN CUST"

REM INPUT DATA FROM FILE & DISPLAY

ONERR GOTO 370
PRINT DI;"READ CUST"
INPUT AI ,BI ,M,N
PRINT DS
PRINT AI: PRINT BI: PRINT M: PRINT N: PRINT
GOTO 210

REM CLOSE FILE

IF PEEK (2%2) = S THEN 390
PRINT: PRINT "UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT
PRINT DI; "CLOSE CUST"
PR INT "ALL DATA DI SPLAYED AND FILE CLOSED"
END

2 a.

JOO
110
120
130
140
150
180
170
180
liD
ZOO
ZJO
%20
%30
140
no
180
170
UO
zeD
300
310
no
330
3to
350
380
no
380

JlO
400
410
UO
430

440
450
480
470
480
490
500
510
5%0
530
540
550
51D
570

CREATING AND READING BACK SEQUENTIAL DATA FILES 125

REM SOLUTION CH4 SELFTEST PROB ZA

REM VARIABLES USED
RE" NI • ITE" DESCRIPTION
RE" Q • QUANTITY TO ORDER
RE" DI • CONTROL D
RE" RI • USER RESPONSE
RE" FI • USER ENTERED FILE

RE" FILES USED
RE" SEQUENTIAL FILE NA"E:
RE" DATASET FOR"AT: NS,Q

RE" INITIALIZATION

LET D.. CHRI (4)
INPUT "ENTER NA"E OF FILE:";F.
PRINT DI; "OPEN""
PRINT DI;"DELETE"FI
PRINT DI; "OPEN"" .

RE" DATA ENTRY ROUTINE

HO"E

NA"E

CROCERY (USER ENTERED)

PRINT "ENTER 'STOP' 'JJfEN ALL DATA IS ENTERED.": PRINT
INl'UT "ENTER ITE" DESCRIPTION:" ;N'
IF N ... "STOp· THEN 550
IF LEH (HI) • 0 THEN PRINT: PRINT ·PLEASE ENTER A DESCRIPTION OR
'STOP"': PRINT :_ COTO 350
IF LEN (NI)) %0 THEN PRINT: PRINT "SHORTEN DESCRIPTION TO %0
CHARS. AND REENTER": PRINT: COTO 350
INPUT "ENTER QUANTITY:"; Q
IF Q) • 1 AND Q (10 THEN 480
PRINT "YOU ENTERED A QUANTITY OF ";Q
INPUT "IS THAT 'JJfAT YOU 'IANTED?";RI
IF LEFTI (RI,l) () "Y" AND LEFTI (RI,l) () "N" THEN PRINT
PRINT "TYPE 'Y' FOR YES OR 'N' FOR NO": PRINT: COTO 410
IF LEFT' CRI,l) • "N" THEN 390

RE" 'IRITE TO FILE ROUTINE

PRINT DI; "'IRITE""
PRINT NI: PRINT Q
PRINT DI
COTO 330

RE" CLOSE FILE

PRINT DI; "CLOSE""
PRINT "FILE CLOSED"
END

126 APPLE BASIC: DATA FILE PROGRAMMING

2 b.

100
110
no
130
140
150
160
170
J80
190
200
ZIO
220
230
240
250
160
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

REM SOLUTION CH4 SELFTEST PROB ZB

REM VARIABLES USED
REM NS ~ ITEM DESCRIPTION
REM Q = QUANTITY TO ORDER
REM OS = CONTROL 0
REM FS • USER ENTERED FILE NAME

REM FILES USED
REM SEQUENTIAL FILE NAME: GROCERY (USER ENTERED)
REM DATASET FORMAT: NS,Q

REM INITIALIZATION

LET Df = CHRI (4)
INPUT "ENTER NAME OF FILE:";FS
PRINT D';"OPEN"F'

REM READ AND PRINT FILE

PRINT PRINT "ITEM","QUANTITY": PRINT
ONERR GOTO 400
PRINT D';"READ"FS
INPUT NS,O
PRINT D.
PRINT NS,O
GOTO 320

REM CLOSE FILE

IF PEEl (222) • S THEN 420
PRINT: PRINT "UNUSUAL ERROR. PROGRAM TERMINATED": PRINT
PRINT OS;"CLOSE"FS
PRINT : PRINT "FILE CLOSED"
END

GOTO 420

3 a.

100
110
120
130
140
ISO
160
170
180
190
ZOO
210
ZZO
Z30
240
150
zeD
%70
zeD
280
300
310
3Z0
330
340
350
360
370
380
380

400

410

UO
430
440
4S0

460
470
480

490

SOD
SID
510
S30
540
SSO
SSO
570
S80
SSO
800
610
no
630
640
650
660
670
680
690

CREATING AND READING BACK SEQUENTIAL DATA FILES 127

REM SOLUTION CH4 SELFTEST PROB 3A
REM CREDIT FILE LOADER

REM VARIABLES USED
REM F •• FILE NAME
REM C' • CUSTOMER. (5 CHAR.)
REM Nt • CUST. NAME (Z~ CHAR.HAI.)
REM Rt AND R • CREDIT RATINC (1 CHAR)
REM D. • CONTROL D
REH O' • USER RESPONSE

REH FILES USED
REM SEOUENTIAL FILE NAME; CREDIT (USER ENTERED)
REM DATASET FORMAT; C',N',R

REM INITIALIZE

LET D.. CHRt (4)
HOME
INPUT "ENTEJI FILE NAME:";F.
PRINT Dt;"OPEN"PS
PRINT D.; "DELETE"PS
PRINT D';"OPEN"FI

REM DATA ENTRY ROUTINE

PRINT "ENTER 'STOP' "'HEN FINISHED ENTERINC DATA.": PRINT
INPUT "ENTER CUSTOMER NUHBER:";CS
IF CI • "STOP" THEN 670
IF LEN (CS> • 0 THEN PRINT: PRINT "ENTER NUMBERS OR TYPE 'STOP'";
PRINT : COTO 370
It LEN (CS> < > 5 THEN PRINT: PRINT "ENTRY ERROR. NUHBER HAS 5
DICITS."; PRINT; COTO 370
IF VAL (CS> • 0 THEN PRINT: PRINT "ENTRY ERROR. NUMBERS ONLY,
PLEASE. ": PR INT ; COTO Z9 0

PRINT: INPUT "ENTER CUSTOMER NAME;" ;NS
IF LEN (Nt> • 0 THEN PRINT "PLEASE ENTER A NAME, NO"'. ": COTO 430
IF LEN (NS> > ZO THEN PRINT "PLEASE LIMIT NAME TO ZO CHARS AND
REENTER.": COTO 430 .

PRINT: INPUT "CREDIT RATINC:";RI
IF LEN (Rs> < > 1 THEN PRINT "ONLY A ONE DICIT NUMBER IS
ACCEPTABLE.": COTO .70
IF VAL (RS) (1 OR VAL (RS)) 5 THEN PRINT "NUHBERS 1-5 ONLY,
PLEASE.": COTO 470
LET R. VAL (RS)

REM PRINT TO FILE

PRINT OS; ""'RITE"FS
PRINT C.: PRINT N.: PRINT R
PRINT D.

REM MORE DATA ROUTINE

HOME
INPUT "DO YOU HAVE MORE DATA TO ENTER?";O'
IF LEFTS (OS,1) () "Y" AND LEFTS (01,1) < > "N" THEN PRINT
PRINT "ENTER 'Y' FOR YES OR 'N' FOR NO": PRINT COTO 610
j, LEFtt (0',1) • "Y" THEN 380

REM CLOSE FILE

PRINT DS;"CLOSE"FS
PRINT "JOB COMPLETED"
END

128 APPLE BASIC: DATA FILE PROGRAMMING

3 b.
.100
110
1%0
138
140
150
180
170
180
180
ZOO
110
no
130
140
250
280
270
280
290
300
310
320
330
340
350
380
370
380
390
400
410
420
430
440
450
460

RE~ SOLUTION CH4 SELFTEST PROB 3B
RE~ CREDIT FILE DISPLAY

RE~ VARIABLES USED
RE~ Ft • USER ENTERED FILE NAME
RE~ Ct • CUST .•
REM Nt • CUST. NAME
REM R • CREDIT RATINC
REM Dt • CONTROL D

REM FILES USED
REM SEQUENTIAL FILE NAME: CREDIT (USER ENTERED)
REM DATASET FORMAT: C'.N'.R

REM INITIALIZE

LET D. '" CHRt (4)
HOME
INPUT "ENTER FILE NAME:";Ft
PRINT Dt;"OPEN"Ft

REM READ/PRINT FILE

ONERR COTO 420
PRINT Dt; "READ"Ft
INPUT CS .Nt.R
PRINT Dt
PRINT Ct: PRINT NI: PRINT R: PRINT
COTO 340

REM CLOSE FILE

IF PEEX (ZZZ) ~ 5 THEN 440
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED": PRINT
PRINT DS;"CLOSE"FS
PRINT" ALL DATA DISPLAYED AND FILE CLOSED"
END

4a.

100
110
lZO
130
140
ISO
lIO
170
180
190
ZOO
%10
aD
Z30
Z40
ZSO
280
210
180
180
300
310
3Z0
330
340
350
360
370
380
390
400

410
410
430

440
4'0
480

470
480

490

SOO
510
HO
530
540
SSO
560
510
S80
590
600
610
no
630
640

CREATING AND READING BACK SEQUENTIAL DATA FILES 129

REM SOLUTION CH4 SELFTEST PROB 4A

REM VARIABLES USED
REM FS • USER ENTERED FILE NAME
REM DIS. DATASETS FROM FILE 1,Z
REM A •• ACC'T NUMBER (S CHAR.)
REK T •• TRANSACTION CuDE (1 CHAR.)
REK C •• CASH AM'T (9999.99 OR 7 CHAR.MAI.)
REM I .. FOR NEIT LOOP CONTROL VARIABLE
REM OS • CONTROL D

REM FILES USED
REK SEoUENTIAL FILE NAMES: TRANSACTION 1, TRANSACTION Z (USER
SELECTED AND ENTERED)
REM DATASET FORMAT: A',T.,C.

REK INITIALIZATION

LET D.. CHR. (4)
INPUT "ENTER FILE NAME:~;Fl'
PRINT D.; "OPEN"F H
PRINT D';"DELETE"FH
PRINT D.; "OPEN"F H

REM DATA ENTRY/TESTS

HOKE
PRINT "ENTER -1 TO END DATA ENTRY"
PRINT: INPUT" ENTER ACCOUNT NUMBER (S DICITS):";AS
IF A •• "-1" THEN 6Z0
IF VAL (AS) • 0 THEN PRINT "PLEASE MAKE AN ENTRY.": COTO 370
IF LEN (AS) () S THEN PRINT "YOU ENTERED ";AS;" PLEASE REENTER.":
COTO 370
INPUT "ENTER TRANSACTION CODE(l DICIT>:";TS
IF VAL (TS> .. 0 THEN PRINT "PLEASE KAKE AN ENTRY.": COTO 410
IF LEN (T') () 1 THEN PRINT "YOU ENTERED ";TS;" PLEASE REENTER.":
COTO 41 0
INPUT "ENTER THE AMOUNT:"; CI
IF VAL (C') .. 0 THEN PRINT "PLEASE MAKE AN ENTRY.": COTO 440
IF VAL (Cs)) 99U.99 THEN PRINT: PRINT "KAUKUK AMOUNT IS 9999.99.
PLEAS~REENTER.": PRINT: COTO 440
FOR I • 1 TO LEN (CS)
IF ASC (MID. (C',I,l») • 48 AND ASC (MID. (C',I,l» (• 57 OR
ASC (KID. (CS,X,l» .. 46 THEN SOD
PRINT "INVALID ENTRY. ONLY NUMBERS AND DECIMAL POINTS ALLOWED.": COTO
440
NEXT X

REK PRINT TO FILE

PRINT D.; "WRITE"FH
PRINT AS: PRINT T.: PRINT CS
PRINT D.
HOKE
COTO 360

REK CLOSE FILE

. PRINT D$; "CLOSE"FH
PRINT "FILE CLOSED"
END

130 APPLE BASIC: DATA FILE PROGRAMMING

4 b.

100
110
lZO
130
ltO
!SO
160
170
180
180
ZOO
%10

120
230
240
zso
280
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
4S0
460
470

REM SOLUTION CH4 SELFTEST PROB 4B

REM VARIABLES USED
REM F. = USER ENTERED FILE NAME140
REM A. • ACCOUNT NUMBER
REM TS • TRANSACTION CODE
REM C' • CASH AMOUNT
REM X a FOR NEXT LOOP CONTROL VARIABLE
REM D. • CONTROL D

REM FILES USED
REM SED. FILE NAMES: TRANSACTION-I, TRANSACTION-Z (USER SELECTED
AND ENTERED)
REM DATASET FORMAT:AS,TS,CS

REM INITIALIZATION

LET D.. CHR. (4)
INPUT "FILE NAME:";FS
PRINT D';"OPEN"F'
HOME

REM READ/DISPLAY

PRINT PRINT "A/C'","T-CODE","AMOUNT": PRINT
ONERR COTO 430
PRINT D';"READ"F'
INPUT AS,TS,C'
PRINT DS
PRINT AS,n,CS
COTO 3S0

REM CLOSE FILE

IF PEEX (Z22) • S THEN 4S0
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED.": PRINT
PRINT D';"CLOSE"F'
PRINT "FILE PRINTED AND CLOSED"
END

5 a .

100
1I0
HO
130
HO
150
J60
170
180
190
ZOO
uo
no
uo
%to
250
zeD
270
zao
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

450
460
470
480
490
500
510
520
530
540
550
560

570
580
590
&00
810
no
830

CREATING AND READING BACK SEQUENTIAL DATA FILES 131

. BEM SOL UTI ON CH4 SELFTEST PROB SA

REM VARIABLES USED
REM NS = NAME(20)
REM AS = STREET ADDRESS(ZO)
REM CS ~ CITY(10)
REM SS STATE(Z)
REM ZS = ZIP CODE(5)
REM ES CONCATENATED DATASET(57)
REM DS CONTROL D
REM RS USER RESPONSE

REM FILE USED
REM SEQUENTIAL FILE NAME: ADDRESS
REM DATASET FORMAT:Cs (ONE STRINC)

REM INITIALIZE

LET DS a CHR. (4)
PRINT DS; "OPEN ADDRESS"
HOME

REM DATA ENTRY

INPUT "ENTER NAME:";NS
IF LEN (NS) (20 THEN LET NS ~ NS +

INPUT "ENTER ADDRESS: ";AS
IF LEN (AS) (20 THEN LET AS AS +

INPUT "ENTER CITY NAHE:";CS
IF LEN (CS) (10 THEN LET CS CS +

INPUT "ENTER STATE CODE:";S'

COTO 350

COTO 380

COTO 410

IF LEN (SS) () Z THEN PRINT "PLEASE ENTER A Z CHAR CODE.": COTO
430

INPUT "ENTER ZIP CODE:";ZS
IF LEN (ZS) () 5 THEN PRINT "PLEASE ENTER 5-DICIT CODE. ": COTO 460

LET ES = NS + AS + CS + SS + ZS

PRINT DS;"YRITE ADDRESS"
PRINT ES
PRINT DS

INPUT "HORE ENTRIES?" ;RS
IF LEFTS (R',l) () "Y" AND LEFTS (RS,l) () "N" THEN PRIN1'
PRINT "ENTER 'Y'_FOR YES OR 'N' FOR NO": PRINT COTO 550
IF LEFTs (1/$,1) = "Y" THEN HOME: COTO 340

REM CLOSE FILE

PRINT DS; "CLOSE ADDRESS"
PRINT "FILE CLOSED"
END

132 APPLE BASIC: DATA FILE PROGRAMMING

5 b.
100
110
120
130
140
150
160
170
180
190
ZOO
ZIO
no
ZlO
HO
Z5D
zeD
Z70
zeD
190
300
310
no
330
340
350
360
370
380
390
400
410
410
430
440

6 a.
100
110
lZO
130
140
150
160
170
180
190
zoo
ZIO
Uo
ZlO
HO
ZSO
UO
%70
zeD
ZSO
300
310
no
330
ltD
350
380
370
380
380

400
410
410
430
440
4S0
480

REM SOLUTION CH4 SELFTEST PROB SB

REM VARIABLES USED
REM ES z CONCATENATED DATASET
REM DS • CONTROL D

REM FILE USED
REM SEQ. FILE NAME: ADDRESS
REM DATASET FORMAT: ES (ONE STRING)

REM INITIALIZE

LET DS z CHRS (4)
PRINT DS;"OPEN ADDRESS"
HOME

REM READ FILE/PRINT

ONERR
PRINT
INPUT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
GOTO 190

GOTO UO
DS;"READ ADDRESS"
U
DS

LEFTS (£S,ZO)
MIDS (£S,H,lO)
MIDS (U,41,lO)
MIDS (£S,51,Z)
RIGHTS (£S, 5)

REM CLOSE FILES

PRINT DS;"CLOSE ADDRESS"
PRINT "FILE CLOSED"
END

REM SOLUTION CH4 SELFTEST PROB6A

REM VARIABLES USED
REM TS z TEXT LINE
REM FS z FILE NAME
REM DS • CONTROL D
REM RS • USER RESPONSE

REM FILES USED
REM SEQ. FILE NAME: LETTER.
REM (. IS USER SELECTED & ENTERED)

REM INITIALIZE

LET DS. CHRS (4)
INPUT "ENTER LETTER FILE NUMBER:";FS
LET Ft z "LETTER" + F.
PRINT D,;hOPEN"FS

REM DATA ENTRY

HOME
PRINT "ENTER TEIT LINE. USE QUOTES AT BEGINNING AND END"
INPUT "TEXT LINE:";T'

PRINT D.; "WRITE"Ft
PRINT CHR. (34);: PRINT TS;: PRINT CHRS (34)
PRINT D'
INPUT "MORE ENTRIES:";R'
IF LEFT. (R',l) () ·Y" AND LEFTS (RS,l) () "N" THEN
PRINT HENTER 'Y' FOR YES AND 'N' FOR NO": PRINT :310
IF LEFT-' (R' ,J) • "Y" THEN 310

REM CLOSE FILE

PRINT D';"CLOSE"FS
PRINT "FILE CLOSED"
END

PRINT :

6 b.

100
110
HO
130
140
150
160
170
180
190
200
ZIO
220
230
240
250
260
270
Z80
ZSO
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

CREATING AND READING BACK SEQUENTIAL DATA FILES 133

REM SOLUTION CH4 SELFTEST PROB 6B

REM VARIABLES USED
REM TS TEXT LINE
REM FS ~ FILE NAME
REM DS = CONTROL D
REM RS a USER RESPONSE

REM FILES USED
REM SEQ. FILE NAME: LETTER.
REM CWHERE • IS USER SELECTED & ENTERED)
REM DATASET FORMAT:TS CONE STRINC)

REM INITIALIZE

LET DS CHRS (4)
INPUT "ENTER FORM LETTER NUMBER:";FS
LET FS " "LETTER" + FS
PRINT DS;"OPEN"FS

REM READ FILE

HOME
ONERR COTO 420
PRINT DS; "READ"FS
INPUT TS
PJiINT DS
PRINT T.
COTO 340

REM CLOSE FILE

IF PEEK C22Z) • 5 THEN 440
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED.": PRINT
PRINT DS; "CLOSE"FS
PRINT "FILE CLOSED"
END

CHAPTER FIVE

Sequential Data File
Utility Programs

Objectives: When you fmish this chapter you will be able to:

1. Write a program to add data to an existing sequential me.
2. Write a program to make a copy of a sequential data me.
3. Write a program to change the data in an existing sequential me.
4. Write a program to examine the contents in a sequential me and to change,

add, or delete data.
5. Write a program to merge the contents of two sequential mes into one me,

maintaining the numeric or alphabetic order of the data.
6. Write a program that uses or combines selected data from more than one

sequential me.

Now that you understand the BASIC statements to create and use sequential data
mes, let's build on this with more advanced techniques, including writing some me
utility programs that help in your overall programming using data meso You will also
develop embryonic me applications to practice what you have learned and provide a
basis from which to develop personally useful programs. Most of the data mes used
in this chapter are created with programs you should have written for the Chapter 4
Self-Test, so if you skipped that, go back and write those programs before starting
this chapter.

ADDING DATA TO THE END OF A SEQUENTIAL FILE

Unlike other versions of BASIC, it is quite easy to add data to the end of an existing
APPLESOFT sequential me. To accomplish this you must APPEND your me rather
than OPEN it. When you OPEN a me, the me pointer is moved to the first position
in that me so that all subsequent me WRITE operations take place from the beginning
of the me (recall the problem that arises when you attempt to overwrite an existing
me). When you APPEND to an existing me, however, the me pointer is moved to
the end of the me data, so that subsequent me WRITE operations take place starting
after the last piece of existing data, and new data are added or appended beyond the
previous end of the me. The me WRITE procedure is the same as the one used when

134

SEQUENTIAL DATA FILE UTIUTY PROGRAMS 135

the fIle was OPENed. The fIle APPEND statement looks like the other fIle operation
statements:

lOO PRINT D.; "APPEND FILENAME"

The only "hitch" we have found with the fIle APPEND operation is that you
can only APPEND to an existing fIle. If you attempt an APPEND operation to a fIle
not previously OPENed, the error condition - FILE NOT FOUND - will abort your
program. To get around this problem (there's always a way), we will use this pro­
cedure:

ZOO PRINT D.; "OPEN FILENAME"
110 PRINT D';"CLOSE FILENAMEH
ZZO PRINT D.; "APPEND FILENAME"

Let's try an easy application. Assume you are using your personal computer to
prepare a grocery list for your periodic trips to the grocery store (see problem 2 of the
Chapter 4 Self-Test). Or better yet, in this modern electronic age, your list can be
telecommunicated to the store of your choice and the goods will be ready for your
pickup, with no shopping needed! In any event, every few days you think of new
items to be added to the list to be entered into your APPLE and added to the fIle.
Each dataset consists of one twenty-character string for the item description and one
numeric value for the quantity of the item needed. With one program, you can enter
the first items into the fIle and subsequent items as you think of them.

Here is the introductory module:

lOO REM APPEND DATA TO EXISTING FILE
110
lZO REM VARIABLES USED
130 REM N. 3 ITEM DESCRIPTION
140 REM Q z QUANTITY TO ORDER
150 REM D. .. CONTROL D
180 REM R. z USER RESPONSE
170 REM F ... USER ENTERED FILE NAME
180
190 REM FILES USED
ZOO REM SEQUENTIAL FILE NAME: GROCERY (USER ENTERED)
110 REM DATASET FORMAT* N',Q
ZZO

(a) To complete the next program segment, fill in 270, 280, and 290.

zzo
Z30
Z40
Z50
zeD
Z70
zao
ZlO
300

REM INITIALIZE

LET D... CHR. (4)
INPUT "ENTER FILE NAME:"; FS

136 APPLE BASIC: DATA FILE PROGRAMMING

(a) no
230
%40
Z50
zeo
170
280
290
300

REM INITIALIZE

LET D.. CHR. (4)
INPUT "ENTER FILE NAKE:";F'
PRINT D';"OPEN"F'
PRINT D.; "CLOSE"F'
PRINT D';"APPEND"F'

Here is the data entry routine with five blank lines for you to fill in. Use these
clues:

Line 370 - test for stop entry.
Line 380 - test for null entry.
Line 390 - test for maximum entry length.
Line 420 - test for minimum entry of 1 and maximum entry of 10.
Line 460 - test for user response of N or NO and branch accordingly.

(a) 300
310
3%0
330
340
350
360
370
380
390
400
410
4%0
430
440
450

480
470

(a) 300
310
320
330
340
350
360
370
380

390

400
410
4Z0
430
440
450

460
470

REM DATA ENTRY ROUTINE

HOKE
PRINT "TYPE 'STOP' WHEN ALL ITEKS ARE ENTERED."
PRINT
INPUT "ENTER ITEK DESCRIPTION:" ;N'

INPUT "ENTER QUANTITY:";Q

PRINT "YOU ENTERED A QUANTITY OF;";Q
INPUT "IS THAT WHAT YOU WANTED?";R'
IF LEFT. (RS,!) () "N" ,AND LEFT. (RI,!) () "Y" THEN
CHR. (7) ; "PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT ;

REK DATA ENTRY ROUTINE

HOKE
PR INT "TYPE 'STOP' WHEN ALL ITEKS ARE ENTERED."
PRINT
INPUT "ENTER ITEK DESCRIPTION: ";NI
IF N •• "STOP" THEN 570

PRINT
COTO 430

IF LEN (Ns) .. 0 THEN PRINT: PRINT "PLEASE ENTER A DESCRIPTION OR
'STOP"': PRINT: COTO 360
IF LEN (Nil) 20 THEN PRINT: PRINT "PLEASE LIKIT DESCRIPTION TO 20
CHARS.KAJ.": PRINT.: COTO 360

INPUT "ENTER QUANTITY:";Q
IF Q) ~ 1 AND Q (~ 10 THEN 500
PRINT "YOU ENTERED A QUANTITY OF:";Q
INPUT "IS THAT WHAT YOU WANTED?";RS
IF LEFT. (R',I) () "N" AND LEFTI (R',ll () "Y" THEN PRINT CHRS
(7);"PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT: COTO 430
IF LEFTI (R' ,I) = "N" THEN 410

SEQUENTIAL DATA FILE UTILITY PROGRAMS 137

The fIle WRITE routine should be familiar since it is the same procedure you
used in the last chapter. Fill in lines 500, 510, and 520.

(a)

(a)

no
tiD
410
SOD
510
UD
530
StD
550
510
570
580
580

no
tiD
480
SOD
510
uo
530
540
550
580
570
580
510

lEft WIITE TO FILE IOUTINE

COTO 330

lEft CLOSE FILE

PIINT D';"CLOSE""
PIINT : PIINT "NEW DATA APPENDED AND FILE CLOSED."
END

lEft WIITE TO FILE IOUTINE

PIINT D.; "WIITE""
PRINT N.: PRINT Q
PIINT D.
COTO 330

lEft CLOSE FILE

PRINT D.; uCLOSE""
PIINT : PIINT "NEW DATA APPENDED AND FILE CLOSED."
END

Following is a complete listing of the program you have developed:

138 APPLE BASIC: DATA FILE PROGRAMMING

100
110
120
130
140
150
160
170
180
190
ZOO
ZIO
no
Z30
HO
HO
Z60
170
280
Z90
300
310
310
330
HO
350
360
370
380

390

400
410
420
430
440
HO

460
470
480
490
SOD
SID
SZO
S30
540
SSO
560
S70
580
590

REM APPEND DATA TO EXISTING

REM VAll IABLES USED
REM NS = ITEH DESCRIPTION
REM Q = QUANTITY TO ORDER
REM DS = CONTROL D
REM liS = USER RESPONSE
REM FS ~ USER ENTERED FILE

REM FILES USED
REM SEQUENTIAL FILE NAME:
REH DATASET FORMAT- NS,Q

REM INITIALIZE

LET DS CHRS (4)

INPUT "ENTER FILE NAHE:";FS
PRINT DS;"OPEN"FS
PRINT DS; "CLOSE"FS
PRINT DS; "APPEND"FS

REM DATA ENTRY ROUTINE

HOME

FILE

NAHE

CROCERY (USER ENTERED)

PRINT "TYPE 'STOP' WHEN ALL ITEMS ARE ENTERED."
PUNT
INPUT "ENTER ITEM DESCRIPTION:" ;NS
IF NS • "STOP" THEN 570
IF LEN ,(NS) = 0 THEN PRINT: PUNT "PLEASE ENTER A DESCUPTION OR_
'STOP'": PUNT : COTO 360
IF LEN (NS)) ZO THEN PRINT: PRINT "PLEASE LIMIT DESCRIPTION TO ZO
CHARS.MAX.": PRINT: COTO 360

INPUT "ENTER QUANTITY:";Q
IF Q) = I AND Q < = 10 THEN 500
PRINT "YOU ENT£lIED A QUANTITY OF:";Q
INPUT "IS THAT WHAT YOU WANTED?";RS
IF LEFTS (RS,I) () "N" AND LEFTS (RLI) <) ·Y" THEN PRINT
(7l;"PLEASE TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT: COTO 430
IF LEFTS (RS,lJ = "N" THEN 410

REM WRITE TO FILE ROUTINE

PRINT DS;"WRITE"FS
PRINT NS: PRINT Q
PRINT DS
COTO 330

REM CLOSE FILE

PRINT DS;"CLOSE"FS
PRINT: PRINT "NEW DATA APPENDED AND FILE CLOSED."
END

CHRS

(a) Write the corresponding program line number(s) for each step listed below.

l. Open the file for the APPEND operation.

2. Enter and test the next dataset.

3. Write the dataset to the file.

4. Close the file.

5. What must the user enter to cause the close operation to take place?

SEQUENTIAL DATA FILE UTILITY PROGRAMS 139

(a) 1. 290
2. 310-460
3. 480-530
4. 570
5. STOP

Now enter and RUN the program-appending data to the file named GROCERY.
Use the program to read GROCERY (Chapter 4 Self-Test, problem 2a) to verify the
success of the APPEND procedure.

You can use another procedure to add data to the end of the sequential data file
or to make changes in the contents of a file. (We'll show you how to do that later.)
The success of this procedure depends on how much data the file contains and the
amount of available memory in your computer. The procedure uses arrays. Follow
these steps:

1. OPEN the file
2. READ the file contents into one or more arrays.
3. Add to the array or change the items in the array.
4. CLOSE the file, DELETE the file.
5. OPEN the file.
6. WRITE the current array contents to the file.
7. CLOSE the file.

Use this procedure only if the file is rather small and the datasets are easy to
manage (for example, when the data are all packed into one string variable). If these
two circumstances are present, you are not likely to encounter errors. However, when
files are large or data are placed into more than one array or into a two-dimensional
array, then the probability increases that data will get lost or "forgotten," resulting
in errors.

You will see this procedure used in program listings for computers other than
the APPLE. For the APPLE, we recommend the APPEND procedure as illustrated in
the grocery list program. It is clean and neat!

MAKING A FILE COPY

A very useful file utility program is one that makes a duplicate copy of your data file.
Your APPLE system master disk is equipped with such a program. This allows you to
make back-up copies of data files or copy a file from one disk to another. In this
section, however, we will show you how to write such a program in BASIC. A file
copy utility program in BASIC not only allows you to make back-up copies of data
files, it can also be incorporated into later programs to change data in existing data
files.

steps:
You now have the background to write a file copying program. Follow these

1. OPEN the source or original file. (Use the file named CUST created in the
Chapter 4 Self-Test.)

140 APPLE BASIC: DATA FILE PROGRAMMING

2. OPEN the fIle that will become the copy. (Name this fIle CUST COPY.)
3. Test the source fIle for end-of-data using ONERR.
4. READ the first dataset.
S. Terminate the READ operation.
6. WRITE to the copy fIle.
7. Terminate the WRITE operation.
8. Return to step 3 above.
9. CLOSE both fIles.

Assume that you are going to copy a fIle that contains an unknown number of
datasets, with each dataset containing two twenty-five-character strings and two
numeric variables. Use the fIle named CUST created in the Chapter 4 Self-Test.
Here is the introductory module and the initialization section. Fill in the blanks in
lines 260, 290, and 320 to complete steps I and 2 of the outline.

(a)

(a)

100
110
aD
130
140
150
lSO
170
180
190
ZOO
ZIO
ZZO
Z30
140
Z50
ZlO
Z70
zeD
ZlO
300
310
310
330

100
110
lZO
130
140
150
160
170
180
190
ZOO
ZIO
ZZo
Z30
ZtD
Z50
280
no
280
280
300
310
UO
330

REM UTILITY PROGRAM TO COPY FILES

REM VARIABLES USED
REM AS. BS ~ STRING VARIABLES
REM A.B. NUMERIC VARIABLES
REM DS • CONTROL D
REM FS • USER ENTERED SOURCE FILE NAME
REM FIS • USER ENTERED COPY FILE NAME

REM FILES USED
REM SEQUENTIAL SOURCE FILE NAME: CUST (USER ENTERED)
REM SEQ. COPY FILE NAME: CUST COPY (USER ENTERED)
REM DATASET FORMAT:Af,BS,A,B

REM INITIALIZATION

INPUT "ENTER SOURCE FILE NAME:";Ft
INPUT "ENTER COPY FILE NAME:";FlS

PRINT D.; "OPEN"FlS
PRINT Df;"DELETE"FlS

REM UTILITY PROGRAM TO COPY FILES

REM VARIABLES USED
REM AS. B. ~ STRING VARIABLES
REM A.B. NUMERIC VARIABLES
REM OS • CONTROL 0
REM FS = USER ENTERED SOURCE FILE NAME
REM FIS = USER ENTERED COPY FILE NAME

REM FILES USED
REM SEQUENTIAL SOURCE FILE NAME: CUST (USER ENTERED)
REM SEQ. COPY FILE NAME: CUST COPY (USER ENTERED)
REM DATASET FORMAT:Af,Bf,A.B

REM INITIALIZATION

LET DS c CHRf (t)
INPUT "ENTER SOURCE FILE NAME:";FS
IHPUT "ENTER COPY FILE HAME:";FH
PRINT DS;"OPEH"FS
PRINT DS;"OPEN"Flf
PRINT DS; "OELETE"FH
PRINT D.; "OPEN" F H

SEQUENTIAL DATA FILE UTILITY PROGRAMS 141

The routine at lines 300, 310, and 320 is a good procedure to follow; always
OPEN, then DELETE, a file to which you plan to WRITE, to avoid overprinting
existing data (if any) and ending up with a possible mixture of new and old data in
your file. The second OPEN statement at line 320 assures an empty OPEN file for
the copy.

Here is the program module to READ from the source file and WRITE to the
copy file. Fill in the blanks in lines 370, 380, 430, and 440 to complete steps 3, 4,
5,6, 7, and 8 of the·outline.

(a)

(a)

ltD
3'0
380
370
380
380
fDO
410
UO
430
440
4SD
480
.,0

340
350
360
370
380
390
400
410
UO
430
440
450
460
470

REM READ FROM SOURCE FILE

ONERR COTO SOD

PRINT D.

REM WRITE TO COpy FILE

PRINT D.
COTO 370

RIK READ FROM SOURCE FILE

ONERR COTO SOD
PRINT D';"READ"F'
INPUT AS.SS.A.S
PRINT D.

REM WRITE TO COPY FILE

PRINT DS;"WRITE"FI'
PRINT A.: PRINT BS: PRINT A: PRINT B
PRINT DS
COTO 370

And finally, the close file routine. Fill in the blank at line 490 to close both
files with one CLOSE statement, completing step 9 of the outline.

(a)

(a)

480
490
'00

SID

REM CLOSE FILES

IF PEEX (222) () 5 THEN PRINT
TERMINATED.": PRINT: COTO '10

520 END

480
490
500

SID
HO

REM CLOSE FILES

IF PEEX (222) () 5 THEN PRINT
TERMINATED.": PRINT GOTO 510 .
PRINT D';"CLOSE"
END

PRINT "UNUSUAL ERROR PROGRAM

PRINT "UNUSUAL ERROR PROGRAM

142 APPLE BASIC: DATA FILE PROGRAMMING

Here is a complete listing of the program you have just completed.

