
Apple Computer, lnc.
20525 Marum Menue
Cupt:nino. Calilomia 9501<
(jûBj 9%-1010
lU 171-576

Tu rt!ordt:r produtts, plea!le cali.
Apple Programmer~ and Dt:vtlopers ASM.x.:aauon
1-lm-2111-APDA

2 xx u.t a.q .14_...SQ!LPAJ!JM422 aus::c -. txk __ a:..:tJJtt c t~,-,;u.;;.z;tt.t __ ~ '~""m_;;u;;;;

AppleShare® Programmer's
Guide for the Apple® ll
Beta Dra.ft
APDA111 #A2G0051/A

Apple Computer, lnc.
20525 Marum Menue
Cupt:nino. Calilomia 9501<
(jûBj 9%-1010
lU 171-576

Tu rt!ordt:r produtts, plea!le cali.
Apple Programmer~ and Dt:vtlopers ASM.x.:aauon
1-lm-2111-APDA

2 xx u.t a.q .14_...SQ!LPAJ!JM422 aus::c -. txk __ a:..:tJJtt c t~,-,;u.;;.z;tt.t __ ~ '~""m_;;u;;;;

AppleShare® Programmer's
Guide for the Apple® ll
Beta Dra.ft
APDA111 #A2G0051/A

., -• AppleShare· Programmer's Guide
for the Apple ll

NOTICE
The Information ID this document rdkcts the CIIJTtDt state of the

product. Enry effort bas been made 10 vetlly the accuracy or this

Information; bowen:r, llls subject to change. Pn:llmlnary Notes are

relcascd ID this rorm to provlde the deftlopment co~unity with

CS5Ciltlallnlormatlon ID order to work on compatible products.

• APPLE COMPUTEI, INC.

Copyriglt c 1990 Apple, the Apple logo, AppleShare, - e by Apple Computer, lnc. AppleTalk, lmageWriter,
This manual and the software LaserWriter, and Macintœh are Contents described in it are copyrighted, registered trademarks of Apple
with ali rights reserved. Under the Computer, !ne.
copyright laws, this manual or the APDA, Apple Desktop Bus,
software ma y nOl be copied, in Finder, Event !landier, Locaffalk,
whole or in part, without written MacWorkStation, MPW,

Figures and Tables 1 II
consent of Apple, except in the Multifinder, QuickDraw, and
normal use of the software orto ResEdit are trademarks of Apple
make a backup copy ri the Compuler, !ne.
software. The sa me proprietary

DEC is a trademarlc of Digital Preface 1 xi and copyright 1101ices must be
Equipment Corporation.

Y ou should know. .. 1 xi alfllœd to any permiued copies as
were alfiXed to the original. This Hayes is a registered trademark of

Application compatibility 1 xi
exception does nOl allow copies Hayes Microcomputer Products,

Where to go for more information 1 xii to be made for 01hers, whether or !ne.
nOl sold, but ali of the material IBM is a registered trademark of

Application Development 1 1
purchased (wilh ali txlckup cq>ies) International Business Machines 1 may be sold, given, or loaned to Corporation.

The AppleTalk networlc system 1 2 another person. Under the law,
lllustrator is a trademark of

AppleTalk on the Apple Il workstation 1 4 copying indudes translating into
Adobe Systems lncorporated.

Requ irements 1 5 a1101her language or format.

Y ou may use the software on any !TC Avant Garde GOihic, !TC e e Downloading the code 1 5
Garamond, and !TC Zapf

Starting up the OS 1 6 computer owned by you, but
Dingbats are regislered trade-

GS/OS <.-> ProDOS 8 swldling 1 6 extra copies cannOI be made for
marks of International Typeface

User interface 1 6 this purpa;e.
Corporation.

AppleShare startup (and Qukk IDgofl) 1 8 "The Apple logo is a registered
MacDraw, MacPaint, and

The AristOile patch 1 9 trademark of Apple Computer,
MacWrite are regislered

Fde aa:ess 1 14 !ne. Use of the 'keyboard' Apple
trademarks of Oaris Corporation.

Printing over the network 1 14 logo (Option-Shift-k) for
commerCial purpa;es wlhout the Micrœoft is a registered trade-
prior written consent of Apple marle of Microsoft Corporation.

Programming Guidellnes 1 17 may constitute trademarlc P0615cript is a registered 2
1nfringement and unfair u-.demark of Adobe Systems

Progranuning for the stwed environmenl 1 18 compd1t100 in violation ri fedcnl lncorporated.
General programming guidelines 1 19 and state laws.

PageMaker is a regislered trade-
Entry points 1 19 Apple Computer, lnc. mark of Aldus Corporation.
Prograrn compatibility 1 21 20525 Mariani Avenue

Sirnultaneously published in the Overlays 1 21 Cupertino, CA 950 l.ui299
United States and Canada.

Writing into prograrns 1 21 (4œ) 996-1010

Ne!Work ProDOS READ arid WRITE calls 1 22

Unique fileriames for temporary files 1 22
Memory-residenl data files 1 22

ProDOS 8 Compatibilly on the Ile and Iles 1 22 • • -f>.~

~
···""
~

Ill ~-·

j_~

• APPLE COMPUTEI, INC.

Copyriglt c 1990 Apple, the Apple logo, AppleShare, - e by Apple Computer, lnc. AppleTalk, lmageWriter,
This manual and the software LaserWriter, and Macintœh are Contents described in it are copyrighted, registered trademarks of Apple
with ali rights reserved. Under the Computer, !ne.
copyright laws, this manual or the APDA, Apple Desktop Bus,
software ma y nOl be copied, in Finder, Event !landier, Locaffalk,
whole or in part, without written MacWorkStation, MPW,

Figures and Tables 1 II
consent of Apple, except in the Multifinder, QuickDraw, and
normal use of the software orto ResEdit are trademarks of Apple
make a backup copy ri the Compuler, !ne.
software. The sa me proprietary

DEC is a trademarlc of Digital Preface 1 xi and copyright 1101ices must be
Equipment Corporation.

Y ou should know. .. 1 xi alfllœd to any permiued copies as
were alfiXed to the original. This Hayes is a registered trademark of

Application compatibility 1 xi
exception does nOl allow copies Hayes Microcomputer Products,

Where to go for more information 1 xii to be made for 01hers, whether or !ne.
nOl sold, but ali of the material IBM is a registered trademark of

Application Development 1 1
purchased (wilh ali txlckup cq>ies) International Business Machines 1 may be sold, given, or loaned to Corporation.

The AppleTalk networlc system 1 2 another person. Under the law,
lllustrator is a trademark of

AppleTalk on the Apple Il workstation 1 4 copying indudes translating into
Adobe Systems lncorporated.

Requ irements 1 5 a1101her language or format.

Y ou may use the software on any !TC Avant Garde GOihic, !TC e e Downloading the code 1 5
Garamond, and !TC Zapf

Starting up the OS 1 6 computer owned by you, but
Dingbats are regislered trade-

GS/OS <.-> ProDOS 8 swldling 1 6 extra copies cannOI be made for
marks of International Typeface

User interface 1 6 this purpa;e.
Corporation.

AppleShare startup (and Qukk IDgofl) 1 8 "The Apple logo is a registered
MacDraw, MacPaint, and

The AristOile patch 1 9 trademark of Apple Computer,
MacWrite are regislered

Fde aa:ess 1 14 !ne. Use of the 'keyboard' Apple
trademarks of Oaris Corporation.

Printing over the network 1 14 logo (Option-Shift-k) for
commerCial purpa;es wlhout the Micrœoft is a registered trade-
prior written consent of Apple marle of Microsoft Corporation.

Programming Guidellnes 1 17 may constitute trademarlc P0615cript is a registered 2
1nfringement and unfair u-.demark of Adobe Systems

Progranuning for the stwed environmenl 1 18 compd1t100 in violation ri fedcnl lncorporated.
General programming guidelines 1 19 and state laws.

PageMaker is a regislered trade-
Entry points 1 19 Apple Computer, lnc. mark of Aldus Corporation.
Prograrn compatibility 1 21 20525 Mariani Avenue

Sirnultaneously published in the Overlays 1 21 Cupertino, CA 950 l.ui299
United States and Canada.

Writing into prograrns 1 21 (4œ) 996-1010

Ne!Work ProDOS READ arid WRITE calls 1 22

Unique fileriames for temporary files 1 22
Memory-residenl data files 1 22

ProDOS 8 Compatibilly on the Ile and Iles 1 22 • • -f>.~

~
···""
~

Ill ~-·

j_~

Working with network directories 1 23

Direàay and volume name localioos 1 23
~unching over the network 1 24
User diredaies 1 25
C.l3loging ProDOS direaones 1 26
Searching and deleting frcxn ProDOS diredories 1 26
Recursion and netwock direàOI'ies 1 27

Aa:essing AppleTalk praocols directly 1 33

Entry points 1 33
Making caUs lhrough BASIC and Pascal 1 33
Seriai oro emulation 1 34
Unique pro1ocol 1 3 5

lnstalling a unique praocol 1 37
The resel chain 1 37

lnleJTUpiS and praeaing your code 1 38
Using ccxnpletioo routines 1 38
Restrie1ions 1 39

Focrnats and cooventions 1 41

Asynchronous calls versus synchronous caUs 1 41
Parametc:r list format 1 42
How errocs are retumed 1 43
Cooventions 1 44

3 Ca1ls to AppleTalk Protocols 1 47

ldenlifying AppleTalk 1 48
Misœllancoos caUs 1 50

Ina ($01) 1 51
Gellnfo ($02) 1 53
GctGkbil ($03) 1 S4
ln.stallTuœr ($04) 1 55
Removaima{$05) 1 56
Bcxl {$06) 1 56
Cancdrrncr ($45) 1 57

Calls 10 the 1.inlr. Access Praocol {LAP) 1 58

J...\I'Wrle {$07) 1 59
ReadBulfcr { $Œ) 1 60
Allac:hProll $09) 1 6!
RcmovePra ($0A) 1 62

CaUs 10 the Datagram Delivery Protocd {DDP) 1 63

Open.'i!rla ($08) 1 64

OœeSocket ($OC) 1 65
SendDalagrarn ($00) 1 66

Calls 10 the ~me Binding Protocol (N8P) 1 68

lv CONTENTS

.. - . - .i>

RegislerName { $0E) 1 69
RetOOVeName ($OF) 1 70
LookupName ($10) 1 71
CoofirmName ($11) 1 73
NBPKill ($46) 1 74

C.lls to the AppleTalk Transaàion Praocol (ATP) 1 75

SendATPReq ($12) 1 76
G1nceiATPReq ($13) 1 78
OpenATPSocket ($14) 1 78
QœeATPSocket($15) 1 79
GctATPReq ($16) 1 8l
SendATPResp($17) 1 81
AddATPResp ($18) 1 83
ReiATPCB ($19) 1 83

C.lls to the Zone Information Praocd (ZIP) 1 84

GetMyZone ($lA) 1 85
GetZoneList ($18) 1 86

Calls to the AppleTalk Session Praocol {ASP) 1 87

SPGetSUius ($ID) 1 88
SPOpenSession ($1 E) 1 89
SPOœeSession ($IF) 1 90
SI'Coollmnd ($20) 1 9!
SPWrile ($21) 1 93

Calls 10 the AppleTalk Filing Prolocd (AFP) 1 95

Calls to the Prinler Access Pro!ocol (P AP) 1 97

PAPStatus ($22) 1 98

p APOpen ($23) 1 99
PAPOœe ($24) 1 100
PAPRead ($25) 1 101
PAPWritc:($26) 1 102
P APUnlœd ($27) 1 102

C.lls to the Remae Prinl Manager (RP M) interface 1 103

PMSetPrinler ($28) 1 104
PMClœeSession ($47) 1 !06

ProOOS AFP Translator 1 107
ProDOS AFP Translator Access Mode 1 !07

Resource forks 1 !07
Differences in ProDOS 8 and AFP Translator c.alls 1 108

Gclfilelnfo 1 1œ
Open 1 109

Addilional ProDOS MU Calls 1 110

Special Open Fen ($43) 1 Ill
8}\e Range LDd< ($44) 1 113

Calls 10 the ProDOS Fding Interface (PFI) 1 115

Contents v

Working with network directories 1 23

Direàay and volume name localioos 1 23
~unching over the network 1 24
User diredaies 1 25
C.l3loging ProDOS direaones 1 26
Searching and deleting frcxn ProDOS diredories 1 26
Recursion and netwock direàOI'ies 1 27

Aa:essing AppleTalk praocols directly 1 33

Entry points 1 33
Making caUs lhrough BASIC and Pascal 1 33
Seriai oro emulation 1 34
Unique pro1ocol 1 3 5

lnstalling a unique praocol 1 37
The resel chain 1 37

lnleJTUpiS and praeaing your code 1 38
Using ccxnpletioo routines 1 38
Restrie1ions 1 39

Focrnats and cooventions 1 41

Asynchronous calls versus synchronous caUs 1 41
Parametc:r list format 1 42
How errocs are retumed 1 43
Cooventions 1 44

3 Ca1ls to AppleTalk Protocols 1 47

ldenlifying AppleTalk 1 48
Misœllancoos caUs 1 50

Ina ($01) 1 51
Gellnfo ($02) 1 53
GctGkbil ($03) 1 S4
ln.stallTuœr ($04) 1 55
Removaima{$05) 1 56
Bcxl {$06) 1 56
Cancdrrncr ($45) 1 57

Calls 10 the 1.inlr. Access Praocol {LAP) 1 58

J...\I'Wrle {$07) 1 59
ReadBulfcr { $Œ) 1 60
Allac:hProll $09) 1 6!
RcmovePra ($0A) 1 62

CaUs 10 the Datagram Delivery Protocd {DDP) 1 63

Open.'i!rla ($08) 1 64

OœeSocket ($OC) 1 65
SendDalagrarn ($00) 1 66

Calls 10 the ~me Binding Protocol (N8P) 1 68

lv CONTENTS

.. - . - .i>

RegislerName { $0E) 1 69
RetOOVeName ($OF) 1 70
LookupName ($10) 1 71
CoofirmName ($11) 1 73
NBPKill ($46) 1 74

C.lls to the AppleTalk Transaàion Praocol (ATP) 1 75

SendATPReq ($12) 1 76
G1nceiATPReq ($13) 1 78
OpenATPSocket ($14) 1 78
QœeATPSocket($15) 1 79
GctATPReq ($16) 1 8l
SendATPResp($17) 1 81
AddATPResp ($18) 1 83
ReiATPCB ($19) 1 83

C.lls to the Zone Information Praocd (ZIP) 1 84

GetMyZone ($lA) 1 85
GetZoneList ($18) 1 86

Calls to the AppleTalk Session Praocol {ASP) 1 87

SPGetSUius ($ID) 1 88
SPOpenSession ($1 E) 1 89
SPOœeSession ($IF) 1 90
SI'Coollmnd ($20) 1 9!
SPWrile ($21) 1 93

Calls 10 the AppleTalk Filing Prolocd (AFP) 1 95

Calls to the Prinler Access Pro!ocol (P AP) 1 97

PAPStatus ($22) 1 98

p APOpen ($23) 1 99
PAPOœe ($24) 1 100
PAPRead ($25) 1 101
PAPWritc:($26) 1 102
P APUnlœd ($27) 1 102

C.lls to the Remae Prinl Manager (RP M) interface 1 103

PMSetPrinler ($28) 1 104
PMClœeSession ($47) 1 !06

ProOOS AFP Translator 1 107
ProDOS AFP Translator Access Mode 1 !07

Resource forks 1 !07
Differences in ProDOS 8 and AFP Translator c.alls 1 108

Gclfilelnfo 1 1œ
Open 1 109

Addilional ProDOS MU Calls 1 110

Special Open Fen ($43) 1 Ill
8}\e Range LDd< ($44) 1 113

Calls 10 the ProDOS Fding Interface (PFI) 1 115

Contents v

vi

AUserPrefiX ($2A) 1 117
Al.ogin ($2B) 1 118
AI.oginCool ($2C) 1 120

AI.ogout ($2D) 1 121
AMountYol ($2E) 1 122
F!ListSessions ($2F) 1 124
flTilllelooe ($30) 1 125
AGetSrcPath ($31) 1 126
AAcœss ($32) 1 1Z7
ANaming ($33) 1 128
ÛXlVertTime ($34) 1 130

FISetButfer ($36) 1 131
AHooks ($37) 1 132
fll.ogin2 ($38) 1 134

F!List5essions2 ($39) 1 136
flGeiSYersion ($3A) 1 137

4 The AppleShare Flle System Translator (FSf) 1 139

ûxnpaûbility 1 140

Pathname syntax 1 140

Equivalence of Macirtœh and GS/OS fde types 1 141
System calls 1 143

CREA TE ($01) 1 143
SET_fl!.E_INFO ($05} 1 143
GET _fl!.E_INFO ($06) 1 144
OPEN ($10) 1 144

READ ($12) 1 146
WRITE($13) 1 146
Cl.ŒE($14) 1 146
SCT_EOF($18) 1 147
GET_EOF($19) 1 147
GET_DIR_ENTRY ($1C) 1 147
READ_BI.OQ(($22) 1 148
WRJTE_BLOCK ($23) 1 148
R)RMAT ($24) 1 148
ERASE_DISK ($25} 1 148
GET_BO<JT_YOL($28) 1 149
GET_FST_INF0($2B) 1 149
FST_SPEOflC($33) 1 149

FST_SPEOF!Ccalls 1 150

Butfer~($0001) 1 150
B~ Range l.ocX ($0002) 1 152
Special ÜJX'n Fori< ($00)3) 1 154

CONTENTS

e e

Appendix A

Appendix 8

e e Appendix C

Ge!Privileges ($0004) 1 157
SelPrivileges ($0005) 1 160
User lnfo ($0006) 1 163
Copy File ($00)7) 1 164
GetUserPath ($0008) 1 165
OpenDesktop ($(ro)) / 166
OœeDesktop (SOOJA) 1 167
Ge!Comrnenl ($00JB) 1 168
SetComrnent ($000C) 1 169
GeiSrvrName (SOOJD) 1 170
Option List 1 171

General implementation 1 172

Result Codes 1 173

Be AppleShare Aware 1 177

Mulû-launch applications 1 178

Sharing open mes 1 178

lnterrupts 1 179

Mult~user applications 1 18l

Apple ll AppleShare Compatiblllty Test Script 1 181

lntroduàion 1 182

Preparation 1 182

Test script 1 183

Contents vil

vi

AUserPrefiX ($2A) 1 117
Al.ogin ($2B) 1 118
AI.oginCool ($2C) 1 120

AI.ogout ($2D) 1 121
AMountYol ($2E) 1 122
F!ListSessions ($2F) 1 124
flTilllelooe ($30) 1 125
AGetSrcPath ($31) 1 126
AAcœss ($32) 1 1Z7
ANaming ($33) 1 128
ÛXlVertTime ($34) 1 130

FISetButfer ($36) 1 131
AHooks ($37) 1 132
fll.ogin2 ($38) 1 134

F!List5essions2 ($39) 1 136
flGeiSYersion ($3A) 1 137

4 The AppleShare Flle System Translator (FSf) 1 139

ûxnpaûbility 1 140

Pathname syntax 1 140

Equivalence of Macirtœh and GS/OS fde types 1 141
System calls 1 143

CREA TE ($01) 1 143
SET_fl!.E_INFO ($05} 1 143
GET _fl!.E_INFO ($06) 1 144
OPEN ($10) 1 144

READ ($12) 1 146
WRITE($13) 1 146
Cl.ŒE($14) 1 146
SCT_EOF($18) 1 147
GET_EOF($19) 1 147
GET_DIR_ENTRY ($1C) 1 147
READ_BI.OQ(($22) 1 148
WRJTE_BLOCK ($23) 1 148
R)RMAT ($24) 1 148
ERASE_DISK ($25} 1 148
GET_BO<JT_YOL($28) 1 149
GET_FST_INF0($2B) 1 149
FST_SPEOflC($33) 1 149

FST_SPEOF!Ccalls 1 150

Butfer~($0001) 1 150
B~ Range l.ocX ($0002) 1 152
Special ÜJX'n Fori< ($00)3) 1 154

CONTENTS

e e

Appendix A

Appendix 8

e e Appendix C

Ge!Privileges ($0004) 1 157
SelPrivileges ($0005) 1 160
User lnfo ($0006) 1 163
Copy File ($00)7) 1 164
GetUserPath ($0008) 1 165
OpenDesktop ($(ro)) / 166
OœeDesktop (SOOJA) 1 167
Ge!Comrnenl ($00JB) 1 168
SetComrnent ($000C) 1 169
GeiSrvrName (SOOJD) 1 170
Option List 1 171

General implementation 1 172

Result Codes 1 173

Be AppleShare Aware 1 177

Mulû-launch applications 1 178

Sharing open mes 1 178

lnterrupts 1 179

Mult~user applications 1 18l

Apple ll AppleShare Compatiblllty Test Script 1 181

lntroduàion 1 182

Preparation 1 182

Test script 1 183

Contents vil

Figures and Tables

1 Application Development
Figure 1-1 The AppleTalk Netwak System with Apple IIGs

workstations 1 3
Figure 1-2 Inïial startup screen 1 9
Figure 1-3 Loading startup code 1 10
Figure 1-4 Fde server lisl 1 10
Figure 1-5 Zonelisl 1 Il
Figure 1~ Logging on 1 11
Figure 1-7 Etering your name and password 1 12
Figure 1-8 Sele<1ing volume 1 12
Figure 1-9 AppleShare startup menu 1 13
Figure 1-10 "You have ma~· dialog box 1 13

2 Programmlng Guidellnes

e e Table 2-1 RamDispatch eooy poilt 1 20
Table 2-2 $C700 interface-rdated eooy poiltS on the Apple nes 1 33
Table 2-3 Seriai card emulation entry points on the Apple IIGS 1 34
Table 2-4 Unique protocol entry poiniS on the Apple IIGS 1 3 5
Table 2-5 Issuing AppleTalk calls protected by RamForbid on the Apple

IIGS 1 40
Table 2..S Cali fonnat fŒ ProDOS 8 1 41
Table 2-7 Non-FST cali format fa GS/OS 16 1 42
Table 2-8 General result codes 1 43
Table 2-9 Eooies in the parameter size fteld 1 «
Table2-JO Entries in the Value FJeld 1 «

