’

®.

AppleShare® Programmer’s
Guide for the Apple® II

Beta Draft
APDA™ # A2G0051/A

Apple Computer, Inc.
20525 Manani Avenue
Cupentino, California 95014
(408) 996-1010

11X 171-576

To reorder products, please call:
Apple Programmers and Developers Association
1-800-282-APDA

«. AppleShare® Programmer’s Guide
for the Apple II

NOTICE

The information in this document reflects the current state of the
product. Every cffort has been made to verify the accuracy of this
information; however, it Is subject to change. Preliminary Notes are
released in this form to provide the development community with
essential information in order to work on compatible products.

& APPLE COMPUTER, INC.

Copyright © 1990

by Apple Computer, Inc.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under the
copyright laws, this manual or the
software may not be copied, in
whole or in part, without wrilten
consent of Apple, except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies
to be made for others, whether or
nat sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format.

You may use the software on any
computer owned by you, but
extra copies cannol be made for
this purpose.

The Apple logo is a registered
trademark of Apple Computer,
Inc. Use of the “keyboard® Apple
logo (Option-Shift-k) for
commercial purposes without the
prior written consent of Apple
may constitute trademark
infringement and unfair
competition in violation of federal
and state laws.

Apple Computer, Inc.

20525 Mariani Avenue
Cupertino, CA 95014-6299

(408) 996-1010

Apple, the Apple logo, AppleShare,
AppleTalk, ImageWriter,
LaserWriter, and Macintosh are
registered trademarks of Apple
Computer, Inc.

APDA, Apple Desktop Bus,
Finder, Event Handler, LocalTalk,
MacWorkStation, MPW,
MultiFinder, QuickDraw, and
ResEdit are trademarks of Apple
Computer, Inc.

DEC is a trademark of Digital
Equipment Corporation.

Hayes is a registered trademark of
Hayes Microcomputer Products,
Inc.

IBM is a registered trademark of
International Business Machines
Corporation.

lllustrator is a trademark of
Adobe Systems Incorporated.
ITC Avant Garde Gothic, ITC
Garamond, and ITC Zapf
Dingbals are registered trade-
marks of International Typeface
Corporation.

MacDraw, MacPaint, and
MacWrite are registered
trademarks of Claris Corporation.
Microsoft is a registered trade-
mark of Microsoft Corporation.
PostScript is a registered
trademark of Adobe Systems
Incorporated.

PageMaker is a registered trade-
mark of Aldus Corporation.
Simultaneously published in the
United States and Canada.

sl ol

Contents

Figures and Tables / ix

Preface / xi

You should know. . . / xi
Application compatibility / xi
Where to go for more information / xii

1 Application Development / 1

The AppleTalk network system / 2

AppleTalk on the Apple Il workstation / 4
Requirements / 5

‘ Downloading the code / §

Starting up the OS / 6
GS/0S <-> ProDOS 8 swikching / 6
User interface / 6
AppleShare startup (and Quick Logoff) / 8
The Aristotle patch / 9

File access / 14

Printing over the network / 14

2 Programming Guidelines / 17

Programming for the shared environment / 18
General programming guidelines / 19
Entry points / 19
Program compatibility / 21
Overays / 21
Writing into programs / 21
Network ProDOS READ and WRITE calls / 22
Unique filenames for temporary files / 22
Memory-resident data files / 22
ProDOS 8 Compatibility on the lle and liGs / 22

i

iv

Working with network directories / 23
Directory and volume name locations / 23
Launching over the network / 24
User directories / 25
Cataloging ProDOS directories / 26
Searching and deleting from ProDOS diredtories / 26
Recursion and network directories / 27

Accessing AppleTalk protocols directly / 33
Entry points / 33

Making calls through BASIC and Pascal / 33
Serial card emulation / 34
Unique protocol / 35
Installing a unique protocol / 37
The reset chain / 37
Interrupts and protecting your code / 38
Using completion routines / 38
Restrictions / 39

Formats and conventions / 41
Asynchronous calls versus synchronous calls / 41
Parameter list format / 42
How errors are returned / 43
Conventions / 44

Calls to AppleTalk Protocols / 47

Identifying AppleTalk / 48
Miscellaneous calls / 50
Ink ($01) / S1
Getlnfo ($02) / 53
GetGlobal (303) / 54
InstallTumer ($04) / 55
RemoveTimer (305) / 56
Boat (306) / %6
CancelTies (345) / 57
Calls to the Link Access Protocol (LAP) / 58
LAPWrite (807) / 59
ReadBuffer (308) / 60
AttachProt ($09) / 61
RemoveProt (30A) / 62
Calls to the Datagram Delivery Protocol (DDP) / 63
OpenSocker (30B) / 64
CoseSocket ($0C) / 65

SendDatagram ($0D) / 66
Calls to the Name Binding Protocol (NBP) / 68

CONTENTS

o e S ek

et Rk M b N e b e cederedony ey @ dRRmAREE HEE R e

RegisterName ($0E) / 69
RemoveName ($0F) / 70
LookupName ($10) / 71
ConfirmName ($11) / 73
NBPKill ($46) / 74
Calls to the AppleTalk Transaction Protocol (ATP) / 75
SendATPReq ($12) / 76
CancelATPReq ($13) / 78
OpenATPSocket ($14) / 78
CloseATPSocket ($15) / 79
GetATPReq ($16) / 80
SendATPResp (§17) / 81
AddATPResp ($18) / 83
RelATPCB ($19) / 83
Calls to the Zone Information Protocol (ZIP) / 84
GetMyZone ($14) / 85
GetZonelList (§1B) / 86
Calls to the AppleTalk Session Protocol (ASP) / 87
SPGetStatus ($1D) / 88
SPOpenSession ($1E) / 89
SPCloseSession ($1F) / 90
SPCommand ($20) / 91
SPWrite ($21) / 93
Calls to the AppleTalk Filing Protocol (AFP) / 95
Calls to the Printer Access Protocol (PAP) / 97
PAPStatus ($22) / 98
PAPOpen (823) / %9
PAPClose ($24) / 100
PAPRead ($25) / 101
PAPWrite ($26) / 102
PAPUnload ($27) / 102
Calls to the Remote Print Manager (RPM) interface / 103
PMSetPrinter ($28) / 104
PMCloseSession ($47) / 106
ProDOS AFP Translator / 107
ProDOS AFP Translator Access Mode / 107
Resource forks / 107
Differences in ProDOS 8 and AFP Translator Calls / 108
GetFilelnfo / 108
Open / 109
Additional ProDOS MLI Calls / 110
Special Open Fork (§43) / 111
Byte Range Lock ($44) / 113
Calls to the ProDOS Filing Interface (PFT) / 115

Contents

vi

FlUserPrefix ($24) / 117
Fllogin ($2B) / 118
FlLoginCont ($2C) / 120
FlLogout ($§2D) / 121
FiMountVol ($2E) / 122
FlListSessions ($2F) / 124
FITimeZone ($30) / 125
FiGetSrcPath (§31) / 126
FlAccess ($32) / 127
FiNaming ($33) / 128
ConvertTime ($34) / 130
FiSetBuffer ($36) / 131
FlHooks ($37) / 132
Filogin2 ($38) / 134
FlListSessions2 ($39) / 136
FlGetSVersion (§3A) / 137

4 The AppleShare File System Translator (FST) / 139
Compatibility / 140
Pathname syntax / 140
Equivalence of Macintosh and GS/0S file types / 141
System calls / 143
CREATE (301) / 143
SET_FILE_INFO ($05) / 143
GET_FILE_INFO ($06) / 144
OPEN ($10) / 144
READ ($12) / 146
WRITE ($13) / 146
QOSE($14) / 146
SET_EOF ($18) / 147
GET_EOF($19) / 147
GET_DIR_ENTRY ($1C) / 147
READ_BLOCK ($22) / 148
WRITE_BLOCK ($23) / 148
FORMAT ($24) / 148
ERASE_DISK ($25) / 148
GET_BOOT_VOL ($28) / 149
GET_FST_INFO ($2B) / 149
FST_SPECIFIC ($33) / 149
FST_SPECIFIC calls / 150
Buffer Control ($0001) / 150
Byte Range Lock ($0002) / 152
Spectal Open Fork ($0003) / 154

CONTENTS

Appendix A

Appendix B

‘ Appendix C

GetPrivileges ($0004) / 157
SetPrivileges ($0005) / 160
User Info ($0006) / 163
Copy File ($0007) / 164
GetUserPath ($0008) / 165
OpenDeskiop ($0009) / 166
CloseDesktop ($0004) / 167
GetComment ($000B) / 168
SetComment ($000C) / 169
GetSrviName ($000D) / 170
Option List / 171

General implementation / 172

Result Codes / 173

Be AppleShare Aware / 177
Multi-launch applications / 178
Sharing open files / 178

Interrupts / 179

Multi-user applications / 180

Apple II AppleShare Compatibility Test Script / 181
Introduction / 182

Preparation / 182

Test script / 183

Contents vii

Figures and Tables

Application Development

Figure 1-1

Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10

The AppleTalk Network System with Apple IIGs
workstations / 3

Initial startup screen / 9

Loading startup code / 10

File server list / 10

Zonelist / 11

Loggingon / 11

Etering your name and password / 12
Selecting volume / 12

AppleShare startup menu / 13

“You have mail® dialog box / 13

Programming Guidelines

Table2-1 RamDispatch entry point / 20

Table2-2 $C700 interface-related entry points on the Apple 1IGs / 33

Table2-3 Serial card emulation entry points on the Apple liGs / %4

Table24 Unique protocol entry points on the Apple lIGs / 35

Table2-5 Issuing AppleTalk calls protected by RamForbid on the Apple
1iGs / 40

Table26 Call format for ProDOS 8 / 41

Table27 Non-FST call format for GS/OS 16 / 42

Table28 General result codes / 43

Table 219 Entries in the parameter size field / 44

Table 210 Entries in the Value Field / 44

Calls to AppleTalk Protocols

Table 3-1 General housekeeping and support calls / 50

Table 312 Offsets of required data fields / 51

Table 3-1b Offsets of optional data fields / 52

Table32 LAPcalls / 58

Table3-3 DDPaalls / 63

Table34 NBPcalls / 68 °

Table35 ATPaalls / 75

Table36 ZIPcalls / 84

Table37 ASPaalls / 87

Table38 PAPalls / 97

Table3-9 CallstoRPM / 103

Table3-10 Printer name flags / 104

Table3-11 File parameters for GetFilelnfo command / 108
Table3-12 File types / 108

Table3-13 File parameters for Open command / 109
Table3-14 Directory parameters for Open command / 109
Table3-15 New ProDOS calls / 110

Table 316 Access mode byte / 111

Table3-17 PFlaalls / 116

Table 3-18 Bi settings for the Mount Flag Field / 122
Table 3-19 Bit settings for the FINaming call / 128

Table 3-20 Bit settings for the Hook Flag field / 132

4 The AppleShare File System Translator (FST)

Figure 4-1 Buffer Control / 150
Figure 4-2 Byte Range Lock / 153
Figure4-3 Special Open Fork / 155
Figure 44 Get Privileges / 158
Figure 4-5 et Privileges / 161
Figure 46 User Info / 163
Figure47 CopyFie / 164
Figure4-8 GetUserPath / 165
Figure 49 (loseDesktop / 166
Figure 410 CloseDesktop / 167
Figure 4-11 GetComment / 168
Figure 412 SetComment / 169
Figure 4-13 GetSrviName / 170
Figure 414 Option List / 171

Appendix A Result Codes
Table A-1 Description of result codes / 174

x FIGURES AND TABLES

Preface

THIS PROGRAMMERS GUIDE is writen for application program
developers for the Apple® IGS® and Apple [1e® computer who want to do
either of the following:

s develop new network-specific applications for the Apple 11GS and

Apple lle computer

» modify existing application programs to implement AppleTalk® protocols
on the Apple Il workstations.

You can develop either ProDOS 8- or GS/0S-based applications for use with
the AppleTalk network system. ProDOS 8 applications have the advantage of
working with either of the Apple Il workstations (Ile or 11GS), while GS/OS
applications will be able to use the more advanced features of the Apple 1IGS
workstation. An Apple 1l workstation is an Apple Ile or Apple 11GS with a
workstation card installed.

You Should Know . . .

You should have a working knowledge of the Apple I, the operating
systems developed specifically for the Apple 1l family of computers,
ProDOS 8 and GS/OS. Only ProDOS 8 (version 1.5 or later) and GS/OS are
supported. This note also assumes you are familiar with AppleTalk protocols
(described in Inside AppleTalk) and the LocalTalk™ cable system.

Application Compatibility

The Apple Il workstation is intended to support applications that are
compatible with ProDOS, written in the following development
environments:

s Assembler

s BASIC

s Pasal (ProDOS only)
s C(ProDOS only)

xii

& Note: If you have an existing program, that is neither ProDOS 8 based
nor OS/0S based, you should first convert # to ProDOS 8 or GS/OS to
enable it to run on the network. DOS 3.3 RWTS calls, related hardware
accesses, or both must be eliminated from all programs. Only standard
entry points will be supported.

Most Apple 11 applications have little need to know that they may be in a
network environment, and most ProDOS 8 and GS/0S, and their operating
system calls that can be made to local volumes can also be made to network
server volumes. However, there are situations in which current programming
practices will not function properly in a network environment. Chapter 2
provides programming guidelines and examples of network situations to
consider in developing your application.

& Note Apple 1IGS System Software 4.0 (the first release of GS/OS) does
not support file service, but does support all other network layers (i.e.
LAP through ASP). System Software 5.0 supersedes the AppleShare
lIGS workstation software.

Where to Go for More Information

The following is a list of Apple Computer reference materials for Apple 11GS

computers and the AppleTalk network system that you might find helpful.
These documents are related to the Apple Il computer:

s Apple IIGS Firmware Reference Manual describes routines stored in ROM
(except for BASIC and the Toolbox). The manual includes interrupt
routines and low-level /O for serial ports, disk, and DeskTop Bus.

8 BASIC Programming with ProDOS covers file and program conversion
from DOS 3.3 to ProDOS.

® GS/OS Reference Manual, Volumes 1 and 2 (Volume 1 is Calls, Volume 2 is
Device Drivers) describes the new operating system.

8 ProDOS Technical Reference Manual describes the ProDOS operating
system for assembly language programmers.

» Programmer’s Introduction 1o the Apple IIGS introduces programming for
the Apple 1IGS for the desktop environment using the 1IGS tools.

s Technical Introduction to the Apple IIGS describes the 11GS and its
differences from the Ile, the programming environments, the toolbox,
and an introduction for hardware designers and Apple Programmer’s
Workshop (APW) users.

a Apple lle Technical Reference Manual.

PREFACE

These documents are related to AppleTalk:

. a Inside AppleTalk describes the theory of the AppleTalk network,
including specifications for the AppleTalk protocols.

w [localTalk Cable System Oumer's Guide shows you how to set up a
network, and how (o add to and change the network once you've set it
up, using LocalTalk cables and connectors for the AppleTalk network
system.

u Software Applications in a Shared Environment (Preliminary Note)
describes programming guidelines for developing applications to function
properly in a shared environment (such as network file servers). Although
this note was developed for applications using AppleShare™ on the
Macintosh® computer, some of the information is relevant to the Apple
1IGS.

s AppleTalk Network Users Guide for the Apple IIGS Included with System
50.

Most of these items are available through. APDA is an excellent source of
technical information for anyone interested in developing Apple-compatible
products. Membership in the association allows you to purchase Apple
technical documentation, programming tools, and utilities. For information
on membership fees, available products, and prices, please contact
APDA .
Apple Computer, Inc.

‘ 20525 Mariani Avenue, Mailstop 33-G
Cupertino, CA 950146299
(800) 282-APDA (800-282-2732)
Fax: 408-562-3971
Telex: 171-576
AppleLink: APDA

Preface xiii

Chapter 1 Application Development

THIS CHAPTER provides an overview of the AppleTalk network
system and describes the AppleTalk functions implemented on the Apple Ii
workstation. Refer to Chapter 2 for programming guidelines, call formats, and
protocol parameter structures, and Chapter 3 for a detailed description of calls

to each of the AppleTalk protocols.

The AppleTalk network system

As the number of products from Apple Computer, Inc., continues to grow, so does the desire for a
simple way o take advantage of the economies and features each product has to offer. The
solution is the AppleTalk network system, in which Apple Il workstations and a Macintosh server
can share file and printer resources, thus avoiding costly hardware duplication.

An AppleTalk network system has three components: a cable system that links devices;
software that supports the network; and optional services that networked devices share, such as
LaserWriter printers and AppleShare file servers. AppleTalk has its own protocol architecture that
can be run over different physical media. Currently, the LocalTalk Cable System is the only physical
medium supported in the Apple II family of computers.

Figure 1-1 shows how Apple Il workstations and a Macintosh server are connected to form
the network. Hard disks can be attached directly to the server, allowing workstations to share
applications and data. Other peripherals, such as a LaserWriter® or ImageWriter® Il with an
LocalTalk option card, are attached directly to the network. Local printers and other devices can also
be connected to individual workstations for use only by that workstation.

The LocalTalk cable system uses a bus topology. The bus acts as the common medium routed
through all devices attached to the network. The advantages of the bus are that network devices
are atached at any convenient point, and failure of one network device does not cause the entire
network to fail. Each device (such as a workstation or printer) connected to the network obtains
its own unique address when the device powers up and makes a logical connection to the network.

2 CHAPTER 1 Application Development

® Figure 1-1 The AppleTalk Network System with Apple Il Workstations

. Local Apple I workstations Local printer
isks

LocalTalk network

The AppleTalk network system 3

AppleTalk on the Apple II workstation

The Apple II workstation is designed to provide similar AppleTalk functionality to perform network
functions as is built into the Macintosh computer. This design allows the Apple Il workstation to

® Starting up over the network (network booting)

® access servers on the network

= print to a LaserWriter or ImageWriter [l on an AppleTalk network system

Applications run on Apple II workstations can use their own high-level protocols interacting with
low-level AppleTalk protocols to communicate with any network device. An application can make
several Lypes of calls: printing calls, calls for booting over the network, filing calls for file service on
the network, AppleTalk network calls, and diagnostic or *housekeeping” calls.

The Apple II workstation processes the calls and data through the operating system,
translating operating system filing calls to the appropriate AppleTalk protocol calls. When the
translation is complete, the firmware on the workstation formats the data into packets and
prepares (o transmil it over the network to the server.

The Apple I workstation currently implements the following AppleTalk protocols in ROM or RAM: .
s Link Access Protocol (LAP) ;
® Datagram Delivery Protocol (DDP)

8 Name Binding Protocol (NBP)

® Zone Information Protocol (ZIP)

® AppleTalk Transaction Protocol (ATP)
® Printer Access Protocol (PAP)

w AppleTalk Session Protocol (ASP)

® Routing Table Maintenance Protocol (RTMP)

\RRC RO NN EARE TN 3

» Echo Protocol (EP) s

Chapter 3 provides detailed information on making calls 1o each of these protocols. In addition to

the AppleTalk layers just described, the Apple Il workstation supports the following:

he Remole Printer Manager (RPM) for transparent printer access, which emulates Super Serial
Card (SSC) serial drivers for the serial port

8 special calls to provide a timer interrupt

8 code to allow an Apple Il workstation to boot directly over the network from any server that
supports AppleTalk Filing Protocol (AFP), version 2.0

s ProDOS Filing Interface (PF1), which allows transparent ProDOS file access by translating
ProDOS filing calls which have AFP servers as destinations into AFP calls

4 CHAPTER 1 Application Development

& Note Features of AFP that are not available through operating system calls can be
. accessed by making AFP calls directly through ASP.

m AppleShare FST for making calls from GS/OS on the Apple 1GS workstation

& Note: Making AFP calls directly through ASP is discouraged under GS/OS. Most AFP calls
are available through normal GS/0S calls, or FST-Specific calls to the AppleShare FST. If
these calls do not provide the functionality you need, please contact Apple Il Developer
Technical Support for more information.

Requirements

In order to boot GS/OS over the network, all servers in a zone should be updated with the GS/OS
booting software. As with GS/OS in general, all machines that wish to boot GS/OS over the network
must have version 01 ROMs or newer.

Downloading the code

When AppleTalk is activated and the startup is set to AppleTalk, the AppleTalk ROMs will start the

. boot process. First & will look for an entity with type “Apple //gs” ; the first object that responds
will be used. It issues an ATP request with the machine type (1) in the first user byte and the block
number of the image in the second and third user bytes (low order first, starting with block 0).
Blocks are 512 bytes each and placed in memory starting at $800 in bank 0. If the first ATP user byte
in the response from the server is non-zero then that is the last block in the image and it may be
shorter than 512 bytes.

Because the retry counts and intervals in ROM prior (o version 3 are too short when large
numbers of machines are trying to boot, this first image will be one block or less in length to try to
prevent timeout errors. This block will contain code that delays (about 5 seconds) to allow other
machines booting up a chance to find the server before network traffic gets too heavy.

After the delay, a lookup for the operating system's image is performed. Then the first few
blocks (about 2K) of this second image is loaded by the code in the first image using ATP requests.
The block number and end-of-image flag work the same; the machine ID is 3. After these few
blocks have been read in, they receive control. This code is known as “Fizzy.” Fizzy is responsible for
displaying a user-friendly message and indicating progress while downloading the rest of the image.

AppleTalk on the Apple Il workstation 5

Starting up the OS

The image contains patches and additions to the protocol stack through ASP, PFI, a logon program,
and an FST stub. After protocol layers are installed and initialized, the logon program runs allowing
the user to log on to a file server. The FST stub containing the routines ReadinFile, GetBootName,
and GetFSTName is left at $2000 and the file /Volume/System/Start. GS.0S is read in and executed at
$6800. Start GS/OS contains the GLoader and GQuit routines that will call the FST stub to load in the
AppleShare FST from the SystemVFST directory on the boot volume. Once the FST is read in, the
rest of the operating system will be loaded and executed.

At this time drivers, FSTs, setup files, DAs, etc. are loaded from folders in the System directory
on the boot volume. Therefore, these files will be shared by all users who boot GS/0S from that
server.

The AppleTalk drivers will find out from PFI which volumes were mounted and create Device
Information Blocks for them so that the volumes the user selected during boot remain connected.

After the OS is loaded, it will first look for the file START in the System directory on the boot
volume. The Start program will load any permanent or temporary init files and desk accessories
found in the user’s setup folder (**/Users/ UserName/Setup”), check for mail, open the user's
ATINIT file, set their default printer, and launch their startup application. Note that the
Systemv/Start program will be run by GS/0S whenever an application quits and there is no program
10 quit to and there are no other programs waiting to be restarted (i.e. when ProDOS 16 would have
displayed the “Start Next Program® menu).

GS/0S <—> ProDOS 8 switching

ProDOS 8 will be loaded from the server on demand. PF1 (ProDOS Filing Interface) will have to be
informed of any volumes mounted or unmounted while GS/OS was adtive so that ProDOS 8 will
have an accurate view of the world (PF1 will actually mainain session and volume information and
will share this information with the AppleTalk drivers). After ProDOS 8 is loaded and initialized, PFl
must be patched into the $BF00 vedor.

When returning 10 GS/OS, the operating system restarts from RAM. When the drivers are
reinitialized, they will have to find out from PFI if any volumes have been mounted or unmounted
and update the Device Information Blocks appropriately.

Trivia: AppleShare is the only foreign file system that GS/OS can boot from and still support
ProDOS 8.

User interface

To boot over the network, the first thing you need 10 do is set up the control panel properly. If
you have version 01 ROMs, you need to set slot 7 to AppleTalk, and set the startup slot to 7. If you
connect the drop box to the printer port, then slot 1 should be set 1o “Your Card® (slot 2 can be set
to either “Your Card® or *Modem Port™). If you connect the drop box to the modem port, then slot
1 should be set to “Printer Port* and slot 2 should be set to “Your Card.”

6 CHAPTER | Application Development

If you have version 03 ROMs, set slot 1 to “AppleTalk” if the drop box is connected to the
. ’ printer port, or set slot 2 to “AppleTalk” if the drop box is connected to the modem port. Set
“Startup:” to “AppleTalk”.

& Note: Some older applications (such as Aristotle) require you to set slot 7 to “AppleTalk®
as well.

As you power on (or reboot), you will see some dots displayed near the upper left corner of the
screen; these dots are generated by the ROM and the first stage boot code to let you know that
something is happening. At this point, the first stage of the boot code is being read from a server.

Shortly, the second stage boot code (known as “Fizzy”) will have been loaded, and put up the
screen shown in Figure 1-2

The server name is displayed near the middle of the screen. A “spinner” (a line that rotates in 45
increments) is displayed between the “Starting up over the network” message and the server name;
it indicates progress during the boot process by tuming 45" as each block is read in. The
thermometer at the bottom of the screen is filled in proportionately to the amount of boot
information read in (it will be completely filled in as the last block is read in). A typical screen about
2/3 through the boot process is shown in Figure 1-3.

If the connection with the server is lost (i.e. a request times out), the server name, spinner, and
the insides of the thermometer will be erased (revernting back to Figure 1-2) and there will be a
lookup for another server. If a server is found, booting will start over; otherwise the screen will be
cleared and control will return to the ROM to look for another server for the first stage boot code.

. Once the AppleTalk protocols have been loaded and initialized, the Logon program will be run. If
you have multiple zones or multiple servers in your zone, you will see the screen in Figure 14 If
there are no routers (and hence no zones), the “Current zone:...” string will not be displayed and
*Change zones: Esc® will become “Cancel: Esc” . If you press ESC al this point, an attempt will be
made to find a router and let you choose from a list of zones (as in Figure 1-5). Once you have
selected a zone or if there are no zones, you will be retumned to the screen in Figure 14, Pressing ESC
from the zone selection screen will pick your current zone and return to Figure 14,

To seled from either the zone list or the server list, you may use the up and down arrow keys
to move the highlighted bar up and down through the list. If there are more items below the
botiom of the window, the word “More” is displayed along the bottom line of the window.
Pressing Return will seledt the highlighted name from the list.

Once you have selected a file server (or if there are no zones and only one file server), you will be
presented with the screen shown in Figure 1-6. You must choose whether you will log in as a guest
(" <Any User>") or as a registered user. Pressing the up and down arrows will move through the
choices. Pressing Retum selects the highlighted choice. Pressing ESC returns you to Figure 14.

If you selected “Log on as a Registered User” , you will be presented with the screen shown in
Figure 1-7. You must enter your user name and password. If either is incorrect, 2 message will be
displayed and you will be asked (o try again.

AppleTalk on the Apple Il workstation 7

Once you have successfully logged on to the server, you will be presented with a list of
volumes on the server as shown in Figure 1-8.1f there were no zones, only one server, and only one
volume on the server, this list will not be displayed and the only volume will be automatically
mounted. Volumes with a check mark next to them will be mounted when you press Return. Use
the up and down arrow keys to move through the list of volumes; the lefi arrow key will remove
the check mark next (o the selected volume; the right arrow key will put a check mark next to the
selected volume. Note that the user volume (the volume with the Users folder and the folders for
all of the users) is automatically checked and cannot be unchecked. This volume will become your
boot volume.

Once you have selected any additional volumes, the boot process will continue. Setup files, desk
accessories, file system translators, drivers, etc. will be loaded from the user volume. Eventually, the
startup application on the user volume will be run. If you have installed the network booting
software normally, this will be the **/System/Stant” file and the process will continue as described
below.

The startup application will first load any custom setup files and desk accessories found in your
user folder (* */Users/ Your Name/Setup”). Note that these are loaded in addition to the system-
wide files loaded at boot time from the usual places in the System folder. Next, your mail folder (*
*/Users/ Your Name/Mail®) will be checked; if it is a non-empty folder, you will be told that you
have mail waiting (see Figure 1-10). Your default printer will be set to the printer named in your
ATINIT file (as set up in AppleShare Admin). Next, prefix 0 will be set to the prefix in the ATINIT
file (set up in AppleShare Admin). Lastly, the user's startup application named in the ATINIT file
(set up by AppleShare Admin) will be launched.

If the user's statup program quits, control will return to the AppleShare Startup program
(described in the next section).

AppleShare startup (and Quick Logoff)

The file **/System/Start’ is the AppleShare Startup program. If the user’s startup application quits,
control is returned to the AppleShare Startup program and the screen shown in Figure 1-9 will be
displayed. From here, you have four options: log off from all file servers, re-run the startup
application, and reboot.

Selecting “Log off from file servers® will log you off from all file servers and then you (or
another user) will be allowed to log on again (starting with Figure 14 or Figure 1-6 as appropriate).
After logging on, the new user’s startup application will be launched. Note that the operating
system is not reloaded, and no custom desk accessories or setup files are loaded for the new user.
Typically, a student would select this option at the end of a class and the student in the next class
can log on without having to completely reboot.

Sclecting *Return W stantup application® will check for mail and re-run your startup application
as if you had just logged on (custom desk accessories and setup files will not be reloaded). Select
this option if you accidenty quit from your startup application and want to run i again.

8 CHAPTER 1 Application Development

it L o

Selecting “Shutdown” will log you off from all file servers, eject all disks, and reboot the
machine. This function is similar to the Restart option from the Finder's “Shut Down" command.
This option should be used when you want to completely restart the computer, such as when you
. have loaded custom desk accessories or setup files and you don't want to have them installed for
the next user. '
If you install the Quick Logoff update, the menu in Figure 1-9 is skipped and AppleShare acts as
if the first option was selected.

The Aristotle patch

Aristolle is Apple’s classroom management software for the Apple 1I. When a user quits from
Aristotle, it reboots the machine. Originally, this was done so that students would not have to run
a separate Logoff program when they were done using the machine. This also means that Aristotle,
as shipped, cannot make use of the quick logoff feature.

In order to allow Aristotle to take advantage of the quick logoff feature, we have included an
update that will modify Aristotle to determine which machine it is running on before trying to
reboot. If it is running on an Apple //e, it will reboot as usual. On an Apple IiGS, it will instead do a
ProDOS 8 QUIT call to retun control to the AppleShare Startup application.

s Figure 1-2 Initial Startup Screen

v2.1 (Gs/0s)

Starting up over the network

Progress

‘ AppleTalk on the Apple Il workstation 9

s Figure 1-3 Loading Startup Code

v2.1 (Gs/0s)

Starting up over the network

N

Light of Day

Progress

s Figure 14 File Server List

@ File Server Log On Vl.l_

Current zone: Nets-R-Us

Select a file server:

Light of Day
Risle of View
jle-B-Net s
Thunderhead
Ethersplat
Lots of Class

re

Select A} Change zones: Esc Accept: d

10

CHAPTER | Application Development .