100
110
120
130
140
ISO
160
170
180
190
200
210
220
230
240
250
Z60
270
zeD
290
300
310
320
330
340
3 SO
380
370
380
390
400
410
420
430
440
.50
UO
.,0
UO
490
HO

SID
S20

REM UTILITY PROGRAM TO COPY FILES

REM VARIABLES USED
REM A', B •• STRING VARIABLES
REM A,B • NUMERIC VARIABLES
REM D. ~ CONTROL D
REM F. a USER ENTERED SOURCE FILE NAME
REM Fl •• USER ENTERED COPY FILE NAME

REM FILES USED
REM SEOUENTIAL SOURCE FILE NAME: CUST (USER ENTERED)
REM SEa. COPY FILE NAME: CUST COPY (USER ENTERED)
REM DATASET FORMAT:AS,B',A,B

REM INITIALIZATION

LET D.. CHR. (4)
INPUT "ENTER SOURCE FILE NAME:";F'
INPUT "ENTER COPY FILE NAME:"; F 15
PRINT D';"OPEN"F'
PRINT DS;"OPEN"FH
PRINT D';"DELETE"Fl5
PRINT D';"OPEN"Fl'

REM READ FROM SOURCE FILE

ONERR GOTO SOD
PRINT DS;"READ"F'
INPUT A',B',A,B
PRINT DS

REM WRITE TO COpy FILE

PRINT D';"WRITE"F1S
PRINT A.: PRINT B.: PRINT A: PRINT B
PRINT D.
GOTO 370

REM CLOSE FILES

IF PE£)((222) () 5 THEN PRINT PRINT "UNUSUAL ERROR PROGRAM
TERMINATED.": PRINT: GOTO 510
PRINT DS;"CLOSE"
END

(a) When you RUN this program, what appears on the screen?

(a) RUN

ENTER SOURCE FILE NAME:

ENTER COPY FI LE NAME:

(CURSOR)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 143

It can be unsettling to get no more than the above display from a program when
so much internal activity is supposed to be taking place. The final flashing "cursor"
is the only clue that your program completed its task. But you don't know for sure
that it did. We have a suggestion.

Add a statement at line 505 that prints a message indicating that the job is
complete. For example,

505 PRINT "COpy COMPLETED"

A statement such as this lets you know that the program did execute past the error
trap at line 500. This will verify that at least that much was done. Then add line 515
PRINT "FILE CLOSED" to indicate to the user that the program has executed past
the CLOSE operation.

The blank PRINT D$ in lines 390 and 450 were placed there to terminate the
operation in progress before starting a new operation. In this case, however, the
termination procedure was not necessary, as a new PRINT D$ of any type terminates
the previous file operation. That is, the WRITE statement in line 430 would have
automatically terminated the READ from line 370. We left the blank PRINT D$
statements in our program for clarity to the reader, and encourage you to do the
same. Though not always necessary, the blank PRINT D$ to terminate a fIle operation
makes your program much more readable and avoids the question, "Is this the time
CTRL D is needed or not?"

You now have a complete fIle-copying utility program. You can use it to copy
any sequential data fIle by simply changing the INPUT and PRINT statements to
conform to the data format or datasets in the particular data fIle you want to copy.
We encourage you to enter and RUN this program using the datafIle named CUST with
the corresponding dataset format that you created in the Chapter 4 Self-Test, problem
1a.

After you have created CUST COPY, modify the program you wrote for the
Chapter 4 Self-Test, problem 1 b, to read and display the contents of CUST COPY.
Modify lines 240, 290, and 390 in the solution we provided for Chapter 4 Self-Test,
problem lb.

(a) 240

(a)

290

390

Z40 PRINT DS;"OPEN CUST COPY"
290 PRINT DS; "READ CUST COPY"
390 PRINT D$;"CLOSE CUST COpy"

144 APPLE BASIC: DATA FILE PROGRAMMING

CHANGING DATA IN A FILE

We implied earlier in this book that it is not easy to change data that are already
located in a sequential data me, but it can be done. The procedure is straightforward:
copy all unchanged data into a temporary me, make any changes by writing to the
temporary me, and then either copy the temporary me back into the original me or
use the RENAME statement. A few tricks will be explained, as you are guided in
writing this program.

JRUN
ENTER FILE NAME:CREDIT
ENTER 'STOP' TO END DATA ENTRY.

ENTER CUSTOMER ':12345
PAUL ARMITIGE CREDIT RATING: 4
ENTER NEW CREDIT RATING:S
RENAME COHPLETED
DO YOU HAVE MORE CREDIT RATING CHANGES?Y
ENTER 'STOP' TO END DATA ENTRY.

ENTER CUSTOMER ':12346
HISS PIGGY CREDIT RATING: 1
ENTER NEW CREDIT RATING:Z
RENAHE COMPLETED
DO YOU HAVE MORE CREDIT RATING CHANGES?NO

PROGRAH COHPLETED AS REOUESTED.

While the procedure outlined below is tailored to the particular dataset used in this
example, the basic idea is easily adaptable to data mes with different datasets.

1. OPEN the customer credit me. Use the me named CREDIT created in the
Chapter 4 Self-Test.

2. OPEN a temporary me. Name this me TEMP.
3. Enter the customer number for the client whose credit rating is to be

changed. Include data-entry tests and a "no more searches" option.
4. Check for end-of-data in credit me using ONERR. If end-of-data is found:

a. display an error message indicating an unsuccessful search.
b. CLOSE both meso
C. return to step 1.

S. READ a complete dataset.
6. Test for wanted customer number.
7. PRINT rejected datasets to temporary me (those which are to be copied

to the new me unchanged).
8. Display data; ask user to enter changes, with data entry test for the changes.
9. PRINT dataset with new data to temporary me.

10. PRINT remainder of credit me datasets (those with no changes) to
temporary me.

11. CLOSE both meso
12. Copy temporary me to CREDIT me, or use the RENAME operation to

make the temporary me the new corrected credit me.
13. Provide the user with the option of repeating the process.

The program will be developed one segment at a time, with blanks for you to
fill in, as before. Below is the introductory module, which you should understand by
now, followed by the first data entry routine with data entry checks. Read it over

SEQUENTIAL DATA FILE UTILITY PROGRAMS 145

carefully to get the flow of the program. The first three steps of the ou tline are
completed in this module.

100
110
120
130
140
150
160
170
IBO
190
ZOO
ZIO
ZZO
Z30
Z40
Z50
260
270
zeD
zeD
300
310
3IO
330
340
3SO
360
370
3BO
390
400

flO

420
430

REft CREDIT FILE CHANGER

REM VARIABLES USED
REM FS ~ FILE NAME
REM CS = CUST .•
REM CIS ~ CUST .•
REM NS = NAME
REM RS ~ ENTRY VARIABLE
REM R.Rl = CREDIT RATING VALUE
REM DS = CONTROL D

REM FILES USED
REM SED.FILE NAME: CREDIT (USER ENTERED)
REM TEMPORARY FILE NAME: TEMP
REM DATSET FORMAT: CS.N'.R

REM INITIALIZE

LET D.. CHR. (4)
HOME: INPUT "ENTER FILE NAME:",F'
PRINT D',"OPEN"F'
PRINT D., "OPEN TEMP"

REM DATA ENTRY ROUTINE

HOME
PRlNT "ENTER 'STOP' TO END DATA ENTRY."
PRINT
INPUT "ENTER CUSTOMER ':",C'
IF CS = ·STOP" THEN 1070
IF LEN (C') • 0 THEN PRINT "ENTER CUSTOMER NUMBER OR TYPE 'STOP''':
GOTO 380
IF LEN (Cn () 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5 DICITS.":
GOTO 380
IF VAL (C') • 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY.": COTO 380

Now for the interesting part. The program must search through the data fIle for
the customer number that the user entered.

(a) When searching the data fIle for the customer number and encountering the end
of the fIle without fmding the customer, what should the program do?

(b) Before another search is made for a customer number in the fIle, what must be
done to the fIle?

146 APPLE BASIC: DATA FILE PROGRAMMING

(a) Print an error message indicating that the customer was not in the me (see the
sample RUN shown earlier).

(b) CLOSE and reOPEN the mes to reset the me pointer to the beginning of the
data meso (Very important!)

(a) Fill in lines 470, 480, 490,510, 520, and 530 below. These correspond to
outline steps 5,6, and 7.

440 REM FILE SEARCH ROUTINE
450
460 ONERR GOTO 550
470
480
490
500 IF CS .. C1S THEN 630
S 10
520
530
540 GOTO 470
550 PRINT CHRS (7);"ERROR MESSAGE. WE CANNOT FIND"
560 PRINT "CUSTOMER' ";CS;" ON THE FILE."
570 PRINT "PLEASE CHECX YOUR NUMBER AND REENTER."
580 PRINT DS;"CLOSE"
590 GOTO 300
600

440
4 SO
460
470
480
490
500
510
520
S30
540
550
560
570
580
590
600

REM FILE SEARCH ROUTINE

ONERR GOTO 550
PRINT DS;"READ"FS
INPUT C1S .NS • R
PRINT OS
IF CS • CIS THEN 830
PR INT D.; "WRITE TEMP"
PRINT CII: PRINT N.: PRINT R
PRINT OS
GOTO 470
PRINT CHRS (7)i"ERROR MESSAGE. WE CANNOT FIND"
PRINT "CUSTOMER' ";CI;" ON THE FILE."
PRINT "PLEASE CHECX YOUR NUMBER AND REENTER."
PRINT DS;"CLOSE"
GOTO 300

(a) In the solution above, why was variable Cl$ used instead of C$? in line 480?
(See line 380.)

(b) If you delete line 580 above, then RUN the program, what will happen if an
incorrect customer number is entered at line 300 and then, after the error
message at line 570, a correct customer number is entered?

SEQUENTIAL DATA FILE UTILITY PROGRAMS 147

(a) Two different assignments would have been made to C$, creating a program error.
Note the error message at lines 550 to 570.

(b) The ONERR check in line 460 will detect the end of the fIle for both entries,
and the error message will be printed after both entries. The second customer
number may be valid, but since the pointer was not reset to the beginning of
the fIle, the error message will reappear.

When the fIle has been searched and the correct customer found, the program
prints the customer name on the screen (line 640) as a double check to the operator
that the correction is being made for the right customer. Outline steps 8 and 9 are
contained in this module.

610
SZO
630
640
650
660

670

680
690
700
710
no
730
740
750

REM CUST • FOUND. PROCEED WI DATA ENTRY

HOME
PRINT N$;" CREDIT RATING: ";R
INPUT "ENTER NEW CREDIT RATING:";RS
IF LEN (Rs) () 1 THEN PRINT "ONLY ONE DIGIT NUMBER IS
ACCEPTABLE.": GOTO 650
IF VAL (RS> (1 OR VAL (RS>) 5 THEN PRINT "NUMBERS 1-5 ONLY,
PLEASE.": COTO 650
LET Rl ~ VAL (Rs)

REM PRINT NEW INFO TO TEMP

PRINT D$; "WHITE TEMP"
PRINT CS: PRINT Nt: PRINT Rl
PRINT DS

In line 730, the new customer rating (RI) is written into the temporary fIle,
along with the accompanying customer number and name. You have now completed
the routines to search the original fIle and to place old and new data into the tempo­
rary fIle.

(a) Considering the location of the fIle pointer in the CREDIT fIle, what should the
program do next?

148 APPLE BASIC: DATA FILE PROGRAMMING

(a) Write the remainder of the CREDIT me to the temporary me.

Fill in all the blanks in the program segment below, including lines 790, 800,·
810,820,830,840, and 910, completing steps 10 and 11 of the outline.

(a)

(a)

780
770
780
780
800
810
UO
830
840
850
880
870
880
880
900
UO
UO

780
770
780
790
800
810
no
830
840
850
880
970
880
890
900
910
920

REM PR INT REMAINDER OF FILE TO TEMP

ONERR COTO BID

COTO 780

REM CLOSE FILES

IF PEEK (ZZZ) • 5 THEN BID
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED. ": PRINT

REM PRINT REMAINDER OF FILE TO TEMP

ONERR COTO 890
PRINT DS;"READ"FS
INPUT CS ,NS ,R
PRINT DS
PRINT DS;"'JRITE TEMP"
PRINT CS: PRINT NS: PRINT R
PRINT DS
COTO 790

REM CLOSE FILES

IF PEEK (ZZZ) = S THEN 910
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED.": PRINT
PRINT DS;"CLOSE"

The final program module should copy the complete temporary me back into
the original credit me. We could use a file copy program like the one completed
earlier in this chapter for that. However, your APPLE has a command that allows you
to RENAME a program or me. It is quite easy to use:

100 PRINT DS;"RENAME OLD NAME,NE'J NAME"

Or, if you are using mes named in variables:

110 PRINT DS;"RENAME"FS,FlS

or

lZO PRINT DS;"RENAME OLD NAME,"FH

Note: The punctuation shown above (the comma) is very important.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 149

Your mes should be closed before you RENAME. If not, however, RENAME
will close them first. There is one problem with RENAME: It does not bother to
check whether there is already another program with the new name on your disk. It
just moves ahead. This can result in two mes on your disk with the same name - in
which case you have a real problem. The solution we devised was to DELETE the
old copy of the credit me before we RENAMEd the temporary me. Here is the fmal
module of the program that completes the copy or RENAME operation, including
steps 12 and 13 of our original procedure outline.

930
940
9S0
980
970
980

• 990
J 0 00
1010
10ZO

1030
1040
lOSO

REM DELETE/RENAME FILE

PRINT DS; "DELETE"FS
PRINT DS;"RENAME TEMP,"FS
PRINT "RENAME COMPLETED"

REM CONTINUE REQUEST

INPUT "DO YOU HAVE MORE CREDIT RATING CHANGES''';RS
IF LEFTS CU,}) () "Y" AND LEFTS CU,}) () "N"
CHU (7);"ENTER 'Y' FOR YES OR 'N' FOR NO. "; PRINT
IF LEFTS CRS,l) • "Y" THEN 300
PRINT; PRINT "PROGRAM COMPLETED AS REQUESTED."
END

THEN PRINT
GOTO 1010

If you RUN this program with large mes, each change will take considerable
computer time. If you enter the data in the original me in customer number order,
and also enter all changes in customer number order; the need to repeatedly execute
the RENAME routine is eliminated, reducing the computer time between transactions.

Here is a complete listing of the credit fIle change program. You are encouraged
to enter and RUN this program using the data me named CREDIT that you created in
the Chapter 4 Self-Test.

150 APPLE BASIC: DATA FILE PROGRAMMING

100
110
no
130
140
150
160
170
180
190
200
210
220
230
ao
250
260
270
280
zeD
300
310
320
330
340
350
360
370
380
390
400

410

HO
430
UO
450
480
470
480
490
500
HO
HO
530
540
SSO
580
570
580
590
600
610
620
630
640
650
660

670

680
690
700
710
720
730
740
750

REM CREDIT FILE CHANCER

REM VARIABLES USED
REM FS = FILE NAME
REM C. = CUST .•
REM CIS z CUST .•
REM NS = NAME
REM R' = ENTRY VARIABLE
REM R,Rl z CREDIT RATINC VALUE
REM DS • CONTROL D

REM FILES USED
REM SEQ.FILE NAME: CREDIT (USER ENTERED)
REM TEMPORARY FILE NAME: TEMP
REM DATSET FORMAT: CS,NS,R

REM INITIALIZE

LET DS z CHRS (4)
HOME: INPUT "ENTER FILE NAME:";F$
PRINT DS;"OPEN"F'
PRINT DS;"OPEN TEMP"

REM DATA ENTRY ROUTINE

HOME
PRINT "ENTER 'STOP' TO END DATA ENTRY."
PRINT
INPUT "ENTER CUSTOMER ':";CS
IF CS • "STOP" THEN 1080
IF LEN (CS) • 0 THEN PRINT "ENTER CUSTOMER NUMBER OR TYPE 'STOP"':
COTO 380
IF LEN (Cs) } S THEN PRINT "ENTRY ERROR. REENTER WITH 5 DICITS.":
COTO 380
IF VAL (CS> 0 THEN PRINT "ENTRY ERROR. NUMBERS ONLY. ": COTO 380

REM FILE SEARCH ROUTINE

ONERR COTO 550
PRINT D';"READ"FS
INPUT Cl S ,NS, R
PRINT OS
IF CS = CIS THEN 630
PRINT DS;"WRITE TEMP"
PRINT CIS: PRINT N.: PRINT R
PRINT OS
COTO 470
PRINT CHR. (7);"ERROR MESSACE. WE CANNOT FIND"
PRINT "CUSTOMER' ";CS;" ON THE FILE."
PRINT "PLEASE CHECK YOUR NUMBER AND REENTER."
PRINT DS;"CLOSE"
COTO 300

REM CUST • FOUND. PROCEED WI DATA ENTRY

HOME
PRINT NS;" CREDIT RATINC: ";R
INPUT "ENTER NEW CREDIT RATINC:"iRS
IF LEN (RS) () 1 THEN PRINT "ONLY ONE DICIT NUMBER IS
ACCEPTABLE.": COTO 650
IF VAL (RS) (1 OR VAL (RS)) 5 THEN PRINT "NUMBERS 1-5 ONLY,
PLEASE.": COTO 650
LET Rl z VAL (RS)

REM PRINT NEW INFO TO TEMP

PRINT DS;"WRITE TEMP"
PRINT CS: PRINT NS: PRINT RI
PRINT DS

160
770
780
790
800
810
no
830
UO
8S0
860
870
880
890
900
910
910
930
940
SSO
960
970
980
990
1000
1010
10Z0

1030
1040
10S0

(a)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 151

REM PRINT REMAINDER OF FILE TO TEMP

ONERR COTO 890
PRINT OS; "READ"rs
INPUT CS,N',R
PRINT O'
PRINT D.; RITE TEMP"
PRINT c.: PRINT NS: PRINT R
PRINT OS
COTO 790

REM CLOSE FILES

IF PEEX (ZZZ) = S THEN 910
PRINT: PRINT "UNUSUAL ERROR, PROCRAM TERMINATED,": PRINT
PRINT D.; "CLOSE"

REM DELETE/RENAME FILE

PRINT DS;"DELETE"FS
PRINT DS;"RENAME TEMP,"FS
PRINT "RENAME COMPLETED"

REM CONTINUE REOUEST

INPUT "DO YOU HAVE MORE CREDIT RATINC CHANCES?";R.
IF LEFTS (RS,l) () "Y" AND LEFTS (RS,I) () "N" THEN PRINT
CHRS (7);"ENTER 'Y' FOR YES OR 'N' FOR NO,": PRINT COTO 1010
IF LEFTS' (RS,l) = "Y" THEN 300
PRINT: PRINT "PROCRAM COMPLETED AS REOUESTED,"
END

Write the corresponding program line number(s) for each step in the outline.

1. OPEN the credit me.

2. OPEN a temporary me.
3. Enter the customer number, the item to be searched (include data entry

tests and a "no more searches" option).
4. Check for end-of-data in credit me. If end-of-data is found:

a. display an error message indicating an unsuccessful search

b. CLOSE both mes,

c. return to step 1.

5. READ a complete dataset.

6. Test for wanted customer number.

7. PRINT rejected datasets to temporary me.
8. Display needed information; ask user for changes with data entry test.

9. PRINT dataset with new data to temporary fIle.

lD. PRINT remainder of credit fIle to temporary fIle.

11. CLOSE both fIles.

12. RENAME temporary fIle as credit me.

13. Provide the user with the option of repeating the process.

152 APPLE BASIC: DATA FILE PROGRAMMING

(a) I. 300
2. 310
3. 360-420
4. 460
~a. 550-570

4b. 580
4c. 590
5. 470-490
6. 500
7. 510-530
8. 640-680
9. 720-740

10. 780-850
II. 910
12. 950-970
13. 1010-1040

EDITING, DELETING, AND INSERTING FILE DATA

Whenever we work extensively with fIles, we write a small utility program that lets us
read through the fIle, one item at a time, to verify that everything is as it should be.
A properly written data fIle editing program also lets you make changes in the fIle
data as it reads through the fIle. We will start with a simple program to examine the
contents of a fIle, one data item at a time. Our example will use the previous appli­
cation - the CREDIT fIle. Remember the dataset consists of:

1. a five-digit customer number stored as a string
2. a twenty-character customer name
3. a credit rating, stored as a numeric value from 1 through 5

The first program below allows you to look at each dataset, one item at a time,
with the prompt "PRESS RETURN TO CONTINUE." The PRESS RETURN TO
CONTINUE technique is very popular for CRT screen-oriented systems. The program
allows the user· to review the data displayed for the length of time needed and then
move to the next dataset. The program then refreshes, or clears, the screen to remove
"screen clutter" before the next data are displayed, using the HOME instruction.
Examine the program to see how the user INPUT statement is used in the PRESS
RETURN TO CONTINUE technique.

100
110
ao
130
140
150
180
170
180
190
ZOO
ZIO
no
UO
Z40
UO
UO
210
zeD
ZSO
300
310
no
330
3U
350
380
370
380
3B0
400
410
420
430
440
450
480
470
480
4J0

'500
510
5Z0
530
540
550
580

SEQUENTIAL DATA FILE UTILITY PROGRAMS 153

REM CREDIT FILE EDITOR (VERSION 1)
REM THIS PROCRAM DEMONSTRATES
REM PRESS 'RETURN' TO CONTINUE

REM VARIABLES USED
REM CI • CUST • (5)
REM N •• CUST NAME (ZO)
REM R • CREDIT RATINC (1)
REM R. • USER RESPONSE
REM FI • FILE NAME
REM DI • CONTROL D

REM FILES USED
REM SED. FILE NAME: CREDIT (USER ENTERED)
REM DATASET FORMAT: CI,N',R

REM INITIALIZATION

LET D.. CHR. (4)
INPUT "ENTER FILE NAME:";FS
PRINT D.; "OPEN"FS

REM READ FILE AND DISPLAY

HOME
PRINT "PRESS 'RETURN' TO DISPLAY NEIT ITEM.": PRINT
ONERR COTO 51 0
PRINT D.; "READ"FS
INPUT CI.N'.R
PRINT D.
PRINT CI
INPUT "";R'
PRINT NI
INPUT "";R'
PRINT R
INPUT 10M; R.
PRINT
COTO 340

REM CLOSE FILE

IF PEEX (ZZZ) • 5 THEN 530
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED."
PRINT D';"CLOSE"
HOME
PRINT "JOB COMPLETED"
END

(a) What is assigned to R$ in lines 410, 430, and 450?

(b) Since R$ acts as a dummy variable in the program above, what is the purpose of
lines 410, 430, and 450?

(c) How often was the screen "refreshed" in the program above?

154 APPLE BASIC: DATA FILE PROGRAMMING

(a) Nothing (a null string)
(b) Keeps the data items on the CRT display until the user presses RETURN to

continue (program waits at INPUT statement until RETURN key is pressed,
with or without any other entry.)

(c) Before (or after) each complete dataset of three items was displayed

The next version of this program allows the user to change any data items as
they are displayed on the screen, or accept data "as is" by pressing RETURN to
continue. The procedure includes copying the credit data file to a temporary file
"TEMPFIL" as you read through the file making changes. Here is the first part of
the program, which includes the ability to change the customer number.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
4J0
420
430
440
450
460
470
480
490
500
510

SZO
530
850
880
870
880
890
900

910
920
930

REM CREDIT FILE EDITOR (VERSION 2)
REM THIS PROGRAM DEMONSTRATES
REM TYPE 'C' TO CHANGE ITEM, OR
REM PRESS 'RETURN' TO CONTINUE.

REM VARIABLES USED
REM CS = CUST • (S)
REM NS ~ CUST NAME (20)
REM R z CREDIT RATING
REM Rs : USER RESPONSE

. REM FS = FILE NAME
REM DS = CONTROL D

REM FILES USED
REM SEO. FILE NAME; CREDIT (USER ENTERED)
REM SEO. TEMPORARY FILE NAME; TEMPFIL
REM DATASET FORMAT; CS,NS,R

REM INITIALIZATION

LET DS = CHRS (4)
INPUT "ENTER FILE NAME;";FS
PRINT DS;"OPEN"FS
PRINT DS;"OPEN TEMPFIL"
PRINT Ds; "DELETE TEMPFll"
PRINT DS;"OPEN TEMPFIL"

REM

HOME

READ FILE AND DISPLAY

PRINT "TYPE 'C' TO CHANGE ITEM DISPLAYED."
PRINT "PRESS 'RETURN' TO CONTINUE WITHOUT CHANGES."
ONERR GOTO 770
PRINT OS; "READ""
INPUT CS ,NS, R
PRINT DS

REM DISPLAY & CHANGE OPTION FOR CUST .•

PRINT ; PRINT CS
INPUT ;RS
IF RS (} AND RS () "c" THEN PRINT CHU (7);"ENTRY ERROR. TRY
AGAIN ". GOTO SOO
IF LEFTS (RS,l) = "CO THEN GOSUB 880

REM CHANGE CUST • SUBROUTINE

INPUT "ENTER NEW CUST. ';";C'
IF LEN (CS) = 0 THEN PRINT "ENTER NUMBERS PLEASE."; GOTO 740
IF LEN (C$) () 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5
DIGITS."; GOTO 880
IF VAL (Cl) " 0 THEN PRINT "ENTRY ERROR, NUMBERS ONLY."; GOTO 980
RETURN

SEQUENTIAL DATA FILE UTILITY PROGRAMS ISS

Notice the few additions: the temporary fIle (lines 260 and 340); the instruction
changes (lines 130 and 370); and the entry test (line 470). For reasons that will be­
come apparent, a subroutine (lines 700 through 750) is used for entering the change
to the customer number. The same data entry checks are used that were originally
used in the credit fIle creating program. Caution: This program segment does not
write the new customer number to TEMPFIL. In order to maintain identical fIles,
use one statement to write the entire dataset into TEMPFIL as was originally done
with the credit rating data fIle. If you are particularly sharp, you may have noted
that the new customer number was assigned to C$, replacing the old customer number
stored there. Can you look ahead and see why?

Now its your turn. Write a routine that will allow a change in the customer
name. Use the subroutine format like that above. Fill in lines 960, 970, 980, and
990.

(a)

(a)

540
S50
560
570
SID

S8D
600
940
950
B6D
970
98D
890
lDDD

540
sso
sso
570
580

580
600
940
950
960
970

980

990
1000

REM DISPLAY AND CHANCE OPTION FOR NAME

PRINT : PRINT N.
INPUT "";R'
IF LEFT. CR'.l) (> "" AND LEFT. (R'.ll (> "C" THEN PRINT:
PRINT "PRESS 'RETURN' FOR NO CHANCE OR ENTER 'C' TO CHANCE NAME.":
PRINT ; COTO 570
IF R •• "C" THEN COSUB 98D

REM NAME CHANCE SUBROUTINE

REM DISPLAY AND CHANCE OPTION FOR NAME

PRINT ; PRINT N.
INPUT "";R'
IF LEFT. (R'.l) (> "" AND LEFTS (Rt.l) () "C" THEN PRINT;
PRINT "PRESS 'RETURN' FOR NO CHANGE OR ENTER 'C' TO CHANGE NAKE.";
PRINT : GOTO 57D
IF R. = "C" THEN GOSUB 980

REM NAME CHANGE SUBROUTINE

INPUT "ENTER NEW NAME:";NS
IF LEN (NO = 0 THEN PRINT; PRINT "NO ENTRY KADE. PLEASE ENTER AS
REQUESTED."; PRINT; GOTO 96D
IF LEN (NO) ZO THEN PRINT: PRINT "ABBREVIATE NAKE TO ZO
CHARACTERS OR LESS."; PRINT; GOTO 960
RETURN

156 APPLE BASIC: DATA FILE PROGRAMMING

Nice work! Now, write a program segment that allows a change to be entered
for the credit rating. Upon returning from the subroutine, have the program record
the entire dataset, including changes, if any, to TEMPFIL. Fill in lines 700, 710, 720,
1030, 1040, 1050, and 1060.

(a)

(a)

610
620
630
640
650

660
670
680
690
700
710
720
730
740
1010
1020
1030
1040
1050
1060
1070
1080

610
620
630
640
650

660
670
680
690
700
710
720
730
740
1010
1020
1030
10H

1050

1060
1070
1060

REM DISPLAY & CHANGE OPTION FOR RATING

PR INT : PRINT R
INPUT ;R.
IF Rt (} AND HI () "c" THEN PRINT: PRINT "PLEASE PRESS
'RETURN' IF NO CHANGE, OR TYPE'C' TO CHANGE RATING.": PRINT: GOTO 640
IF Rt = .. c .. THEN GOSUS 1030

REM WRITE ONE DATASET BACX TO FILE

GOTO 390

REM CREDIT RATING CHANGE SUBROUTINE

RETURN

REM DISPLAY & CHANGE OPTION FOR RATING

PRINT : PRINT R
INPUT ;R.
IF RS (} AND RS () "c" THEN PRINT: PRINT "PLEASE PRESS
'RETURN' IF NO.CHANGE, OR TYPE'C' TO CHANGE RATING.": PRINT: GOTO 840
IF Rt " .. c .. THEN GOSUB 1030

REM WRITE ONE DATASET BACX TO FILE

PRINT D'; "WRITE TEMPFlL"
PRINT C.: PRINT NS: PRINT R
PRINT DS
GOTO 390

REM CREDIT RATING CHANGE SUBROUTINE

INPUT "ENTER NEW CREDIT RATING:";RS
IF LEN eRs) < } 1 THEN PRINT: PRINT "ENTER ONE DIGIT NUMBER ONLY,
PLEASE.": PRINT: GOTO 1030
IF VAL eRs) < 1 OR VAL eRs) } 5 THEN PRINT: PRINT "ENTER DIGITS
1 TO 5 ONLY.": PRINT.: GOTO 1030
LET R" VAL (R')
RETURN

Did you get line 71O? Carefully planned, the routine that prints or writes to the
me uses the same variables (C$, N$, and R) that can contain either new data or the
original unchanged data items.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 157

(a) Describe the last routine needed to complete this program.

(a) Close the fIles and RENAME TEMPFIL to F$.

The end of data error trap is already set up in line 420 to branch to line 770.

While experiencing a bit of deja VU, complete the fmal section to RENAME
TEMPFIL by filling in lines 770, 780, 800, 810, and 820.

(a)

(a)

7S0
7BD
770
780
790
800
810
810
830
840
8S0

750
780
770
780

790
800
810
8Z0
830
840
8S0

REM CLOSE FILES

HOME PRINT "\lORKING"

PRINT PRINT "JOB COMPLETE."
END

REM CLOSE FILES ,
IF PEEK (ZZZ) s 5 THEN 780
PRINT; PRINT "UNUSUAL ERROR. PROGRAM TERMINATED. READ AND DISPLAY
FILE CONTENTS TO CHECK FOR ERRORS."; PRINT; GOTO 800
HOME ; PRINT "\lORKING"
PRINT DS; "CLOSE"
PRINT OS; "DELETE"U
PRINT OS; "RENAME TEMPFIL,"F$
PRINT; PRINT "JOB COMPLETE."
END

Here is a complete listing of the second version of the credit fIle editor program.
Be sure to enter and RUN this program before continuing.

158 APPLE BASIC: DATA FILE PROGRAMMING

100
110
120
130
ltD
150
160
170
180
190
ZOO
ZIO
ZZO
Z30
240
250
ZiO
Z70
Z80
Z90
300
310
3Z0
330
340
350
360
370
380
390
400
410
4Z0
430
440
450
460
470
480
490
SOD
510

5Z0
530
540
550
560
570
S80

590
600
610
620
630
640
650

660
670
680
690
700
710
no
730
"0

REM CREDIT FILE EDITOR (VERSION 2)
REM THIS PROCRAM DEMONSTRATES
REM TYPE 'C' TO CHANCE ITEM, OR
REM PRESS 'RETURN' TO CONTINUE.

REM VARIABLES USED
REM CS a CUST • (5)
REM NS • CUST NAME (20)
REM R = CREDIT RAT INC
REM RS = USER RESPONSE
REM FS ~ FILE NAME
REM DS = CONTROL D

REM FILES USED
REM SEO. FILE NAME: CREDIT (USER ENTERED)
REM SEQ. TEMPORARY FILE NAME: TEHPFIL
REM DATASET FORMAT: CS,NS,R

REM INITIALIZATION

LET DS = CHU (4)
INPUT "ENTER FILE NAME:";FS
PRINT D';"OPEN"FS
PRINT DS;"OPEN TEHPFIL"
PRINT D';"DELETE TEMPFIL"
PRINT DS; "OPEN TEMPFlL"

REM

HOME
PRINT
PRINT
ONERR
PRINT
INPUT
PRINT

REM

READ FILE AND DISPLAY

"TYPE 'C'TO CHANCE ITEM DISPLAYED."
"PRESS 'RETURN' TO CONTINUE ITHOUT CHANCES."

COTO 770
DI; "READ"FS
CS,NS,R
D$

DISPLAY' CHANCE OPTION FOR CUST .•

PRINT : PRINT CS
INPUT "";RS
IF RS ()"n AND RS () "CD THEN PRINT CHR' (7); "ENTRY ERROR. TRY
ACAIN.": COTO SOD
IF LEFT. (RS,l) = "CD THEN COSUB 880

REM DISPLAY AND CHANCE OPTION FOR NAME

PRINT : PRINT NS
INPUT "";RS
IF LEFTS (RS,l) ()"" AND LEFT. (RS,I> () "CD THEN PRINT:
PRINT "PRESS 'RETURN' FOR NO CHANCE OR ENTER 'C' TO CHANCE NAME.":
PRINT : COTO no
IF RS = "CD THEN COSUB 860

REM DISPLAY' CHANCE OPTION FOR RATINC

PRINT : PRINT R
INPUT "";RS
JF RS ()"" AND RS () "CD THEN PRINT: PRINT "PLEASE PRESS
'RETURN' IF NO CHANCE, OR TYPE'C' TO CHANCE RATINC.": PRINT: COTO 640
IF RS = "CD 'lHEN COSUS 1030

REM RITE ONE DATASET BACK TO FILE

PRINT DS; " RITE TEMPFll"
PRINT CS: PRINT N.: PRINT R
PRINT DS
COTO 390

7S0
760
770
780

790
800
810
820
B30
840
850
;;so
870
880
890
900

910
920
930
940
950
9S0
970

SBO

990
1000
1010
10 20
1030
1040

1050

lOGO
1070
1080

SEQUENTIAL DATA FILE UTILITY PROGRAMS 159

REM CLOSE FILES

IF PEEX (222) " 5 THEN 790
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED.
FILE CONTENTS TO CHECX FOR ERRORS.": PRINT : COTO
HOME : PRINT "\JORXINC"
PRINT DS; "CLOSE"
PRINT D';"DELETE"FS
PRINT DS;"RENAME TEMPFIL,"FS
PRINT PRINT "JOB COMPLETE."
END

REH CHANGE CUST t SUBROUTINE

INPUT "ENTER NE'" CUST. ':";CS

READ AND DISPLAY
800

IF LEN (C$) " 0 THEN PRINT "ENTER NUMBERS PLEASE.": COTO 740
IF LEN (C$) () 5 THEN PRINT "ENTRY ERROR. REENTER WITH 5
DICITS.": COTO 880
IF VAL (CS) 0 THEN PRINT "ENTRY ERROR, NUMBERS ONLY.": COTO 880
RETURN

REM NAME CHANCE SUBROUTINE

INPUT "ENTER NE'" NAME:";NS
IF LEN (NS) " 0 THEN PR INT : PR INT "NO ENTRY MADE. PLEASE ENTER AS
REOUESTED.": PRINT: COTO 9S0
IF LEN (NS)) 20 THEN PRINT: PRINT "ABBREVIATE NAME TO 20
CHARACTERS OR LESS.": PRINT: COTO 9GO
RETURN

REM CREDIT RAT INC CHANCE SUBROUTINE

. INPUT "ENTER NE'" CREDIT RATINC:";RS
IF LEN (RS) () 1 THEN PRINT: PRINT "ENTER ONE DICIT NUMBER ONLY,
PLEASE. ": PRINT COTO 1030
IF VAL (RS) (1 OR VAL (RS)) 5 THEN PRINT: PRINT "ENTER DICITS
1 TO 5 ONLY. ": PRINT.: COTO 1030
LET R" VAL (RS)
RETURN

Yet another desireable editing feature is the ability to delete a complete dataset
from a data me. This is in addition to the program's ability to make changes in an
existing dataset. To delete a dataset, have the program read the dataset from the me,
but not copy it into TEMPFIL. Thus, the dataset "disappears." This editing option
can be integrated into the existing program you have been developing. First, enter a
statement to inform the user of the option to delete a dataset.