3 Calls to AppleTalk Protocols
Table 3-1 General hoosekeeping and suppon calls 1 50
Table 3-la Offsets of required data fld& 1 SI
Table 3-lb OffseiS of optional data ftelds 1 52
Table 3-2 LAP calls 1 58
Table 3-3 DDP calfs 1 63
Table 3-4 NBP calfs 1 68 .
Table 3-S ATP calfs 1 75
Table 3-6 Z!Pcalfs 1 84
Table 3-7 ASP calls 1 87 - e

x

Table 3-8
Table 3-9
Table 3-10
TableH1
Table 3-12
TableH3
Table 3-14
Table 3-15
TableH6
Table 3-17
Table 3-18
Table 3-19
Table 3-20

PAPcalls 1 97
Calls to RPM 1 103
Prin ter name tlags 1 104
File parameters for Ge!Filelnfo command 1 108
File types 1 108
File pararneters for Open command 1 109
Directory parameters for Open command 1 109
New ProDOS calls 1 110
Access mode byte 1 Ill
PA calls 1 116
Bit settings for the Mount Aag Field 1 122
Bit settings for the ANaming cali 1 128
Bit settings for the Hook Aag f~eld 1 132

4 The AppleShare Flle System Translator (FST)
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Ftgure 4-7
Figure 4-8
Figure 4-9
Ftgure 4-10
Ftgure 4-11
Ftgure 4-12
Figure 4-13
Ftgure 4-14

Buller Control 1 150
Byte Range Lock 1 153
Special Open Fori< 1 155
Gel Privileges 1 158
Set Privileges 1 161
User Info 1 163
Cqly Fde 1 164
GetUserPath 1 165
OoseDeslctop 1 166
OoseDesktop 1 167
GetComrnenl 1 168
SetComment 1 !69
GetSrvrName 1 170
Oplion List 1 171

Appendli A Result Codes

Table A-1 Description ol result codes 1 174

FIGL:RES AND TABlES

e e

Preface

TH 1 S P R 0 G R A M M E R S G U 1 D E is wrif.ten for application program

developers for the Apple111 IIGS111 and Apple Ile111 computer who want to do

either of the following:

• develop new network-specific applications for the Apple IIGS and

Apple Ile computer

• modify existing application programs to implement AppleTalk111 protocols

on the Apple Il workstations,

Y ou can develop either ProOOS 8- or GS/OS-based applica!ions for use wth

the AppleTalk network system, ProDOS 8 applications have the advantage of

working wif.h eif.her of the Apple Il workstations (Ile or IIGS), while GS/05

applications will be able to use the more advanced features ol the Apple IIGS

workstation, An Apple Il workstation is an Apple Ile or Apple IIGS with a

workstation card installed,

Y ou Should Know •••

Y ou should have a working knowledge of the Apple Il, the operating

systems developed specif~eally for the Apple II family of computers,
ProOOS 8 and GSIOS, Only ProOOS 8 (version LS cr later) and GSIOS are
supported, This note also assumes you are famil iar with AppleTalk prctocols
(described in Jnstde AptkTaJk) and the LocaiTalkno cable system

Appücation Compatlb!Uty

The Apple Il workstation is intended to support applications that are
compatible with ProOOS, written in the following development
environments:

• Assembler

• BASIC

• Pascal (ProOOS only)

• c (ProOOS only)

Xl

• •• c').'-.1

x

Table 3-8
Table 3-9
Table 3-10
TableH1
Table 3-12
TableH3
Table 3-14
Table 3-15
TableH6
Table 3-17
Table 3-18
Table 3-19
Table 3-20

PAPcalls 1 97
Calls to RPM 1 103
Prin ter name tlags 1 104
File parameters for Ge!Filelnfo command 1 108
File types 1 108
File pararneters for Open command 1 109
Directory parameters for Open command 1 109
New ProDOS calls 1 110
Access mode byte 1 Ill
PA calls 1 116
Bit settings for the Mount Aag Field 1 122
Bit settings for the ANaming cali 1 128
Bit settings for the Hook Aag f~eld 1 132

4 The AppleShare Flle System Translator (FST)
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Ftgure 4-7
Figure 4-8
Figure 4-9
Ftgure 4-10
Ftgure 4-11
Ftgure 4-12
Figure 4-13
Ftgure 4-14

Buller Control 1 150
Byte Range Lock 1 153
Special Open Fori< 1 155
Gel Privileges 1 158
Set Privileges 1 161
User Info 1 163
Cqly Fde 1 164
GetUserPath 1 165
OoseDeslctop 1 166
OoseDesktop 1 167
GetComrnenl 1 168
SetComment 1 !69
GetSrvrName 1 170
Oplion List 1 171

Appendli A Result Codes

Table A-1 Description ol result codes 1 174

FIGL:RES AND TABlES

e e

Preface

TH 1 S P R 0 G R A M M E R S G U 1 D E is wrif.ten for application program

developers for the Apple111 IIGS111 and Apple Ile111 computer who want to do

either of the following:

• develop new network-specific applications for the Apple IIGS and

Apple Ile computer

• modify existing application programs to implement AppleTalk111 protocols

on the Apple Il workstations,

Y ou can develop either ProOOS 8- or GS/OS-based applica!ions for use wth

the AppleTalk network system, ProDOS 8 applications have the advantage of

working wif.h eif.her of the Apple Il workstations (Ile or IIGS), while GS/05

applications will be able to use the more advanced features ol the Apple IIGS

workstation, An Apple Il workstation is an Apple Ile or Apple IIGS with a

workstation card installed,

Y ou Should Know •••

Y ou should have a working knowledge of the Apple Il, the operating

systems developed specif~eally for the Apple II family of computers,
ProOOS 8 and GSIOS, Only ProOOS 8 (version LS cr later) and GSIOS are
supported, This note also assumes you are famil iar with AppleTalk prctocols
(described in Jnstde AptkTaJk) and the LocaiTalkno cable system

Appücation Compatlb!Uty

The Apple Il workstation is intended to support applications that are
compatible with ProOOS, written in the following development
environments:

• Assembler

• BASIC

• Pascal (ProOOS only)

• c (ProOOS only)

Xl

• •• c').'-.1

xli PREFACE

• No~ If you have an existing program, that is neither ProDOS 8 based
oor OS/ OS based, you should fii'Sl conven il to ProDOS 8 or GS/OS ID

enable itiD run on the network. DOS 3.3 RWI'S calls, related hardware
accesses, or both must be eliminated from ali programs. Only standard
entry points wül be supponed.

Most Apple Il applications have little need ID know that they may be in a
network environment, and most ProDOS 8 and GS/OS, and their operating
system calls thal can be made ID local volumes can also be made to network
server volumes. However, there are situations in which current programming
practices will nd function properly in a network environrnelll. Chapter 2
provides programming guidelines and examples of network situations to
consider in developing yœr application.

+ No~ Apple IIGS System Software 4.0 (the fii'Sl release of GS/OS) does
nol suppon file service, but does suppon ali olher network layers (i.e.
l.AP through ASP). System Software 5.0 supersedes the AppleShare
IIGS workstation software.

Where to Go for More Information

The following is a list of Apple Computer reference materials for Apple IIGS
oomputers and the AppleTalk network system thal you mighl find helpful.

These documents are related to the Apple Il computer:

• Apple 1/GS ftrmware Reference ManuaJ describes routines stored in ROM
(except for BASIC and the Toolbox). The manual includes interrupt
routines and low-level VO for seriai pons, disk, and DeskTop Bus.

• BASIC Programmtng wllh ProDOS covers file and program conversioo
from DOS 3.3 to ProDOS.

• GS/OS Reference Manual, Volumes 1 and 2 (Volume 1 is Calls, Volume 2 is
Deviee Drivers) desaibes the new operating system.

• ProOOS Technlcal Reference ManuaJ desaibes the ProDOS operating
SY5[em for assembly language programrners.

• Programmers lntrodualon 10 the Apple 1/GS introduces programming for
the Apple IIGS for the desktop environment using the IIGS tools.

• TechntcaJ InlrOducJIOn 10 the Apple 1/GS describes the IIGS and its
differences from the Ile, the programming envirorunents, the toolbox,
and an irtroduction for hardware designers and Apple Programrner's
Workshop (APW) users.

• Apple Ile TedmtcaJ Reference ManuaJ.

~?~':"'~

e e

rJ, .. -~~" ~"" 4"'" - ' <· ' .r .,."'rf:'" ~ M~.".' ' " ' ~' ~ • •• •• ~ A ~ •

These documents are related ID AppleTalk:

• Jnslde Afl!leTaJ.It describes the theory of the AppleTalk network,
including specifications for the AppleTalk prctocols.

• locaJTaJ.It Cable System Owner's Guide shows you how to set up a
network, and how ID add to and change the network once you 've set il
up, using LocaiTalk cables and connectors for the AppleTalk network
system.

• Software AppltcmiOns ln a Shared Environment (Preliminary Ncte)
desaibes programming guidel ines for developing applications to function
prq>erly in a shared environment (such as network file servers). Although
this nole was developed for applications using AppleShare• on the
Macintosh* computer, sorne of the information is relevant ID the Apple
IIGS.

• AppleTaJk Network User's Guide for the Afl!le 1/GS Included with System
s. o.

Most of these if. ems are available through. APD A is an excellent source of
technical information for anyone interested in developing Apple-compatible
produas. Membership in the association allows yœ to purchase Apple
technical documentation, programming tools, and utilities. For information
on membership fees, available produas, and priees, please contaà

APDA
Apple Computer, !ne.
20525 Mariani Avenue, Mailstop 33-G
Ûlpenioo, CA 95014-()299
(!Ol) 282-APDA (!Ol-282-Z732)
Fax: 4Œ-562-3971
Telex: 171-576
Appleünk: APDA

Preface x Ill

xli PREFACE

• No~ If you have an existing program, that is neither ProDOS 8 based
oor OS/ OS based, you should fii'Sl conven il to ProDOS 8 or GS/OS ID

enable itiD run on the network. DOS 3.3 RWI'S calls, related hardware
accesses, or both must be eliminated from ali programs. Only standard
entry points wül be supponed.

Most Apple Il applications have little need ID know that they may be in a
network environment, and most ProDOS 8 and GS/OS, and their operating
system calls thal can be made ID local volumes can also be made to network
server volumes. However, there are situations in which current programming
practices will nd function properly in a network environrnelll. Chapter 2
provides programming guidelines and examples of network situations to
consider in developing yœr application.

+ No~ Apple IIGS System Software 4.0 (the fii'Sl release of GS/OS) does
nol suppon file service, but does suppon ali olher network layers (i.e.
l.AP through ASP). System Software 5.0 supersedes the AppleShare
IIGS workstation software.

Where to Go for More Information

The following is a list of Apple Computer reference materials for Apple IIGS
oomputers and the AppleTalk network system thal you mighl find helpful.

These documents are related to the Apple Il computer:

• Apple 1/GS ftrmware Reference ManuaJ describes routines stored in ROM
(except for BASIC and the Toolbox). The manual includes interrupt
routines and low-level VO for seriai pons, disk, and DeskTop Bus.

• BASIC Programmtng wllh ProDOS covers file and program conversioo
from DOS 3.3 to ProDOS.

• GS/OS Reference Manual, Volumes 1 and 2 (Volume 1 is Calls, Volume 2 is
Deviee Drivers) desaibes the new operating system.

• ProOOS Technlcal Reference ManuaJ desaibes the ProDOS operating
SY5[em for assembly language programrners.

• Programmers lntrodualon 10 the Apple 1/GS introduces programming for
the Apple IIGS for the desktop environment using the IIGS tools.

• TechntcaJ InlrOducJIOn 10 the Apple 1/GS describes the IIGS and its
differences from the Ile, the programming envirorunents, the toolbox,
and an irtroduction for hardware designers and Apple Programrner's
Workshop (APW) users.

• Apple Ile TedmtcaJ Reference ManuaJ.

~?~':"'~

e e

rJ, .. -~~" ~"" 4"'" - ' <· ' .r .,."'rf:'" ~ M~.".' ' " ' ~' ~ • •• •• ~ A ~ •

These documents are related ID AppleTalk:

• Jnslde Afl!leTaJ.It describes the theory of the AppleTalk network,
including specifications for the AppleTalk prctocols.

• locaJTaJ.It Cable System Owner's Guide shows you how to set up a
network, and how ID add to and change the network once you 've set il
up, using LocaiTalk cables and connectors for the AppleTalk network
system.

• Software AppltcmiOns ln a Shared Environment (Preliminary Ncte)
desaibes programming guidel ines for developing applications to function
prq>erly in a shared environment (such as network file servers). Although
this nole was developed for applications using AppleShare• on the
Macintosh* computer, sorne of the information is relevant ID the Apple
IIGS.

• AppleTaJk Network User's Guide for the Afl!le 1/GS Included with System
s. o.

Most of these if. ems are available through. APD A is an excellent source of
technical information for anyone interested in developing Apple-compatible
produas. Membership in the association allows yœ to purchase Apple
technical documentation, programming tools, and utilities. For information
on membership fees, available produas, and priees, please contaà

APDA
Apple Computer, !ne.
20525 Mariani Avenue, Mailstop 33-G
Ûlpenioo, CA 95014-()299
(!Ol) 282-APDA (!Ol-282-Z732)
Fax: 4Œ-562-3971
Telex: 171-576
Appleünk: APDA

Preface x Ill

e e

e e

Chapter 1 Application Development

T H 1 S C H A P T E R provides an overview of the AppleTalk network

system and describes the AppleTalk funàions implemented on the Apple II

workstation. Refer to Chap1er 2 for programming guidelines, cali formats, and

pr()(ocol parameter struàures, and Chapter 3 for a detailed descriplion of calls

to each of the AppleTalk pr()(ocols. •

z

The AppleTalk network system

A!; the number ci produà.s from Apple Computer, lnc., continues to grow, so does the desire for a
simple way to lake advanLage of the economies and features each product has to cifer. The
solution is the AppleTalk network system, in which Apple Il worksLations and a Macintœh server
can share file and printer resoorces, thus avoiding cosdy hardware duplication.

An AppleTalk network system has three components: a cable system that links deviees;
software that supports the network; and optional services that networked deviees share, such as
LaserWriter prilllers and AppleShare file servers. AppleTalk has its own protocol architecture thal
can be run over different physical media. Currendy, the LocaiTalk Cable System is the only physical
medium supponed in the Apple Il family ci computers.

Ftgure 1-1 shows how Apple Il worksLations and a Macintosh server are connected to form
the network. Hard disks can be atLached direcdy to the server, allowing worksLations to share
applications and data Other peripherals, such as a LaserWrite ... or lmageWril~ Il wilh an
LocaiTalk option card, are atLached direcdy to the network. Local printers and other deviees can also
be connected to individual workslations for use only by that workslation.

The LocaiTalk cable system uses a bus topology. The bus acts as the cornmon medium routed
through ali deviees atLached to the network. The advanlages of the bus are thal network deviees
are auached at any convenienl point, and fa il ure ci one network deviee does not cause the entire
network to fail. Each deviee (such as a workslation or printer) connected to the network oblains
its own unique address when the deviee powers up and makes a logical connection to the network.

C Il A PTE R 1 Application Devclopment

• Figure 1-1 The AppleTalk Network System with Apple Il WorkSiations

Apple D work!Wions Local prinœr

LocalTalk network

Network printers

e e

The AppleTalk network system 3

z

The AppleTalk network system

A!; the number ci produà.s from Apple Computer, lnc., continues to grow, so does the desire for a
simple way to lake advanLage of the economies and features each product has to cifer. The
solution is the AppleTalk network system, in which Apple Il worksLations and a Macintœh server
can share file and printer resoorces, thus avoiding cosdy hardware duplication.

An AppleTalk network system has three components: a cable system that links deviees;
software that supports the network; and optional services that networked deviees share, such as
LaserWriter prilllers and AppleShare file servers. AppleTalk has its own protocol architecture thal
can be run over different physical media. Currendy, the LocaiTalk Cable System is the only physical
medium supponed in the Apple Il family ci computers.

Ftgure 1-1 shows how Apple Il worksLations and a Macintosh server are connected to form
the network. Hard disks can be atLached direcdy to the server, allowing worksLations to share
applications and data Other peripherals, such as a LaserWrite ... or lmageWril~ Il wilh an
LocaiTalk option card, are atLached direcdy to the network. Local printers and other deviees can also
be connected to individual workslations for use only by that workslation.

The LocaiTalk cable system uses a bus topology. The bus acts as the cornmon medium routed
through ali deviees atLached to the network. The advanlages of the bus are thal network deviees
are auached at any convenienl point, and fa il ure ci one network deviee does not cause the entire
network to fail. Each deviee (such as a workslation or printer) connected to the network oblains
its own unique address when the deviee powers up and makes a logical connection to the network.

C Il A PTE R 1 Application Devclopment

• Figure 1-1 The AppleTalk Network System with Apple Il WorkSiations

Apple D work!Wions Local prinœr

LocalTalk network

Network printers

e e

The AppleTalk network system 3

AppleTalk on the Apple II workstation

The Apple Il workslailin is designed to provide simüar AppleTalk functionality to perform network
funt1ions as is built into the Macintosh computer. This design allows the Apple Il workstation to

• Staning up over the network (network booting)

• access servers on the network

• print to a LaserWriter or JmageWriter Il on an AppleTalk network system

Applications run on Apple Il workstations canuse their own high-level protocols interacting with
Jow-level AppleTalk praocols to communicate with any network deviee. An applicatiort can make
several types of calls: printing caUs, caUs for booting over the network, filing caUs for fde service on
the network, AppleTalk network caUs, and diagnœtic or "housekeeping• calls.

The Apple Il workstation processes the calls and data through the operating system,
translating operating system filing calls to the appropriate AppleTalk protocol calls. When the
translation is complete, the firmware on the workstation formats the data into packets and
prepares to transmit it over the network to the server.

The Apple Il workstation currently implements the following AppleTalk protocols in ROM or RAM:

• Link Access Protocol (LAP)

• Datagram Delivery Protocol (DDP)

• Narne Binding Protocol (NBP)

• Zone Information Protocol (ZIP)

• AppleTalk Transaction Protocol (A TP)

• Printcr Access Protocol (PAP)

• AppleTalk Session Protocol (ASP)

• Routing Table Maintenance Protocol (RTMP)

• Echo Protocol CEP)

Chapter 3 provides detailed information on making calls to each of these protocols. ln addition to
the AppleTalk layers just described, the Apple Il workstation suppons the following:

• the Remote Printer Manager (RPM) for transparent printer access, which emulates Super Seriai
Ca rd (SSC) seriai drivers for the seriai port

• special calls to provide a timer interrupt

• code ta allow an Apple Il workstatioo to boo! direcùy over the network from any server that
supportS AppleTalk Fding Praocol (AFP), version 2.0

• ProDOS Filing Interface (PFI), which allows transparent ProDOS file access by translating
ProDOS filing calls which have AFP servers as destinations into AFP calls

4 C Il A PTE R 1 Application Development

e e

+ No/8: Features of AFP thal are na available through operating system calls can be
accessed by making AFP calls directly through ASP.

• AppleShare fST for making calls from GS/05 on the Apple IIGS workstation

+ Note: Making AFP calls directly through ASP is discouraged under GS/OS. Most AFP calls
are available through normal GS/OS calls, or fST-Specific catis to the AppleShare fST. If
these catis do na provide the functionality you need, please contact Apple Il Developer
Technical Support for more information.

Requirements

ln arder to boot GS/OS over the network, ali servers in a zone should be updated with the GS/OS
booting software. As wlh GS/OS in general, ali machines that wish to boo! GS/OS over the network
must have version 01 ROMs or newer.

Downloadlng the code

When AppleTalk is activated and the stanup is set to AppleTalk, the AppleTalk ROMs will stan the
boot process. First il will look for an entity with type • Apple //gs• ; the ftrst abject that res ponds
will be used. Jt issues an ATP request with the machine type (1) in the first user byte and the block
number of the image in the second and third user bytes (low order first, staning with block 0).

Blocks are 512 bytes each and placed in memory staning at S!ro in bank O. If the ftrst A TP user byte
in the response from the server is non-zero then that is the last block in the image and it may be
shorter than 512 bytes.

Because the retry courts and irùervals in ROM prior to version 3 are too shan when large
numbers of machines are trying to boot, this first image will be one block or Jess in length to try to
prevent timeout errors. This black will contain code thal delays (about 5 seconds) to allow cther
machines booting up a chance to find the server before network tralfiC gets too heavy.

After the delay, a lookup for the operating system's image is performed. Theo the first few
blocks (abœt 2K) of this serond image is loaded by the code in the first image using ATP requests.
The black number and end-<lf-image flag work the same; the machine ID is 3. After these few
blocks have been read in, they receive control. This code is known as "FIZZ)'. • Fizzy is responsible for
displaying a user-friendly message and indicating progress while downloading the rest of the image.

AppleTalk on the Apple Il workstation s

AppleTalk on the Apple II workstation

The Apple Il workslailin is designed to provide simüar AppleTalk functionality to perform network
funt1ions as is built into the Macintosh computer. This design allows the Apple Il workstation to

• Staning up over the network (network booting)

• access servers on the network

• print to a LaserWriter or JmageWriter Il on an AppleTalk network system

Applications run on Apple Il workstations canuse their own high-level protocols interacting with
Jow-level AppleTalk praocols to communicate with any network deviee. An applicatiort can make
several types of calls: printing caUs, caUs for booting over the network, filing caUs for fde service on
the network, AppleTalk network caUs, and diagnœtic or "housekeeping• calls.

The Apple Il workstation processes the calls and data through the operating system,
translating operating system filing calls to the appropriate AppleTalk protocol calls. When the
translation is complete, the firmware on the workstation formats the data into packets and
prepares to transmit it over the network to the server.

The Apple Il workstation currently implements the following AppleTalk protocols in ROM or RAM:

• Link Access Protocol (LAP)

• Datagram Delivery Protocol (DDP)

• Narne Binding Protocol (NBP)

• Zone Information Protocol (ZIP)

• AppleTalk Transaction Protocol (A TP)

• Printcr Access Protocol (PAP)

• AppleTalk Session Protocol (ASP)

• Routing Table Maintenance Protocol (RTMP)

• Echo Protocol CEP)

Chapter 3 provides detailed information on making calls to each of these protocols. ln addition to
the AppleTalk layers just described, the Apple Il workstation suppons the following:

• the Remote Printer Manager (RPM) for transparent printer access, which emulates Super Seriai
Ca rd (SSC) seriai drivers for the seriai port

• special calls to provide a timer interrupt

• code ta allow an Apple Il workstatioo to boo! direcùy over the network from any server that
supportS AppleTalk Fding Praocol (AFP), version 2.0

• ProDOS Filing Interface (PFI), which allows transparent ProDOS file access by translating
ProDOS filing calls which have AFP servers as destinations into AFP calls

4 C Il A PTE R 1 Application Development

e e

+ No/8: Features of AFP thal are na available through operating system calls can be
accessed by making AFP calls directly through ASP.