& Figure 1-5 Zone List

@ File Server Log On Vl.l_

Current zone: Nets-R-Us

Select a new zone:

ngineering Support
he Breakfast Club

wilight Zone

Select :” Quit: Esc Accept : ‘J

« Figure 1-6 Logging On

& File Server Log On Vl.l_

Log on as a Guest

select :§¢ Cancel: Esc Accept: ¢

AppleTalk on the Apple I workstation 11

s Figure 1-7 Entering Your Name and Password

@ File Server Log On Vl.l_

Log on as a Guest

Enter your name and password:

Name:

Change: Tab Cancel: Esc ACCEPCZ‘]

= Figure 1.8 Selecting Volume

@ File Server Log On Vl.l-

Mark the additional volume(s) you need:

TestVol

Select:NH Quit: Esc Accept:‘j

12 CHAPTER 1 Application Development

|
|

s Figure 19 AppleShare Startup Menu

[AppleShare Startup V1.0 _

Return to startup application

Shut Down

Selectw Accqpt:‘l

s Figure 1-10 "You have mail* dialog

You have mail waiting for you.

OK: ¢J

AppleTalk on the Apple 1l workstation 13

File access

Users can access file functions over the network (such as running programs or saving data files) as
if they were using a local disk drive attached directly to their workstation.

& Note: Only ProDOS 8 and GS/OS applications are supported on the network. Other operating
systems, such as DOS 3.3, are not supported.

An important feature of the Apple 11GS workstation is that it does not require the use of memory
banks 0 and 1 because most ProDOS 8 applications use all (or almost all) of those banks, including
important “reserved” areas within those banks.

Network applications may take advantage of multi-user file access, byte-range locking, security
restrictions, and other advanced features available with this full file server implementation. There
are some new ProDOS calls that provide access to these features, described more fully in Chapter 3.
For example, you can use the Byte Range Lock call to prevent other users from accessing the range
of data that you are in the process of manipulating.

The AppleTalk protocols reside in the Apple 1IGS firmware and RAM. While ProDOS 8 is active,
the protocols are accessible through the same entry point at which ProDOS 8 MLI (Machine
Language Interface) calls are made. The MLI is the portion of ProDOS 8 that receives, validates, and
executes Operating System commands. Calls to the MLI include housekeeping calls, filing calls,
memory calls, and interrupt handling calls. Refer to Chapter 2 for more information on entry points.
(While GS/OS is active, you should use GS/OS to make Operating System calls, or RAMDispatch to
make AppleTalk calls for other AppleTalk protocols.) Many of these functions are available as FST-
Specific calls. Use them instead.

& Note There is no file service in System Software 4.0.

Printing over the network

The AppleTalk software contains a module called the Remote Print Manager (RPM). RPM allows
transparent prinling to remote printers through the SSC entry points to AppleTalk. This emulation
occurs by having the firmware appear Lo be a Super Serial Card (SSC). Both BASIC and Pascal entry
points are supported through vectors. (Refer to *Entry Points” in Chapter 2.) These vectors allow
the emulator (RPM) to capture the calls that an application makes to send data.

Using RPM, the workstation can print to any device supported by the Chooser (control panet
on the Apple 11GS) that registers its name as a printer on the network, including

14 CHAPTER | Application Development

= ImageWriter II printers with AppleTalk adapter cards installed
. & LaserWriters with the ImageWriter I emulator installed

The workstation can print either directly or, if connected to the server, through the print spooler.

The printing task begins when you issue 2 PR#n command, where n is the slot RPM is using.
When the call is made, the emulator attempts to open a connection to the device selected from the
Chooser. After the connection is opened, the application program sends print data out through the
$SC entry points. Print data is sent to the COUT hooks normally directed to the SSC. (Refer to the
Apple 1IGS Firmware Reference Manual or the Apple lle Technical Reference Manual for more
information.)

The Apple Il workstation captures the stream of characters to be printed. RPM buffers the
data, translates the print commands to the equivalent PAP call formats, and sends it to the selected

network printer or print spooler.

It is not necessary to call PAP directly to accomplish printing. Printers are selected using the
Chooser on the Apple Ile or the Control Panel on the Apple 11GS. (You must seledt a printer with
the Chooser/Control Panel after you first boot from a local drive.)

There are three ways o print over the network:

= The Print Manager. (Apple 1IGS only)

8 The Remote Print Manager (RPM)

u The Printer Access Protocol (PAP)

To identify the slot RPM is using (to give the user a more readable option, such as “Network

. Printer,” instead of *Slot n”), follow these steps:

L. Make the AppleTalk Getlnfo call ($02, see chapter 3)

2 Ifthe call returns an eror, AppleTalk is not present or not installed correctly, and there is no
network printer.

3 If the “Completion Rtn Return® address is of the form $0000CnXX, where 1< n <7, then RPM is
using slot n and the entry point is $Cn00. Be Sure (o test all four bytes.

& Note Ifthis call is made from ProDOS 8, the bank byte (third byte) will always be zero.

4. Otherwise, the RPM slot is unknown (and might not be present). Ask the user for the slot.

Printing over the network 15

Chapter 2 Programming Guidelines

THIS CHAPTER describes guidelines for creating or modifying an
application program for an Apple II workstation that will run on an
AppleTalk network system. These functions create many new opportunities
and challenges for the Apple If family application programmer. To address
this, you need to understand some of the implications of programming for a
shared environment. This chapter also discusses how to write your own
protocols, as well as formats and conventions. Chapter 3 provides a
description and parameter list for each call.

This chapter explains the changes and additions made to the AppleTalk®
protocol stack for the Apple Il workstation. It is assumed that the reader has
read and has access o Inside AppleTalk u '

17

Programming for the shared environment

In the network environment, there are four categories of application development:
® Single-user (private data) applications that allow only one user at a time to make changes to a
file

8 Multi-user (shared data) applications that allow two or more users 1o concurrently make
changes to the same file, and correctly coordinates those changes

s Single-launch applications that allow only one user at a time 1o launch and use a single copy
of the application

® Multi-launch applications that allow two or more users at a time to launch and use a single
copy of the application

Single-user and multi-user describe data file-sharing modes, and single-launch and multi-launch
describe the launching characteristics, or program file-sharing modes, of the application.

Most applications for the Apple II workstation are accessed by a single user on a single
computer. These programs take advantage of the simplicity of the single computer environment,
and are often written with the following assumptions.

® Access (o applications and data is private.

Read/Write block calls are frequently made to *private* disk areas.
File-naming and directory conventions are often fixed.
Temporary files are often used with fixed names.

Interrupts are frequently locked out or not considered.
Printing sometimes uses direct hardware access, and often assumes slot 1 or slot 2.

® Copy prolection schemes often depend on specific hardware.

While these assumptions are valid for a single-user environment, they do not apply to a network
environment where several workstations may simultaneously access the same application program,
data files, and resources on the file server.

A Warning Writing an application program to run in a network environment using the
assumptions used in a single-user environment just given may result in
dataloss. a

18 CHAPTER 2 Programming Guidelines

General programming guidelines

To create or modify programs to run effectively on the network, you should take into
consideration the following general guidelines for programming in a network environment.

ProDOS 8 and GS/0S utilize 2'hierarchical file structure. As with the Macintosh server, you must
use calls that support this file structure.

All files residing on a server volume that suppots AFP will have two forks: a data fork and a
resource fork (even if the resource fork is designated as empty, such as in an MS-DOS
application). An application should not write to itself, 1o its data fork, or to its resource fork.

An application should not close a file while making changes to its contents. For example, an
editor may fail that follows this sequence: opens, reads, and closes a file, allows a user to edit
data in memory, and then opens, writes, and closes the file. It is important to follow this
sequence: open a file, read the file, edit, write to the file, and then close the file. This will prevent
other users from modifying the file while you are editing it, (and prevent you from over-
writing their changes when you save the file).

An application should inform the user what access was granted to the document during the
open process. An application should allow the user to specify the access desired (such as read-
only when the user wishes to view only, but not edit a file).

An application must be intelligent about the way it manages temporary files. Do not use fixed
names; instead, generate a random name or suffix combined with the time or network address.

Program segmentation should be kept to a minimum.
Don't assume that, because a file exists, you can open it.

For a more complete explanation of each item, refer to the Preliminary Note, Software Applications
in @ Shared Environmens. The sections that follow provides more detailed information on entry
points, program compatibility, interrupts, and so forth.

Entry points

The AppleTalk protocols reside in the Apple Il workstation firmware and RAM, and are accessible
through the same entry point through which ProDOS 8 MLI calls are made. The entry points for
making calls to the IIGS firmware indlude the following:

The ML entry point at $BF00 under ProDOS 8, which accommodates all ProDOS 8 MLI calls and
all network protocol layer calls. It must be in bank 0 to retain compatibility with the Apple e
workstation.

General programming guidelines 19

8 The SSC (Super Serial Card) entry points at $CnXX (n = RPM slot), which is used for printing to
remote devices. This entry point emulates the Super Serial Card BASIC and Pascal 1.1 entry
points.

" RAMDispatch, which is used under GS/OS for full native mode access in applications.

» File system calls should be made from GS/0S. FST-Specific calls should be used instead of their
PF1 counter parts. See Chapter 3.

Under ProDOS 8, the PF1 entry point of the Apple Il workstation is inserted into the MLI vector at
$BFO00 by the AppleTalk setup during the boot process, thus causing all ProDOS calls to be captured
by the Apple Il workstation firmware. This process allows PFI to decide whether or not a call is to
be a local call or a server AFP aall and handle it accordingly. If PFI requires a server AFP call, the
appropriate packet or packets are created and sent through ASP o the proper server, resulling in
transparent file access to remote files.

& Note: The $BF page of memory (addresses $BF00 through $BFFF) contains the system
global variables. The Apple 1IGS maintains certain of these variables for local operating
system and assumes them to be in “normal condition.” Use the ProDOS 8 ONLINE call for
this information. See the ProDOS 8 Technical Reference Manual for more detail.

An application program can use the RamDispatch entry point to call AppleTalk directly in full native
mode on the Apple 11Gs The application can be running code in any bank and still use this call. Table
2-1 describes the RamDispatch entry point. You can use this entry point while under ProDOS 8 or
GS/0S; however, this is the ondy entry point to use while GS/0S is active.

s Table 2.1 RamDispatch entry point

Entry Point Routine Description

RamDispatch SE11014 This vedor is the diret entry point into the
commanddispatcher. It should be called in full native mode
with the X (low) and Y (high) registers pointing to the
parameter list 1o be dispatched.

Refer to “Accessing AppleTalk Protocals Directly” in this chapter for more complete information on
entry points.

The AppleShare FST is the implementation of AppleShare for G&/OS. It is meant to supersede
AppleShare 11GS, the implementation of AppleShare for ProDOS 16. Since ProDOS 16 made calls to 3
ProDOS 8 to get its work done, it patched the ProDOS 8 MU to intercept calls bound for the 9
network. In this way, both ProDOS 8 and ProDOS 16 can use network volumes. GS/OS is completely
separale from ProDOS 8. The ProDOS 8 MLI will still be patched to intercept network calls while
ProDOS 8 is running. When GS/OS is running, GS/OS will make calls directly 1o the AppleTalk routines
via the AppleShare FST, instead of calling ProDOS 8 to make the AppleTalk calls.

4o

Rl

20 CHAPTER 2 Programming Guidelines

Lt

Program compatibility

‘ An application designed using the firmware calls should result in full compatibility with the current
implementation of AppleTalk on the Apple Il workstation, as long as the application:

u follows ProDOS 8 conventions
» placesall code and buffers in bank 0

Other implementations may be unable to manipulate data outside of bank 0. Therefore, code that
makes use of any data bank other than 0 in the Apple II workstation may not be compatible with
AppleTalk implementations for the Apple lle computer.

In order for AppleTalk protocols to work properly on an Apple II workstation, you must use
GS/0S to boot; GS/OS files are relocatable files that must use the System Loader. After the system
boos up, you can run ProDOS 8 applications. You can also make calls direaly to the AppleTalk
dispatcher when running in full native mode.

Because of the structure of the system interface, any application or language that uses the
ProDOS MLI property should be compatible (excluding READ_BLOCK and WRITE_BLOCK calls).
GS/0S applications that use GS/OS and the FST -specific calls, instead of PFI calls, should also be
compatible.

Overlays

You should avoid program overlays whenever possible. If you must use overlays, they should be a

‘ minimum of 512 bytes and preferably no more than 4K bytes (1 to 8 blocks) to minimize the
number of overlays required. Use READ (not READ_BLOCK) to get overlays. Segment overlays
carefully to minimize swapping and reduce network traffic.

As in the single-user environment, overlays cause delays. If your application uses a memory
expansion card, you can achieve better performance by downloading overlays to the memory
expansion card at initialization time, for later use. Doing this prevents the overlays from possibly
slowing down Lhe network. Never write data or configuration information into an overlay (or main
program), as this will create problems in a multi-user or multi-launch environment.

Writing into programs

To avoid conflicts among simultaneous users, multi-launch programs must never write data (such
as configuration information) back into themselves. You must create a unique name or store the
information in a unique, known location, such as a subdirectory named after the user (or the user's
directory on the server). A suggestion for creating a unique name is to append the network number
and the node 1o the filename.

General programming guidelines 21

Network ProDOS READ and WRITE calls

The network server operaling system manages disk access on the server volumes. For this reason,
you should always use the READ call and the WRITE call; never use the READ_BLOCK call and the
WRITE_BLOCK call. The server will not accept READ_BLOCK and WRITE_BLOCK calls and will
return a network error ($88). Those calls may be still used for local disk access, but are not
recommended.

Unique fllenames for temporary files

Names of temporary files must now be checked to prevent duplicate filename problems. If your
application program creates temporary files or saves files using default filenames, you must provide
a way 10 add a random suffix or to give the user the opportunity to create a unique filename.
Otherwise, Apple Il workstation users will save or write to the same files, resulting in lost data or
crashed applications. However, this activity will not crash the server.

Memory-resident data files

To prevent changes to a file by other users, you must first determine whether or not data is kept
resident in memory.

For programs that load entire data files into memory, the application can check the
modification date and the modification time in order to distinguish between files. By checking this
combination, the program knows if the file has been changed since the initial read. The application
can then prompt the user either to save the data under a different file name or to overwrite the
data in the existing file.

For programs that do not keep data resident in memory, you can prevent data changes by other
users while you are manipulating data by doing the following:

® using the special open-with-deny mode, or class 1 open in GS/OS
® byte-range locking the entire file

ProDOS 8 Compatibility on the e and IGS

This section describes areas which could cause an application 1o run under the AppleShare Apple lle
workstation software, but fail under the Apple 11GS workstation software.

® |f code is running in auxiliary memory in emulation mode (e.g., ProDOS 8 programs that run
code from auxiliary memory), make sure $0100 in auxiliary memory is set to the normal stack
pointer and $0101 in auxiliary memory is set to the auxiliary (alternate) stack pointer. (See page 93
of the Apple lle Technical Reference Manual.)

22 CHAPTER 2 Programming Guidelines

@ Make sure ProDOS 8 calls are not made from auxiliary memory; Apple has never recommended
doing this, and it is not supported.

. ® Make sure interrupts are enabled when making ProDOS 8 calls.

m Make sure interrupts are not disabled for long periods of time, nor for a high percentage of
time. Whenever interrupts are disabled, there is a chance that an AppleTalk packet will be missed
(which could cause AppleShare volumes to be unmounted). The more interrupts are disabled,
the more likely that packets will be missed. This risk is inherent for any application that disables
interrupts (directly or indirectly), therefore, interrupts should be disabled with discretion and
only when absolutely necessary.

® Make sure programs get the completion routine return address from the Getinfo call when
they are started.

® Make sure to identify AppleTalk by calling GetInfo and checking for an invalid call number error
(which means AppleTalk is not present). Do not use the ATLK signature bytes for
identification. See Apple II AppleTalk Technical Note #1, Identifying AppleTalk.

® ProDOS 8 invisible bit is not respected. The invisible bit in the ProDOS 8 access byte was defined
after the release of the Apple Ile Workstation Card, so the ProDOS Filing Interface present on
the card treats this bit as reserved.

Working with network directories

‘ Network volume directories cannot be manipulated in the same way as directories on local ProDOS
volumes. This section describes these reasons and tells how ProDOS 8 and GS/OS applications on an
Apple 1IGS workstation can properly process network directories. The example routines included in
this section work with both local and network volumes; separate routines are not required for local
versus network volumes.

Directory and volume name locations

For ProDOS 8, use the pathname at $280 to determine your pathname (refer to Section 5.15 of the
ProDOS 8 Technical Reference Manual for more information). In GS/OS, prefix 1 is set to the name

of the application’s directory.

A Warning Do nat hard-code pathnames, directory names, volume names, or their
slot/drive locations. a

Working with network directories 23

Launching over the network

The following sample program shows how to determine if your ProDOS 8 application was launched .
over the network.
longa off
longi off
absaddr an
65c02 on
verbose an
Keep Net Launch
NetLaunch Start 1
mli equ $BFO0
Lastdev oqu $B£30
AtCall equ $42
Read Blk equ 580

AR AR AR R R RN RN RN RN R AN N AR A NA R R R AR AR N AR AR

* NetLaunch checks to see if the last *
* device accessed was a network volume. b
* An application can run this routine *
* at the beginning of an application *
* to see if it has been launched from *
* a network volume. *
- *
* Inputs: *
* None *
* *
* Qutput: *

* Carry Clear = Application launched *
. from a local volume. *
* Carry Set = Application launched *
* from a network volume. *

AR AR AR RN RN R AN R AR N R AR AR AN R R R R AR RN R R R AR &

CheckNet Launch anop

lda Lastdev ;before accessing any disk,
;get the last device

sta UnitNum ;accessed and store it for the
;Block Read call

jar mli ;do the block read

de i{1'Read_Block' ;ProDOS Command

dc a'ReadBlock’ ;jour parameter list

cmp 1588 ;did you get a network error?

beq QL2 ;1f not then this is not a network
; volume

cle ;indicate that the volume is local

rts ;and return

24 CHAPTER 2 Programming Guidelines

oNL2 anop
sec ;the volume is on the network
. rts ; return
ReadBlock dc h'03'
UnitNum ds 1
dc a'BlockBuff’
de a'o’
BlockBuff ds 512
end

User directories

Because users may configure their workstation differently (such as installing a printer card in
different slots, using a different network or server printer), an individual user directory is created by
the server's Admin program each time a new user is established. The Admin program creates a
directory of the same name as the user's name in the directory USERS on the user volume of the
server, and assigns a startup application and printer to each user.

User directories can also be used to modify your application program configurations, allowing
each user to configure their own printer, prefix, and so on. To protect your configuration file, your
application should either

8 create a directory inside the individual user’s directory, or
. ® use the directory SETUP

Both of these directories are located inside the individual user's directory. Your application should
first check for the configuration file in the directory you selected; if there is no configuration file in
that directory, then retum to the directory from which the application was launched. Whenever
you make changes to the configuration, store the new information in the directory inside the
individual users directory so that it will be available the next time the application is launched. Using
the FlUserPrefix call in ProDOS 8 returns the path to the individual user’s directory (refer to Chapter
3 for more detailed information).

Whenever the user executes the Logon program and selects a server, the Logon program
automatically mounts that user's volume on the server. The user volume is then available to all of
the applications that need individual configuration information for each user.

From GS/0S, you can use the “@° prefix. If your application was launched from a fileserver
volume, and a user volume is mounted, it will be set to the user’s directory. Otherwise, i will be set
to the application's directory.

& Note: There is no way to determine conclusively, on a per user basis, who is a Apple I user
and who is not. Users may also correspond to Macintosh or other AppleShare workstations.

Working with network directories 25

Cataloging ProDOS directories

ProDOS 8 applications often contain routines that catalog or process directories by following the
two pointer fields at the top of each directory block. These pointers are links in a chain that conneat
all the blocks that make up the directory. In a local environment, it has been a common practice to
issue Read_Block commands using these pointer values. Additionally, some applications have used
the file_count byte of the directory header to keep track of the number of items they are dealing
with. In an AppleTalk network, both these practices are unacceptable.

Unlike local ProDOS volumes, file servers are not block devices. An attempt to read a block from
a network volume generates a network error ($88). In addition, the directory file_count byte
returned by a network server can easily mislead an application. In an environment where multiple
users may be creating and deleting files, this file count byte can be made invalid the moment after
is read.

Rather then relying on illegal block reads and unreliable file counts, set up your application to process
directories as follows:

1. Open the directory.

2 Issue a READ command with a byte request parameter of 512 bytes. This first READ request
gives you the directory’s header block. The 24th hex byte in this block contains the number of
entries_per_block for the entire directory.

3 Process the entries in that block, and then ask ProDOS for another block’s worth of data.

Repeat this process until the ProDOS read command responds with an EOF error. That error
indicates you have processed all the entries in that directory.

The programming examples that follow in this section illustrate this technique for processing
directories in ProDOS 8.

For GS/0S, always use GetDirEntry to read the contents of a directory.

Searching and deleting from ProDOS directories

When local ProDOS 8 is asked to delete an entry from a directory, it stores $00 in the target entry’s
Storage_Type/Name_Length byte and updates the Volume Bit Map to release the blocks held by the
entry. The deletion of the entry does not remove it from the directory where it resides, but merely
marks # as a deleted entry whose space is now available. No reordering of the remaining entries
occurs. Because deleting has never caused a restructuring of directories, applications in a single-user
environment have been able to safely search and delete multiple entries “on the fly.”

You cannat use this approach in 2 network environment, since network server software does
not maintain its directory structures in the same manner as the local operating system. When an
entry is deleted from a network directory, the entry name is removed. Entries below it *bubble up®
to fill in the gap. An application must account for the possibility of this reordering as it deletes
multiple files in order for its search routine to see the entries that moved to directory blocks already
searched.

26 CHAPTER 2 Programming Guidelines

Applications can use the following methods to safely delete multiple directory entries,
regardless of whether the directory is on a local volume or on a network volume.

m Use the ProDOS 8 Set_Mark function to place the file-location marker at the beginning of the
directory afier each delete.

= Create a list of items to delete as you search a directory.

The first method assures that the program accounts for all entries as it searches the directory. If
your goal is to delete all entries in the directory, this method is easy to implement. However, it
might be slow when the program deletes entries from a large directory on a local volume. In such a
case, that application must search past a growing number of previously deleted entries as it scans
down the list for the next item to delete.

In the second method, you can delete each entry in your list when the end of the directory is
reached. If the list fills with entries before the search is completed, close the directory and delete
the files in the list, and then reopen the directory and continue searching. By reopening the
directory, the application again starts reading from the first entry to assure that no entry is missed.

A Warning Some applications already use an algorithm similar to the second method
by creating a list of indexes into the directory that point to entries to be
deleted. However, this method fails in a network environment because the
indexes are not updated as the network directory is reordered after each
delete. a

Under GS/OS, it is more efficient to use the second method. Then use GetDirEntry with base =
displacement = 0 to see if there are more entries left. If 5o, repeat the process. Due to buffering,
entries return by GetDirEntry may not be updated immediately after changes are made.

In order to delete entries from ProDOS 8 directories, the netcat.c program must be modified by
adding a ProDOS 8 destroy command.

Recursion and network directories

In order for an application to traverse directories of local or network volumes and list ProDOS
directories recursively, the routines must not issue Read_Block commands and must use EOF
instead of relying on the file count.

A Warning Because directories in a network environment are subjet to change at any
time by users, do not recursively catalog and process network directories
while the network is being accessed by multiple users. a

Working with network directories 27

An example of an application that would be able to use recursive processing is an administrator’s

utility; such an application might show the organization of files and directories on a server volume.

The following ProDOS 8 sample program shows how to traverse and catalog network or local .
ProDOS volumes.

/.
netcat.c
An example of how to recursively or non-recursively catalog :
network or local ProDOS volumes without the use of file_counts
or Read Block commands. 1
*/ 4

#include "stdio.h"

3
tdefine max_path_len 65 i
tdefine max name len 16 :
tdefine max_list 5 3
#define oneblock 512 S
#define >t 0x04 3
tdefine false 0
#define true !false

/* the following structure is used to control the reading of directory
blocks */

struct infoblk

{

char init; /* indicates "state" of file being read */
char refnum; /* this should be set after open */
char entrylen; /* length of each directory entry */
int entryptr; /* points to current entry within block */
char epb; /* entries per "oneblock" block */
char *rbuf; /* points to "oneblock" byte area of */
/* memory for reads */
char blockents; /* number of entries we have scanned in */
/* this block */
long lastmark; /* need this so we can reco < \dir */

/* position if we trash block */
)

struct entryinfo

{
char name (max_name_len], /* name of the directory item */
access; /* its access byte */

28 CHAPTER 2 Programming Guidelines

char gpath(max_path_len], /* pass the path with this global */
/* string */
glist(max_list] (max_name_len],
' /* global list used when deleting */
slash(2]=(1,'/'},

openbuf [1024+256],
/* buffer for when ProDOS opens a file */
rbuf (oneblock] ; /* our read buffer */

int CatDir (path, ftype, recflag)

char *path, /* path on which to begin search */
ftype, /* type of entry to return, all types */
/* if equals 0 */
recflag; /* flag to enable/disable recursion */

char result,
dirflag, /* subdirectory flag */
pathmark; /* legth byte of current path */
/* before going recursive */
int operr;
struct infoblk Myib;
struct entryinfo thisent;

/* store length byte of path we are about to search */
pathmark=*path;
/* 0 indicates this directory newly opened */
Myib.init=0;
/* point to global read buffer */

. Myib.rbuf=6rbuf [0];
result=1; /* assume file is found and not eof */
operr=PDosOpen (path, éopenbuf (0], éMyib.refnum) ;

/* open the directory */
if (!operr) /* if we have accsess and network pathname ok */
{

while (result==l) /* while not eof keep calling */
/* GetNextEntry */

/* return next directory item */
result=GetNextEntry (ftype, éthisent, &dirflag, &éMyib) ;
if ((result==1) || (result==2))
/* found and not eof OR found and eof */

POutputs (path) ;
printf("/"); /*display the path and “/" */
POutput (éthisent.name(0]);
/* and display item returned */
/* if item is subdirectory, and we are */
/* allowed to go recursive */
if ((dirflag) && (recflag))
{

Working with network directories 29

TSRS VTR e St e e

/* close parent and process child */
PDosClose (Myib.refnum) ;

/* append "/" to path */

Pappend (path, &slash) ;

/* append subdir name to the pathname */
/* we've been in */

Pappend (path, éthisent.name(0));

/* catalog subdirectory, go recursive */
CatDir (path, ftype, recflag);

/* we're back form recursive call, */

/* restore path to what it was */

* path=pathmark;

/* restore read buffer, do only a */

/* partial injt */

Myib.init=1;

/* reopen parent */ -
PDosOpen (path, éopenbuf [0], 4

&éMyib.refnum);

}
}
} /* end while loop */
) e
if (!operr) PDosClose (Myib.refnum);
return operr; 3

int GetNextEntry (ftype,entryrec,dirflag, info)

/* returns next directory item */
char frype, /* type of item to search for */
dirflag; / set if item returned is a */

/* subdirectory */

struct infoblk *info;
struct entryinfo *entryrec; /* return matched item in an entry */
/* record */ E
{
char storage_type, found;
char err;
int xferred;

err=0; /* assume no error */
if (info->init=e=Q) /* has not yet been read */
{

info->init=2; /* fully initialized */

err-PDosRead (info->refnum, info->rbuf, oneblock, &xferred); 4
info->entrylen=info->rbuf (0x23]; s

/* pull info out of buffer */ E
info->epb=info->rbuf [0x24] ; /* entries per block */ i
info->entryptr=info->entrylent4;

/* point to first entry */ E
/* start with block entry 2 (dir header name is entry #1) */
info->blockents=2; ’

30 CHAPTER 2 Programming Guidelines

if (info->init==1) /* read buf was trashed by a recursive */
/* call, restore it */

{
' info->init=2; /* now we will again be fully */
/* initialized */
PDosSetMark (info->refnum, info->lastmark-oneblock) ;
/* restore mark */
err=PDosRead (info->refnum, info->rbuf, oneblock, &xferred);
}
found=false;
while ((! err) && (!found)) /* loop til we get an item */
{
if (info->rbuf{info->entryptr))
/* storage_type byte, a type exists if !0 */
{
/* high nibble is the storage type */
storage_type=info->rbuf[info->entryptr]&0xF0;
1f (storage_type==0xD0)
/* set dirflag if this item is a subdirectory */
*dirflag=l;
else
*dirflag=0;
/* get length of item name from low nibble */
info->rbuf (info->entryptr] &=0x0F;
/* now check for our entry type or all entry types */
if (info->rbuf[info->entryptr+0x10) ==
ftype || ftype=0)

{
. /* copy entry to the string */
Pstrcpy (bentryrec->name [0}, éinfo->rbuf
{info->entryptr]);
entryrec->access=info->rbuf
(info->entryptr+0x1E] ;
found=true;

}
if (info->blockents==info->epb) /* we need a new block */
{
err-PDosRead (info->refnum, info->rbuf,
oneblock, éxferred) ;
info->blockents=1;
info->entryptr=4;

else
info->entryptr+=info->entrylen;

/* move to next entry */
info->blockents++;

Working with network directories 31

main ()

32

} /* end while */
/* find current mark and pass back to info struct */
PDosGetMark (info->refnum, &info->lastmark) ;
if ((found) && (err!=0x4C)) return 1;
/* file found and not eof */
if ((found) && (err==0x4C)) return 2;
/* file found and eof */
if (!found) return 3; /* if file not found then eof also true */

char error;

error=PDosGetPrefix (&gpath(0]) ;
if (!error)
{
printf ("current prefix :");
gpath(0]--; /* ditch trailing "/" at end of prefix */
POutput (&gpath(0]);
CatDir (&gpath,0,0); /* send path, all file types, */
/* disable recursion */
/* to allow recursion, send a 'l' as last parameter of */
/* CatDir */

CHAPTER 2 Programming Guidelines

Accessing AppleTalk protocols directly

. This section describes the implementation details of writing your own protocol specific to the
Apple 1IGS and accessing AppleTalk protocols directly. You'll need to know the locations of some
fixed addresses related to AppleTalk, as well as how to install your protocol, protect your code, and
implement an interface to ProDOS.

Entry points

To write your own protocol for the Apple IIGS, you need to know the locations of some fixed
addresses related to AppleTalk protocols. These fixed addresses are related to the following entry
points:

® $Cn00 Interface (making calls through BASIC and Pascal entry points)

® Super Serial Card emulation

¥ A unique protocol

The routines related to each of these entry points are described in the tables given next.

Making calls through BASIC and Pascal

The entry points listed in Table 2-2 allow you (o take control from users who are making calls
through the BASIC and Pascal entry points. Install a JML to your routine at the address specified for

‘ the call so that your protocol is called whenever an action is required. You will be called in native
mode with 8-bit M and X.