395 PRINT: PRINT "TYPE 'D' TO DELETE THIS ENTIRE DATASET FROM THE fILE."

(a) Complete the change in the statement line that tests for legal user inputs.

(b) Write a statement to branch to line 390, thus never writing the current dataset if
the user entered 'D'.
[525]

160 APPLE BASIC: DATA FILE PROGRAMMING

(a)

(b)

S10 IF RS () "" AND RS () "C" AND RS () "D" THEN PRINT: PRINT
CHRS (7);" ENTRY ERROR. READ THE INSTRUCTIONS AND TRY AGAIN.": PR I NT
GOTO SOO

SZS IF RS = "D" THEN 430

You now have a model for a me editor that allows for changes, deletions, or no
changes. Another useful editing feature allows you to keep data in numerical or
alphabetical order by insertion of a new dataset part way through an existing data
me. Mter locating a certain dataset, the new dataset is inserted by using the sub­
routines used to make changes in the me. How's that for program efficiency.
Following are some of the new statements needed, with space for you to complete
lines 396, 510, and 526.

(a) 38&

(a)

S10

SZI

841
84Z REM SUBROUTINE TO VRITE CURRENT DATASET TO FILE UNCHANGED BEFORE NEV

DATASET IS INSERTED
843
844 PRINT D.; "VRITE TEMPFIL"
84S PRINT C.: PRINT N.: PRINT R
846 PRINT D.
847 RETURN
848

396 PRINT: PRINT "TYPE 'I' TO INSERT A NEV DATASET AFTER THE ONE
DISPLAYED. CURRENT,DATASET DISPLAYED VILL BE PLACED IN THE FILE
UNCHANGED.": PRINT

397
398
510 IF R. ()"" AND R. ()" C" AND R. ()" D" AND R S ()"1" TH EN

PRINT: PRINT CHRt(7);"ENTRY ERROR. READ DIRECTIONS AND ENTER
ACCORDINGLY.":' PRINT: GOTO SOD

Sl1
512
SZS IF R ... "I" THEN COSUB 844: GOSUB 880: GOSUB 960: GOSUB 1030: GOTO

700
517
SZS
841
84Z REM SUBROUTINE TO VRITE CURRENT DATASET TO FILE UNCHANGED BEFORE

NEV DATASET IS. INSERTED
843
844 PRINT D.;"VRITE TEMPFIL"
845 PRINT C.: PRINT N.: PRINT R
84& PRINT D.
847 RETURN
848

To change, delete, or insert data in the CREDIT file gather together this data file
editing utility program.

100
110

1%0
130

140
150
160
110
180
190
200
210
2 ZO
130
Z40
ZSO
Z60
Z10
Z80
zeD
300
310
310
330
340
350
360
310
380
390
395
396

400
flO
410
430
440
4S0
460
410
480
490
500
SlO

510
SZ5
5Z6

S 3D
S40
S50
S60
510
580

S90
600
610
6Z0
630
640
650

660
610

SEQUENTIAL DATA FILE UTILITY PROGRAMS 161

REM CREDIT FILE EDITOR (VERSION 3)
REM THIS PROCRAM ALLOWS CHANCES IN CURRENT DATA. DELETION OF
DATASETS. AND
REM INSERTION OF NEW DATASETS. IT ALSO ALLOWS YOU TO
REM PRESS 'RETURN' TO CONTINUE DISPLAY OF DATA WITH NO CHANCES TO
DATA ITEMS.

REM VARIABLES USED
REM CS = CUST • (5)
REM NS = CUST NAME (ZO)
REM R = CREDIT RATINC
REM RS = USER RESPONSE
REM FS = FILE NAME
REM D. .. CONTROL D

REM FILES USED
REM SEO. FILE NAME: CREDIT (USER ENTERED)
REM SEQ. TEMPORARY FILE NAME: TEMPFIL
REM DATASET FORMAT: C'.NS.R

REM INITIALIZATION

LET DS CHRS (4)
INPUT "ENTER FILE NAME:";FS
PRINT D.; "OPEN"FS
PRINT DS;"OPEN TEMPFIL"
PRINT D.; "DELETE TEMPFIL"
PRINT DS;"OPEN TEMPFIL"

REM READ FILE AND DISPLAY

HOME
PRINT PRINT "TYPE 'D' TO DELETE THIS ENTIRE DATASET FROM THE FILE."
PRINT: PRINT OOTYPE 'I' TO INSERT A NEW DATASET AFTER THE ONE
DISPLAYED. CURRENT DATASET DISPLAYED WILL BE PLACED IN THE FILE
UNCHANCED.": PRINT
PRINT "TYPE 'C' TO CHANCE ITEM DISPLAYED.": PRINT
PRINT "PRESS 'RETURN' TO CONTINUE WITHOUT CHANCES."
ONERR COTO 110
PJlINT D.; "READ"U
INPUT C'.NS.R
PRINT D.

JlEM DISPLAY & CHANCE OPTION FOR CUST .•

PRINT : PRINT C'
INPUT ;R.
IFR.() ANDR.()"C"ANDRS("D"ANDRS() 001" THEN
PRINT: PRINT CHRS (1); "ENTRY ERROR. READ DIRECTIONS AND ENTER
ACCORDINCLY.": PRINT: COTO SOD
IF LEFT. (JI'.l) .. "C" THEN COSUB 880
IF R. = "D" THEN 430
IF R ... "I" THEN COSUB 844: COSUB 880: COSUB 960: COSUB 1030: COTO
100

REM DISPLAY AND CHANCE OPTION FOR NAME

PRINT : PRINT N.
INPUT ;R.
IF LEFT. (R'.l) ()"" AND LEFT. (JI'.l) () "c" THEN PRINT:
PRINT "PRESS 'RETURN' FOR NO CHANCE OR ENTER 'C' TO CHANCE NAME.":
PRINT : COTO 510
IF R ... "COO THEN COSUB 9&0

REM DISPLAY & CHANCE OPTION FOR RATINC

PRINT : PRINT R
INPUT "";RS
IF R. ()" .. AND RS () "COO THEN PRINT: PRINT "PLEASE PRESS
'RETURN' IF NO CHANCE. OR TYPE'C' TO CHANCE RATINC.": PRINT:
COTO 640
IF R •• "C" THEN caSUB 1030

continued on next page

162 APPLE BASIC: DATA FILE PROGRAMMING

880
810
700
710
7%0
730 ,.0
7S0
780
770
780

790
800
810
no
830
840
841
84%

843
844
845
846
847
850
880
870
880
890
900

910
920
930
940
950
960
970

980

990
1000
1010
1020
1030
1040

1050

1060
1070
1080

REM WRITE ONE DATASET BACK TO FILE

PRINT D.; "WRITE TEMPFIL"
PRINT C.: PRINT N.: PRINT R
PRINT D.
COTO 390

REM CLOSE FILES

IF PEEK (222) • 5 THEN 790
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED. READ AND DISPLAY
FILE CONTENTS TO.CHECK FOR ERRORS.": PRINT: COTO 800
HOME : PRINT "WORK INC" .
PRINT D';"CLOSE"
PRINT Df; "DELETE"FS
PRINT D';"RENAME TEMPFIL,"FS
PRINT: PRINT "JOB COMPLETE."
END

REM SUBROUTINE TO WRITE CURRENT DATASET TO FILE UNCHANCED BEFORE
NEW DATASET IS INSERTED

PRINT D.; "WRITE TEMPFlL"
PRINT CS: PRINT NS: PRINT R
PRINT D.
RETURN

REM CHANCE CUST • SUBROUTINE

INPUT "ENTER NEW CUST. ':";cs
IF LEN (Cs) .. 0 THEN PRINT "ENTER NUMBERS PLEASE.": COTO 740
IF LEN (CS) () 5 THJ:N PRINT "J:NTRY ERROR. RUNUR \11TH S
DICITS.": COTO 880
IF VAL (CS) 0 THEN PRINT "ENTRY ERROR, NUMBERS ONLY.": COTO 880
RETURN

REM NAME CHANCE SUBROUTINE

INPUT "ENTER NEW NAME:";N'
I F LEN (Ns) ,. 0 THEN PR INT : PRINT "NO ENTRY MADE. PLEASJ: ENTER AS
REOUESTED.": PRINT: GOTO 960
IF LEN (NS)) 20 THEN PRINT: PRINT "ABBREVIATE NAME TO 20
CHARACTERS OR LESS.": PRINT: GOTO 960
RETURN

REM CREDIT RATING CHANGE SUBROUTINE

INPUT "ENTER NEW CREDIT RATINC:";RS
IF LEN CRS) () 1 THEN PRINT PRINT "ENTER ONE DIGIT NUMBER ONLY,

:PLEASE.": PRINT GOTO 1030
It VAL CRS) (1 OR VAL CRS) } 5 THEN PRINT: PRINT "ENTER DIGITS

: 1 TO 5 ONLY.": PRINT GOTO 1030
LET R = VAL CRS}
RETURN

The following outline for the final version of the program allows for insertion,
deletion, or changes of data in the file.

(l) Open the source file.
(2) Open the temporary file.
(3) Display a "menu" for the user to select changes to be made, including a "no

changes" option.
(4) Set ONERR for end-of-file detection.
(5) Read the entire dataset from the file and display the first data item (not

dataset) in the current dataset.
(6) Allow the user to enter a selection from the "menu" and test for the legal

selection possibilities.
(7) If user entered "e" for change:

(a) Allow user to enter change with data entry checks.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 163

(b) Display next data item from current dataset (if any items remain in this
dataset).

(c) User entered option for another change and test selection.
(d) User entered change with data entry checks.
(e) Repeat (7) (b), (c), and (d) until all items in a dataset have been through

the change option.
(f) Print the dataset (with any changes) to the temporary fIle.
(g) Go to step (3).

(8) If user entered "I" for insert:
(a) Print the dataset to the temporary fIle.
(b) User enters new dataset with data entry checks.
(c) Print the newly entered data to the temporary fIle.
(d) Go to step (3).

(9) If user entered "D" for delete, go to step (5).
(10) If the user entered no response (just pressed the RETURN key), go to steps (7)

(b) to (g).
(1 I) Close both fIles.
(I 2) RENAME TEMPFIL to source fIle name.

(a) Write the corresponding program line number(s) for each step in the outline
below, except for item (10), where you are to fill in the blanks in the
parentheses.

(1) Open the source fIle.

(2) Open the temporary fIle.

(3) Display a "menu" for the user to select changes to be made, including a

"no changes" option.

(4) Set ONERR for end-of-fIle detection. ____________ _

(5) Read the entire dataset from the fIle and display the first data item (not

dataset) in the current dataset.

(6) Allow the user to enter a selection from the "menu" and test for the

legal selection possibilities.

(7) If user entered "C" for change:

(a) Allow user to enter change with data entry checks.

(b) Display next data item from current dataset (if any items remain in

this da tase t).

(c) User entered option for another change and test selection.

164 APPLE BASIC: DATA FILE PROGRAMMING

(d) User entered change with data entry checks.

(e) Repeat (7) (b), (c), and (d) until all items in a dataset have been

through the change option.

(f) Print the dataset (with any changes) to the temporary fIle. __ _

(g) Go to step (3).

(8) If user entered "I" for insert:

(a) Print the dataset to the temporary fIle.

(b) User enters new dataset with data entry checks.

(c) Print the newly entered data to the temporary fIle. _____ _

(d) Go to step (3).

(9) If user entered "D" for delete, go to step (5).

(10) If the user entered no response (just pressed the RETURN key), go to

steps (_) (_) to (_) (_). (Fill in the blanks.)

(11) Close both fIles.

(12) RENAME TEMPFIL to source me name.

(a) (1) line 320
(2) lines 330 to 350
(3) lines 390 to 410
(4) line 420
(5) lines 430 to 490
(6) lines 500 to 526
(7) (a) lines 880 to 920

(b) line 560
(c) lines 570 to 590
(d) lines 880 to 920
(e) lines 560 to 590, 880 to 920
(f) lines 700 to 720
(g) line 730

(8) (a) lines 844 to 847
(b) lines 880 to 920, 960 to 990, and 1030 to 1070.

(c) lines 700 to 720
(d) line 730

(9) line 525
(10) steps (7) (b) to (7) (g)
(11) line 800
(12) lines 810 and 820

SEQUENTIAL DATA FILE UTILITY PROGRAMS 165

Enter and RUN the program; put it through its paces. Test all of the possible
change options that this program makes available, and verify that the changes were
actually made to the file.

MERGING THE CONTENTS OF FILE

In many business applications of computers, information in data files is maintained in
alphabetic or numeric order. This can be done by customer number, customer name,
product number, or some other key to ftling. It is often necessary or desirable to
merge the contents of two data files, both already in some order, to a make a third
data file with the same order or sequence. A utility program to merge files also allows
you to learn some new file programming techniques with wider applications.

Follow these steps to merge two data files into one.

(1) Open the two files to be merged (#1 and #2).
(2) Open, delete, and reopen the file (#3) that will contain the merged data.
(3) Use ONERR to branch to step (10) if end-of-fIle is encountered for either file

#1 or file #2.
(4) Read the first dataset from file #1.
(5) Read the first dataset from file #2.
(6) Test datasets to see which file dataset (#1 or #2) is to be copied or printed to

the merge file (#3).
(7) Print the selected dataset to file #3; this requires two separate routines:

(a) One if file #1 dataset is selected, or
(b) Another if file #2 dataset is selected.

(8) Read another dataset from whichever file's dataset was printed to file #3 in
step (7). Again, two separate routines are needed:
(a) Read another dataset from file #1, or
(b) Read another dataset from file #2.

(9) Again, separate routines are needed to "dump" or transfer the remaining data
in file # 1 or #2 to file #3:
(a) If file #1 comes to end-of-fIle first, copy the remaining datasets in file #2

to file #3, or
(b) If file #2 comes to end-of-fIle first, copy the remaining datasets in file #1

to file #3.
(10) Close all files.
(11) Optional routine to display merged data files for confirmation of a successful

merge.

166 APPLE BASIC: DATA FILE PROGRAMMING

The model program merges two transaction fIles into a third larger fIle that
combines the other two. In the example, each transaction produces a dataset as
shown below.

Account number = five characters
Transaction code = two characters (for a bank, 1 = check, 2 = deposit, etc.)
Amount = seven characters

This data is contained in the fIles named TRANSACTION-1 and TRANS­
ACTION-2. Assume that the datasets are stored in two data fIles each in ascending
numerical order by account number (problem 3 in the Chapter 4 Self-Test). The goal
is to produce a third fIle named TRANSACTION-MERGE that combines the data in
the first two fIles, but maintains the numerical order when the fIle merging is com­
plete. Also assume that more than one dataset can have the same account number in
either or both data fIles.

This last assumption requires a decision. When merging, if two datasets have
the same account number, the program will copy the dataset from fIle #1 first, then
the dataset with the same number from fIle #2.

FILE III FILE 112

10762 10761

18102 18203

43611 4361 1

43611 80111

'.3611 80772

80223 80772

98702 89012

File #3 (fIles # 1 and #2 merged into one)

10761
10762
18102
18203
43611
43611
43611
43611
80111
80223
80772
80772
89102
98702

(Note: Only the account numbers are shown here; the complete datasets also include
transaction codes and amounts.)

While the outline provides the logic, structure, and flow of the program, the
summary of the program modules is given below to further aid your understanding of
what may seem, at first, to be a very complicated program. The modules are:

Introduction
Initialize

SEQUENTIAL DATA FILE UTILITY PROGRAMS 167

Read fIrst dataset from file #1
Read fIrst dataset from file #2
Compare datasets
Print one dataset from file #1 to merged file
Read subsequent dataset from file #1
Print one dataset from file #2 to merged file
Read subsequent dataset from file #2
Copy leftover datasets from file #1 to merged file
Copy leftover datasets from file #2 to merged file
Close files
Open, display all datasets and close merged file

This program is called Merge. It gets tricky, so read the text and program
segments carefully. The initializing process is familiar; you should have no trouble
completing steps 1 and 2 of the outline.

100
110
120
130
140
150
160
170
180
190
ZOO
ZlO

no
130
240
250
%60
270
zeo
290
300
310
3U
330
340
350
360
370

REM MERGE FILES UTILITY PROGRAM

REM VARIABLES USED
REM Fl',F2',F3. = USER ENTERED FILE NAMES
REM AIS,AZS = ACC'T NUMBERCS CHAR.)
REM Tl',T2S = TRANSACTION CODECI CHAR.)
REM CI.,CZ. = CASH AM'TC9999.99 OR 7 CHAR. MAX.)
REM X = FOR NEXT LOOP CONTROL VARIABLE
REM DS K CONTROL D

REM FILES USED
REM SEQ. FILE NAMES: TRANSACTION-I, TRANSACTION-2.
TRANSACTION-MERGE CALL USER ENTERED)
REM DATASET FORMAT: A',TS,C$

REM INITIALIZE

LET D. = CHR. Cf)
INPUT "ENTER SOURCE FILE 1:";FI$
INPUT "ENTER SOURCE FILE 2:";FU
INPUT "ENTER OUTPUT CMERGED) FILE NAME:";FH
HOME : PRINT "WORKING"

PRINT DS;"OPEN"FH
PRINT DS; "OPEN"FU
PRINT D.; "OPEN"F3S
PRINT D.; "DELETE"F3S
PRINT D.; "OPEN"FH

(a) Why is the OPEN-DELETE-OPEN sequence used for the F3$ file?

168 APPLE BASIC: DATA FILE PROGRAMMING

(a) The other two mes are source meso F3$ {the merged file) is the only one to be
written to, and this section of the program makes certain no extraneous data
are in the me to begin with.

Next, the first dataset is read from me #1. Notice that the end-of-fIle error
test is made before the first dataset is read, just in case the me has no data. This
corresponds to steps 3 and 4 of the outline. If me #1 is empty to begin with,
GO TO 1010.

380
390
400
410
UO
430
440
450

REM READ SOURCE 1

ONERR GOTO 1010
PRINT DS;"READ"FIS
INPUT Al',TlS,CIS
PRINT DS
LET Al E VAL (AIS)

Line 440 coverts the string that contains the account number into a numeric
value. Now write the next segment corresponding to step 5 in the outline. The
program should read the first data item from me #2. Fill in lines 490, 500, 510,
and 520.

(a)

(a)

460 REM READ SOURCE Z
470
480 ONERR GOTO 900
490
500
SIO
520
530

460
470
480
490
SOD
510
SZO
530

REM READ SOURCE 2

ONERR GOTO 900
PRINT DS; "READ"FH
INPUT AZS,T2S,C2S
PRINT DS
LET A2 s VAL (A2S)

The next decision is which dataset - that from me #1 or that from file #2 -
will be copied into me #3 first? This corresponds to step 6 in the outline.

540
550
560
570
580
590

REM MERGE TESTING

IF Al = AZ THEN 620
IF Al (AZ THEN 620
GOTO 740

The program so far, as shown below, provides only for input of the first dataset
from each of the two mes to be merged, and compares the numeric values of the
account numbers.

100
110
lZO
130
ltD
150
180
170
110
110
ZOO
ZlO

UO
Z30
%to
%SO
ZlO
Z70
zeD
ZlO
300
310
3ZO
330
3tD
350
380
370
380
390
400
410
UO
430
UO
4S0
480
470
480
490
SOD
SID
HO
530
540
5 SO
510
570
580
590

SEQUENTIAL DATA FILE UTILITY PROGRAMS 169

REM MERGE FILES UTILITY PROGRAM

RE" VARIABLES USED
RE" Fl.,Fl',F3' • USER ENTERED FILE NA"ES
REM Al',A2 •• ACC'T NUMBERIS CHAR.)
REM Tl',TZ •• TRANSACTION CODEIl CHAR.)
RE" Cl.,CZ •• CASH A"'TI ••••.•• OR 7 CHAR. MAJ.)
RE" J • FOR NEJT LOOP CONTROL VARIABLE
RE" D. • CONTROL D

RE" FILES USED
REM SEQ. FILE NAMES: TRANSACTION-I, TRANSACTION-Z,
TRANSACTION-MERGE I ALL USER ENTE RED)
RE" DATASET FORMAT: A',T.,C.

REM INITIALIZE

LET D.. CHR. (4)
INPUT "ENTER SOURCE FILE 1:" .FU
INPUT "ENTER SOURCE FILE Z:" ;FlS
INPUT "ENTER OUTPUT I"ERGED) FILE NAME:". F3S
HO"E : PRINT "\IORKING"

PRINT D •• "OPEN"FH
PRINT D •• "OPEN"rU
PRINT D •• "OPEN"F3S
PRINT D'."DELETE"F3'
PRINT D •• "OPEN u F3S

REM READ SOURCE 1

ONERR GOTO 1010
PRINT D';"READ"FU
INPUT Al',Tl',Cl.
PRINT D.
LET AI. VAL IAl.)

REM READ SOURCE Z

ONERR GOTO 100
PRINT D •• "READ"FU
INPUT AZ',TZ.,CZ.
PRINT D.
LET AZ. VAL IAZS)

REM MERGE TESTING

IF Al AZ THEN SZO
IF Al (AZ THEN 6Z0
GOTO 740

(a) Look at lines 560 and 570. What should happen in the program routine that
starts at line 620?

(b) The program tests for equality in line 560. In line 570, the test was for Al less
than A2. If both tests are false, what is the relationship of Al to A2?

(c) What should happen in the program routine at line 740 that line 580 branches
to?

170 APPLE BASIC: DATA FILE PROGRAMMING

(a) The dataset from source me #1 is copied.
(b) Al is greater than A2.
(c) The dataset from source me #2 to me #3 is printed.

Continue with the me copying segment for copying a dataset from me #1 to
me #3 (outline step 7a).

600
610
620
630
640

REM PRINT .1 TO '3, READ .1

PRINT D';"WRITE"F3S
PRINT AIS: PRINT TIS: PRINT CIS
PRINT DS

(a) After executing the above se'gment, the program should now read another dataset
from me #1. You might want to have the program branch back to the routine
at line 410 and continue executing from there. Why would this result in a
program error?

(a) The routine at line 410 reads from me #1, but then continues to read another
dataset from me #2, replacing the dataset already assigned to A2$, T2$, and
C2$ without copying them to file #3.

The rest of this program segment is used for reading the next data item from
me #1. This corresponds to outline step 8a.

600
610
620
630
640
650
660
670
680
690
700
710

REM PRINT .1 TO '3, READ .1

PRINT DS;"WRITE"F3S
PRINT AIS: PRINT TIS: PRINT CIS
PRINT DS
ONERR COTO 1010
PRINT DS;"READ"FIS
INPUT AIS,TIS,CIS
PRINT DS
LET Al = VAL CAIS)
COTO 560

(a) When the program finds the end of me #1, it branches to line 1010. Think
ahead: What should happen in the routine at line 101O?

SEQUENTIAL DATA FILE UTILITY PROGRAMS 171

(a) Since all datasets have been read from me #1 and copied to me #3, all the
remaining data from me #2 should be copied into me #3 (you'll see this
routine soon).

Here is the routine we need to copy a dataset from me #2 to me #3, and to
read a new dataset from me #2. This corresponds to outline steps 7b and 8b.

720
730
740
750
760
770
780
790
800
810
820
830

REM PRINT .2 TO '3, READ .2

PRINT DS;"WRITE"F3S
PRINT AZl: PRINT T2.: PRINT CZl
PRINT DS
ONERR COTO 900
PRINT DS;"REAO"F2'
INPUT A2l,TZS,C2'
PRINT OS
LET AZ ~ VAL (AZl)
COTO 560

Notice how carefully you must think through these me utility programs. You
are nearing the end; only a few more "clean up" routines are needed. Two similar
routines are needed to copy or dump the remainders of me #2 to me #3, and me
#1 to me #3. First, here are the program instructions that correspond to the outline,
step 9a.

#1.

950
960
1010
1020
1030
1040
1050

REM DUMP 'Z TO .3

PRINT OS;"WRITE"F3S
PRINT A2S: PRINT TZl: PRINT CZl
PRINT OS
COTO 970

Line 1010 is branched to from lines 400 or 650 on end of me checks for me

The rest is easy. Here is the complete routine. Check me #2 for end of me and,
if encountered, dump any remaining me #2 datasets to me #3.

950
960
970
980
990
1000
1010
1020
1030
1040
1050

REM DUMP .2 TO .3

ONERR COTO 1080
PRINT OS; "REAO"FZS
INPUT A2S,T2S,C2S
PRINT OS
PRINT OS;"WRITE"F3S
PRINT AZl: PRINT TZS:
PRINT OS
COTO 970

PRINT CZS

Write the corresponding routine to dump me #1 to me #3. The end of data
error statement should branch to line 1080. Complete lines 860, 870, 880, 890,900,
910, and 920.

172 APPLE BASIC: DATA FILE PROGRAMMING

(a) ItO REIt DUltP 11 TO 13
850
880
870
880
BID
IDO
910
no
830 COTO 860
840

(b) The ONERR trap in lines 860 and 970 both branch to line 1080. What fmal
routine should appear there?

(a) ItO
850
8&0
870
880
890
BOD
910
no
930
940

REIt DUltP .1 TO .3

ONEIR COTO 1080
PRINT DS;"READ"FU
INPUT A1I.T1S.CIS
PRINT DS
PRINT DS;"IJRITE"F3S
PRINT A1S: PRINT T1S:
PRINT D.
COTO 880

PRINT CU

(b) Close all fIles, since all data have been copied and merged.

Once the fIles are closed, the program gives the user the option to display the
contents of the merged fIles to verify that it did happen and to judge whether the
program works properly. In Merge all the activity takes place between the computer
memory and the disk with no evidence of the action appearing on the CRT screen.
You only see RUN, so did it really happen? The routine included at the end of the
complete listing of Merge lets you be sure (see 1150 through 1330).

IDD
110
IZO
130
140
ISO
160
170
180
190
ZOO
ZIO

ZZO
Z30
Z40
ZSO
Z60
Z70
aD
Z90
300
JIO
no
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
5 SO
560
570
580
590
600
EIO
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830

SEQUENTIAL DATA FILE UTILITY PROGRAMS 173

REM MERGE FILES UTILITY PROGRAM

REM VARIABLES USED
REM FIS,FZS,F3S = USER ENTERED FILE NAMES
REM AIS,A2S = ACC'T NUMBER(S CHAR.)
REM TIS,TZS = TRANSACTION CODE(1 CHAR.)
REM CIS,C2S = CASH AM'T(B999.99 OR 7 CHAR. MAX.)
REM I = FOR NEXT LOOP CONTROL VARIABLE
REM DS = CONTROL D

REM FILES USED
REM SEO. FILE NAMES: TRANSACTION-I, TRANSACTION-2,
TRANSACTION-MERGE (ALL USER ENTERED)
REM DATASET FORMAT: AS,TS,CS

REM INITIALIZE

LET DS CHRS (4)
INPUT "ENTER SOURCE FILE 1:";FIS
INPUT "ENTER SOURCE FILE 2:";F2S
INPUT "ENTER OUTPUT (MERCED) FILE NAME:";F3S
HOME : PRINT "WORKING"

PRINT DS; "OPEN"FH
PRINT DS; "OPEN"FZS
PRINT DS;"OPEN"F3S
PRINT DS; "DELETE"F3S
PRINT DS;"OPEN"F3S

REM READ SOURCE

ONERR GOTO 10 1 0
PR INT DS;" READ"F IS
INPUT AIS,TIS,ClS
PRINT DS
LET Al c VAL (AIS)

REM READ SOURCE 2

ONERR GOTO 900
PRINT DS; "READ"FH
INPUT AZS,TZS,C2S
PUNT DS
LET A2 = VAL (AZS)

REM MERGE TESTING

IF Al = A2 THEN 6Z0
IF Al (A2 THEN 620
GOTO 740

REM PRINT.l TO '3, READ .1

PRINT DS;"WRITE"F3S
PRINT AIS: PRINT TIS: PUNT CIS
PRINT DS
ONERR COTO 1010
PRINT DS;"READ"FIS
INPUT AIl,TIS,CIS
PRINT DS
LET Al = VAL (All)
GOTO 560

REM PRINT 'Z TO '3, READ 'Z

PRINT D'; "WRITE"FH
PRINT AU: PRINT TZS: PRINT CH
PRINT DS
ONERR COTO 900
PRINT DS; "READ"FZS
INPUT AZS,TZS,CZS
PRINT DS
LET AZ = VAL (AZ')
GOTO 560

continued on next page

174 APPLE BASIC: DATA FILE PROGRAMMING

840
850
860
870
880
890
900
910
SZO
930
940
950
960
970
980
990
1000
1010
1010
1030
1040
1050
1060
1070
1080
1090
1100
III 0
IHO
1130
1140
1150
1160

1170
1180
1190
HOD
12 10
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

REM DUMP .1 TO .3

ONERR COTO 1080
PRINT OI;"REAO"Fll
INPUT All,TlS,Cll
PRINT 01
PRINT 01; "WRITE"F3S
PRINT All: PRINT TIl: PRINT CIS
PRINT 01
COTO 860

REM DUMP .1 TO .3

ONERR COTO 1080
PRINT O$;"REAO"F1$
INPUT A11,T21,C2S

PRINT OS
PRINT OS;"WRITE"F3S
PRINT AZS: PRINT TZs: PRINT CZS
PRINT OS
COTO 970

REM CLOSE FILES

IF PEEX (222) = 5 THEN 1100
PRINT: PRINT CHRS 17l;"UNUSUAL ERROR. PROCRAM TERMINATED."
PRINT OS;"CLOSE"
PRINT: PRINT "JOB COMPLETED."

REM REQUEST TO DISPLAY HERCEO FILES

PRINT: INPUT "~O YOU ANT TO SEE THE MERCED DATA?";RS
IF LEFTS IRS,ll () "N" AND LEFTS (RS,ll () "yo THEN PRINT
PRINT "ENTER 'Y' FOR YES OR 'N' FOR NO.": PRINT: COTO 1150
IF RS • "yo THEN 1220
IF RS "N" THEN 1330

REM PRINT CONTENTS OF MERCED FILE

PRINT OS;"OPEN"F3S
ONERR COTO 1320
PRINT DS; "REAO"F3S
INPUT AS,TS,CS
PRINT OS
PRINT A$,TS,CS

. COTO 1240

REM CLOSE FILE

PRINT nS;"CLOSE"
END

(a) Write the corresponding program line number(s) for each step of the following
outline.

(1) Open the two files to be merged (#1 and #2).

(2) Open, delete, and reopen the file (#3) that will contain the merged data.

(3) Use ONERR to branch to step (9) if end-of-fIle is encountered for either

me #1 or me #2.

(4) Read the first dataset from file #l.

(5) Read the first dataset from me #2.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 175

(6) Test datasets to see which file dataset (#1 or #2) is to be copied or

printed to the merge file (#3).

(7) Print the selected dataset to file #3; this requires two separate routines:

(a) One if file #1 dataset is selected, or

(b) Another if file #2 dataset is selected.

(8) Read another dataset from whichever file's dataset was printed in file #3
in step (7). Again, two separate routines are needed:

(a) Read another dataset from file #1,

________________________ or

(b) Read another dataset from file #2.

(9) Again, separate routines are needed to "dump" or transfer the remaining
data in file #1 or #2 to file #3:

(a) If file #1 comes to end-of-file first, copy the remaining datasets in

file #2 to file #3, ______________ __

(b) If file #2 comes to end-of-file first, copy the remaining datasets in

or

file #1 to file #3. ________________________________ __

(10) Close all files.

(11) Optional routine to display merged data files for confirmation of a

successful merge. ____________________ _

(a) (1) lines 320 and 330 (8) (a) lines 660 to 680
(2) lines 340 to 360 (b) lines 780 to 800
(3) lines 400 and 480 (9) (a) lines 970 to 1040
(4) lines 410 to 430 (b) lines 860 to 930
(5) lines 490 to 510 (10) line 1100
(6) lines 560 to 580 (11) lines 1150 to 1330
(7) (a) lines 620 to 640

(b) lines 740 to 760

Enter and RUN the program, using the two data files named TRANSACTION-1
and TRANSACTION-2 that you created in the Chapter 4 Self-Test, problem 4a.

176 APPLE BASIC: DATA FILE PROGRAMMING

PROBLEMS WITH SEQUENTIAL DATA FILES

You should be aware of some frequent errors made in using sequential fIles imd some
programming techniques used for successful programs accessing data fIles.

The most frequent programming error is failing to keep track of the fIle pointers.
Each time you use a fIle INPUT statement in a program, ask yourself how the fIle
pointer is affected and where it is located before and after executing the statement.

(a) How can you reset the datafIle pointer to the beginning of a fIle? ____ _

(a) Close the fIle. Pointer is at beginning of fIle when fIle is reopened.

Another frequent error occurs when a program sequentially searches through a
data fIle for a particular dataset or data item. Let's say you have a data fIle of names
arranged alphabetically by last names. After you enter the name to be searched, the
program searches through the fIle until it finds the name and then prints the informa­
tion on your printer for that person. Then you enter a second name. When writing
the program, ask yourself where the fIle pointer will be located after the first search.
Assume the first name searched and located is DORIAN SCHMIDT and the second
name is HAMILTON ANDERSON. The data fIle search for the second name takes up
where the search for the first name left off. The second name obviously will not be
found before you reach the end-of-fIle. If the data fIle pointer was not reset to the
beginning of the fIle after the first search, ANDERSON. will never be found because
the fIle was in alphabetical order and the search for the second name started at
SCHMIDT. The solution, of course, is to make sure the program resets the pointer
to the beginning of the fIle after every search, by using a CLOSE followed by an
OPEN statement.

(a) When a fIle has been partially read through during a data search, why must the
fIle pointer be reset to the beginning of the fIle before a new search of the fIle
commences?

(a) Because if the pointer is midway in the fIle ·and the new datum searched for is
near the beginning of the fIle, the search would not fmd the datum.

SEQUENTIAL DATA FILE UTILITY PROGRAMS 177

Errors can also occur when the contents of arrays are copied into a data fIle, a
topic mentioned earlier. The contents of a one- or two-dimensional array can be
copied into a fIle or read from a fIle back into an array, provided you use the correct
programming techniques. Such data manipulation has many uses. There is a tendency
to think of array data as something that is used up or consumed, but storing array
data in a fIle gives it permanence.

To load array data into a data fIle from a one-dimensional array:

P (1)

(2)

(3)

(4)

(5)

(6)

1761

18

1942

24

8209

2

The correct procedure:

ZOO PRINT OS;"VRITE FILENAME"
Z10 FOR X = 1 TO 6
no PRINT P(X)
Z30 NEXT X
%40 PRINT OS

Similarly, to load array data into a data fIle from a two-dimensional array:

C

(1,1)

(2,1)

(3,1)

(4,1)

(1,1)

A

N

G

B

(1,2) (1,3)

C P

M S

H T

D E

The correct procedure:

300 PRINT OS;"VRITE FILENAME"
310 FOR X = 1 TO 4
3Z0 FOR Y = 1 TO 3
330 PRINT e(x.y)
HO NEXT Y
350 NEXT X
360 PRINT OS

(a) To read data into (or out of) an array from (or to) a data fIle, what programming

technique is used?

(a) FOR NEXT loop

Another useful technique deals with applications where data are to be added to
a fIle. Let's say a client number needs to be assigned to a new client or customer as
part of a new dataset. In a business environment, the new client number might be
assigned by data preparation personnel or the data entry person, relying on a list or on
their knowledge of what number was last used. However, if you let the computer do
it you can avoid "human error" commonly mislabeled "computer error." In the data

178 APPLE BASIC: DATA FILE PROGRAMMING

file and after any copy made for modification of the file, reserve the very first file
data position for the next available client number. Then when new clients are added
to the file, follow these steps.

1. Read the first data item (next available client number) ::: N.
2. Assign N to the next client.
3. Increment N by 1 (or perhaps by +2 or +5 or +10 to leave room for future client

data to be squeezed in) ::: Nl.
4. Then have the program place Nl as the first item in the temporary file.
5. Copy the rest of the old file to the temporary file.
6. Place the new client data in the temporary file.
7. Copy the temporary file (including Nl) back to the old file.
8. Repeat from step 1 for each new client.