• AppleShare fST for making calls from GS/05 on the Apple IIGS workstation

+ Note: Making AFP calls directly through ASP is discouraged under GS/OS. Most AFP calls
are available through normal GS/OS calls, or fST-Specific catis to the AppleShare fST. If
these catis do na provide the functionality you need, please contact Apple Il Developer
Technical Support for more information.

Requirements

ln arder to boot GS/OS over the network, ali servers in a zone should be updated with the GS/OS
booting software. As wlh GS/OS in general, ali machines that wish to boo! GS/OS over the network
must have version 01 ROMs or newer.

Downloadlng the code

When AppleTalk is activated and the stanup is set to AppleTalk, the AppleTalk ROMs will stan the
boot process. First il will look for an entity with type • Apple //gs• ; the ftrst abject that res ponds
will be used. Jt issues an ATP request with the machine type (1) in the first user byte and the block
number of the image in the second and third user bytes (low order first, staning with block 0).

Blocks are 512 bytes each and placed in memory staning at S!ro in bank O. If the ftrst A TP user byte
in the response from the server is non-zero then that is the last block in the image and it may be
shorter than 512 bytes.

Because the retry courts and irùervals in ROM prior to version 3 are too shan when large
numbers of machines are trying to boot, this first image will be one block or Jess in length to try to
prevent timeout errors. This black will contain code thal delays (about 5 seconds) to allow cther
machines booting up a chance to find the server before network tralfiC gets too heavy.

After the delay, a lookup for the operating system's image is performed. Theo the first few
blocks (abœt 2K) of this serond image is loaded by the code in the first image using ATP requests.
The black number and end-<lf-image flag work the same; the machine ID is 3. After these few
blocks have been read in, they receive control. This code is known as "FIZZ)'. • Fizzy is responsible for
displaying a user-friendly message and indicating progress while downloading the rest of the image.

AppleTalk on the Apple Il workstation s

Startlng up the OS

The image coolains patches and additions to the praocol stack through ASP, PA, a logon program,
and an FST stub. Alter praocollayers are in.stalled and initialized, the logon program runs allowing
the user 10 log on 10 a ftle server. The FST stub conuining the routines ReadlnFile, Getlloo!Name,
and GetFSTName is left at $2000 and the fde tVolume/System/Stan.GS.OS is read in and executed at
$6000. Stan GS/OS conlains the GLoader and GQuit routines that will cali the FST stub 10 lœd in the
AppleShare FST from the System/FST directory on the ll<Ja volume. Once the FST is read in, the
rest of the operaling system will be loaded and executed

At this time drivers, FSTs, setup files, DAs, etc. are loaded from folders in the System directory
on the boo! volume. Therefore, these files will be shared by ali users who boo! GS/OS from that
server.

The AppleTalk drivers will find out from PFI which volumes were mounted and create Deviee
Information Blacks for them so that the volumes the user selected during boo! remain connected.

After the OS is loaded, it will first look for the file ST ART in the System directory on the boo!
volume. The Slatt program will load any permanent or temporary init files and desk accessories
fou nd in the user's setup folder ("'/Users/ UserName'Setup"), check for mail, open the user's
A TI NIT file, set the ir default printer, and launch their startup application. Nae thal the
System/Sian program will be run by GSIOS whenever an application quils and there is no program
to quitta and there are no Olher programs waiting 10 be restaned (i.e. when ProDOS 16 would have
displayed the "Siart Next Program• menu).

GS/OS <-> ProDOS 8 swltching

ProDOS 8 will be lœded from the server on demand. PFI (ProDOS Filing Interface) will have to be
infOfmed of any volumes mourued or unmounled white GS/OS was active so that ProDOS 8 will
have an accurate view of the world (PA will actually maintain session and volume information and
will share this information with the AppleTalk drivers) After ProDOS 8 is loaded and initialized, PFI
must be patched inlo the SBFOO vector.

When retuming to GSIOS, the operating system restans from RAM. When the drivers are
reiniualized, they will have to fmd out from PFI if any volumes have been mounted or unmounted
and update the Deviee Information Bkx:ks appropriately.

Trivia: AppleShare is the only foreign file system that GS/OS can boo! from and still support
ProDOS8.

User interface

To boo! over the network, the first thing you need to do is set up the cootrol panel properly. If
you have version 01 ROMs, you need 10 set slot 7 to AppleTalk, and set the slartup sla to 7. If you
conneC! the drop box 10 the prinler port, then slot I should be setto "Y our Card" (sla 2 can be set

to euher ·v our Card" or "Modem Port"). If you conneC! the drop box to the modem port, then slot
1 should be set to "Printer Port" and sla 2 should be Set to "Y our Card."

6 C H A P T E R 1 Applicuion Devdopment

If you have version 03 ROMs, set sla 1 to • AppleTalk" if the drop box is connected to the
printer port, or set sla 2 10 • AppleTalk" if the drop box is connected to the modem pon. Set
"Stanup:" to • AppleTalk".

+ Nole: Sorne older applications (such as Aristctle) require you to set si a 7 to • AppleTalk"
as weil.

As you power on (or reboo!), you will see sorne doo displayed near the upper left corner of the
screen; these doo are generated by the ROM and the first stage ll<Ja code to let you know that
something is happening. At this poin~ the first stage of the boo! code is being read from a server.

Shortly, the second stage ll<Ja code (known as "Fizzy") will have been loaded, and put up the
screen shawn in Figure 1-2.

The server name is displayed near the middle of the screen. A •spinner" (aline thal rotates in 45"
increments) is displayed between the "Starting up over the network" message and the server name;
it indicates progress during the boo! process by tuming 45" as each black is read in. The
thermometer at the bouom of the screen is filled in proponionately to the amount of boo!
information read in (il will be rompletely filled in as the last black is read in). A typical screen about
2/3 through the ll<Ja process is shawn in Ftgure 1·3.

If the connection with the server is !ost (i.e. a request times out), the server name, spinner, and
the insides of the thermometer will be erased (revening back to Ftgure 1-]) and there will be a
lookup for another server. If a server is found, boo!ing will stan over; aherwise the screen will be
cleared and control will retum to the ROM to look for another server for the first stage boo! code.

Once the AppleTalk protocols have been loaded and initialized, the Logan program will be run. If
you have multiple zones or multiple servers in your zone, you will see the screen in Ftgure 1-4. If
there are no roulers (and hence no zones), the "Current zone: ... • string will not be displayed and
"Change zones: Esc" will becorne "Cancel: Esc" . If you press ESC at this point, an attempt will be
made to find a router and let you choœe from a list of zones (as in Ftgure1-5). Once you have
selected a zone or if there are no zones, you will be retumed to the screen in Figure 1-4. Pressing ESC
from the zone selection screen will pick your current zone and retum to Figure 1-4.

To select from ether the zone list or the server list, you may use the up and down arrow keys
to move the highlighted bar up and down through the list. If there are more items below the
booom of the window, the word "More• is displayed along the txx10m line of the window.
Pressing Retum will select the highlighted name from the list.

Once you have selected a fde server (or if there are no zones and only one file server), you will be
presented with the screen shawn in Figure 1-6. Y ou must choose whether you will log in as a guest
(" <Any User>") or as a regislered user. Pressing the up and down arrows will move through the
choices. Pressing Retum selects the highlighted choice. Pressing ESC retums you 10 Figure 1-4.

If you selected "Log on as a Registered User" , you will be presented with the screen shawn in
Figure1-7. Y ou must enter your user narne and password. If either is incorrect, a message will be
displayed and you will be asked 10 try a gain.

AppleTalk on the Apple Il workstation 7

Startlng up the OS

The image coolains patches and additions to the praocol stack through ASP, PA, a logon program,
and an FST stub. Alter praocollayers are in.stalled and initialized, the logon program runs allowing
the user 10 log on 10 a ftle server. The FST stub conuining the routines ReadlnFile, Getlloo!Name,
and GetFSTName is left at $2000 and the fde tVolume/System/Stan.GS.OS is read in and executed at
$6000. Stan GS/OS conlains the GLoader and GQuit routines that will cali the FST stub 10 lœd in the
AppleShare FST from the System/FST directory on the ll<Ja volume. Once the FST is read in, the
rest of the operaling system will be loaded and executed

At this time drivers, FSTs, setup files, DAs, etc. are loaded from folders in the System directory
on the boo! volume. Therefore, these files will be shared by ali users who boo! GS/OS from that
server.

The AppleTalk drivers will find out from PFI which volumes were mounted and create Deviee
Information Blacks for them so that the volumes the user selected during boo! remain connected.

After the OS is loaded, it will first look for the file ST ART in the System directory on the boo!
volume. The Slatt program will load any permanent or temporary init files and desk accessories
fou nd in the user's setup folder ("'/Users/ UserName'Setup"), check for mail, open the user's
A TI NIT file, set the ir default printer, and launch their startup application. Nae thal the
System/Sian program will be run by GSIOS whenever an application quils and there is no program
to quitta and there are no Olher programs waiting 10 be restaned (i.e. when ProDOS 16 would have
displayed the "Siart Next Program• menu).

GS/OS <-> ProDOS 8 swltching

ProDOS 8 will be lœded from the server on demand. PFI (ProDOS Filing Interface) will have to be
infOfmed of any volumes mourued or unmounled white GS/OS was active so that ProDOS 8 will
have an accurate view of the world (PA will actually maintain session and volume information and
will share this information with the AppleTalk drivers) After ProDOS 8 is loaded and initialized, PFI
must be patched inlo the SBFOO vector.

When retuming to GSIOS, the operating system restans from RAM. When the drivers are
reiniualized, they will have to fmd out from PFI if any volumes have been mounted or unmounted
and update the Deviee Information Bkx:ks appropriately.

Trivia: AppleShare is the only foreign file system that GS/OS can boo! from and still support
ProDOS8.

User interface

To boo! over the network, the first thing you need to do is set up the cootrol panel properly. If
you have version 01 ROMs, you need 10 set slot 7 to AppleTalk, and set the slartup sla to 7. If you
conneC! the drop box 10 the prinler port, then slot I should be setto "Y our Card" (sla 2 can be set

to euher ·v our Card" or "Modem Port"). If you conneC! the drop box to the modem port, then slot
1 should be set to "Printer Port" and sla 2 should be Set to "Y our Card."

6 C H A P T E R 1 Applicuion Devdopment

If you have version 03 ROMs, set sla 1 to • AppleTalk" if the drop box is connected to the
printer port, or set sla 2 10 • AppleTalk" if the drop box is connected to the modem pon. Set
"Stanup:" to • AppleTalk".

+ Nole: Sorne older applications (such as Aristctle) require you to set si a 7 to • AppleTalk"
as weil.

As you power on (or reboo!), you will see sorne doo displayed near the upper left corner of the
screen; these doo are generated by the ROM and the first stage ll<Ja code to let you know that
something is happening. At this poin~ the first stage of the boo! code is being read from a server.

Shortly, the second stage ll<Ja code (known as "Fizzy") will have been loaded, and put up the
screen shawn in Figure 1-2.

The server name is displayed near the middle of the screen. A •spinner" (aline thal rotates in 45"
increments) is displayed between the "Starting up over the network" message and the server name;
it indicates progress during the boo! process by tuming 45" as each black is read in. The
thermometer at the bouom of the screen is filled in proponionately to the amount of boo!
information read in (il will be rompletely filled in as the last black is read in). A typical screen about
2/3 through the ll<Ja process is shawn in Ftgure 1·3.

If the connection with the server is !ost (i.e. a request times out), the server name, spinner, and
the insides of the thermometer will be erased (revening back to Ftgure 1-]) and there will be a
lookup for another server. If a server is found, boo!ing will stan over; aherwise the screen will be
cleared and control will retum to the ROM to look for another server for the first stage boo! code.

Once the AppleTalk protocols have been loaded and initialized, the Logan program will be run. If
you have multiple zones or multiple servers in your zone, you will see the screen in Ftgure 1-4. If
there are no roulers (and hence no zones), the "Current zone: ... • string will not be displayed and
"Change zones: Esc" will becorne "Cancel: Esc" . If you press ESC at this point, an attempt will be
made to find a router and let you choœe from a list of zones (as in Ftgure1-5). Once you have
selected a zone or if there are no zones, you will be retumed to the screen in Figure 1-4. Pressing ESC
from the zone selection screen will pick your current zone and retum to Figure 1-4.

To select from ether the zone list or the server list, you may use the up and down arrow keys
to move the highlighted bar up and down through the list. If there are more items below the
booom of the window, the word "More• is displayed along the txx10m line of the window.
Pressing Retum will select the highlighted name from the list.

Once you have selected a fde server (or if there are no zones and only one file server), you will be
presented with the screen shawn in Figure 1-6. Y ou must choose whether you will log in as a guest
(" <Any User>") or as a regislered user. Pressing the up and down arrows will move through the
choices. Pressing Retum selects the highlighted choice. Pressing ESC retums you 10 Figure 1-4.

If you selected "Log on as a Registered User" , you will be presented with the screen shawn in
Figure1-7. Y ou must enter your user narne and password. If either is incorrect, a message will be
displayed and you will be asked 10 try a gain.

AppleTalk on the Apple Il workstation 7

Once you have sucœssfuUy logged on to the server, you will be presented with a list of
volumes on the server as shown in F1gul'l11-8. If the re were no zones, on! y one server, and on! y one
volume on the server, this list will not be displayed and the only volume will be automatically
mounted. Volumes wilh a check mark next to them will be mounted when you press Return. Use
the up and dawn arrow keys to move through the list of volumes; the left arrow key will remove
the check mark next to the seleaed volume; the right arrow key will put a check mark next to the
selected volume. Note thal the user volume (the volume with the User.; folder and the folders for
ali of the user.;) is automatically checked and cannot be unchecked. This volume will become your
bool volume.

Once you have selected any additional volumes, the bool process will continue. Setup files, desk
accessories, me system uanslator.;, driver.;, etc. will be loaded from the user volume. Eventually, the
startup application on the user volume will be run. If you have insulled the network booling
software nonnally, this will be the "/System'Stan" file and the process will continue as described
below.

The startup application will first Joad any custom setup files and desk accessories found in your
user folder (" "/UsersiYour Name/Setup•). Note that these are loaded in addition to the system­
wide files loaded at boot time from the usual places in the System folder. Next, your mail folder ("
'/Users/ Your Name'Mail") will be checked; if it is a non-empty folder, you will be told thal you
have mail waiting (see F1gui'IJ 1-10). Y our default printer will be set to the printer named in your
A TI NIT file (as set up in AppleShare Admin). Next, prefix 0 will be setto the prefix in the ATINIT
ftle (set up in AppleShare Adrnin). l..aslly, the user's startup application named in the ATINIT file
(set u p by AppleShare Admin) wiU be launched.

If the user's startup program quis, control will return to the AppleShare Stanup program
(descri bed in the next section).

AppleShare startup (and Quick Logoff)

The flle "/System'Siart' is the AppleShare Stanup program If the user's startup application quits,
control is returned to the AppleShare Slartup program and the screen shawn in Figure 1-9will be
displayed. From here, you have four options: log oiT from ail me server.;, re-run the startup
applicalion, and reboct.

Selecting "Log off from file servers• will log you oiT from ali ftle servers and then you (or
another user) will be allowed to log on again (staning with Ftgrm 14 or Figu~TJI-6 as appropriate).
Af1er Jogging on, the new uscr's ~p application will be launched. Note thatthe operating
sys!em is not reloaded, and no custom dc:sk aocessories or setup files are loaded for the new user.
Typically, a studenl would sdea this optioo at the end of a dass and the student in the next class
can log on without having to completdy reboot..

Selccting "Retum to stanup applicatioo" will check for mail and re-run your startup application
as 1f you had juSIIogged on (custom desk aa:essories and setup ftles will n<X be reloaded). Select
this option if you accidentJy quit from your startup application and want to run il again.

8 C Il A P Tf R 1 Applicallon Developrnent

Seleaing "Shutdown• will log you off from aU file servers, ejea ali disks, and rebool the
machine. This function is similar to the Restan opûon from the Finder's "Shut Down" command.
This option should be used when you wantto completely restart the computer, such as when you
have loaded custom desk accessories or setup files and you don'! want to have them installed for
the next user.

If you install the Quick I.ogolf update, the menu in Figure I-9 is skipped and AppleShare aas as
if the ftr.;t option was selected.

The Arlstotle patch

Aristotle is Apple's classroom management software for the Apple IL When a user quits from
Aristode, it rebools the machine. Originally, this was done so thal students would not have to run
a separate I.ogoff program when they were done using the machine. This also means thal Aristode,
as shipped, cannot make use of the quick logolf feature.

ln arder to allow Aristode to take advantage of the quick logolf feature, we have included an
update that will modify Aristotle to determine which machine it is running on before trying to
rebool. If it is running on an Apple 1 le, il will reboot as usual. On an Apple IIGS, it will instead do a
ProDOS 8 QUIT callto retum control to the AppleShare Startup application.

• Figure 1-2 Initial Stanup Screen

v2 .1 (GS/OS)

Startinq up over the network

Proqres-3

AppleTalk on the Apple Il workstation 9

Once you have sucœssfuUy logged on to the server, you will be presented with a list of
volumes on the server as shown in F1gul'l11-8. If the re were no zones, on! y one server, and on! y one
volume on the server, this list will not be displayed and the only volume will be automatically
mounted. Volumes wilh a check mark next to them will be mounted when you press Return. Use
the up and dawn arrow keys to move through the list of volumes; the left arrow key will remove
the check mark next to the seleaed volume; the right arrow key will put a check mark next to the
selected volume. Note thal the user volume (the volume with the User.; folder and the folders for
ali of the user.;) is automatically checked and cannot be unchecked. This volume will become your
bool volume.

Once you have selected any additional volumes, the bool process will continue. Setup files, desk
accessories, me system uanslator.;, driver.;, etc. will be loaded from the user volume. Eventually, the
startup application on the user volume will be run. If you have insulled the network booling
software nonnally, this will be the "/System'Stan" file and the process will continue as described
below.

The startup application will first Joad any custom setup files and desk accessories found in your
user folder (" "/UsersiYour Name/Setup•). Note that these are loaded in addition to the system­
wide files loaded at boot time from the usual places in the System folder. Next, your mail folder ("
'/Users/ Your Name'Mail") will be checked; if it is a non-empty folder, you will be told thal you
have mail waiting (see F1gui'IJ 1-10). Y our default printer will be set to the printer named in your
A TI NIT file (as set up in AppleShare Admin). Next, prefix 0 will be setto the prefix in the ATINIT
ftle (set up in AppleShare Adrnin). l..aslly, the user's startup application named in the ATINIT file
(set u p by AppleShare Admin) wiU be launched.

If the user's startup program quis, control will return to the AppleShare Stanup program
(descri bed in the next section).

AppleShare startup (and Quick Logoff)

The flle "/System'Siart' is the AppleShare Stanup program If the user's startup application quits,
control is returned to the AppleShare Slartup program and the screen shawn in Figure 1-9will be
displayed. From here, you have four options: log oiT from ail me server.;, re-run the startup
applicalion, and reboct.

Selecting "Log off from file servers• will log you oiT from ali ftle servers and then you (or
another user) will be allowed to log on again (staning with Ftgrm 14 or Figu~TJI-6 as appropriate).
Af1er Jogging on, the new uscr's ~p application will be launched. Note thatthe operating
sys!em is not reloaded, and no custom dc:sk aocessories or setup files are loaded for the new user.
Typically, a studenl would sdea this optioo at the end of a dass and the student in the next class
can log on without having to completdy reboot..

Selccting "Retum to stanup applicatioo" will check for mail and re-run your startup application
as 1f you had juSIIogged on (custom desk aa:essories and setup ftles will n<X be reloaded). Select
this option if you accidentJy quit from your startup application and want to run il again.

8 C Il A P Tf R 1 Applicallon Developrnent

Seleaing "Shutdown• will log you off from aU file servers, ejea ali disks, and rebool the
machine. This function is similar to the Restan opûon from the Finder's "Shut Down" command.
This option should be used when you wantto completely restart the computer, such as when you
have loaded custom desk accessories or setup files and you don'! want to have them installed for
the next user.

If you install the Quick I.ogolf update, the menu in Figure I-9 is skipped and AppleShare aas as
if the ftr.;t option was selected.

The Arlstotle patch

Aristotle is Apple's classroom management software for the Apple IL When a user quits from
Aristode, it rebools the machine. Originally, this was done so thal students would not have to run
a separate I.ogoff program when they were done using the machine. This also means thal Aristode,
as shipped, cannot make use of the quick logolf feature.

ln arder to allow Aristode to take advantage of the quick logolf feature, we have included an
update that will modify Aristotle to determine which machine it is running on before trying to
rebool. If it is running on an Apple 1 le, il will reboot as usual. On an Apple IIGS, it will instead do a
ProDOS 8 QUIT callto retum control to the AppleShare Startup application.