» Table 2-2 $C700 interface-related entry points on the Apple 1IGS

Entry Point Routine Descripdon

BASIC $E11004 All BASIC calls are routed through this entry point. The
following conditions are set:

Carry=clear for output, set for input

Overflow=set for init

If you are providing your own BASIC vedtor, as RPM does,
you must set up CSWL and KSWL just as any interface code
does.

(continued) =

Accessing AppleTalk protocols directly 33

= Table 22 (comtinued) $CI00 interface-related entry points on the Apple 1IGS

Eatry Point Routine Description

Pascal $E11008 This routine is called whenever someone makes a call through
the standard Pascal interface. The low nibble of the Y register
contains the Pascal command that is being called. These
numbers are as follows:
$01 for Status
$02 for Write
$03 for Read
$04 for Init
Note: This routine is already set up in RPM; you don't need to
make any changes unless you want to change RPM.

Serial card emulation

The next group of entry points listed in Table 2-3 are related 10 serial-card emulation, and use the
built-in serial firmware 1o perform the necessary conversions. These conversions are generally only
useful if you plan to replace RPM with your own code. They are all called in native 8-bit M and X.

8 Table 2-3 Serial card emulation entry points on the Apple lIGS

Eatry Poiat Routine Description

SerStatus $E11026 Firmware calls this routine to find out the status for input
and output. The byte returned must look as if it were an
acual status byte from the SCC.

SerWrite $E1102A Firmware calls this routine to output a character. This will
only be called when you have given the go-ahead via SerStatus.

SerRead SE1102E Firmware calls this to read 1 byte for you after SerStatus gives

its permission.

34 CHAPTER 2 Programming Guidelines

Unique protocol
' The final group of routines listed in Table 24 are related primarily to writing your own protocol.

w Table 24 Unique protocol entry points on the Apple 11GS

Eatry Poiat Routine Description

RamGoComp $E1100C This routine allows you to call a completion routine the
properway when writing a protocol (routines in bank 0 called
in emulation mode; all other banks full native mode). It should
be called in 16-bit M,X native mode with the address of the
routine to be called at locations $84—$87.

SoftReset $E11010 This vector is actually part of a chain of routines to be called
when control reset has been hit. This chain gives you the
opportunity to reinitialize your code before the application
regains control. The section on writing your own protocol
provides the necessary details on how to install and make use
of this vector.(Each AppleTalk protocol is installed in the reset
chain in order to initialize itself on reset.)

RamDispatch ~ $E11014 This vector is the direct-entry point into the command
dispatcher. It should be called in full native mode with the X
(low) and Y (high) registers pointing to the parameter list to
be dispatched. (This is the safe way to call AppleTalk protocol
with 2 parameter list not in bank 0. Parameter lists for calls

. made through the PF1 can be in banks other than 0.)

RamForbid $E11018 This vector disables packet and timer interrupts without
physically disabling interrupts. Using this vector is a safe way
to protect a portion of code from being entered during an
interrupt. (For a list of which AppleTalk calls can be executed
after RamForbid has been called, refer to Table 2-5)

RamPermit $E1101C This vector reenables packet and timer interrupts. You must
call this vector after a RamForbid.
ProEntry $E11020 This 2-byte address of routine in page zero is called if a

command is not dispatched by code at ProDOS 8 vector. (This
address is generally the entry point to ProDOS 8 itself, to
which $BF00 points.)

(continued) =

Accessing AppleTalk protocols directly 35

= Table 24 (comtinued) Unique protocol entry points on the Apple 1IGS
Entry Point Routine Description .

ProDOS $E1102 ‘This address is for the routine to be called when ProDOS 8 calls
have been rerouted through the $C7AE vector in the interface
code. Doing this allows you to trap calls that are headed to
ProDOS 8 and to do whatever you need to do. The details of
using this vector can be found in the section on the ProDOS 8
interface.

CmdTable $E1D600 This routine is the beginning of the command table. This table
holds 256 four-byte entries and extends to $E1D9FF.

Since this table is in the language-card area of bank $E1, it is
essential that, whenever you need to access it directly, you
save the state of the language-card, and then force in language
card bank 2. Then you must restore the original language card
state.

TickCount $E1DA0O The 2-byte value is the current number of ticks that have
expired since AppleTalk protocols were initialized. This count
is not reset to 0 if the RESET key is pressed and AppleTalk
protocols reinitialized.

Since this value is in the language-card area of bank $E1, it is
essential that, whenever you need to access it directly, you
save the state of the language card, and then force in
language-card bank 2. You must then restore the original
language-card state.

Priority Vector ~ $E1103A This vector is used during load of SYSTEM.SETUP files to
ensure proper order of load.

PFl Vector $E1103E This vector is the address of code to get called on all MLI calls.
Note: If this address is 0, all calls go directly to ProDOS, except
for Command $42.

36 CHAPTER 2 Programming Guidelines

Installing a unique protocol

. To write your own protocol, you must first install the command into the command list.

To do this, you must take the command number you are installing (or replacing) and multiply it
by 4 to get an offset into the command table. This offset should then be added to $E1D600 (the
start of the command table), which gives you the address to install a vector to your code. This
vector consists of a 3-byte pointer, followed by 1 byte for the amount of zeropage you would like
saved when you are called. Zeropage is saved starting from $80; therefore you should use from $80
on up for your own use.

& Note: Since this table is in the language card area of bank $E1, # is essential that whenever
you need 0 access it directly that you save the state of the language card, then force in
language card bank 2. Then you must restore the original language card state.

For example, if you were replacing command $01, you would store the address of your routine at
$E1D604-SE1D606, and the amount of zeropage you would like saved at $E1D607.

The reset chain
After you install your command, install your code into the soft reset chain. The mechanism of
calling routines in the chain ensures that the routines first installed are called first.
In order to maintain this order, you must do the following to install your code:
‘ 1. Take the code that is currently in that vector and save it somewhere within your program; you
will need to call it later.
2 Install a JML to your own reset routine. When reset is pressed, your routine is called.

Before executing any code, however, you must allow the routine installed prior to your code to be
executed (this is the code that you saved when you installed your code). Do this by doing a JSL to
that code, which returns to you when is done. Only then can you execute your own reset code.
That code should be called in full native mode. Your reset code should also preserve the state of the
machine when exiting.

s

:

]

f Accessing AppleTalk protocols directly 37
Z

Interrupts and protecting your code

It is sometimes necessary to guarantee that you are not interrupted during a critical sedtion of your
program (a routine that might be called during an interrupt). It's possible to execute an SEI (Set
Interrupt) to disable intemrupts physically. If you do so, SEI should be executed only for short
periods; otherwise, AppleTalk incoming packets may be missed completely.

A Caution To maintain AppleTalk performance on the Apple IIGS, however, you
should not execute an SE1. AppleTalk protocols require interrupts to be
enabled to function normally. a

In order to alleviate this problem, Apple provides two RAM-based routines (RamForbid and
RamPermit) that disallow AppleTalk-related interrupts without physically tuming off interrupts:

® RamForbid basically increments an internal flag that causes LAP to buffer any packets, without
dispatching them while that flag is set.

® RamPermit decrements that flag; when i reaches 0, sockets are again dispatched.

These are particularly useful in routines that may be called by completion routines or socket
listeners. Any packets that might have been buffered are dispatched, providing a safe but effective
mechanism (0 protect your code. These routines do not lock out any system interrupts.

A Warning If you make a call to the AppleTalk firmware with interrupts turned off,
the Apple I1IGS will hang. o

The Apple 1IGS contains its own interrupt handler. Applications should not mask out interrupts in
general, especially when making an operating system call that results in a network call. The Apple
I1GS always buffers packets (if it has buffers remaining to be processed). Any packets that might
have been buffered are forwarded on demand, as required. For additional information, refer to
“Restrictions” later in this chapter.

Using completion routines

A completion routine is used only for asynchronous calls, and is a routine that is called under an
interrupt. When a completion routine gets control, RamForbid will have already been called, 5o you
cannot get interrupted in a completion routine.

¢ Nole: A non-zero completion address will not be called on a synchronous call.

38 CHAPTER 2 Programming Guidelines

When 2 completion routine is called, the databank register is set to E1, and is called in full native
mode (16-bit accumulator and 16-bit X and Y registers), unless the routine you are calling is in bank 0.

. 1f your code is in bank 0, then the code gets called in emulation mode (8-bit). If the routine is in any
other bank, it will be called in native mode. Direct page (D register) will be set to $0000. Locations
$80-$83 contain a pointer to the parameter block for the call.

Any zero pages or anything you use should be preserved, because they are basically an interrupt
routine. The Apple 11 workstation takes care of switching to emulation mode and switching stacks
for you.

You must exit completion routines, socket listeners, and protocol handlers via a jump (rather
than an RTS) to the address retumed in the Completion Routine Return field of the Getlnfo call
($02). To exit properly, you should call the Getlnfo command just once at the beginning of your
program 1o get the address. When writing the completion routine, you need to call that vector
(from the Getinfo call) with a JML (on the Apple 1IGS) or a JMP (on the Apple Ile) to that address.

Restrictions

There are some restrictions concerning the use of completion routines and interrupts and the time
that certain types of calls may be made. For example, going to the Control Panel creates an
interrupt. These restrictions are as follows:

8 The code should not be called during an inserrupt routine for a device other than AppleTalk
itself. Since the firmware does not lock out interrupts when i is called, an iménup(from
another device could happen while a call is in progress. If a call to the AppleTalk firmware is

‘ executed during this time, it would result in one call being executed on top of another call. The
firmware cannot handle such a situation. The firmware itself will not cause an interrupt once it

has begun processing a call.

& Note: This restriction does not apply if you follow guidelines for the Task Scheduler in the
1IGS Toolbox.

8 Never enable an interrupt from within an interrupt routine, such as a completion routine,
socket lisiener, or projocol handler. Doing so could cause a second pending interrupt posted by
the Apple Il workstation to occur, and could result in the same problems as mentioned in the
restrictions just given.

® Do not disable interrupts for a long period of time when using calls that make use of
completion routines, socket listeners, or protocol handlers. These calls need interrupts in order
to complete, and packets may be lost because the packet buffers may overflow.

& Centain AppleTalk calls cannot be executed in synchronous mode from a completion routine,
socket listener, or protocol handler (any time that RamForbid has been previously called).
Because interrupts must be locked out during a completion routine, and because asynchronous
calls need interrupts to complete, even when executed synchronously, a conflict will occur.

Accessing AppleTalk protocols directly 39

The packet dispatcher automatically calls RamForbid when it issues packets for completion routine,
protocol handlers, socket listeners, and so forth. The above restriction also applies if your
application calls RamForbid for any reason. Table 2-5lists which AppleTalk calls can be executed .
afier RamForbid has been called.
® Table 2-5 Issuing AppleTalk calls protected by RamForbid on the Apple 11GS
OK anytime if asynchronous, Only OK if
but only OK in synchronous if RamForbid
OK anytime RamForbid not yet called oot yet called
Getlnfo ($02) InstaliTimer ($04) Filogin ($2B)
GetGlobal ($03) RegisterName ($0E) FlLoginCont ($2C)
RemoveTimer ($05) LookupName ($10) FiLogout ($2D)
Boot ($06) ConfirmName ($11) FIMountVol ($2E)
LAPWrite ($07) SendATPReq ($12) FlAccess ($32)
ReadBuffer ($08) GetATPReq ($16)
AttachProt ($09) SendATPResp ($17)
RemoveProt ($10) GetMyZone ($1A)
OpenSocket ($0B) GetZonelist ($1B)
CoseSocket ($0C) SPGetStatus ($1D)
SendDatagram ($0D) SPOpenSession ($1E)
RemoveName ($0F) SPCloseSession ($1F)
CancelATPReq ($13) SPCommand ($20)
OpenATPSocket ($14) SPWrite (§21)
CloseATPSocket ($15) PAPStatus ($22)
RelATPCB (519) PAPOpen (§23)
SPGetParms ($1C) PAPClose ($24)
PMSetPrinter ($27) PAPRead ($25)
FlUserPrefix ($2A) PAPWrite ($26)
FiListSessions ($2F)
FiTimeZone ($30)
FGetSrcPath ($31)
FINaming ($33)
ConventTime ($34)

FiSetBuffer ($36)

40 CHAPTER 2 Programming Guidelines

TETRALY

Formats and conventions

. This section describes the formats and conventions used in making the two basic types of calls:
synchronous and asynchronous.

Synchronous calls are calls that complete while you wait. The caller’s program makes a call to
the entry point, and simply waits for control to return to the application program with a result
code.

Asynchronous calls are calls that do not complete immediately, even though control is retumed
to the calling program immediately. The workstation can continue with another task while an
asynchronous call is in process of completing. You can make multiple asynchronous calls; however,
the order of completion may be different than the order in which you made the calls. The number
of pending asynchronous calls may be limited.

When an asynchronous call is made, the parameter list becomes the “property® of the network
until the call completes. Your program supplies the address of a completion routine in the call; when
the Apple Il workstation completes the call, it interrupts your program and causes a jump to the
completion routine. The firmware initially returns an $FF in low byte of the Result Code field in the
parameter list to indicate that it is in the process of completing. When the call is complete, the
Result Code fields change to the final status.

Asynchronous calls versus synchronous calls

The programmer should never make a synchronous only call with the async flag set (bit 7 = 1).
. Although some synchronous only calls can be made with the async flag set, the results can be
unpredictable. In most cases, the call will complete with no detectable side effects, but others will

hang or crash.
The format of the calls for ProDOS 8 is shown in Table 2-6.

s Table 2-6 Call format for ProDOS 8

Gl Description
Call Format JSR $BFOO
DB COMMAND (842 for AppleTalk calls)
DW PARAMETER LIST ADDRESS
BCS ERROR ROUTINE
On Exit A =ERROR CODE ($00 = No Error, $88 = Result Code contains efror)
CARRY SET = ERROR
CARRY CLR = NO ERROR

Table 2-7 shows the format for calling AppleTalk protocols directly in full native mode on an Apple
1IGS workstation.

Formats and conventions 41

s Table 2-7 Non-FST call format for GS/0S

Call Description
RamDispatch ~ $E11014 (Pointed to by vector at $BF00)
Call Format LDX #parmlist
LDY #Aparmlist
JSL >RamDispatch
On Exit A= ERROR CODE ($00 = No Error, $88 = Result Code contains error)
CARRY SET = ERROR
CARRY CIR = NO ERROR

Mote: This format allows the Apple 1IGS workstation to have code and data in banks other than 0. However,
you can use this format from ProDOS 8 as well on an Apple 1IGS workstation.

Parameter list format

For all AppleTalk calls with the above formats, the first 4 bytes of all parameter lists are the same.
The first byte is the Async Flag field. This flag indicates whether the call should be executed in
asynchronous mode or synchronous mode.
The value supplied in the Async Flag indicates whether such a call is to be executed
synchronously or asynchronously.

= If MSB (bit 7) is set, the call executes asynchronously.

® For calls that cannot be executed asynchronously (those without completion routine pointers),
MSB must be set to 0; the call then executes synchronously.

Calls that may be executed asynchronously contain a Completion Routine Pointer in the parameter
list after the Result Code field. If the Completion Routine Pointer field contains a value other than 0,
the field is interpreted as an address to be called when the command being executed completes.

A Warning For calls listed as synchronous only, this pointer must be 0. Also, do not
modify the parameter list of a call made asynchronously, since the
parameter list belongs 1o AppleTalk protocols until the call is completed. a

The second byte is the AppleTalk Command field. All non-ProDOS 8 calls to the protocol layers are
made using the MLl command $42 in the command byte of the parameter list. There is an AppleTalk
Command code in the second byte of the parameter lists of these calls specifying the actual
command that is to be executed.

The next two bytes contain a Result Code field, in which the actual error is retumed. The
following section describes how errors are retumed.

{2 CHAPTER 2 Programming Guidelines

How errors are returned

If an asynchronous call was made with a completion routine specified, the firmware transfers
control to the completion routine when the call completes, usually under an interrupt. If no
completion routine was specified, the caller must check the result code field periodically and take
the required action, including freeing the parameter list memory if necessary.

When an error occurs during a network or other non-operating system call (Command $42 for
ProDOS 8), a single standard error code is returned in the accumulator (Network Error = $88). The
parameter lists for all of these calls contain a 2-byte Result Code field in which the actual error is
returned. When there is no error, both the accumulator and the Result Code field contains a value of
0 (successful).

The Result Code field contains both a “level” indicator and the actual result code. The high byte
of the Result Code field contains a value indicating the protocol layer called, except for special errors
returned for any layer (80101, $0102, and $0104); the low byte contains the actual efror code. Values of
$C0 through $DF in the high byte are reserved for additional errors to be returned by code that the
user adds to the dispatcher. For asynchronous calls, the low byte of the Result Code field is set to
$FF (busy) while the call is executing; the high byte contains a number indicating the protocol layer
called. It is important to check both fields. Al calls at all levels may encounter the system-level error
conditions listed in Table 2-8. (These calls are in the range of $01xx.) Actual error codes for each call
are listed in Chapter 3.

Table 28 General result codes

Result Code Description

$0101 Invalid command

$0102 Heap/memory management error
$0104 : Sync/Async call error

For example, if a DDPQloseSocket call is executed specifying a Socket Number that is not open, the
call completes with the carry set, the Network Error ($88) code in the accumulator and a Socket Not
Open error in the Result Code field of the parameter list. This technique provides separation
between operating system errors and those errors returned by network layers, and also provides
space for a larger number of error codes.

& Note: It is important that an application program maps erors properly and interprets them
for the user in the most simple and accurate language. An application program should inform
them of the relationship of any recent action to the error. For example, if a user atiempis to
open a file for which he does not have access, do not retumn 1/0 Esror or the Network Error.
Such error messages are not specific and could represent any number of problems.

Formats and conventions 43

Conventions

All address values in the AppleTalk parameter lists are 4 bytes to allow for larger address spaces in
future development. All multibyte values are in low-byte to high-byte order, except as noted. Each
item in a parameter list needs the following information:

® Relative offset from the beginning of the list (Position)
® Parameter Name

Parameter Size

® Parameler Value
® Optional Comments

Table 2-9lists possible entries in the parameter Size field. If the parameter Size is not one of these
values, the actual length in bytes will be given (for example, 6 bytes).

s Table 2-9 Entries in the parameter size field

Parameter Size Description

Byte 1 byte

Word 2 bytes, in low-to-high order

<Word> 2 bytes, in high-to-low order (reverse order)
Long 4 bytes, in low-to-high order

Var Variable

The Value field indicates whether the caller supplies the parameter or the parameter is returned by
the call. The field also indicates the value of caller-supplied constants. Table 2-10lists possible
entries in the Value field.

s Table 2-10 Entries in the Value Field

s

Value Description

Constant Caller-supplied constant

- Caller-supplied parameter

<enn Parameter retumned by call

<--> Parameter supplied by caller, returned by call, or both
x Reserved field used only by call

44 CHAPTER 2 Programming Guidelines

A Warning Tampering with Reserved fields may result in your application not
working properly, because these fields may be used to hold temporary
. : values while the command is being executed. a

The following example shows how parameter lists will look in Chapter 3.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $06

$02 Result Code Word <~

Formats and conventions 45

Chapter 3 Calls to AppleTalk Protocols

THIS CHAPTER describes the calls to the various protocols, with a
description and parameter listing for each call. The following AppleTalk

protocols are currently implemented on the Apple 11GS workstation:

LocalTalk Link Access Protocol (LAP; also known as LLAP)
Datagram Delivery Protocol (DDP)

Name Binding Protocol (NBP)

AppleTalk Transaction Protocol (ATP)

a subset of the Zone Information Protocol (ZIP)

the workstation side of the Printer Access Protocol (PAI;)

the workstation side of the AppleTalk Session Protocol (ASP)

For a more detailed description of each of these pratocols, refer to Inside
AppleTalk This chapter also includes general housekeeping and support calls,

along with result codes for the calls on each layer. m

47

In addition, the Apple IIGS workstation contains

n the Remote Printer Manager (RPM) for transparent printer access
n serial drivers for the serial port

w the ProDOS Filing Interface (PF1), which allows transparent file access by translating non-local
or network filing calls into AFP (AppleTalk Filing Protocol) calls. Features of AFP that are not
available through ProDOS or GS/OS calls can be accessed by making AFP calls direatly through

ASP.
= AppleShare FST to provide access to AFP Servers from GS/OS.
s AppleTalk drivers for accessing file servers and RPM from GS/OS.
s a stub of the Routing Table Maintenance Protocol (RTMP)
» the Echo Protocol (EP)

& Note: RTMP and EP are built into the AppleTalk firmware on the Apple 1IGS workstation,
and your program does not need to make any calls or take any action to implement these
protocols.

& Note: PF1, the AppleShare FST and AppleTalk drivers for GS/OS are not available in System
Software 4.0.

There are also special routines to provide a timer interrupt. Boot code is provided to allow an Apple
11GS workstation to boot directly over the network from a server that supports boot service.

Identifying AppleTalk

To determine if an application has been launched over the network, refer to the NetLaunch code
Under ProDOS, 10 identify both AppleTalk and the slot with which is is associated for printing,
refer 1o Apple Il AppleTalk Technical note #4, Printing Through the Firmware.

To identify AppleTalk under ProDOS 8:
1. Issue an AppleTalk Getlnfo call.
2 Ifthere is no error result, AppleTalk is installed. See also *Printing over the Network: in

Chapter 1.

InfoParems DB $00 ;Synchronous only

DB $02 ;Getlnfo call number
InfoResult Ds13 ;<- results returned here 3
g

48 CHAPTER 3 Calls 1o AppleTalk Protocols

CheckTalk JSR $BFOO

DB $42 ;$42 command # for AppleTalk calls
DW InfoParmas ;Parameter list address
BCS NoATlk ;handle the error
IsATIk. ;AppleTalk installed when here
NoATalk ;AppleTalk not installed when here

To identify AppleTalk protocols and AppleShare file system under System Software 5.0:

L

2
3
4
5.

Set up the parameter block for a GS/OS GetFSTInfo call using fstNum = 1.

Issue the GetFSTinfo call.

If the fileSysID is $OD the AppleShare FST and AppleShare are present.

If a parameter out of range eror (453) results, the AppleShare file system is not present.
Otherwise, if steps 3 and 4 are inconclusive, increment the fstNum and loop back to step 2.

To identify AppleTalk protocols, including LAP through PRI, but excluding the file system, under
System Software 5.0:

1

2
3
4
5.

Set up the parameter block for a GS/OS Dinfo call using device number one.

Issue the Dinfo call.

If the devicelD is $1D, the AppleTalk main driver and AppleTalk are present. .

If a parameter out of range error ($53) results, the AppleTalk protocols are not present.

Otherwise, if steps 3 and 4 are inconclusive, increment the device number and loop back to
step 2.

To identify AppleTalk protocols, including LAP through ASP, but excluding the File system, under
System Software 4.0:

L
2

Issue an SPGetStatus call.
If the call returns without error, AppleTalk is present.

& Note: With the release of System Software 5.0, earlier versions not supported.

Identifying AppleTalk 19

Miscellaneous calls

This section discusses general housekeeping and support calls that the application needs to make.
These calls are listed in Table 3-1. The sections that follow describe each call, the parameter listing,
and the result codes.

s Table 3-1 General housekeeping and suppont calls

Command

Number Name Descripton

501 Init Initialize AppleTalk firmware
$02 Getlnfo Get information

$03 GetGlobal Get global parameters

S04 InstallTimer Install interval timer

05 RemoveTimer Remove interval timer

$06 Boot Boot over network

$45 CancelTimer Cancel InstallTimer

50 CHAPTER 3 Calls to AppleTalk Protocols

Init ($01)

This section provides background information on the Init call. The boot file makes an Init call,
which causes the AppleTalk firmware to be initialized.

A Warning You should never make the Init call, because it is done for you in the
AppleTalk setup files. Making an Init call disconnects all the RAM-based
protocols installed by the startup file. a

The ATlnit file can be found in the System:System.Setup directory of the local boot volume or in
the Users: YourName:Setup directory of the AppleShare boot volume (where YourName is the User
Name used to log on to the boot server). In all cases, ATInit will contain the three required data
fields UserName, PrinterFlags,and PrinterTuple atthe end of the file. Before those data
fields, ATInit may also contain executable code or additional data fields. Since the three required
data fields are directly before ATInit's end-of-file (EOF), you can find them relative to ATInit's EOF
using the displacements listed in Table 3-1a.

= Table 3-1a Offsets of required data fields

Displacement to

ATlait EOF Size Fickd Name Description

133 33 Bytes UserName A Pascal-type string containing the
default User Name. It consists of a
length byte followed by up to 31
bytes of ASCII data followed by a
single unused byte. This field is always
33 bytes long.

100 Byte PrinterFlags This is the Flags field used by the

Remote Print Manager’s default
network printer.

» 99 Bytes PrinterTuple This field specifies the name of the
default network printer used by the
Remote Print Manager. The
PrinterTuple field is in standard
Name Binding Protocol (NBP) format.
This field is always 99 bytes long.

If the ATInit file is on an AppleShare server, i will have 6 additional data fields (Pathvol1D,
PathDirID, Path, PrefixVolID, PrefixDirID,and Pref ix)direaly before the three required
data fields. These fields can also be found relative to ATInit's EOF using the displacements listed in
Table 3-1b.

Miscellaneous calls 51

s Table 3-1b Offsets of optional data fields

Displacement to

ATlnit EOF Size Field Name Description

b)) Word PathVolID The Volume ID number of the user’s
AppleTalk startup application.

p5) Long PathDirID The Directory ID number of the user’s
AppleTalk startup application.

)] 65 Bytes Path The Pathname of the user’s AppleTalk
startup application.

24 Word PrefixVolID The Volume ID number of the user's
AppleTalk default prefix.

.\/] Long PrefixDirlD The Directory ID number of the user’s
AppleTalk default prefix.

198 65 Bytes Prefix The user's AppleTalk default prefix.

The displacements in Tables 1 and 2 can be used with the GS/0S setMark aall to move the file
mark to the beginning of any of the above fields. The SetMark call's base field should be set to
$0001 so the mark will be set equal to EOF minus the displacement.

When a hardware Reset occurs, whether caused by the use of the Reset key or by power-up, the
Apple 11GS reinitializes #self through the reset chain and acquires a new node number. All sessions,
sockets, and packets are lost

The Super Serial Card ID bytes are also set as follows (for the slot being used by RPM):

$CN05 = $38
o7 = $18
$C’B - 01
L o) G $1

In addition, the Logon program will announce mail if there is a folder called MAIL located in the
Users folder with anything in it. The Logon program displays the message, “You have mail
waiting.”

The result codes returned for the Init call are the same as those for all system calls, as follows:
Result Code Description

$0101 Invalid command
50102 Heap/memory management error
$0104 Sync/Async call error

52 CHAPTER 3 Calls to AppleTalk Protocols

Getlnfo ($02)
‘ The Getlnfo call retums some miscellaneous information that may be needed by applications. The
parameter structure for the Getlnfo call is listed here.
Position Name Size Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte SR
$a2 Result Code Word <een
$04 Completion Rtn Retum Long Coen
8 This-Net <Word> P
$0A A-Bridge Byte <een
$0B Hardware ID Byte <--
$oC ROM Version # Word <eee
$0E Node Number Byte <---

The Completion Rtn Return field tells the caller the address to jump to upon finishing completion
routines, socket listeners, or protocol handlers. You must go to this address by means of a jump
rather than an RTS. This-Net and A-Bridge return the current values for these fields, which are
maintained by the RTMP stub. The Hardware ID field returns an ID for the Apple 11GS
workstation; the value of this ID is currently $00. The ROM Version # field retuns the ROM version
number. On an Apple ile, the hardware ID and ROM Version # fields have no meaning.

' The result code returned for the Getlnfo call is as follows.
Result Code Description
$0104 Sync/async call error

Miscellaneous calls 53

GetGlobal ($03)

The GetGlobal call is used to retrieve the Global Parameter area from the firmware. The Global
Paramelter area contains the LAP and DDP header data that was extracted by thase protocols. The
parameter structure for the GetGlobal call is listed here.

Position Name Size Value
$00 Async Flag Byte $00 Synchronous Only
$01 Command Byte $03

$02 Result Code Word <-ee

$04 Buffer Pointer Long >

The data is retumed in the buffer pointed to by the Buffer Pointer field and has the following 4
format. 3
Position Name Size Value
$00 LAP Destination Node # Byte <o

$01 LAP Source Node # Byte <--e

$02 Lap Type Byte (5

$03 Hop Count/DL (MSB) Byte <o

$04 Datagram Length (LSB) Byte <---

$05 DDP Checksum <Word> <--e

$07 Destination Network # <Word> <eee

09 Source Network # <Word> Ceme

0B Destination Node Byte <-e-

$0C Source Node Byte <---

$0D Destination Socket Byte <-mn

$0E Source Socket Byte <-mn

SOF DDP Type Byte <

510 Packet Length Word <

The packet length is the length of the entire packet received, including all headers.

The Datagram Length, DDP Checksum, Destination Network #, and Source Network # fields
are in high-byte (o low-byte order. The data returned in this call is not valid after the ReadBuffer call
has been executed with the Purge Flag set (see *Calls to the Link Access Protocol” later in this
chapter). This call assumes that the caller's buffer is at least 18 bytes long.

The result codes returned for the GetGlobal call are the same as those for all system calls.

54 CHAPTER 3 Calls to AppleTalk Protocols

InstallTimer ($04)

The InstallTimer call allows an application to set a time interval and to have the firmware notify i
when the interval expires. The parameter structure for the InstallTimer call is listed here.

Position Name Size Value
$00 Async Flag Byte —>
$01 Command Byte $04
$02 Result Code Word <en
$04 Completion Routine Long >
08 Running Tick Count Word <eee
$0A # Ticks to Complete Word <>
$oC Reserved Long x

When called synchronously, the command completes when the interval specified in the # Ticks to
Complete count expires. When called asynchronously, the completion routine is called when the #
Ticks to Complete count expires. The maximum value allowed for the # Ticks to Complete field is
up to $FFFF; however, to be compatible with the Ile, the maximum value is $1FFF. The ticks are
1/4-second periods. The value in the Running Tick Count field contains the number of ticks since the
Init call was made. An unlimited number of timers may be active at any given moment on the
Apple 11GS. Only eight timers may be active at any given moment on the Apple Ile.

A Warning This parameter list must not be modified as long as the timer is active,
except if it is being changed to a RemoveTimer parameter list. The Apple
1IGS firmware uses this list to identify and track the timer; the list must
be available for potential use as a Remove Timer parameter list. a

The InstaliTimer call returns the result code for all system calls. Additionally, this call retumns an
Apple lle specific result code when there are too many timers active.