Using the first part of a data file to hold information needed by the program,
followed by the regular data, is a broadly useful technique. For example, the contents
of an array could be placed at the head or beginning of a file, followed by the main
datasets that make up the file. This procedure prevents using a separate data file for
array data that are a part of the file. Just don't forget how the data file is set up, or
some rather horrific file input errors could ensue. Such information should be in­
cluded in the documentation prepared for each program and its corresponding data
files. We recommend including the dataset format in the introductory module of all
programs that deal with data files.

A LETTER-WRITING PROGRAM

The next sequential flle application example is a letter-writing program you may find
useful in your home or business. This application presents some new techniques and
reviews others.

Assume that you did the Chapter 4 Self-Test and have three form letters stored
in data files called LETTER 1 , LETTER2, and LETTER3. When these letters are
printed, you want the program to put the inside address and salutation in the letter
from data located in yet another sequential data flle called ADDRESS. The file
ADDRESS contains the names and addresses in the mailing list. The data have the
format shown below, with each dataset containing five items in fields within one string.

55
/1 20/21 40/41 50/12/53 57/
------------------ ------------------

name address city state zip code

The salutation for each letter will be:

Dear resident of (name of city)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 179

To print the letters on your line printer, be sure to turn the printer on by using
PR#l or PR#2. See your system's reference material for details if you are unfamiliar
with these instructions.

The program uses the CRT screen to enter which form letter (I, 2, or 3) you
want to send to each name on the mailing list. This program, then, uses four data
mes (only two data mes at a time), a line printer, and a CRT screen. If you don't
have a line printer, the program is easily adapted to have all the program output
displayed on a CRT screen. Some interesting techniques can be learned from this
example.

Follow these steps for this particular program.

(1) Open the ADDRESS data file.
(2) Use ONERR to check for end-of-file for ADDRESS and if found, close all files

and end the program.
(3) Input the address dataset and display the name.
(4) User entry option to select the form letter to this address (or to skip this

address), with data entry checks. If skipped, go to step (2).
(5) Open selected form letter file.
(6) Print inside heading address.
(7) Print salutation with addressee's last name.
(8) Use ONERR to check for end-of-file for letter file and if found,

(a) close that form letter file, and
(b) repeat from step (2).

(9) Input a dataset (one line of text from the letter file) and print it.
(10) Repeat steps (8) and (9).

Look at the introductory module of the program. The ADDRESS file is opened
and, as indicated in the line 290 remark, the LETTER files are user selected and
opened when selected.

100
110
120
130
140
150
160
170
180
190
ZOO
210

ZZO
230
140
ZSO
Z60
Z70
zeo
290
300
310
3Z0
330
340
HO
360
370

REM LETTER WRITING PROGRAM

REM VARIABLES USED
REM NS • FIELDED ADDRESS STRING
REM RS • USER RESPONSE
REH TS • LETTER FILE TEIT STRING
REH FS • FILE NAME
REH OS • CONTROL 0
REM FILES USED
REM SEQ.FILE NAHE: ADDRESS
REM DATASET FORMAT: ONE FIELDED STRING
REH SEQ.FILE NAHES: LETTERJ. LETTERZ. LETTERZ (NUHBER FOR FILE

NAME IS USER SELECTED)
REM DATASET FORHAT: ONE OR HORE LONG STRINGS

REM INITIALIZATION

LET DS. CHRS (4)
PRINT DS;"OPEN ADDRESS"

REM LETTER FILE IS USER SELECTED AND OPENED WHEN NEEDED

REM READ NAME/ADDRESS

ONERR GOTO 850
PRINT DS;"READ ADDRESS"
INPUT NS
PRINT OS

180 APPLE BASIC: DATA FILE PROGRAMMING

The program assigns the first name and address dataset string to variable N$ in
line 350. Notice that the program tests for the end of me marker before the first
datum is read from the me. Always include this ONERR strategy in your programs
dealing with sequential data meso

Now it's your turn. Have the program display the party's name on the CRT,
and then ask the user to select the letter to be printed to this party. Fill in lines
410,440, and 450.

(a)

(a)

380
390
400
410
4Z0

430
440
450
460

380
390
400
410
4Z0

430
440
450

460

REM DISPLAY NAME/LETTER REOUEST

HOME

PRINT "ENTER 1. Z. OR 3 TO SELECT LETTER1. LETTERZ. OR LETTER3 FOR
ABOVE ADRESSEE."
INPUT "ENTER '9' TO SKIP ABOVE ADDRESS: ";RS

REM DISPLAY NAME/LETTER REOUEST

HOME
PRINT LEFTS (N'.ZO): PRINT
PRINT "ENTER 1. Z, OR 3 TO SELECT LETTER1, LETTERZ. OR LETTER3 FOR
ABOVE ADDRESSEE."
INPUT "ENTER '9' TO SKIP ABOVE ADDRESS:";RS
IF R$ " "9" THEN 340
IF VAL (Rs) (1 OR VAL (RS)) 3 THEN PRINT "ERROR. LETTERS 1-3
ONLY.": COTO 4Z0

Examine the following routine for creating the name of an existing data me.

470
480
490
SOD
S10

REM INITIALIZE LETTER FILE

LET F$ = "LETTER" + R$
PRINT DS;"OPEN"FS

(a) If the user enters 2 in response to line 430, what me name is created and
assigned to F$?

(a) LETTER2 (Note the string concatenation in line 000)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 181

Write the inside address printing statements (to be printed by the line printer).
Fill in lines 560, 570, and 580.

(a)

(a)

SZO
530
540
550
HO
570
S80
590

SZO
530
Sto
550
S60
510
S80
SIO

REH PRINT INSIDE ADDRESS"

PRINT DS;"PRIl"
PRINT: PRINT: PRINT

REH PRINT INSIDE ADDRESS"

PRINT DS;"PRIl"
PRINT : PRINT : PRINT
PRINT LEFTS (NS,ZO)
PRINT HIDS (NS,Zl,ZO)

.PRINT HID. (NS,41,10), HID. (NS,SI,Z),RIGHTS (NS,S)

This next routine prints the salutation. Notice how the city name is extracted
from N$ in line 630.

600
610
6Z0
630
640

REH PRINT SALUTATION

PRINT : PRINT
PRINT "DEAR RESIDENT OF "; HIDS (HS,41,10)

(a) For practice, write a BASIC statement that would print this alternate salutation:
HELLO THERE ALL YOU FOLKS AT (street address)

(a) 630 PRINT "HELLO THERE ALL YOU FOLKS AT "; HI DS (HS, Zl , ZO)

The next routine to print the text of the letter is fairly straightforward. The
data input loop continues until that fIle data are exhausted. Assume that all line feeds
and carriage returns are included with the text in the data fIle.

182 APPLE BASIC: DATA FILE PROGRAMMING

650
660
&70
680
690
700
710
no
730
740
750
760
770
780
790
800

810

(a)

(b)

RE" PRINT TEXT OF LETTER

ONERR COTO 780
PRINT DS;"PR'O"
PRINT DS;"READ"F.
INPUT TS
PRINT DS
PRINT DS;"PRIl"
PRINT TS
COTO 880

RE" CLOSE LETTER FILE AND RETURN FOR NEIT ADDRESS

PRINT DS;"CLOSE"FS
IF PEEK (222) a 5 THEN 810
PRINT: PRINT CHR. (7);"UNUSUAL ERROR. PROCRA" TER"INATED.": PRINT
COTO 850
COTO 330

Give two reasons for closing the letter fIle in line 780.

Without checking back, what happens in the routine starting at line 330, which
is branched to from line 810 GOTO 330?

(a) Resets the pointer so that the letter can be used again, and only one OPEN
statement is needed for all letter fIles

(b) End-of-data tests and next name and address data set are read.

And now, you write the last routine necessary to properly complete this program
by completing line 850.

(a)

(a)

830
840
850
860

830
840
8SD
880

RE" CLOSE ADDRESS FILE

PRINT "JOB CO"PLETED"

RE" CLOSE ADDRESS FILE

PRINT DS; "CLOSE"
PRINT "JOB CO"PLETED"

100
llO
JlO
130
ltO
150
180
110
180
180
100
ZIO

no
130
240
250
ZlO
no
zeD
zeD
300
310
310
330
340
350
360
370
380
310
400
410
UO

430
440
450

480
470
480
480
500
510
520
530
540
550
580
570
580
580
600
610
no
630
640
650
680
670
680
680
700
710
720
730
740
750

SEQUENTIAL DATA FILE UTILITY PROGRAMS 183

Following is a complete listing of the letter-writing program.

REM

REM
RE"
REM
REM
RE"
RE"
RE"
REM
REM
RE"
NAME IS
REM

REM

LETTER WRITING PROGRAM

VARIABLES USED
N •• FIELDED ADDRESS STRING
R. • USER RESPONSE
T •• LETTER FILE TEIT STRING
FS "' FILl NAME
D. • CONTROL D

FILlS USED
SEQ.FILE NAME: ADDRESS
DATASET FORMAT: ONE FIELDED STRING
SEQ.FILE NAMES: LETTER1, LETTER2, LETTER2.(NUMSER FOR FILE

USER SELICTED)
DATASET FORMAT: ONE OR MORE LONG STRINGS

INITIALIZATION

LET D.. CHR. (4)
PRINT D'i"OPEN ADDRESS"

RE" LETTER FILE IS USER SELECTED AND OPENED WHEN NEEDED

RE" READ NA"E/ADDRESS

ONERR GOTO 850
PRINT D'i"READ ADDRESS"
INPUT N.
PRINT D.

REM DISPLAY NAME/LETTER REQUEST

HOME
PRINT LEFT. (N',20): PRINT
PRINT "ENTER 1. 2, OR 3 TO SELICT LITTER I , LETTERZ, OR LETTER3 FOR
ABOVE ADDRESSEE."
INPUT "ENTER '9' TO SlOP ABOVE ADDRESS: "iR.
IF R THEN 340
IF VAL (Rs) (I OR VAL (RS)) 3 THEN PRINT "ERROR. LITTERS 1-3
ONLY. ": GOTO U 0

REM INITIALIZE LETTER FILE

LET FS • "LETTER" + R.
PRINT D'i"OPEN"F.

REM PRINT INSIDE ADDRESS"

PRINT D'i"PRI1"
PRINT : PRINT : PRINT
PRINT LEFT. (N',20)
PRINT MID. (NS,21,20)
PRINT "ID' (NS,41,10), "IDS (NS,51,2), RIGHT. (N',5)

RE" PRINT SALUTATION

PRINT : PRINT
PRINT "DEAR RESIDENT OF "i "IDS (NS,41,10)

RE" PRINT TEIT OF LETTER

ONEBB GOTO 780
PRINT DSi"PRIO"
PRINT DSi"READ"F.
INPUT T.
PRINT DS
PRINT D'i"PRIJ"
PRINT T.
GOTO 680

continued on next page

184 APPLE BASIC: DATA FILE PROGRAMMING

760
770
780
790
800

810
SZO
830
840
850
860

REM CLOSE LETTER FILE AND RETURN FOR NEXT ADDRESS

PRINT DI;"CLOSE"FI
IF PEEK (222) s S THEN 810
PRINT: PRINT CHRI (7);"UNUSUAL ERROR. PROCRAM TERMINATED.": PRINT
COTO 850
COTO 330

REM CLOSE ADDRESS FILE

PRINT D,;"CLOSE"
PUNT "JOB COMPLETED"

Enter and RUN the program. If you are not using a printer, modify lines 540,
680, and 720. Be sure the disks with the ADDRESS and LETTER fIles are in the
disk drive.

CHAPTER 5 SELF-TEST

1. Write a program to make a copy of the ADDRESS file that you created in the
Chapter 4 Self-Test, problem 5, and that you used in the letter-writing program.
Name the copy fIle ADDRESS COPY. Include a routine to display the contents
of ADDRESS COPY to verify a successful copy.

100 REM
110 REM
lZO REM
130 REM
140 REM
ISO REM
160 REM
170 REM

COPY PROCRAM FOR 'ADDRESS'
VAIl JABLES USED

N. E CONCATENATED DATASET
RI • USER RESPONSE
DI • CONTROL D

FILES USED
SEO. FILE NAMES: ADDRESS. ADDRESS COPY
DATASET FORMAT: NI (BOTH FILES)

SEQUENTIAL DATA FILE UTILITY PROGRAMS 185

186 APPLE BASIC: DATA FILE PROGRAMMING

2a. Write a program that you can use to create a sequential data file whose items are
the titles of computer magazines. Use the program to create two separate flIes,
named MAGLISTl and MAGLIST2, using the titles given below. Maintain
alphabetical order of the data items within each file.

File One:
BYTE Magazine
Compute
Dr. Dobbs Journal
Kilobaud Microcomputing
Recreational computing

100 REM CREATE MAGAZINE
110
lZO REM VARIABLES USED

File Two:
Creative Computing
DATAMATION
Interface Age
ON Computing
Personal Compu ting

TITLE FILES

130 REM MI = MAGAZINE TITLE
140 REM FS = USER SELECTED FILE NAME
ISO REM DS = CONTROL D
180 REM FILES USED
170 REM SEQ. FILE NAMES: MAGLISTI. MAGLIST2

ENTERED)
(USER

180 REM DATASET FORMAT: MS (ONE STRING FOR TITLEl
190

SELECTED AND

SEQUENTIAL DATA FILE UTILITY PROGRAMS 187

188 APPLE BASIC: DATA FILE PROGRAMMING

2b. Write a program that can display the contents of the user-selected me of
magazine titles, including either MAGLISTl or MAGLIST2. Use the program
to verify the contents of the mes mentioned.

100 REM
110
lZO REM
130 REM
ltD REM
150 REM
110 REM
170 REM

180 REM
190

READ/DISPLAY MAGLIST FILES

VARIABLES USED
M •• MAGAZINE TITLE
F •• USER SELECTED FILE NAME
D. .. CONTROL D
FILES USED

SEQ. FILE NAMES: MAGLIST1. MAGLISTZ (USER SELECTED AND
ENTERED)
DATASET FORMAT: M. (ONE STRING FOR TITLE)

SEQUENTIAL DATA FILE UTIUTY PROGRAMS 189

2c. Write a program to merge into one alphabetically organized sequential data me
the contents of MAGLISTl and MAGLIST2. These two mes should have their
own data organized alphabetically within each me. Name the merged me
MAGLISTMERGE. Include a routine at the end of this program (similar to the
program from Chapter 5, Self-Test question 2b) to automatically display
MAGLISTMERGE to verify a successful and complete merge. Refer back to
this chapter for guidelines to organizing your program.

100 REM
llO
120 REM
130 REM
140 REM
150 REM
160 REM
170 REM
180
190 REM
200

SOLUTION TO CMS SELFTEST PROB 2C

VARIBLES USED
MIS, MZ$ = MAGAZINE TITLES
DS = CONTROL D

FILES USED
SEO. FILE NAMES:MAGLISTl, MAGLIST2, MAGLISTMERGE
DATASET FORMAT: M$ (ONE STRING DATASET, ALL FILES)

INITIALIZE

190 APPLE BASIC: DATA FILE PROGRAMMING

SEQUENTIAL DATA FILE unUTY PROGRAMS 191

3. Write a program that allows you to enter a list of household maintenance tasks
to be done into a sequential data me, and allows you to add to or delete from
the data me using a temporary me for the updates. Name the source me
WORK REMINDER and the temporary me TEMPFILE.

IDD REIt
11D
lZD REIt
13D HE"
ltD RE"
15D RE"
liD RE"
17D RE"
18D
190 RE"
200

SOLUTIOH CH5 SELFTEST PROB 3

VARIABLES USED
A ... WORK DESCRIPTIOH
R •• RESPOHSE VARIABLE
D. .. COHTROL D

FILES USED
SEO. FILE HA"ES: WORK REMIHDER. TEMPFILE

DATASET FORMATS: AS (OHE STRIHG. SA"E FOR BOTH FILES)

192 APPLE BASIC: DATA FILE PROGRAMMING

l.
100
110
no
130
140
1~0
110
170
180
liD
zoo
210
no
130
%40
ZSO
ZlO
Z70
zeD
ZlO
300
310
310
330
340
350
360
370
380
380
400
410
flO
430
440
450
480
470
480
490

SOD
510
510
530
540
550
SID "0 580
590
800
610

SEQUENTIAL DATA FILE UTIliTY PROGRAMS 193

Answer Key

REM COPY PROGRAM FOR 'ADDRESS'
REM VARIABLES USED
REM NS • CONCATENATED DATASET
REM RS • USER RESPONS~
REM DS". CONTROL D
REM FILES USED
REM SEQ. FILE NAMES: ADDRESS. ADDRESS COPY
REM DATASET FORMAT: NS (BOTH FILES)

REM INITIALIZE

HOME: PRINT
PRINT "FILE COPYING IN PROGRESS."
LET DS. CHR. (4)
PRINT DS;"OPEN ADDRESS COPY"
PRINT D';"DELETE ADDRESS COPY"
PRINT Dt"OPEN ADDRESS COPY"
PRINT DS;HOPEN ADDRESs"
ONERR GOTO 4Z0

REM COPYING ROUTINE

PRINT D';"READ ADDRESS"
INPUT NS
PRINT D.
PRINT D.;"WRITE ADDRESS COPY"
PRINT N.
PRINT D.
COTO no

REM CLOSE FILES

PRINT D';"CLOSE"
PRINT HFILE COPlED AND CLOSED."

REM DISPLAY OPTION

PRINT
INPUT "WOULD YOU LUE TO SEE THE COPIED FILE (Y OR Nl?";IU
IF Rf () "y· AND Rf <) "N" THEN PRINT CHIU (7);"TYPE 'Y' FOR YES
OR 'N' FOR NO.": PRINT: COTO 480
IF R •• "N" THEN 610
ONERR COTO 590
PRINT
PRINT D';"OPEN ADDRESS COpy"
PRINT DS; "READ ADDRESS COPY"
INPUT NI
PRINT D.
PRINT N.
PRINT: COTO 540
PRINT DI;"CLOSE"
PRINT "END OF COPIED FILE"
END

194 APPLE BASIC: DATA FILE PROGRAMMING

2a. 100
110
no
130
ltD
150
lIO
170

180
liD
ZOO
ZlO
220
Z30
Z40
ZSO
Z60
Z70
UO
ZSO
300
310

3%0
330
340
350
360
370
380
390
400
410
420
430
440

2b. 100
110
120
130
ltD
ISO
160
170

180
liD
200
210
220
230
Z40
250
160
270
280
290
300
310
3Z0
330
340
350
360
370
380
390
400
410

REM CREATE MAGAZINE TITLE FILES

REM VARIABLES USED
REM M'. MAGAZINE TITLE
REM F'. USER SELECTED FILE NAME
REM OS = CONTROL D
REM FILES USED
REM SEO. FILE NAMES; MAGLISTI. MAGLISTZ (USER SELECTED AND

ENTERED)
REM DATASET FORMAT; M' (ONE STRING FOR TITLE)

REM INITIALIZE

LET D' = CHR' (4)
INPUT "ENTER FILE NAME;";FS
PRINT D.; "OPEN"FS

REM DATA ENTRY ROUTINE

HOME
PRINT "ENTER '9' IF NO MORE TITLES."
INPUT "ENTER TITLE;";M.
IF LEN (M') = 0 THEN PRINT; PRINT CHRS (7); "PLEASE ENTER AS
REOUESTED."; PRINT; GOT0300
IF M. = "s" THEN 430

REM WRITE TO FILE ROUTINE

PRINT DS;"WRITE"FS
PRINT MS
PRINT DS
GOTO 280

REM CLOSE FILE

PRINT DS;"CLOSE"FS
PRINT "F ILE CLOSED"

REM READ/DISPLAY MAGLIST FILES

REM VARIABLES USED
REM MS = MAGAZINE TITLE
REM FS = USER SELECTED FILE NAME
REM OS = CONTROL D
REM FILES USED
REM SEO. FILE NAMES; MAGLISTI. MAGLIST2 (USER SELECTED AND

ENTERED)
REM DATASET FORMAT; MS (ONE STRING FOR TITLE)

REM INITIALIZE

LET D' CHR' (4)
INPUT "ENTER FILE NAME;";F'
PRINT DS;"OPEN"FS

REM READ/DISPLAY ROUTINE

PRINT
ONERR GOTO 380
PRINT D';"READ"F.
INPUT M'
PRINT DS
PRINT M'
GOTO 300

REM CLOSE F HE

IF PEEX (222) • 5 THEN 400
PRINT; PRINT CHU (7); "UNUSUAL ERROR. PROGRAM TERMINATED."
PRINT D';"CLOSE"F.
PRINT; PRINT "FILE CLOSED"

2c. 100
110
120
130
140
150
160
170
180
190
200
210
ZZO
230
240
250
280
270
280
290
300
310
lto
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
5Z0
530
540
550
560
570
580
590
600
610
6Z0
630
&to
650
660
670
880
690
700
710
710
730
740
750
780
770
78e
780
800
810

SEQUENTIAL DATA FILE UTILIty PROGRAMS 195

REM SOLUTION TO CHS SELFTEST PROB 2C

REM VARIBLES USED
REM HIS, MZS = HACAZINE TITLES
REM DS = CONTROL D
REM FILES USED
REM SEQ. FILE NAMES:MACLISTl, MACLIST2, MACLISTMERCE
REM DATASET FORMAT: HS (ONE STRJNC DATASET, ALL FILES)

REM INITIALIZE

HOME : PRINT : PRINT ",",ORKINC"
LET DS = eHU (4)
PRINT DS;"OPEN MACLISTl"
PRINT DS; "OPEN MACLISTZ"
PRINT D';"OPEN MACLISTMERCE"
PRINT DS;"DELETE HACLISTHERCE"
PRINT DS;"OPEN MACLISTMERCE"

REH READ DATASET FROM FILE 1

ONERR COTO 870
PR INT DS;" READ HACLI ST 1"
INPUT MlS
PRINT DS

REM READ DATASET FROM FILE 2

ONERR COTO 770
PRINT DS; "READ HACLISTZ"
INPUT MZ.
PRINT DS

REM COMPARE FOR ALPHABETICAL ORDER

IF MIS (M2S THEN 510
IF MIS) MZS THEN 620
COTO 510

REM WRITE FILE 1 ITEM TO MERCE, THEN READ FILE 1

PRINT DS;"WRITE MACLISTMERCE"
PRINT HIS
PRINT DS
ONERR COTO 880
PRINT DS;"READ MACLISTl"
INPUT HIS
PRINT DS
COTO 450

REM WRITE FILE 2 ITEM TO MERCE, THEN READ FILE 1

PRINT DS;"WRITE MACLISTHERCE"
PRINT "21
PRINT DS
ONERR COTO 770
PRINT DS; "READ HACLISTZ"
INPUT "21
PRINT DS
COTO 450

REM DUMP REMAININC FILE 1 TO MERCE

ONERR COTO 950
PRINT DS;"READ HACLISTl"
INPUT MlS
PRINT DS
PRINT DS; "WRITE MACLISTHERCE"
PRINT HIS
PRINT DS
COTO 730

continued on next page

196 APPLE BASIC: DATA FILE PROGRAMMING

SZO
830
UO
850
880
870
880
890
900
910
no
930
940
950
960
970
UO
990
1000
1010
1020
1030
1040
1050
1080
1070
1080
1090
1100

REM DUMP REMAININC FILE 2 TO MERCE

ONERR COTO 8S0
PRINT DS; "READ HACLIST2 H

INPUT M25
PRINT DS
PRINT DI;"WRITE MACLISTMERCE"
PRINT H25
PRINT DS
COTO 840

REM CLOSE FILES

PRINT D';"CLOSE MACLIST1"
PRINT DI;"CLOSE MACLIST2"
PRINT DS;"CLOSE MACLISTMERCE"

REM DISPLAY MERCED DATA

PRINT
ONERR COTO 1090
PRINT D';"OPEN MACLISTMERCE"
PRINT DS; "READ HACLISTHERCE"
INPUT M.
PRINT D.
PRINT MS
COTO 1040
PRINT D$;"CLOSE MACLISTHERCE"
PRINT: PRINT "FILE DISPLAYED AND CLOSED."

3. 100
110
lZO
130
ltD
ISO
liD
170
180
190
ZOO
210
2%0
230
240
ZSO
Z60
170
180
ZlO
300
310
no
330
340
3SO
3S0
370
380
380
400

410
420
430
440
450
460
470
480
480
500
SID
520

530
540
550
560

570
580
590
600
610
620
630
640
650
680
670
680
690
700
710

SEQUENTIAL DATA FILE UTIUTYPROGRAMS 197

REM SOLUTION CH5 SELFTEST PROB

REM VARIABLES USED
REM A •• WORK DESCRIPTION
REM R •• RESPONSE VARIABLE
REM D. • CONTROL D
REM FILES USED
REM SEQ. FILE NAMES: WORK REMINDER, TEMPFILE

REM DATASET FORMATS: A. (ONE STRINC, SAME FOR BOTH FILES)

REM INITIALIZE

LET D.. CHR. (4)
PRINT D';"OPEN WORK REMINDER"
PRINT D.; "OPEN TEMPFIU"
PRINT D';"CLOSE TEMPFlLE"
PRINT D';"OPEN TEMPFIU"

REM READ/DISPLAY FILE DATA

HOME
PRINT "TYPE 'D' TO DELETE AN ITEM"
PRINT "PRESS 'RETURN' TO DISPLAY NEXT ITEM."
ONERR COTO 540
PRINT D.;"READ WORI REMINDER"
INPUT A.
PRINT D.
PRINT A.
INPUT ;B.
IF B. () , .. , AND B. () "D" THEN PRINT CHR. (7);"PLEASE TYPE 'D'
TO DELETE THE ITEM DISPLAYED ABOVE, OR PRESS 'RETURN' TO DISPLAY THE
NEIT ITEM.": COTO 390
IF Sf • "D" THEN PRINT At;" REMOVED FROM LIST.": PRINT: COTO 350

REM ROUTINE TO RETAIN DATA ITEM

PRINT D.;"WRITE TEMPFILE"
PRINT AS
PRINT D.
COTO 350

REM ROUTINE TO ADD ITEMS TO FILE
IF PEEl (ZZZ) • 5 THEN .530
PRINT: PRINT CHR. (7);"UNUSUAL ERROR. PROCRAM TERMINATED. ": PRINT
COTO &60
HOME
HOME : PRINT
INPUT "DO YOU WISH TO ADD ANOTHER ITEM (Y OR N)P";R'
IF !If () "Y" AND !If () "N" THEN PRINT eHU (7);"PLEASE TYPE 'Y'
FOR YES OR 'N' FOR NO.": COTO SSO
iF Rf ,. "N" THEN &'10
PRINT
INPUT "ENTER NEW ITEM:" ;A'
PRINT DS; "WRITE TEMPFlLE"
PRINT At
PRINT D.
COTO 540

REM CLOSE FILES, RENAME TEMPFILE

PRINT D';"CLOSE TEMPFILE"
PRINT DS;"CLOSE WORI REMINDER"
PRINT D.;"DEUTE WORK REMINDER"
PRINT DS;"RENAME TEMPFILE,WORK REMINDER"
PRINT : PRINT "FILE CLOSED"

CHAPTER SIX

Random Access Data Files

Objectives: When you complete this chapter, you will be able to create, verify, copy, and
change random access disk data files. You will also be able to convert sequential files
to random access files. The random access file manipulating statements you will use
are similar to those used with sequential files and, therefore, should be familiar to you.

WHAT IS A RANDOM ACCESS FILE?

A random access data file is a disk file divided into sections called records. Each
record can contain one complete dataset. The typical random access data file format
of placing only one entire dataset into each record makes finding and changing data
easy. The structure also allows for fast access of data, whether located in the first or
last record in the file. These two strengths of random access files are the greatest
weakness of sequential data files.

Random access files use the same BASIC file manipulation statements as sequen­
tial files. The only difference in statement formats is the provision for the record
number and the length of the record. Random access files on your APPLE computer
use what is called a variable length record. This means that the programmer deter­
mines how long, in bytes, the records for the file will be. Once established, each
record in the file has the same length.

The length of the record is dependent on the amount of data in the dataset be­
ing written to the file. In Chapter 4 we discussed the storage requirements of data
that are placed in the file. With random access files it is imperative that you plan your
file structure based on storage requirements or you will experience file errors. To
review, the storage requirement for string information is one byte per character in the
string, plus one byte for "overhead." If you include a twenty-character name in each
dataset, then each name will occupy, at most, twenty-one bytes of storage. Numeric
information works the same way: one byte per character in the number, plus one
byte for "overhead." A numeric integer value of 1 through 999 takes a maximum of
four bytes in a random access file: three for the number, plus one for "overhead." A
value such as 542.45 has 6 characters (counting the decimal point), and will take seven
bytes, including "overhead."

198

RANDOM ACCESS DATA FILES 199

(a) In a random access file application that uses a twenty-character name, a twenty­
character address, and a twelve-character phone number string, how large will the

record need to be in bytes?

(a) 55 bytes

For each random access file, you will need to compute the record size based on
the dataset that is used for that file. It is important that you indicate the record size
in the introductory module of your program so that the record size is permanently
recorded somewhere. Once a file program is written, there is no instruction that will
help you fmd the record size. You should include the record size in the introductory
module of the program, and in any other documentation you prepare. This is as im­
portant as documenting the dataset formats; it should not be taken lightly.

The variable-size record available in APPLESOFT BASIC means that the use of
diskette space is very efficient. Other computers use a fixed-size record length of 256
bytes. In those systems, if the dataset only uses fifty bytes, the remaining 206 bytes
in the record are wasted, and much valuable disk storage space goes unused. This will
not be the case in your APPLESOFT programs where you will tailor the record size to
the dataset used in each random access file.

Random access files require more planning and more carefully designed systems
for organizing and using data. Once planned, random access files may require much
less programming to accomplish the same activities as sequential files. Random access
files are best used when the data in the files will change frequently. This might be the
case with a customer charge account file or when you have a large data base, such as a
credit information file that will be accessed in no particular order (randomly). For
large scale applications, you may find yourself designing systems that use both sequen­
tial files and some random access files.

(a) What are two advantages of random access files over sequential files?

(a) Fast access to all datasets (records), regardless of position within the file, and
ease of changing data within a particular dataset or record.

200 APPLE BASIC: DATA FILE PROGRAMMING

INITIALIZING RANDOM ACCESS FILES

For random access files, the OPEN statement serves the same purpose of opening the
file and assigning the buffer. In addition, the OPEN statement indicates the length of
the file records in bytes. The format of the OPEN statement for random access files
is as follows:

liO PRINT D.; "OPEN FILENAI"IE.LSO"

130 PRINT D.; .. OPEH .. F LSO ..

Notice the unusual punctuation in line 130 above. The comma is an integral and
essential part of the OPEN statement. Therefore, it must be included inside the quota­
tion marks, as shown in lines 120 and 130. You will NOT get an error message if you
use an incorrect format in the OPEN statement. However, you will not open the file
the way you intended either, so enter these statements carefully. Notice how a file
name assigned to a string variable (F$) is outside the quotations that enclose "OPEN"
and ",LSO" in line 130.

(a) What is the record length in the OPEN statements above? ________ _

(a) Fifty bytes

SIMPLE READ AND WRITE OPERATIONS TO RANDOM ACCESS FILES

Our first random access file application is to create an inventory of repair parts. The
dataset includes a six-digit product number entered as a string, a product description of
twenty characters, and a numeric quantity that will be no larger than 999, with no
fractional amount.

(a) What is the record size needed for this application? __________ _

(b) Here is the introductory module. Complete the OPEN statement by filling in
line 310.

z ;
100
110
1Z0
130
140
150
180
170
180
190
ZOO
ZlO
ZZO
Z30
itO
ZSO
ZlO
no
Z80
290
300
310
320

RANDOM ACCESS DATA FILES 201

REM INVENTORY RANDOM FILE

REM VARIABLES USED
REM N •• PRODUCT NUMBER (6)
REM P. = PROD. DESCRIPTION (ZO)
REM Q .QUANTITY ((=999)
REM D. .. CONTROL D
REK R1 • RECORD COUNT
REM R •• USER RESPONSE

REK FILES USED
REK RANDOK ACCESS FILE NAKE: INVEN
REM RECORD SIZE: 3Z BYTES
REK DATASET FORKAT:NS,P',Q

REM INITIALIZE

LET R1 .. 1
LET D.. CHR. (4)
PRINT D'i"OPEN INVEN"
PRINT DSi"DELETE INVEN"

(a) 32 bytes. six + one for the product number, twenty + one for the description
and three + one for the quantity.

(b) 310 PRINT D. i "OPEN INVEN,L3Z"

In line 270 in problem (b) we initialized the variable Rl to one (1). This vari­
able is used to keep track of the me record count in this program. Dataset number
one is in record number one, dataset number two is in record number two, etc.

Here is the data entry module for this application. We have left out the data
entry tests so that the structure of the program is more clearly revealed in the program
listings. By now, you know how to design good data entry error traps, and your com­
pleted programs should include them. You will see how difficult accurate data entry
can be if you use the "bare bones" program listed below.

330 REM DATA ENTRY MODULE
340
3S0 HOME
360 INPUT "ENTER PRODUCT NUMBER (6) :" iNS
370 REK DATA ENTRY TESTS
380 INPUT "ENTER PROD. DESCRIPT. (ZO CHAR):"iP.
390 REK DATA ENTRY TESTS
400 INPUT "ENTER QUANTITY:"iQ
410 REK DATA ENTRY TESTS
420

The me is OPEN; the data are entered. The next operation is to print the data
to the me in the first record. The me WRITE instruction for random access mes is
similar to the sequential me instruction, but now also includes the record number of
the random access record to be printed:

202 APPLE BASIC: DATA FILE PROGRAMMING

240 PRINT DS;"WRITE FILENAME,RSI"

Z50 PRINT DS;"WRITE"FS",R"RI

In line 240 above, the WRITE statement moves the file pointer to record num­
ber 51, where the next PRINT statements will write the information to the file.
Notice in line 250 how all variables are placed outside. of the quotation marks. Notice,
too, the similarity in format to the random access OPEN statement, where the L, for
length of file, and the comma that precedes it are always within quotation marks. In
random access file READ and WRITE statements, the R for Record and the comma
that precedes it must be enclosed in quotation marks.

(a) What record will be printed by the WRITE statement in line 250 above? __ _

(a) Whatever record value is assigned to variable RI. (In our example program, the
record number is 1, for the first dataset.)

The PRINT statements for random access files use the same format as the state­
ments used with sequential files. You must turn the WRITE operation on, PRINT the
dataset to the fIle, and turn the WRITE operation ot!
(a) Here is the next part of our inventory program. Fill in the blank lines at 450,

460, and 470.

430
440
4S0
480
470
480
.eo
SOD

SID
520
S30
:540
SSO
580
570

(b)

REM PRINT TO FILE

INPUT "MORE ENTRIES?" ;RS
IF LEFTS (RS,I) () "Y" AND LEFTS (RS,I) () "N" THEN PRINT:
PRINT CHRS (7);"TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT: COTO 490
I F LEFTS (R S , I) .. "N" THEN 6 0 0

REM INCREASE RECORD COUNT

LET RI = RI + I
COTO 350

What is the purpose of line 550? ________________ _

(a) 430
440
450
460
470
480
490
500

510
520
530
540
550
560

--570

HEM PHINT TO FILE

PHINT DS;"WHITE INVEN, H";Hl
PHINT NS: PHINT PS; PHINT Q
PHINT DS

INPUT "MORE EHTHIES?";HS

RANDOM ACCESS DATA ALES 203

IF LEFTS (HS,l) () "Y" AND LEFTS (HS,l) () "N" THEN PHINT;
PHINT . CHHS (7);''TYPE 'Y' FOH YES OH 'N' FOH NO,"; PHINT : COTO 490
IF LEFTS (HS,l) " "N" THEN 600

HEM INCHEASE HECOHD COUNT

LET Hl Hl + 1
COTO 350

(b) Increments the record number by one so that if another dataset is entered, it will
be recorded in the next random access record.