• Figure 1-2 Initial Stanup Screen

v2 .1 (GS/OS)

Startinq up over the network

Proqres-3

AppleTalk on the Apple Il workstation 9

• Flgun: 1-3 Loading Slartup Code

Startinq up over the network

' Liqht of D~v

Proqreas

• Figure: 1-4 File Scrver List

• Flle Server Log On Vl.l

CUrrent zone: Nets-R-Us

Selec:t ., file server:

iqht of D~v
Jo.1 ole of View
t.t•-8-Nets

hunderhead
therspl.at
ots of Clau1

More -------1

v2 .1 (GS/051

Select~ Ch•nq• zones: Esc Accept: .,J

10 C H A P T E R 1 Application Dc:vdopmenl .

• Figure 1-5 Zone List

• File Server Log On Vl.l

Curee nt zone: Nets-R-Ua

Select a. new zone:

~et Cam Doc
~umby Zone
~tropolis

nqineerinq Support
he Breakfast Club
wiliqht Zone

More ------J

Select:++ Quit: Esc Accept: .,1

• Figure 1-6 Logging On

• Flle Server Log On Vl.l

Loq on as a Guest

Select:'t+ Cancel: Esc Accept: .J

AppleTalk on the Apple II worksLation 11

• Flgun: 1-3 Loading Slartup Code

Startinq up over the network

' Liqht of D~v

Proqreas

• Figure: 1-4 File Scrver List

• Flle Server Log On Vl.l

CUrrent zone: Nets-R-Us

Selec:t ., file server:

iqht of D~v
Jo.1 ole of View
t.t•-8-Nets

hunderhead
therspl.at
ots of Clau1

More -------1

v2 .1 (GS/051

Select~ Ch•nq• zones: Esc Accept: .,J

10 C H A P T E R 1 Application Dc:vdopmenl .

• Figure 1-5 Zone List

• File Server Log On Vl.l

Curee nt zone: Nets-R-Ua

Select a. new zone:

~et Cam Doc
~umby Zone
~tropolis

nqineerinq Support
he Breakfast Club
wiliqht Zone

More ------J

Select:++ Quit: Esc Accept: .,1

• Figure 1-6 Logging On

• Flle Server Log On Vl.l

Loq on as a Guest

Select:'t+ Cancel: Esc Accept: .J

AppleTalk on the Apple II worksLation 11

• Figure 1·7 Entering Yoor Name and Password • Figure 1·9 AppleShare Startup Menu

~ File Server Loq On Vl.l
AppleShare Startup Vl. 0

Log on as a Guest Return to startup application

Shut Dawn

Enter your name and password:

Name: ·---·--·----·--·--------···--·--·--··--·-

Password: ·-----·--·-

Chanqe: Tab Canee 1: E5c Accept: .,J Select# Accept: .,J

• Figure 1·8 Seleaing Volume • Figure 1·10 'Y ou have mail' dialog

tl Fi le Server Loq On Vl.l

Mark the additional volume (sl you need:
'tou have mail waitinq for vou. l' '""'"' OK:~

Select:NH Quit: Esc Accept: .,1

e e
12 C Il A P TE R 1 Applicauon Develqllnenl AppleTalk on the Apple Il workstalion 13

1 2.1 .14$.3 4#.KtJ4 4JLI#J Si J#!lt.JS:: 1. ii·. iX . ; . . Ji .Mil MM .H!l4LI$LMAWi#.$#.$&JIJM&UtuUU.i!ttM g, Qi.@ #$]$li ClJ J. 4L ZESLJUJJJJ#&lkilhk&SM, .. , .

• Figure 1·7 Entering Yoor Name and Password • Figure 1·9 AppleShare Startup Menu

~ File Server Loq On Vl.l
AppleShare Startup Vl. 0

Log on as a Guest Return to startup application

Shut Dawn

Enter your name and password:

Name: ·---·--·----·--·--------···--·--·--··--·-

Password: ·-----·--·-

Chanqe: Tab Canee 1: E5c Accept: .,J Select# Accept: .,J

• Figure 1·8 Seleaing Volume • Figure 1·10 'Y ou have mail' dialog

tl Fi le Server Loq On Vl.l

Mark the additional volume (sl you need:
'tou have mail waitinq for vou. l' '""'"' OK:~

Select:NH Quit: Esc Accept: .,1

e e
12 C Il A P TE R 1 Applicauon Develqllnenl AppleTalk on the Apple Il workstalion 13

1 2.1 .14$.3 4#.KtJ4 4JLI#J Si J#!lt.JS:: 1. ii·. iX . ; . . Ji .Mil MM .H!l4LI$LMAWi#.$#.$&JIJM&UtuUU.i!ttM g, Qi.@ #$]$li ClJ J. 4L ZESLJUJJJJ#&lkilhk&SM, .. , .

File access

Usees can access fde functions over the network (such as running programs or saving data files) as
if they were using a local disk drive attached directly to the ir workstation.

• Note: Only ProDOS 8 and GS/OS applications are supported on the network. O!her operating
systems, such as DOS 3.3, are not supponed.

An irnponant feature ci the Apple IIGS workstation is that il does not require the use of memory
banks 0 and 1 because most ProDOS 8 applications use ali (or almœt ali) ci thœe banks, induding
imponant 'reserved' areas within those banks.

Network applications may take advantage of multi-user file access, byte-range locking, security
restrictions, and othee advanced features available with this full file server implementation. There
are sorne new ProDOS calls that provide access to these features, described more fully in Chapter 3.
For example, you can use the Byte Range Lock cali to prevent othee usees from accessing the range
of <lau that you are in the process of manipulating.

The AppleTalk protocols reside in the Apple IIGS fumware and RAM. While ProDOS 8 is active,
the protocols are accessible through the sarne entry point at which ProDOS 8 MU (Machine
language Interface) calls are made. The MU is the portion of ProDOS 8 that receives, validates, and
executes Operating System commands. Calls to the MU include housekeeping calls, filing caUs,
memory calls, and interrupt handling calls. Refer to Olapler 2 for more information on entry points.
(While GS/OS is active, you should use GS/OS to make Operating System calls, or RAMDispatch to
make AppleTalk calls for othee ApplcTalk protocols.) Many of these functions are available as FST­
Specific calls. Use them instead.

• Note: There is no file service in System Software 4.0.

Printing over the network

The AppleTalk software contains a module called the Remote Prin! Manager (RPM). RPM allows
transparent printing to remote peinters through the SSC entry points to AppleTalk. This emulation
occurs by having the ftrmware appcar to be a Super Seriai Card (SSO. Both BASIC and Pascal erùry
points are supponed through vectors. (Refer to 'Entry Points' in Chapter 2.) These vectors allow
the emulator (RPM) to cap1ure the calls that an application makes to send data.

Using RPM, the workstation can prirù to any deviee supported by the Chonser (control panel
on the Apple IIGS) that registers its narne as a printer 011 the network, including

14 C li APTE R 1 AppliCltiOn Dcvclopment

• ImageWrler II printers with AppleTalk adapter cards installed

• LaserWriters with the ImageWriter II emulator installed

The workstation can peint either directly or, if connected to the server, through the peint spooler.
The prinling task begins when you issue a PRin comrnand, where n is the slot RPM is using.

When the cali is made, the emulator altempts to open a connecti011 to the deviee selected from the
Chooser. After the connection is opened, the application program sends peint data out through the
SSC entry points. Print data is sent to the COUf hooks normally directed to the SSC. (Refer to the
Afl!le JIGS Ftrmware Reference Manual or the Apple Ile Techntcal Reference Manual for more
information.)

The Apple Il workstation captures the stream ci ch3racters to be printed. RPM buffers the
data, translates the peint commands to the equivalent P AP cali formats, and sends it to the selected
network printer or peint spooler.

11 is not necessary to cali P AP directly to accomplish prinling. Printers are selected using the
Chooser 011 the Apple Ile or the Control Panel on the Apple IIGS. (Y ou must select a printer wth
the Chooser/Control Panel after you first boOl from a local drive.)

There are three ways to print over the network:

• The Peint Manager. (Apple IIGS only)

• The Remote Print Manager (RPM)

• The Printer Access Protocol (PAP)

To identify the slot RPM is using (to give the user a more readable option, such as 'Network
Printer," instead of 'Siot n'), follow these steps:

l Make the AppleTalk Getlnfo cali ($02, see chapter 3)

2. If the cali returns an error, AppleTalk is not present or not installed correctly, and there is no
network printer.

3. If the 'Completion Rtn Retum' address is of the forrn $0000CnXX, where 1:5 n '5:1, then RPM is
using slot n and the entry point is $Cn00. Be Sure to test ali four bytes.

+ Note: If this cali is made from ProDOS 8, the bank byte (third byte) will always be zero.

4. Olherwise, the RPM slot is unknown (and might not be present). Ask the user for the slot.

Printing over the network IS

File access

Usees can access fde functions over the network (such as running programs or saving data files) as
if they were using a local disk drive attached directly to the ir workstation.

• Note: Only ProDOS 8 and GS/OS applications are supported on the network. O!her operating
systems, such as DOS 3.3, are not supponed.

An irnponant feature ci the Apple IIGS workstation is that il does not require the use of memory
banks 0 and 1 because most ProDOS 8 applications use ali (or almœt ali) ci thœe banks, induding
imponant 'reserved' areas within those banks.

Network applications may take advantage of multi-user file access, byte-range locking, security
restrictions, and othee advanced features available with this full file server implementation. There
are sorne new ProDOS calls that provide access to these features, described more fully in Chapter 3.
For example, you can use the Byte Range Lock cali to prevent othee usees from accessing the range
of <lau that you are in the process of manipulating.

The AppleTalk protocols reside in the Apple IIGS fumware and RAM. While ProDOS 8 is active,
the protocols are accessible through the sarne entry point at which ProDOS 8 MU (Machine
language Interface) calls are made. The MU is the portion of ProDOS 8 that receives, validates, and
executes Operating System commands. Calls to the MU include housekeeping calls, filing caUs,
memory calls, and interrupt handling calls. Refer to Olapler 2 for more information on entry points.
(While GS/OS is active, you should use GS/OS to make Operating System calls, or RAMDispatch to
make AppleTalk calls for othee ApplcTalk protocols.) Many of these functions are available as FST­
Specific calls. Use them instead.

• Note: There is no file service in System Software 4.0.

Printing over the network

The AppleTalk software contains a module called the Remote Prin! Manager (RPM). RPM allows
transparent printing to remote peinters through the SSC entry points to AppleTalk. This emulation
occurs by having the ftrmware appcar to be a Super Seriai Card (SSO. Both BASIC and Pascal erùry
points are supponed through vectors. (Refer to 'Entry Points' in Chapter 2.) These vectors allow
the emulator (RPM) to cap1ure the calls that an application makes to send data.

Using RPM, the workstation can prirù to any deviee supported by the Chonser (control panel
on the Apple IIGS) that registers its narne as a printer 011 the network, including

14 C li APTE R 1 AppliCltiOn Dcvclopment

• ImageWrler II printers with AppleTalk adapter cards installed

• LaserWriters with the ImageWriter II emulator installed

The workstation can peint either directly or, if connected to the server, through the peint spooler.
The prinling task begins when you issue a PRin comrnand, where n is the slot RPM is using.

When the cali is made, the emulator altempts to open a connecti011 to the deviee selected from the
Chooser. After the connection is opened, the application program sends peint data out through the
SSC entry points. Print data is sent to the COUf hooks normally directed to the SSC. (Refer to the
Afl!le JIGS Ftrmware Reference Manual or the Apple Ile Techntcal Reference Manual for more
information.)

The Apple Il workstation captures the stream ci ch3racters to be printed. RPM buffers the
data, translates the peint commands to the equivalent P AP cali formats, and sends it to the selected
network printer or peint spooler.

11 is not necessary to cali P AP directly to accomplish prinling. Printers are selected using the
Chooser 011 the Apple Ile or the Control Panel on the Apple IIGS. (Y ou must select a printer wth
the Chooser/Control Panel after you first boOl from a local drive.)

There are three ways to print over the network:

• The Peint Manager. (Apple IIGS only)

• The Remote Print Manager (RPM)

• The Printer Access Protocol (PAP)

To identify the slot RPM is using (to give the user a more readable option, such as 'Network
Printer," instead of 'Siot n'), follow these steps:

l Make the AppleTalk Getlnfo cali ($02, see chapter 3)

2. If the cali returns an error, AppleTalk is not present or not installed correctly, and there is no
network printer.

3. If the 'Completion Rtn Retum' address is of the forrn $0000CnXX, where 1:5 n '5:1, then RPM is
using slot n and the entry point is $Cn00. Be Sure to test ali four bytes.

+ Note: If this cali is made from ProDOS 8, the bank byte (third byte) will always be zero.

4. Olherwise, the RPM slot is unknown (and might not be present). Ask the user for the slot.

Printing over the network IS

e e

Chapter 2 Programming Guidelines

TH 1 S CH APTE R describes guidel ines for creating or modifying an

application program for an Apple II workstation thal will run on an

AppleTalk ndWork system. These funàions create many new opportunities

and challenges for the Apple II family application programmer. To address

this, you need to understand some of the implicalions of programming for a

shared environment. This chapter also discusses how to write your own

prOlocols, as weil as formats and conventions. Chapter 3 provides a

description and parameter list for each cali.

This chapter explains the changes and additions made to the AppleTalk*

prOlocol sLack for the Apple Il workstation. It is assumed thal the reader has

read and has access to lnstde AppleTallt •

17

Programming for the shared environment

ln the network environmelll, there are four categories of application developmen~

• Single-user (private data) applicalioœ that allow only one user at a lime to make changes to a
file

• Multl-user (shared data) applicalioœ thal allow two or more uselli to concurrently make
changes to the same file, and correctiy coordinates those changes

• Slngle-launch applications thal allow only one user at a lime to launch and use a single copy
of the application

• Multl-launch applications thal allow Iwo or more users at a lime to launch and use a single
copy of the application

Single-user and mu/U-wer desaibe data file-sharing modes, and stngle-launch and mu/11-launch
describe the launching characteristics, or program file-sharing modes, of the application.

Most applications for the Apple Il workstation are accessed by a single user on a single
computer. Thesc: programs lake advanlage of the simplicity of the single computer environment,
and are often written with the following assumptions.

• Access to applications and data is private.

• Read/Write block calls are frequen~y made ID 'private' disk areas.

• File-naming and direttory conventions are olien fiXed.

• Temporary files are olien used with flxed names.

• lnterrupiS are frequently locked out or na considered.

• Priming somelimes uses dired hardware access, and often assumes slot 1 or skx 2.

• Copy prolection schemes often depend on specifie hardware.

While these assumplions are valid for a single-user environment, they do na apply to a network
environment where severa! workstalions may simultaneously access the same application program,
daia files, and resourœs on the fde server.

A Wamlng Wriling an application program to run in a network environment using the
assumplions used in a single-user environmelll just given may result in
data la;s .•

18 C If APTE R 2 Programming Guidelines
e e

General programming guidelines

To aeate or IIVX!ify progmm ID run effectively on the nelwork, you should take iniD
coœideration the foUowing general guidelines for programming in a network environmenl

• ProOOS 8 and GSIOS utüize a'hierarchical fde structure. As wilh the Macintosh server, you must
use caUs lhat support this fde structure.

• Ali files residing on a server volume thal supports AFP will have two forks: a data fork and a
resource fork (even if the resource fork is designaled as empty, such as in an MS-DOS
application). An application should not write ID itself, ID ilS data fork, or ID ilS resource fork.

• An application should IIOldœe a fde whüe making changes to ils conteru. For example, an
editor may faS thal follows this sequence: opens, rea!h, and doses a file, allows a user ID ed~

data in memory, and theo opens, writes, and closes the file. Il is important ID follow this
sequence: open a file, read the file, edit, write ID the file, and then clœe the file. This wül prevelll
other uselli from modifying the file while you are ediling il, (and prevent you from over­
wriling their changes when you save the file).

• An application should inform the user what access was granted to the document during the
open proœss. An application should allow the user to specify the access desired (such as read­
only when the user wishes to view only, but na edit a file).

• An application must be intelligent about the way it manages temporary files. Do na use fiXed
names; instead, generale a randorn name or sulfiX combined with the lime or network address.

• Program segmentation should be kept ID a minimum.

• Don'! assume thal, because a file exists, you can open it.

For a more complete explanalion of each item, refer to the Preliminary Note, Software Appllcallans
ln a Shared Enlllronmenl. The seclioœ thal follow provides more delailed information on entry
points, program compatibility, irterrupts, and so forth.

Entry points

The AppleTalk protocols reside in the Apple Il workstation fumware and RAM, and are accessible
through the same entry point through which ProDOS 8 MU calls are made. The entry points. for
making caUs to the IIGS firmware indude the following:

• The MU entry poilt at $BRIO under ProOOS 8, which accommodates ali ProDOS 8 MU calls and
ali network protocollayer calls. Il must be in bank 0 to relain compalibility with the Apple Ile
workstation.

General programming guidelines 19

Programming for the shared environment

ln the network environmelll, there are four categories of application developmen~

• Single-user (private data) applicalioœ that allow only one user at a lime to make changes to a
file

• Multl-user (shared data) applicalioœ thal allow two or more uselli to concurrently make
changes to the same file, and correctiy coordinates those changes

• Slngle-launch applications thal allow only one user at a lime to launch and use a single copy
of the application

• Multl-launch applications thal allow Iwo or more users at a lime to launch and use a single
copy of the application

Single-user and mu/U-wer desaibe data file-sharing modes, and stngle-launch and mu/11-launch
describe the launching characteristics, or program file-sharing modes, of the application.

Most applications for the Apple Il workstation are accessed by a single user on a single
computer. Thesc: programs lake advanlage of the simplicity of the single computer environment,
and are often written with the following assumptions.

• Access to applications and data is private.

• Read/Write block calls are frequen~y made ID 'private' disk areas.

• File-naming and direttory conventions are olien fiXed.

• Temporary files are olien used with flxed names.

• lnterrupiS are frequently locked out or na considered.

• Priming somelimes uses dired hardware access, and often assumes slot 1 or skx 2.

• Copy prolection schemes often depend on specifie hardware.

While these assumplions are valid for a single-user environment, they do na apply to a network
environment where severa! workstalions may simultaneously access the same application program,
daia files, and resourœs on the fde server.

A Wamlng Wriling an application program to run in a network environment using the
assumplions used in a single-user environmelll just given may result in
data la;s .•

18 C If APTE R 2 Programming Guidelines
e e

General programming guidelines

To aeate or IIVX!ify progmm ID run effectively on the nelwork, you should take iniD
coœideration the foUowing general guidelines for programming in a network environmenl

• ProOOS 8 and GSIOS utüize a'hierarchical fde structure. As wilh the Macintosh server, you must
use caUs lhat support this fde structure.

• Ali files residing on a server volume thal supports AFP will have two forks: a data fork and a
resource fork (even if the resource fork is designaled as empty, such as in an MS-DOS
application). An application should not write ID itself, ID ilS data fork, or ID ilS resource fork.

• An application should IIOldœe a fde whüe making changes to ils conteru. For example, an
editor may faS thal follows this sequence: opens, rea!h, and doses a file, allows a user ID ed~

data in memory, and theo opens, writes, and closes the file. Il is important ID follow this
sequence: open a file, read the file, edit, write ID the file, and then clœe the file. This wül prevelll
other uselli from modifying the file while you are ediling il, (and prevent you from over­
wriling their changes when you save the file).

• An application should inform the user what access was granted to the document during the
open proœss. An application should allow the user to specify the access desired (such as read­
only when the user wishes to view only, but na edit a file).

• An application must be intelligent about the way it manages temporary files. Do na use fiXed
names; instead, generale a randorn name or sulfiX combined with the lime or network address.

• Program segmentation should be kept ID a minimum.

• Don'! assume thal, because a file exists, you can open it.

For a more complete explanalion of each item, refer to the Preliminary Note, Software Appllcallans
ln a Shared Enlllronmenl. The seclioœ thal follow provides more delailed information on entry
points, program compatibility, irterrupts, and so forth.

Entry points

The AppleTalk protocols reside in the Apple Il workstation fumware and RAM, and are accessible
through the same entry point through which ProDOS 8 MU calls are made. The entry points. for
making caUs to the IIGS firmware indude the following:

• The MU entry poilt at $BRIO under ProOOS 8, which accommodates ali ProDOS 8 MU calls and
ali network protocollayer calls. Il must be in bank 0 to relain compalibility with the Apple Ile
workstation.

General programming guidelines 19

• The SSC (Super Seriai Card) entry points at SCnXX (n z RPM slot), which is used for prinling to
remo1e deviees. This entry point emulates the Super Seriai Card BASIC and Pascal 1.1 entry
points.

• RAMDispatch, which is used under GS/OS for full native mode access in applications.

• File system calls should' be made from GS/05. FST-Speciflc caUs should be used instead of the ir
Pfl counter parts. See Chapter 3.

Under ProDOS 8, the PA entry point of the Apple Il workslalion is insened into the MU vector at
SBFOO by the AppleTalk setup during the boot process, thus causing ali ProDOS calls to be captured
by the Apple Il workslalion flrrnware. This process allows PFI 10 decide whether or not a cali is 10
be a local cali or a server AFP cali and handle il accordingly. If PA requires a server AFP cali, the
appropriate packet or packet.s are created and sent through ASP to the proper server, resulting in
transparent file access 10 remole files.

+ Nole: The SBF page of memory (addresses SBFOO through SBFFF) contairu the system
global variables. The Apple IIGS maintains certain ci these variables for local opera ting
system and assumes them to be in 'normal condition. • Use the ProDOS 8 ONUNE cali for
this information. See tbe ProDOS 8 Techntcai Reference Manuai for more detail.

An application program canuse tbe RamDispatch entry point to cali AppleTalk direaly in full native
mode on the Apple IIGS The application can be running code in any bank and still use this cali. Table
2-1 describes the RamDispatch entry point. Y ou cao use this entry point while under ProDOS 8 or
GS/05, however, this is tbe onlyentry poirllto use while GS/OS is active.

• Table 2·1 RamDispatch entry point

Entry Point

RamDispatch SE11014

Dacriptloo

This vector is the direct entry point into the
conunanddispatcher. It should be called in full native mode
with tbe X (low) and Y (high) registers poirlling 10 the
par.lmeler list 10 be dispatched.

Rcfer to 'Accessing AppleTalk Prctoals Directly' in this chapter for more complete information on
emry points.

The AppleSharc PST is tbe implementation ci AppleShare for GS/OS. It is meant to supersede
AppleShare IIGS, the implementation ci AppleShare for ProDOS 16. Since ProOOS 16 made calls 10
ProDOS 8 10 gd its wort: done, il patched tbe ProOOS 8 MU 10 intercept calls bound for the
nCiwork. ln this way, both ProOOS 8 and ProDOS 16 can use network volumes. GS/OS is completely
separate from ProD05 8. The ProOOS 8 MU will still be patched 10 intercept network calls while
ProDOS 8 is ruMing. When GS/05 is ruMing, GS/05 will make calls directly to the AppleTalk routines
v1a the AppleShare FST, instead of calling ProDOS 810 make the AppleTalk calls.

20 C flA PTE R 2 Programming Guidel ines

Program compatlbillty

An application designed using tbe flllllware caUs should result in full compalibility with the current
implementation ci AppleTalk on tbe Apple Il workstation, as long as the application:

• follows ProOOS 8 cooventions

• places ali code and bulfers in bank 0

Other implementations may be unable to manipulate dau outside of bank O. Therefore, code that
makes use of any data bank other than 0 in the Apple Il worksution may not be compatible with
AppleTalk implementations for tbe Apple Ile computer.

In arder for AppleTalk protocols to work properly on an Apple Il workstation, you must use
GS/OS to boat; GS/05 files are relocatable files that must use the System Loader. After the system
boots up, you can run ProD05 8 applications. Y ou cao also make calls direaly to the AppleTalk
dispatcher when ruMing in full native mode.