Result Code Description
$0105 Too many timers

Miscellaneous calls 55

RemoveTimer ($05)

The RemoveTimer call is used to cancel an asynchronous InstaliTimer call before it completes
without calling a completion routine. It uses the identical parameter list as the corresponding
InstallTimer that is being removed. The parameter structure for the RemoveTimer call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)

$01 Command Byte 505

$02 Result Code Word <o

S04 Reserved 12 Bytes x (the rest of the InstallTimer parameter list)

The Async Flag and Command bytes must be changed in the original parameter list used for the
InstallTimer call.

The RemoveTimer call returns this result code, as well as the result code for all system calls.

Result Code Description
$0103 No Timer Installed

Boot ($06)

The Boot call causes a network boot to take place. The parameter structure for the Boot call is

listed here. ‘

Position Name Size Value

00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte 06

02 Result Code Word <een

If no boat server is found, no errors are returned and the Apple 11GS workstation boots locally.

56 CHAPTER 3 Callsto AppleTalk Protocols

CancelTimer ($45)

The CancelTimer call is used to cancel an asynchronous InstallTimer call before & completes. The
timer's completion routine will be called. It uses the identical parameter list as the comresponding
InstallTimer that is being removed. The parameter structure for the CancelTimer call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)

$01 Command Byte #5

$02 Result Code Word <o

$04 Reserved 12 Bytes x (the rest of the Install Timer parameter
list)

The Async Flag and Command bytes must be changed in the original parameter list used for the
InstallTimer call. If the timer routine has not been installed or had completed, a “No Timer
Installed” error ($0103) is returned. If the timer is successfully canceled, the completion routine will
receive a “Timer Canceled” error ($0106). This is important as a successful result for the CancelTimer
call will retum error $0106 instead of “No Error* ($0000).

The CancelTimer call retumns these result codes, as well as the result codes for all system calls.
Result Code Description

$0103 No Timer Installed
$0106 Timer Canceled

Miscellaneous calls 57

Calls to the Link Access Protocol (LAP)

The Apple I1GS firmware provides the standard LocalTalk Link Access Protocol (LLAP). It also
provides calls to read packet data from the receive buffers, and to attach or remove protocol

handlers.
Table 3-2 lists the calls to the LAP layer. The sections that follow describe each call, the
parameter listing, and the result codes.

» Table 3-2 LAPalls

Command

Number Name Description

$07 LAPWrite Write LAP packet

08 ReadBuffer Read data from buffer
$09 AttachProt Attach protocol

$0A RemoveProt Remove protocol

The LAP firmware maintains a number of receive buffers in its own reserved RAM. When a packet is
received, i is placed in the next available receive buffer. If all buffers are full, the packet is ignored
and is lost.

Received packets are processed in the order they are received, with the buffers being handled as
a circular queue. When a packet is found in the buffer, the LAP header is pulled off by the LAP layer,
the LAP Type table is searched to determine the next protocol layer to call, and control is then
passed Lo that layer. If the LAP Type is not found in the table, the packet is discarded. Headers and
data are retrieved from the buffer by protocol layers using the ReadBuffer call.

58 CHAPTER 3 Callsto AppleTalk Protocols

AL

LAPWrite (507)
‘ The LAPWrite call is used to send a LAP packet. The parameter structure for the LAPWrite call is
listed here.
Position Name Size Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $07
2 Result Code Word <o
$04 Destination Node Byte —>
$05 LAP Type Byte >
06 Pointer to BDS Long >

The LAP packet is sent to the node specified in the Destination Node field, with the LAP Type
specified in the list. The data to be sent is determined by a Buffer Data Structure (BDS), indicated
by the Pointer to BDS. The format of the BDS is shown here.

Position Name Size Value
$00 First Buffer Length Word >
173 First Buffer Pointer Long —>
$06 Second Buffer Length Word -
08 Second Buffer Pointer Long >
’ | |
v v
$x . Last Buffer Length Word >
$x Last Buffer Pointer Long >
$x End-of-BDS Flag Word SFFFF

The LAPWrite call returns these result codes, as well as the result codes for all system calls.
Result Code Description

023 LAP data too large
S0204 Retry count exhausted
$0205 Illegal LAP type

Calls to the Link Access Protocol (LAP) 59

ReadBuffer ($08)

The ReadBuffer call allows data to be retrieved from the current packet being processed, including
headers for “client protocols”. It enables protocol layers to extract only their own headers without

disturbing the remainder of the packet. The parameter structure for the ReadBuffer call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $08

$2 Result Code Word <eee

S04 Request Count Word >

06 Buffer Pointer Long —>

$0A Purge Flag Byte >

$0B Amount Transferred Word <oen

The first time the call is executed, the firmware starts at the beginning of the buffer and reads the
number of bytes specified in the parameter list.

& Note: Because LAP and DDP both read the beginning of the buffer, you do not need to
worry about those headers. Similarly, ATP and other protocols remove their headers before
you see the data.

Bytes read are placed into the destination buffer specified in the list. The firmware maintains a
Location Pointer that is left pointing to the next byte after the last one that was read. The next
time the call is executed, it begins with the byte to which the Location Pointer is pointing.

Request Count specifies how many bytes to transfer. If the Request Count is greater than the
amount of data remaining, only the actual amount remaining is transferred, and an error is retuned.
The Amount Transferred field contains the size of the data (in bytes) actually transferred.

A non-zero value in the Purge Flag field causes the buffer to be purged after the transfer of
data. When the buffer is purged, the packet data is no longer available. If the call is executed with
the Purge Flag set and the Request Count is less than the amount remaining in the buffer, the
buffer is purged and an error is retumed, indicating that not all of the data has been transferred.

¢ Note LAP protocol handlers and socket listeners must always execute this call with the
Purge Flag set before completing,; if they do not, the next packet will never be processed.

The ReadBuffer call returns these result codes, as well as the result codes for all system calls.
Result Code Description

$0201 No packet in buffer
022 End of buffer
029 Data lost in purge

60 CHAPTER 3 Calls to AppleTalk Protocols

L S SRR 2ETT

AttachProt ($09)

' The AttachProt call allows a LAP protocol handler to be attached. The parameter structure for the
AuachProt call is listed below.

Position
$00
$01
$02
$04
$05

Name Size
Async Flag Byte
Command Byte
Result Code Word
Protocol Type Byte
Protocol Address Long

Value

$00 (Synchronous only)
$09

[S

-—>

g

The Protocol Type and Protocol Address fields specify the LAP type and address of the handler.
These values are installed in a LAP Type table. When a packet is received, the firmware’s interrupt
handler searches the LAP Type table and calls the appropriate protocol handler by using the address
specified in this call. LAP Types may be in the range from $01 to §7F.

It is not necessary to install a Protocol Handler in order to send a LAP packet with a LAP Type
that has not been installed. However, if a packet is recefved that contains a LAP type not found in
the LAP type table, the packet is discarded. The firmware provides a catch-all type ($FF) to receive
packels containing Lap types that are not installed. Using $FF as the Protocol Type in the
AttachProt call causes all such packets to be sent to the routine specified in the Protocol Address
field. The protocol handler terminates by doing a jump to the Completion Routine Return address

that comes from the Getinfo call.

& Note: The machine states for entry and exit for a LAP handler are the same as for a
completion routine.

The result codes retumed for the AttachProt call are as follows:

Result Code
$0205
026
50277

Description
Iliegal LAP type
Duplicate LAP type
Too many protocols

Calls to the Link Access Protocol (LAP) 61

RemoveProt ($0A)

The RemoveProt call removes the protocol handler of the type specified in the Protocol Type field.

The parameter structure for the RemoveProt call is listed below.

Position Name Size
$00 Async Flag Byte
01 Command Byte
s Result Code Word
$04 Protocol Type Byte

Value

$00 (Synchronous only)
$0A

Kenn

-

LAP Types that can be removed are in the range from $01 to $7F. The catch-all type ($FF) can also be

removed.

The RemoveProt call returns these result codes, as well as the result codes for all system calls.

Result Code Description
$0205 lllegal LAP type
30208 Type not found

62 CHAPTER 3 Calls 1o AppleTalk Protocols

Calls to the Datagram Delivery Protocol (DDP)

The Datagram Delivery Protocol (DDP) for the Apple 1IGS firmware provides the standard
AppleTalk Datagram Delivery Protocol. Table 3-3 lists the calls to the DDP layer. The sections that
follow describe each call, the parameter listing, and the result codes.

s Table 3-3 DDP calls

Command

Number Name Description

$0B OpenSocket Open DDP socket
$0C CloseSocket Close DDP socket
$0D SendDatagram Send datagram

Calls to the Datagram Delivery Protocol (DDP) 63

OpenSocket ($0B) .
The OpenSocket call is used to open a DDP socket. The parameter structure for the OpenSocket call

is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)

$01 Command Byte $0B

$02 Result Code Word <een

S04 Socket Number Byte <>

$05 Client Address Long >

If the Socket Number field in the parameter list contains 0, a dynamic socket is opened and a socket
number in the range of $80 to $FE is retumed in the Socket Number field. If the Socket Number
field is non-zero and is within the correct range for static sockets (301 to $7F), DDP attempts to
open it as a static socket. The Client Address is the address of the client's socket-listener routine
and must be a valid address (not 0). This address is called by the firmware's interrupt handler when a
packet is received for the socket being opened. Sockets 1, 2 and 4 are preinstalled and return an error
if an aempt is made to open them without first closing the sockets.

& Note: Socket numbers $00 and $FF are not allowed.

The OpenSocket call retumns these result codes, as well as the result codes for all system calls.
Result Code Description

$0301 Too many sockets open
$0303 Socket already open
$0304 Invalid socket type

64 CHAPTER 3 Calls to AppleTalk Protocols

CloseSocket ($0C)
. The CloseSocket call provides the means to close a DDP socket. The parameter structure for the
CloseSocket call is listed here.
Position Name Size Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $0C
$02 Result Code Word <
$04 Socket Number Byte >

The Socket Number specifies the socket to be closed. The CloseSocket call retumns these result
codes, as well as the result codes for all system calls.

Result Code Description

$0302 Socket not open

$0304 Invalid socket type

Calls to the Datagram Delivery Protocol (DDP) 65

SendDatagram ($0D)

The SendDatagram call is used to send a datagram. The parameter structure for the SendDatagram
call is listed as follows:

Position Name Size Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $0D
$2 Result Code Word <-ee
$04 Checksum Flag Byte —>
$05 Destination Network <Word> >
$07 Destination Node Byte >
$08 Destination Socket Byte g
09 Source Socket Byte >
$0A DDP Type Byte >
$0B BDS Pointer Long >

The Checksum Flag applies only to internet packets. If the flag is 0, no checksum is calculated and
an intemet packet has 0 in the checksum field of the DDP header. If the flag is non-zero, the DDP
checksum is calculated only if the packet is an internet packet and is included in the long DDP
header. If the size of DDP data (that is, the sum of the BDS buffer lengths) is greater than 586, an
error of $0305 is returned.

& Note: A DDP socket must be opened in order to send a datagram. l

66 CHAPTER 3 Calls to AppleTalk Protocols

The BDS Pointer points to a Buffer Data Structure (BDS), which in tum points to the DDP data to

' be sent. The format of the BDS is shown in the following list.

Position Name Size Value
$00 Reserved 6 Bytes >
$06 First Buffer Length Word —>
$08 First Buffer Pointer Long >
$0C Second Buffer Length Word >
$OE Second Buffer Pointer Long >

| |

v v
$x Last Buffer Length Word >
$x Last Buffer Pointer Long >
$x End-of-BDS Flag Word $FFFF

The SendDatagram call returns these result codes, as well as the result codes for all system calls.
Result Code Description

$0302 Socket not open
$0304 Invalid socket type
$0305 DDP data too large

Calls to the Datagram Delivery Protocol (DDP) 67

Calls to the Name Binding Protocol (NBP) .

The Name Binding Protocol (NBP) for the Apple IIGS firmware provides the standard AppleTalk
Name Binding Protocol. This section discusses calls to the NBP layer, listed in Table 3-4. The
sections that follow describe each call, the parameter listing, and the result codes.

s Table 34 NBP clls

Command
Number Name Description

$OE RegisterName Register name

$OF RemoveName Remove name

$10 LookupName Lookup name

11 ConfirmName Confirm name

46 NBPKill Cancel Asynchronous NBP call

68

CHAPTER 3 Calls to AppleTalk Protocols

RegisterName ($0E)

‘ The RegisterName call allows a name to be registered on the network. The parameter structure for
the RegisterName call is listed here.

Position Name Size Value
$00 Async Flag Byte >
$01 Command Byte $0E
$02 Result Code Word <ee-
$04 Completion Routine Ptr Long >
08 Name Structure Pointer Long >
$oC Retry Interval Byte —>
$0D Retry Count Byte >
$0E Reserved Word x
$10 Socket Number =Byte —>
n Check Flag Byte —->

The Socket Number being registered is required in the parameter list, along with a pointer to a
structure containing the entity name (Name Structure Pointer). The caller supplies the Retry Count
and Retry Interval. The interval is in 1/4-second periods. The Check Flag field specifies whether the
network and internal tables should be checked for a duplicate name. A value of 0 means the
network should be checked. A non-zero value prevents the check from occurring,

The Name Structure Pointer field points to a structure like the one in the following list. This
data structure must remain until the RemoveName call removes the name.

‘ Position Name Size Value
$00 ‘ Reserved 9 Bytes x
$09 Entity Name (NBP Format) Variable Length —->

An entity name is a character string consisting of three fields—object, type, and zone. Each field
consists of a leading 1-byte string length, followed by up to 32 string bytes. The string length
represents the number of bytes in the string. The three strings are concatenated without any
intervening padding for a total length of up to 99 bytes. (For more information, refer to Inside
AppleTaik)

The RegisterName call returns these result codes, as well as the result codes for all system calls.

Result Code Description

$0401 Too many names
$0402 Name already exists
$0406 Invalid name format
$0407 Incorredt address

50408 Too many NBP processes

Calls to the Name Binding Protocol (NBP) 69

RemoveName ($0F)

The RemoveName call removes the name pointed 1o by the Entity Name Pointer. The parameter
structure for the RemoveName call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)

$01 Command Byte $OF

$02 Result Code Word <-e- |
$04 Entity Name Pointer Long —> i

The Entity Name Pointer points directly at the name, not 10 a name structure as in the
RegisterName command.

The RemoveName call retuns these result codes, as well as the result codes for all system calls.
Result Code Description
$O403 Name not found
$0406 Invalid name format

70 CHAPTER 3 Calls to AppleTalk Protocols

LookupName ($10)

' The LookupName call performs a name lookup on the network or internet. The parameter structure
for the LookupName call is listed here.

Position Name Size Vah;c
$00 Async Flag Byte >
$01 Command Byte $10
$2 Result Code Word P
$04 Completion Routine Ptr ~ Long >
8 Entity Name Pointer Long >
$0C Retry Interval Byte >
$0D Retry Count Byte Y
$OE Reserved Word X
$10 Buffer Length Word >
$12 Buffer Pointer Long >
$16 Max # of Matches Byte —>
$17 Actual # of Matches Byte <-ee

The caller must supply a pointer to the buffer where the matches are to be placed (Buffer Pointer)
and the length of the buffer (Buffer Length). The structure of the data returned in the buffer is as

follows:
. Position Name Size
$00 First Network # <Word> }
$02 First Node # Byte) First internet address
03 First Socket # Byte)
04 First Enumerator Byte (refer to Inside AppleTaik)
$05 First Entity Name Variable Length

The second and subsequent internet addresses observe the same structure. In the following
example, xx is the address of the byte following the last byte of the previous Entity Name.

Calls to the Name Binding Protocol (NBP) A

AN I R S B R AR 5 s

Position Name

xx+00 Next Internet Address (which includes the Network #, .
Node #, and Socket # of the next Intemet)

+4 Next Enumerator Byte '

+05 Next Entity Name

It is up to the caller to supply the values for the Max # of Matches, Retry Count, and Retry Interval
fields. The Retry Interval is in 1/4-second periods. The value for the Actual # of Matches will be
returned in the parameter list when the call completes.

The LookupName call returns these result codes, as well as the result codes for all system calls.

Result Code Description

$0401 Too many names

$0404 User's buffer full

$0406 Invalid name format
$0408 Too many NBP processes

72 CHAPTER 3 Calls to AppleTalk Protocols

ConfirmName ($11)

' The ConfirmName call requires the name and address being confirmed. The parameter structure for
the ConfirmName call is listed here.
Position Name Size Value
$00 Async Flag Byte >
$01 Command Byte 11
02 Result Code Word <een
$04 Completion Routine Ptr Long >
$08 Entity Name Pointer Long —>
$oC Retry Interval Byte >
$0D Retry Count Byte >
$OE Reserved Word x
$10 Network Number <Word> >
$12 Node Number Byte >
$13 Socket Number Byte —>
$14 Actual Socket Number Byte <--

The Retry Count and Retry Interval are required. The Retry Interval is in 1/4 second periods. The
Actual Socket Number field retums the actual socket number found for the name. The
ConfirmName call will not confirm a name in the caller's own node.

The ConfirmName call returns these result codes, as well as the result codes for all system calls.

Result Code Description
' $0403 Name Not Found
$0406 nvalid name format
50407 noorredt address
$0408 Too many NBP processes

Calls to the Name Binding Protocol (NBP) 73

NBPKill ($46)

The NBPKill call is used to cancel an asynchronous NBP call before it completes. The parameter
structure for the NBPKill call list listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $46

$02 Result Code Word <een

$04 ParamBlockPointer Long >

ParamBlockPointer must point to the beginning of the parameter block that is currently being used
by the asynchronous call that is to be canceled.

The cancelled NBP call will complete with error $0409.

The NBPKill call returns these result codes, as well as the result codes for all system calls,

Result Description
$040A ParamBlock Not Found

74 CHAPTER 3 Calls to AppleTalk Protocols

Calls to the AppleTalk Transaction Protocol (ATP)

The AppleTalk Transaction Protocol (ATP) for the Apple IIGS firmware provides full
implementation of the ATP protocol, allowing use of all of the features specified in the AppleTalk
ATP specification. Table 3-5 lists calls to the ATP layer, the following section describes each of these
aalls, and gives the parameter list and result codes for each call.

u Table 3-5 ATP calls

Command

Number Name Description

$12 SendATPReq Send ATP request

$13 CancelATPReq Cancel ATP request

$14 OpenATPSocket Open ATP responding socket
$15 CloseATPSocket Close ATP responding socket
$16 GetATPReq Get ATP request

$17 SendATPResp Send ATP response

$18 AddATPResp Add ATP response

$19 RelATPCB Release responding control block

Calls to the AppleTalk Transaction Protocol (ATP)

S S

75

SendATPReq ($12)

The SendATPReq call is used to send an ATP request. The parameter structure for the SendATPReq .
call is listed here.

Position Name Size Value
$00 Async Flag Byte >
$01 Command Byte $12
$2 Result Code Word <een
$04 Completion Routine Ptr Long >
$08 Dynamic Socket Number Byte <eee
$09 Destination Network <Word> >
$0B Destination Node Byte -->
$oC . Destination Socket Byte >
$0D ATP Transaction 1D <Word> <eev
$OF Request Buffer Length Word >
$11 Request Buffer Pointer Long >
$15 User Bytes 4 Bytes >
$19 # of Response Buffers Byte -
S1A Response BDS pointer Long >
SIE ATP Flags Byte >
$IF Retry Interval Byte >
7.1} Retry Count Byte ->
521 Current Bitmap Byte <>
2 # of Responses Received Byte <e
$3 Reserved 6 Bytes x

The Dynamic Socket Number indicates the DDP socket that ATP is using. The Response BDS
Pointer points to a Buffer Data Structure (BDS) for the response packets. Bit 5 in the ATP Flags
field may be set to indicate an exacdy-once transaction. The other bits are not used in this call. The
caller must supply the values for the Retry Count and Retry Interval fields. The retry interval is in
1/4-second periods.

The User Bytes field specifies the ATP User Bytes to be sent in the request packet. You must
set the Current Bitmap field with the proper value for the number of packets you're requesting. For
instance, if you request packets 1 through 4, set the bitmap to $OF.

While the call is executing, the Result Code field contains $FF in the low byte. The ATP
Transaction ID (TID) field is valid, and the Current Bitmap and # of Responses Received fields are
updated throughout call execution. When the call completes, the # of Responses Received field
indicates how many packets were received, and the Current Bitmap field indicates which packets
were received.

76 CHAPTER 3 Calls to AppleTalk Protocols

The format of the Response BDS is as follows.

' Position

$00
2
$06

EEEH

Name Size
1st Buffer Length Word
1st Buffer Pointer Long
1st Buffer User Bytes 4 Bytes
1st Buffer Actual Length Word
2nd Buffer Length Word
2nd Buffer Pointer Long
2nd Buffer User Bytes 4 Bytes
2nd Buffer Actual Length Word

|

v
Last Buffer Length Word
Last Buffer Pointer Long
Last Buffer User Bytes 4 Bytes
Last Buffer Actual Length Word

Value
-—>

-—>

Bits 0-14 of the Actual Length field contains the length of the data received for the buffer with
which it is associated. If the data length is larger than the buffer supplied, the high bit of the Actual
Length field is set 1o indicate the overflow, and bits 0 to 14 conains the length of the data actually

. transferred (o the buffer. The User Bytes field contains the ATP User Bytes returned with the
packet that was placed into the buffer.

The result codes returned for the SendATPReq call are listed here.

Result Code
$0501

Description

ATP data too large

Too many adtive ATP calls

ATP send request aborted

ATP send request failed, retry exceeded
Too many responses expected

Unable to open DDP socket

Calls to the AppleTalk Transaction Protocol (ATP) r

CancelATPReq ($13)

The CancelATPReq call is used to cancel an outstanding ATP request. The parameter structure of
the CancelATPReq call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $13

02 Result Code Word Coee

$04 ATP Transaction 1D <Word> >

ATP Transaction ID must contain the identification of a request that is currently executing. The
CancelATPReq call returns this result code, as well as the result codes for all system calls.

Result Code Description
$0503 ATP control block not found

OpenATPSocket ($14)

The OpenATPReq call is used to open an ATP responding socket. The parameter structure of the
OpenATPReq call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
01 Command Byte $14

$02 Result Code Word Ceen

$04 Socket Number Byte <-->

If the Socket Number field in the parameter list contains 0, a dynamic socket is opened and the
number returned in the Socket Number field. If a socket number is supplied by the caller, it must be
within the correct range for static sockets.

The OpenATPSocket call retums these result codes, as well as the result codes for all system
calls.
Result Code Description
$050A Too many ATP sockets
$050C Unable to open DDP socket

78 CHAPTER 3 Calls to AppleTalk Protocols

CloseATPSocket ($15)

The CloseATPSocket call closes the specified ATP responding socket. The parameter structure of
the CloseATPSocket call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $15

$02 Result Code Word <een

$04 Socket Number Byte >

The GloseATPSocket call returns this result code, as well as the result codes for all system calls.

Result Code Description
$0502 Invalid ATP socket

Calls 10 the AppleTalk Transaction Protocol (ATP) 79

GetATPReq ($16) .

The GetATPReq call prepares the specified socket to receive a request. More than one GetATPReq
may be outstanding on a socket. The parameter structure of the GetATPReq call is listed here.

Position Name Size Value
$00 Async Flag Byte >

$01 Command Byte $16

$02 Result Code Word Ceen

$04 Completion Routine Ptr Long —>

08 Response Socket # Byte —>

09 Source Network Number <Word> S

$0B Source Node Number Byte <eev :
$0C Source Socket Number Byte <o !
$0D ATP Transaction ID <Word> <oen

$OF Request Buffer Length Word >

1 Request Buffer Pointer Long >

315 User Bytes 4 Bytes <een

$19 Actual Request Length Word <e-

$1B ATP Flags Byte <ee

$1C Bitmap Byte <-ee

$ID Reserved Long x

When the call completes, the parameter list contains the header data from the request. B 5 of the
ATP Flags field specifies whether or not the request is an exactly-once Lransaction.

A Warning There is 2 30-second time-out. With no further requests of the same TID
after 30 seconds, the memory that was allocated for the Control Block is
released (that is, memory that was created for this transaction when a
request is received).

The GetATPReq call returns these result codes, as well as the result codes for all system calls.
Result Code Description

0502 Invalid ATP socket
0504 Too many adtive ATP calls. This result could will never be retumed
50509 Async call aborted, socket was closed

80 CHAPTER 3 Calls to AppleTalk Protocols

SendATPResp ($17)
' The SendATPResp call is used to send a response to a received request.

& Note This call does not complete until all packets have been sent and acknowledged.

The parameter structure for the SendATPResp call is listed here.

Position Name Size Value
$00 Async Flag Byte —>
$01 Command Byte $17
$02 Result Code Word Comn
$04 Completion Routine Ptr Long —>
$08 Response Socket # Byte —>
$09 Dest Network Number <Word> >
$0B Dest Node Number Byte —>
$0C Dest Socket Number Byte —>
$0D ATP Transadtion ID <Word> —>
$OF # of Response Buffers Byte >
$10 Total ATP Packets Byte —>
‘ 1 Response BDS Pointer Long —>
§15 ATP Flags Byte >
$16 Current Bitmap Byte <>
$17 Add Routine Pointer Long —->
$1B Add Bitmap Byte <---

& Note: It is the responsibility of the user to set the bitmap as indicated in Instde AppleTalk
for the number of packets being sent before the user makes the call.

The Apple IIGS firmware must use the correct Response Socket # (obtained from an
OpenATPSocket call), as well as the Destination Address and ATP Transaction ID (obtained from
the GetATPReq call). The Total ATP Packets field tells ATP the total number of packets to be sent
in the response.

The value in the # of Response Buffers ficld specifies how many of the Total ATP Packets are
being sent with this call, and must match the number of packets you are sending.

Calls to the AppleTalk Transaction Protocol (ATP) 81

The Response BDS field must contain room for the number of buffers specified in the Total
ATP Packets field. The format of the Response BDS is the same as that for SendATPReq; however,
the Actual Length field is not used, and the User Bytes are supplied by the caller rather than
returned by the call. If any of the BDS buffers are too small to contain all the data in the packet
assigned (o it, the extra data for that packet only is lost, and no error is returned.

You must supply a 0 in the Add Routine Pointer and Add Bitmap fields. These fields are not
currently used for the Apple 1IGS workstation.

The SendATPResp call retums these result codes, as well as the result codes for all system calls.

Result Code Description

$0501 ATP data oo large

$0502 Invalid ATP socket

$0503 ATP control block not found

$0505 No release received

$0509 Async call aborted, socket was closed
$050B Too many responses expecied
$050D ATP Send Response was released

82 CHAPTER 3 Calls o AppleTalk Protocols

AddATPResp ($18)

This call is currently not implemented.

RelATPCB ($19)

The RelATPCB call is used by the responding node to release the control block and all buffers
associated with a response to an exactly-once transaction. The control block and all held buffers are

released. Parameter usage for the RelATPCB call is listed here.

Position Name Size
$00 Async Flag Byte
$o1 Command Byte
$02 Result Code Word
$04 Response Socket # Byte
$05 Dest Network Number <Word>
07 Dest Node Number Byte
$08 Dest Socket Number Byte
$09 ATP Transaction ID <Word>

Value

$00 (Synchronous only)
$19

<aen

-

Y

-

—>

e

The RelATPCB call retums this result code, as well as the result codes for all system calls.

Result Code Description
$0503 ATP control block not found

Calls to the AppleTalk Transaction Protocol (ATP) 83

Calls to the Zone Information Protocol (ZIP)

This section describes calls to the Zone Information Protocol (ZIP) layer on the Apple IIGS that
may be needed for normal workstation use communicating with and through bridges. The other
ZIP calls (described in Inside AppleTalk), not supported on the Apple 11GS, are used for taking down
and bringing up a bridge, and would be part of special utilities used for such purposes.

Table 3-6 lists the ZIP calls supported. The sections that follow describe each call, the
parameter listing, and the result codes.

s Table 3-6 ZIP calls

Command

Number Name Description

S1A GetMyZone Get zone name for my zone
1B GetZonelList List zones of all networks

84 CHAPTER 3 Calls to AppleTalk Protocols

GetMyZone ($1A)

‘ The GetMyZone call retums the zone name of the network that the workstation is on. The
parameter structure for the GetMyZone call is listed here.

Position

ggegeges

$0E

Name

Async Flag

Command

Result Code
Completion Routine Ptr
Buffer Pointer

Retry Interval

Retry Count

Reserved

Size
Byte
Byte
Word
Long
Long
Byte
Byte
Word

Value
Y
$1A
L oo
>

>

This call assumes that the buffer is at least 33 bytes long. The Retry Interval is in 1/4-second
periods. The GetMyZone call retums these result codes, as well as the result codes for all system

calls.

Result Code Description

$0601
$0603

Network error
ZIP not found

Calls to the Zone Information Protocol (ZIP) 85

GetZonelist ($1B)

The GetZoneList call retums the complete list of zones on the intemet. The parameter structure of
the GetZoneList call is listed here.

Position Name Size Value
$00 Async Flag Byte —=>
$01 Command Byte $1B
$02 Result Code Word <-e-
$04 Completion Routine Ptr Long >
$08 Buffer Length Word -->
$0A Buffer Pointer Long —->
SOE Bridge Node Number Byte -->
$OF Start Index Word —-->
i1 Retry Interval Byte >
$12 Retry Count Byte —->
$13 # Zones Retumed Word <een
$15 Reserved Long >

The Bridge Node Number field specifies the bridge to which the call is to be directed. This number
can be obuined through the Getinfo call. The user must provide the Bridge Node Number field in
this call because more than one execution of the call may be required to get the complete zone list.
Each execution of the call must be directed to the same bridge. The intemal field A-Bridge on the
Apple 1IGS changes periodically if there is more than one bridge on the local network; therefore, the
user must supply the node number of the bridge to which the call should be directed.

The Buffer Pointer points to a buffer where the list is to be placed. The buffer will be filled
with as many zone names as will fit, starting with the entry specified by Start Index.

Note: Start Index must start with 1; it cannot use 0.

The value in the # Zones Returned field indicates how many zone names have been returned in the
buffer. The Retry Interval is in 1/4-second periods.
The GetZoneList call retums these result codes, as well as the result codes for all system calls.

Result Code Description

0601 Network error
0602 ZIP overflow
$0603 ZIP not found

86 CHAPTER 3 Calls to AppleTalk Protocols

Calls to the AppleTalk Session Protocol (ASP)

This section describes calls to the AppleTalk Session Protocol (ASP) layer on the Apple 1GS
workstation. These ASP calls follow the ASP specification very closely.

Table 3-7 lists the ASP calls used by the Apple I1GS. The sections that follow provide a brief
description of each call, as well as the parameter listing and the result codes for each.