The final program module is the file close routine. The format of the random
access CLOSE statement is the same as that used with sequential files.

580
590
600
610
no

HEM CLOSE FILE

PHINT DS; "CLOSE INVEN"
PHINT "FILE CLOSED"
END

204 APPLE BASIC: DATA FILE PROGRAMMING

tion.

100
110
HO
130
aD
150
180
170
180
110
ZOO
210
no
230
%40
Z50
ZlO
210
zao
zeD
300
310
3%0
330
340
350
380
370
380
380
400
410
4%0
430
.. 0
450
480
470
480
490
500

510
520
530
540
550
560
570
5SD
590
SOD
810
620

Here is the complete listing of our random access file printing inventory applica-

RE" INVENTORY RANDO" FILE

RE" VARIABLES USED
RE" NI • PRODUCT NU"BER (8)
RE" PI • PROD. DESCRIPTION (20)
RE" Q "QUANTITY «.999)
RE" 01 • CONTROL 0
RE" Rl • RECORD COUNT
RE" RI • USER RESPONSE

RE" FILES USED
RE" RANDO" ACCESS FILE NA"E: INVEN
RE" RECORD SIZE: 32 BYTES
RE" DATASET FOR"AT:NI,PS,Q

RE" INITIALIZE

LET Rl " 1
LET 01" CHRI (4)
PRINT 0'; "OP.EN INVEN"
PRINT 01; "DELETE INVEN"
PRINT 0'; "OPEN INVEN, L32"

RE" DATA ENTRY "ODULE

HO"E
INPUT
REM
INPUT
REM
INPUT
REM

"ENTER PRODUCT NU"BER (6):";N'
DATA ENTRY TESTS

"ENTER PROD. DESCRIPT.(2D CHAR):";P'
DATA ENTRY TESTS

"ENTER QUANTITY:";Q
DATA ENTRY TESTS

RE" PRINT TO FILE

PRINT D,;"IJRJTE INVEN, R";Rl
PRINT NI: PRINT P,: PRINT Q
PRINT OS

INPUT ""ORE ENTRIES'" ;R'
IF LEFT. (R',ll () "Y" AND LEFT. (R',ll () "N" THEN PRINT:
PRINT CHR' (7);"TYPE 'Y' FOR YES OR 'N' FOR NO.": PRINT: COTO 490
IF LEFT. (R',l) " "N" THEN 600

RE" INCREASE RECORD COUNT

LET Rl " RI + I
COTO 350

RE" CLOSE FILE

PRINT D.; "CLOSE INVEN"
PRINT "FILE CLOSED"
END

Many uses of random access files require that the BASIC program accessing the
file know where the file ends or how many datasets (records) exist in the file. As no
system command is available in APPLESOFT to count or display the number of
records in a file, your programs to create and use random access files should provide a
counting variable to keep track of the total number of records that are used in the file.
This process is used often in programming applications.

The numbering of random access file records actually begins at zero, so the very
first record in a random access file is record zero (RO). This record is sometimes used
to keep "housekeeping" information. One item of data that could be saved in RO is

RANDOM ACCESS DATA FILES 205

the record number for the last filled record in the file. Then, when you want to add
data to the file, you would follow these steps:

1. OPEN the file.
2. READ RO to find the record number for the last filled record.
3. Increment the last record by one (1).
4. Enter data.
5. PRINT to the file.
6. Ask for more entries.
6a. If yes, increment the record counter by one and return for more data.
6b. If no, PRINT the current record counter value to RO, so that the record number

for the last filled record is available the next time it is needed.
7. CLOSE the file.

When creating a random access file, a counting statement such as LET Rl = Rl
+ 1 can be used. The placement of the counting statement within a program is crucial
for counting accuracy. Only datasets actually entered must be counted, so the count­
ing statement is usually after the dataset PRINT statement. In this way, if no more
data are forthcoming, the record number will not have already been increased.

Notice where the record counting statement is placed in the previous program.
The logic in this case is to increase the record counting variable by one after the user
responds "yes" to the question, MORE ENTRIES?

In the example program to create the INVEN file, no provision is made to store
the record count for the future reference or use by BASIC programs that access the
file. Our strategy is to store the record count in RO, the first record in the file. This
record is accessed by using RO in a READ or WRITE statement.

470 PRINT O';"REAO FILENAME, RO"

980 PRINT O';"WRITE FILENAME, RO"

Caution: Don't accidentally type the letter 0 (oh) for the number zero.

(a) Modify the program that creates the INVEN file so that the total number of
records containing data (record count) is placed in RO. This routine should be
included in the Close File Module.

206 APPLE BASIC: DATA FILE PROGRAMMING

(a) 580
590
800
810
no
830
&to
850

REM CLOSE FILE

PRINT D.; "WRITE INVEN, Ro"
PRINT HI
PRINT D.
PRINT D.;" CLOSE INVEN"
PRINT "FILE CLOSED N

END

Enter and RUN the modified program. Create the file INVEN for use in this
section, as well as later programs.

Now let's write a separate program to display the contents of this random access
file. Here is the introductory module and initialization module.

100
110
1%0
130
140
150
180
170
180
180
ZOO
%10
ZZO
130
UO
Z50
UO
Z70
zeD
ZID

REM INVEN READ/PRINT

REM VARIABLES USED
RE" N •• PRODUCT NU"BER (8)
REM P •• PROD. DESCRIPTION (ZO)
REM Q .QUANTITY «.IIS)
REM D. • CONTROL D
RE" Ri • RECORD •

REM FILES USED
RE" R.A.FILE NAME: INVEN
REM RECORD LENCTH: 3Z BYTES
REM DATASET FORMAT:N',P',Q

REM INITIALIZE

LET RI = 1
LET D.. CHR. (4)
PRINT D';"OPEN INVEN, L3Z"

(a) What is the purpose of line 260 above?

(b) What does the L32 in line 280 represent? _____________ _

(a) Assigns the number one (1) to RI to initialize the record counting variable
(b) The record length of thirty-two bytes

The random access READ statement follows the same format as the WRITE state­
ment, in that it requires a record number be included in the statement.

%50 PRINT DS;"READ FlLENAME,R"Rl

RANOOM ACCESS DATA FILES 207

Here is the fIle read and report printing module of the inventory reading pro­
gram.

300
310
3Z0
330
340
350
360
370
380
380
400
410
no
430
440
450
450
470

REM PRINT HEADING

PRINT "PROD I"; TAB(10);"PROD DESCR"; TAB(ZS);"OUANTITY"

REM FILE READ/PRINT

OHERR GOTO 460
PRINT D';"READ INVEN,R";RI
IHPUT H. ,P' ,0
PRINT D.
PRINT H.; TAB(10);P'; TAB! 31);0
LET Rl = RI + 1
GOTO 370

REM CLOSE FILES

PRINT D';"CLOSE"
EHD

The INPUT statement at line 380 has the same format as that used with sequen­
tial fIles. The ONERR statement at line 360 works the same way as with sequential
fIles. The only real difference between a sequential fIle program and this one is the
READ statement format and the addition of line 410.

(a) What is the purpose of line 410 above?

(a) Increments the record number variable by one so that the next record in the fIle
will be read.

Next, let's make use of the record count, instead of depending on ONERR to
determine the end of the fIle. You can do this using a FOR NEXT loop to read only
the number of datasets (records) that contain information. Notice how important this
makes the accuracy of the record count. An "extra" count will lead to an OUT OF
DATA error message if the program tries to read a nonexistent record. On the other
hand, if the count is one short, one dataset will be left inaccessible.

First the record count is accessed and assigned to variable Rl.

310 PRINT Df; "READ IHVEH,RO"
3Z0 INPUT RI
330 PRIHT Df

Next, the value of Rl is used to tell the FOR NEXT loop how many datasets to
read, and the FOR NEXT loop control variable X is used to count off the records.

208 APPLE BASIC: DATA FILE PROGRAMMING

340 FOR X ~ 1 TO R1
350 PRINT DS;"READ INVEN,R"X
360 INPUT NS,PS,Q
370 PRINT DS
380 PRINT NI; TAB(10);PS; TABC 31);Q
390 NEXT X

(a) In which line is the record number to INPUT determined?

(b) What is the record number of the first dataset accessed? ________ _

(c) How many records will have been accessed when the FOR NEXT loop finishes

execution? __________ _

(a) line 350 (value of FOR NEXT loop control variable, X)
(b) one
(c) equal to value of Rl

Below is another version of the program. Enter the program (and the first ver­
sion if you wish) and display the contents of the INVEN file on your screen.

100
110
HO
130
140
150
160
170
180
190
ZOO
%10
ZZO
HO
240
250
260
270
280
HO
300
310
no
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

REM INVEN READ/PRINT

REM VARIABLES USED
REM NS E PRODUCT NUMBER (6)
REM PS = PROD. DESCRIPTION (20)
REM Q =QUANTITY C(=999)
REM DS = CONTROL D
REM R1 = RECORD •

REM FILES USED
REM R.A.FILE NAME: INVEN
REM RECORD LENGTH: 32 BYTES
REH DATASET FORHAT:NI,PI,Q

REM INITIALIZE

LET DS = CHRS (4)
PRINT DS; "OPEN INVEN, LH"

REM PRINT HEADING

PRINT "PROD ."; TAB(10); "PROD DESCR"; TABC Z6); "QUANTITY": PRINT

REM FILE READ/PRINT

PR INT DS;" READ INVEN, RO"
INPUT Rl
PRINT DS
FOR I = 1 TO Rl
PRINT DS; "READ INVEN,R"X
INPUT NS,PI,Q
PRINT DS
PRINT NS; TAB(10);PS; TAB(31);Q
NEXT X

REM CLOSE FILES

PRINT DS;"CLOSE"
END

RANOOM ACCESS DATA FILES 209

ADDING DATA TO THE END OF A RANDOM ACCESS FILE

In the next application we want a program to add new data sets to an already existing
random access file. To make it easy, we will add data to.the current end of an exist­
ing file, rather than insert new records into the middle of the file.

First, create the random access file to which you will later be asked to add or
change data. Name the file PHONE. The program should keep track of the number
of records used in the file and place this information in record RO before closing the
file. The dataset has the following items entered as strings:

customer number (five characters)
customer name (twenty-character maximum)
customer phone number (eight characters, e.g., 999-9999)

Here is the introductory module. You complete the program.

(a) lDD REII CREATE FILE HAilED 'PHOHE'
11D
UD REII VARlABLES USED
13D REII NS • CUSTOMER. (5 CHAR.)
ltD REII CS • CUST. NAME (ZD CHAR. MAl.)
15D REM PS • PHONE NUMBER (111-1111 OR 8 CHAR.)
18D REK RS • USER RESOHSE
17D REM DS • CONTROL D
18D REII FILE USED
JlD REII R-A FILE NAIIE: PHONE
ZDD REII RECORD LEHCTH: 36 BYTES
ZIG REII DATASET FORIIAT: NS,CS,PS
ZZD

210 APPLE BASIC: DATA FILE PROGRAMMING

(a) 100
110
HO
130
ltD
150
180
170
180
180
200
UO
UO
UO
%40
%SO
260
%70
zao
ZlO
300
310
HO
330
340
350
360
370
380
390
400
flO
UO
430
440
4S0
460
.70
480
490
SOD
510
SZO
530
540
550

RANDOM ACCESS DATA FILES 211

REM CREATE FILE NAMED 'PHONE'

REM VARIABLES USED
REM N •• CUSTOMER. (S CHAR.)
REM C •• CUST. NAME (ZO CHAR. MAl.)
REM P' • PHONE NUMBER (111-1111 OR 8 CHAR.)
REM R •• USER RESONSE
REM D. • CONTROL D
REM FILE USED
REM R-A FILE NAME: PHONE
REM RECORD LENGTH: 38 BYTES
REM DATASET FORMAT: N.,C.,P.

REM INITIALIZE

LET D.. CHR. (t)
PRINT D';"OPEN PHONE, L38"
LET RI • 0

REM DATA ENTRY MODULE

HOME
INPUT "ENTER 'STOP' OR CUSTOMER NUMBER (5 CHAR.)";N'
IF N •• "STOP" THEN 520
LET RI • RI + I

REM DATA ENTRY TESTS

INPUT "ENTER CUSTOMER NAME (ZO CHAR. MAl.):";C'
REM DATA ENTRY TESTS
INPUT "ENTER PHONE NUMBER:";P.
REM DATA ENTRY TESTS

REM VRITE TO FILE

PRINT D.; "VRITE PHONE,R" ;RI
PRINT N.: PRINT C.: PRINT PS
PRINT D.
GOTO 3%0

REM CLOSE FILE

PRINT D.; "VRITE PHONE,RO"
PRINT Rl
PRINT D';"CLOSE"
PRINT: PRINT "FILE CLOSED"

Next, write a companion program that will display the contents of PHONE, using
the FOR NEXT loop technique to cycle through the records in the file.

(a)

212 APPLE BASIC: DATA FILE PROGRAMMING

RANDOM ACCESS DATA FILES 213

(a) REM CREATE FILE NAHED 'PHONE'

REM VARIABLES USED
REM NS a CUSTOMER. (5 CHAR.)

IDD
110
lZD
130
140
150
180
170
180
liD
10D
ZIO
UD
UD
140
UD
ZlO
no
zao
110
30D
31D
no
33D
340
350
38D
370
38D
380
40D
410
no
430
440
450
480
47D
flD

REM CS • CUST. NAME (ZD CHAR. MAl.)
REM PS • PHONE NUMBER (111-1111 OR 8 CHAR.)
REM RS • USER RESONSE
REM DS • CONTROL D
REM FILE USED
REM R-A FILE NAME; PHONE
REM RECORD LENCTH; 38 BYTES
REM DATASET FORMAT; NS,CS,PS

REM INITIALIZE

LET DS. CHRS (4)
PRINT DI;MOPEN PHONE, L38"

REM READ RECORD D

HOME
PRINT D';"READ PHONE, RD"
INPUT RI
PRINT D.
IF RI • D THEN PRINT "FILE EMPTY"; COTO 47D

REM READ/DISPLAY ROUTINE

FOR I • I TO RI
PRINT DS;"READ PHONE,RH;I
INPUT NS,CS,P'
PRINT DS
PRINT N.;C.;P.
NEIT I

REM CLOSE FILE

PRINT D.; "CLOSE"
PRINT; PRINT "FILE DISPLAYED AND CLOSED."

Our random access file is a customer list entered by customer number. The data­
set includes the customer number, name, and phone number. To add new datasets to
the file we must follow these steps:

1. Initialize and OPEN the file.
2. Ascertain the number of records in the file containing information.
3. Enter new data.
4. WRITE new data to the file.
S. Increment record count.
6. Return to step 3.
7. Write the new record count to RO and CLOSE the file.

214 APPLE BASIC: DATA FILE PROGRAMMING

Here is the introductory module and initialization module. (Nothing really new
here!)

100
110
120
130
140
ISO
160
170
l80
19"0
200
210
220
230
140
250
280
270
280

REM ADDING TO R-A FILE NAMED PHONE

REM VARIABLES USED
REM NS ~ CUST. NUMBER (5)
REM CS • CUST. NAME (20)
REM PS • PHONE NUMBER (10)
REM Rl • RECORD COUNTER
REM DS • CONTROL 0

REM FILES USED
REM RANDOM ACCESS FILE NAME: PHONE
REM RECORD LENCTH: 36 BYTES
REM DATASET FORHAT: NS,CS,PS

REM INITIALIZATION

LET DS = CHRS (4)
PRINT DS;"OPEN PHONE,L3S"

The next program module ascertains the end of me location by reading record
RO. Complete lines 310, 320, and 330.

(a)

(a)

290 REM
300

LOCATE LAST FULL RECORD

310
no
330
ltD PRINT
3SD

PRINT "RECORD COUNT: ";RJ: PRINT

29C
300
310
320
330
340
350

REM LOCATE LAST FULL RECORD

PRINT DS;"READ PHONE,RO"
INPUT RI
PRINT DS
PRINT: PRINT "RECORD COUNT: n;Rl: PRINT

RANDOM ACCESS DATA FILES 215

Next comes the data entry module and the file WRITE module. Fill in lines
480,490,500, and 540 below. (You may also wish to construct the data entry
checks now.)

(a)

(a)

360
370
380
390
.00
410
UO
.30
UO
.50
UO
.,0
UO
UO
SOD

REI'!

LET Rl
INPUT
REM
INPUT
REI'!
INPUT
REM

REM

DATA ENTRY MODULE

= Rl + 1
"ENTER CUST . • :" ;NS

DATA ENTRY TESTS
"ENTER CUST. NAI'!E:";CS

DATA ENTRY TEST
"ENTER PHONE .:"; PS

DATA ENTRY TESTS

WRITE TO FILE ROUTINE

SID INPUT "MORE ENTRIES?";IIS
SZO IF LEFTS (RS,1) () "Y" AND LEFTS (RS,l) () "N" THEN PRINT:

PRINT CHRS (7);"ENTER 'Y' FOR YES OR 'N' FOR NO": PRINT: GOTO SID
530 IF LEFTS (RS,l) " "N" THEN 580
HO
550

380
370
380
390
.00
410
UO
430
•• 0
4 SO
460
470
UO
UO
SOD
510
SZO

530
540
550

REM DATA ENTRY MODULE

LET Rl = Rl + 1
INPUT "ENTER CUST .• :";NS
REM DATA ENTRY TESTS
INPUT "ENTER CUST. NAHE:";CS
REM DATA ENTRY TEST
INPUT "ENTER PHONE I:";PS
REM DATA ENTRY TESTS

: REM WRITE TO FILE ROUTINE

PRINT DS;"WRITE PHONE, R";1ll
PRINT NS: PRINT CS: PRINT PS
PRINT OS
INPUT "HORE ENTRIES?";IIS
IF LEFTS (RS,l) () "Y" AND LEFTS (11$,1) () "N" THEN PRINT:
PRINT CHR. (7);"ENTER 'Y' FOR YES OR 'N' FOR NO": PRINT: GOTO 510
IF LEFTS (RS, 1) = "N" THEN 580
GOTO 380

The final program segment shown below closes the file and posts the record
count to record zero.

560 REI'! CLOSE FILE
570
580 PRINT DS; "WRITE PHONE, RO"
590 PRINT Rl
BOO PRINT OS
610 PRINT DS;"CLOSE PHONE"
6Z0 PRINT : PRINT "FILE CLOSED"
630 PRINT : PRINT "NEW RECORD COUNT: "iHl

216 APPLE BASIC: DATA FILE PROGRAMMING

Here is the complete listing of the program to add data to an existing random
access file program

100
110
120
130
140
150
160
170
180
190
200
ZIO
120
230
240
250
UO
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
no
430
440
450
460
470
480
490
500
SID
SZO

530
S40
550
560
570
580
590
600
610
620
630

REM ADDING TO R-A FILE NAMED PHONE

REM VARIABLES USED
REM NS z CUST. NUMBER CS)
REM CS = CUST. NAME (20)
REM PS = PHONE NUMBER CI0)
REM Rl • RECORD COUNTER
REM DS • CONTROL D

REM FILES USED
REM RANDOM ACCESS FILE NAME: PHONE
REM RECORD LENGTH: 36 BYTES
REM DATASET FORMAT: NS,C',PS

REM INITIALIZATION

LET DS. CHR. (4)
PRINT DS;"OPEN PHONE,L3B"

REM LOCATE LAST FULL RECORD

PRINT D';"READ PHONE,RO"
INPUT RI
PRINT D.
PRINT PRINT "RECORD COUNT: ";Rl: PRINT

REM DATA ENTRY MODULE

LET Rl • JIl + 1
INPUT "ENTER CUST. I:";NS
REM DATA ENTRY TESTS
INPUT "ENTER CUST. NAME:";CS
REM DATA ENTRY TEST
INPUT "ENTER PHONE I:";PS
REM DATA ENTRY TESTS

: REM YRITE TO FILE ROUTINE

PRINT D.;"YRITE PHONE, R";JIl
PRINT NS: PRINT CS: PRINT PS
PRINT D.
INPUT "MORE ENTRIES?";R'
IF LEFTS (RS,l) () "Y" AND LEFTS CRS,l) () "N" THEN PRINT:
PRINT CHRS (7);"ENTER 'Y' FOR YES OR 'N' FOR NO"· PRINT: GOTO SID
IF LEFT. (RS,l) • "N" THEN 580
GOTO 380

REM CLOSE FILE

PRINT D.;"YRITE PHONE, RO"
PRINT RI
PRINT DS
PRINT D';"CLOSE PHONE"
PRINT: PRINT "FILE CLOSED"
PRINT: PRINT "NEY RECORD COUNT: ";Rl

Enter the program and add data to PHONE. Then use the previously written
program that reads and displays PHONE to verify that the additions are now in the
file.

RANDOM ACCESS FILE UTILITY PROGRAMS

Having covered the essentials of using random access files, let's write two me utility
programs to further your understanding and provide models for similar programs you

RANDOM ACCESS DATA FILES 217

can write. The first program simply copies the data from one random access file into
another random access file, record for record. The data are both alphabetic and
numeric.

Write a program to create a random access file named MASTER. This file will
be used later in this section by a file utility program that makes a copy of a random
access file. You can decide what information corresponds to the variables listed in the
introductory module given below. Use your imagination!

(a) 100 REM CREATE FILE NAMED MASTER
110
lZO REM VARIABLES USED
l30 REH GS=ZO CHAR. HAX.
140 REM S=8 CHAR. HAX.
150 REH 0=4 CHAR. HAX.
160 REH 1'15=30 CHAR. HAX.
170 REH Rl=RECORD NUHBER
180 REM DhCONTROL D
190
ZOO REM FILES USED
ZlO REH R-A SOURCE FILE NAME: HASTER
ZlS REM RECORD LENGTH: && BYTES
Z16 REH DATASET FORHAT: GS,S,O,HS
ZlO

218 APPLE BASIC: DATA FILE PROGRAMMING

(a) 230
240
250
260
270
zao
ZlO
300
310
no
330
340
HO
380
370
380
390
400
410
420
430
440
4S0
460
47D
480
4"
486
487
490
SOD
SID
520
S30

RANDOM ACCESS DATA FILES 219

REM IHITIAlIZE

LET Df" CHU (4)
LET Rl • 1
PRIHT DS;"OPEH MASTER.l66"

REM DATA EHTRY ROUTIHE

IHPUT
REM
IHPUT
REM
IHPUT
REM
IHPUT
REM

"EHTER STRIHG DATA {20 CHAR.MAI.):";GS
DATA ENTRY TESTS GO HERE

"EHTER HUMERI C VALUE (8 CHAR. MAl.) : "; S
DATA ENTRY TESTS GO HERE

"EHTER NUMERIC VALUE {4 CHAR.MAI.):";O
DATA ENTRY TESTS GO HERE

"EHTER STRING DATA {3D CHAR.MAI.):";MS
DATA ENTRY TESTS GO HERE

REM WRITE DATASET TO FILE

PRIHT D';"WRITE MASTER.R"RI
PRINT GS: PRINT S: PRINT 0: PRINT KS
PRIHT DS
IHPUT "MORE DATA TO EHTER{Y OR H)?";RS
REM USER RESPONSE DATA ENTRY TESTS GO HERE
IF RS " "H" THEH SOD
lET Rl z Rl t 1
HOME
GOTO 320
REM CLOSE FILE
PRINT DS;"WRITE KASTER.RO"
PRIHT Rl
PRINT DS
PRIHT DS;"ClOSE"

Now write a companion program to read and display the contents of MASTER.
Allow the user to enter the me name. Include a "PRESS RETURN TO DISPLAY
NEXT DATASET" routine inside the read/display loop.

220 APPLE BASIC: DATA FILE PROGRAMMING

(a) 100 REM
110
UO REM
130 REM
140 REM
1~0 REM
160 REM
170 REM
180 REM
180 REM
lOO REM
%10 REH
lZO REM
130 REH
ao REM
250

READ AND DISPLAY MASTER FILE

VARIABLES USED
C' • 30 CHAR. HAl.
S • 8 CHAR. HAl.
o • 4 CHAR. HAl.
H •• SO CHAR. HAl.
D. • CONTROL 0
Rl • RECORD COUNTER

R •• USER RESPONSE VARIABLE
F •• USER ENTERED FILE NAHE (HASTER)

FILES USED
R-A FILE NAHE: HASTER
DATASET FORHAT: C',S,O,H'
RECORD LENCTH: 66

RANDOM ACCESS DATA FILES 221

222 APPLE BASIC: DATA FILE PROGRAMMING

(a)
REM INITIALIZE

LET D.. CHR. (4)
INPUT MENTER NAME OF FILE:";F'
REM DATA ENTRY TESTS CO HERE
PRINT
PRINT D.;"OPENUFS",L&&"

REM DATA ENTRY MODULE

PRINT D';"READ"F''',RD''
INPUT Rl
PRINT D.
FOR I .. 1 TO Rl
PRINT DS;"RE'AD"FS",R"I
INPUT C',S,O,M.
PRINT DS

Z50
UO
270
:no
ZlO
300
310
320
330
340
350
360
370
380
390
400
410
taO
430
440
4S0
460
470
480
480
SOD
SID
SZO

PRINT CS: PRINT S: PRINT 0: PRINT M'
PRINT: INPUT "PRESS 'RETURN' TO DISPLAY
HOME

NEIT DATASET"; R S: PR INT

NEIT I

REM CLOSE FILE

PRINT DS;"CLOSE"
PRINT : PRINT "FILE DISPLAYED AND CLOSED"
END

Follow these steps to create a random access file copying program:

1. OPEN the source file.
2. OPEN and clear the copy file.
3. Determine record count.
4. READ source file record.
S. WRITE copy file.
6. Return to step 4 until end of file.
7. CLOSE the files after posting record count in copy file.

We will now help you write a program that will make a copy of MASTER. The
copy file is named STORE 1. Here is the introductory module:

100 REM PROCRAM TO MAXE A COPY OF R-A FILE 'MASTER'
110
HO REM VARIABLES USED
130 REK CS • (20)
140 REM S .. (8)
150 REK 0 c (4)

160 REK. K. • (3D)
170 REK Rl RECORD COUNTER
180 REM D. CONTROL D
liD
ZOO REM FILES USED
210 REK R-A SOURCE FILE NAKE: KASTER
UO REK R-A COPY FILE NAME: STORE!
zao REK RECORD LENCTH: 86 BYTES
240 REM DATASET FORKAT: cS,S,a,MS
ZSD

Notice that we have only indicated the length of the variables; what data they
represent is not important and has been left to your discretion and imagination.

As with sequential files, we recommend the OPEN-DELETE-OPEN sequence to
clear a file of any previous data, thus preventing the accidental appearance at the end
of the file of data left over from any previous version of STORE!. Complete the fol-

RANDOM ACCESS DATA FILES 223

lowing segment to initialize the two files. Fill in lines 310, 320, 330, and 340.

(a)

(a)

260
270
180
290
300
310
320
330
ltO
3S0

280
270
280
290
300
310
320
330
ltO
aso

REM INITIALIZE

HOME ; PRINT "WORIINC"
LET DS. CHRS (4)
LET Rl • 1

REM INITIALIZE

HOME ; PRINT "WORIINC"
LET DS. CHRS (4)
LET Rl • 1
PRINT DS;"OPEN MASTER, L66"
PRINT DS; "OPEN STOREl"
PRINT DS; "DELETE STOREI"
PRINT DS; "OPEN STOREI, L6S"

The next section reads from the source file and writes to the copy file. Fill in
the blanks in lines 380, 390, 400, 420, 430, 440, 480, 490, and 500.

(a) 360 REM READ SOURCE FILE
370
380
390
400
410 FOR I • 1 TO Rl
420
430
440
.,0
480 REM PR INT COPY F lLE
470
480
480
'00
SID NUT I
SZO

224 APPLE BASIC: DATA FILE PROGRAMMING

(a) 360 REM READ SOURCE FILE
370
380 PRINT DS;"READ MASTER,RO"
390 INPUT R1
400 PRINT DS
410 FOR I • 1 TO Rl
UO PRINT DS;"READ MASTER,R"I
430 INPUT cS,S,a,MS
440 PRINT DS
450
460 REM PRINT COPY FILE
470
480 PRINT Df;"WRITE STOREl,R"X
490 PRINT Cf: PRINT S: PRINT 0: PRINT MS
500 PRINT Df
510 NEXT I
SZO

You probably found completing that program easy. Random access files are
easy to manipulate, once you get the hang of it.

Here is a complete copy of the program.

100
110
HO
130
140
150
160
170
180
190
ZOO
ZIO
no
ZlO
Z40
Z50
Z60
Z70
280
Z90
300
310
no
330
340
350
360
370
380
390
400
410
UO
430
440
450
460
470
480
490
500
510
SZO
530
540
550
SSO
570
580
590
600

REM PROCRAM TO MAXE A COPY OF R-A FILE 'MASTER'

REM VARIABLES USED
REM CS • (20)
REM S m (8)
REK a. (4)
REK MS • (30)
REK Rl RECORD COUNTER
REK DS • CONTROL D

REK FILES USED
REK R-A SOURCE FILE NAKE: KASTER
REK R-A COpy FILE NAKE: STORE 1
REK RECORD LENCTH: 66 BYTES
REK DATASET FORMAT: cS,S,a,MI

REM INITIALIZE

HOME : PRINT "1oI0RXINC"
LET DI CHRS (4)
LET Rl = 1
PRINT DS;"OPEN KASTER, LU"
PRINT DS;"OPEN STOREl"
PRINT DS;"DELETE STOREl"
PRINT DS;"OPEN STOREl, LSS"

REK READ SOURCE FILE

PRINT DS;"READ MASTER,RO"
INPUT Rl
PRINT DS
FOR I = 1 TO Rl
PRINT DS;"READ MASTER,R"I
INPUT cS,S,a,Ks
PRINT DS

REM PRINT COPY FILE

PRINT DS;"IoIRITE STOREl,R"X
PRINT CS: PRINT S: PRINT 0: PRINT KS
PRINT DS
NEXT I

REM CLOSE FILES

PRINT DS; "WRITE STOREl,RO"
PRINT Rl
PRINT D.
PRINT DS;"CLOSE"
PRINT: PRINT "FILE COPY COMPLETE"
END

RANDOM ACCESS DATA FILES 225

(a) Check your understanding of the file copying program by filling in the corre-
sponding program line number(s) for each step in the following outline.

1. OPEN the source file.

2. OPEN and clear the copy file. _________ _

3. Determine record count _________ _

4. READ source file record. _________ _

5. WRITE copy file.

6. Return to step 4 until end-of-file.

7. CLOSE the file after posting the record count in copy file. _______ _

(a) 1. line 310
2. lines 320 to 340
3. lines 380 to 400
4. lines 420 to 440
5. lines 480 to 500
6. lines 410 to 510
7. lines 550 to 580

CHANGING DATA IN AN EXISTING RANDOM ACCESS FILE

So far, you have learned how to add data to a random access file and how to make a copy
of a random access file. Next, let's consider a versatile utility program that allows a num­
ber of options for changing the data in a random access file. We will be using the INVEN
file you created earlier in this chapter. We will use the complete dataset with product
code number, product description, quantity available, and record count stored in RO.
You want your program to display the datasets in the file, one record at a time, and allow
the user the following options:

1. Change all data items.
2. Change the code number only.
3. Change the description only.
4. Change the quantity only.
5. No change to this record.

Follow these steps:

1. OPEN the file.
2. Determine record count.
3. READ a dataset.
4. Display the dataset.

226 APPLE BASIC: DATA FILE PROGRAMMING

5. Display the "menu" of choices.
6. Request and test choice.
7. Branch to appropriate subroutines according to choice made.
8. Return to step 3 above.
9. CLOSE the file.

Here is the complete program:

100
110
HO
130
HO
150
160
170
180
190
ZOO
210
220
230
UO
Z50
260
Z70
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
HO
530
HO
550

SSO
570

580
590
600
610
6Z0
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
8Z0
830
840
850
860
870
880
890

REM INVEN FILE EDITOR

REM VARIABLES USED
REM CS • PART NO. (6)
REM PS = DESCRIPTION (ZO)
REM Q = QUANTITY (3)
REM DS = CONTROL D
REM RI • RECORD NUMBER

REM FILES USED
REM R-A FILE NAME: INVEN
REM RECORD LENCTH: 3Z BYTES
REM DATASET FORMAT: CS,PS,Q

REM INITIALIZE

LET OS CHRS (4)
PRINT OS; "OPEN INVEN, L3Z"

REM READ ONE RECORD

PRINT DS;"READ INVEN,RO"
INPUT Rl
PRINT DS
FOR X = 1 TO Rl
PRINT DS;"READ INVEN,R"X
INPUT CS,PS,Q
PRINT DS

REM DISPLAY DATASET AND OPTIONS

HOME
PRINT
PRINT
PRINT
PRINT

"PROD ':";CS
"DESCRIPT:";PS
"QUANTITY:";Q

PRINT "ENTER
PRINT" 1.
PRINT" Z.
PRINT" 3.
PRINT" 4.
PRINT" 5.
PRINT

ONE OF THESE OPTIONS:"
CHANCE ALL"
CHANCE NUMBER ONLY"
CHANCE DESCRIPTION ONLY"
CHANCE QUANTITY ONLY"
NO CHANCE FOR THIS DATA"

INPUT "ENTER YOUR CHOICE:";RS
IF LEN (RS) = 0 THEN PRINT: PRINT
FROM THE MENU": PRINT: COTO 540
LET RZ & VAL (RS)

RANDOM ACCESS DATA FILES 227

CHRS (7);"PLEASE MAXE A CHOICE

IF RZ (1 OR RZ) 5 THEN PRINT "ENTER NUMBER 1-5 ONLY, PLEASE": COTO
540
IF RZ .. J THEN
IF RZ .. Z THEN
IF HZ • 3 THEN
IF HZ 4 THEN
IF RZ .. 5 THEN
NEXT X
COTO 880

COSUS
COSUB
COSUS
COSUS
COSUB

680:
680:
720 :
760 :
810

COSUB 720
COSUS 810
COSUS 810
COSUB 810

REM DATA ENTRY SUBROUTINES

INPUT "ENTER NEIJ PRODUCT CODE:";CS
REM DATA ENTRY TESTS
RETURN

INPUT "ENTER NEIJ DESCRIPTION: ";PS
REM DATA ENTRY TESTS
RETURN

INPUT "ENTER NEIJ aUANTITY:";Q
REM DATA ENTRY TESTS
RETURN

REM FILE PRINT SUBROUTINE
PRINT DI;""RITE INVEN,R";ll
PRINT C,: PRINT PI: PRINT a
PRINT OS
RETURN

REM CLOSE FILE

PRINT D,;"CLOSE"
END

COSUS 760: COSUB 810: COTO 630
COTO 630
COTO 630
COTO 630

228 APPLE BASIC: DATA FILE PROGRAMMING

(a) Study the program carefully and write the corresponding line numbers for each
step in the outline shown below.

1. OPEN the file.

2. Determine record count. __________ _

3. READ a dataset. _________ _

4. Display the dataset. __________ _

5. Display the "menu" of choices. __________ _

6. Request and test choice. __________ _

7. Branch to appropriate subroutines according to choice made. _______ _

8. Return to step 3 above. __________ _

9. CLOSE the file. ________ _

(a) l. line 270
2. lines 310 to 330
3. lines 350 to 370
4. lines 420 to 440
5. lines 460 to 510
6. lines 540 to 570
7. lines 580 to 620
8. line 640
9. line 880

Now enter and RUN the program, testing out all change options available. Then
use the final version of your program that reads and displays INVEN to verify correc­
tions or changes made in the file.