Because of the structure of the system interface, any application or language thal uses the
ProDOS MU properiy should be compatible (excluding READ_BLOCK and WRITE_BLO<X calls).
GS/OS applications thal use GS/05 and the FST -specifie calls, instead ci PA calls, should also be
compatible.

Overlays

Y ou should avoid prograrn overiays whenever possible. If you must use overiays, they should be a
minimum of 512 bytes and preferably no more than 4K bytes (1 to 8 blacks) to minimize the
number of overlays required. Use READ (not READ _BLOCK) to get overlays. Segment overiays
carefully 10 minimize swapping and reduce network trafflc.

As in the single-user environment, overiays cause delays. If your application uses a memory
expansion card, you can achieve beaer performance by downloading overlays to the memory
exparuion card at initialization time, for later use. Doing this prevents the overiays from possibly
slowing down tbe network. Never write dau or configuration information into an overlay (or main
program), as this will create problerns in a mulû-user or mult~launch environment.

Writlng lnto programs

To avoid conflicts arnong simuiUneous users, multi-launch programs must never wrile data (such
as configuration information) back iniO themselves. Y ou must create a unique narne or store the
information in a unique, known loealion, such as a subdireaory named after the user (or the user's
directory on tbe server). A suggestion for creating a unique name is to append the network number
and the node 10 tbe fdename.

General programming guidelines 21

• The SSC (Super Seriai Card) entry points at SCnXX (n z RPM slot), which is used for prinling to
remo1e deviees. This entry point emulates the Super Seriai Card BASIC and Pascal 1.1 entry
points.

• RAMDispatch, which is used under GS/OS for full native mode access in applications.

• File system calls should' be made from GS/05. FST-Speciflc caUs should be used instead of the ir
Pfl counter parts. See Chapter 3.

Under ProDOS 8, the PA entry point of the Apple Il workslalion is insened into the MU vector at
SBFOO by the AppleTalk setup during the boot process, thus causing ali ProDOS calls to be captured
by the Apple Il workslalion flrrnware. This process allows PFI 10 decide whether or not a cali is 10
be a local cali or a server AFP cali and handle il accordingly. If PA requires a server AFP cali, the
appropriate packet or packet.s are created and sent through ASP to the proper server, resulting in
transparent file access 10 remole files.

+ Nole: The SBF page of memory (addresses SBFOO through SBFFF) contairu the system
global variables. The Apple IIGS maintains certain ci these variables for local opera ting
system and assumes them to be in 'normal condition. • Use the ProDOS 8 ONUNE cali for
this information. See tbe ProDOS 8 Techntcai Reference Manuai for more detail.

An application program canuse tbe RamDispatch entry point to cali AppleTalk direaly in full native
mode on the Apple IIGS The application can be running code in any bank and still use this cali. Table
2-1 describes the RamDispatch entry point. Y ou cao use this entry point while under ProDOS 8 or
GS/05, however, this is tbe onlyentry poirllto use while GS/OS is active.

• Table 2·1 RamDispatch entry point

Entry Point

RamDispatch SE11014

Dacriptloo

This vector is the direct entry point into the
conunanddispatcher. It should be called in full native mode
with tbe X (low) and Y (high) registers poirlling 10 the
par.lmeler list 10 be dispatched.

Rcfer to 'Accessing AppleTalk Prctoals Directly' in this chapter for more complete information on
emry points.

The AppleSharc PST is tbe implementation ci AppleShare for GS/OS. It is meant to supersede
AppleShare IIGS, the implementation ci AppleShare for ProDOS 16. Since ProOOS 16 made calls 10
ProDOS 8 10 gd its wort: done, il patched tbe ProOOS 8 MU 10 intercept calls bound for the
nCiwork. ln this way, both ProOOS 8 and ProDOS 16 can use network volumes. GS/OS is completely
separate from ProD05 8. The ProOOS 8 MU will still be patched 10 intercept network calls while
ProDOS 8 is ruMing. When GS/05 is ruMing, GS/05 will make calls directly to the AppleTalk routines
v1a the AppleShare FST, instead of calling ProDOS 810 make the AppleTalk calls.

20 C flA PTE R 2 Programming Guidel ines

Program compatlbillty

An application designed using tbe flllllware caUs should result in full compalibility with the current
implementation ci AppleTalk on tbe Apple Il workstation, as long as the application:

• follows ProOOS 8 cooventions

• places ali code and bulfers in bank 0

Other implementations may be unable to manipulate dau outside of bank O. Therefore, code that
makes use of any data bank other than 0 in the Apple Il worksution may not be compatible with
AppleTalk implementations for tbe Apple Ile computer.

In arder for AppleTalk protocols to work properly on an Apple Il workstation, you must use
GS/OS to boat; GS/05 files are relocatable files that must use the System Loader. After the system
boots up, you can run ProD05 8 applications. Y ou cao also make calls direaly to the AppleTalk
dispatcher when ruMing in full native mode.

Because of the structure of the system interface, any application or language thal uses the
ProDOS MU properiy should be compatible (excluding READ_BLOCK and WRITE_BLO<X calls).
GS/OS applications thal use GS/05 and the FST -specifie calls, instead ci PA calls, should also be
compatible.

Overlays

Y ou should avoid prograrn overiays whenever possible. If you must use overiays, they should be a
minimum of 512 bytes and preferably no more than 4K bytes (1 to 8 blacks) to minimize the
number of overlays required. Use READ (not READ _BLOCK) to get overlays. Segment overiays
carefully 10 minimize swapping and reduce network trafflc.

As in the single-user environment, overiays cause delays. If your application uses a memory
expansion card, you can achieve beaer performance by downloading overlays to the memory
exparuion card at initialization time, for later use. Doing this prevents the overiays from possibly
slowing down tbe network. Never write dau or configuration information into an overlay (or main
program), as this will create problerns in a mulû-user or mult~launch environment.

Writlng lnto programs

To avoid conflicts arnong simuiUneous users, multi-launch programs must never wrile data (such
as configuration information) back iniO themselves. Y ou must create a unique narne or store the
information in a unique, known loealion, such as a subdireaory named after the user (or the user's
directory on tbe server). A suggestion for creating a unique name is to append the network number
and the node 10 tbe fdename.

General programming guidelines 21

Network. ProDOS READ and WRITE calls

The networlc server operating system manages disk access on the server volumes. For this reason,
you should always use the READ cali and the WRITE cali; neœruse lhe READ_BLOCK cali and the
WRITE_BLOCK cali. The seJVer wiU na acœpt READ _BLO(J(and WRITE_BLOCK calls and will
retum a networlc errrx ($88). 1'hœe calls may be stiJl used for local disk access, but are na
recorrunended.

Unique ffienames for temporary rues

Names of ternporary files must now be checked to prevent duplicate fdename problems. If your
application progrun creates lc:mporary files or saves files using default filenames, you must provide
a way to adda random suffiX orto give the user lhe opportunity to create a unique filename.
Otherwise, Apple II workstatioo users will save or write to lhe same files, resulting in lost dal3 or
crashed applications. However, Ibis aàivity will na crash the seiVer.

Memory-resldent data ffies

To prevent changes to a file by Clher users, you must first determine whether or na dal3 is kept
resident in mcmory.

For pr~rams thal Joad entire dal3 fdes into memory, the applic31ion can check lhe
modification date and the modification time in order to distinguish between files. By checking this
combination, the program koows if the file has been changed sinœ the initial read. The application
can then prompt the user either to save the dau under a different file name or to overwrite the
dau in the existing fde.

For programs thal do na keep dau resident in memory, you can prevent. dau changes by aher
users wh ile you are rnanipulating dal3 by doing the following:

• using the special open-with-deny mode, cr cJass 1 open in GS/OS

• byte-range locking the entire file

ProDOS 8 Compatibillty on the Ile and IIGS

This sectiœ d=ribcs areas which could cause an applicalion torun under the AppleShare Apple Ile
workstation software, but fail undcr the Apple IIGS workstation software.

• If code is running in auxiliary memory in emulation mode (e.g., ProDOS 8 programs thal run
code from auxiliary memory), make sure $0100 in auxiliary memory is set to the normal stack
pointer and $0101 in auxiliary mernory is set to the auxiliary (altema!e) stack pointer. (See page 93
of the Apple /Je Tec.hnical Referenœ Manual.)

22 CH APTE R 2 Pr~nuning Guidelines

•

•

e

•

•

• Make sure ProDOS 8 calls are na made from auxiliary memcry; Apple has never recorrunended
ooing Ibis, and it is na supported .

• Make sure intenupts arc enabled when making ProDOS 8 calls.

• Make sure interrupts arc na disabled for long periods of lime, nor for a high percenuge of
lime. Whenever interrupts arc disabled, there is a chance lhat an AppleTalk packet will be missed
(which could cause AppleShare volumes to be unmounted). The more interrupts are disabled,
lhe more likdy thal packets will be missed This risk is inherent for any application lhat disables
interrupts (directly or indireàly), therefore, interrupts should be disabled wilh discretion and
only when absolutely necessary.

• Make sure programs get lhe completion routine retum address from lhe GeUnfo cali when
lhey are surted.

• Make sure to identify AppleTalk by calling Getlnfo and checking for an invalid cali number error
(which rneans AppleTalk is na present). Do na use the A lUC signature bytes for
identification. See Apple Il AppleTalk Technical Nae 11, Identifying AppleTalk.

• ProDOS 8 invisible bit is na respected. The invisible bit in lhe ProDOS 8 acœss byte was defined
after lhe release of lhe Apple lie Worksution Card, so the ProDOS Filing Interface present on
lhe card treats this bit as reserved

Working with network directories

Network volume direàories canna be manipulated in the same way as direàories on local ProDOS
volumes. This section describes these reasons and tells how ProDOS 8 and GS/OS applications on an
Apple IIGS worksUtion can properly process network direàories. The example routines included in
this seàion work wilh bah local and network volumes; separate routines are na required for local
versus netwqrk volumes.

Dlrectory and volume name locations

For ProDOS 8, use the pathname at $28l to determine your pathname (refer to Section 5.1 S of lhe
ProDOS 8 Techntcal Reference Manual for more informatioo). ln GS/OS, prefiX 1 is set to the name
of the applicalion's direàory.

A Warnfng Do na hard-code pathnames, direàcry names, volume names, or their
slol/drive localions. •

Working with network direàories 23

Network. ProDOS READ and WRITE calls

The networlc server operating system manages disk access on the server volumes. For this reason,
you should always use the READ cali and the WRITE cali; neœruse lhe READ_BLOCK cali and the
WRITE_BLOCK cali. The seJVer wiU na acœpt READ _BLO(J(and WRITE_BLOCK calls and will
retum a networlc errrx ($88). 1'hœe calls may be stiJl used for local disk access, but are na
recorrunended.

Unique ffienames for temporary rues

Names of ternporary files must now be checked to prevent duplicate fdename problems. If your
application progrun creates lc:mporary files or saves files using default filenames, you must provide
a way to adda random suffiX orto give the user lhe opportunity to create a unique filename.
Otherwise, Apple II workstatioo users will save or write to lhe same files, resulting in lost dal3 or
crashed applications. However, Ibis aàivity will na crash the seiVer.

Memory-resldent data ffies

To prevent changes to a file by Clher users, you must first determine whether or na dal3 is kept
resident in mcmory.

For pr~rams thal Joad entire dal3 fdes into memory, the applic31ion can check lhe
modification date and the modification time in order to distinguish between files. By checking this
combination, the program koows if the file has been changed sinœ the initial read. The application
can then prompt the user either to save the dau under a different file name or to overwrite the
dau in the existing fde.

For programs thal do na keep dau resident in memory, you can prevent. dau changes by aher
users wh ile you are rnanipulating dal3 by doing the following:

• using the special open-with-deny mode, cr cJass 1 open in GS/OS

• byte-range locking the entire file

ProDOS 8 Compatibillty on the Ile and IIGS

This sectiœ d=ribcs areas which could cause an applicalion torun under the AppleShare Apple Ile
workstation software, but fail undcr the Apple IIGS workstation software.

• If code is running in auxiliary memory in emulation mode (e.g., ProDOS 8 programs thal run
code from auxiliary memory), make sure $0100 in auxiliary memory is set to the normal stack
pointer and $0101 in auxiliary mernory is set to the auxiliary (altema!e) stack pointer. (See page 93
of the Apple /Je Tec.hnical Referenœ Manual.)

22 CH APTE R 2 Pr~nuning Guidelines

•

•

e

•

•

• Make sure ProDOS 8 calls are na made from auxiliary memcry; Apple has never recorrunended
ooing Ibis, and it is na supported .

• Make sure intenupts arc enabled when making ProDOS 8 calls.

• Make sure interrupts arc na disabled for long periods of lime, nor for a high percenuge of
lime. Whenever interrupts arc disabled, there is a chance lhat an AppleTalk packet will be missed
(which could cause AppleShare volumes to be unmounted). The more interrupts are disabled,
lhe more likdy thal packets will be missed This risk is inherent for any application lhat disables
interrupts (directly or indireàly), therefore, interrupts should be disabled wilh discretion and
only when absolutely necessary.

• Make sure programs get lhe completion routine retum address from lhe GeUnfo cali when
lhey are surted.

• Make sure to identify AppleTalk by calling Getlnfo and checking for an invalid cali number error
(which rneans AppleTalk is na present). Do na use the A lUC signature bytes for
identification. See Apple Il AppleTalk Technical Nae 11, Identifying AppleTalk.

• ProDOS 8 invisible bit is na respected. The invisible bit in lhe ProDOS 8 acœss byte was defined
after lhe release of lhe Apple lie Worksution Card, so the ProDOS Filing Interface present on
lhe card treats this bit as reserved

Working with network directories

Network volume direàories canna be manipulated in the same way as direàories on local ProDOS
volumes. This section describes these reasons and tells how ProDOS 8 and GS/OS applications on an
Apple IIGS worksUtion can properly process network direàories. The example routines included in
this seàion work wilh bah local and network volumes; separate routines are na required for local
versus netwqrk volumes.

Dlrectory and volume name locations

For ProDOS 8, use the pathname at $28l to determine your pathname (refer to Section 5.1 S of lhe
ProDOS 8 Techntcal Reference Manual for more informatioo). ln GS/OS, prefiX 1 is set to the name
of the applicalion's direàory.

A Warnfng Do na hard-code pathnames, direàcry names, volume names, or their
slol/drive localions. •

Working with network direàories 23

I.aunchlng over the network

The following sample program shows how to determine if your ProDOS 8 application was launched
over the network.

lonqa off
lonqi off
absaddr on
65c02 on
verboae on
Keep NetLaunch

Net La un ch Start

mli equ $BFOO
La:~tdev equ $BtJO
AtCall equ $42
Re.sd_Blk equ $80

"' NetLa.Wlch checka to see if the laat

* deviee access6d was a network volume.
* An application can run thi.s routine
* at the beqinning of an application

• to see if i t bas been launched from
• a network volume.

* -------------------------------------111
* Inp.Jts:

None

·---·
* OUtput:

• Carry Clear - Application launched
from a local volume.

• Carry Set - Application launched

from a networt volume.

OleckNetLaunch an op
lda I.utdev

sta OnitNum

jar mli
de il'Raad_Block •
de a' RaadBlock •

'""' l$88
beq CNL2

clc

rts

CIl APTE R 2 Programming Guidel ines

;before accessinq any disk,
;get the last deviee

;accessed and store it for the
; Block Read call

; do the block read

; ProOOS Corrmand

;our parameter list
;did yeu get a network errer?
;if not then this ia not a network
;volume

;indicate that the volume is local
;and return

'~ .. ' ,' -::' . . . "~'

ReadBlock
UnitNum

BlockBuff

User directories

an op

sec
rta

de

da

h'03'

1
de a'BlockBuff'
de a'O'

da

end
512

;the volume is on the network
;return

Because users may configure their workstation differently (such as installing a printer card in
different slots, using a different network or server printer), an individual user directory is created by
the server's Admin program each time a new user is established The Admin program creates a
directory of the same name as the user's name in the directory US ERS on the user volume ci the
server, and assigns a startup application and printer to each user.

User directories can also be used to modify your application program configurations, allowing
each user to configure their own printer, prefiX, and so on. To protect your configuration file, your
application should either

• create a directory inside the individual user's direaory, or

• use the directory SE TUP

Both ci these direaories are located inside the individual user's direaory. Y our application should
first check for the configuration fde in the directory you selected; if there is no configuration file in

that directory, then retum to the direaory from which the application was launched. Whenever
you make changes to the configuration, store the new information in the directory inside the
individual user's directory so thal it will be available the next time the application is launched. Using
the FlUserPrefiX cali in ProOOS 8 returns the path to the individual user's directory (refer to Chapter
3 for more detailed information).

Whenever the user executes the Logon program and selects a server, the Logon program
automatically mounts thal user's volume on the server. The user volume is then available to ali of
the applic:itions thal need individual configuration information for each user.

From GS/05, you canuse the ·o· prefiX. If your application was launched from a fileserver
volume, and a user volume i.s mounted, it will be set to the user's directory. Otherwise, t will be set

to the appliation's directory.

+ Note: There is no way to determine conclusiveiY., on a per user basis, who is a Apple Il user
and who is not. Users may also qxrespond to Macintosh or other AppleShare workstations.

Working with network directories 25

I.aunchlng over the network

The following sample program shows how to determine if your ProDOS 8 application was launched
over the network.

lonqa off
lonqi off
absaddr on
65c02 on
verboae on
Keep NetLaunch

Net La un ch Start

mli equ $BFOO
La:~tdev equ $BtJO
AtCall equ $42
Re.sd_Blk equ $80

"' NetLa.Wlch checka to see if the laat

* deviee access6d was a network volume.
* An application can run thi.s routine
* at the beqinning of an application

• to see if i t bas been launched from
• a network volume.

* -------------------------------------111
* Inp.Jts:

None

·---·
* OUtput:

• Carry Clear - Application launched
from a local volume.

• Carry Set - Application launched

from a networt volume.

OleckNetLaunch an op
lda I.utdev

sta OnitNum

jar mli
de il'Raad_Block •
de a' RaadBlock •

'""' l$88
beq CNL2

clc

rts

CIl APTE R 2 Programming Guidel ines

;before accessinq any disk,
;get the last deviee

;accessed and store it for the
; Block Read call

; do the block read

; ProOOS Corrmand

;our parameter list
;did yeu get a network errer?
;if not then this ia not a network
;volume

;indicate that the volume is local
;and return

'~ .. ' ,' -::' . . . "~'

ReadBlock
UnitNum

BlockBuff

User directories

an op

sec
rta

de

da

h'03'

1
de a'BlockBuff'
de a'O'

da

end
512

;the volume is on the network
;return

Because users may configure their workstation differently (such as installing a printer card in
different slots, using a different network or server printer), an individual user directory is created by
the server's Admin program each time a new user is established The Admin program creates a
directory of the same name as the user's name in the directory US ERS on the user volume ci the
server, and assigns a startup application and printer to each user.

User directories can also be used to modify your application program configurations, allowing
each user to configure their own printer, prefiX, and so on. To protect your configuration file, your
application should either

• create a directory inside the individual user's direaory, or

• use the directory SE TUP

Both ci these direaories are located inside the individual user's direaory. Y our application should
first check for the configuration fde in the directory you selected; if there is no configuration file in

that directory, then retum to the direaory from which the application was launched. Whenever
you make changes to the configuration, store the new information in the directory inside the
individual user's directory so thal it will be available the next time the application is launched. Using
the FlUserPrefiX cali in ProOOS 8 returns the path to the individual user's directory (refer to Chapter
3 for more detailed information).

Whenever the user executes the Logon program and selects a server, the Logon program
automatically mounts thal user's volume on the server. The user volume is then available to ali of
the applic:itions thal need individual configuration information for each user.

From GS/05, you canuse the ·o· prefiX. If your application was launched from a fileserver
volume, and a user volume i.s mounted, it will be set to the user's directory. Otherwise, t will be set

to the appliation's directory.

+ Note: There is no way to determine conclusiveiY., on a per user basis, who is a Apple Il user
and who is not. Users may also qxrespond to Macintosh or other AppleShare workstations.

Working with network directories 25

Cataloging ProDOS directories

ProDOS 8 applications often conlain routines thal catalog or process direaories by following the
two pointer ftelds at the top of each directory block. These pointers are links in a chain thal connect
ali the blocks thal make up the directory. ln a local environment, il bas been a collUllOO practice 10
issue Read_Biock conunall<h using the:se pointer values. Additionally, sorne applications have used
the fùe_count byte of the directory header 10 keep track of the number of items they are dealing
with. ln an AppleTalk network, bolh these practices are unacceplable.

Unlike local ProDOS volumes, flle servas are nor block deviees. An attempt to read a block from
a network volume generales a network error ($88). ln addition, the directory flle_count byte
retumed by a networic server can easily mislead an application. ln an environment where multiple
users may be creating and deleûng files, this file count byte can be made invalid the moment after il
isread

Rather then relying on illegal block reads and unreliable flle courus, set up your application 10 process
directories as follows:

Open the directory.

~ Issue a READ command with a byte request parameter of 51Z bytes. This first READ request
gives yoo the directory's header block. The Z4th hex byte in this block contains the number of
emnes_per_block for the enûre directory.

3. Process the ~ in that block, and then ask ProDOS for another block's worth of data.

Repeat this process until the ProDOS read cornmand responds with an EOF error. Thal error
indicates you have processed ali the eWies in thal directory.

The programming examples thal follow in this seC1ion illustrate this technique for processing
direaories in ProDOS 8.

For GS/OS, always use GetDirEntry to read the contents of a directory.

Searchlng and deletlng from ProDOS dlrectories

When local ProDOS 8 is asked to delete an eruy from a directory, it stores SOO in the !arget entry's
Storage_ Type/Name_Length byte and updates the Volume Bit Map 10 release the blocks he!d by the
entry. The deletion of the entry does not remove il from the direC1ory where it resides, but rnerely
marks it as a deleted eruy whœc spaœ is now available. No reordering of the remaining entries
occurs. Because deleting has never caused a resuucturing of directories, applications in a single-user
environme!l have been able 10 safdy search and delete multiple entries •on the fty. •

Y ou canna use Lhis approach in a network environme!l, since network server software cloes
n01 mainuin its direclory struaures in the same manner as the local operating system When an
entry is deleted from a network directory, the entry name is removed Entries below it "bubble up'
to fi il in the gap. An application must accouru for the possibility of this reordering as il ddetes
multiple files in order for its search routine to see the entries thal moved to directory blocks already
seardled

26 CH APTE R Z Programming Guidel ines

Applications can use the following methods 10 safely deJete multiple directory entries,
reg:udless of whether the directory is on a local volume or on a network volume.