= Table 3-7 ASP calls

Command

mumber Name Descripton

$1C SPGetParms Get parameters

$1D SPGetStatus Get status

SIE SPOpenSession Open a session

$IF SPCloseSession Close a session

$20 SPCommand Send a command

21 SPWrite Write multiple packets

The SPGetParms call returns implementation-dependent information regarding the allowable sizes
of buffers. Thcmmmumslzeofacormmndblockandmcmxunumsnz:ofarcplyomfwnlc
data are retumed in the fields Max Command Size and Max Data Size.

The parameter structure for the SPGetParms call is listed here.

Position Name Size Value
$00 Async Flag Byte $00 Synchronous Only
$01 Command Byte $IC
s Result Code Word &eun
$04 Max Command Size Word <eee
06 Max Data Size Word <een

The result codes returned for the SPGetParms call are the same as those for all system calls.

Calls to the AppleTalk Session Protocol (ASP) 87

SPGetStatus ($1D)

The SPGetStatus call is used by the workstation to obtain the curment status of a known server. ‘
The parameter structure for the SPGetStatus call is listed here.

Position Name Size Value
$00 Async Flag Byte >
301 Command Byte $1D
$02 Result Code Word <een
$04 Completion Routine Ptr Long >
08 SLS Network Number <Word> >
$0A SLS Node Byte >
$0B SLS Socket Byte >
$0C Buffer Length Word >
$OE Buffer Address Long >
$12 Length of Status Data Word <-e-

The Buffer Address field points to the status buffer, and the Length of Status Data field indicates
its size. The SPGetStatus call retums these result codes, as well as the result codes for all system i

calls.

Result Code Description

0701 Network error

$0702 Too many ASP calls
$0704 Size emor.

$0706 No response from server

88 CHAPTER 3 Calls to AppleTalk Protocols

SPOpenSession ($1E)

‘ The SPOpenSession call is used by the workstation Lo open a session with a known server. The
parameter structure for the SPOpenSession call is listed here.

Position Name Size Value
$00 Async Flag Byte >
$01 Command Byte SIE
$02 Result Code Word <-o-
$04 Completion Routine Ptr Long —>
08 SLS Network Number <Word> >
$0A SLS Node Byte —>
$0B SLS Socket Byte —->
$0C Autention Routine Addr Long >
$10 Session Reference # Byte <een

The Attention Routine Addr points to a routine to be called when an attention packet is received.
The 2 bytes received in the attention packet are placed in the second 2 bytes of the address pointed
to by the Attention Routine Addr. The Apple 1IGS then jumps (o the address 4 bytes beyond the
specified address.

The 4 bytes pointed to by Attention Routine Addr include the following:

Position Name Size Value
‘ 0 Session Reference # <
1 Atten Type <-ee
2 Atten Word <— (from server)

The Atten Type includes

$00 Normal

$40 Connedtion timeout

0 Connedion closed by server

The SPOpenSession call returns these result codes, as well as the result codes for all system calls.
Result Code Description

$0701 Network error

0702 Too many ASP calls -
$0706 No response from server
o7 Bad version number
$0708 Too many sessions
$0709 Server busy

Calls to the AppleTalk Session Protocol (ASP) 89

SPCloseSession ($1F)

The SPCloseSession call terminates an open session. The parameter structure for the SPCloseSession

call is listed here.

Position Name Size Value
$00 Async Flag Byte >
01 Command Byte $IF
02 Result Code Word <-ev
$04 Completion Routine Ptr Long >
$08 Session Reference # Byte —>

The $PCloseSession call returns these result codes, as well as the result codes for all system calls.
Result Code Description

$0701 Network error

$0703 Invalid reference number

90 CHAPTER 3 Qalls to AppleTalk Protocols

SPCommand ($20)

The SPCommand call is used by the Apple [IGS workstation on an open session to send a Command
packet to a server. The parameter structure for the SPCommand call is listed here.

Position Name Size Value
$00 Async Flag Byte >
$01 Command Byte $2
7] Result Code Word <
$04 Completion Routine Ptr Long >
08 Session Reference # Byte >
$09 Command Block Length Word >
$0B Command Block Address Long —>
$OF Reply Buffer Length Word >
$11 Reply Buffer Address Long >
$15 Command Result Long <
$19 Reply Length Word <

The inputs are the session reference number, a command block buffer, and a reply buffer. The
Command Block Address field gives the address of the command block to be sent, and the
Command Block Length field gives the number of bytes to be sent. The number of bytes sent
cannot be greater than the maximum command size; otherwise, a size error is returned in the result
code and no attempt made to send anything out over the network. The Reply Buffer Address field
points 1o the reply buffer, and the value in the Reply Buffer Length field indicates its size.

Upon successful completion, the number of bytes of reply data retumed is in the updated
Reply Length field, and the Command Result field will have a 4-byte value provided by the server.

The SPCommand call retumns these result codes, as well as the result codes for all system calls.
Result Code Description

o1 Network error

$0702 Too many ASP calls
$0703 Invalid reference number
$0704 Size error

$0706 No response from server
$070A Session closed

The system now uses SPCommand calls asynchronously. Applications that have AppleShare
volumes mounted under System Software 5.0 and also make SPCommand calls themselves should
now handle the “Too many ASP calls” error, $0702.

Calls to the AppleTalk Session Protocol (ASP) 91

AppleShare uses a protocol called AppleTalk Session Protocol (ASP) to maintain a connection
(session) with all servers that you are logged on to. All commands and data transfer to the server
are sent using ASP.

The implementation of ASP on the Apple IIGS has a limit of one command outstanding
(waiting to complete) per session. This means that if one command has been sent, its reply must be
received before you can send the next command. Remember, the SPCommand call is used to send
commands over a session. If you try to issue an SPCommand before another (asynchronous)
SPCommand on the same session has completed, your call will retumn with a *Too many ASP calls®
error, $0702

Before System Software 5.0 on the Apple IIGS, no system software made asynchronous
SPCommand calls, and therefore this error would only occur if the developer was making the
asynchronous calls. As of System Software 5.0, the AppleShare FST uses asynchronous calls to help
prevent the loss of a connection with servers and (o assist the Finder in dynamically updating
windows when a change is made to a network volume. Therefore, this error may be returned even
though the developer is not making asynchronous calls.

The error is easy to handle if you are making synchronous SPCommand calls. Simply make the
call, and if it completes with estor $0702, loop back and make the call again until you can do so
without error $0702. This technique forces your program to wait until ASP is free again to make the
aall.

If you are making asynchronous SPCommand calls, and you receive the $0702 error, you might
want (o install a short (i.e., 1/4 second) timer using the InstallTimer call, and make the SPCommand
call again when the timer completes. Remember, the InstallTimer has to be asynchronous, since you
are making it from the completion routine of an asynchronous call.

& Note: When using the AppleShare FST under GS/0S, there is little reason to make SPCommand
calls yourself, since most of the calls you can make are available through the FST as normal
file system calls or as FST-specific calls.

92 CHAPTER 3 Glls to AppleTalk Protocols

SPWrite ($21)

. The SPWrite call is used by the Apple 1IGS workstation during an open session to send a write
packet to the server. The parameter structure for the SPWrite call is listed here.

Position Name Size Value

$00 Async Flag Byte —>

$01 Command Byte 21

$02 Result Code Word <-o-

$04 Completion Routine Pir Long —->

$08 Session Reference # Byte —>

$09 Command Block Length Word —>

$0B Command Block Address Long —>

$OF Write Data Length Word —->

$11 Write Data Address Long —>

$15 Reply Buffer Length Word —>

$17 Reply Buffer Address Long >

$1B Command Result Long <---

$1IF Written Length Word Cn

$21 Reply Length Word <-ee

‘ The inputs are the same as for the SPCommand command described earier, with the addition of the

following: the Write Data Address field should contain the address of the data to be sent to the

server, and the Write Data Length field gives the number of bytes.

The outputs are the same as the ASPCommand command above, with the addition of the
following, Upon completion, the Written Length field will contain the number of bytes
successfully sent to the server.

Calls to the AppleTalk Session Protocol (ASP) 93

The SPWrite call returns these result codes, as well as the result codes for all system calls.
Result Code Description

0701 Network error

$0702 Too many ASP calls
$0703 Invalid reference ¢
$0704 Size error

0705 Buffer error

$0706 No response from server
$070A Session closed

The SPWrite call also has a limit of one outstanding call per session. System software does not
currently use asynchronous SPWrite calls, but looping until ASP retums something other than $0702
would be a good precaution for SPWrite, too.

& Note: When using the AppleShare FST under GS/OS, there is little reason to make SPWrite calls
yourself, since packets can be sent through the FST as normal file system calls or as FST-
specific calls.

94 CHAPTER 3 Callsto AppleTalk Protocols

Calls to the AppleTalk Filing Protocol (AFP)

To provide transparent access to AFP servers for the operating system, firmware on the Apple II
workstation translates ProDOS 8 or GS/OS filing calls into a subset of AFP calls. The code that
performs this, under ProDOS 8, is the ProDOS Filing Interface (PFT). Most AFP calls, under ProDOS 8,
are supported indirectly through ProDOS MLI calls to the PF1. (For additional information, refer to
the AFP specifications and “Calls to the ProDOS Filing Interface® given later in this chapter.)

Under GS/OS, the functionality of almost all AFP calls can be achieved using standard GS/OS calls
or FST-Specific calls to the AppleShare FST.

Features of AFP that are not available through operating system calls can be accessed by
making AFP calls directly through ASP. The following example demonstrates how to make AFP call
GetVolParm (not available through ProDOS 8 and PF1) through AFP.

A Warning NEVER use this method to make AFP calls that will affect open files. If
you do so, internal structures in the AppleShare FST and/or PFI may
become corrupted and data loss may result. Always use the equivalent calls
under the AppleShare FST or PF1. Under System Software 5.0 and later, you
should use the FIGetSVersion call to determine the AFP version being used
on that session before constructing an AFP packet. a

longa off
longi off
absaddr on
65c02 an
verbose an

Keep AFPExample

AFPExample Start

AR AR R AR RN R AR AR NN R AR A AN AR RN AN RN

* AFPExample demonstrates how to make *
* AFP calls using the ASP Protocol. *

AR RN AR R R AR AR AR A AR RN RN RN R RN A RRRRR RN

mii o«u SBFO0
AtCall equ $42
ReplyBuff oqu $800
jsr mli
dc i1'ATCall’
de a‘'FIListSess' ;get the list of current
;sessions
ldx Sesshum
beq NoSessions
lda ReplyBuff . ;juse the first volume in the
. ;list as an example
sta SPCommand+8 ;get and save the Session No.
lda ReplyBuff+30 ;and the Volume ID

Calls to the AppleTalk Filing Protocol (AFP) 95

sca AFPPacket+2 H

1da ReplyBuff+31 ; ’
sta AFPPacket+3 ; .
jsr mli ;make the SPCommand Call
dc i1'ATCall’
de a'SPCommand'
bee NoError
Jmp ErrorHlandler
NoError nop ;The result is in ReplyBuff as
nop ;specified in Inside AppleTalk
rts
NoSessions nop ;ErrorHandling routines to
ErrorHandler nop ;take care of unfortunate
;mishaps
Its
SPCommand anop
dc h'00* ;byte - sync flag
dc h'20°* ;byte - Command
de 10 ;word - Result Code
dc 14'0° ;long - Completion Routine
;Pointer
ds 1 ;byte - Session Reference
; Number
dc 1'6’ ;word - Command Block Length
dc i4'AFPPacket’ ;long - Command Block Pointer
dc i1's12' ;word - Reply Buffer Length
de i4'ReplyBuff' ;long - Reply Buffer Address
ds 4 ;long - Command Result <-
ds 2 ;word - Reply Length <-
AFPPacket anop
dc 1117 ;AFP Command for FPGetVolParms
dc h'00' ;Reserved
ds 2 ;Volume ID
dc h'0048° ;Bitmap to return Bytes Free

;and Modified Date

FIListSess anop

de h'00°* ;byte - sync flag

de n'2g¢’ ;byte - Command

de i'0’ ;word - Result Code

dc {512 ;word - Reply Buffer Length

de i4'ReplyBuff’' ;long - Reply Buffer Pointer
SessNum ds 1 ;byte - Number of Entries

;Returned
end

96 CHAPTER 3 Calls to AppleTalk Protocols ‘

Calls to the Printer Access Protocol (PAP)

. It is not necessary to use the Printer Access Protocol (PAP) to print in 2 normal mode; the SSC entry
point and Remote Print Manager (RPM) provide transparent ProDOS printing. However, PAP may be
called directly for special purposes. Using PAP allows more control and flexibility, such as when you
want to use the Chooser to communicate with a LaserWriter to see if it has an ImageWriter
emulator installed.

This section describes calls to the PAP layer on the Apple 1IGS, which provides a full
implementation of the workstation side of PAP. These calls can be used for network printing,
including spooling 1o servers that provide such capabilities.

@ Note: If the For this section only, the Session Reference # field is called the Connection
Reference # field to be compatible with the section on PAP in Inside AppleTalk

Table 3-8 lists the calls to the PAP layer. The sections the follow provide a description of each call,
as well as the parameter listing and the result codes for each.

w Table 3-8 PAP calls

Command

munber Name Description

s2 PAPStatus Get server status
‘ 23 PAPOpen Open PAP session

. $4 PAPClose Close PAP session

25 PAPRead PAP read

8% PAPWrite PAP write

$77 PAPUnload PAP unlcad

Calls to the Printer Access Protocol (PAP) 97

PAPStatus ($22)

The PAPStatus call is used to check the current status of a printer on the network. It is not
necessary to be connected. You can use PAPStatus without using PAPOpen first, even if someone
else is printing.

The parameter structure for the PAPStatus call is listed here.

Position Name Size Value
$00 Async Flag Byte >
501 Command Byte s2
117] Result Code Word <eem
$04 Completion Routine Ptr Long >
$8 Printer Name Pointer Long >
$0C Status Buffer Pointer Long >

The Printer Name Pointer field points to the NBP Entity Name. The status buffer must be at least
260 bytes. The result codes returned for the PAPStatus call are listed here.

Result Code Description

$0804 Too many commands
$0805 Name not found
$0807 Network error

$0808 Server nat responding
$080B PAP in use

98 CHAPTER 3 Qallsto AppleTalk Protocols

PAPOpen ($23)

‘ The PAPOpen call is made by a workstation to open a connection with a printer (or any PAP server)
on the network. On the open connection, the workstation may send data to the printer (via
PAPWrite) or read data from the printer (via PAPRead).

& Note: If the target printer (or the PAP server) already has its maximum number of
connections opened, then this PAPOpen does not complete until one of the existing
connedtions is released (closed). You should always set the flow quantum to 1; the
implementation on the Apple IIGS allows only 1 quantum from the other side.

The parameter structure for the PAPOpen call is listed here.

Position Name Size Value
$00 Async Flag Byte >
$01 Command Byte $23
$02 Resuit Code Word <---
$04 Completion Routine Ptr Long >
$08 Connection Reference # Byte <ee
$09 Printer Name Pointer " Long —>
$0D Flow Quantum Byte <>
$0E Status Buffer Pointer Long —>

The buffer pointed to by Status Buffer Pointer should be at least 260 bytes.
The result codes returned for the PAPOpen call are as follows.
Result Code Description

$0801 Too many sessions
$0803 Quantum error

$0804 Too many commands
$0805 Name not found
$0807 Network error

A Warning PAPOpen does not return a *Server Busy” error. It is up to a high-level
routine to monitor the Result Code and keep track of time-out erors. If
you want to time-out, this call should be made asynchronously. a

. Calls to the Printer Access Protocol (PAP) 99

PAPClose ($24)

The PAPClose call is used by a workstation to close an open connection with a printer. The
parameter structure for the PAPClose call is listed here.

Position Name Size Value
$00 Async Flag Byte —>
$01 Command Byte $24
$02 Result Code Word <en
$04 Completion Routine Ptr Long —>
08 Session Reference # Byte —->

The result code returned for the PAPClose call is as follows.

Result Code Description
$0802 Invalid reference number

100 CHAPTER 3 Callsto AppleTalk Protocols

PAPRead ($25)

. The PAPRead call is used by a workstation to read data on a PAP connection (sent by the other end,
either a printer or a server, using a PAPWrite). The Buffer Pointer should be at least 512 bytes times
the flow quantum returned. The parameter structure for the PAPRead call is listed below.

Position

gE8gREEREE

Name Size Value
Async Flag Byte >
Command Byte $25
Result Code Word <een
Completion Routine Ptr Long —>
Session Reference # Byte >
Buffer Length Word <---
Buffer Pointer Long —>
End-of-File Flag Byte <een

A non-zero value is retumed to signal the end of file (note that both the LaserWriter and
ImageWriter uses a value of non-zero).

The result codes returned for the PAPRead call are as follows.

Result Code
$0802

o -

Description

Invalid reference number

Too many commands

Session closed

Network error$080B PAP in use

Calls to the Printer Access Protocol (PAP) 101

PAPWrite ($26)

The PAPWrite call is made by a workstation to write data on 4 PAP connection (that is read by the
other end, either a printer or a server, using a PAPRead). Currently, the PAP implementation on the
Apple 11GS does not allow you to write more than 512 bytes per call.

The parameter structure for the PAPWrite call is listed here.

Position Name Size Value
$00 Async Flag Byte >
$01 Command Byte 7.
$02 Result Code Word Cene
$04 Completion Routine Ptr Long >
08 Connection Reference # Byte >
$09 Data Length Word >
$0B Buffer Pointer Long >
$OF End-of-File Flag Byte %1

The result codes retumed for the PAPWrite call are listed here.
Result Code Description

$0802 Invalid reference number
$0804 Too many commands
50806 Session closed

$0807 Network error

$080A Buffer size error

$080B PAP in use

PAPUnload ($27)

The PAPUnload call is used to close all connection with a server, whereas PAPClose closes only one
connection. Parameter usage for the PAPUnload call is listed below.

Position Name Size Value
$00 Async Flag Byte >
01 Command® Byte $Z7
17} Result Code Word <-ev
504 Completion Routine Pir Long >

102 CHAPTER 3 Callsto AppleTalk Protocols

Calls to the Remote Print Manager (RPM) interface

The Apple Il workstation firmware contains interface software called the Remote Print Manager
(RPM). RPM allows transparent printing to remote printers on an AppleTalk network through the
Super Serial Card (SSC) entry points and commands. RPM information is stored in the ATINIT file
and is restored at boot time; it is not necessary to use the Chooser at every boot time.

The name of the printer to which output is to be directed is set by using the PMSetPrinter call.
RPM uses PAP to send the data to be printed; the data to be printed is transferred to the firmware
one character at a time through the SSC entry point. The characters are blocked, put into packets,
then sent to the printer specified in the PMSetPrinter call.

Two time-outs are maintained by RPM. One time-out is used to flush the cumrent block when
there are small delays in the character stream being sent to RPM, as when a user is typing on the
keyboard (usually 1/4 second). The second time-out is longer (usually 30 seconds), and indicates the
end of the report. When this time-out expires, the last block is sent and the PAP connection closed.
The maximum value for time-out is $1FFF for Apple Ile workstation compatibility.

Pascal Protocol Serial STATUS call returns incorrect results. When using the Workstation card,
the Pascal STATUS call (normally used for printing) does not properly indicate whether the card is
ready to receive characters. Applications should avoid this call, as the Pascal WRITE call in the
firmware will perform this function automatically.

Table 3-9lists the call to the Remote Print Manager (RPM) on the Apple IGS workstation. The
section that follows provides a description of the call, as well as the parameter list and the result
codes.

From GS/0S, you should always use the operating system drivers. In System 5.0, the *RPM”
driver is used. In System 4.0, a generated driver using the RPM slot is used.

= Table 3-9 Calls to RPM

Command

mumber Name Description

8 PMSetPrinter Set default printer
47 PMCloseSession Close an RPM session

Calls to the Remote Print Manger (RPM) interface 103

PMSetPrinter ($28)

The PMSetPrinter call is used to determine where printed output is to be directed. The parameter ‘
structure for the PMSetPrinter call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
01 Command Byte 8

$02 Result Code Word Ceee

$04 Entity Name Pointer Long <>

508 Flags Byte <>

$09 Flush Interval Word <>

$0B Timeout Interval Word <>

$0D Number of Buffers Word <>

& Note: For the Number of Buffers field, you must use a value of at least 1 (of size 512 bytes).
Normally this call allocates buffers for you and sets this parameter to 20. The more buffers
you set, the faster the call will be (the tradeoff is the amount of memory used).

The name pointed to by the Entity Name Pointer field specifies the name of a network printer for
RPM, and must be in standard NBP format. No attempt is made to verify that the given name
exists on the network. The name is used only when the Flags field specifies a network printer. The
Flags field contains the flags listed in Table 3-10.

s Table 3-10 Printer name flags

Value Description

Bit 7 Network printer

Bit 6 Not used in the Apple IIGS
Bit 5 Postscript emulator

Bit 4 Reserved

Bit 3 Reserved

Bit 2 Reserved

Bit 1 Reserved

Bit 0 Retum selected printer

104 CHAPTER 3 Callsto AppleTalk Protocols

When set, the Network Printer bit informs the firmware that the desired printer is on the network;
ils name is pointed to by the Entity Name Pointer. If the Postscript Emulator bit is set in

. conjunction with the Network Printer bit, RPM sends out the following code at the beginning of
the first packet sent to the printer; this tums on the ImageWriter emulator in the LaserWriter.
DC C'%%IncludeProcSet IWEm 1 1°
DC H'0d'
DC C'_WBJ_ '

Bit 0 of the Flags field specifies that the call should return the name of the printer if it is set for
RPM. If bit 0 is set when the call is made, all of the other bits must be clear. When the call is
executed in this manner, the call completes with the proper bits set in the Flags field and the printer
name is placed at the address specified by the Entity Name Pointer field.

A Warning When PMSetPrinter is called with Flags field bit 0 set, the buffer pointed to
by the Entity Name Pointer field must be 100 bytes long. a

The Flush Interval and Timeout Interval fields allow the caller to set the time values for these time-
outs. They are both specified in 1/4-second increments; the Timeout Interval must be greater than
the Flush Interval. If the Timeout Interval is set to zero (0), then the session will never time out
and must be stopped via the PMCloseSession call.

The PMSetPrinter call retumns these result codes, as well as the result codes for all system calls.

Result Code Description

‘ $0901 Invalid flag byte
$0902 Invalid time values

Calls o the Remote Print Manger (RPM) interface 105

PMCloseSession ($47)

The PMCloseSession call is used to close any outstanding RPM session. The parameter structure for
the PMCloseSession call is listed here

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte 28

SR Result Code Word <---

The PMCloseSession call never retums an error.

106 CHAPTER 3 Callsto AppleTalk Protocols

ProDOS 8 AFP Translator

This section describes the differences between making ProDOS 8 calls and using the AFP Translator
to make ProDOS 8 calls over the network. The AFP Translator code captures all ProDOS 8 ML calls.
Depending on the volume being accessed, the AFP Translator either routes the calls to the local
ProDOS in the Apple I1, or translates them into AFP calls and sends them over the network to an
AFP file server. The AppleShare File System Translator performs the equivalent task under GS/0S.

Catalogs under ProDOS 8 are performed by opening and reading directories. However, AFP does
not support reading directories directly. Instead, the AFP Translator must execute an AFP
Enumerate call and create a “fake” directory for ProDOS 8 based on the information retumed by
AFP. When names are returned that contain invalid characters, the invalid characters are replaced by
the question-mark character (?) in the fake directory block that is created. Also, when the name
returned is longer than 15 characters, a question-mark character (?) is placed in the last position of
the name to indicate that the name is actually longer than what has been retumed. GS/OS
applications should always use GetDirEntry to read directories.

ProDOS 8 AFP Translator Access Mode

Files on the file server may be opened and read by more than one workstation on the network. Only
the first workstation to open the file is granted write access to a file (subsequent workstations
have read-only access). If a second workstation tries to open the file and attempts a Write
operation, the error Access Error ($4E) is returned.

If a file is open on more than one workstation and the workstation withlheﬁrstopen/wn'lc
access closes the file, the access paths being used by the other workstations that have opened the
file are not closed but retain their read-only access. The next workstation to open the file receives
write access. If the files are opened with the Special Open Fork call, users can share write access.

Resource forks

Two forks are created for every file in an AFP 2.0 file server: a data fork and a resource fork. These
forks are similar to the Macintosh Hierarchical File System, which has a Resource Manager and uses
both forks. All normal ProDOS 8 calls are defaulted to the data fork by the AFP Translator.

& Note Unless your application is smart enough (o know how to manipulate and maintain
resource maps in the resource fork, the application should only use the data fork for its data
storage. If you want to create a multi-user or multi-launch version of your application, you
cannot use resource files to store your data.

An applications programmer can access information from the resource fork by setting certain bits
in the parameter count of related calls. The two ProDOS 8 calls that are affected are: GetFilelnfo and

Open.

ProDOS 8 AFP Translator 107

Differences in ProDOS 8 and AFP Traaslator Calls

There are specific differences in the way in which ProDOS calls are translated. This section describes .
the specific parameters affected for the following for ProDOS 8 commands. Refer to Chapter 4 in
the ProDOS 8 Technical Reference Manual for detailed information on these calls.

® GetFilelnfo (ProDOS 8 Command $C4)
s QOpen (ProDOS 8 Command $C8)

See the following section for specifics of these calls under GS/OS.

GetFilelnfo

Differences in the way in which the GetFilelnfo call is used for files and directories are described
next.

For Files: The parameters that are affected by the selection of the data fork, the resource fork, or
both, are the size of the file and the number of blocks that it uses. Table 3-11 lists these

parameters.

u Table 3-11 File parameters for GetFileinfo command

To see . Set PCount to
The size of the data fork $0A
The size of the resource fork $8A

The combined size of both forks ~ $4A or $CA

For Directories: There is no difference from making ProDOS 8 calls in the usual manner. (Extra
bits in the parameter count are ignored.) Table 3-12 lists the HFS file types that the file server
converts into ProDOS 8 file types.

w Table 3-12 File types

HFS Creator HFS File Type ProDOS File Type Auxiliary File Type

(any) TEXT TXT ($04) $0000

pdos BINA typeless ($00) $0000

pdos PSYS SYS ($FF) $0000

pdos Ps16 $B3 $0000

pdos xAA $ox $0000 where xx is 2 2-digit
hex number and A is a space

108 CHAPTER 3 Callsto AppleTalk Protocols

If the files types in Table 3-12 are not found, then the following is converted:
. 4 bytes 'p' ASCII $70 1-byte value 2-byte value

For example, the 4-byte value for a ProDOS binary file with an auxitiary file type of $800 would be $70
$06 $08 $00. The HFS creator should be 'pdos'. This conversion allows a Macintosh computer to
create a fite that can be transferred to a Macintosh server and have its ProDOS 8 file type set

correctly.

Open

Differences in the way in which the Open call is used for files and directories are described as
follows.

For Files: The Open call tells PF what fork # wants to open. PFI remembers the type of fork, so
that all of the other calls for the file that use the reference number do not have to know the fork
type. Table 3-13 lists these parameters.

a Table 3-13 File parameters for Open command

For call type, st PCount to cither
To open ProDOS Open Special Open fork
The data fork $03 $04
The resource fork 3 $84
. if an open call is attempted on a file, an atempt will be made to open the file as read/write deny
write. If this fails, an attempt will be made to open the file as read-only deny nothing. If this fails,

an attempt will be made to open the file as write-only deny write. If this also fails, an access denied
error ($4E) will be returned. This behavior is the same as for GS/OS and was done for compatibility
with GS/0S

For Directories: When an Open call for a directory occurs, PFI looks at the high bits of the
parameter count o find out what the user wants to include in the size of the files within that
directory. Table 3-14lists these parameters. Three types of Catalog are possible using these
features.

« Table 3-14 Directory parameters for Open command

For call type, set PCouat 1o cither
To find ProDOS Open Special Open fork
The size of the data fork $03 $04
The size of the resource fork 8 $84
The combined size of both forks H30r 833 $44 or $C4

ProDOS 8 AFP Transtator 109

Additional ProDOS MLI Calls

Two powerful features for creating multi-user applications are the Special Open Fork command and
the Byte Range Lock command. These commands allow applications to preserve data integrity and
control simultaneous access 1o files. Table 3-15 lists two new ProDOS calls via the MLI for ProDOS

8only.

® Table 3-15 New ProDOS calls

Command

oumber Name Description

$43 Special Open Fork Similar to ProDOS Open command, but with access
specified by user. Use if your application allows data
to be shared.

$44 Byte Range Lock Used to lock out access to a portion of an open file.

Use if your application allows multiple users to read
and write to the same file at the same time.

110 CHAPTER 3 Calls to AppleTalk Protocols

Special Open Fork ($43)

The Special Open Fork call is similar to the normal Open command, with the exception of 1
additional byte that has been added to the end of the parameter list. This additional byte indicates
the access that the user wants to have for the file. Applications may use the resource fork if they
are designed either to run only on the network, or to run locally when the data file is on the
network.

Under GS/0S, use the File System Translator call FST_Specific ($33), with command set to $0003
(Special Open Fork).

The parameter structure for the Special Open Fork call is listed here.

Position Name Size Value
$00 PCount Byte $04 or $84
$01 Pathname Pointer Word —>

03 1/0 Buffer Word —

$05 Reference Number Byte <

$06 Access Mode Byte Y

The PCount field contains $04 if a data fork is to be opened, and contains $84 if a resource fork is to
be opened. When set, bit 5 of the PCount field tums off buffering.

AppleTalk Filing Protocol (AFP) uses the Access Mode Byte. When you open a file over the
network, you are given certain rights (privileges); these rights include ’
B8 Read/Write
® Deny Read /Deny Write

The Access Mode Byte is defined in Table 3-16 (all reserved areas must be 0).

= Table 3-16 Access mode byte

Bit number Description

Reserved

Reserved

Deny write access to others
Deny read access (o others
Reserved

Reserved

Request write access
Request read access

O = N W a3

Additional ProDOS MLI calls 11

The errors returned for this command are the same as for the Open command, as follows:

Result Code Description

VO emor

No device connected

Disk switched

Invalid pathname syntax
File Control Block table full
Path not found

Volume directory not found
File not found

Version efror

Unsupported storage type
Access not allowed

$4F Buffer too small

EEEEEEREE-EEE R

Result Code Description

$50 File is open

$52 Unsupported Volume type

$53 Invalid value in parameter list

$5% Bad buffer address

$58 Not a block device

$5A Bitmap disk address is impossible

112 CHAPTER 3 Calls to AppleTalk Protocols

Byte Range Lock ($44)

‘ The Byte Range Lock call is used to lock out access to a portion of an open file. Lock a range of
bytes to ensure exclusive access to this area of the file. The lock keeps all other users from reading

or writing within this area. This feature is very helpful in a multi-user application.