CONVERTING SEQUENTIAL FILES TO RANDOM ACCESS FILES

Another useful file utility program is one that converts a sequential file to a random
access file. The procedure involves making a copy of the sequential file and placing
one dataset from the sequential file into one record in a random access file. If at some
point you want to standardize your entire software collection or system into random
access file format, a program modeled on the one you are about to write would do the,
job.

The example is a small business-type application where a sequential file contains
data in this format:

RANDOM ACCESS DATA FILES 229

customer number = five-character string
customer name = twenty-character string
credit status code = single-digit number, one to five. One-character

numeric value.

You may recognize this as the format of the customer credit file named CREDIT,
a sequential file you created in Chapter 4 Self Test, problem 3. It is the same file you
used in Chapter 5 for file editing application programs. The task is to copy a sequen­
tial data file into a random access file, one dataset (as described above) per record.
The outline of steps is as follows:

1. OPEN the sequential file.
2. OPEN the random access file.
3. End-of-file trap for the sequential file.
4. READ one dataset from sequential file.
5. WRITE to the random access file.
6. Increment the record counter by one.
7. Return to step 4 above.
8. CLOSE the files after posting record count to random access file.

Here are the introductory and initializing modules. Read them over carefully.

100 REM COPY SEQ FILE TO RA FILE
110
120 REM VARIABLES USED
130 REM N$ = CUSTOMER NUMBER (5 CHAR)
140 REM CS = CUST.NAME(20 CHAR.MAX.)
150 REM R = CREDIT RATING (1 CHAR)
160 REM OS = CONTROL 0
170 REM Rl ~ RECORD COUNT
180
190 REM FILES USED
200 REM SEQ FILE NAME: CREDIT
210 REM R-A FILE NAME: R-A CREDIT
220 REM RECORD LENGTH: 29 BYTES
230
240 REM INITIALIZE
250
260 HOME
270 PRINT "WORKING"
280 LET 0$ = CHR$ (4)
290 LET R 1 ~ 0
300 PRINT DS;"OPEN CREDIT"
310 PRINT OS;"OPEN R-A CREDIT.L29"
320

(a) What is the length of the random access file record? __________ _

(b) Which will be the first record to be filled by the program? _______ _

(a) twenty-nine bytes (L29 in line 310)
(b) R1 (R1 = 1)

230 APPLE BASIC: DATA FILE PROGRAMMING

Here is the rest of the program. Fill in the blanks on lines 360, 370, 380, 420,
430,440,450, 500, 510, and 520.

(a) 330
340

REM READ SEQ FILE

350 ONERR COTO 500
360
370
380
390
400 REM It'R ITE JIA FILE
410
420
430
440
450
460 COTO 360
470
480 REM CLOSE FILES
490
SOO
SIO
5Z0
530 PRINT DS;"CLOSE"
540 PRINT : PRINT "FILE COPY COMPLETE."
SSO END

(a) 330 REM READ SEQ FILE
340
3S0 ONERR COTO SOD
360 PRINT D';"READ CREDIT"
370 INPUT N',CS,R
380 PRINT D$
390
400 REM YRITE RA FILE
410
4ZI) LET Rl = Rl + 1
430 PRINT D$;"YRITE R-A CREDIT,R"RI
440 PRINT NS: PRINT CS: PRINT R
450 PRINT D.
460 COTO 360
470
480 REM CLOSE FILES
490
500 PRINT D$;"YRITE R-A CRDEIT,RO"
510 PRINT 111
5Z0 PRINT D$
530 PRINT D$;"CLOSE"
540 PRINT : PRINT "FILE COPY COMPLETE."
550 END

Here is the complete file conversion program. Look it over and complete the
outline that follows with corresponding line numbers from the program.

(a) 100
110
HO
130
140
ISO
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
48C
490
500
510
HO
S30
540
SSO

RANDOM ACCESS DATA FILES 231

REM COPY SE~ FILE TO RA FILE

REM VARIABLES USED
REM NS = CUSTOMER NUMBER (S CHAR)
REM CS = CUST.NAME(20 CHAR.MAI.)
REM R = CREDIT RATING (I CHAR)
REM DS = CONTROL D
REM RI = RECORD COUNT

REM FILES USED
REM SEQ FILE NAME: CREDIT
REM R-A FILE NAME: R-A CREDIT
REM RECORD LENGTH: 29 BYTES

REM INITIALIZE

HOME
PRINT " ORKING"
LET DS = CHRS (4)
LET RI = 0
PRINT DS;"OPEN CREDIT"
PRINT D,;"OPEN R-A CREDIT,L29"

REM READ SEQ FILE

ONERR GOTO SOD
PRINT DS;"READ CREDIT"
INPUT NS,CS,R
PRINT OS

REM RITE RA FILE

LET Rl = RI + I
PRINT D';" RITE R-A CREDIT,R"RI
PRINT NS: PRINT CS: PRINT R
PRINT DS
GOTO 360

REM CLOSE FILES

PRINT DS;" RITE R-A CREDIT,RO"
PRINT RI
PRINT DS
PRINT DS;"CLOSE"
PRINT: PRINT "FILE COPY COMPLETE."
END

1. OPEN the sequential file. __________ _

2. OPEN the random access file. __________ _

3. Test for end-of-file of the sequential file. __________ _

4. READ one dataset from sequential file. __________ _

5. Increment the record counter by one. ___________ _

6. WRITE to the random access file. __________ _

7. Return to step 4 above. __________ _

8. Post the record count to the random access file and CLOSE the files.

232 APPLE BASIC: DATA FILE PROGRAMMING

(a) 1. line 300
2. line 310
3. line 350
4. lines 360 to 380
5. line 420
6. lines 430 to 450
7. line 460
8. lines 500 to 530

Write a program to display the random access CREDIT file.

(a) 100 REM DISPLAY R-A FILE NAMED R-A CREDIT
110
120 REM VARIABLES USED
130 REM F. ~ USER ENTERED FILE NAME
140 REM C' ~ CUST . • 150 RE" N •• CUST. NA"E
160 REM R z CREDIT RATING
170 REM D •• CONTROL D
180 REM RI • RECORD COUNT
190 REM I .FOR NEXT LOOP VARIABLE
ZOO
ZIO REM FILES USED
no REM R-A FILE NAME: R-A CREDIT (USER ENTERED)
Z3D REM DATASET FORMAT: CS .N'. R
ltD REM RECORD LENGTH: Z9 BYTES
Z50

RANDOM ACCESS DATA FILES 233

234 APPLE BASIC: DATA FILE PROGRAMMING

(a) 260
no
zeo
280
300
310
no
330
340
350
380
3711
380
390
400
410
no
430
440
450
480
470
480
490

REM INITIALIZE

LET Dt a CHR. (4)
HO"E
INPUT "ENTER FILE NAME:";F$
PRINT D$;"OPEN"rS".LZ9"

REM READ/PRINT FILE

PRINT D.; .. READ .. r RO ..
INPUT Rl
PRINT Dt
rOR I • 1 TO Rl
PRINT D.; .. READ .. r R .. X
INPUT CS.NS.R
PRINT D.
PRINT C$: PRINT NS: PRINT R: PRINT
NEXT I

REM CLOSE FILE

PRINT D.;"CLOSE"
PRINT .. ALL DATA DISPLAYED AND rILE CLOSED"
END

CHAPTER 6 SELF -TEST

la. Write a program to create a random access data file that contains the inventory
of products carried by an imaginary business. Each random access record con­
tains the following data for one item of inventory in the order shown below.
Numbers in parentheses indicate maximum character counts. Name this file
BUSINESS INVENTORY. Create the file with your program.

N$ = product number (4)
P$ = description of inventory item (20)
S$ = supplier (20)
L = reorder point (how low the stock of item can be before reordering)

(3)
Y = reorder quantity (4)
Q = quantity available (currently in stock) (4)
C = cost (from supplier) (6)
U = unit selling price (what the item is sold for) (6)

RANDOM ACCESS DATA FILES 235

Here is the introductory module and a sample RUN.

100 REM
110
120 REM
130 REM
140 REM
150 REM
180 REM
170 REM
180 REM
190 REM
ZOO REM
210 REM
%%0 REM
230 REM
%40 REM
Z50 REM
%60 REM
270 REM
zao
JRUN

SOLUTION, CH6 SELFTEST PROB lA

VARIABLES USED
N$cPROD.NUMBER(4)
P$=DESCRIPTION(ZO)
S hSUPPL I ER (Z 0)
L=REORDER POINT(3)
Y.REORDER QUANTITY(4)
Q.QUANTITY IN STOCX(4)
C.COST(TO RETAILER)(6)
U.UNIT(RETAIL)PRICE(6)
R$=USER RESPONSE
DhCONTROL D
R hRECORD COUNT

FILES USED
RA FILE NAME: BUSINESS INVENTORY
RECORD LENGTH: 75 BYTES
DATASET FORMAT:NS,PS,SS,L,Y,Q,C,U

ENTER PRODUCT NUMBER(4 DIGItS): 123.
ENTER PRODUCT DESCRIPTION(ZO CHAR.MAI.):SAHPLE DATA
ENTER NAME OF SUPPLIER(ZO CHAR.MAI.):SOULE SOURCE
REORDER POINT:IZ
REORDER QUANTITY:Z4
QUANTITY NOW IN STOCX:36
WHOLESALE COST: .55
UNIT SELLING PRICE:J.I0
MORE DATA(TYPE 'Y' FOR YES OR 'N' FOR NO)?N

1 TOTAL DATASETS. FILE CLOSED.

236 APPLE BASIC: DATA FILE PROGRAMMING

RANDOM ACCESS DATA FILES 237

lb. Using the program from self test problem (la), create a random access file named
BUSINESS INVENTORY. Make up your own data for at least 5 records (inven­
tory items) and enter them into the file. This file will be used in Chapter 7
examples and activities. Write a program to display the contents of BUSINESS
INVENTORY, including the record count.

238 APPLE BASIC: DATA FILE PROGRAMMING

RANDOM ACCESS DATA FILES 239

lc. Write a program to create a sequential (not random access) file called POINTER
that contains the following two items in each dataset:

1) Account numbers from BUSINESS INVENTORY file (a four-character
string).

2) The record number (a numeric value) corresponding to the record location
of each account number.

The program should read the first data item from each record in BUSINESS
INVENTORY and write the account number (4 character string) and the record
count number for that record into the sequential file called POINTER

100 11 Ell
110
110 REM
130 REH
140 REH
180 REM
170 REM
180 REM
19 0 REM
19 5 REM
ZOO REM
Z10 REM
UO

CREATE SEQ POINTER FILE FROH BUSINESS INVENTORY R-A FILE

VAR UBLES USED
DS .. CONTROL D
N •• PRODUCT '(4 CHAR.)
RhRECORD COUNT
J .. FOR-NEJT CONTROL VARIABLE

FILES USED
R-A FILE NAHE:BUSINESS INVENTORY
FILE LENCTH:75 BYTES
SEQ FILE NAME:POINTER
DATASET FORMAT:Nt,1

240 APPLE BASIC: DATA FILE PROGRAMMING ,

Id. Write a program to read and display the data items in POINTER.

RANDOM ACCESS DATA FILES 241

242 APPLE BASIC: DATA FILE PROGRAMMING

2. Write a program to make a copy of the random access fIle named R-A CREDIT
that you transferred from a sequential fIle in the last example program in Chap­
ter 6. The copy should be another random access fIle named R-A CREDIT
COPY.

RANDOM ACCESS DATA FILES 243

Here is the introductory module:

100 REM
110
HO REM
130 REM
140 REM
ISO REM
160 REM
170 REM
180 REM
190 REM
200 REM
210 REM
ZIO REM
zao REM
240

SOLUTION CHS SELFTEST PROB Z

VARIABLES USED:
NS=CUSTOMER NUMBER(S CHAR)
CS.CUST. NAME (20 CHAR.MAX.)
R=CREDIT RATINC
DS=CONTROL D
X.FOR NEXT LOOP VARIABLE
Rl=RECORD COUNTER VARIABLE

FILES USED
R-A SOURCE FILE NAME: R-A CREDIT
R-A COPY FILE NAME: R-A CREDIT COpy
RECORD LENCTH: 29
DATASET FORMATS: NS,C$,R

244 APPLE BASIC: DATA FILE PROGRAMMING

3. Write a program to display the contents of the original data file and the copy in
the previous problem (2), for verification of the completeness and accuracy of
the copy. The program should display the data in record 1 of the original file,
and then the data from record 1 in the file copy, then the data from record 2 in
the original file, followed by the data from record 2 in the copy, and so on to
the end of the files.

IRUN

100 REH
110 REH
lZO
130 REH
140 REM
ISO REH
160 REH
170 REH
180 REH
190 REH
ZOO
ZIO REH
ZZO REH
Z30 REH
UO REH
ZSO

RANDOM ACCESS DATA FILES 245

SOLUTION, CH6 SELFTEST PROB 3
READ & DISPLAY TWO R-A FILES

VARIABLES USED
NS,NlS=CUST .• CS CHAR)
C',Cl.=CUST.NAHECZO CHAR.HAI.)
C,Cl.CREDIT RATINGCl CHAR)
R,Rl=RECORD COUNTS
J=FOR NEIT LOOP VARIABLE
DS=CONTROL D

FILES USED
R-A FILE NAMES: R-A CREDIT, R-A CREDIT COPY
RECORD LENGTH: Z9 BYTES
DATASET FORHAT: N',C',C

ORIGINAL FILE REPORTS 3 RECORDS.
COPY FILE REPORTS 3 RECORDS.

ORIG: lZ34SPAUL ARHITIGES
COPY: lZ34SPAUL ARHITIGES

PRESS 'RETURN' TO DISPLAY NEIT DATASETS.
ORIG: 1Z346HISS PIGGYl
COPY: lZ346HJSS PIGGYl

PRESS 'RETURN' TO DISPLAY NEIT DATASETS.
ORIG: lZ347SIR GALAHAD3
COPY: 1Z347SIR GALAHAD3

PRESS 'RETURN' TO DISPLAY NUT DATASETS.

COMPARISON COMPLETE.

246 APPLE BASIC: DATA FILE PROGRAMMING

lao

100
110
1%0
130
HO
ISO
160
170
lSO
190
ZOO
ZlO
no
Z30
Z40
250
ZSO
Z70
Z80
Z9(1
300
310
320
330
340
3S0
380
370
380
390
400
410
4Z0
430
440
450
480
47.0
480
490
SOD
SlO
S20
S30
540
SSO
SSO
S70

S80
590
SOD
610
no
630
S40
6 SO
660
670
680
690
700
710
no
730

RANDOM ACCESS DATA FILES 247

Answer Key

REM SOLUTION, CHS SELFTEST PROB lA

REM VARIABLES USED
REM NS=PROD.NUMBER(4)
REM PS=DESCRIPTION(ZO)
REM SS=SUPPLIER(20)
REM L=REORDER POINT(3)
REM Y=REORDER QUANTITY(4)
REM Q.QUANTITY IN STOCK(4)
REM C.COST(TO RETAILER)(6)
REM U.UNIT(RETAIL)PRICE(S)
REM RS.USER RESPONSE
REM Df.CONTROL D
REM RJ=RECORD COUNT
REM FILES USED
REM RA FILE NAME: BUSINESS INVENTORY
REM RECORD LENGTH:7S BYTES
REM DATASET FORHAT:NS,PS,Sf,L,Y,Q,C,U

REM INITIALIZE

LET Dt = CHRf (4)
LET Rl = 1
PRINT Df;"OPEN BUSINESS INVENTORY,L7S"

REM DATA ENTRY MODULE-DATA ENTRY TESTS OMITTED

INPUT "ENTER PRODUCT NUMBER(4 DIGITS):";NS
REM -DATA ENTRY TESTS GO HERE
INPUT "ENTER PRODUCT DESCRIPTION(ZO CHAR·.MU.):";Pf
REM -DATA ENTRY TESTS GO HERE
INPUT "ENTER NAME OF SUPPLIER(ZO CHAR.MAJ.):";Sf
REM -DATA ENTRY TESTS GO HERE
INPUT "REORDER POINT:";L
REM -DATA ENTRY TESTS GO HERE
INPUT "REORDER QUANTITY:";Y
REM -DATA ENTRY TESTS GO HERE
INPUT "QUANTITY NOlo' IN STOCK:";Q
REM -DATA ENTRY TESTS GO HERE
INPUT "IJHOLESALE COST:";C
REM -DATA ENTRY TESTS GO HERE
INPUT "UNIT SELLING PRICE:";U
REM -DATA ENTRY TESTS GO HERE

REM IJRITE DATASET TO FILE

PRINT Df;"IJRITE BUSINESS INVENTORY,R"RI
PRINT NS: PRINT PS: PRINT SS: PRINT L: PRINT Y: PRINT Q: PRINT C':
PRINt U
PRINT DS

REM MORE DATA REQUEST

INPUT "MORE DATA(TYPE 'Y' FOR YES OR 'N' FOR NO)'";RS
REM -Y OR N ENTRY TEST
IF RS = "Y" THEN Rl = Rl + 1: HOME: GOTO 370

REM -PRINT RECORD COUNTER VALUE & CLOSE FILE

PRINT D$;"IJRITE BUSINESS INVENTORY,RO"
PRINT RJ
PRINT D$
PRJNT O$;"CLOSE"
PRINT: PRINT Rl;" TOTAL OATASETS. FILE CLOSED."
END

248 APPLE BASIC: DATA FILE PROGRAMMING

lb.

100
110
HD
130
ltO

.150
160
170
180
190
ZOO
ZIO
UO
UO
%40
150
%60
no
zeo
ZlO
300
310
3Z0
330
ltO
350
380
370
380
310
fOO
410
4%0
430
ffO

45D
480
470
480
480
500
510
5Z0

REM BUSINESS INVENTORY READER

REM VARIABLES USED
REM N'.PROD.NUMBERCf)
REM P •• DESCRIPTIONCZO)
REM S •• SUPPLIERCZO)
REM L.REORDER POINT(3)
REM Y.REORDER QUANTITYCf)
REM Q.QUANTITY IN STOCKCf)
REM C.COSTCTO RETAILER)CS)
REM U.UNITCRETAIL)PRICECS)
REM R •• USER RESPONSE
REM D'.CONTROL D
REK Rl.RECORD COUNT
REK FILES USED
REK RA FILE NAKE: BUSINESS INVENTORY
REK RECORD LENCTH: 75 BYTES
REK DATASET FORKAT:N',P',S',L,Y,Q,C,U

REM INITIALIZE

D.. CHR. Cf)
PRINT D'i"OPEN BUSINESS INVENTORY,L75"
PRINT D'i"READ BUSINESS INVENTORY,RO·
INPUT Rl
PRINT D.
PRINT Rli" TOTAL DATASETS.": PRINT

REK READ AND DISPLAY

FOR J • 1 TO Rl
PRINT D'i"READ BUSINESS INVENTORY,R"X
INPUT N',P',S',L,Y,Q,C,U
PRINT D.
PRINT N.: PRINT P.: PRINT S': PRINT L: PRINT Y: PRINT Q: PRINT C:
PRINT U: PRINT
PRINT: INPUT "PRESS RETURN FOR NEXT DISPLAY. "iR'
HOME
NEIT X

REK CLOSE FILE

PRINT D'i "CLOSE"
PRINT: PRINT "ALL DATASETS DISPLAYED."

Ie.
100
IlO
HO
130
ltO
180
170
180
190
19S
ZOO
ZlO
UO
%30
HO
Z4S
ZSO
ZlO
170
zeo
UO

300
310
UO
325
330
UO
3S0
380
380
380
400
410
UO
430
440
4S0
480
470

ld.

RANDOM ACCESS DATA FILES 249

RE" CREATE SEQ POINTER FILE FROM BUSINESS INVENTORY R-A FILE

RE" VARIABLES USED
REM D'aCONTROL D
RE" N •• PRODUCT '(4 CHAR.)
REM RI-RECORD COUNT
RE" J-FOR-NEJT CONTROL VARIABLE
RE" FILES USED
REM R-A FILE NA"E:BUSINESS INVENTORY
REM FILE LENGTH:7S BYTES
REM SEQ FILE NAME:POINTER
REM DATASET FORMAT:N',J

RE" INITIALIZE

HOME : PRINT "WORKING"
LET I,. - CHAt (4)
PRINT D.; "OPEN BUSINESS INVENTORY,L15"
PRINT D';"OPEN POINTER"

RE" READ FIRST DATA ITEM FROM R-A FILE AND WRITE THAT ITE".RECORD
COUNT TO SEQ. FILE

PRINT DS;"RIAD BUSINESS INVENTORY,RO"
INPUT RI
PRINT DS
FOR J _ 1 TO RI
PRINT D';"RIAD BUSINESS INVENTORY,R"J
INPUT N.
PRINT DS
PRINT DS; "WRITE POINTER"
PRINT N.: PRINT J
PRINT D.
NEJT J

RE" CLOSE FILES

PRINT D';"CLOSE"
PRINT: PRINT "FILES CLOSED."
END

100
110
HO
130
140
IH
l60
170
180
190
ZOO
ZIO
220
230
240
ZSO
280
170
Z80
zeD
300
310
3%0
330
UO
3S0
360
370
380
310
400
410
420

REM POINTER FILE READER

RE" VARIABLES USED
REM D'=CONTROL D
RE" N •• ACCOUNT •
REM RI=RECORD COUNT
RE" R.-USER RESPONSE VARIABLE
REM FILE USED
RE" SEQ. FILE NAME: POINTER
REM DATASET FORMAT: N.,RI

RE" INITIALIZE

LET D. _ CHR. (4)
PRINT D';"OPEN POINTER"

REM READ AND DISPLAY

ONERR GOTO 400
PRINT D';"RIAD POINTER"
INPUT N. ,Rl
PRINT DS
PRINT N. ,Rl
PRINT
INPUT "PRESS RETURN KEY TO DISPLAY NEXT DATA. ";R'
PRINT
GOTO 290

REM CLOSE FILE

PRINT D';"CLOSE"
PRINT: PRINT "CONTENTS DISPLAYED & FILE CLOSED."
END

250 APPLE BASIC: DATA FILE PROGRAMMING

2. 100
110
lZO
130
140
150
160
170
180
190
ZOO
Z10
ZZO
Z30
Z40
ZSO
Z60
Z70
zeo
ZSO
300
310
3Z0
330
340
350
360
370
380
3S0
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

REM SOLUTION CH6 SELFTEST PROB 2

REM VARIABLES USED:
REM NS=CUSTOMER NUMBER(S CHAR)
REM CS=CUST. NAME (20 CHAR.MAX.)
REM R.CREDIT RATINC
REM • D,zCONTROL D
REM X=FOR NEXT LOOP VARIABLE
REM R1=RECORD COUNTER VARIABLE
REM FILES USED
REM R-A SOURCE FILE NAME: R-A CREDIT
REM R-A COPY FILE NAME: R-A CREDIT COPY
REM RECORD LENCTH: 2S
REM DATASET FORMATS: NS,C',R

REM INITIALIZE

HOME
PRINT "WORUNC"
LET DS = CHRS (4)
PRINT DS,"OPEN R-A CREDIT,L2S"
PRINT DS,"OPEN R-A CREDIT COPY,L2S"
PRINT DS,"DELETE R-A CREDIT COpy"
PRINT DS , "OPEN R-A CREDIT COPY,LZS"

REM COPY ROUTINE

PRINT DS,"READ R-A CREDIT,RO"
INPUT RJ
PRINT DS
FOR X = J TO RJ
PRINT DS;"READ R-A CREDIT,R"X
INPUT NS,CS,R
PRINT DS
PRINT D$;"WRITE R-A CREDIT COPY,R"X
PRINT NS: PRINT cs: PRINT R
PRINT D$
NEXT X

REM WRITE RECORD COUNT & CLOSE

PRINT D$;"lt'RITE R-A CREDIT COPY,RO"
PRINT R1
PRINT DS,"CLOSE"
PRINT: PRINT "FILE DUPLICATED AND CLOSED."
END

3. 100
lJO
120
130
140
ISO
180
170
180
190
200
210
220
230
240
250
280
270
280
290
300
310
320
330
340
350
350
370
380
390
400
410
415
420
430
440
450
480
470
480
UO
500
510
520
530
540
.5.50
seo
S70
580
590
800
610
820
830

RANDOM ACCESS DATA FILES 251

REM SOLUTION, CH6 SELFTEST PROB 3
REM READ & DISPLAY TWO R-A FILES

REM VARIABLES USED
REM NS,NlS.CUST .• IS CHAR)
REM CS,ClS=CUST.NAMEI20 CHAR.MAX.)
REM C,Cl.CREDIT RATINGIl CHAR)
REM R,RI-RECORD COUNTS
REM I.FOR NEIT LOOP VARIABLE
REM DS.CONTROL D

REM FILES USED
REM R-A FILE NAMES: R-A CREDIT, R-A CREDIT COPY
REM RECORD LENGTH: 29 BYTES
REM DATASET FORMAT: NS,CS,C

REM INITIALIZE

LET DS = CHRS (4)

PRINT D.;"OPEN R-A CREDIT,L29"
PRINT DS;"OPEN R-A CREDIT COPY,L29"

REM READ & DISPLAY RECORD COUNTS

PRINT DS;"READ R-A CREDIT,RO"
INPUT R
PRINT DS
PRINT DS;"READ R-A CREDIT COPY,RO"
INPUT RI
PRINT DS
PRINT "ORIGINAL FILE REPORTS ";R;" RECORDS."
PRINT "COPY F lLE REPORTS "; Rl ;" RECORDS."
PRINT

REM READ & DISPLAY ONE DATASET AT A TIME FROM EACH FILE

FOR J "' 1 TO R
PRINT DS;HREAD R-A CREDIT,R"Z
INPUT NS,CS,C
PRINT DS
PRINT D';"READ R-A CREDIT COPY,R"X
INPUT NlS,ClS,C1
PRINT D.
PRINT "ORIG: H;N';C';C
PRINT "COPY: n ;NH; ClS; Cl
PRINT
INPUT "PRESS 'RETURN' TO DISPLAY NUT DATASETS.";RS
HOME
NUT J

REM CLOSE FILES

PRINT DS;"CLOSE"
PRINT: PRINT "COMPARISON COMPLETE."
END

CHAPTER SEVEN

Random Access File
Applications

Objectives: In this chapter you will learn expanded techniques for random access data
file applications and how to use sequential "pointer" data files as an index for a ran­
dom access data file.

SEQUENTIAL POINTER FILES FOR RANDOM ACCESS FILES

Two file applications are designed to be somewhat typical of the programs you might
encounter as you design your own computer software systems and write your own
programs. The programs are not really long, as you might expect, but they are only
one component of a larger software system composed of many programs.

The first exercise is an inventory control application that uses both a sequential
file and a random access file in the same program. The objective is to show how to
use a sequential "pointer" file and how to change data located in a random access file
record. The application could as well have been a mailing list, a credit information
file, or any sort of master file application. While a pointer file may be superfluous in
our simple example, the technique may be valuable in more complex software systems.

In this case, all the data regarding the inventory of products carried are stored in
a random access file named BUSINESS INVENTORY. Each random access record con­
tains the following data for one item of inventory in the order shown below:

252

N$ = PROD # (4)
P$ = DESCRIPTION (20)
S$ = SUPPLIER (20)
L = REORDER POINT (3)
Y = REORDER QUANTITY (4)
Q = QUANTITY AVAILABLE (4)
C = COST (6)
U = UNIT SELLING PRICE (6)

If you wanted to change some data from product number 9827, you would have

RANDOM ACCESS FILE APPLICATIONS 253

to search through the random access file records one at a time, until you found prod­
uct number 9827. Alternatively you could add a sequential "pointer" file that con­
tains the product numbers (in a string variable) followed by the record 'number where
the proper dataset is located in the random access file. To change the cost and selling
price data in the random access file, follow these steps:

1. Enter product number.
2. Quickly search the sequential pointer file for the product number and corres­

ponding record location.
3. Access the correct random access record.
4. Make the changes in the random access file record.

It looks easy, but there are a few "tricks." Here is the first part of the program.
Read it through carefully.

lOO
llO
lZO
130
140
1~0
160
170
lBO
190
ZOO
210
ZZD
Z3D
UD
2H
zaD
270
Z8D
290
300
310
3ZD
330
340
350
360
370
380
390
400
410
420
430

REM SEQ. POINTER FILE USED WITH R-A FILE 'BUSINESS INVENTORY'
REM THIS PROCRAM PERMITS THE USER TO CHANCE THE COST AND
REM UNIT SELLINC PRICE FOR AN EXISTINC INVENTORY ITEM IN FILE

REM VARIABLES USED
REM RS = DATA ENTRY STRING
REM RlmRECORD COUNT
REM NSzNlS.N2S.PROD.' (4 CHAR)
REM PS=PROD.DESCRIPTION(ZO CHAR)
REM SS = SUPPLIER (20)
REM L • REORDER POINT (3)
REM Y • REORDER QUANTITY (3)
REM Q.QUANTITY IN STOCK (3 CHAR)
REM C=Cl.COST (6 CHAR)
REM U=Ul=UNIT SELLINC PRICE (8 CHAR)

REM FILES USED
REM SEQ. FILE NAME: POINTER
REM DATASET FORMAT; NS,Rl
REM R-A FILE NAME; BUSINESS INVENTORY
REM FILE LENCTH; 7S BYTES
REM DATASET FORMAT; NS,P$,SS,L,Y,Q,C,U

REM INITIALIZE

LET DS.. CHRt (4)
REM 'POINTER' OPENED AT TIME OF FILE SEARCH
PRINT DS;"OPEN BUSINESS INVENTORY,L7S"

REM DATA ENTRY MODULE

INPUT "ENTER PRODUCT. (4 CHAR);";N2S
REM DATA ENTRY TESTS

This segment provides for entry and testing of the product number. It is time to
search the sequential file for the record location for this product number in the ran­
dom access file. On chance that the operator made an entry error that escaped the
error tests, include an error trap in case you read all the way to the end of the sequen­
tial file and find no matching product number. This error message routine is shown
below in lines 560 through 610. You fill in lines 460, 480, 490, and 500.

254 APPLE BASIC: DATA FILE PROGRAMMING

(a) 441:
450
460
470
480
490
500
510
510
530
540
550
560
570

SSO
5S0
600
810
620

REM SEARCH POINTER FILE

ONERR COTO 5& 0

IF NIt .. NZS THEN PRINT D'i"CLOSE POINTER"; COTO S50
COTO 480

REM ERROR TRAP

IF PEEK (ZZZ) = 5 THEN 580
PRINT ; PRINT CHR. (7) i "UNUSUAL ERROR. PROCRAM TERMINATED·."; PRINT
COTO 940
PRINT DS i "CLOSE POINTER"
PRINT "THIS PRODUCT. IS NOT IN OUR FlU"
PRINT "CHECK YOUR NUHBERS AND REENTER"
COTO flO

(b) In which variable is the record number of the random access file located? __ _

(c) Under what conditions is the POINTER file closed? __________ _

(a)

(b)
(c)

440
450
460
470
480
490
500
5~0
5Z0
530
540
550
560
570

580
5S0
600
610
BZO

R1

REM SEARCH POINTER FILE

PRINT D'i"OPEN POINTER"
ONERII COTO 560
PRINT DSi"READ POINTER"
INPUT NIS,1I1
PRINT D.
IF NIt • NZS THEN PRINT D. i "CLOSE POINTER"; COTO 650
COTO 480

REM ERROR TRAP

IF PEEK (ZZZ) .. 5 THEN 580
PRINT; PRINT CHR. (7)i"UNUSUAL EIIROR. PROCRAM TERMINATED."; PRINT
COTO 940
PRINT D'i"CLOSE POINTER"
PRINT "THIS PRODUCT. IS NOT IN OUR FIU~'
PRINT "CHECK YOUR NUHBEIIS AND IIEENTER"
COTO 410

If the account number entered by the user is found (line 510), or if the end of
me is encountered (lines 500 to 610)

Next the correct dataset is accessed from the random access file. Fill in lines
650, 660, and 670.

(a) 630 REM
640
650
660
670
680

READ RECORD FROM R-A FILE

(a)

(a)

(a)

630
640
650
660
870
B80

RANDOM ACCESS FILE APPUCATIONS 2SS

REM READ RECORD FROM R-A FILE

PRINT D'i"READ BUSINESS INVENTORY,R"RI
INPUT N',PS,SS,L,Y,Q,Cl,UI
PRINT D.

Complete lines 820, 830, and 840 below.

690
700
710
no
730
740
750
780
770
780
790
800
810
8Z0
830
840
850

690
700
710
no
730
740
7H
780
770
780
790
800
810
8Z0
830

840
850

REM ENTER DATA CHANGES

PRINT PRINT "OLD COST: "iCl
PRINT "OLD UNIT SELLING PRICE: " iUI
PRINT
INPUT "ENTER NEW COST:"iC
REM DATA ENTRY TESTS GO HERE
INPUT "ENTER NEW SELLING PRICE:"iU
REM DATA ENTRY TESTS GO HERE

REM REPLACE WITH NEW DATA

REM ENTER DATA CHANGES

PRINT: PRINT ·OLD COST: "iCl
PRINT "OLD UNIT SELLING PRICE: "iUl
PRINT
INPUT "ENTER NEW COST:"iC
REM DATA ENTRY TESTS GO HERE
INPUT "ENTER NEW SELLING PRICE:"iU
REM DATA ENTRY TESTS GO HERE

: REM REPLACE WITH NEW DATA

PRINT D'i"WRITE BUSINESS INVENTORY,R"RI
PRINT N.: PRINT P.: PRINT S': PRINT L: PRINT Y: PRINT Q: PRINT C:
PRINT U
PRINT DS

The remainder of the program looks like this:

SSO REM MORE?
870
880 INPUT "MORE ENTRIES?"iR.
890 REM DATA ENTRY CHECK GOES HERE
900 IF LEFTS (RS ,1) .. "Y" THEN 410
910
9ZO REM CLOSE
930
940 PRINT D$i"CLOSE"
950 END

256 APPLE BASIC: DATA FILE PROGRAMMING

This completes the first random access file application-one part of an entire
product inventory application. Now enter and RUN the program. After that, display
the contents of BUSINESS INVENTORY to verify the changes.

100
110

. no
130
ltD
150
160
170
180
190
ZOO
ZIO
no
Z30
Z40
Z50
zao
Z70
zao
Z90
300
310
3Z0
330
340
350
360
370
380
390
400
410
4Z0
430
440
450
480
470
480
490
500
SID
5Z0
530
540
550
560
570

580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760

REM SEQ. POINTER FILE USED WITH R-A FILE 'BUSINESS INVENTORY'
REM THIS PROGRAM PERMITS THE USER TO CHANGE THE COST AND
REM UNIT SELLING PRICE FOR AN EXISTING INVENTORY ITEM IN FILE

REM VARIABLES USED
REM RS = DATA ENTRY STRING
REM Rl=RECORD COUNT
REM N$=NIS=NZS=PROD .• (4 CHAR)
REM PScPROD.DESCRIPTION(ZO CHAR)
REM S$ = SUPPLIER (20)
REM L .. REORDER POINT (3)
REM Y = REORDER QUANTITY (3)
REM Q=QUANTITY IN STOCK (3 CHAR)
REM C=Cl=COST (6 CHAR)
REM U=Ul=UNIT SELLING PRICE (6 CHAR)

REM FILES USED
REM SEQ. FILE NAME: POINTER
REM DATASET FORMAT: NS,Rl
REM R-A FILE NAME: BUSINESS INVENTORY
REM FILE LENGTH: 75 BYTES
REM DATASET FORMAT: NS,PS,SS,L,Y,Q,C,U

REM INITIALIZE

LET DS.. CHRS (4)

REM 'POINTER' OPENED AT TIME OF FILE SEARCH
PRINT DS;"OPEN BUSINESS INVENTORY,L75"

REM DATA ENTRY MODULE

INPUT "ENTER PRODUCT. (4 CHAR):";NZS
REM DATA ENTRY TESTS

REM SEARCH POINTER FILE

PRINT D';"OPEN POINTER"
ONERR GOTO S6 0
PRINT DS;"READ POINTER"
INPUT NlS, RI
PRINT DS
IF NH " NZS THEN PRINT D.; "CLOSE POINTER": GOTO 6S0
GOTO 480

REM ERROR TRAP

IF PEEK (ZZZ) • S THEN SBO
PRINT: PRINT CHRS (7);"UNUSUAL ERROR. PROGRAM TERMINATED.": PRINT
GOTO 940
PRINT DS; "CLOSE POINTER"
PRINT "THIS PRODUCT. IS NOT IN OUR FILE"
PRINT "CHECK YOUR NUMBERS AND REENTER"
GOTO flO

REM READ RECORD FROM R-A FILE

PRINT DS;"READ BUSINESS INVENTORY,R"RI
INPUT NS,PS,SS,L,Y,a,CI,UI
PRINT DS

REM ENTER DATA CHANGES

PRINT: PRINT "OLD COST: ";Cl
PRINT "OLD UNIT SELLING PRICE: ";UI
PRINT
INPUT "ENTER NEW COST:";C
REM DATA ENTRY TESTS GO HERE
INPUT "ENTER NEW SELLING PRICE:";U

continued on next page

770
780
790
800
810
UO
830

840
850
860
870
880
890
900
910
9Z0
930
940
950

(a)

RANDOM ACCESS FILE APPLICATIONS 257

REM DATA ENTRY TESTS CO HERE

REM REPLACE WITH NEW DATA

PRINT D.;"WRITE BUSINESS INVENTORY,R"RI
PRINT N.: ,PRINT PS: PRINT SS: PRINT L: PRINT Y: PRINT Q: PRINT C:
PRINT U
PRINT D.