• Use the ProDOS 8 Set_Mark function to place the file-location marker at the beginning of the
directory after each ddete.

• ûeate a list of items 10 ddete as you search a direC1ory.

The first method assures thal the program accourus for ali entries as il searches the direc.1ory. If
your goal is to deJete ali entries in the direC10ry, this method is easy to implement. However, it
might be slow when the program deJetes entries from a large direC1ory on a local volume. ln such a
case, thal application must search past a growing number of previously deleted entries as il scans
down the list for the next item to deJete.

ln the second method, you can deJete each entry in your list when the end of the direC1ory is
reached. If the list fills with entries before the search is cornpleted, dose the directory and deJete
the files in the list, aod then reopen the direC10ry and continue searching. By reopening the
direC1ory, the application again stans reading from the first entry 10 assure thal no entry is missed.

.A. WarnJng Sorne applications already use an algorithm similar to the second method
by creating a list of indexes iniO the directory thal point to entries to be
ddeted. However, this method fails in a network environment because the
indexes are nor updated as the network directory is reordered after each
deJete. .a.

Under GS/OS, il is more efficient 10 use the second method. Then use GetDirEntry with base •
dis placement • 0 to see if there are· more entries left. If so, repeat the process. Due to buffering,
entries retum by GetDirEntry may n01 be updated irrunediately after changes are made.

ln order to ddete entries from ProDOS 8 directories, the netcat.c program must be modified by
adding a ProDOS 8 destroy command.

Recursion and network directories

ln order for an application to traverse directories of local or network volumes and list ProDOS
direaories recursivdy, the rouûnes must nor issue Read_Biock commall<h and must use EOF
instead of relying on the me coont

.A. WarnJng Because directories in a network envirorunent are subject 10 change at any
lime by users, do nor recursively catalog and process network directories
while the network is being accessed by multiple users. .a.

Working with network directories 27

Cataloging ProDOS directories

ProDOS 8 applications often conlain routines thal catalog or process direaories by following the
two pointer ftelds at the top of each directory block. These pointers are links in a chain thal connect
ali the blocks thal make up the directory. ln a local environment, il bas been a collUllOO practice 10
issue Read_Biock conunall<h using the:se pointer values. Additionally, sorne applications have used
the fùe_count byte of the directory header 10 keep track of the number of items they are dealing
with. ln an AppleTalk network, bolh these practices are unacceplable.

Unlike local ProDOS volumes, flle servas are nor block deviees. An attempt to read a block from
a network volume generales a network error ($88). ln addition, the directory flle_count byte
retumed by a networic server can easily mislead an application. ln an environment where multiple
users may be creating and deleûng files, this file count byte can be made invalid the moment after il
isread

Rather then relying on illegal block reads and unreliable flle courus, set up your application 10 process
directories as follows:

Open the directory.

~ Issue a READ command with a byte request parameter of 51Z bytes. This first READ request
gives yoo the directory's header block. The Z4th hex byte in this block contains the number of
emnes_per_block for the enûre directory.

3. Process the ~ in that block, and then ask ProDOS for another block's worth of data.

Repeat this process until the ProDOS read cornmand responds with an EOF error. Thal error
indicates you have processed ali the eWies in thal directory.

The programming examples thal follow in this seC1ion illustrate this technique for processing
direaories in ProDOS 8.

For GS/OS, always use GetDirEntry to read the contents of a directory.

Searchlng and deletlng from ProDOS dlrectories

When local ProDOS 8 is asked to delete an eruy from a directory, it stores SOO in the !arget entry's
Storage_ Type/Name_Length byte and updates the Volume Bit Map 10 release the blocks he!d by the
entry. The deletion of the entry does not remove il from the direC1ory where it resides, but rnerely
marks it as a deleted eruy whœc spaœ is now available. No reordering of the remaining entries
occurs. Because deleting has never caused a resuucturing of directories, applications in a single-user
environme!l have been able 10 safdy search and delete multiple entries •on the fty. •

Y ou canna use Lhis approach in a network environme!l, since network server software cloes
n01 mainuin its direclory struaures in the same manner as the local operating system When an
entry is deleted from a network directory, the entry name is removed Entries below it "bubble up'
to fi il in the gap. An application must accouru for the possibility of this reordering as il ddetes
multiple files in order for its search routine to see the entries thal moved to directory blocks already
seardled

26 CH APTE R Z Programming Guidel ines

Applications can use the following methods 10 safely deJete multiple directory entries,
reg:udless of whether the directory is on a local volume or on a network volume.

• Use the ProDOS 8 Set_Mark function to place the file-location marker at the beginning of the
directory after each ddete.

• ûeate a list of items 10 ddete as you search a direC1ory.

The first method assures thal the program accourus for ali entries as il searches the direc.1ory. If
your goal is to deJete ali entries in the direC10ry, this method is easy to implement. However, it
might be slow when the program deJetes entries from a large direC1ory on a local volume. ln such a
case, thal application must search past a growing number of previously deleted entries as il scans
down the list for the next item to deJete.

ln the second method, you can deJete each entry in your list when the end of the direC1ory is
reached. If the list fills with entries before the search is cornpleted, dose the directory and deJete
the files in the list, aod then reopen the direC10ry and continue searching. By reopening the
direC1ory, the application again stans reading from the first entry 10 assure thal no entry is missed.

.A. WarnJng Sorne applications already use an algorithm similar to the second method
by creating a list of indexes iniO the directory thal point to entries to be
ddeted. However, this method fails in a network environment because the
indexes are nor updated as the network directory is reordered after each
deJete. .a.

Under GS/OS, il is more efficient 10 use the second method. Then use GetDirEntry with base •
dis placement • 0 to see if there are· more entries left. If so, repeat the process. Due to buffering,
entries retum by GetDirEntry may n01 be updated irrunediately after changes are made.

ln order to ddete entries from ProDOS 8 directories, the netcat.c program must be modified by
adding a ProDOS 8 destroy command.

Recursion and network directories

ln order for an application to traverse directories of local or network volumes and list ProDOS
direaories recursivdy, the rouûnes must nor issue Read_Biock commall<h and must use EOF
instead of relying on the me coont

.A. WarnJng Because directories in a network envirorunent are subject 10 change at any
lime by users, do nor recursively catalog and process network directories
while the network is being accessed by multiple users. .a.

Working with network directories 27

An example of an application that would be able to use recursive processing is an administrator's
utility; such an application might show the organization of fdes and dire<.tories on a server volume.
The following ProDOS 8 sample program shows how to traverse and catalog network or local
ProDOS volumes.

1*
netcat.c

An example of how tc recursively or non-recursively catalog
network or local ProOOS volumes without the use of file_count.s
or Read _ Block comnand$.

'1

linclude "stdio.h"

Ide fine max_path_len 65
Ide fine max_ na.rn. _lan 16
Ide fine max_lbt 5
tdefine oneblock 512
fdefine txt Ox04
Ide fine !aloe 0
tdefine true !false

/* the fo!lowinq .structure is uaed to control the reading of d.irectory
block$ *1
otruct infobllt

char init; 1* ind.icatea "state" of file beinq raad

char refnum; 1* thi$ ohould be $et after open • 1
char entrylan; 1* lenqth of each directory entry '1
int entryptr; 1* points ta current entry within black
char epb; l' entries per "oneblock" black '1
char 'rbuf; l' point.s tc "one.block" byte area. of '1

1* memory for read.s •1
char blocltento; l' number of entriea we have ocanned in

1* thio bloclt *1
long lastmi!lrk; 1* need this 50 we ca.n reco < \dir • 1

1* pooition if we tra$h bloclt • 1
};

•truct entryinfo

char nam. ["""'_ nanw _lan 1 , /* na..me of the directory item * 1
1* its access byte */ access;

};

28 C tl APTE R 2 Programming Guidel ines

• 1

• 1

• 1

e e

char gpath[nw.x_path_lenl, 1* pau the path with this global '1
1* •tring '1

glist[rrax_lbtl [max_name_lenl,

1 * global li•t u•ed whan deleting * 1
slaoh(21•{l, 'l'},

openbuf [1024+256 1,

1* buffer for when ProDOS opens a file '1
rbuf[oneblockl; 1• our read buffer *1

int GatDir (path, ftype, recflag}

char *path, 1* path on which to begin search * 1
!type, /* type of entry to return, all types * 1

1* if equalo 0 *1
recflag; 1* flag to enebleldisable recursion '1

char raoult,
dirflag,
pathmarlt;

int operr;

l' •ubdirectory flag *1
1* leqth byte of currant pa th * 1
/* before goinq recursive */

struct infoblk Hyib;
struct entryinfo thisent;

1* •tore length byte of path we are a.bout to saarch • 1
pathmarlt-*path;

1* 0 indicataa this directory newly opened * 1
Hyib.init-0;

1* point to global read buffer *1
Hyib.rbuf•,rbuf[OI;

result-1; /* assuma file is found and not eof */

operr-PDosOpen(path,,openbuf[O),,Hyib.refnum);

1* open the direct ory • 1
if (! operr) 1 * if we have accsess and network pathna.ma ok * 1
(

while (re•ult-1) 1* while not eof keep calling * 1
1* GetNextEntry * 1

1* return next directory item • 1
reault-GetNextEntry[ftype,,thi•ent,,dirflag,,Hyib};
if ((rasult-1) Il (reoult-2))

1* found and not eof OR found and eof • 1

POut put• (pa th};

printf("/"); l*dioplay the path and "1" *1
POutput ('thi•ent.n..,.. [01};

1• and display item retumed * 1
/* if item is subdirectory, and we are */
1* allowed to go recur•ive *1
if ((dirflag) " (recflag))
[

Working with network dire<.tories 29

An example of an application that would be able to use recursive processing is an administrator's
utility; such an application might show the organization of fdes and dire<.tories on a server volume.
The following ProDOS 8 sample program shows how to traverse and catalog network or local
ProDOS volumes.

1*
netcat.c

An example of how tc recursively or non-recursively catalog
network or local ProOOS volumes without the use of file_count.s
or Read _ Block comnand$.

'1

linclude "stdio.h"

Ide fine max_path_len 65
Ide fine max_ na.rn. _lan 16
Ide fine max_lbt 5
tdefine oneblock 512
fdefine txt Ox04
Ide fine !aloe 0
tdefine true !false

/* the fo!lowinq .structure is uaed to control the reading of d.irectory
block$ *1
otruct infobllt

char init; 1* ind.icatea "state" of file beinq raad

char refnum; 1* thi$ ohould be $et after open • 1
char entrylan; 1* lenqth of each directory entry '1
int entryptr; 1* points ta current entry within black
char epb; l' entries per "oneblock" black '1
char 'rbuf; l' point.s tc "one.block" byte area. of '1

1* memory for read.s •1
char blocltento; l' number of entriea we have ocanned in

1* thio bloclt *1
long lastmi!lrk; 1* need this 50 we ca.n reco < \dir • 1

1* pooition if we tra$h bloclt • 1
};

•truct entryinfo

char nam. ["""'_ nanw _lan 1 , /* na..me of the directory item * 1
1* its access byte */ access;

};

28 C tl APTE R 2 Programming Guidel ines

• 1

• 1

• 1

e e

char gpath[nw.x_path_lenl, 1* pau the path with this global '1
1* •tring '1

glist[rrax_lbtl [max_name_lenl,

1 * global li•t u•ed whan deleting * 1
slaoh(21•{l, 'l'},

openbuf [1024+256 1,

1* buffer for when ProDOS opens a file '1
rbuf[oneblockl; 1• our read buffer *1

int GatDir (path, ftype, recflag}

char *path, 1* path on which to begin search * 1
!type, /* type of entry to return, all types * 1

1* if equalo 0 *1
recflag; 1* flag to enebleldisable recursion '1

char raoult,
dirflag,
pathmarlt;

int operr;

l' •ubdirectory flag *1
1* leqth byte of currant pa th * 1
/* before goinq recursive */

struct infoblk Hyib;
struct entryinfo thisent;

1* •tore length byte of path we are a.bout to saarch • 1
pathmarlt-*path;

1* 0 indicataa this directory newly opened * 1
Hyib.init-0;

1* point to global read buffer *1
Hyib.rbuf•,rbuf[OI;

result-1; /* assuma file is found and not eof */

operr-PDosOpen(path,,openbuf[O),,Hyib.refnum);

1* open the direct ory • 1
if (! operr) 1 * if we have accsess and network pathna.ma ok * 1
(

while (re•ult-1) 1* while not eof keep calling * 1
1* GetNextEntry * 1

1* return next directory item • 1
reault-GetNextEntry[ftype,,thi•ent,,dirflag,,Hyib};
if ((rasult-1) Il (reoult-2))

1* found and not eof OR found and eof • 1

POut put• (pa th};

printf("/"); l*dioplay the path and "1" *1
POutput ('thi•ent.n..,.. [01};

1• and display item retumed * 1
/* if item is subdirectory, and we are */
1* allowed to go recur•ive *1
if ((dirflag) " (recflag))
[

Working with network dire<.tories 29

&Hyib. refnuml ;

/* close parent and pEOCaoo child */
PDosClose(Hyib.refnuml;
1* append "/" to path */
Pappend(path,&slashl;

/* append subdir nama to the pathnama */
/* wa've baen in */
Pappend(path,&thisent.nama[O]I;
/* cataloq subdirectory, qo recursive */
CatOir(path,ftype,recflaql;
/* we'r• back focm recursive ~11, */
/* restore path to what it Wa8 */
* path-pathmark;
/* reatora raad buffer, do only a */
/* partial in~t • 1
Hyib.init•1;

1 • reopen parent • 1
PDosOpen(path,&openbuf[OJ,

) /* end whila loop * 1

if (! oparrl PDosClosa (Myib. refnuml ;
ratum operr;

int GetNextEntry(ftype,entryrac.dirflag,infol

1* returns next diractory item • 1
char !typa, /* type of item to saarch for */

*dirflag;

struct infoblk * info;
struct entryinfo *ent.tyrec:;

char storaqe_type, found;
chAr err;
int xtarred;

arr-O;

if (info->init-ol

1* set if item returned is a * 1
/* subdirectory */

/* return matched item in an entry * 1
*/

1* aaauma no errer * 1
1 • ha• not yet been raad • 1

info->init•2; /* fully initialized */

arr-POo&Raad(info->refnum,info->rbuf, oneblock, &xferred);
info->antrylen•info->rbuf[Ox23);

/* pull info out of buffar */
info->epb-info->rbuf[Ox24);
info->antryptr-info->entrylen+4;

1* entriea par block */

1* point to first entry */
/* start with black entry 2 (dir haadar n.._ ia entry fll */
info->blockants-2;

30 C lt A PT fR 2 Prognmming Guidel ines

if (info->init-U /* raad bu! wu trsshed by a recursive */
/* call, resto re it • 1

info->init•2; /* now we will again be fully */
1* initialized */

PDosSetMark (info->rafnum, info->lutmark-oneblockl;

1* restore mark • 1
err-PDoaRaad(info->refnum,info->rbuf, oneblock, &xferredl;

found-falae;

whil• ((! errl " (!foundll /* loop til wa qat an item */

if (info->rbuf[info->entryptr))

/* storaqe_type byte, a type exista if !0 */

1 • high nibbla ia the atorage type • 1
atorage _ type-info->rbuf [info->entryptr) &OxFO;
if (storaga_type-OxOOI

elsa

/* set dirflag if this item is a subdirectory */
*dirflag-1;

*dirflag-0;
1* gat length of item nama from low nibble * 1
info->rbuf[info->entryptr)&•OxOF;
/* now check for our entry type or all entry types * 1
if (info->rbuf[info->entryptr+Ox10J-

ftype Il ftype-01

/* copy entry to the string • 1
Pstrcpy(&entryrec->nama[O),&info->rbuf

[info->entryptr)l;
antryrac->access•info->rbuf

[info->entryptr+OxlE);
fcund-trua;

if (info->blockants-info->apbl

1
/* we need a nev block */

el se

err-PDosRead(info->refnum,info->rbuf,
oneb1ock, &xferredl;

info->blockants•1;
info->antryptr-4;

info->antryptr+•info->entrylen;
/* move to next entry */

info->blockenU++;

Working wilh network directories 31

&Hyib. refnuml ;

/* close parent and pEOCaoo child */
PDosClose(Hyib.refnuml;
1* append "/" to path */
Pappend(path,&slashl;

/* append subdir nama to the pathnama */
/* wa've baen in */
Pappend(path,&thisent.nama[O]I;
/* cataloq subdirectory, qo recursive */
CatOir(path,ftype,recflaql;
/* we'r• back focm recursive ~11, */
/* restore path to what it Wa8 */
* path-pathmark;
/* reatora raad buffer, do only a */
/* partial in~t • 1
Hyib.init•1;

1 • reopen parent • 1
PDosOpen(path,&openbuf[OJ,

) /* end whila loop * 1

if (! oparrl PDosClosa (Myib. refnuml ;
ratum operr;

int GetNextEntry(ftype,entryrac.dirflag,infol

1* returns next diractory item • 1
char !typa, /* type of item to saarch for */

*dirflag;

struct infoblk * info;
struct entryinfo *ent.tyrec:;

char storaqe_type, found;
chAr err;
int xtarred;

arr-O;

if (info->init-ol

1* set if item returned is a * 1
/* subdirectory */

/* return matched item in an entry * 1
*/

1* aaauma no errer * 1
1 • ha• not yet been raad • 1

info->init•2; /* fully initialized */

arr-POo&Raad(info->refnum,info->rbuf, oneblock, &xferred);
info->antrylen•info->rbuf[Ox23);

/* pull info out of buffar */
info->epb-info->rbuf[Ox24);
info->antryptr-info->entrylen+4;

1* entriea par block */

1* point to first entry */
/* start with black entry 2 (dir haadar n.._ ia entry fll */
info->blockants-2;

30 C lt A PT fR 2 Prognmming Guidel ines

if (info->init-U /* raad bu! wu trsshed by a recursive */
/* call, resto re it • 1

info->init•2; /* now we will again be fully */
1* initialized */

PDosSetMark (info->rafnum, info->lutmark-oneblockl;

1* restore mark • 1
err-PDoaRaad(info->refnum,info->rbuf, oneblock, &xferredl;

found-falae;

whil• ((! errl " (!foundll /* loop til wa qat an item */

if (info->rbuf[info->entryptr))

/* storaqe_type byte, a type exista if !0 */

1 • high nibbla ia the atorage type • 1
atorage _ type-info->rbuf [info->entryptr) &OxFO;
if (storaga_type-OxOOI

elsa

/* set dirflag if this item is a subdirectory */
*dirflag-1;

*dirflag-0;
1* gat length of item nama from low nibble * 1
info->rbuf[info->entryptr)&•OxOF;
/* now check for our entry type or all entry types * 1
if (info->rbuf[info->entryptr+Ox10J-

ftype Il ftype-01

/* copy entry to the string • 1
Pstrcpy(&entryrec->nama[O),&info->rbuf

[info->entryptr)l;
antryrac->access•info->rbuf

[info->entryptr+OxlE);
fcund-trua;

if (info->blockants-info->apbl

1
/* we need a nev block */

el se

err-PDosRead(info->refnum,info->rbuf,
oneb1ock, &xferredl;

info->blockants•1;
info->antryptr-4;

info->antryptr+•info->entrylen;
/* move to next entry */

info->blockenU++;

Working wilh network directories 31

a

mun()

32

!• end while •/

!• find current mark and pass bacle ta info struct •;

PDosGetMult (info->refnum, Hnfo->lastmark);

if ((found) " (err!-Ox4C)) return 1;

!• file found and not eof •;
if ((found) " (err-Ox4C)) retum 2;

!• file found and eof •;
if (! found} retum 3; 1• if file not found then eof abo true •;

char errer;

error-PDosGetPrefix (&gpath[OJ);
if (!error)
(

printf ("current prefix : ");

qpath[OJ--; 1• ditch trailing "/" at end of prefix •!
POUtput ('qpath[OJ);

CatOir ('gpath, 0, 0); !• send pa th, all file types, •/

/* disable recursion •;
1• ta a!low recur~~lion, send a 'l' as last pa ramet er of * 1
!• CatDir •;

C H A P T E R Z Progr.muning Guidel ines

:a 14. .t. .tQ. JAF44JIM'P t t t : .w; .. t . J

e e

Accessing AppleTalk protocols direcdy

This section desaibes the implemenlation dela ils of writing your own protocol specifie to the
Apple IIGS and acœssing AppleTalk prOiocols directly. You'll need to know the locations of sorne
ftxed addresses related 10 AppleTalk, as weil as how to inslall your prOiocol, protect your code, and
implement an interface 10 ProDOS.

Entry points

To write your own prOIOCOI for the Apple IIGS, you need to know the locations of sorne ftxed
addresses related to AppleTalk prOiocols. These ftxed addresses are related to the following entry
points:

• $Cn00 Interface (making calls through BASIC and Pascal entry points)

• Super Seriai Card emulation

• A unique prOiocol

The routines related to each of these entry points are desaibed in the !ables given next.

Making calls through BASIC and Pascal

The entry points listed in Table 2-2 allow you to lake control from users who are making calls
through the BASIC and Pascal entry points. lnstall a JML to your routine at the address specified for
the cali so !hat your pra.ocol is called whenever an action is required. Y ou will be called in native
mode with 8-bit M and X.

• Table 2-2 SC700 interface-related entry points on the Apple IIGS

Entry Point loulinc

BASIC SEIIOOi

Dcsctlptloo

Ali BASIC calls are routed through this entry point. The
following conditions are set:

Carry•clear for output, set for input
Overflow•set for init

If you are providing your own BASIC vector, as RPM does,
you must set up CSWL and KSWL just as any interface code
does.

(continued) •

Acœssing AppleTalk pra.ocols directly 33

a

mun()

32

!• end while •/

!• find current mark and pass bacle ta info struct •;

PDosGetMult (info->refnum, Hnfo->lastmark);

if ((found) " (err!-Ox4C)) return 1;

!• file found and not eof •;
if ((found) " (err-Ox4C)) retum 2;

!• file found and eof •;
if (! found} retum 3; 1• if file not found then eof abo true •;

char errer;

error-PDosGetPrefix (&gpath[OJ);
if (!error)
(

printf ("current prefix : ");

qpath[OJ--; 1• ditch trailing "/" at end of prefix •!
POUtput ('qpath[OJ);

CatOir ('gpath, 0, 0); !• send pa th, all file types, •/

/* disable recursion •;
1• ta a!low recur~~lion, send a 'l' as last pa ramet er of * 1
!• CatDir •;

C H A P T E R Z Progr.muning Guidel ines

:a 14. .t. .tQ. JAF44JIM'P t t t : .w; .. t . J

e e

Accessing AppleTalk protocols direcdy

This section desaibes the implemenlation dela ils of writing your own protocol specifie to the
Apple IIGS and acœssing AppleTalk prOiocols directly. You'll need to know the locations of sorne
ftxed addresses related 10 AppleTalk, as weil as how to inslall your prOiocol, protect your code, and
implement an interface 10 ProDOS.