& Remember : The procedure to follow is to lock the range, modify the range, and then unlock
the range.

You must unlock an entire range that you have locked. You cannot unlock part of locked range. For
Example, if you lock the range $00004180 - $00FF0080, then the only range that you can unlock is
$00004180 - $00FF0080. You could not unlock the range $00004180 - $00005000.

Under G/0S, use the File System Translator call FST_Specific ($33), with command set to $0002
(Byte Range Lock).

The following is the parameter usage for the Byte Range Lock call.

Position Name Size Value
$00 PCount Byte $05
$01 Reference Number Byte —>
$02 Lock Flag Byte —>
$03 Offset in File 3 Bytes >
$06 Length of Lock 3 Bytes —>
' $09 Start of Range, 3 Bytes <e
relative to
beginning of file

The Reference Number is the number given when a file is opened.

The function of bit 0 in the Lock Flag is to choose the function (Lock or Unlock). If bit 0 of the
Lock Flag is set, then the range is unlocked. If bit 0 of the Lock Flag is clear, then the range is locked.

The function of bit 6 in the Lock Flag is to choose the direction of the Offset in File (before or
after the selected reference point). If bit 6 of the Lock Flag is set, then the Offset in File is the
length before the selected reference point. If bit 6 of the Lock Flag is clear, then the Offset in File is
the length after the selected reference point.

The function of bit 7 in the Lock Flag is to choose the reference point for the lock (start of file
or end of file). If bit 7 of the Lock Flag is set, then the Offset in File is relative to the end of the file.
If bit 7 of the Lock Flag is clear, then the Offset in File is relative to the start of the file. You cannot
unlock refative to the end of file because, between the time you lock and unlock a range, the EOF
pointer could move.

Additional ProDOS MLI calls 113

The Offset in File is the distance away from the selected reference point. The Length of Lock is
the amount 1o be protected by the lock. The value in the Start of Range field is returned to describe
the location refative to the start of the file where the lock begins.

Byte Range Lock retums the position in the file of the locked range after every successful lock.
1t is the responsibility of the user to same this information (as well as the length of the lock) if the
range is to be unlocked before dosing the file.

The errors returned for this command are the same as for the ProDOS Open command, as follows:
Result Code Description

S04 Invalid parm count

$4D Position out of range indicates that the range you are attempting to lock overlaps a
range that you have already locked.

$4E Access denied indicates that the range you are attempting to lock overlaps a range
that you have already locked.

$53 Invalid parameter may be returned for a lock length of zero (which is useless), or for
an invalid lock flag (such as attempting to use a negative offset from the BOF, or
unlocking relative to the EOF).

& Note: $4D, $4E, & $53 are not defined the same as in the rest of ProDOS 8.

114 CHAPTER 3 Callsto AppleTalk Protocols

|
|
|
|

Calls to the ProDOS Filing Interface (PFI)

This section describes calls to the ProDOS Filing Interface (PFT) on the Apple Il workstation. PFI
calls are utility calls for activity on server volumes that support AFP through the ProDOS 8
interface. PFI provides additional calls to handle logging in to, logging out of, and mounting server
volumes.

& Note: Features of AFP that are not available through operating system calls can be accessed
by making AFP calls directly through ASP. These AFP calls use the Session Reference #
retuned by the FILogin call, or the Session Reference # and Volume ID returmed by the
FlListSessions call. When files are opened through ASP direaly, all Reads, Writes, and other
calls that involve the open fork must also be done through ASP. In such cases, all buffer
management is up to the caller.

The ProDOS Filing Interface allows server volumes to be pseudo-mounted in the empty slots of
the workstation. In this way, server volumes are considered along with local volumes, each being
accessed based on volume name. In the case of duplicate names, the server list is searched first.
When a ProDOS 8 ON_LINE aall is executed, the names of both the local volume and file server
volume are returned with the appropriate slot and drive numbers.

Volumes from more than one server may be mounted at one time. Volumes may be pseudo
mounted in slots that are actually occupied by other cards that are not block devices (such as
printer cards). In such cases, the devices actually mounted in those slots are still available for use.

Calls to the ProDOS Filing Interface (PF1) 115

Table 3-17 lists the calls to the ProDOS Filing Interface (PFI) calls. The sections that follow

describe each call, the parameter listing, and the result codes.

® Table 3-17 PA aills .
Command

mamber Name Description

$2A FlUserPrefix Returns prefix to user directory

$2B FlLogin Log in to server

$C FiLoginCont Log in continue

$2D FiLogOut Log off from server

$2E FiMountVol Mount a server volume

$2F FlListSessions List server sessions and volumes

$30 FiTimeZone Set workstation time zone

$31 FAGetSrcPath Get system program source path

$32 FlAccess Set/get directory access

$33 FINaming Set/get naming conventions

$A4 ConvertTime Converts time to/from ProDOS/AFP formats
$%6 FiSetBuffer Provides a temporary storage space

$37 FiHooks * Set/get notification vectors

$38 FlLogin2 * Enhanced Server Log In

$% FlListSession2 * Enhanced listing of server sessions and volumes
$3A FiGetSVersion * Determine version of AFP log being used

*Note: These calls are not available on an Apple le workstation or an Apple [IGS running pre-5.0 system
software.

116 CHAPTER 3 Callsto AppleTalk Protocols

FlUserPrefix ($2A)
. The FlUserPrefix returns the entire prefix of the user directory.

& Note: The Apple IIGS does not retain this name following a poweroff.

Under GS/0S, use the File System Translator calt FST_Specific ($33), with command set to $0008
(GetUserPath).

The parameter structure for the FiUserPrefix call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
01 Command Byte $2A

02 Result Code Word [

$04 Reserved : Byte $00

5 User Name Pointer Long —>

The user prefix is returned in the buffer pointed to by the User Name Pointer. This call always
moves 64 bytes to the user’s buffer, regardless of the data being moved or the format. Therefore
the largest string it can return is 63 bytes (plus 1 for the length byte). The value in the Reserved field
must be 0. i

The result codes returned for the FiUserPrefix call are the same as those common to all general

‘ system calls.

Calls to the ProDOS Filing Interface (PF) 117

FiLogin ($2B)

The FlLogin call is used to log in to a server. PFI calls and operating system MLI calls executed
through the PFI can be made only to servers mounted through this call. The parameter structure
for the FiLogin call is listed here. Only one session per server is allowed through the FiLogin call. For
information on multiple sessions, refer to information on the AppleTalk Session Protocol in Instde
AppleTalk

Note: If a log-in is executed directly through ASP, none of the PFI calls or operating system
calls will work with that session.

® Note: Future version of the Apple 1IGS may not support the FiLogin call. Apple recommends
that Apple 1IGS applications use the FILogin2 call. If FiLogin is used in conjunction with
FlListSessions2, the Server Name and Zone Name will not be retumed.

Position Name Size Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $2B
s Result Code Word <-nn
$04 SLS Network Number <Word> -
$06 SLS Node Number Byte >
07 SLS Socket Number Byte -->
$08 Command Buffer Length Word —=>
$0A Command Buffer Pointer Long >
$OE Reply Buffer Length Word >
$10 Reply Buffer Pointer Long >
$14 Session Reference # Byte <C-ee
$15 Attn Routine Long >

The Command Buffer must be in the AFP format for the FPLogin call, with the first 2 bytes
reserved for the AFP Command Number. When the call completes, the Reply Buffer contains the
reply, if any, in AFP format. The Session Reference # field will return the ASP Session Reference
Number. If the call completes with the Login Continue Error, the caller must complete the log-in
process with the server by using the FlLoginCont call. As far as PF1 is concemed, the session has
been established, unless the call completes with an eror other than Login Continue.

118 CHAPTER 3 Calls to AppleTalk Protocols

The Fllbgin call retums these result codes, as well as the result codes for all system calls.

' Result Code Description
$0A01 Too many sessions

$0A02 Unable to open session
$0A03 No response from server
$0AD4 Login continue
$0A13 Already logged in to server
$0A15 User not authorized
$0A16 Parameter eor
$0A17 Server going down
$0A18 Bad UAM
$0A19 Bad version number

Calls to the ProDOS Filing Interface (PFI) 119

FILoginCont ($2C)

The FiLoginCont call is used for those user authentication methods that require it, such as the
National Bureau of Standards Data Encryption Standard (NBS-DES) algorithm. The parameter
structure for the FiLoginCont call is listed here.

Position Name Size Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $C
$02 Result Code Word e
$04 Session Reference # Byte >
$05 Command Buffer Length Word —->
07 Command Buffer Pointer Long >
$0B Reply Buffer Length Word >
~ %D Reply Buffer Pointer Long >

The Session Reference # must be the same as that returned by the FiLogin call. The Command
Buffer must be in the required AFP format, with the first 2 bytes being reserved for the AFP
command number. The reply, if any, is returned in the Reply Buffer in AFP format. If this call fails,
the session will be canceled. If the call completes with the Login Continue error, the caller must
complete the log-in process with the server.

The FlLoginCont call returns these result codes, as well as the result codes for all system calls.

Resuit Code Description

$0A03 No response from server

$0A04 Login continue

$0A06 Invalid session reference number or unknown volume
$0A1S User not authorized

120 CHAPTER 3 Callsto AppleTalk Protocols

|

FILogout ($2D)

‘ The FiLogout call is used to log off a server. This call may be used to cancel a session created by an
incomplete Login. The ASP session will be canceled even if the FPLogout call (which this call
executes) fails. The parameter structure for the FiLogout call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $2D

/] Resuit Code Word <-

$04 Session Referm . Byte >

The Session Reference # field designates which session is to be terminated. The FiLogout call
returns these result codes, as well as the result codes for all system calls.

Result Code Description
$0A06 Invalid session reference number or unknown volume

Calls to the ProDOS Filing Interface (PF1) 121

FIMountVol ($2E)

Under G§/0S, use the device control call Eject to unmount volumes. (i.e. issue an eject call to the
driver for the volume you wish to unmount).

The FiMountVol call is used to pseudo-mount (and unmount) server volumes on a
workstation. The parameter structure for the FiMountVol call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $2E

$02 Result Code Word e

$04 Session Reference # Byte >

05 Mount Flag Byte —>

$06 Volume Name Pointer Long —>

SOA Volume ID <Word> P

$0C Slot/Drive Byte Comn

$0D Password Pointer Long —>

The Mount Flag field specifies whether the volume is to be mounted or unmounted, as shown in
the Table 3-18.

® Table 3-18 Bit settings for the Mount Flag field

Bit Number Setting Description

7 Set The requested volume is pseudo-mounted in a
slot/drive location chosen by the firmware, provided
that there is a free slov/drive location.

7 Cear The volume specified will be unmounted.

6 Set The password to which the Password Pointer points
is placed in the packet.

0 Set ‘This signifies that it is 2 User's Volume (that is

returned in FlListSessions)

Server volumes will not be mounted into slot/drive locations already occupied by locally mounted
block devices. The Session Reference # field is used by the system to identify which volume is to be
used. The Volume ID returned by AFP is placed in the Volume ID field, and the slot/drive (ProDOS
format) into which the volume was pseudo-mounted is returned.

122 CHAPTER 3 Callsto AppleTalk Protocols

The FiMountVol call returns these result codes, as well as the result codes for all system calls.

Result Code Description
. $0A05 Invalid name
$0AD6 Invalid session reference number or unknown volume
$0A07 Access denied
$0A08 Too many volumes mounted
$0A09 Volume not mounted
$0A11 Volume already mounted

Calls to the ProDOS Filing Interface (PFI) 123

FIListSessions ($2F)

Under GS/0S, use the Volume call to determine the file system for each volume. .
The FlListSessions call is used to retrieve a list of current sessions being maintained through
PFI and any volumes mounted for those sessions. The parameter structure for the FiListSessions

call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $2F

$02 Result Code Word <

$04 Buffer Length Word .

$06 Buffer Pointer Long >

$0A Entries Returned Byte <e

The list is placed into the specified buffer. If the buffer is not large enough, the buffer will retain
the maximum possible number of current sessions and then return an error. The format of the
buffer is as follows:

Position Name Size Value
$00 Session Reference # Byte <-e-
$01 Slot/Drive Byte <ee
$2 Volume Name 28 Bytes <
$IE Volume ID <Word> <eme

This list is repeated for every volume mounted for each session. For example, if there are two
volumes mounted for session number 1, then session number 1 is listed two times. The Slot/Drive
field contains the slot and drive numbers (in the standard ProDOS 8 format). Bit 0 of the Slot/Drive
field tells if the volume is a User's Volume. If you mount more than two servers and both have user
volumes, then the user volume found first in the list (scanned top to bottom) retumed by
FlListSessions specifies the user volume for use by an application.

The first byte of the Volume Name field contains the length of the name in bytes. If there are
no volumes mounted for a session, the value of the Length Byte field is zero and the rest of the
field is undefined. The Volume ID field returns the AFP volume ID for the listed volume.

& Note: The FiListSessions2 call also returns the server and zone name for each volume (if
FlLogin2 was used).

The FiListSessions call returns these result codes, as well as the result codes for all system calls.

Result Code Description
$0A0B Buffer too small

124 CHAPTER 3 Calls to AppleTalk Protocols

FITimeZone ($30)

' The FiTimeZone call is used by each workstation to set its own time zone, relative to the time zone
set for the server. The parameler structure for the FITimeZone calt is listed here.

& Note: This call has no effect under GS/0S

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $30

1/} Result Code Word Conn

$04 Time Flag Byte —>

Bit 7 on the Time Flag indicates whether the time should be added to or subtracted from the time
zone selected; if Bit 7 is set high, it indicates that the hours should be subtracted from the time
z0ne on the server (that is, as if you are going west). Bits 6 through 0 of the Time Flag indicate the
actual number of hours away from the time zone selected; Bit 0 is the same time zone as the server.
The FiTimeZone call returns these result codes, as well as the result codes for all system calls.

Result Code Description
$0A0C Time flag error

Calls to the ProDOS Filing Interface (PFI) 125

FIGetSrcPath ($31)

Do not use from GS/0S.

The FIGetSrcPath call retums the pathname of the last file that was opened, whether locally or
over the network. This call allows system programs to determine the directory they were loaded
from.

& Note: Under ProDOS 8, the pathname of an application is put at $280 when it is loaded and
run. Refer to ProDOS 8 Technical Reference Manual (1987), section 5.1.5 for more
information. For G&/OS, use Prefix 8 and the Get_Name call (see the GY/OS Reference
Manual).

The parameter structure for the FIGetSrcPath call s listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $31

$02 Result Code Word <-o-

04 Buffer Pointer Long >

The Buffer Pointer field points to the buffer where the pathname is to be placed. The buffer must
be at least 129 bytes in length. The first byte of the buffer is the length of the pathname that
immediately follows (up to 128 bytes).

The result codes returned for the FIGetSrcPath call are the same as for the general system calls.

126 CHAPTER 3 Callsto AppleTalk Protocols

FIAccess ($32)

From G§/OS, use the FST specific calls GetPrivileges and SetPrivileges.
The FlAccess call gets and sets directory access on an AFP server. The Access Rights are in AFP
format. The parameter structure for the FAccess call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte 2

$2 Result Code Word <-

$04 Directional Flag Byte >

$05 Access Rights 4 Bytes <>

09 Pathname Pointer Long —>

$0D Creator Name Pointer Long —>

s Group Name Pointer Long >

If bit 7 of the Directional Flag is set, the access is being set. When set, bit 6 of the Directional Flag
means that the Creator's Name will be dealt with, whereas bit 5 of the Directional Flag means that
the Group Name is being found or set. Values may get returned into buffers pointed to by Creator
and Group Name Pointers.
If the Creator's name or GroupName are being retumed (bit 7 of the directional flag is clear), the
buffers pointed to by creator Name Pointer and Group Name Pointer should be at least 32 bytes.
The FlAccess call retumns these result codes, as well as the result codes for all system calls.

Result Code Description

$S0A05 Invalid name

$0A09 Volume not mounted

$0A0A Unable to set creator

$0AOD Unable to set group

$SOACE Directory not found

$OAOF Access denied

$S0A10 Miscellaneous error

$0A12 Unable to get creator and/or group

Calls to the ProDOS Filing Interface (PF1) 127

FINaming ($33)

The FiNaming call sets or finds the naming convention. PFI uses the Long Name of AFP for
ProDOS. Because ProDOS names are more restrictive than the Long Name of AFP, there may be files
and directories that cannot be accessed by ProDOS without switching naming conventions.

Do not make this call from GS/0S. GS/OS always uses the complete AFP syntax for pathnames,

The parameter structure for the FINaming call is listed here.

Position Name

$00 Async Flag

$01 Command

$02 Result Code

$04 Directional Flag

$05 Naming Convention Flag

Size Value

Byte $00 (Synchronous only)
Byte $33

Word <eee

Byte —> Enable flag changes
Byte <>

" The Directional Flag enahles flag changes, and the Naming Convention Fag indicates the naming
convention to be used. Tiie default naming convention is ProDOS naming, with the device table
emabled. Table 3-19 indicates how bits are set for these flags.

= Table 3-19 Bit settings for the FINaming call

Flag Bit Number Setting Description

Directional 6 Set (1) The device table enable or disable is changed
as set by bit 6 of the Naming Convention
Flag field.

Qear (0) Retumn current device table mode
7 Set (1) The naming mode is changed as set by bit 7
of the Naming Convention Flag field.
Qear (0) Return current naming mode

Naming)

Convention 6 Set (1) Device Table disabled; the ProDOS device
table is not updated as network volumes
are mounted and unmounted.

Qear (0) Device Table enabled
7 Set (1) Use AFP Long Name nmaming convention
Qear (0) Use ProDOS naming convention
128 CHAPTER 3 Callsto ApplcTalk Protocols

i
|

The following sample program demonstrates this new function.

longa off
. longi off

absaddr off
65C02 on
DevTable start
ATCall equ $42
mli equ $bf00
stz FINaming+4 ;get the current FINaming setting
isr mli
dc il'ATCall’
de a‘'FINaming’
lda FINaming+5 ;get the returned result
sta NameMode ;store it until later.
DisableTable anop
lda #540 ;set bit 6 to change device table update
sta FINaming+4
sta FINaming+5 ;set bit 6 to disable device table update
jsr mii
dc i1'ATCall’
de a'FINaming'
RestoreTable anop
1da #540 ;set bit 6 to change device table updatae

sta FINaming+4
1da NameMode

sta FINaming+5 ;restore to the original mode’
jsr mii
. de 11'ATCall'
de a'FINaming’
rts
FINaming anop .
de h'00* ;byte - sync mode
de h'33' ;byte - FINaming command
de 10 ;word - Result
dc h'00°* ;byte - Direction flag
;b7 - Change naming mode
;b6 - Change Device Table update
;if zero, mode is returned
de h'o0* ibyte - Mode Flag
;b7 - Enable AFP naming mode
;b6 - Disable Device Table update
NameMode ds 1

end

The result codes retumed for the FINaming call are the same as are common for all general system
calls.

Calls to the ProDOS Filing Interface (PFI) 129

ConvertTime ($34)

The ConventTime call converts the time to either AFP format or ProDOS 8 format. The parameter
structure for the ConvertTime call is listed here. !

Position Name Size Value ;
$00 Async Flag Byte 00 (Synchronous only) i
$01 Command Byte 34
$02 Result Code Word <-ev
$04 Format Flag Byte >
$05 From DATE/Time Long >
$09 To DATE/Time Long <o ;

Both the From DATE/Time field and the To DATE/Time field contain values (data), and not
pointers. If the Format Flag is 0, then From DATE/Time is in AFP format. If the Format Flag is 1,
then From DATE/Time is in ProDOS format.

The ConvertTime call returns these result codes, as well as the result codes for all system calls.

Result Code Description
$0A14 Time error

130 CHAPTER 3 Callsto AppleTalk Protocols

FISetBuffer ($36)

The FiSetBuffer call provides temporary storage space of 512 bytes and is provided for
miscellaneous use. An application must not make this call. The parameter structure for the

FiSetBuffer call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $3%6

$02 Result Code Word <--m

$04 Direction Flag Byte >

$05 Buffer Length Word >

$07 Buffer Pointer Long >

If bit 7 of the Direction Flag is set,data will be copied from the user's buffer to the temporary
buffer, if bit 7 is clear, data will be copied from the temporary buffer to the user's buffer. Buffer
length is the amount of data in bytes, to move and must not be more than 512. Buffer Pointer
points to the user's buffers

The FiSetBufTer call returns these result codes.

Result Code Description
$0A1A Buffer Too Long

Calls to the ProDOS Filing Interface (PF1) 131

FIHooks ($37)

The FiHooks call is used for changing the default event notification routine. If the login program '
passes the default attention routine (null) to PFI, the default hooks will be called. These default
hooks can be either set or retuned through this call. The parameter structure for the FIHooks call is

listed here.
Position Name Size Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $37
$02 Result Code Word <een
$04 Flag Byte Byte >
$05 MountVector Long <>
09 UnmountVector Long <>
%D AttentionVector Long <>

The Flag Byte field specifies the OS type and whether the hooks are to be set or returned, as shown
in Table 1.

= Table 3-20 Bit settings for the Hook Flag field

Bit Number Setting - Description
7 Set (1) ProDOS 8 active.
Qear (0) GS/OS adtive.
6 Set (1) The hooks will be set.
Cear(0) The hooks will be returned.
5-0 Cear (0) Must be zero.

Note: If bit 6 is clear, hooks to be retumed, then bit 7 is ignored and the OS type will not be changed.

The MountVedior field is a pointer to the routine that will be called whenever PFT adds a new
volume to its intemnal tables.

132 CHAPTER 3 Calls to AppleTalk Protocols

T e

The UnmountVector field is a pointer to the routine that will be called whenever PFI removes a
volume from its internal tables. The MountVector and UnmountVector will be called in the
. following environment:
* = Undefined
ENTRY: Called via 'JSL' (Call cannot be made on the Apple lie)
AReg = Undefined
XReg = Low word of parameter block pointer
YReg = High word of parameter block pointer
DReg = PFIdirect page
BReg = PFl data bank
PReg = N V M X D1 Z C E
. « 0 0 O . . e 0

The parameter block contains the following data:
Byte Session reference number
Byte P8 Unit #
PString(28] Volume name
Word Volume ID
PString{32] Server name
PString(33] Zone name
EXIT: Retum via 'RTL' (Call cannot be made on the Apple 1le)
AReg = Undefined
XReg = Undefined
. YReg = Undefined
DReg = PF direct page
BReg = PHI data bank
PReg = N V M X DI Z C E
e« ¢« 0 0 O * 0 0

The AttentionVector field is a pointer to the routine that will be called whenever PF1 receives a
standard attention event for one of the mounted volumes.The AttentionVector will be called in the
same environment as the mount and unmount vectors with the following parameter block:
Byte Session reference number

Byte Type of attention

Word Attention data

PStringf32| Server name

PString(33] Zone name

The result codes returned for the FiHooks call are the same as those common to all general system
alls.

' Calls to the ProDOS Filing [nterface (PFT) 133 .

FILogin2 ($38)

The FlLogin2 call is used to log in to a server. This call work primarily like the FlLogin call. The
exception is that there are three additional parameters at the end of the FlLogin call structure. The
parameter structure for the FiLogin2 call is listed here.

Position Name Size Value
$00 Async Flag Byte $00 (Synchronous only)
01 Command Byte $38
s Result Code Word <ene
$04 SLS Network Number <Word> >
$06 SLS Node Number Byte -
07 SLS Socket Number Byte —>
$08 Command Buffer Length Word >
$0A Command Buffer Pointer Long —>
$0E Reply Buffer Length Word —->
$10 Reply Buffer Pointer Long >
$14 Session Reference # Byte <-ee
1S Aun Routine Long -—>
$19 Server Name Pointer Long —>
$1D Zone Name Pointer Long e
$21 AFP Version Number Word —->

The Command Buffer must be in AFP format for the FiLogin2 call, with the first 2 bytes reserved
for the AFP Command Number. When the call completes, the Reply Buffer contains the reply, if
any, in AFP format. The Session Reference # field will return the ASP Session Reference Number. If
the call completes with the Login Continue Error, the caller must complete the log-in process with
the server by using the FlLoginCont call. As far as PFI is concerned, the session has been established,
unless the call completes with an error other than Login Continue.

The Server Name Pointer and Zone Name Pointer must point to a valid Pascal String (length
byte followed by name). The AFP Version word must be in the following format:

“AFPVersion 1.1° = 0101 (hexadecimal)

“AFPVersion 2.0° = 0200 (hexadecimal)

The high byte is the major version number and the low byte is the minor version number.
The Server Name, Zone Name, and AFP Version fields are NOT used by PFI to login to the

server. These fields are required for the ListSessions2 and FGetSVersion calls. It is up to the
programmer making the Login2 call to verify that these parameters are corredt.

134 CHAPTER 3 CQalls to AppleTalk Protocols

The FiLogin2 call returns these result codes, as well as the result codes for all system calls.

‘ Result Description

$0A01 Too many sessions
$0A02 Unable to open session
$0A03 No response from server
$0A04 Login continue
$0A13 Already logged in to server
$0A1S User not authorized
$0A16 Parameter error
$0A17 Server going down
$0A18 Bad UAM
$0A19 Bad version number

Calls to the ProDOS Filing Interface (PF1) 13§

FIListSessions2 ($39)

The FlListSessions2 call is used to retrieve a list of current sessions being maintained through PF1 .
and any volumes mounted for those sessions. This call work primarily like the FiListSessions call.

The exception is that there are two additional parameters retumed for every session. The parameter

structure for the FlListSessions2 call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
$01 Command Byte $%

$02 Result Code Word <me

$04 Buffer Length Word >

$06 Buffer Pointer Long -

$0A Entries Returned Byte <o

The list is placed into the specified buffer. If the buffer is not large enough, the buffer will retain
the maximum possible number of current sessions and then return as error. The format of the
buffer is as follows:

Position Name Size Value
$00 Session Reference # Byte <=
J$01 Slot/Drive Byte P
$02 Volume Name 28 Bytes <me
$1E Volume ID <Word> <
7.4 Server Name 32 Bytes <
$40 Zone Name 33 Bytes P

The FlListSessions2 call returns these result codes, as well as the result codes for all system calls.

Result Description
$0A0B Buffer too small

136 CHAPTER 3 Callsto AppleTalk Protocols

FIGetSVersion ($3A)

‘ The FiGetSVersion call is used to determine what version of AFP was used to login to a particular
server. The parameter structure for the FIGetSVersion call is listed here.

Position Name Size Value

$00 Async Flag Byte $00 (Synchronous only)
01 Command Byte $3A

$2 Result Code Word <eee

$04 Session Number Byte —>

$05 AFP Version Number Word <een

The AFP Version word will be in the following format:

0101 (hexadecimal) = “AFPVersion 1.1

0200 (hexadecimal) = *AFPVersion 2.0

The high byte is the major version number and the low byte is the minor version number.

The FIGetSVersion call returns these result codes, as well as the result codes for all system calls.

Result Description
$0A06 Invalid session reference number

Calls to the ProDOS Filing Interface (PFT) 137

® Chapter 4 The AppleShare
File System Translator (FST)

THIS CHAPTER describes the implementation of the AppleShare File
System Translator for GS/OS. It assumes a familiarity with GS/0S and
AppleTalk. Please note that AppleShare for GS/OS encompasses not only the
AppleShare FST, but also the AppleTalk protocol stack, drivers, network
booting (if desired), switching between the GS/OS FST and the ProDOS 8 PFI
(since AppleShare will be accessible from both ProDOS 8 and G§/0OS), and

enhancements to the Finder to make it network aware. m

‘ 139

The AppleShare FST is the implementation of AppleShare for GS/OS. It is meant to supersede
AppleShare [IGS, the implementation of AppleShare for ProDOS 16, Since ProDOS 16 makes calls to
ProDOS 8 to get its work done, it patches the ProDOS 8 MLI to intercept calls bound for the
network. In this way, both ProDOS 8 and ProDOS 16 can use network volumes. GS/0S is completely
separate from ProDOS 8. The ProDOS 8 MLI will still be patched to intercept network calls while
ProDOS 8 is running. When GS/0S is running, GS/0S will make calls directly to the AppleTalk routines
via the AppleShare FST, instead of calling ProDOS 8 to make the AppleTalk calls. This will increase
the speed of GS/OS programs using files on the network (compared to ProDOS 16).

The AppleShare FST will only work with file servers supporting AFP version 2.0 or greater.

Compatibility

An important consideration for the AppleShare File System Translator is backwards compatibility
with GS/0S, ProDOS 16 and ProDOS 8 implementations of AppleShare. All documented calls that
were added to the ProDOS 8 MLI to support AppleShare will still be usable from ProDOS 8. The
RamDispatch vector at $E11014 will continue to support full native mode calls from either ProDOS 8
or GS/OS.

The class 0 Open call works as the Open call for ProDOS 16. The class 1 Open call is more
restrictive in s setting of deny modes which is safer for opening files. Please use class 1 Open
whenever possible, and try to use the requested access parameter when possible (eg.: only ask for
read if that is all you will do with the file).

File not found and path not found errors will be reported correctly (when a file is not found,
the FST will check for the existence of the parent and issue a path not found if the parent does not
exist). This differs from ProDOS 16 which reported path not found for both path not found and file
not found error conditions.

Pathname syntax

There are two kinds of syntactic restrictions on pathname syntax: those imposed by GS/0S, and
those imposed by the FST (because of naming restrictions in AFP).
GS/0S may impose 2 maximum length on pathnames. The AppleShare FST does not.

Because standard files will neither use nor return pathnames greater than 508 bytes, this is a
reasonably practical limit for pathnames entered by a user.

The span of a pathname is the maximum number of characters in a filename (i.c. between
pathname separators, incdluding volume names). G/OS imposes no restriction on maximum span.
The AppleShare FST restricts the maximum span to be less than 32 charadters. While AFP volume
names are less than 28 characters, this part of the syntax is not checked. Volume names with a
length of 28-31 will return 2 volume not found error.

140 CHAPTER 4 The AppleShare File System Translator (FST)

GS/0S allows */" or *:" to be a separator. The first /* or “:" in the pathname is taken to be the

separator. A *:" can never be used in a filename. A °/* cannot be used in a filename if the separator is
. */*. The AppleShare FST disallows a null byte in a pathname. All other characters are permitted. Note

that the high bit of a character is significant. Characters with values greater than or equal to 128 are
considered extended ASCII and typically display as special symbols on Macintosh and IBM systems.