REM MORE?

INPUT "MORE ENTRIES''';RS
REM DATA ENTRY CHECK COES HERE
IF LEFTS (RS,I) so "Y" THEN 410

REM CLOSE

PRINT D';"CLOSE"
END

What other programs are needed to complete this series of application programs?

(a) I) Add new inventory items. 2) Delete inventorY'items. 3) Change supplier and/
or description. 4) Change reorder point, etc., to name a few.

PERSONAL MONEY MANAGEMENT APPLICATION

The second example program in this chapter could form part of a large home financial
management software package. The example gives some hints for setting up your own
home fmance programs. The objectives of this application are to show you how to
process a "transaction" me and to demonstrate how account numbers can be used to
point out the me and record in a random access file.

The first step is to decide exactly what expenditures you want to computerize.
Record all income and all expenditures into particular accounts. Include the capability
to discern taxable from non-taxable items so these records can be used as data for your
income tax returns. To keep things simple, the following chart of accounts has been
prepared for this application:

258 APPLE BASIC: DATA FILE PROGRAMMING

1001
1002
1003
1004
1005
1006
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012

TAXABLE SALARIES
TAXABLE INTEREST
TAXABLE DIVIDENDS
TAXABLE OTHER INCOME
NON-TAXABLE INCOME
MISC. NON-TAXABLE MONEYS
GROCERIES
NON FOOD STAPLES
MORTGAGE
GAS/ELECTRICITY
WATER & GARBAGE
TELEPHONE
HOME INSURANCE
PROPERTY TAXES
FURNITURE
AUTO PAYMENTS
GAS AND OIL
AUTO REPAIR
PARKING/TOLLS
AUTO INSURANCE
FATHER'S CLOTHES
MOTHER'S CLOTHES
SON'S CLOTHES
DAUGHTER'S CLOTHES
CLOTHING REPAIR/CLEANING
SPORTS FEES/TICKETS
SPORTS EQUIPMENT
MAGAZINES/BOOKS
MOVIES/PLAYS
ALCOHOL
DINING OUT
VACATION EXPENSES
POSTAGE
SCHOOL/HOUSEHOLD SUPPLIES
LEGAL/ACCTG. FEES
LIFE INSURANCE
MEDICAL INSURANCE
DENTAL INSURANCE
UNREIMBURSED MEDICAL EXPENSES
DRUG EXPENSES
EDUCATIONAL FEES AND TUITIONS
BOOKS AND SUPPLIES
EXCESS SALES TAXES PAID
CONTRIBUTIONS
SAVINGS DEPOSITS
INVESTMENTS

The account number has important significance. The first digit of the account
number is the number of the random access me in which the account details can be

. found. All random access mes are called BUDGET #. The details of the taxable sal­
aries account are found in me BUDGETl (account number 1001). The details of the
telephone account are in me BUDGET2 (account number 2008).

(a) Which me contains the details of the dining out account? ________ _

RANDOM ACCESS FILE APPLICATIONS 259

(a) BUDGET2 (account number 2006)

The last three digits of the account number indicate the record number of the
random access file containing the account details. The investment account (3010) will
be found in the file BUDGET3, record number 10.

(a) The legal/accounting account details are found in file __________ _

record number _________ _

(a) BUDGET2, record 30

For convenience, the account number is always entered as a string variable so
that you can use the LEFT$ and RIGHT$ functions to separate the file number and
record number.

To demonstrate the file number concept, we use three separate files (BUDGET 1 ,
BUDGET2, and BUDGET3) for this small list of accounts. Of course, all these ac­
counts could be placed in one file, but that will not be the case when your account
list grows. At that point you may want to use this scheme.

The random access files (BUDGET#) contain the details of each account. Each
record contains the following information in the order shown.

N$ = ACCOUNT # (4)
A$ = ACCOUNT NAME (20)
B$ = BUDGETED AMOUNT (8). ANNUAL BUDGET
E$ = EXPENDED/EARNED AMOUNT (8). YEAR-TO-DATE

Write one program that you can use to create three random access file named
BUDGETl, BUDGET2, and BUDGET3, using the dataset shown above as the format
in each record. Using the chart of accounts we have provided, enter the correct num­
ber of datasets (one per record) for each file; i.e., six records in BUDGETl, twenty­
eight records in BUDGET2, and twelve records in BUDGET3. Use the value of the
right-most three digits of the account chart number (N$) to determine the record num­
ber into which each dataset will be placed. You decide on the value for BUDGETED
AMOUNT in each record, and enter zero (0) as the value for EXPENDED/EARNED
amount in all records in all files (happy new fiscal year). Also write the companion
program to display the contents of the file one dataset at a time.

260 APPLE BASIC: DATA FILE PROGRAMMING

(a) 100 lIEM
110
120 lIEH
130 lIEH
140 lIEM
150 lIEH
160 lIEH
170 lIEM
171 lIEH
172 lIEM
180 lIEH
190 REH
ZOO lIEM
210 REH
120 lIEM
230 REM

ClIEATE BUDGET. lI-A fILES

VAll IABLES USED
NS ACCOUNT CHAlIT NUMBER (4)
AS ACCOUNT NAME (20)
BS = BUDGETED AHOUNT (8)
ES = EXPENDED/EAlINED AMOUNT (8)
Rl = RECORD NUHBER (EXTRACTED FROM Nt)
N = USElI ENTElIED NUMBElI fOll BUDGET. fILE NAME
FIS = BUDGET FILE NAME
DS = CONTlIOL D
RS = USER RESPONSE

fILE USED
R-A FILE NAMES: BUDGETl.2.3
DATASET fOllMAT:NS.AS.BS.ES
RECORD LENGTH: 44

(a) 100
110
120
130
140
150
160
170
180
190
200
lIO
ZZO
230
240
250
ZIO
270
Z80
UO
300
310.
320
330
340
35D
360
370
380
390
400
410
420
430
440
450
48D
470
480

RANDOM ACCESS FILE APPLICATIONS 261

REM CREATE BUDCET. R-A FILES

REM VARIABLES USED
REM NS a ACCOUNT CHART NUMBER (4)
REM AS ACCOUNT NAME (20)
REM BS BUDCETED AMOUNT (8)
REM ES EJPENDED/EARNED AMOUNT (8)

REM FILE USED
REM R-A FILE NAMES: BUDCETl.Z.3
REM DATASET FORMAT:NS.D1'.B.E
REM RECORD LENCTH: 44

REM INITIALIZE

LET DS CHRS (4)
LET Rl .. 1
INPUT "WHICH BUDCET FlLE(I.Z. OR 3)?";FZS
REM DATA ENTRY TESTS CO HERE
LET FIS = "BUDCET" + F2S
PRINT DS;"OPEN"FIS".L44"

REM READ FILE

ONERR COTO 470
PRINT DS;"READ"FlS".R"Rl
INPUT NS.A'.B'.ES
PRINT DS
PRINT: PRINT NS: PRINT AS: PRINT BS: PRINT ES: PRINT
PRINT: PRINT: INPUT "PRESS RETURN TO CONTINUE. ";RS
LET RI .. RI + 1
COTO 370

REM CLOSE FILE

PRINT DS;"CLOSE"
PRINT: PRINT "FILE DISPLAYED AND CLOSED."

You have now created the budget files for the personal money management sys­
tem of programs. A second set of files is needed to store data on all money transac­
tions. Each month a new sequential transaction file is created containing the informa­
tion found in your checking account check register. For the month of January, the
file is called MONTHl. March is MONTH3, etc. You may keep "old" files on your
disk for other analyses you may want to do. Each month you will create a transaction
file, then process or "post" it to the BUDGET # file. Each sequential transaction file
entry includes the following information in the order shown:

C = CHECK N/DEPOSIT SLIP N
Y$ DATE (6)
W$ = PARTY TO WHOM CHECK IS DRAWN/SOURCE OF FUNDS (20)
A$ = ACCOUNT N (4)
D = DOLLAR AMOUNT

Notice that the format is set up to be used with deposits and payments and that
the transaction file includes more information than you will actually be using. This
file, however, can be used for other things as well, so all this information is included.

262 APPLE BASIC: DATA FILE PROGRAMMING

(a) Using the dataset information above as a guide,.write a program that allows you
to create the sequential monthly transaction file. Use your checkbook register or
your imagination for the monthly checks and deposits to enter in the file. Then
write the companion program to display MONTH#, using the "PRESS RETURN
TO CONTINUE" technique.

100 lIEM
110
120 lIEM
130 REI1
140 lIEM
15 D REI1
160 lIEM

DEPOSIT
170 lIEM
180 REI1
190 lIEM
200 lIEI1
210 lIEM
220 lIEI1
230 lIEM

ClIEATE A SEO.FILE OF CHECKBOOK TlIANSACTIONS FOil EACH MONTH OF YEAlI

VAlIIABLES USED
DS:CONTlIOL D
C=CHECK • 011 DEPOSIT SLIP. (3 CHAlI)
Y5=DATE (XX-XX-XX) (S)
WS=PAlITY TO WHOI1 CHECK IS WlIITTEN 011 SOUlICE OF FUNDS FOil

(20 CHAR.I1AX.)
NS=ACCOUNT NUMBElI (4 CHAlI)
D=DOLLAlI AI10UNT
11 = USElI ENTElIED MONTH NUMBElI FOil FILE NAME
FS:FILE NAME
lIS=USElI lIESPONSE VAlIIABLE

SEO.FILE NAME:MONTH'
DATASET FOllHAT: C,YS,WS,NS,D

(a)
100
110
HO
130
140
150
160

170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
390
390
400
410
420
430
440
450
460
470
490

RANDOM ACCESS FILE APPLICATIONS 263

REM READ MONTHLY TRANSACTION FILES

REM
REM
REM
REM
REM
DEPOSIT
REM
REM
REM
REM

VAH UBLES USED
DS:CONTROL D
C=CHECK • OR DEPOSIT SLIP. 13 CHAR)
YS=DATE 18 CHAR)
VS=PARTY TO VHOK CHECK IS VRITTEN OR SOURCE OF FUNDS FOR

120 CHAR.MAlf.)
AS=ACCOUNT • 14 CHAR)
D=DOLLAR AMOUNT
M=USER ENTERED MONTH NUMBER
FS =F ILE NAME

REM
REM
REM

RS=INPUT VARIABLE FOR PRESS RETURN TO CONTINUE
SEa. FILE NAME: MONTH.
DATASET FORMAT:C,YS,VS,AS,D

REM INITIALIZE

LET D$ CHRS (4)
INPUT "VHAT MONTH 'Il=JAN,Z=FEB,ETC)?";M
IF Mil OR M) 12 THEN PRINT "ENTER 1 TO 12 ONLY.'" GOTO zeo
REM OTHER DATA ENTRY TESTS GO HERE
LET FS = "MONTH" + STRS (1)
PRINT D$;"OPEN"FS

REM READ AND DISPLAY

ONERR GOTO 470
PRINT D$;"R£AD"FS
INPUT C,YS,VS,AS,D
PRINT D$
PRINT C: PRINT YS: PRINT VS: PRINT AS: PRINT D
PRINT: PRINT
INPUT "PRESS RETURN FOR NEXT DISPLAY";RS
HOME : GOTO 370

REM CLOSE FILE

PRINT DS;"CLOSE"
PRINT: PRINT "ALL TRANSACTIONS DISPLAYED."

264 APPLE BASIC: DATA FILE PROGRAMMING

Let's review the application. Each year, create random access files (BUDGET#)
that contain the beginning status of all your personal accounts. This status includes a
yearly budget estimate. Each month create a sequential file (MONTH#) using the in­
formation found in your checkbook register. After the MONTH# file is completed,
process or post it to the BUDGET# files. Periodically, you can print a status report
of the BUDGET# files.

The task is to write the program that processes the monthly transaction file.
Here is the introductory module with the file initialization module:

100
110
lZO
130
140
ISO
160
170
180
190
ZOO
ZIO
ZZO
Z30
HO
ZSO
Z80
Z70
Z 80
190
300
310
3Z0
330
340
3S0
360
370
380
390
400
410
420
430
UO

(a)

REM PERSONAL MONEY MANAGEMENT
REM SEQ/RA FILE APPLICATION

REM VARIABLES USED
REM NS=NlS~ACCOUNT CHART NUMBER(4)
REM AS : ACCOUNT NAME (ZO)
REM YS = DATE (8)
REM WS = CHECK WRITTEN TO/SOURCE OF DEPOSIT (ZO)
REM M USER ENTERED MONTH NUMBER (USE 1 FOR JAN, Z FOR FEB, ETC)
REM N = BUDGET FILE NUMBER (EXTRACTED FROM NS)
REM C ~ CHECK. OR DEPOSIT SLIP.
REM D = DOLLAR AMT. OF CHECK OR DEPOSIT
REM B S = BUDGETED AMT. (8)
REM ES = AMT. EXPENDED OR EARNED TO DATE (8)
REM F$ = SEQ FILE NAME
REM FIS = R-A FILE NAME
REM Rl = RECORD NUMBER (EXTRACTED FROM NS)
REM DS = CONTROL D

REM FILES USED
REM MONTH. = SEQ/TRANSACTION FILE .• IS USER SELECTED
REM DATASET FORMAT: C,YS,W',AS,D
REM BUDGET. = R-A FILE .• IS EXTRACTED FROM N.
REM AND CHANGES WITH EACH TRANSACTION
REM DATASET FORMAT: N',AS,BS,E'
REM RECORD LENCTH: 44 BYTES

REM FILE INITIALIZATION

LET D. = CHR. (4)
INPUT "WHAT IS THE MONTH NUMBER TO BE PROCESSED?";M
REM DATA ENTRY TESTS
LET F. = "MONTH" + STR. (M)
PRINT: PRINT "WORK INC"

In lines 400 through 420, if the user enters 3 for M, what is the file name F$ in

line 420? ________________ __

(a) MONTH3.

450
460
470
480
490
50"0
510
520
530
540
550
560
570
580
590

RANDOM ACCESS FILE APPLICATIONS 265

REM READ SED FILE TRANSACTIONS

PRINT DS;"OPEN"FS
ONERR COTO no
PRINT DS;"READ"FS
INPUT C,YS,WS,NS,D
PRINT Ds
POXE 216,0: REM TURN OFF ERROR TRAP

REM EXTRACT FILE '/INITIALIZE R-A FILE

LET F1S • "BUDCET". STRs IN)
PRINT DS;"OPEN"FlS",L44"

line 480 tests for the end of the transaction me. When all datasets in that me have
been read, the program terminates. Line 500 reads an entire dataset from the trans­
action me. Then the me number is "extracted" from the account number, to be used
in line 570 to make the complete BUDGET me name. Complete line 560, extracting
the me number from the account number (it's the first digit of N$).

(a) 560 _____________________ _

(a) S6D LET N VAL I LEFTS IN"l»

The next operation extracts the record number from the account number (the
last three digits of N$).
Fill in line 620.

(a) 100 REM ElTRACT/CONVERT R·ECORD ,

(a)

810
820
830

100
610
no
830

REM EXTRACT/CONVERT RECORD'

LET Rl. VAL I RICHT. (N',3»

(Warning: Don't forget the double closing parentheses.)

The remaining modules accesses the proper random access file and record, up­
dates the amount expended/earned, and prints the new value back to the file.

266 APPLE BASIC: DATA FILE PROGRAMMING

(a)

(a)

Complete this module (lines 660, 670, 680, 720, 740, 780, 790, and 800.)

640
650
680
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
8 50
860
870
880
890
900
910
920
930

640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
9%0
930

REl'I READ R-A FILE RECORD

REl'I l'IAXE CHANGES TO DATA

LET E E + D

REl'I UPDATE BUDGET. FILE

REl'I CLOSE BUDGET FILE

PRINT DS; "CLOSE"F 1$

REl'I RETURN FOR NEXT TRANSACTION

GOTO 480

REl'I CLOSE FILE

PRINT DS;"CLOSE"
PRINT : PRINT "TRANSACTIONS POSTED"

REl'I READ R-A FILE RECORD

PRINT Df;"READ"Flf".R";Rl
INPUT NIf.A'.Bf.ES
PRINT DS

REl'I l'IAXE CHANGES TO DATA

LET E = VAL (Ef>
LET E '" E + D
LET E. STRS (E>

REl'I UPDATE BUDGET. FILE

PRINT D.; .. WRITE .. FI R .. RI
PRINT Nl.: PRINT AS: PRINT BS: PRINT ES
PRINT D.

REl'I CLOSE BUDGET FILE

PRINT D.; "CLOSE"F1$

REM RETURN FOR NEXT TRANSACTION

GOTO 480

REM CLOSE FILE

PRINT Df;"CLOSE"
PRINT: PRINT "TRANSACTIONS POSTED"

RANDOM ACCESS FILE APPLICATIONS 267

This completes the program. It will continue reading checking transactions and
processing them until the end of the transaction file is reached, at which point files
are closed and the program ends. This program keeps your disk drive working, but
does nothing on your screen or printer.

Enter and RUN the program, then read and display the BUDGET# files to see
the posted and updated accounts.

100
110
120
130
140
ISO
160
170
180
190
ZOO
210
120
Z30
140
zso
ZSO
170
zao
%90
300
310
3Z0
330
340
3S0
360
370
380
390
400
410
4Z0
430
440
450
460
470
460
490
HO
SID
SZO
S30
S40
S SO
S60
S70
SSO
590
600
610
620
630
640
650
660
670
6S0
690

REM PERSONAL MONEY MANAGEMENT
REH SEQ/RA FILE APPLICATION

REM VARIABLES USED
REM NS~NlS:oACCOUNT CHART NI/MBER(4)
REM AS z ACCOUNT NAME (20)
REM YS z DATE (8)
REM WS = CHECK WRITTEN TO/SOURCE OF DEPOSIT (20)
REM H z USER EHTERED MOHTH NUMBER (USE I FOR JAH, 2 FOR FEB, ETC)
REM N = BUDGET FILE NUMBER (EXTRACTED FROH HS)
REM C = CHECK. OR DEPOSIT SLIP •
REM D = DOLLAR AMT. OF CHECK OR DEPOSIT
REM BS • BUDGETED AMT. (S)
REM ES a AMT. EXPENDED OR EARNED TO DATE (S)
REH FS • SEQ FILE HAHE
REM FIS = R-A FILE NAME
REM Rl = RECORD NUHBER (EXTRACTED FROH NS)
REM D. • CONTROL D

REM FILES USED
REM MONTH •• SEQ/TRANSACTION FILE .• IS USER SELECTED
REH DATASET FORHAT: C,YS,WS,AS,D
REM BUDGET •• R-A FILE .• IS EXTRACTED FROM NI
REH AND CHANGES WITH EACH TRANSACTION
REM DATASET FORMAT: NS,AS,BS,ES
REH RECORD LENGTH: 44 BYTES

REM FILE INITIALIZATION

LET DS = CHRS (4)
INPUT "WHAT IS THE MONTH NUMBER TO BE PROCESSED?";M
REM DATA ENTRY TESTS
LET FS = "MONTH" + STU (H)
PRINT PRINT "WORKING"

REM READ SEQ FILE TRANSACTIONS

PRINT DS; "OPEN"FS
ONERR GOTO 920
PRINT D';"READ"FS
INPUT C,YS,WS,NS,D
PRINT DS
POKE ZI6,O: REM TURN OFF ERROR TRAP

REM EXTRACT FILE ./INITIALIZE R-A FILE

LET N = VAL (LEFTS (NS,l»
LET FIS z "BUDGET" + STRS (N)
PRINT DS;"OPENuFlS",L44"

REM EXTRACT/CONVERT RECORD.

LET Rl = VAL (RIGHTS (NS,3»

REM READ R-A FILE RECORD

PRINT D';"READ"FIS",R";Rl
INPUT NlS,AS,BS,ES
PRIHT D.

continued on next page

268 APPLE BASIC: DATA FILE PROGRAMMING

700
710
no
730
740
7 SO
760
770
780
790
800
810
8Z0
830
840
850
B60
870
8BO
890
900
910
9Z0
930

(a)

REM MAKE CHANCES TO DATA

LET E = VAL (ES)
LET E " E + D
LET E. STRS (E)

REM UPDATE BUDCET. FILE

PRINT DS;"WRITE"F1S".R"Rl
P R I NT N 1 S: P R I NT AS: P R I NT as: P R I NT E S
PRINT DS

REM CLOSE BUDCET FILE

PRINT DS;"CLOSE"Fl'

REM RETURN FOR NEXT TRANSACTION

COTO 480

REM CLOSE FILE

PRINT DS;"CLOSE"
PRINT : PRINT "TRANSACTIONS POSTED"

Only one small component of this application has been completed. List the other
programs you would need to make a complete personal finance management
system?

(a) Programs:
1. Edit MONTH# file for entry errors
2. Print BUDGET# file accounts
3. "Exception report" showing over budget accounts or projected over budget

accounts

We have found random access files much easier to use than sequential files. But
let's not forget that sequential files have their place in computing. With the knowledge
gained from this book, you should now be able to read the reference manual for your
computer with new understanding. You should also be able to write your own data file
programs and read programs written by others.

RANDOM ACCESS FILE APPLICATIONS 269

CHAPTER 7 SELF -TEST

1. The first application in this chapter was an inventory control system. Before you
continue you may want to review the system description so you are familiar with
the contents of BUSINESS INVENTORY and POINTER.

To this system is added a third file; a sequential transaction file in which is
placed the data regarding each transaction that affects the inventory. Two types
of transactions will affect inventory:

no REM
110 REM
lZO REM
130
140 REM
ISO REM
160 REM
170 REM
180 REM
190 REM
200 REM
110 REM
ZZO REM
230 REM
240

Type 1 - units are added to inventory.
Type 2 - units are taken from inventory.

Data is recorded in the sequential transaction file in this format.

T = TRANSACTION TYPE (1 OR 2)
Y$ = DATE
1$ = INVOICE # OR RECEIPT #
N$ = PROD # (4)
Q1 = QUANTITY ADDED OR DEDUCTED

Write a program to create the transaction file described above. Name this
sequential file BUSINVTRANSACT.

PROGRAM CREATES A SE~ FILE
OF INVENTORY CHANGES FOR FILE
NAMED 'BUSINESS IVENTORY'

VARIABLE LIST
T=TRANSACTION TYPE(1 OR 2)
YS=DATE (XX-XX-XX)
IS:INVOICE OR RECEIPT NUMBER
NS=PRODUCT • (4 CHAR)
Ol=OUANTITY ADDED OR SUBTRACTED FROM INVENTORY (3 CHAR MAX)
DhCONTROL D

FILES USED
SE~ FILE NAME: BUSINVTRANSACT
DATASET FORMAT: T,YS,IS,NS,Ol

270 APPLE BASIC: DATA FILE PROGRAMMING

RANDOM ACCESS FILE APPUCATIONS 271

2. Write the companion program to display the contents of BUSINVTRANSACT.

100
110
aD
130
ltD
150
l&O
170
180
190
ZOO
ZIO
no

REM DISPLAY CONTENTS OF BUSINVTRANSACT

REM VARIABLES USED
REM T.TRANSACTION TYPE
REM YhDATE
REM IS=INVOICE OR RECEIPT I
REM NSaACCOUNT NUMBER
REM Ql=QUANTITY ADDED OR SUBTRACTED
REM DS=CONTROL D
REM RS=USER RESPONSE VARIABLE
REM SEQ FILE USED:BUSINVTRANSACT
REM DATASET FORMAT:T,YS,IS,NS,Ql

lRUN
TRANSACTION TYPE: Z
DATE: Z-H-83
INVOICE OR RECEIPT I: S73846
ACCOUNT I: 1234
QUANTITY ADDED OR SUBTRACTED: 10

PRESS RETURN TO CONTINUE

272 APPLE BASIC: DATA FILE PROGRAMMING

RANDOM ACCESS FILE APPLICATIONS 273

3. Write a program to post the inventory changes in BUSINVTRANSACT to
BUSINESS INVENTORY.

100 REM PROCESS BUSINVTRANSACT FILE TO BUSINESS INVENTORY IILE
lJO
lZO REM VARIABLE LIST
130 REM DS~CONTROL D
140 REM RS=USER RESPONSE VARIABLE
150 REM NS=Nl$=NZ$:PRODUCT I (4 CHAR)
160 REM PS=PROD.DESCRIPT. (ZO CHAR MAX)
170 REM S$=SUPPLIER NAME (ZO CHAR MAX)
180 REM L=REORDER POINT (3 CHAR)
190 REM Y=REORDER QUANTITY (3 CHAR)
ZOO REM Q=QUANITIY IN STOCK (3 CHAR)
Z10 REM Ql=QUANTITY ADDED OR SUBTRACTED FROM STOCK (3 CHAR)
ZZO REM C=COST (6 CHAR)
Z30 REM U=UNIT SELLING PRICE (6 CHAR)
Z40 REM Rl=RECORD COUNT
Z50 REM T=TRANSACTION TYPE
Z60 REM YS=TRANSACTION DATE (XX-XX-XX)
Z70 REM I$=INVOICE OR RECEIPT NUMBER
Z80
Z90 REM FILES USED
300 REM SEQ FILE NAME:POINTER
310 REM DATASET FORMAT:NS,Rl
3Z0 REM R-A FILE NAME:BUSINESS INVENTORY
330 REM DATASET FORMAT:NS,PS,SS,L,Y,Q,C,U
340 REM FILE LENGTH:75 BYTES
350 REM SEQ FILE NAME:BUSINVTRANSACT
360 REM DATASET FORMAT:T,YS,IS,NlS,Ql
370

274 APPLE BASIC: DATA FILE PROGRAMMING

RANDOM ACCESS FILE APPUCATIONS 275

4. Write a program that, after all the transactions have been processed, will search
the entire BUSINESS INVENTORY file and display a report of products that
have fallen below the reorder point and need reordering.

100 REM
110
HO REM
130 REM
140 REM
ISO REM
160 REM
170 REM
190 REM
190 REM
ZOO REM
Z10 REM
ZZO REM
230 REM
240 REM
Z5D REP!
HD REM
270 REM
Z80 REM
aD

JRUN

SEARCH BUSINESS INVENTORY FILE FOR REORDERS AND DISPLAY REPORT

VARIABLES USED
NS.PRODUCT • (4 CHAR)
PS.PROD.DESCRIPT. (20 CHAR MAJ)
SS.SUPPLIER (20 CHAR MAX)
L=REORDER POINT (3 CHAR)
Y=REORDER OUANITIY
O=QUANTITY IN STOCK
C=COST
U=UNIT SELLING PRICE
DS=CONTROL D
J=FOR NEJT LOOP CONTROL VARIABLE
Rl=RECORD COUNT
RS.USER RESPONSE VARIABLE

F lLES USED
R-A FILE NAME:BUSINESS INVENTORY
DATASET FORMAT:NS,PS,SS,L,Y,O,C,U
FILE LENGTH:7S BYTES

ACCOUNT.: H34
SUPPLIER: COVEN INC
REORDER POINT: 3S
REORDER QUANTITY: 50
QUANITIY NOW IN STOCK: 30
COST: .45
UNIT SELLING PRICE: 1.37S

PRESS RETURN TO CONTINUE.

276 APPLE BASIC: DATA FILE PROGRAMMING

1.
100
110
HO
130
140
150
lIiO
17D
180
110
20D
ZlD
UO
no
Z4D
UO
ZlO
no
ZlO
ZlO
30D
3lD
uo
330
3U
350
380
370
380

310
400
flO
UO
flO
440
450
410
470
480
480
500
510
520
530
540

550
51D
S70
580
580
100
IlD

RANDOM ACCESS FILE APPLICATIONS 277

Answer Key

REM PROGRAM CREATES A SEO FILE
REM OF INVENTORY CHANCES FOR FILE
REM NAMED 'BUSINESS IVENTORY'

REM VARIABLE LIST
REM T.TRANSACTJON TYPE(1 OR Z)
REM Y •• DATE (11-11-11)
REM I •• INVOICE OR RECEiPT NUMBER
REM N •• PRODUCT • (4 CHAR)
REM 01.0UANTITY ADDED OR SUBTRACTED FROM INVENTORY (3 CHAR MAl)
REM D'.CONTROL D
REM FILES USED
RE" SEO FILE NAME: BUSINVTRANSACT
IEM DATASET FOR"AT: T.Y'.I'.N'.Ol

RE" INITIALIZE

LET D.. CHR. (4)
PRINT DI;"OPEN BUSINVTRANSACT"
PRINT Dt; "DELETE BUSINVTRANSACT"
PRINT D.; "OPEN BUSINVTRANSACT"

RE" DATA ENTRY

PRINT "TRANSACTION CODES:"
PRINT" ENTER 'I' FOR UNITS ADDED TO INVENTORY."
PRINT" ENTER 'Z' FOR UNITS TUEN FROM INVENTORY."
INPUT "ENTER TRANSACTION TYPE: ";T
IF T () 1 AND T () Z THEN PRINT: PRINT CHRI (7); "ENTER THE
DIGITS 1 OR Z ONLY.": PRINT: GOTO 370
INPUT "ENTER TRANSACTION DATE:";YS
RE" DATA ENTRY TESTS CO HERE
INPUT "ENTEI INVOICE OR RECEIPT ':";1'
RE" DATA ENTRY TESTS CO HERE
INPUT "ENTER PRODUCT. (4 CHAR):";N'
RE" DATA ENTRY TESTS CO HERE
INPUT "ENTER OUANTITY:";Ol
RE" DATA ENTRY TESTS CO HERE

REM WRITE TO FILE

PRINT Dt;"WRITE BUSINVTRANSACT"
PRINT T: PRINT YI: PRINT II: PRINT N.: PRINT 01
PRINT D.
INPUT "MORE TRANSACTIONS(Y OR N)P";R'
IF R. () "Y" AND R. () "N" THEN PRINT CHR. (7);"PLEASE ENTER 'Y'
FOR YES OR 'N' FOR NO.": PRINT: COTO 530
IF II • HY" THEN HOME : GOTO 340

REM CLOSE FILES

PRINT D';"CLOSE"
PRINT: PRINT "FILE CLOSED."
END

278 APPLE BASIC: DATA FILE PROGRAMMING

2.
100
110
120
130
140
150
180

, 170
180
190
ZOO
ZIO
ZZO
Z30
Z40
Z50
260
Z70
zeD
ZlO
300
310
3Z0
330
340
350
360
370
380
390
400
410
4Z0
430
440
450
460
470
480
490
500
510

REM DISPLAY CONTENTS OF BUSINVTRANSACT

REM VARIABLES USED
REM T=TRANSACTION TYPE
REM YhDATE
REM IS=INVOICE OR RECEIPT.
REM NS=ACCOUNT NUMBER
REM Ql=QUANTITY ADDED OR SUBTRACTED
REM DS=CONTROL D
REM RS=USER RESPONSE VARIABLE
REM SEQ FILE USED:BUSINVTRANSACT
REM DATASET FORMAT:T,YS,IS,NS,Ql

REM INITIALIZE

LET DS.. CHRS (4)
PRINT DS;HOPEN BUSINVTRANSACT"

REM READ & DISPLAY

ONUR COTO 440
PRINT DS;"READ BUSINVTRANSACT"
INPUT T,YS,IS,NS,Ql
PRINT DS
PRINT "TRANSACTION TYPE: ";T
PRINT "DATE: ";YS
PRINT "INVOICE OR RECEIPT .: "; IS
PRINT "ACCOUNT .: ";NS
PRINT "QUANTITY ADDED OR SUBTRACTED: ";Ql
PRINT: INPUT "PRESS RETURN TO CONTINUE";RS
PRINT : COTO 310

REM END OF FILE ERROR TRAP

IF PEEX (HZ) .. 5 THEN PRINT: PRINT "CONTENTS DISPLAYED": COTO 490
PRINT: PRINT "UNUSUAL ERROR. PROCRAPI TERPIINATED.": COTO 490

REM CLOSE FILE

PRINT DS;"CLOSE"
PRINT "FILE CLOSED"
END

3. 100
110
120
130
140
ISO
160
170
180
190
200
UO
220
230
ZtO
UO
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
4f0
450

460
470
480
480
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
6811
670
680
690
700
710

no
730
740
750
760
770

780
790

800
810
820
830
840
850

RANDOM ACCESS FILE APPLICATIONS 279

REM PROCESS BUSINVTRANSACT FILE TO BUSINESS INVENTORY FILE

REM VARIABLE LIST
REM DS=CONTROL 0
REM RS=USER RESPONSE VARIABLE
REM NS=NlS=N2S=PRODUCT • (4 CHAR)
REM PS.PROD.DESCRIPT. (20 CHAR MAl)
REM SS=SUPPLIER NAME (20 CHAR MAX)
REM L=REORDER POINT (3 CHAR)
REM Y=REORDER QUANTITY (3 CHAR)
REM O.OUANITIY IN STOCX (3 CHAR)
REM 01.0UANTITY ADDED OR SUBTRACTED FROM STOCK (3 CHAR)
REM C=COST (6 CHAR)
REM U.UNIT SELLING PRICE (6 CHAR)
REM RI-RECORD COUNT
REM T=TRANSACTION TYPE
REM YS.TRANSACTION DATE (11-11-11)
REM IS=INVOICE OR RECEIPT NUMBER

REM FILES USED
REM SE~ FILE NAME:POINTER
REM DATASET FORMAT:NS,Rl
REM R-A FILE NAHE:BUSINESS INVENTORY
REH DATASET FORMAT:NS,PS,SS,L,Y,O,C,U
REM FILE LENGTH:75 BYTES
REM SE~ FILE NAHE:BUSINVTRANSACT
REH DATASET FORMAT:T,YS,IS,NlS,Ol

REM INITIALIZE

HOME : PRINT "IoIORKING"
LET DS. CHRS (4)
PRINT D.;"OPEN BUSINESS INVENTORY,L75"
PRINT DS;"OPEN BUSINVTRANSACT"

REM READ ONE BUSINVTRANSACT DATASET AND FIND CORRESPONDING RECORD.
FROM POINTER

ONERR GOTO 790
PRINT OS; "READ BUSINVTRANSACT"
INPUT T,Y',I',NlS,Ol
PRINT DS
ONERR GOTO 770
PRINT DS;"OPEN POINTER"
PRINT DS; "READ POINTER"
INPUT N',Rl
PRINT DS
IF NS = NH THEN PRINT DS; "CLOSE POINTER": GOTO 610
GOTO 530

REM FIND AND CHANGE 0 IN R-A FILE

POXE 216,0: REM TURN OFF ERROR TRAP
PRINT DS;"READ BUSINESS INVENTORY,R"Rl
INPUT N2',PS,S',L,Y,O,C,U
PRINT OS
IF T - 1 THEN LET 0 • 0 + 01: GOTO 700
IF T 2 THEN LET 0 = 0 - 01: GOTO 700

REM IoIRITE UPDATED DATASET TO R-A FILE

PRINT DS;"IoIRITE BUSINESS INVENTORY,R"RI
PRINT N2S: PRINT PI: PRINT S5: PRINT L: PRINT Y: PRINT Q: PRINT C;
PRINT U
PRINT Ds
GOTO 470

REM ERROR TRAPS FOR SE~ FILES

IF PEEK (222) .5 THEN PRINT: PRINT CHRS (7);"ACCOUNT. REFERENCED
IN BUSINVtUNSACT FILE NOT FOUND IN POINTER FILE. PROGRAM TERMINATED.";
PRINT; GOTO 830
PRINT: PRINT CHRS (7);"UNUSUAL ERROR. PROGRAM TERMINATED.": GOTO 830
IF PEEK (222) = 5 THEN PRINT; PRINT "ALL TRANSACTIONS POSTED.";
GOTO 830

REM CLOSE FILES

PRINT DS;"CLOSE"
PRINT "FILES CLOSED"
END

280 APPLE BASIC: DATA FILE PROGRAMMING

4.