Entry points

To write your own prOIOCOI for the Apple IIGS, you need to know the locations of sorne ftxed
addresses related to AppleTalk prOiocols. These ftxed addresses are related to the following entry
points:

• $Cn00 Interface (making calls through BASIC and Pascal entry points)

• Super Seriai Card emulation

• A unique prOiocol

The routines related to each of these entry points are desaibed in the !ables given next.

Making calls through BASIC and Pascal

The entry points listed in Table 2-2 allow you to lake control from users who are making calls
through the BASIC and Pascal entry points. lnstall a JML to your routine at the address specified for
the cali so !hat your pra.ocol is called whenever an action is required. Y ou will be called in native
mode with 8-bit M and X.

• Table 2-2 SC700 interface-related entry points on the Apple IIGS

Entry Point loulinc

BASIC SEIIOOi

Dcsctlptloo

Ali BASIC calls are routed through this entry point. The
following conditions are set:

Carry•clear for output, set for input
Overflow•set for init

If you are providing your own BASIC vector, as RPM does,
you must set up CSWL and KSWL just as any interface code
does.

(continued) •

Acœssing AppleTalk pra.ocols directly 33

• Table Z·Z (COfllbuud) $C700 interface-related ent.ry points on the Apple IIGS

Entry Point loUÜIIc

$E1100l

Seriai card emulation

Dctcripdon

This routine is called whenever someone makes a calf through
the standard Pascal interface. The low nibble ci the Y register
contains the Pascal command that is being called. These
numbers are as follows:
$01 for Status
$02 for Write
$03 forRead
$04 for !nit

Nole: This routine is already set up in RPM; you don1 need to
make any changes unless you want to change RPM.

The next group ci ent.ry points listed in TIJble 2-3 are related to serial-cud emulation, and use the
built·in seriai finnware to perform the necessary conversions. These conversions are generally only
useful if you plan to replace RPM will your own code. They are ali called in native S-bit M and X

• Table Z-3 Seriai card emulation ent.ry points on the Apple IIGS

Entry Point

SerStatus

SerWrite

SerRead

$E11026

$E1102A

$EII02E

Dctcripdon

Firmware calfs this routine to find out the status for input
and outpul The byte returned must look as if it were an
aaual status byte from the SCC.

Firmware calfs this routine to output a charaaer. This will
only be called when you have given the go-ahead via SerStatus.

fll1llware calls this to read 1 byte for yeu after SerStatus gives
its permission.

CIl APTE R 2 Programming Guidel ines
e e

Unique protocol

The final group of routines listed in Table 2-4 are related primarily to writing your own praocol.

• Table :Z-4 Unique prO!ocol ent.ry points on the Apple IIGS

Entry Point loullllc

RamGoComp $EII<XX:

SoftReset $EIIOIO

RamDispatch $E11014

RamForbid $E11018

RamPermit $EIIOIC

ProEntry $Eli<W

Dcsc:ripllon

This routine allows yeu to cali a cornpletion routine the
properway when writing a prO!ocol (routines in oonk 0 called
in emulation mode; aU othee banks full native mode). lt should
be cal led in 16-bit M,X native mode with the address of the
routine to be called at locations $84-$87.

This veaor is actually pan of a chain ci routines to be called
when control reset has been hil This chain gives you the
opportunity to reinitialize your code before the application
regains control. The section on writing your own pro!ocol
provides !he necessary details on how to install and make use
of this vector.(Each AppleTalk pro!ocol is insulled in the reset
chain in arder to initialize itself on reset)

This veaor is the direa-entry point into the command
dispatcher. lt should be called in full native mode with the X
Oow) and Y (high) registers pointing to the parameter 1 ist to
be dispatched. (This is the safe way to calf AppleTalk pro!ocol
with a parameter list nO! in bank O. Parameter lists for calls
made through the PFI can be in oonks O!her than O.)

This vector disables packet and limer interrupts without
physically disabling interrupts. Using this veaor is a safe way
to praect a portion of code from being entered during an
interrupl (For a list of which AppleTalk calls can be executed
after RamForbid has been called, refer to Table 2-5)

This vector reenables packet and limer inlerrupts. Y ou must
cali this vector after a Ramforbid.

This 2-byte address of routine in page zero is called if a
comma nd is nO! dispatched by code at ProDOS 8 vector. (This
address is generally the ent.ry point to ProDOS 8 itself, to
which $BFOO points.)

(continued) •

Accessing AppleTalk praocols directly 3S

• Table Z·Z (COfllbuud) $C700 interface-related ent.ry points on the Apple IIGS

Entry Point loUÜIIc

$E1100l

Seriai card emulation

Dctcripdon

This routine is called whenever someone makes a calf through
the standard Pascal interface. The low nibble ci the Y register
contains the Pascal command that is being called. These
numbers are as follows:
$01 for Status
$02 for Write
$03 forRead
$04 for !nit

Nole: This routine is already set up in RPM; you don1 need to
make any changes unless you want to change RPM.

The next group ci ent.ry points listed in TIJble 2-3 are related to serial-cud emulation, and use the
built·in seriai finnware to perform the necessary conversions. These conversions are generally only
useful if you plan to replace RPM will your own code. They are ali called in native S-bit M and X

• Table Z-3 Seriai card emulation ent.ry points on the Apple IIGS

Entry Point

SerStatus

SerWrite

SerRead

$E11026

$E1102A

$EII02E

Dctcripdon

Firmware calfs this routine to find out the status for input
and outpul The byte returned must look as if it were an
aaual status byte from the SCC.

Firmware calfs this routine to output a charaaer. This will
only be called when you have given the go-ahead via SerStatus.

fll1llware calls this to read 1 byte for yeu after SerStatus gives
its permission.

CIl APTE R 2 Programming Guidel ines
e e

Unique protocol

The final group of routines listed in Table 2-4 are related primarily to writing your own praocol.

• Table :Z-4 Unique prO!ocol ent.ry points on the Apple IIGS

Entry Point loullllc

RamGoComp $EII<XX:

SoftReset $EIIOIO

RamDispatch $E11014

RamForbid $E11018

RamPermit $EIIOIC

ProEntry $Eli<W

Dcsc:ripllon

This routine allows yeu to cali a cornpletion routine the
properway when writing a prO!ocol (routines in oonk 0 called
in emulation mode; aU othee banks full native mode). lt should
be cal led in 16-bit M,X native mode with the address of the
routine to be called at locations $84-$87.

This veaor is actually pan of a chain ci routines to be called
when control reset has been hil This chain gives you the
opportunity to reinitialize your code before the application
regains control. The section on writing your own pro!ocol
provides !he necessary details on how to install and make use
of this vector.(Each AppleTalk pro!ocol is insulled in the reset
chain in arder to initialize itself on reset)

This veaor is the direa-entry point into the command
dispatcher. lt should be called in full native mode with the X
Oow) and Y (high) registers pointing to the parameter 1 ist to
be dispatched. (This is the safe way to calf AppleTalk pro!ocol
with a parameter list nO! in bank O. Parameter lists for calls
made through the PFI can be in oonks O!her than O.)

This vector disables packet and limer interrupts without
physically disabling interrupts. Using this veaor is a safe way
to praect a portion of code from being entered during an
interrupl (For a list of which AppleTalk calls can be executed
after RamForbid has been called, refer to Table 2-5)

This vector reenables packet and limer inlerrupts. Y ou must
cali this vector after a Ramforbid.

This 2-byte address of routine in page zero is called if a
comma nd is nO! dispatched by code at ProDOS 8 vector. (This
address is generally the ent.ry point to ProDOS 8 itself, to
which $BFOO points.)

(continued) •

Accessing AppleTalk praocols directly 3S

• Table 2-4 (colltlautd) Unique protocol enuy points on the Apple !IGS

Enuy Point loutlne

ProDOS $E11022

CmdTable $ElD6oo

TickCount SEIDAOO

Prionty Vector $Ell03A

PFI Vector SE1103E

Deocriptlon

This address is for the routine to be called when ProDOS 8 calls
have been rerouted through the $C7 AE vector in the interface
code. Doing this allows you to trap calls that are headed to
ProDOS 8 and to do whatever yoo need to do. The details of
using this vector can be found in the section on the ProDOS 8
interface.

This routine is the beginning of the command table. This table
holds 256 four-byte entries and extends to SE1D9FF.

Since this table is in the language-card area of OO.nk $El, it is
essential that, whenever you need to access it directly, yoo
save the state of the language-card, and then force in language
card bank 2. Then yoo must restore the original language card
state.

The 2-byte value is the current number of ticks that have
expired since AppleTalk protocols were initialized This count
is not reset to 0 if the RESET key is pressed and AppleTalk
protocols reinitialized.

Since this value is in the language-card area of OO.nk $El, il is
essential thal, whenever you need to access it directly, yoo
save the state of the language card, and then force in
language-ard OO.nk 2. Y ou must then restore the original
language-ard state.

This vector is used du ring load of SYSTEM.SETIJP files to
ensure proper order of load

This vector is the address of code to get called on ali MU calls.

Nole: If this address is 0, ali calls go directly to ProDOS, except
for Coounand $42.

36 CIl APTE R 2 PrograiTil'ning Guidel ines ---

Installlng a unique protocol

To write your own protocol, you must fll'st install the command into the command list.
To do this, you must take the command number yoo are installing (or replacing) and multiply it

by 4 to get an offset into the command table. This offset should then be added to SEl D6oo (the
stan of the command table), which gives you the address to install a vector to your code. This
vector consists of a 3-byte pointer, followed by 1 byte for the amount of zeropage you would like
saved when you are called. Zeropage is saved staning from $00; therefore you shoold use from $80

on up for your own use.

+ Note: Since this table is in the language card area of OO.nk SEI, il ~ essential that whenever
you need to access it directly that you save the state of the language card, then force in
language card OO.nk 2. Then yoo must restore the original language card state.

For example, if yoo were replacing convnand $01, you wou id store the address of your routine at
$ElD6o4-SEID606, and the amount of zeropage you would like saved at $EID607.

The reset chain.

After you install your command, install your code into the soft reset chain. The mechanism of
calling routines in the chain ensures that the routines first installed are called fll'st.

ln order to maintain this order, you must do the following to install your code:

1. Take the code that is currently in thal vector and save it somewhere within your program; you

will need to cali il later.

2. lnstall a JML to your own reset routine. When reset ~ pressed, yoor routine is called.

Before executing any code, however, you must allow the rootine installed priJr to yoor code to be
executed (this ~ the code thal you saved when you installed your code). Do this by doing a JSL to
that code, which retums to you when il ~ done. Orùy then can you execute your own reset code.
That code should be called in full native mode. Y our reset code shoukl a Iso preserve the state of the

machine when exiting.

Accessing AppleTalk prcrocols directly 37

• Table 2-4 (colltlautd) Unique protocol enuy points on the Apple !IGS

Enuy Point loutlne

ProDOS $E11022

CmdTable $ElD6oo

TickCount SEIDAOO

Prionty Vector $Ell03A

PFI Vector SE1103E

Deocriptlon

This address is for the routine to be called when ProDOS 8 calls
have been rerouted through the $C7 AE vector in the interface
code. Doing this allows you to trap calls that are headed to
ProDOS 8 and to do whatever yoo need to do. The details of
using this vector can be found in the section on the ProDOS 8
interface.

This routine is the beginning of the command table. This table
holds 256 four-byte entries and extends to SE1D9FF.

Since this table is in the language-card area of OO.nk $El, it is
essential that, whenever you need to access it directly, yoo
save the state of the language-card, and then force in language
card bank 2. Then yoo must restore the original language card
state.

The 2-byte value is the current number of ticks that have
expired since AppleTalk protocols were initialized This count
is not reset to 0 if the RESET key is pressed and AppleTalk
protocols reinitialized.

Since this value is in the language-card area of OO.nk $El, il is
essential thal, whenever you need to access it directly, yoo
save the state of the language card, and then force in
language-ard OO.nk 2. Y ou must then restore the original
language-ard state.

This vector is used du ring load of SYSTEM.SETIJP files to
ensure proper order of load

This vector is the address of code to get called on ali MU calls.

Nole: If this address is 0, ali calls go directly to ProDOS, except
for Coounand $42.

36 CIl APTE R 2 PrograiTil'ning Guidel ines ---

Installlng a unique protocol

To write your own protocol, you must fll'st install the command into the command list.
To do this, you must take the command number yoo are installing (or replacing) and multiply it

by 4 to get an offset into the command table. This offset should then be added to SEl D6oo (the
stan of the command table), which gives you the address to install a vector to your code. This
vector consists of a 3-byte pointer, followed by 1 byte for the amount of zeropage you would like
saved when you are called. Zeropage is saved staning from $00; therefore you shoold use from $80

on up for your own use.

+ Note: Since this table is in the language card area of OO.nk SEI, il ~ essential that whenever
you need to access it directly that you save the state of the language card, then force in
language card OO.nk 2. Then yoo must restore the original language card state.

For example, if yoo were replacing convnand $01, you wou id store the address of your routine at
$ElD6o4-SEID606, and the amount of zeropage you would like saved at $EID607.

The reset chain.

After you install your command, install your code into the soft reset chain. The mechanism of
calling routines in the chain ensures that the routines first installed are called fll'st.

ln order to maintain this order, you must do the following to install your code:

1. Take the code that is currently in thal vector and save it somewhere within your program; you

will need to cali il later.

2. lnstall a JML to your own reset routine. When reset ~ pressed, yoor routine is called.

Before executing any code, however, you must allow the rootine installed priJr to yoor code to be
executed (this ~ the code thal you saved when you installed your code). Do this by doing a JSL to
that code, which retums to you when il ~ done. Orùy then can you execute your own reset code.
That code should be called in full native mode. Y our reset code shoukl a Iso preserve the state of the

machine when exiting.

Accessing AppleTalk prcrocols directly 37

lnterrupts and protecting your code

Il is sornetimes nea:ssary to guarantee !hat you are not interrup!ed during a crilical section of your
prograrn (a routine !hat might he called during an inteJrup!). lt's pœsible to execute an SEI (Set

lnterrupi) to disable inteJrup!S physically. If you do so, SEI should he executed only for short
periods; otherwise, AppleTalk incommg packets may he missed completely.

Â Caution To mainlain AppleTalk performance on the Apple IIGS, however, you
should net execute an SEI. AppleTalk protocols require inteJrupts to he
enabled to function normaUy. ...

ln order to aUeviate this problem, Apple provides two RAM-based routines (RamForbid and
RarnPermit) thal disallow AppleTalk-related inteJrupts without physicaUy tuming off interrupts:

• Ramforbid basically increments an interna! flag thal causes LAP to bulfer any packets, without
dispatching them while thai flag is set.

• RarnPermit decrements thal flag; when il reaches 0, sockets are again dispatched

These are particularly useful in routmes !hat may he called by ccxnpletion routines or socket
liS!eners. Any packets thal might have heen bulfered are dispa!ched, providing a safe but effective
mechanLim to protect your code. These routines do not Jock out any S)'litem inteJrupts.

Â Wamlog If you make a callto the AppleTalk firmware with interrupts tumed off,
the Apple IIGS will hang. ,..

The Apple IIGS contains ils own inteJrupt handler. Applications should not mask out inteJrupts in
general, especially when making an operating system cali !hat results in a network cali. The Apple
IIGS al ways bufrers packets (if it has bulfers remaining to he processed). Any packets !hat might
have heen buffered arc fcxwarded on demand, as required. Fex additional information, refer to
'Restriaions' later in this chapter.

Uslng completlon routines

A ccxnpletion routine is used only fex asynchronous calls, and is a routine thal is called under an
interrupt. When a cxxnpletion routine gets control, RamForbid will have already heen called, so you
cannol gel interrupted in a cxxnpletion routine.

+ Nole: A non- zero completion address will net he called on a synchrOOOULI cali.

38 CH A PTE R 2 Programming Guidel ines

When a completion routine is caUed, the d:itabank register is setiO El, and is called in full native
mode (16-bil accumulator and 16-bit X and Y registers), unless the routine you are calling is in bank O.
If your code is in bank 0, then the code gets called in emulation mode (S.bit). If the routine is in any
other bank, il will he called m native mode. Direct page (D register) will he set to $0000. Locations
$80.$83 COilain a pointer 10 the parameter block for the caU.

Any zero pages ex anything you use should he preserved, recause they are basicaUy an inteJrupt
routine. The Apple Il wcxkstation takes care of switching to emulation mode and switching stades
for you.

Y ou must exit completion routines, socket li.sleners, and protocol hancUers via a jump (rather
!han an RTS) to the address retumed in the Completion Routine Retum fteld of the Gednfo cali
($02). To exit properly, you should caU the Gednfo command just once at the beginning ci your
program to get the address. When writmg the cornpletion routine, you need to caU thal vector
(from the Gednfo cali) with a JML (on the Apple IIGS) or a JMP (on the Apple Ile) to !hat address.

Restrictions

There are sorne restrictions conceming the use ci completion routines and inteJrup!S and the time
!hat certain types of calls may he made. Fex example, gomg to the Control Panel creates an
inteJrupl These resuictions are as follows:

• The rode shouJd not be caJJed durtng an tnsenupt routine for a deviee other than Apple Talle
Uself. Since the fii'IIIW1lre does not Jock out inteJrup!S when il is called, an in~Jrupl from
another deviee cou Id happen wh ile a cali is in progress. If a caU 10 the AppleTalk firmware is
executed during this lime, it would result in one cali heing executed on top of another cali. The
firmware cannot hancUe such a situation. The ftrmware itself will not cause an interrupt once it
has hegun processing a cali.

• Nole: This restriction does not apply if you follow guidel ines for the Task Scheduler in the
IIGS Toolbox.

• Never enable an tnten'U{JI from wtthtn an tnter7Upt routine, such as a completton routine,
socltet ltstener, or pro/oaJI haNiler. Doing so could cause a second pending inteJrupl posted by
the Apple Il workstatioo to occur, and could result in the sarne problerns as mentioned in the
restrictions just given.

• Do not disablc irtenup!S fex a long period ci time when using calls thal make use of
ccxnpletioo routines, socket li.sleners, ex pràocol hancllers. These calls need inteJrupiS in order
10 complete, and packets may he lœt hecause the packet bulfers may overflow.

• Certain AppleTalk calls cannot be executed in synchrooous mode frcxn a ccxnpletion routine,
socket listener, or protocol handler (any time thât RamForbid has heen previously called).
Because inteJrup!S must be locked out during a cornpletion routine, and hecause asynchronous
calls need interrupts 10 ccxnplete, even when executed synchronously, a conllict will occur.

Accessing AppleTalk pretocols direaJy 39

lnterrupts and protecting your code

Il is sornetimes nea:ssary to guarantee !hat you are not interrup!ed during a crilical section of your
prograrn (a routine !hat might he called during an inteJrup!). lt's pœsible to execute an SEI (Set

lnterrupi) to disable inteJrup!S physically. If you do so, SEI should he executed only for short
periods; otherwise, AppleTalk incommg packets may he missed completely.

Â Caution To mainlain AppleTalk performance on the Apple IIGS, however, you
should net execute an SEI. AppleTalk protocols require inteJrupts to he
enabled to function normaUy. ...

ln order to aUeviate this problem, Apple provides two RAM-based routines (RamForbid and
RarnPermit) thal disallow AppleTalk-related inteJrupts without physicaUy tuming off interrupts:

• Ramforbid basically increments an interna! flag thal causes LAP to bulfer any packets, without
dispatching them while thai flag is set.

• RarnPermit decrements thal flag; when il reaches 0, sockets are again dispatched

These are particularly useful in routmes !hat may he called by ccxnpletion routines or socket
liS!eners. Any packets thal might have heen bulfered are dispa!ched, providing a safe but effective
mechanLim to protect your code. These routines do not Jock out any S)'litem inteJrupts.

Â Wamlog If you make a callto the AppleTalk firmware with interrupts tumed off,
the Apple IIGS will hang. ,..

The Apple IIGS contains ils own inteJrupt handler. Applications should not mask out inteJrupts in
general, especially when making an operating system cali !hat results in a network cali. The Apple
IIGS al ways bufrers packets (if it has bulfers remaining to he processed). Any packets !hat might
have heen buffered arc fcxwarded on demand, as required. Fex additional information, refer to
'Restriaions' later in this chapter.

Uslng completlon routines

A ccxnpletion routine is used only fex asynchronous calls, and is a routine thal is called under an
interrupt. When a cxxnpletion routine gets control, RamForbid will have already heen called, so you
cannol gel interrupted in a cxxnpletion routine.

+ Nole: A non- zero completion address will net he called on a synchrOOOULI cali.

38 CH A PTE R 2 Programming Guidel ines

When a completion routine is caUed, the d:itabank register is setiO El, and is called in full native
mode (16-bil accumulator and 16-bit X and Y registers), unless the routine you are calling is in bank O.
If your code is in bank 0, then the code gets called in emulation mode (S.bit). If the routine is in any
other bank, il will he called m native mode. Direct page (D register) will he set to $0000. Locations
$80.$83 COilain a pointer 10 the parameter block for the caU.

Any zero pages ex anything you use should he preserved, recause they are basicaUy an inteJrupt
routine. The Apple Il wcxkstation takes care of switching to emulation mode and switching stades
for you.

Y ou must exit completion routines, socket li.sleners, and protocol hancUers via a jump (rather
!han an RTS) to the address retumed in the Completion Routine Retum fteld of the Gednfo cali
($02). To exit properly, you should caU the Gednfo command just once at the beginning ci your
program to get the address. When writmg the cornpletion routine, you need to caU thal vector
(from the Gednfo cali) with a JML (on the Apple IIGS) or a JMP (on the Apple Ile) to !hat address.