Numbers as the first filename in a partial pathname are assumed by GS/OS to be prefix
designators. Since numbers are valid filenames in AFP, a prefix designator should always be used
explicitly with partial pathnames beginning with a number. For example, “0:555:Hello” refers to a file
“Hello” in a folder *555" relative to prefix 0; *555:Hello” will give an invalid path syntax error since
GS/0S assumes that *555:" is a prefix designator for prefix 555, which is invalid.

Equivalence of Macintosh and GS/OS file types

AppleShare file servers supporting AFP version 2.0 or greater maintain both Macintosh filetype and
creator as well as GS/OS filetype and auxtype. Since the filetype information for the two operating
systems are distinct, a workstation can set one kind of filetype for Macintosh and another type for
GY/CS.

The AppleShare FST will use the Apple 11 filetype and auxtype fields; it depends on the server to
derive appropriate type information for Macintosh files. The AppleShare File Server version 2.0 uses a
convention also used by Apple File Exchange and the MAX cross-development tools.

Apple Ii files are distinguished by a Macintosh creator of “pdos”. The Apple I filetype SYS
(=$FF) has a Macintosh filetype of "PSYS". The Apple Il filetype S16 (=$B3) has a Macintosh filetype

‘ of *PS16". The Apple 11 unknown filetype (=$00) has Macintosh filetype 'BINA". Apple I text files
(TXT = $04) with auxtype of $0000 (ie. normal ASCII text, no records) has Macintosh filetype
"TEXT". These special cases allow Macintosh to display unique icons for these filetypes.

Macintosh files with creator *pdos® and a filetype of the form "XY * (two hex digits followed
by two spaces) will get Apple Il filetype $XY and auxtype $0000. Macintosh files with creator
pdos® and a filetype of the form $70uvwxyz ($70 is a lower-case "p) have ProDOS filetype $uv and
auxtype $wxyz (note the order of the bytes: on the Macintosh they are stored high-low instead of
low-high).

APW source files (ProDOS filetype $B0) are given Macintosh filetype "TEXT" so that they can be
edited more easily.

The conversion rules are summarized in the following tables. If more than one rule applies, the one
closest to the top of the table will be used.

Equivalence of Macintosh and GS/OS file types 141

|

ProDOS -> Macintosh conversion

ProDOS
Filetype
$00

$B0 (SRC)
$04 (TXT)
$FF (SYS)
$B3(516)
Suv

Maciatosh -> ProDOS conversion

Macintosh
Creator
(any)

(any)

(any)

Auxtype
$0000
(any)
$0000
(any)
(any)
$wxyz

Filetype
*BINA®
"TEXT*

PSYSH

PS16

XYAA' t

p $uv $wx $yz
(any)

Macintosh
Creator

lpdml

ProDOS
Filetype
$00

$04 (TXT)
$FF (§YS)
$B3(516)
$XY

$uv

$00

t Where XY are hex digits (i.e. *0°-*9" ar *A**F), and A is a space

142 CHAPTER 4 The AppleShare File System Translator (FST)

Filetype
*BINA® |
TEXT ’
“TEXT

"PSYS*

PS16

'p" Suv $wx $yz

System calls

This section describes differences of parameters between the AppleShare FST and the ProDOS FST.
Please see the GS/OS Reference Manual, Volume 1 for more detailed information about these calls.
Any calls not documented here behave as specified in the GS/OS Reference Manual,

CREATE ($01)

The ProDOS filetype and auxtype will be set to the values given in the call; by default, the
Macintosh creator will be set to *pdos* and the Macintosh filetype will be derived according to the
rules above. All files will be created as extended files (i.e. have both a data and a resource fork) since
there is no way to distinguish between a fork of length 0 and a fork that does not exist.

In a class 1 call, the EOF and resource_EOF fields are ignored. This is because the definition of
the call states that the forks' EOFs will be set to 0, and is impossible with AFP to allocate space in
a fork past its EOF.

Only the low byte of the filetype and low word of the auxtype will be used. If the high byte of
the filetype or high word of the auxtype is non-zero, an invalid parameter error will be returned.

SET_FILE_INFO ($05)

The ProDOS filetype and auxtype will be set to the values given in the call; by default, the
Macintosh creator will be set 1o *pdos® and the Macintosh filetype will be derived according to the
rules above. The option_list data is the same as for the GET_FILE_INFO call, except that only the
Finder Info is used (the other fields cannot be set); any data past the Finder Info field is ignored.

If the file_sys_id field is not the same as AppleShare’s file system ID ($0D), then the option_list
is ignored. All FSTs will return their file system ID in the first word of the option_list and will
ignore setting of the option_list info if the file_sys_id does not match theirs. This allows
applications to always get and set the option_list as part of the copying process even when
copying from one file system to another.

System calls 143

GET_FILE_INFO ($06)

Folders with no see files and no see folders access will have the read bit in their access word deared,
files, and folders with see files or see folders, have their read bit set. If the file’s resource fork is not
empty, the storage_type will be retuned as $05 (extended), otherwise i will be returned as
$01/$02/$03 (seedling, sapling, or tree) depending on the data fork’s length. The option_list’s data is
structured as follows:

word File_Sys_ID ($0D for AppleShare)

32 bytes Finder Info

long Parent Directory ID

4 bytes Access rights (same format as Get-/SetPrivileges)

See Figure 4-14 for a diagram of the option_list structure.

See Inside Macintosh IV, and Macintosh Technical Notes for a description of the Finder Info

The access rights field for directories is in the same format as used in the GetPrivileges and
SetPrivileges calls. For files, the field is set to all zeros. Note: this field was included to allow
applications like the Finder to determine what access a user has to a folder without having to do a
separate GetPrivileges call.

OPEN ($10)

The access, filetype, auxtype, and option_list parameters are as described in the SET_FILE_INFO call.
If request_access is $0000 (as permitted), an attempt will be made to open the file as read/write,
deny read/write. If this fails, an attempt will be made to open the file as read-only, deny write. If
this fails, an attempt will be made to open the file as write-only, deny read/write. If this also fails,
an access denied error ($4E) will be returned.

If the class is 0, an attempt will be made to open the file as read/write deny write. If this fails
an attempt will be made to open the file as read-only deny nothing. If this fails, an attempt will be
made to open the file as write-only deny write. If this also fails, an access denied error ($4E) will be
retumed. This behavior is the same as for GS/OS and was done for compatibilty with GS/OS

Note that using class 0 Open allows files to be opened by multiple users and does not fully
prevent one user from changing data that another user is reading, but it does allow multiple users
to read a file without changing existing code. Class 1 Open prevents one user from writing data that
another user is reading, but does nat allow multiple users to read a file without explicitly asking for
read-only access. Putting a file in a folder with no make changes access will cause both class 0 Open
and class 1 Open with request_access = 0 to open the file for read-only and will allow multiple users
to read the file (and not allow the file to be written 10).

144 CHAPTER 4 The AppleShare File System Translator (FST)

If request_access is $0001 (read-only), the file will be opened as read-only, deny write. If it is
$0003 (read/write), the file will be opened as read/write, deny read/write. If it is $0002 (write-only),
. the file will be opened as write-only, deny read/write. If the file cannot be opened with the
requested mode, an access denied error will be retumed.
If you want to open a file with permissions different than above, you should use the FST
specific command *Special Open Fork”. That call s essentially the same as the open command, but #
lets you control all of the permission bits yourself.

& Note: The System Loader loads files by opening them Read-only, Deny Write (request_access
as $0001).

By default, buffering will be tumed on fo files or directories opened with this call. The buffer will
not be filled until the first Read or Get_Dir_Entry call is made (so that buffering may be turned off
after the open but before the first read). The size of the buffer for files is 512 bytes; for directories
it is 2048 bytes. ,

Folders with neither see files nor see folders access rights cannot be opened (since the only valid
operation on an open folder is GET_DIR_ENTRY). The returned error code is $4E (access denied).

With a dass 1 call, all of the parameters after the resource number are file information. Think of
this as a combined GET_FILE_INFO and OPEN call (and in fact, that is how it behaves). In
particular, the access word returned is not an indication of the access rights you have when the file
is opened; it is really a *best case” access to the file. The actual access you get when opening the file
is controlled by several things: the access word, access privileges to ancestor and parent folders, and
access restrictions (“deny modes”) imposed by other users who have the file open.

. Note that using a class 1 open with request_access = 0, is usually not 2 good idea since you
don't know what access you really got to the file (until you try) because the FST will try several
combinations as described above. If your application can deal with several different kinds of access
o the file, it is best to try those different access modes individually until you get one you can
handle. For example, if you can handle either read-write or read-only access but prefer read-write, try
opening the file with request_access = 3 (read-write). If this fails, try opening with request_access =
1 (read-only). This way you will know exactly what access you have to the file. Remember, too that
if you use class 1 open for read-write, nobody else will be able to open the file and multiple users
won't be able to run your application at the same time.

If you use a dlass 1 call with PCount > 4 (i.c. you are asking for file info to be retumed), and you
don't have privileges to see the object you are opening (if the object is in a drop folder, for example),
the call will return with an error $4E (access denied), since you don't have access to get the file info
you requested.

System calls 145

READ ($12)

The READ call will not be supported for directories. GS/OS directories will not be synthesized. One
should use the Get_Dir_Entry call to enumerate directories. A read on a directory will return error $4E
(access denied).

If part of the range to be read is locked by another workstation, a $4E error will be returned and
the transfer count will be set to indicate the number of bytes transferred before the locked range
was encountered.

@ Nole: There may be bytes that were not part of the locked range, but were not transferred.

Regardless of the value in the cache priority field, data will not be put in the system cache. By
default the FST maintains a block buffer containing the 512 bytes of the block containing the
current mark. This block buffer can be controlled on a per-file basis by the FST specific call “Buffer
Control”.

If buffering is disabled and newline mode has been enabled with more than one newline
character, the read will be completed one byte at a time. This is done because the server's newline
mechanism provides for only one newline character. Beware that this mode of reading a file
imposes tremendous amounts of overhead and should be avoided if at all possible.

WRITE ($13)

Regardless of the value in the cache priority field, data will not be put in the system cache. By
default the FST maintains 2 block buffer containing the 512 bytes of the block containing the
current mark. This block buffer can be controlled on a per-file basis by the FST specific call “Buffer
Control™.

Writes to directories are not allowed. They will retum error $4E (access denied).

CLOSE ($14)

The file will always be dosed, even if there is an error. This is because any error an application gets
may not be correctable by the application or the user (eg. the data to be flushed before the close is
locked by another workstation, or a connection has been lost with the server).

146 CHAPTER 4 The AppleShare File System Translator (FST)

SET_EOF ($18)

If a fork is extended (made longer), the additional bytes will be allocated but might not all be zero.

In aclass 1 call, if the base indicates that the EOF should be set to EOF - displacement, the
server's current EOF will be determined and the EOF will be set relative to that; this could be
different than the workstations assumption of the EOF if another workstation has modified the
fork's EOF. This could also delete data that another workstation has written between the times
when the current EOF was determined and the new EOF set.

‘This call will force any buffered data to be written to the server. The EOF will be set after this
data is written.

GET_EOF ($19)

The fork's EOF will be determined from the server; this may not match the workstation'’s

assumption of the EOF if another workstation has modified the fork’s EOF. Note that another

workstation could change the EOF after completion of this call, making the results inaccurate.
This call will force any buffered data to be written to the server. The EOF will be determined

after this data is written.

GET_DIR_ENTRY ($1C)

Get_Dir_Entry is not supported for files. It will return the error $4E (access denied).

Folders enumerated by GET_DIR_ENTRY that have neither see files nor see folders will have
the read bit in their access word deared. Folders with see files or see folders will have the read bit
set.

The access, filetype, auxtype, and option_list parameters are as the GET_FILE_INFO call. The
FST will internally maintain the directory entry number (entry_num) (o allow forward and
backward scanning of the directory. By default, several entries will be buffered for better
performance (this can be disabled by using the FST Specific call *Buffer Controi®). An end of
directory error ($61) will be returned when an entry is requested that does not exist in the buffer (or
buffering is disabled for the directory), and that entry cannot be read from the server.

Since AppleShare is a shared file system, entry_num may change for a file, even while the
directory is being scanned because other users could add or delete files in the directory. Also, if the
base and displacement fields are both zero, the total number of entries will be retumed. Note that
more or fewer entries may actually be returned if the directory is enumerated since other machines
cn create and delete files while you are enumerating the directory.

The best way to enumerate a directory is to simply open the directory and make successive
Get_Dir_Entry calls with base and displacement both set to $0001. When you get an error $61 (end of
directory), you are finished enumerating. You should remove duplicate entries from your list

System calls 147

. i

READ_BLOCK ($22)

This call will return an eror $88 (network error) for AppleShare devices, in order to be compatible
with System Disk 3.2. Remember, the preferred method for identifying a network volume is by
doing a Volume call and seeing that the file_sys_id = $0D.

WRITE_BLOCK ($23)

This is an invalid operation for an AppleShare device. This call always return an error. The current
error code is $4E (access denied). This is different from the $88 retumed under 3.2, and may change in
the future.

FORMAT ($24)

This is an invalid operation for an AppleShare device. This call always retum an error. The current
error code is $2B (write protected). This is different from the $88 returned under 3.2, and may
change in the future.

ERASE_DISK ($25)

This is an invalid operation for an AppleShare device. This call always retum an error. The current
error code is $2B (write protected). This is different from the $88 returned under 3.2, and may
change in the future.

148 CHAPTER 4 The AppleShare File System Translator (FST)

GET_BOOT_VOL ($28)

. If GS/0S is booted over AppleTalk, this command will return the name of the user volume on the
server the user logged in to during bocting. All system files should be present on this volume just
like any other boot volume.

GET_FST_INFO ($2B)

The file_sys_id will be returned as $0D (AppleShare). The attribute parameter will be retumed as
$0000 (System Call Manager should not uppercase pathnames, do not clear high bits of pathname,
this is a block FST, formatting not supported). The block_size parameter will be returned as 512; this
value is only useful in determining the number of bytes used, free, and total on a volume (since
these values are given in blocks).

FST_SPECIFIC ($33)

Used to make control calls to the FST. The FST specific cails are described in the section titled "FST
Specific Calls® following.

System calls 149

——

FST_SPECIFIC calls

The FST_SPEQIFIC call is used to make special calls to the AppleShare FST. The FST number must be '
$0D (ApplesShare). A command of $0000 is invalid. Commands $000E through $FFFF are reserved.
If the command number is out of range, error $53 (invalid parameter) will be returned. Error $52
(unknown volume type) will be retumed if a refnum for a file opened by another FST is used. Error
$52 will also be retumed if a pathname uses a device name for a device other than an AFP
(AppleShare) driver. Emror $45 (volume not found) will be returned if a pathname specifies a volume
name that does not maich any mounted AppleShare volume (even if a volume by that name exists
for a different file system).

Buffer Coatrol ($0001)

word PCount (minimum = 3)

word FST# = $D

word Command = 1 !
word Reference #

word Buffer Disable flags (default = $0000)

Bit 15 set = Disable buffering (every read/write goes to server,every
GetDirEntry translated into a single FPEnumerate).

Bits 0-14 Reserved

» Figure 41 Buffer Control

Buffer Control
l— pCount(min=3) —
fstNum = $D
[(o1 1
commandNum = $0001
[02)]
refNum
- 03]
flags |
T] (7))

}

Buffer Disable

150 CHAPTER 4 The AppleShare File System Translator (FST)

Command $0001 is the Buffer Control command. It is followed by a word specifying the reference
number of a file/directory whose buffering is to be enabled/disabled. The next word is optional. It

. specifies the buffer disable flags; if the high bit is set, then buffering is disabled for that
file/directory. The default value of the buffer disable parameter is $0000 (tum on buffering). A file
reference number of 0 is invalid.

For folders, the buffer size is 2048 bytes. When buffering is off, each Get_Dir_Entry will
immediately cause an enumerate of one entry from the server. When a Get_Dir_Entry call is made
with buffering on, the requested entry will be returned from the buffer if possible. Otherwise, the
buffer will be filled with as many entries from the server as possible, including the requested entry;
then the requested entry will be returned. The buffer is not pre-filled when the folder is opened.
The number of entries kept in the buffer is variable and depends on the size of the long and short
names of the files/folders.

For files, the buffer size is 512 bytes (the same as the block size reported by the FST). When
buffering is off, every Read and Write call transfers data from/to the user's data buffer directly
to/from the server. When buffering is on, and a Read or Write of 512 bytes or more is made, any
unwritten data in the buffer is written and the Read/Write is made from/to the user’s data buffer
directly to/from the server. '

When buffering is on and a Read or Write of less than 512 bytes is made, the block (512 bytes,
with a starting offset that is a multiple of 512 bytes) containing the first byte to be read/written is
read into the buffer; if the block was already in the buffer, no read is done; if a different block is in
the buffer, any unwritten data is written and the new block is read into the buffer. The read/write
then proceeds 1o the end of the buffer. If the read/write extends past the end of the buffer, any
unwritten data is written and the next block is read into the buffer. The read/write then completes
by reading/writing from/to the buffer.

‘ Unbuffered reads with 0 or 1 newline characters are handled directly by the server (i.e. the read
1o the server requests the same number of bytes as the user requested). Unbuffered reads with 2 or
more newline characters tumn into reads of one character at a time from the server (until a newline is
encountered o all bytes have been read or end of file reached); please note that this takes a LONG
lime, and you are probably better off not using 2 or more newline characters with buffering off.

Buffered reads with 1 or more newline characters become reads of 512 bytes at a time, on 512
byte boundaries (as if it were a read of less than 512 bytes). Each block is read into the buffer and
then the bytes are copied to the user’s data buffer one at a time (while being compared against all
the newline characters). Buffered reads with no newline characters are as described above.

System calls 151

Byte Range Lock ($0002)
word PCount = 7
word FST# = $D
word Command = 2
word Reference #
word Lock Flag
Bit 15 set Lock range
dear Unlock range
Bt 14 set Offset relative to EOF
dear Offset relative to start of file
long Offset in File 3
long Length of Range “
long Start of Range (returned)

For the Lock Flag, the following constants can be combined:
Lock_Range = $8000
Relative_to_EOF = $4000

152 CHAPTER 4 The AppleShare File System Translator (FST)

= Figure 42 Byte Range Lock

® Byte Range Lock

— pCount(min=]) —

fsthum = §D

(01)

commandNum = $0002
(02)]

refNum
[(03)

| lockFag |
(04)

fileOffset
(05)

. _mz(eol:)nzth__

Start
07)

Lock Flag

‘I‘

T
I Relative to EOF
Lock Range

System calls 153

Command $0002 is the Byte Range Lock command. It is followed by five required parameters (so
the PCount field should be 7, 2 for FST # and Command, 5 for the parameters of Byte Range Lock).
The first parameter is a word conlaining the reference number of the file to lock. The second
parameter is the Lock Flag. If bit 15 is set, the range will be locked; if dear, it will be unlocked. If bit
14 is set, the offset is relative to the end of the file; if clear, the offset is relative to the start of the
file. All other bits are reserved and should be set to 0. The next parameter is a long word containing
the offset into the file (may be negative if relative to the end of the file). The next parameter is the
length of the range to be locked. The last parameter is the actual start of the locked range (relative
10 the beginning of the file) as returned by the server.

Possible emrors are: $4D (position out of range -- user already has some or all of range already
locked, or unlocking a range not locked by that user), $4E (access denied -- some or all of range is
locked by another user), $43 (invalid reference number), $53 (invalid parameter).

Special Open Fork ($0003)

word PCount (minimum = 5)

word FST# = $D

word Command = 3

word Reference # (returned)

long Pointer to class | pathname

word Access mode
Bit 0 Request Read Access
Bit 1 Request Write Access
Bits 2,3 Reserved
Bit 4 Deny Read to others
Bit 5 Deny Write to others
Bils6..15 Reserved

word Resource number (default =$0000)

154 CHAPTER 4 The AppleShare File System Translator (FST)

s Figure 43 Special Open Fork
‘ Special Open Fork
L pCount (min=5) |

fstNum = $D
[(o1)]

commandNum = $0003
- 02 -]

refNum
(03)

- pathname —
o4)

accessMode
[05)]

s forkNum
(06)]

Access Word

olal, [,2l2],],
T T

Deny Read Request Read
Deny Write Request Write

Command $0003 is the Special Open Fork command. It is followed by three required parameters and
one optional parameter (so the PCount field should be 5 or 6: 2 for the FST# and Command, and 3 or
4 for the parameters of Special Open Fork). The first parameter is the reference number (ref_num)
returned by GS/OS to the access path. Use this ref_num the same as you would a ref_num retumed
by an OPEN call. The second parameter is a pointer 10 a dass | string representing the pathname of
the file to be opened. The third parameter is the access mode giving the read/write permissions
desired and to be denied (o others as described below. The forth, and optional, parameter is the
resource number: a value of $0000 will cause the data fork to be opened, a value of $0001 will cause
the resource fork Lo be opened; a value of $0000 is assumed if the parameter is not given.

System calls 155

The access word is arranged as follows (if the bit is set, the condition is asserted):

Bit 0 Request Read Access

Bit 1 Request Write Access
Bt 23 Reserved

Bit 4 Deny Read to others

Bit 5 Deny Write to others
Bits 6..15 Reserved

By default; files opened with SpecialOpenFork will have buffering tumed off (to prevent *state”
data when other users are writing to the file).j This can be changed with the BufferControl call.

& Note: This parameter has the same meaning as in the ProDOS 8 Special Open Fork command.

Possible errors: same as for OPEN command. A deny mode conflict will result in an access denied
efror.

156 CHAPTER 4 The AppleShare File System Translator (FST)

|

GetPrivileges ($0004)

. word PCount (min = 4)

word FST# = $D

word Command = 4

long Pointer to class 1 pathname

long Access Rights (retumed)
byte User Summary

Bit 0 See Folders allowed
Bit 1 See Files allowed
Bit 2 Make Changes allowed
Bits 3.6 Reserved
Bit 7 Owner (set if you are folder owner)
byte World
Bit 0 See Folders .
Bit 1 See Files
Bit 2 Make Changes
Bits 3.7 Reserved
byte Group
Bit 0 See Folders
Bit 1 See Files
Bit 2 Make Changes
Bits 3.7 Reserved
. byte Owner
Bit 0 See Folders
Bit 1 See Files
Bit 2 Make Changes
Bits 3..7 Reserved

long Pointer to GS/OS output buffer for Owner Name
long Pointer to GS/OS output buffer for Group Name

System calls 157

» Figurc 44 Get Privileges

Get Privileges ‘
| pCount(min=4) _

fstNum = $D
01)

commandNum = $0004
[~ (02)]

pathname
- (03)

accessRights
- ()

| ownerName]
® ®

- groupName T
L ©6) —_
Access Rights
Owner —I:_I User Summary

World
. Group
— Owner

Write
Read

Search

158 CHAPTER 4 The AppleShare File System Translator (FST)

Command $0004 is the GetPrivileges command. It is followed by four parameters, the first two of
which are required (so the minimum PCount is 4 and the maximum is 6). The first parameter is a
pointer to a class 1 pathname of a directory whose access privileges are to be set or retrieved. The
second parameter is a long where access rights for the directory will be returned. The third
parameter is a pointer 1o a GS/OS output buffer where the owner’s name will be stored. The fourth
parameter is a pointer to a GS/OS output buffer where the group name will be stored.

The access rights field consists of four bytes: one each for user summary, world access, group
access, and owner access. For each of these bytes, bit 0 is search access (see folders), bit 1 is read
access (see files), and bit 2 is write access (make changes). The user summary byte reflects the
access that the current user has for that directory; if bit 7 is set, the cumrent user is the owner of the
directory.

If the folder is owned by the guest user (usually displayed as “<Any User>”), the owner name
will be retumed as a null string. If the folder has no group associated with i, the group name will be
returned as a null string.

Possible errors include: $4B (bad storage type) if the pathname specifies a file instead of a folder.

System calls 159

SetPrivileges ($0005)

word PCount (min = 4)

word FST# = $D

word Command = §

long Pointer to class 1 pathname
long Access Rights

byte Reserved
byte Word
Bit0 See Folders
Bit 1 See Files
Bit 2 Make Changes
Bits 3.7 Reserved
byte Group
Bit 0 See Folders
Bit 1 See Files
Bit 2 Make Changes
Bis 3.7 Reserved
byte Owner
Bit 0 See Folders
Bit 1 See Files
Bit 2 Make Changes
Bits 3.7 Reserved

long Pointer to buffer where Owner Name is stored (same format as a GS/OS output buffer,
but the buffer length word is ignored).

long Pointer to buffer where Group Name is stored (same format as a GS/OS output buffer,
but the buffer length word is ignored).

160 CHAPTER 4 The AppleShare File System Translator (FST)

= Figure 45 Set Privileges

. Set Privileges
| pCount(min=4) __|]

fstNum = $D
o1

commandNum = $0005 |
02)

pathname
— (03)]

accessRights 1
04)]

ownerName

@ — 05 —

- groupName]
— 06) —
Access Rights
- World
[Group
[Owner
Write
Read _
Search

System calls 161

——

Command $0005 is the SetPrivileges command. Its parameter list is the same as for the GetPrivileges
command except that the access rights, owner name, and group name fields are input instead of
output (since the values are being set, not retrieved). The owner name and group name point o
structures similar 10 2 GS/0S output buffer where the first word (normally a total buffer length) is
ignored, the next word is the string length, and the rest of the buffer is the string itself. This
structure definition allows you to do a GetPrivileges call, modify the data, and do a SetPrivileges call
using the same owner name and group name pointers (the same way you can share the option_list
parameter for Get_File_Info and Set_File_Info).

Setting the owner name to the null string assigns the folder to the guest user (usually known
as “<Any User>"). The string *<Any User>” is not a valid user name (unless you have a registered
user by that name). Setting the group name to the null string causes no group to be associated with
the folder (and therefore the group's access rights are ignored).

Possible errors include: $4B (bad storage type) if the pathname specifies a file instead of a folder,
$4E (access denied) if the user is not the cumrent owner of the folder, $7E (unknown user) if the user
name given is not the name of a registered user, and $7F (unknown group) if the group name given
is not the name of a group.

162 CHAPTER 4 The AppleShare File System Translator (FST)

User Info ($0006)

word PCount (min = 4)

word FST# = §D

word Command = 6

word Device number (of any volume on the desired server)
long Pointer to GS/OS output buffer for User Name

long Pointer to GS/OS output buffer for Primary Group Name

= Figure 46 User Info

User Info
| pCount(min=4) __|
. fstNum = $D —
(1)
commandNum = $0006
[02)]
deviceNum]
- (03)
B userName]
— (2]]
| pimaryGroupName ~___
0%

Comemand $0006 is the User Info command. This command will retum the user name and primary
group name of a user. It has two required parameters and one optional parameter. The first
parameter is the device number of a volume on the server whose user info is 1o be retuned. The
second parameter is a pointer to a GS/OS output buffer where the user name is retumed. The third
parameter (optional) is a pointer to a GS/OS output buffer where the user's primary group name is
returned.)

If the user is logged on as a guest, the user name will be returned as a null string, If the user has
no primary group, then i will be returned as a null string,

System calls 163

“‘

Copy File ($0007)

word PCount (min = 4)

word FST# = $D

word Command = 7

long Pointer to class 1 string of source pathname
long Pointer to class 1 string of destination pathname

» Figure 47 Copy File
Copy File

| pCount(min=4) __|

fstNum = $D
"_ o1 1

commandNum = $0007
— 02)

et

sourcePathName
Bl 03)

destPathName
— (04)]

Command $0007 is the Copy File command. This command will cause a file on a server to be copied
by the server. The copy may be between different volumes as long as both volumes are on the
same server. This call has two required parameters. The first is a pointer to a class 1 string
containing the source file's name. The second is a pointer to a class 1 string containing the
destination file's name.

Possible errors include: $53 (invalid parameter) if either volume is not a server volume o if the
volumes are not on the same server, $4A (version error) if the server does not support this call.

164 CHAPTER 4 The AppleShare File System Translator (FST)

GetUserPath ($0008)

' word PCount (min = 3)

word FST# = $D
word Command = 8
long Pointer to class 1 string containing prefix (returned)

» Figure 48 GetUserPath

GetUserPath

| pCount(min=3) __|

fstNum = $D
(01)

commandNum = $0008
- 02)

——

prefix

— (03) -]

Command $0008 is the GetUserPath command. It retumns a pointer (o a class 1 string containing the
pathname of the user's folder on the user volume, using colons as separators and without a trailing
colon. The prefix string is not written into a class 1 output buffer, so you should copy the string
into local buffer of sufficient size. If there is no user volume mounted, or the user name could not
be determined for some reason, a data unavailable error is returned ($60). This path is constructed on
each call (unlike the FlUserPrefix call). The string’s contents will not change until the next call to
GetUserPath. DO NOT modify the string. The string is suitable for use as a parameter to a SetPrefix
all

System calls 165

—-———

OpenDesktop ($0009)

word PCount (min = 4)

word FST# = $D

word Command = 9

word Desktop refnum (returned)

long Pointer to class 1 string of path/volume name

® Figure 49 OpenDeskiop

OpenDesitop

pCount (min=4) __|

fstNum = §D
— (01)]

cammandNum = §0009
(02)]

desktopRefNum
— (03)]

pathname
— (0d) —

Command $0009 is the OpenDesktop command. It takes a volume/path name and returns a desktop
refnum (DTRefnum). A desktop refnum must be supplied for all other desktop database calls
(currendy, only for getting/setting file comments).

166 CHAPTER 4 The AppleShare File System Translator (FST)

CloseDesktop ($000A)
. word PCount (min = 4)
word FST# = $D
word Command = $A
word Desktop refnum
long Pointer o class 1 string of path/volume name

s Figure 410 CloseDesktop

Qo seDesktop

pCount (min=4) _|

fstNum = §D
| 1) —_

cammandium = §000A
(02)]

desktopReflNum
® [..
) S (0d) —

Command $000A is the CloseDesktop command. It takes a desktop refnum and volume/path name
and frees all resources allocated when that refnum was opened.

System calls 167

GetComment ($000B)

word PCount (min = 5)

word FST# = $D

word Command = $B

word Desktop refnum

long Pointer to class 1 string of pathname

long Pointer to class 1 output buffer for comment

= Figure 411 GetComment

GetComment
. }— pCount(min=5) __|

fstNum = §D

commandNum = §000B
[() —

desktopRefNum
(03)

pathname
_— (04)

camment
- (05)]

Command $000B is the GetComment command. It takes a DTRefnum and a pathname and returns
a string (the comment associated with that file/folder). If no comment has been stored for that
file/folder, then a null string will be returned for the comment.