100
110
120
130
140
150
160
170
180
190
200
ZIO
Z20
230
240
250
260
Z70
280
Z90
300
310
320
330
340
350

3&0
370
380
390
400
410
420
430
440
450
460
470
480
490
500
SID
SZO
S30
540
550
580
570
580
590
600
610
620
630
640

REM SEARCH BUSINESS INVENTORY rILE FOR REORDERS AND DISPLAY REPORT

REM VARIABLES USED
REM N.=PRODUCT • (4 CHAR)
REM PS=PROD.DESCRIPT. (20 CHAR MAX)
REM SS=SUPPLIER (20 CHAR MAX)
REM L=REORDER POINT (3 CHAR)
REM Y=REORDER OUANITIY
REM O=OUANTITY IN STOCK
REM C=COST
REM U=UNIT SELLING PRICE
REM DS=CONTROL D
REM X=FOR NEXT LOOP CONTROL VARIABLE
REM R1=RECORD COUNT
REM RS=USER RESPONSE VARIABLE
REM FILES USED
REM R-A FILE NAME:BUSINESS INVENTORY
REM DATASET FORMAT:NS,PS,SS,L,Y,O,C,U
REM FILE LENGTH:7S BYTES

REM INITIALIZE

LET DS CHRS (4)

PRINT OS;"OPEN BUSINESS INVENTORY,L7S"

REM READ ONE DATASET, DETERMINE IF INVENTORY IS BELO~ REEORDER
POINT

PRINT DS;"READ BUSINESS INVENTORY,RO"
INPUT R1
PRINT DS
FOR X ,. 1 TO RI
PRINT DS;"READ BUSINESS INVENTORY,R"X
INPUT NS,PS,SS,L,Y,O,C,U
PRINT DS
IF 0 (L THEN GOSUB 500
NEXT X
GOTO 820

REM

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
HOME

REM

SUBROTUINE TO PRINT REPORT

: PRINT "ACCOUNT .: ";NS
"SUPPLIER: ";SS
"REORDER POINT: ";L
"REORDER OUANTITY: ";Y
"OUANITIY NO~ IN STOCK: ";0
"COST: ";C
"UNIT SELLING PRICE: ";U
: INPUT "PRESS RETURN TO CONTINUE. ";RS

RETURN

CLOSE FILES

PRINT DS;"CLOSE"
PRINT: PRINT "REORDER DISPLAY COMPLETED AND FILE CLOSED."
END

Final Self-Test

1. Write a program to create a sequential disk me named PHONEl, containing the
following data concatenated into one string in fields as indicated:

Last name (fifteen character maximum)
firsLname (fifteen character maximum)
area code (three digits)
phone number (eight characters, including hyphen between third and

fourth character)

100 REM
110
no REM
130 REM
140 REM
ISO REM
180 REM
170 REM
180 REM
190 REM
ZOO REM
Z10 REM
ZZD REM
230

JRUN

CREATE SED FILE PHONEIINAME&. DIRECTORY)

VAIl !ABLES USED
LS.LAST NAME lIS CHAR FIELD)
FS.FIRST NAME lIS CHAR FIELD)
AS.AREA CODE 13 CHAR FIELD)
NS.PHONE • 18 CHAR CODE)

CS.LS+FS+AS+NS ICONCATENATED DATASET)
DSaCONTROL D
RS.USER RESPONSE VARIABLE

FILE USED
SED FILE NAME:PHONEI
DATASET FORMAT:CS

TYPE 'STOP' IF NO MORE ENTRIES.

ENTER LAST NAME:BROWNING
ENTER FIRST NAME:HAIWELL
ENTER AREA CODE:440
PHONE NUMBER FORHAT: 999-9999
WHAT IS THE NUMBER?lZ3-43Z1
CHECK FOR MISTAKES!
LAST NAME: BROWNING
FIRST NAME: MAXWELL
PHONE NUMBER: (440) 123-43Z1

IS THE INFO CORRECTlY OR N)?

281

282 APPLE BASIC: DATA FILE PROGRAMMING

FINAL SELF-TEST 283

284 APPLE BASIC: DATA FILE PROGRAMMING

2. Write a program to display all the datasets in PHONE 1 , with the data items
separated (undo concatenation) and displayed.

100 IIEM
110
HO II EM
130 IIEM
140 IIEM
150 II EM
16 0 REM
170 IIEM
180

DISPLAY PHONEI FILE CONTENTS

V A1I IABLES USED
ChDATASET
1I$=USEII IIESPONSE VAIIIABLE
Os..CONTIIOL D

SEQ FILE NAME: PHONEI
DATASET FOIlMAT: CS

FINAL SELF -TEST 285

286 APPLE BASIC: DATA FILE PROGRAMMING

3. Write a program that will select and display all names and numbers in a user­
selected area code from PHONE!, with the option to continue or STOP when
the display is complete.

100 REM
110
HO REM
130 REM
140 REM
150 REM
160 REM
170 REM
180

SELECT PHONEI NUMBERS BY AREA CODE AND DISPLAY

VARIABLES USED
CSaDATASET
RS.USER RESPONSE VARIABLE
AS=USER SELECTED AREA CODE

SEQ FILE NAME: PHONEI
DATASET FORMAT:CS (FIELDED STRING 15+15+3+8 CHARACTERS)

FINAL SELF·TEST 287

288 APPLE BASIC: DATA FILE PROGRAMMING

4. Write a program to change each dataset in BUSINESS INVENTORY by increasing
the unit sales price of each item by 10 percent. The program should display the
product number, the old price, and the new price.

100 REM INCREASE UNIT SELLING PRICE IN BUSINESS INVENTORY FILE'
DISPLAY OLD AND NEW PRICE

110
120 REM
130 REM
ltD REM
150 REM
180 REM
170 REM
180 REM
185 REM
190 REM
ZOO REK
210 REM
220 REK
230 REM
240 REK
US REM
250 REK
260 REM
270

JRUN
PROD.
1234
1235

VARIABLES USED
NlaACCOUNT NUKBER
PI.PROD.DESCRIPT.
ShSUPPL I ER NAKE
L .. REORDER POINT
YaREORDER AKOUNT
Q.,QUANTITY IN STOCK
C"COST
U.OLD UNIT SELLING PRICE
U1=NEW UNIT SELL INC PRICE
RI .. USER RESPONSE VARIABLE
DI.CONTROL 0
Rl"RECORD COUNT
I"FOR NEIT LOOP CONTROL VARIABLE

I-A FILE NAKE: BUSINESS INVENTORY
DATASET FORKAT: NS,Pt,SS,L,Y,Q,C,U
FILE LENGTH: 75 BYTES

OLD S
1.5125
.9559

NEW $
1.68375
1. 05149

CHANGES DISPLAYED AND FILE CLOSED

FINAL SELF·TEST 289

290 APPLE BASIC: DATA FILE PROGRAMMING

1.

100
110
lZO
130
140
150
160
170
180
190
200
210
:no
230
240
250
260
270
zeD
290
300
310
320
330
340
350
360

370

380
390
400
410

410

430
440
450
480

470
480
490
500

SID

S20
530
540
SSO
560'
570
580
590
600

610
no
630
640
650

Answer Key

REM CREATE SEQ FILE PHONE1(NAME&' DIRECTORY)

REM VARIABLES USED
REM LS.LAST NAME (15 CHAR FIELD)
REM FScFIRST NAME (15 CHAR FIELD)
REM AS.AREA CODE (3 CHAR FIELD)
REM N'cPHONE • (8 CHAR CODE)
REM CS.LS+FS+AS+NS (CONCATENATED DATASET)
REM DS.CONTROL D
REM RS.USER RESPONSE VARIABLE
REM FILE USED
REM SEQ FILE NAME:PHONEI
REM DATASET FORMAT:CS

REM INITIALIZE

LET DS. CHRS (4)
PR INT DS; "OPEN PHONE I"
PRINT DS;"DELETE PHONEl"
PRINT DS;"OPEN PHONE1"

REM DATA ENTRY

HOME: PRINT "TYPE 'STOP' IF NO MORE ENTRIES.": PRINT
INPUT "ENTER LAST NAME:";LS
IF U • "STOP'" THEN 760
IF LEN (LS> • 0 THEN PRINT CHRs (7); "NO ENTRY MADE. PLEASE ENTER AS
INDICATED.": PRINT: COTO 340
IF LEN fL$)) 15 THEN PRINT CHR. (7); "LIMIT NAME TO 15 CHAR. AND

REENTER. ": PRINT: COTO 340
IF LEN IL.) (15 THEN LET U = U + " ": COTO 380

INPUT "ENTER FIRST NAHE:";F'
IF LEN (U) • 0 THEN PRINT CHR. (7);"NO ENTRY MADE. PLEASE ENTER AS
REQUESTED.": PRINT.: COTO 400
I F LEN (F S>) 15 THEN PRINT CHR. (7); "L IMIT NAME TO 15 CHAR. AND

REENTER. ": PR INT : COTO 400
IF LEN (Ft) (15 THEN LET Ft z Ft + " ": COTO 430

INPUT "ENTER AREA CODE:";AS
IF LEN (AS) (> 3 THEN PRINT CHRS (7);"PLEASE ENTER 3 DICIT AREA
CODE ONLY.": PRINT: COTO 450

PRINT "PHONE NUMBER FORMAT: 999-9899"
INPUT "WHAT IS THE NUMBER?";N.
IF LEN (N') (> 8 THEN PRINT CHR. (7);"ENTRY ERROR.": PRINT: COTO
480
IF ABC (MIDS (N',4,l» () 45 THEN PRINT CHRS (7);"ENTRY ERROR.
USE HYPHEN AFTER,FIRST 3 DICITS.": PRINT: COTO 480

REM DISPLAY DATA FOR VERIFICATION BEFORE WRITINC TO FILE

HOME: PRINT "CHECK FOR MISTAKES!"
PRINT "L.AST NAI'fE: ·";LS
PRINT "FIRST NAME: ";F'
PRINT "PHONE NUMBER: (";A';") ";N'
PRINT: INPUT "IS THE INFO CORRECTlY OR N>1";R'
IF AS (> "Y" AND AS (> "N" THEN PRINT CHAS (7);"PLEASE ENTER 'Y'
FOR YES OR 'N' FOR NO.": PRINT: COTO 590
IF RS • "Y" THEN 880
IF RS " "N" THEN PRINT: PRINT "PLEASE REENTER THE ENTIRE DATASET."
INPUT "PRESS 'RETURN' WHEN READY. ";RI
COTO 330

660
670
680
890
700
710
720
730
740
750
760
770
780

2.

100
110
120
130
140
150
160
170
180
190
200
ZIO
UO
230
240
250
260
270
280
290
300
305
310
320
330
340
350
380
370

380
390
400
410
4Z0
430
440

REM CONCATENATE & WRITE DATASET

LET CI K LI + FI + AI + NI
PRINT DI;"WRITE PHONEl"
PRINT CI
PRINT DS
COTO 330

REM CLOSE FILE

PRINT D,;"CLOSE"
PRINT PRINT "FILE CLOSED"
END

REM DISPLAY PHONEI FILE CONTENTS

REM VARIABLES USED
REH CS=DATASET
REM RS=USER RESPONSE VARIABLE
REM DS=CONTROL 0
REM SED FILE NAME: PHONEI
REM DATASET FORHAT: CS

REM INITIALIZE

LET DS CHRS (4)

PRINT DS;"OPEN PHONEl"

READ AND DISPLAY

COTO 370
DS;"READ PHONEl"
CS
DS
"NAME: "; LEFTS (CS,3D)

FINAL SELF-TEST 291

REM

ONERR
PRINT
INPUT
PRINT
PRINT
PRINT
PRINT
PRINT

"PHONE: C"; MIDS (CS,31,3);") "; RICHTS (CS,B)
: INPUT "PRESS RETURN FOR NEXT DISPLAY";RI
: COTO 280

REM ERROR TRAP

IF PEEK (2H) " 5 THEN PRINT: PRINT "ALL NUMBERS DISPLAYED.": COTO
UO
PRINT CHRS (7);"UNUSUAL ERROR. PROCRAH TERMINATED. ": COTO 420

REM CLOSE FILE

PRINT DS;"ClOSE"
PRINT "FILE CLOSED"
END

292 APPLE BASIC: DATA FILE PROGRAMMING

3.
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
4BO
490
500
510
520
530
540

REM SELECT PHONE1 NUMBERS BY AREA CODE AND DISPLAY

REM VARIABLES USED
REM CS~DATASET
REM R.=USER RESPONSE VARIABLE
REM AS=USER SELECTED AREA CODE
REM SE~ FILE NAME: PHONEI
REM DATASET FORMAT:CS (FIELDED STRINC 15+15+3+B CHARACTERS)

REM INITIALIZE

LET DS CHRS (4)
PRINT DS;"OPEN PHONE1"

REM USER SELECTS AREA CODE

INPUT "ENTER AREA CODE FOR THIS DISPLAY:";AS
REM DATA ENTRY TESTS CO HERE

HOME : PRINT "AREA CODE SELECTED: ";AS
PRINT: PRINT "PRESS RETURN FOR NEXT DISPLAY"

REM READ AND DISPLAY SELECTED "S

ONERR COTO 470
PRINT DS;"READ PHONE1"
INPUT CS
PRINT DS
IF AS () MIDS (CS,31,3) THEN 360
PRINT LEFTS (Ct,30)
PRINT "(hi MID. (CS,31,3);") "; RICHT. (CS,B)
INPUT "";RS
COTO 360

REM ERROR TRAP

IF PEEX (222) = 5 THEN PRINT: PRINT "ALL DISPLAYED.": COTO 520
PRINT: PRINT "UNUSUAL ERROR. PROCRAM TERMINATED.": COTO SZO

REM CLOSE FILE

PRINT D';"CLOSE"
PRINT "FILE CLOSED"
END

4.
100

110
120
130
140
150
160
170
180
185
190
200
210
220
230
UD
U5
2'0
260
270
zeD
ZlO
300
310
320
330

340
350
360
370
380
390
400
410
UO
430
440
450
4&0
470

47~
480
UO
SOD
SID
610
620
630

FINAL SELF-TEST 293

REM INCREASE UNIT SELLING PRICE IN BUSINESS INVENTORY FILE &
DISPLAY OLD AND NEW PRICE

REM VARIABLES USED
REM N'.ACCOUNT NUMBER
REM PS.PROD.DESCRIPT.
REM S •• SUPPLIER NAME
REM L.REORDER POINT
REM Y.REORDER AMOUNT
REM OsOUANTITY IN STOCK
REM C.COST
REM U.OLD UNIT SELLING PRICE
REM UI-NEW UNIT SELLING PRICE
REM R •• USER RESPONSE VA~IABLE
REM D'.CONTROL 0
REM RlsRECORD COUNT
REM X.FOR NEXT LOOP CONTROL VARIABLE
REM R-A FILE NAME: BUSINESS INVENTORY
REM DATASET FORMAT: NS.PS.SS.L.Y.O.C.U
REM FILE LENGTH: 75 BYTES

REM INITIALIZE

LET DS.. CHRS (4)
PRINT OS; "OPEN BUSINESS INVENTORY.L7S"

REM READ DATA. INCREASE PRICE. DISPLAY PRICES. WRITE NEW DATA TO
FILE

PRINT .. PROD OLD NEW ...
PRINT D';"READ BUSINESS INVENTORY.RO"
INPUT Rl
PRINT OS
FOR X " 1 TO Rl
PRINT DS;"READ BUSINESS INVENTORY.R"X
INPUT N •• P'.SS.L.Y.O.C.U
PRINT D.
LET Ul • U • U •. 1
PRINT N •• U.Ul
PRINT D.;"WRITE BUSINESS INVENTORY.R"X
PRINT NS: PRINT P.: PRINT S': PRINT L: PRINT Y: PRINT 0: PRINT C:
PRINT Ul
PRINT D.
NUT X

REM CLOSE FILE

PRINT D.;"CLOSE"
PRINT: PRINT "CHANGES DISPLAYED AND FILE CLOSED"
END

APPENDIX A

ASCII CHARACTER CODES

DEC = ASCII decimal code
CHAR = ASCII character name

nla = not accessible directly from the APPLE II keyboard

DEC CHAR WHAT TO TYPE DEC CHAR WHAT TO TYPE

f/J NULL ctrl@
1 SOH ctrl A 26 SUB ctrl Z
2 STX ctrl B 27 ESCAPE ESC
3 ETX ctrl C 28 FS nla
4 ET ctrl D 29 GS ctrl shift-M
5 ENQ ctrl E 3f/J RS ctrl A

6 ACK ctrl F 31 US nla
7 BEL ctrl G 32 SPACE space
8 BS ctrl H or +- 33 !
9 HT ctrl I 34

1f/J LF ctrl J 35 # #
11 VT ctrl K 36 $ $
12 FF ctrl L 37 % %
13 CR ctrl M or RETURN 38 & &
14 SO ctrl N 39
15 SI ctrl 0 4f/J ((
16 DLE ctrl P 41))
17 DC1 ctrl Q 42 * *
18 DC2 ctrl R 43 + +
19 DC3 ctrl S 44
2f/J DC4 ctrl T 45
21 NAK ctrl U or~ 46
22 SYN ctrl V 47 I I
23 ETB ctrl W 48 f/J f/J
24 CAN ctrl X 49
25 EM ctrl Y 5f/J 2 2

294

ASCII CHARACTER CODES 295

DEC CHAR WHAT TO TYPE DEC CHAR WHAT TO TYPE

51 3 3 74 J J
52 4 4 75 K K
53 5 5 76 L L
54 6 6 77 M M
55 7 7 78 N N
56 8 8 79 0 0
57 9 9 8f/J P P
58 81 Q Q
59 82 R R
6f/J < < 83 S S
61 84 T T
62 > > 85 U U
63 ? ? 86 V V
64 @ @ 87 W W
65 A A 88 X X
66 B B 89 Y Y
67 C C 9f/J Z Z
68 D D 91 [n/a
69 E E 92 \ n/a
7f/J F F 93]] (shift-M)
71 G G 94
72 H H 95 n/a
73

APPENDIX B

LIST OF PROGRAMS

Chapter 4

Page 89 First example program to create a sequential data file.
SEQ file name: DEM01
dataset format: N$, G$, N

Page 92 This program creates a sequential file inventory of personal property items.
SEQ file name: PROPERTY
dataset format: T$, N, V

Page 96 Read/display the contents of PROPERTY.

Page 101 Program creating a sequential file of statistical data reflecting the quality of
goods coming out of some manufacturing process. Program then summarizes data and
displays results.
SEQ file name: QUALITY ASSURANCE
dataset format: N, V

Pages 103-104 This program creates within the program a set of data in a sequential
file without user data entry, then reads/displays the contents of the file.
SEQ file name: TEST
dataset format: A$

Chapter 4 Self-Test

Page 123, prob. 1a A general format program to create a file whose dataset is two
strings of data followed by two numeric data values. User decides what the data
should represent.
SEQ file name: CUST
dataset format: A$, B$, M, N

Page 124, prob. 1 bRead/display CUST.

Page 125, prob. 2a Creates a shopping list sequential file.
SEQ file name: GROCERY
dataset format: N$, Q

296

APPLE DATAFILE PROGRAM INDEX 297

Page 126, prob. 2b Read/display GROCERY.

Page 127, prob. 3a Creates a file of customer credit information.
SEQ file name: CREDIT
dataset format: C$, N$, R

Page 128, prob. 3b Read/display CREDIT.

Page 129, prob. 4a Program to create files of checkbook, bank, or retail sales trans­
action information. Account number data is provided for the creation of two differ­
ent files with the same dataset formats.
SEQ file names: TRANSACTION-l and TRANSACTION-2
dataset format: A$, T$, C$i

Page 130, prob. 4b Read/display any file with TRANSACTION dataset format.

Page 131, prob. Sa Creates a file of names and addresses, where name, street address,
city, state, and zip code are concatenated into one fielded string.
SEQ file name: ADDRESS
dataset format: E$ (one fielded string)

Page 132, prob. Sb Read/display ADDRESS

Page 132, prob. 6a Program to create files whose data are texts of short form letters.
SEQ file names: LETTER 1 , LETTER2, LETTER3
dataset format: T$ (one string, 2SS characters maximum length)

Page 133, prob. 6b Read/display any LETTER# file.

Chapter 5

Page 138 This program will append data to an existing file named GROCERY, or
create the file if no file by that name already exists.
SEQ file name: GROCERY (from page 12S)
dataset format: N$, Q

Page 142 Program to make a copy of the file CUST.
SEQ source file name: CUST (from page 123)
SEQ copy file name: CUST COPY
dataset format: A$, B$, A, B

Pages ISO-lSI Credit File Changer program to search CREDIT for a user-selected
customer number and make changes in the dataset for that customer. A temporary
file is used, and after all changes to the datasets in the file are made, the source file
is deleted and the temporary file renamed CREDIT.
SEQ source file name: CREDIT (from page 127)
SEQ temporary file name: TEMP, renamed CREDIT

Page IS3 Program called Credit File Editor (Version 1).
SEQ source file: CREDIT (from page 127)
SEQ temporary file name: TEMPFIL, renamed CREDIT
dataset format: C$, N$, R

298 APPLE BASIC: DATA FILE PROGRAMMING

Pages 158-159 Credit File Editor (Version 2)
SEQ source file name: CREDIT (from page 127)
SEQ temporary file name: TEMPFIL, renamed CREDIT
dataset format: C$, N$, r

Pages 161-162 Credit File Editor (Version 3) allows user to delete complete datasets,
change any data item in a dataset, or insert a new dataset.
SEQ source file name: CREDIT (from page 127)
SEQ temporary file name: TEMPFIL, renamed CREDIT

Pages 173-174 Program called Merge which merges the contents of two separate files
into one, maintaining numeric order of account numbers.
SEQ source files: TRANSACTION 1 and TRANSACTION2 (from page 129)
SEQ merged file name: TRANSACTIONMERGE
dataset format: A$, T$, C$

Pages 183-184 This program writes (prints) form letters (each was stored as a sequen­
tial data file), personalized with names and address information from ADDRESS.
SEQ source file names: LETTER 1 , LETTER2, LETTER3 (from page l32)
dataset format: T$ (one string)
SEQ source file name: ADDRESS (from page S4-5A
dataset format: A$ (one fielded string)

Chapter 5 Self-Test

Page 193, prob. 1 Program to make a copy of ADDRESS.
SEQ source file name: ADDRESS (from page 131)
SEQ copy file name: ADDRESSCOPY
dataset format: T$ (one fielded string)

Page 194, prob. 2a Program to create files of magazine titles. Two alphabetized lists
of titles are provided for the creation of two files.
SEQ file names: MAGLISTl and MAGLIST2
dataset format: T$

Page 194, prob. 2b Read/display files with MAGLIST# format.

Page 195, prob. 2c Program to merge MAGLISTl and MAGLIST2, maintaining alpha­
betized order in merged file.

Page 197, prob. 3 Program to create or add to or delete from a file of reminders for
household or office tasks.
SEQ original or source file name: WORK REMINDER
SEQ temporary file name: TEMPFILE, renamed WORK REMINDER
dataset format: one string (255 characters maximum)

Chapter 6

Page 204 First demonstration program to create a random access file whose data is
simplified business inventory information.

R-A (Random Access) file name: INVEN
dataset format: N$, P$, Q
record length: 32 bytes

APPLE DATAFILE PROGRAM INDEX 299

Pages 204-207 Same as above, except the number of records existing in the file is
written in record number zero.
R-A file name: INVEN

Page 208 Reads/displays INVEN using a FOR NEXT loop and the record count
stored in record zero.

Page 211 This program creates a file of customer phone numbers, using a customer
ID number, name, and phone number as data.
R-A file name: PHONE
dataset format: C$, N$, P$
record length: 36 bytes

Page 213 Reads/displays PHONE.

Page 216 Program that allows user to add datasets to PHONE.

Pages 217-219 Program to create a "master" file for user-determined data.
R-A file name: MASTER
dataset format: G$, S, Q, M$
record length: 66 bytes

Pages 220-222 Reads/displays MASTER.

Page 230 Program to make a random access file copy of MASTER.
R-A source file name: MASTER
R-A copy file name: STORE 1
dataset format: G$, S, Q, M$
record length: 66 bytes

Page 224 This program uses INVEN in an example of how to change data in a ran­
dom access file.
R-A source file name: INVEN (from pages 204-207)
dataset format: N$, P$, Q
record length: 32 bytes

Page 231 Program to convert (copy) a sequential file to a random access file.
SEQ file name: CREDIT (from page 127)
R-A converted file name: R-A CREDIT
dataset formats: N$, C$, R
record length: 29 bytes

Pages 232-234 Reads/displays random access file R-A CREDIT (but not the sequen­
tial source file from which it was copied or converted).
R-A file name: R-A CREDIT

300 APPLE BASIC: DATA FILE PROGRAMMING

Chapter 6 Self Test

Page 247, prob. la Program to create a somewhat realistic file of business inventory
data.
R-A file name: BUSINESS INVENTORY
dataset format: N$, P$, S$, L, Y, Q, c, U
record length: 75 bytes

Page 248, prob. Ib Read/display BUSINESS INVENTORY.

Page 249, prob. lc Program to create a sequential pointer file using data from a ran­
dom access file. Pointer file's two data items are the customer number and the record
in which that customer number appears in the random access file.
SEQ. pointer file namer: POINTER
dataset format: N$, R
R-A source file name: BUSINESS INVENTORY
dataset format: N$, P$, S$, L, Y, Q, c, U
record length: 75 bytes

Page 249, prob. Id Read/display POINTER.
SEQ file name: POINTER
dataset format: N$, R

Page 250, prob. 2 Program to make a copy of a random access file.
R-A source file name: R-A CREDIT (from page 231)
R-A copy file name: . R-A CREDIT COPY
dataset formats: N$, C$, R
record lengths: 29 bytes

Page 251, prob. 3 Program to read/display the contents of both R-A CREDIT and
R-A CREDIT COpy to verify a correct copy.

Chapter 7

Pages 256-257 This program permits the user to change the cost and unit selling
price for an existing dataset in BUSINESS INVENTORY, using POINTER to identify
the record for the dataset to be modified.
SEQ file name: POINTER (from page 249)
dataset format: N$, Rl
R-A file name: BUSINESS INVENTORY (from page 247)
dataset format: N$, P$, S$, L, Y, Q, c, U
record length: 75 bytes

Page 261 This program is used to create three random access files of year to date
budget information, based on the categories in the Chart of Accounts (page 258).
R-A file name: BUDGET# (where # is 1, 2, or 3)
dataset format: N$, A$, B$, E$
record length: 44 bytes

Page 261 Read/display BUDGET# files.

APPLE DATAFILE PROGRAM INDEX 301

Pages 263-265 This program is used to create a sequential data file of checkbook
transactions (checks and deposits) at the end of each month.
SEQ file name: MONTH# (where # corresponds to months, I to 12)
dataset format: C, Y$, W$, N$, D

Pages 264-265 Read/display MONTH# files.

Page 268 This Personal Money Management program uses the Chart of Accounts
number in the MONTH# dataset to locate the correct BUDGET# file and record in
that file and posts the checkbook transaction to that record.
SEQ. file name: MONTH#
dataset format: C, Y$, W$, N$, D
R-A file name: BUDGET#
dataset format: N$, A$, B$, E$
record length: 44 bytes

Chapter 7 Self-Test

Page 271, prob. I Program to create a sequential transaction file of items taken from
or added to stock of products on hand, corresponding to data items in BUSINESS
INVENTORY.
SEQ file name: BUSINVTRANSACT
dataset format: T, Y$, 1$, N$, QI

Page 278, prob. 2 Read/display BUSINVTRANSACT.

Page 279, prob. 3 This program processes or posts BUSINVTRANSACT data to
BUSINESS INVENTORY, to maintain up-to-date information on products in stock.
SEQ file name: BUSINVTRANSACT
R-A file name: BUSINESS INVENTORY.

Page 280, prob. 4 This program searches through BUSINESS INVENTORY after
transaction posting and generates a report showing all items which have fallen below
the reorder point. R-A file name: BUSINESS INVENTORY

Final Self Test

Pages 290-291, prob. I This program creates a sequential file of names and phone
numbers, including separate entry of first and last names, and area code, and redis­
plays data entered (for visual error-checking) before writing to the file.
SEQ file name: PHONEI
dataset format: C$ (one fielded string)

Page 291, prob. 2 Read/display PHONE!.

Page 306, prob. 3 This program finds and displays all names and phone numbers
with a user-selected area code.
SEQ file name: PHONE I

Page 293, prob. 4 This program goes through the BUSINESS INVENTORY file and
increases the unit selling price of all items by 10%; and it displays the product number
as well as the old and new selling prices.
R-A file name: BUSINESS INVENTORY

Index

AND (logical), 27, 33, 34, 48, 69-70
APPEND, 134-139
Arrays, 139, 177, 178
Assignment statements, 16-24
ASC, 31, 32, 39, 68-70
ASCll code, 29-33, 105
ASCll chart, see Appendix A

BASIC (definition), 2
Branching, see GOTO, Conditional

branching
Buffer, 84-87
Byte, 11,81-83,198-199,200-201

CATALOG, 80
Changing data file data, 134-165,209-

228
Chart of Accounts, 258
CHR$, 32, 33, 91, 92, 105, 106
CLOSE,86-88, 90,93, 99
Comparisons, see IF ... THEN
Concatenation, 24, 25, 53-56
Conditional branching, see GOSUB,

ON ... GOTO, ONERR
Converting data files (Seq to RA),

228-232
Constant, 6

Data entry, 23, 49,50, 71-74, 78
Data fields, 50, 51, 52, 54-58, 72
Data files, 50, 79, 80, 204, 205
Data item, 50
Dataset, 203, 204
Data statements, 7, 8, 19, 20, 21
Debugging, 1,3,7,74
DELETE, 94, 95, 99, 143, 228

302

DIM (DIMension), 7, 14
Disk, 81-83
Diskette, see Disk
Disk Operating System, see DOS
Double density disk, 81
DOS, 2, 80, 81
Dummy data, 94, 95

Editing data file data, see Changing data
file data

END (statement), 61
End of file marker, 94, 95, 97, 98, 105,

106, 168, 176
Error traps, see ONERR, PEEK, POKE

File pointer, see Pointer
FOR-NEXT loops, 16,39,40,41,68,

69,70

GOSUB, 5, 8, 9, 11,41,42,61,62, 73
GOTO, 5, 6, 11

HOME, 70, 153

IF ... THEN, 10, 25, 26, 27, 28,41,42
Initializing, 84, 85, 86
INPUT (assignment), 22-24, 50, 152,

153
INPUT (data), 88, 95-98, 99
INT, 73
Introductory module, 6, 7, 18, 19

LEFT$,259
LEN, 34, 35, 52-58, 68, 69, 70, 73
LET, 10, 11
Line numbers, 10

LOAD, 80

MAXFILES, 84, 85
Merging data files, 165-175, 195-196,

200-201
MID$, 35, 36, 57, 58, 62, 63, 64, 68,

69,70
Modules, 3
Multiple statement lines, 10, 11,41,

42

Null strings, 18, 23, 30, 59-62, 65, 66,
73

ONERR, 42, 43, 44, 45, 98, 99, 168,
180

ON ... GOTO, 38, 39
OPEN, 86-89,94, 95, 99, 200, 201
OR (logical), 27, 68, 69, 70

Padding strings, 54-58
PEEK,43,44,45,98
Pointer, 21, 97, 98, 134, 135, 176
Pointer file, 249, 252-256
POKE, 43, 44, 45
PR#, 181
Press RETURN to continue, 154-154
PRINT, 90, 91
Program files, 80
Prompts, 22, 88

Quad density disks, 81

Random access data files, 83, 84,
198ff

INDEX 303

READ (assignment), 20, 21, 22
READ (data), 95-98, 105
Record, 198
Record count, 201-216
Record number, see Record count
REM (REMark), 4,5,6, 12,41
RENAME, 144, 148, 149-151, 151-153
RENUMBER (Program lines), 10
RESUME,44
RETURN,9
RIGHT$, 38, 259

SAVE, 80
Sector, 80, 81
SERIAL DATA FILE, see Sequential

data file
Sequential data file, 83ff
STOP, 61
String comparisons, see IF ... THEN
Strings, 19
STR$,67
Subroutines, 8, 9; see also GOSUB,

ON ... GOTO
Substrings, see LEFT$ RIGHT$ MID$

Text file, see Data files

Updating, 86

VAL, 24,64, 65,66, 73, 74
Variable length record, see Record
Variables, 15, 16, 17, 18, 19, 95, 96

WRITE, 88, 90, 91, 94, 99, 134, 135,
201, 202

Computers & Data Processing
$12.95

The Apple 11'101 Microcomputer is the computer
success story of the' 80s-and data fi les are the
key to using the Apple computers for your
business, educational, professional, and home
needs. With the help of this easy-to-follow guide,
you can make this powerful tool a part of your
computing capabilities.
In a clear, step-by-step approach, the authors teach
BASIC programmers how to program and maintain
data files for such things as billings,
inventories, and expenses ...
catalog material and mailing lists ...
numerical and statistical infor­
mation ... and much more.

E@BASIC:
DATA FILE
.... MMI

You'll learn the principles of file organization, then go
on to more advanced programming techniques using
the BASIC language. Assisted by dozens of sample
programs and practical advice, you'll find out how to
write data file programs, modify programs you've
already purchased, and adapt programs using data
files found in magazines and other sources. And the
book's unique self-teaching format includes self-tests,
objectives and exercises to help you learn at your
own pace to get the absolute maximum benefit from
your Apple computer.

LeRoy Finkel and Jerald R. Brown have been teaching
the BASIC language to novice computer users for
over ten years. They are founders of the People's
Computing Company and co-authors of four other

Wiley Self-Teaching Guides. Mr. Finkel is
the Instructional Computing

Coordinator for the Office of
Education in San Mateo
County, California. Mr.
Brown, an educational TV
producer, holds an M.Ed.
from Harvard in Research
in Instruction.

JOHN WILEY & SONS, INC.
605 Third Avenue,
New York, N.V. 10158
New York • Chichester •
Brisbane • Toronto

ISBN 0471-09157-X
Any questions concerning the

material in this book should be referred
to the Publisher, John Wiley & Sons, and

not to Apple Computer, which is not
responsible for and was not involved in the

preparation of this book. Apple is a trademark
of Apple Computer, Inc., Cupertino, California.

Wiley Self-Teaching Guides have taught more than a million people to use, program, and enjoy computers.
Look for them all at your favorite bookshop or computer store! For a complete list, write to STG Editor.

Cover Design: Linda Rettich