168 CHAPTER 4 The AppleShare File System Translator (FST)

SetComment ($000C)

. word - PCount (min = 4)

word FST# = $D

word Command = $C

word Desktop refnum

long Pointer to class 1 string of pathname

long Pointer to class 1 string of comment (default = null string)

» Figure 4-12 SetComment

SetComment

— pCount (min=4) —
fsthum = §$D
commandNum = $000C
desktopRefNum __|
. (03)

‘ B pathname]
— (04)]
B comment]
- (05)]

Command $000C is the SetComment command. It takes a DTRefnum, a pathname, and a string, If
the string is non-null, then the comment for that pathname will be set to the given string. If the
string is aull, then the comment for that pathname will be removed. Note: if the comment string is
fonger than 199 characters, it will be truncated to 199 characters without an error.

System calls 169

GetSrvrName ($000D)

word PCount (min = 4)

word FST# = §D

word Command = $D

long Pointer (o class 1 pathname

long Pointer 1o class 1 output buffer for server name
long Pointer to class 1 output buffer for zone name

s Figure 413 GetSrviName

GetSrvrName
L pCount(min=4) ___|
s fstNum = $D _____
o1
commandNum = $000D
— 02)]
B pathname]
— 03)]
_ serverName]
—— (04) B
[zoneName T
— 05)]

Command $000D is the GetSrviName command. It takes a pathname and retums the server name
and zone name for that volume. If either of the server name or zone name buffer pointers are null
(30000 0000), that string will not be returned. If the server name or zone name are unknown, they
will be retumed as null strings.

170 CHAPTER 4 The AppleShare File System Translator (FST)

Option List
. = Figure 414 Option List
option_list
$0000
| Buffer Size |
(2 $002E)
$0002
| Data Size |
($0024)
$0004
| File_Sys_ID = $0D
$0006

LAl 1]

Finder Info
(32 Bytes)
—

Parent
DirlD

$0026

|11

— Access Rights —

$002E

System calls m

General implementation

When handling file system calls, the FST will itself create and send AFP packets to the server as .
opposed to trying to make the calls through PFI.

The only syntax checking that will be performed on pathnames is that the span (maximum
length of a filename component) is less than or equal 10 32 characters (the max for AFP); GS/OS
itself will enforce the restriction against colons and nulls in a pathname component.

Normally, pathnames sent to the server will be relative to the root of the volume (i.e. the
ancestor ID will be 2 = the volume directory). When a pathname is too long to fit in a packet, the
FST will break it up into packet-size chunks by taking as many components from the start of the
path as possible, finding its DirID, and repeat as needed until a DirID and partial path is obtained for
accessing the file. This will cause more network traffic, but allow for long pathnames.

The session/volume level information will be obtained from AppleShare device drivers. The
.AFPn drivers maintain the relationship between an AppleShare volume and a Device Information
Block (DIB). The FST maintains the Volume Control Record (VCR) for AppleShare volumes that are
mounted.

If interrupts are disabled when the FST has to make an AppleTalk call (i.e. an SPCommand or
SPWrite), an 1/O Error (error code $27) will be returned instead of making the call. In most cases, this
error will be propagated back to the user. Note that some calls may not require an AppleTalk call to
be made (such as GetMark) and will complete correctly with interrupts disabled; some calls (such as
Read and Write with small request counts, or GetDirEntry) may or may not complete with
interrupts disabled (depending on the current mark, any data that is buffered, etc.). It is strongly .
encouraged that file system calls should not be made with interrupts disabled!

172 CHAPTER 4 The AppleShare File System Translator (FST)

i
i
i

Appendix A Result Codes

THIS APPENDIX summarizes the result codes for calls to the Apple
11GS workstation. Table A-1 lists each code by number, with a brief

description. m

173

s Table A-1 Description of result codes

Code Description

Result Codes commaon (o all sysiem calls

$0000 No error
$0101 Invalid command
$0102 Heap/memory management error
$0103 No timer installed
$0104 Sync/Async call error
$0105 Too many times
$0106 Timer Cancelled
Result Codes for LAP Calls ($02xx) 1‘
$0201 No packet in buffer !
0202 End of buffer r
$0203 LAP data too large i
$0204 Retry count exhausted !
$0205 Illegal LAP type |
50206 Duplicate LAP type 5
$0207 Too many protocols
0208 Type not found
029 Data lost in purge
Result Codes for DDP Calls ($03xx)
$0301 Too many sockets open
0302 Socket not open
$0303 Socket already open
$0304 Invalid socket type
$0305 DDP data too large
0306 No bridge available
Result Codes for NBP Calls ($04xx)
$0401 Too many names
0402 Name already exists
0403 Name not found
$0404 User's buffer full
0405 Wildcard nat allowed
$0406 Invalid name format
50407 Incorredt address
$0408 Too many NBP processes

174 APPENDIX A Result Codes

s Table A-1 Description of result codes (continued)

. Code Description

$0409 NBP aborted
$040A NBP Param Block not Found
Result Codes for ATP Calls ($05xx)
$0501 ATP data too large
$0502 Invalid ATP socket
$0503 ATP control block not found
$0504 Too many active ATP calls
$0505 No release received
$0506 No response active
$0507 ATP send request aborted
$0508 ATP send request failed, retry exceeded
$0509 Async call aborted, socket was closed
$050A Too many ATP sockets
$050B Too many responses expected
$050C Unable to open DDP socket
$050D ATP Send Response was released
. Result Codes for ZIP Calls ($06xx)
$0601 Network error
$0602 ZIP overflow
$0603 ZIP not found
Result Codes for ASP Calls (307xx)
$0701 Network error
$0702 Too many ASP calls
$0703 Invalid reference number
$0704 Size error
$0705 Buffer error
$0706 No response from server
o707 Bad version number
$0708 Too many sessions
$0709 Server busy
$070A Session closed
Result Codes for PAP Calls ($08xx)
$0801 Too many sessions

Result codes 175

= Table A-1 Description of result codes (continued)

Code Description
$0802 Invalid reference number
$0803 Quantum error
$0804 Too many commands
$0805 Name not found
$0806 Session closed
$0807 Network error
$0808 Server not responding
$080A Buffer size error

Result Codes for RPM Calls ($09xx)
$080B PAP inuse
$0%01 Invalid flag byte
$09502 Invalid time values

Result Codes for PFI Calls ($0Axx)
$0A01 Too many sessions
$0A02 Unable to open session
$0A03 No response from server
$0A04 Login continue
$0AD5 Invalid name
$0A06 Invalid session reference number or unknown volume
$0AD7 Unable to open volume
$0A08 Too many volumes mounted
$0A09 Volume not mounted
$0A0A Unable to set creator
$0A0B Buffer too small
$0AOC Time flag error
$0A0D Unable to set group
S0ACE Directory not found
$OAOF Access denied
$S0A10 Miscellaneous error
$0A11 Volume already mounted
$0A12 Unable to get creator and/or group
$0A13 Already logged in to server
$0A14 Time error
$0A15 User not authorized
$0A16 Parameter emror
$S0A17 Server going down
$0A18 Bad UAM
$0A19 Bad version number

176

APPENDIX A Result Codes

Appendix B Be AppleShare Aware

AN "APPLESHARE AWARE" program is a program that can be
successfully run from an AppleShare file server. Such a program should be able
to load and save files on a file server, and be fully functional. It should be able
to handle error conditions in a reasonable manner (such as putting up a dialog
box instead of crashing the machine), and the user should be able to quit from
the program and retum to a calling program (instead of having to reboot or
power off the machine).

This document describes some steps you can take as a developer to help make
your programs AppleShare aware. It also describes some things you can do to
make your programs even more usable in an AppleShare environment (such as

being multi-launch), and how to take advantage of some AppleShare-specific

. features. m

177

Multi-launch applications

A multi-launch application is one that can be launched (executed) by more than one computer at a
time. Multi-launch applications are particularly important for the Apple 11 family since most schools
use Apple II's and it is common for an entire class to use the same application at the same time.
Teachers are much more likely to use a multi-launch application on a file server than to distribute
individual disks for each student.

The Apple If operating system has traditionally been a single user, single computer operating
system and file system. With the addition of AppleShare support 1o the Apple II, many computers
(and many types of computers) can share the same files (on the file server) at the same time. It is
not hard to make a program multi-launch; it just takes some thinking and care about how you use
files.

The first thing to remember about multi-launch applications is that one copy of the application
will be shared by several computers. The system loader will take care of opening and loading the file
in a safe manner such that several computers can load the application at the same time. As the
programmer, you must remember that you should not write to the application files (to save
configuration information, for example) just like you shouldn't write in books borrowed from a
library -- other people have to use it, too.

System Software 5.0 has a new feature called the *@" prefix. It is a system prefix defined when
your application is launched. If the application was launched from an AppleShare volume, i will be
set 1o the name of the user’s folder on the file server. If the application was launched from a non-
AppleShare volume, it will be set to the name of the folder containing the application. If you use
the *@" prefix as part of the pathname for saving configuration information, it will automatically
go in a safe place, separate for each user. For example, if your program was called “Fred®, you might
use the pathname “@:Fred.Config" for storing preferences and configuration data.

Sharing open files

The class 1 version of the Open call lets you supply a parameter indicating the access you require to
the open file. You can specify read, write, read and write, or “as permitted”. If you request read
permission (request_access=1), it will also deny others the ability to write to the file (so they can't
change the data you are reading). if you request write or read and write (request_access =2 or 3,
respedtively), it will deny others the ability o open the file at all (so they cannot read data as you
are changing it, and so they cannot overwrile your changes o the data). Realize that “as permitted”
(request_access=0) will first try 10 open the file for read and write (meaning no other computer can
open it); if that fails, it will try read-only; if that fails, it will try write-only. Note that there is no
way of knowing what access you have to the file, and you may not have read/write access. If your
program opens files, think about how it uses the contents of the files, and open them in an
appropriale manner.

178 APPENDIX B Be AppleShare Aware

For example, an adventure game might want to load a map of rooms in a dungeon. In this
example, the program really only needs to read the contents of the file, and not modify the file.
Since all you need to do is read the file, you should open the file read-only (request_access=1). If you
do this, and several computers run the program at the same time, they will all be able to open the
dungeon file successfully (since a read-only open allows others to open the file read-only). If you
use request_access=0, or don't even supply the field (i is optional), only the first computer will be
able to open the file; the rest will get an error when trying to open the file (access denied, $4E).

As a second example, consider a word processing program. It would want to read from the file
so that it can be displayed or printed. It would also want to write to the file so that it can be edited
and save the changes. In this case, the program would open the file with request_access=3 (read and
write). Don't assume that request_access=0 will give you read and write access; other users who
have opened the file, or access privilege settings may restrict your access. Also, the file should be
kept open the entire time the file is being edited. If you don't, another computer could open the file
for editing after you have closed it. Then, the edited version that is written last will stay, and all
other versions will be overwritten.

As a third example, consider a file copying program (like the Finder). It would open the source
file read-only (so that other computers can copy & or use &). It would open the destination file
write-only (request_access=2) since it only needs to write to the file, and no other computer should
be allowed to read or write to the copy while it is being written. Note that opening the destination
for read and write could cause the open to fail if access privileges to the file prevent read access
(such as if the file is in a “drop folder”).

The class 0 version of the Open call is compatible with the ProDOS 16 Open call. Since it did not
provide a mechanism (o tell the operating system what access was needed to the file, it allows files
1o be opened in a manner that is not completely safe in order that several computers could open the
same file at the same time (the first computer to open the file could potentially change as other
computers are trying (o read from it). The class 1 Open call is safe, and allows you to specify the
access that you require to the file. '

All authors are strongly encouraged to use the class 1 version of the Open call and to use a non-
zero value for the request_access field. This way, files can be shared if possible, and if the open
succeeds, you will know that you have the access (o the file that you need.

Interrupts

AppleTalk needs to have interrupts enabled to function comectly. When interrupts are off, packets
cannot be received from or sent to other computers. This will cause network services to stop
functioning. One particulady visible aspect of this problem is losing a connedtion with a file server.
It only takes four consecutive missed packets for the workstation to assume the server has shut
down or has become unreachable.

Do not leave interrupts disabled any longer than absolutely necessary. Beware that if interrupts
are disabled inside a loop, that the effect is multiplied by the number of ierations. Leaving
interrupts disabled for just a few microseconds could cause a packet to be missed. Obviously, there
are some times when interrupts must be disabled, such as in a critical timing loop for a disk driver.

Interrupts 179

Interrupts must be on for an incoming packet to be received. Therefore, repeatedly tuming
interrupts on and off can be just as bad as leaving them off the entire time. For example, if a section
of code has interrupts disabled 80% of the time and enabled 20% of the time, you will miss
approximately 80% of all incoming packets.

Remember, interrupt handlers (like heartbeat tasks) execute with interrupts off. Keep their run
time as short as possible (such as setting a flag for a foreground task to check).

Do not make operating system calls with interrupts disabled. These calls could potentially take
long periods of time to complete (for example, a large file read). AppleShare calls will not be able to
complete with interrupts disabled.

Multi-user applications

A multi-user application is an application that lets several users access and possibly change some
common data at the same time. A multi-user application is usually multi-launch. A typical example is
a database program that lets several users view and edit records at the same time. In this case, the
read/write protections are applied to individual records instead of the entire file. Doing this requires
using some commands specific to AppleShare.

First, you would use the FST_Specific call SpecialOpenFork to open the file (fork). With this call
you not only provide the access you want to the file, but the access you will allow others to the
file. For example, a database file might be opened for read/write, deny nothing. This way, all users
can open the file and read and write to it at the same time. (buffering off).

To prevent one workstation from writing to the file and corrupting information being read or
written by another workstation, you use the FST_Specific call ByteRangeLock. It takes an open file
refnum, some flags, an offset into the file, and a length. The (length) number of bytes starting at
the given offset can be locked or unlocked. When a range of bytes is locked, no other workstation
can read or write those bytes; in fact, the same workstation using a different refnum cannot access
those bytes. Note that you can lock a range past the EOF of the file, which is necessary when
extending the size of the file.

For example, you might want to add a new record to a database. First, you would lock the
header of the file and read & in to determine where to place the new record. Then you would lock
the range where the new record will be located. Next, update the header to indicate the new record
has been allocated, write out the header, and unlock . Now, write the new record to the range you
have locked, and unlock the range.

Remember that you should have locked any range of bytes that you are reading or writing, and
that you should re-read a range of bytes if you have unlocked and locked i again. Note that
bufTering is disabled by default for the SpecialOpenFork call to prevent inconsistencies between the
bufTer's and the file’s contents (with the normal Open call, this is not a2 problem since no other
workstation is allowed access that could cause such an inconsistency).

180 APPENDIX B Be AppleShare Aware

e

Appendix C Apple II AppleShare
Compatibility Test Script

THIS APPENDIX isatestscript to be followed for all applications
tested for AppleShare compatibility. This is a general feature test script
covering only those features common to most applications. The test script
tests compatibility only and not whether programs are AppleShare aware.

Note: The AppleShare Compatibility Test Script is under development and is
subject to revision. Please submit any suggestions or revisions for it to:
Appleshare Compatibility Test Script, M/S 75-3T, Apple Computer, Inc,, 20525
Mariani Ave., Cupertino, CA 95014. =

181

Introduction

There are ten phases of testing; Installation, Launching, General Operations, File Checkout, Server
Alerts, Printing, Macintosh/Apple II interactions, Concurrent Operations, Boundary Conditions, and
Playtime. Make sure that you know the application thoroughly before you begin the test phases.

Complete the check list by placing a check in the appropriate section, or a N/A if the test is not
applicable to the application you are working on. A *NO" response indicates a bug or script error. If
your response indicates a bug, note the bug number(s). If the script is in error or needs an addition
or modification, write in *Script Error® on the BUG# line. Add a reference number to your notation
and make a corresponding note at the end of the script noting the error, your addition, or
modification. The test script will be revised from your note, so please be specific.

Repeal this test script for each configuration described in the AppleShare Compatibility Spread
sheet. All operations are to be done with an Apple Ile or [IGS unless otherwise noted.

Please use this script as a jumping off point. At the end of the script is an area to note your
own lests as well as suggestions for additional tests. It is important to test beyond the script to
cover areas that may have been glanced over or tested only from one angle. When you do expand
beyond this document, however, please note all tests and results and note whether you think that
you tests should be made a regular part of this script.

Preparation

Before you can begin testing the application(s), you must follow these steps:

1. Install the server CPU, one Macintosh workstation, two Apple Il workstations, preferably one
Apple lle workstation and one Apple IIGS workstation, Peek station on network, one
LaserWriter and ImageWriter.

2 Set up server for Apple Il users following instructions in the Admin guide.

3 Register at least two users in addition to the administrator. User 1 must have the primary
group of Student. User 2 must have the primary group of Teacher.

4 Set up [code name] as foreground application on server and capture a LaserWriter and an
ImageWriter (Il and LQ).

5. Setup user 150 that default printer is (code namel captured printer.

6 Set up the other user 2 5o that default printer is a network printer.

7. Install the Aristotle Menu Management and Menu display programs onlo the server following
the directions in the Aristotle manual.

8 Install Apple II System Utilities, BASIC System, the operating system, and the Finder (if
Apple lIGS workstation is being used in test) onto server.

9. Log onto server from workstation.

182 APPENDIX C Apple Il AppleShare Compatibility Test Script

Test Script
®
DATE SERVER CPU
TESTER SOFTWARE VERSION
APPLICATION SYSTEM DISK
DEVELOPER HOPS FROM WORKSTATION
VERSION ZONES FROM WORKSTATION
Check if test run booting off server WORKSTATION 1 CPU
Check if test run booting off ws disk SOFTWARE VERSION
SYSTEM DISK
COMMENTS ROM VERSION
MEMORY
SOFTWARE VERSION |.
SYSTEM DISK
‘ ROM VERSION
MEMORY
(CODE NAME] VERSION
S&P VERSION
SUPER SERIAL CARD SLOT

Test script 183

1. Installation

L.a. If the application has an install routine, attempt to install YES NO

application on a server volume.
Was attempt successful?
If attempx was not successful, note error message or BUG#

type of failure.

1.b. If install was not successful or if application does not have

an install routine, copy application to server volume.

Note utility used to copy. l

Was astempt successful? (Were all flles installed that were YES NO
suppased to be?)

If atempt was not successful, note error message or BUG#

type of fatlure.

If you cannot place the application on a server volume at all,
follow the script placing only the document on the server. Set
up privileges to the application so that both User 1 and User 2
have access to it

184 APPENDIX C Apple Il AppleShare Compatibility Test Script

2. Launching

. Section 2.2 through 2.c are to be tested either by booting off a2 workstation disk and launching the program
from which the application is to be faunched, or by setting the program from which the application is to be
launched as the startup application and booting off the server. Note which procedure is to be used in the
following test on page one of this script. For information on how to set an application as a startup application,
refer to the [Code Name] Admin Manual.

Note: except where noted, it does not matter which user you log on as.

2.2 Launching from ProDOS 8

Enter application's prefix (path up to application).

Enter RETURN.

enter application's pathname (path including application).
Enter RETURN YES NO
Is launch successful?
Note: if you have trouble faunching, check amount of | BUG#

RAM, or set server volume 1o hardcoded pathname.

’ 2.b Launching from BASIC

Type "PR#3"

Enter RETURN

Type *prefix /* and enter application's prefix (path up to application)
Enter RETURN

Type *-* and enter name of application.
Enter RETURN YES NO
Is launch successful?
Note: if you have trouble launching, check amountof | BUG#
RAM, or set server volume 1o hardcoded pathname.

Test script 185

2.c Launching from IIGS Finder

Run this test only if testing 1IGS workstation. Otherwise skip to 2.d.
Double dick on application. YES NO
Is launch successful?
Note: if you have trouble launching, check amount of | BUG#

RAM, or set server volume to hardcoded pathname.

2.d. Launching from Aristotle Menu Display.

From server Admin program, set user's startup application to Menu Display program.

Log on to server as User 2 and launch Management Program. Follow instructions in Aristole manual to create a
class providing User 1 with access to the application.

Boot off server as User 1.
Select Menu Display YES NO i
Is launch successful?
Note: if you have trouble launching, check amount of | BUG#

RAM.

186 APPENDIX C Apple Il AppleShare Compatibility Test Script

. 3. General Operations

The following tests are geared toward the *typical® application that produces data files and includes basic
editing features. If the application you are testing does not include such features, mark N?A in YES box and
write in more applicable tests. Applicable tests would include only those that involve network activity.

Before beginning the following tests, launch application in any one of the preceding ways. In subsequent tests
of this produdt, launch using another method.

Note the method you are using to launch application. | _I
3.2 Open application and create or open a large document YES NO
Are operations successful?
BUG#
3.b Cut and paste within document or between document YES NO
in different directories and volumes (both on the server and
local) BUG#
local).Are operations successful?
’ 3.c Save document (o server. YES NO
Are operations successful?
BUG#
3.d Saving under different name
3.d.1 Save as different name in same directory. YES NO
Is atiempt successful?
BUG#
3.d.2 Save to a server directory to which have complete YES NO
access.
Is save successful? : BUG#

Test script 187

3.d.3 Save to a server directory to which you have no YES NO |
see files privilege. L
Is save successful and/or message appropriate? BUG# ’
3.d.4 Attempt to save to a server directory to which YES NO
you have no make changes privilege.
Is save prohibited and message appropriate? BUG#
3.e Save while quitting application YES NO
Is attempt successful?
BUG#
3.f Place application in directory to which you have no write access.
Attempt to launch application. YES NO
Is launch successful?
BUG#

3.g Place document in a server directory to which you have no write access.

3.8.1 Attempt to open document YES NO
Is save prohibited and message appropriate?

BUG#
3.8.2 Altempt 10 save changes to document YES NO
Is save prohibited and message appropriate

BUG#
3.8.3 Close document. YES NO
Is operation successful?

BUG#

188 APPENDIX C Apple Il AppleShare Compatibility Test Script

3.h Excessive or unnecessary server activity renders an YES NO
application incompatible.
Is the application compatible in this regard?
Is the application running much slower than locally? | BUG#
3.i Enter any additional general operations tested and their results:
Operation: Result:
X BUG
BUG#
K BUG
BUG#
oK BUG
BUG#
X BUG
BUG#
X BUG
BUG#
X BUG
BUG#
X BUG
BUG#

Test script 189

4. File Checkout

An application is said to have a file-checkout problem if it allows two or more users o open the same document ‘
and save changes to it concurrently, such that they overwrite each other's changes. Acceptable solutions to his

problem include not allowing subsequent users to open the document, making subsequent users change the

name of their version of the document, or allowing subsequent users to pen the document for read access only. |

4.a Place document in a folder to which two users have full

access. From each work station launch a local copy of the
application.

4.2.1 From work station one, open the document.

From work station two, try to open the same YES NO
document.

If the document cannot be opened, 1s the message BUG#

informing you so clear?

If the document cannot be opened from work station two, skip to section S.

4.2.2 From work station one, make changes to the

document and then save. From work station two,

make changes to the document and attempt to save. YES NO

Are you prevenied from saving and instructed io save
the file the file under another name? BUG#

4.2.3 From both work stations, make changes to the

document. Save changes from work station one.

Quit form work station two. YES NO
Are you prevenied from saving and instructed 1o save
the file under another name? BUG#

190 APPENDIX C Apple Il AppleShare Compatibility Test Script

If work station two is told to save the document under a different name, try the following;

4.a.4 From either work station, make some changes,

save, make more changes, and save once more. YES NO
Are you allowed 10 save the document without receiving
a message that the file has been edited by another user? | BUG#

4.b Some applications that do not exhibit a file-checkout problem will allow subsequent users to open a
document if the first user has only read access to the document. In such a case, subsequent users have only read
access to the document as well.

Place the document in a directory to which work
station one has only read access and to which work
station two has full access. Open the document from

work station one.

Attempt to open the document form work station YES NO
two.
If the attemps (s successfil, is there a clear message BUG#
. informing the user that they cannot make changes to
' the document?

Test script 191

5. Sever Alerts

To test how application handle server alerts, initiate server shutdown, then cancel several times during the .
following operations:

52 Idle oK BUG? 4
5b Loading application | oK BUG? _ |¢
5¢ Reading from server oK BUG? #
5d Writing to server OK? BUG? *
Se Cutting and pasting oK BUG? 4
5.f Printing to a network printer | Ok BUG? [
58 Printing to (Code Name] oK BUG? l
Sh Converting document oK BUG? #
S Sending data (communication programs) | OK? BUG? ¢
5 Receiving data (communication programs) | OK? BUG? 2
5k Closing document [0).4 BUG? *
51 Quitting application oK BUG? ¢

192 APPENDIX C Apple Il AppleShare Compatibility Test Script

6. Printing
‘ 6.a Print to a network ImageWriter (Il & LQ) YES NO
Is astempt successful?
BUG#
6.b Print to a network LaserWriter (Il & NT) YES NO
Is astempt successful?
BUG#
6.c Log on as the same user from two work stations. Begin
printing from work station one and change printer selected in YES NO
Chooser or Admin form the second work station.
Does print job complete successfully? BUG#

6.¢ Complete [Code Name] worksheet and attach to script

Test script 193

7. Macintosh/Apple II Interactions

7.a From a Macintosh workstation,

7al Read data last written to server by II
7a2 Update data last written to server by II

7a3 Delete data last written to server by II

7.b From an Apple Il workstation,

7b1 Read dala last written to server by the
Macintosh

7b2 Update data last written to server by
Macintosh

7b3 Delete last data written to server by
Macintosh

oK BUG?
oK BUG?
oK? BUG?
oK BUG?
oK BUG?
ok BUG?

194 APPENDIX C Apple Il AppleShare Compatibility Test Script

7.c Condudct various operations with Macintosh/Apple 11 related
translators (such as those provided with Apple File Exchange)

Note operations and resulls
Operation: Result:
oK BUG
BUG#
[0 .4 BUG
BUG#
K BUG
BUG#
K BUG
BUG#
K BUG
BUG#
(0.9 BUG
BUG#
X BUG
BUG#

Test script

195

8. Concurrent Operations

This phase of testing involves two different workstations trying to work with the same document or
application at the same time. Note that concurrent operations differ from simultaneous operations. Some of
the following operations are not likely to occur concurrently. Use you judgment and first test those operations
that are most likely to occur. Test the remainder only if you have time. Mark the space with OK if you
encounter no problem with that step of the script. Otherwise, fill the space with the appropriate bug
number(s).

The vertical axis represents work station one, while the horizontal axis represents work station two.

8.a Test the following with an Apple I and work station one and an Apple II as work station two.

Work station one (WS 1) always works with the document. Work station two (WS 2) always works from
ProDOS, System Utiliies, or BASIC.

WS 1 WS2 - manipulating document

CoPY RENAME | DELETE | DENY ACCESS MOVE

OPEN

SAVE

CUT&PASTE

CONVERT

PRINT

AOSE

QUIT

8.b Test the following with two Apple Iis

Work station one (WS 1) always works with document. Work station two (WS 2) always works form ProDOS,
System Utilities, or BASIC.

WS 1 WS2 - manipulating document
copy RENAME | DELETE | DENY ACCESS MOVE
OPEN
SAVE
CUT&PASTE
CONVERT

196 APPENDIX C Apple I AppleShare Compatibility Test Script

PRINT

QOSE

QUIT

8.c Test the following with 2 Macintosh as work station one (WS 1) and an Apple II as work station two (WS 2).

WS 1 always works with the document, while WS 2 always works from ProDOS, System Utilties, or BASIC.

w1

WS2 — manipulating document

QoPY

RENAME

DELETE

DENY ACCESS

MOVE

OPEN

SAVE

CUT&PASTE

CONVERT

PRINT

AOsE

QUIT

8.d Test the following with an Apple I1 as work station one (WS 1) and a Macintosh as work station two (WS 2). ‘
!

WS 1 always works with the document, while WS 2 always works from ProDOS, System Utilities, or BASIC.

ws1

WS2 - mani

lating document

RENAME

DELETE

DENY ACCESS

MOVE

OPEN

SAVE

CUT&PASTE

CONVERT

PRINT

AOosE

QuIT

Test script 197 ff

9. Boundary Conditions

9.a Perform the following operations running with as Iirnkle memory as possible:

9al Load application | oK BUG? #

9a2 Read from disk oK BUG? #

9a3 Write to disk OK? BUG?]

9a4 Cut and Paste oK BUG? +

9a$ Print to network printer | OK? BUG? *

926 Print to (Code Name] oK BUG? [1
9a7 Convert document oK BUG? # |
928 Close document | OK?_ BUG? [i
9a9 Quit application | Ok BUG? # |

What is the least memory with which the application can run? S

9.b. Perform the following operations with a full server volume

9b.1 Load application oK BUG? [
9b2 Read from disk OK? BUG? ¢
9b3 Write to disk oK BUG? *
9b4 Cut and i’asu: OoK? BUG? 4
9b5 Print 10 network printer oK BUG? 4
9b.6 Print to [Code Namel oK BUG? *
9b7 Convert document oK BUG? *
9b.8 Close document oK BUG? *
9b9 Quit application | Ok BUG? ¢

198 APPENDIX C Apple Il AppleShare Compatibility Test Script

10. Playtime

‘ Some applications may not conform well to the operations in this test script. This is your chance to exercise
those aspedts of the application that you feel were not tested enough.

As time allows, play with the application, conducting operations not included in this test script. Some ideas to
consider are: More exotic operations, Application-specific operations, Concurrent operations involving more than
two work stations, simultaneous (as opposed to concurrent) operations

Operation: Result:
K BUG
BUG#
oK BUG
BUG#
OK BUG
BUG#
’ OK BUG
BUG# .
OK BUG
BUG#
K BUG
BUG#
X BUG
BUG#

Test script 199

200

Test should be made whether program has, as it should not do, written to either of its forks
(code, data). This may be done by duplicating the program file, funning the tests, then running
a file compare program as an additional test. Before the file compare is run, an additional
reconfiguration of the program from its reconfiguration menu(s) should be one of the test
stops. Program reconfiguration is an operation particulary likely to involve the program writing
to itself.

After installation application files, files installed should be noted. At the end of the test, the
directory should be compared to identify any program generated temporary file names. Any
fixed temporary file names may indicate an incompatibility.

Test should include an evaluation of extent of the extent of program segmentation, if any.

Try to start up over the network from two Apple Ils at the same time. Launch the same
application form both work stations at the same time. Do this when logged on as different
users, and the same user.

Concurrency and boundary tests should be done when starting up over the network, if
possible.

Can a file be deleted while you have it open (or being edited)? If so, you have a file checkout
problem.

Does the application reasonably handle the server shutting down (see operations in Server
Alerts section)?

APPENDIX C Apple Il AppleShare Compatibility Test Script

	Contents
	Preface
	1 - Application Development
	2 - Programming Guidelines
	3 - Calls to AppleTalk Protocols
	4 - The AppleShare File System Translator (FST)
	Appendix A - Result Codes
	Appendix B - Be AppleShare Aware
	Appendix C - Apple II AppleShare Compatibility Test Script