Restrictions

There are sorne restrictions conceming the use ci completion routines and inteJrup!S and the time
!hat certain types of calls may he made. Fex example, gomg to the Control Panel creates an
inteJrupl These resuictions are as follows:

• The rode shouJd not be caJJed durtng an tnsenupt routine for a deviee other than Apple Talle
Uself. Since the fii'IIIW1lre does not Jock out inteJrup!S when il is called, an in~Jrupl from
another deviee cou Id happen wh ile a cali is in progress. If a caU 10 the AppleTalk firmware is
executed during this lime, it would result in one cali heing executed on top of another cali. The
firmware cannot hancUe such a situation. The ftrmware itself will not cause an interrupt once it
has hegun processing a cali.

• Nole: This restriction does not apply if you follow guidel ines for the Task Scheduler in the
IIGS Toolbox.

• Never enable an tnten'U{JI from wtthtn an tnter7Upt routine, such as a completton routine,
socltet ltstener, or pro/oaJI haNiler. Doing so could cause a second pending inteJrupl posted by
the Apple Il workstatioo to occur, and could result in the sarne problerns as mentioned in the
restrictions just given.

• Do not disablc irtenup!S fex a long period ci time when using calls thal make use of
ccxnpletioo routines, socket li.sleners, ex pràocol hancllers. These calls need inteJrupiS in order
10 complete, and packets may he lœt hecause the packet bulfers may overflow.

• Certain AppleTalk calls cannot be executed in synchrooous mode frcxn a ccxnpletion routine,
socket listener, or protocol handler (any time thât RamForbid has heen previously called).
Because inteJrup!S must be locked out during a cornpletion routine, and hecause asynchronous
calls need interrupts 10 ccxnplete, even when executed synchronously, a conllict will occur.

Accessing AppleTalk pretocols direaJy 39

The packet dispatcher automaûcally caUs Ramforbid when il issues packets for cornpletion routine,
prO!ocol handlers, socketlisteners, and so forth. The above restriàion also applies if your
application calls RamForbid for any reason. Table 2-5lists which AppleTalk caUs can be executed
a fier RamForbid lw been called

• Table 2-5 lssuing AppleTalk caUs proteàed by RamForbid on the Apple IIGS

01. aaydmc li uynchrooous, Only O&.ll
buc onJy Ol.ln S)'IIChronoiL> Il llamForbld

OKanydmc llamforbld IIOC fel aJJa1 noc yct calkd

Gellnfo ($02) Inst.aliTimer ($04) fll.ogin ($28)
GetGiobal ($03) RegisterName ($0E) fll.oginû:Jnt ($2C)
RemoveTimer ($05) lookupNarne ($10) fllogout ($20)
BoO! ($06) ConfinnNarne ($11) fiMountVol ($2E)
IAPWrite ($07) SendATPReq ($12) fiAccess ($32)
Read8uffer (S08) Ge!ATPReq ($16)

AttachPrO! ($09) SendATPResp ($17)

RemoveProt ($10) GetMyZone ($lA)

OpenSocket ($08) GetZoneList ($18)

OŒeSocket ($OC) SPGetSiatus ($10)

SendDatagram ($00) SI'Open.'iessioo ($lE)

RemoveName ($OF) SPCloseSession ($IF)

CancdATPReq ($13) SPCornmaOO ($20)

OpenA TPSocket ($14) SPWrie ($21)

CloseATPSocket (SIS) PAPStatus ($22)

ReiATPCB ($19) p APOpen ($23)

SPGetParms (SIC) PAPClœe ($24)

PMSe!Printer (S27) PAPRead ($25)

FIUserPrefLX ($2A) PAPWrle ($26)

FILis!Sessions (SZF)

FITirneZone ($30)

FIGetSrcPath ($31)

FINaming ($33)

û:JnvertTime ($34)

F1Set8uffer ($36)

40 CIl A PTE R 2 Programming Guidel ines

• •

e e

Formats and conventions
This section describes the fonnats and conventions used in making the two basic types of caUs:
synchrooous and asynchronous.

Syncilronous cmJ.s are calls thal complete while you wail The caliers program makes a cali 10

the entry point, and simply waits for controlto retum to the application program with a result
rode.

Asynchronous cmJ.s are calls thal do nO! complete imrnediately, even though control is retumed
to lhe calling prograrn immediately. The workstation can continue with another task while an
asynchronous cali is in proœss of cornpleting. Y ou can make multiple asynchronous calls; however,
lhe order ci cornpletion may be different than lhe order in which you made the caUs. The number
of pending asynchronous calls may be limited

When an asynchronous cali is made, the parameter list becomes the 'property" ci the network
until the cali completes. Y our program supplies lhe address ci a completion routine in the cali; when
the Apple Il workstalion completes the cali, it interrupts your program and causes a jump to the
completion routine. The flrmware initially retums an $FF in low byte of the Result Code field in the
parameter list to indicate thal il is in the process of completing. When the cali is complete, the
Result Code f~elds change 10 the fmal status.

Asynchronous caUs versus synchronous caUs

The programmer should never make a synchronous only cali with the async flag set (bit 7 • 1).

Although sorne synchronous only calls can be made wth the async flag set, the results can be
unprediàable. In mœt cases, the cali will complete wilh no deteruble side effeàS, but O!hers will
hang or crash.

The format of the caUs for ProDOS 8 is shown in Table 2-6.

• Table 2-6 Cali format for ProDOS 8

Cali Format

Dclc:tlpdoa

JSR
DB
DW
Ba

$81'00
COMMAND ($42 for AppleTalk calls)
PARAMETER LIST ADDRESS
ERROR ROlJ!lNE

On Exl. A • ERROR CODE ($00 • No Error, $88 ~ Result Code contains error)
CARRY SET· ERROR
CARRY UR • NO ERROR

Table 2-7 shows the format for calling AppleTalk prO!OCOis direct.ly in full native mode on an Apple
IJGS workstation.

Formats and conventions 41

The packet dispatcher automaûcally caUs Ramforbid when il issues packets for cornpletion routine,
prO!ocol handlers, socketlisteners, and so forth. The above restriàion also applies if your
application calls RamForbid for any reason. Table 2-5lists which AppleTalk caUs can be executed
a fier RamForbid lw been called

• Table 2-5 lssuing AppleTalk caUs proteàed by RamForbid on the Apple IIGS

01. aaydmc li uynchrooous, Only O&.ll
buc onJy Ol.ln S)'IIChronoiL> Il llamForbld

OKanydmc llamforbld IIOC fel aJJa1 noc yct calkd

Gellnfo ($02) Inst.aliTimer ($04) fll.ogin ($28)
GetGiobal ($03) RegisterName ($0E) fll.oginû:Jnt ($2C)
RemoveTimer ($05) lookupNarne ($10) fllogout ($20)
BoO! ($06) ConfinnNarne ($11) fiMountVol ($2E)
IAPWrite ($07) SendATPReq ($12) fiAccess ($32)
Read8uffer (S08) Ge!ATPReq ($16)

AttachPrO! ($09) SendATPResp ($17)

RemoveProt ($10) GetMyZone ($lA)

OpenSocket ($08) GetZoneList ($18)

OŒeSocket ($OC) SPGetSiatus ($10)

SendDatagram ($00) SI'Open.'iessioo ($lE)

RemoveName ($OF) SPCloseSession ($IF)

CancdATPReq ($13) SPCornmaOO ($20)

OpenA TPSocket ($14) SPWrie ($21)

CloseATPSocket (SIS) PAPStatus ($22)

ReiATPCB ($19) p APOpen ($23)

SPGetParms (SIC) PAPClœe ($24)

PMSe!Printer (S27) PAPRead ($25)

FIUserPrefLX ($2A) PAPWrle ($26)

FILis!Sessions (SZF)

FITirneZone ($30)

FIGetSrcPath ($31)

FINaming ($33)

û:JnvertTime ($34)

F1Set8uffer ($36)

40 CIl A PTE R 2 Programming Guidel ines

• •

e e

Formats and conventions
This section describes the fonnats and conventions used in making the two basic types of caUs:
synchrooous and asynchronous.

Syncilronous cmJ.s are calls thal complete while you wail The caliers program makes a cali 10

the entry point, and simply waits for controlto retum to the application program with a result
rode.

Asynchronous cmJ.s are calls thal do nO! complete imrnediately, even though control is retumed
to lhe calling prograrn immediately. The workstation can continue with another task while an
asynchronous cali is in proœss of cornpleting. Y ou can make multiple asynchronous calls; however,
lhe order ci cornpletion may be different than lhe order in which you made the caUs. The number
of pending asynchronous calls may be limited

When an asynchronous cali is made, the parameter list becomes the 'property" ci the network
until the cali completes. Y our program supplies lhe address ci a completion routine in the cali; when
the Apple Il workstalion completes the cali, it interrupts your program and causes a jump to the
completion routine. The flrmware initially retums an $FF in low byte of the Result Code field in the
parameter list to indicate thal il is in the process of completing. When the cali is complete, the
Result Code f~elds change 10 the fmal status.

Asynchronous caUs versus synchronous caUs

The programmer should never make a synchronous only cali with the async flag set (bit 7 • 1).

Although sorne synchronous only calls can be made wth the async flag set, the results can be
unprediàable. In mœt cases, the cali will complete wilh no deteruble side effeàS, but O!hers will
hang or crash.

The format of the caUs for ProDOS 8 is shown in Table 2-6.

• Table 2-6 Cali format for ProDOS 8

Cali Format

Dclc:tlpdoa

JSR
DB
DW
Ba

$81'00
COMMAND ($42 for AppleTalk calls)
PARAMETER LIST ADDRESS
ERROR ROlJ!lNE

On Exl. A • ERROR CODE ($00 • No Error, $88 ~ Result Code contains error)
CARRY SET· ERROR
CARRY UR • NO ERROR

Table 2-7 shows the format for calling AppleTalk prO!OCOis direct.ly in full native mode on an Apple
IJGS workstation.

Formats and conventions 41

• Table 2-7 Non-FST callformat for GS/OS

RamDispatch

Cali format

On Exit

$EI1014 (Poinled to by vector at $BFOO)

LDX 1parmlist
LDY '"parmlist
JSL >RamDispatch

A • ERROR CODE ($00 • No Error, $88 • Result Code contains error)
CARRY SIIT • ERR OR
CARRY CLR • NO ERROR

Note: This format allows the Apple l!GS workswion to h2ve code and data in banks ether than O. However,
you can use Ibis follllal from ProOOS 8 as well on an A pp le l!GS workstation.

Parameter ll>tt format

for ali AppleTalk calls with the above formats, the first 4 bytes of ali pararneter lists are the same.
The first byte is the Async Flag field. This llag indicates whether the cali should be executed in

asynchronous mode or synchrooous mode.
The value supplied in the Async Flag indicates whether such a cali is to be executed

synchronously or asynchronously.

• If MSB (bit 7) is set, the cali executes asynchronously

• for calls that cannot be executed asynchronously (those without completion routine pointers),
MSB must be set to 0; the cali theo executes synchronously.

Calls that may be executed asynchronously contain a Completion Routine Pointer in the pararneter
list after the Result Code fldd If the Completion Routine Pointer f~eld contains a value other !han 0,
the f~eld is interpreted as an address to be called when the cornmand being executed completes.

.à. Waroing For calfs listed as synchronous only, this pointer must be O. Also, do not
modify the pmmeter list of a cali made asynchronously, since the
parameter list belongs to AppleTalk pr<Xocols unlil the cali is completed

The second byte is the AppleTalk Command fJeld. Ali norrProDOS 8 calls to the prolocOIIayers are
made using the MU command $42 in the command byte ci the parameter list There is an AppleTalk
Comma nd code in the serond byte ci the parameter 1 isiS of these ca lis specifying the aàual
command !hat is to be executed.

The next two bytes COnlain a Resul! Code field, in wh ich the actual emx is returned. The
following seaion describes oow errors arc returrled.

CH A PTE R 2 Programming Guidel ines

How errors are retumed

If an asynchronous cali was made with a completion routine specified, the firmware transfers
corurol to the cornpletion routine when the cali completes, usually under an interrupt. If no
completion routine was specifled, the caller must check the result code field periodically and take
the required aaion, including freeing the parameter list memory if necessary.

When an error occurs during a network or other non-operating system cali (Command $42 for
ProDOS 8), a single standard error code is returned in the accumulator (Network Error • $88). The
parameter lists for ali ci these calls conta in a 2-byte Resuk Code f~eld in which the aaual error is
returned When there is no error, both the accumulator and the Resuk Code field contains a value of
0 (successfuO.

The Result Code f~eld colllains both a 'leve(• indicator and the aaual resuk code. The high byte
of the Result Code field contains a value indicating the protocollayer cal led, except for special errors
returned for any layer ($0101, $0102, and $0104); the low byte ronuins the aaual error code. Values of
$CO through $Of in the high byte are reserved for addilional errors to be returned by code that the
user adds to the dispatcher. for asynchronous caUs, the low byte ci the Resuit Code f~eld is set to
$FF (busy) while the cali is executing; the high byte contains a number indicating the praocol layer
called lt is important to check both f~elds. Ali calls at alllevels may encounter the system-leve(error
conditions listed in Table 2-8. (These caUs are in the range of $01xx.) Aaual error codes for each cali
are listed in Chapter 3.

Table 2-8 General result codes

lk•uil CDdc

$0101

$01()2

$0104

Delcrlpdon

lnvalid command

Heap/rnemory management error

Sync/ Async cali error

for example, if a DDPOoseSocket cali is executed specifying a Socket Number !hat is na open, the
cali completes with the carry set, the Network Error ($88) code in the accumulator and a Socket Not
Open error in the Resull Code fJeld of the parameter list This technique provides separation
between operating system errors and those errors retumed by network layers, and also provides
space for a larger number of error codes.

+ Note: lt is important thal an application program maps errors properly and interprets them
for the user in the 1110:1t simple and accurate language. An application program should inform
them ci the relalionship of any recen! aaion to the error. For example, if a user attempts to
open a fde for which he does not have access, do not retum l/0 Error or the Networlc Error.
Such error messages are not specifiC and could represent any number of problems.

Formats and conventions

• Table 2-7 Non-FST callformat for GS/OS

RamDispatch

Cali format

On Exit

$EI1014 (Poinled to by vector at $BFOO)

LDX 1parmlist
LDY '"parmlist
JSL >RamDispatch

A • ERROR CODE ($00 • No Error, $88 • Result Code contains error)
CARRY SIIT • ERR OR
CARRY CLR • NO ERROR

Note: This format allows the Apple l!GS workswion to h2ve code and data in banks ether than O. However,
you can use Ibis follllal from ProOOS 8 as well on an A pp le l!GS workstation.

Parameter ll>tt format

for ali AppleTalk calls with the above formats, the first 4 bytes of ali pararneter lists are the same.
The first byte is the Async Flag field. This llag indicates whether the cali should be executed in

asynchronous mode or synchrooous mode.
The value supplied in the Async Flag indicates whether such a cali is to be executed

synchronously or asynchronously.

• If MSB (bit 7) is set, the cali executes asynchronously

• for calls that cannot be executed asynchronously (those without completion routine pointers),
MSB must be set to 0; the cali theo executes synchronously.

Calls that may be executed asynchronously contain a Completion Routine Pointer in the pararneter
list after the Result Code fldd If the Completion Routine Pointer f~eld contains a value other !han 0,
the f~eld is interpreted as an address to be called when the cornmand being executed completes.

.à. Waroing For calfs listed as synchronous only, this pointer must be O. Also, do not
modify the pmmeter list of a cali made asynchronously, since the
parameter list belongs to AppleTalk pr<Xocols unlil the cali is completed

The second byte is the AppleTalk Command fJeld. Ali norrProDOS 8 calls to the prolocOIIayers are
made using the MU command $42 in the command byte ci the parameter list There is an AppleTalk
Comma nd code in the serond byte ci the parameter 1 isiS of these ca lis specifying the aàual
command !hat is to be executed.

The next two bytes COnlain a Resul! Code field, in wh ich the actual emx is returned. The
following seaion describes oow errors arc returrled.

CH A PTE R 2 Programming Guidel ines

How errors are retumed

If an asynchronous cali was made with a completion routine specified, the firmware transfers
corurol to the cornpletion routine when the cali completes, usually under an interrupt. If no
completion routine was specifled, the caller must check the result code field periodically and take
the required aaion, including freeing the parameter list memory if necessary.

When an error occurs during a network or other non-operating system cali (Command $42 for
ProDOS 8), a single standard error code is returned in the accumulator (Network Error • $88). The
parameter lists for ali ci these calls conta in a 2-byte Resuk Code f~eld in which the aaual error is
returned When there is no error, both the accumulator and the Resuk Code field contains a value of
0 (successfuO.

The Result Code f~eld colllains both a 'leve(• indicator and the aaual resuk code. The high byte
of the Result Code field contains a value indicating the protocollayer cal led, except for special errors
returned for any layer ($0101, $0102, and $0104); the low byte ronuins the aaual error code. Values of
$CO through $Of in the high byte are reserved for addilional errors to be returned by code that the
user adds to the dispatcher. for asynchronous caUs, the low byte ci the Resuit Code f~eld is set to
$FF (busy) while the cali is executing; the high byte contains a number indicating the praocol layer
called lt is important to check both f~elds. Ali calls at alllevels may encounter the system-leve(error
conditions listed in Table 2-8. (These caUs are in the range of $01xx.) Aaual error codes for each cali
are listed in Chapter 3.

Table 2-8 General result codes

lk•uil CDdc

$0101

$01()2

$0104

Delcrlpdon

lnvalid command

Heap/rnemory management error

Sync/ Async cali error

for example, if a DDPOoseSocket cali is executed specifying a Socket Number !hat is na open, the
cali completes with the carry set, the Network Error ($88) code in the accumulator and a Socket Not
Open error in the Resull Code fJeld of the parameter list This technique provides separation
between operating system errors and those errors retumed by network layers, and also provides
space for a larger number of error codes.

+ Note: lt is important thal an application program maps errors properly and interprets them
for the user in the 1110:1t simple and accurate language. An application program should inform
them ci the relalionship of any recen! aaion to the error. For example, if a user attempts to
open a fde for which he does not have access, do not retum l/0 Error or the Networlc Error.
Such error messages are not specifiC and could represent any number of problems.

Formats and conventions

MUt

Conventions

Ali address values in lhe AppleTalk parameter lists are 4 bytes to allow for larger address spaœs in
future develq:Jmenl. Ali mukibyte values are in low-byte to high-byte order, exœpt as noted Each
item in a parameter list needs the following information:

• Relative offset from lhe beginning of the list (Position)

• Parameter Name

• Parameter Size

• Parameter Value

• Optional Commew

Table 2-91isls possible enlries in lhe parameter Size field. If lhe parameter Size is 110(ooe of lhese
values, the actuallength in bytes will be given (for example, 6 bytes).

• Table 2-9 Entries in !he parameter size field

Byte

Ward

<Ward>

Long

Var

Detcripdoa

1 byte

2 bytes, in low-to-high arder

2 bytes, in high-to-low arder (reverse arder)

4 bytes, in low-to-high order

Variable

The Value field indiCIIes whether lhe caller supplies the parameter or lhe parameter is retumed by
lhe cali. The field also indicates the value of caller-supplied constallLI. Table 2-10 lists possible
entries m the Value f~eld

• Table 2-10 En!Iies in the Value F~eld

Value Detcriptloa

Constant Caller-supplied constaŒ

Caller-supplied paranx:ter

Parameter retumed by cali

--->

<---

x

44

)(

P2rame1er supplied by caller, retumed by cali, or lxxh

Rescrved f~eld used only by cali

CH A PTE R 2 Programrning Guidel ines

Q __ J$.-·;)L.

•
A Warning Tampering wilh Reserved fields may result in your application net

wa-king properly, because lhese fields may be used to hold temporary
values while !he command is being executed. •

The following example shows how parameter lists will look in Chapter 3.

Position

$00

$01

$02

Namc
Async Flag

cam.ond

Result Code

Slze

Byte

Byte

Word

Value

$00 (Synchronous only)

$06

<--

Formats and conventions 4S

Q§@Ql._$<4M&.&&&Y

MUt

Conventions

Ali address values in lhe AppleTalk parameter lists are 4 bytes to allow for larger address spaœs in
future develq:Jmenl. Ali mukibyte values are in low-byte to high-byte order, exœpt as noted Each
item in a parameter list needs the following information:

• Relative offset from lhe beginning of the list (Position)

• Parameter Name

• Parameter Size

• Parameter Value

• Optional Commew

Table 2-91isls possible enlries in lhe parameter Size field. If lhe parameter Size is 110(ooe of lhese
values, the actuallength in bytes will be given (for example, 6 bytes).

• Table 2-9 Entries in !he parameter size field

Byte

Ward

<Ward>

Long

Var

Detcripdoa

1 byte

2 bytes, in low-to-high arder

2 bytes, in high-to-low arder (reverse arder)

4 bytes, in low-to-high order

Variable

The Value field indiCIIes whether lhe caller supplies the parameter or lhe parameter is retumed by
lhe cali. The field also indicates the value of caller-supplied constallLI. Table 2-10 lists possible
entries m the Value f~eld

• Table 2-10 En!Iies in the Value F~eld

Value Detcriptloa

Constant Caller-supplied constaŒ

Caller-supplied paranx:ter

Parameter retumed by cali

--->

<---

x

44

)(

P2rame1er supplied by caller, retumed by cali, or lxxh

Rescrved f~eld used only by cali

CH A PTE R 2 Programrning Guidel ines

Q __ J$.-·;)L.

•
A Warning Tampering wilh Reserved fields may result in your application net

wa-king properly, because lhese fields may be used to hold temporary
values while !he command is being executed. •

The following example shows how parameter lists will look in Chapter 3.

Position

$00

$01

$02

Namc
Async Flag

cam.ond

Result Code

Slze

Byte

Byte

Word

Value

$00 (Synchronous only)

$06

<--

Formats and conventions 4S

Q§@Ql._$<4M&.&&&Y

e e

e e

Chapter 3 Calls to AppleTalk Protocols

T H 1 S C H A P T E R describes the calls lO the various protocols, with a

description and parameter listing for each cali. The following AppleTalk

protocols are currenOy implemented on the Apple IIGS workstation:

• l.ocaiTalk Link Access Protocol (LAP; also known as LLAP)

• Datagram Delivery PrO(ocol (DDP)

• Name Binding Prctocol (NBP)

• AppleTalk Transaction Protocol (A TP)

• a subset of the Zone Information PrO(OCQl (ZIP)

• the worksta!ion side of the Printer Access Protocol (P AP)

• the workstation side of the AppleTalk Session Prctocol (ASP)

For a more detailed description of each ci these prctocols, refer lO lnstde

AppleTaJ/t This chapter also includes general housekeeping and suppon calls,

along with result codes for the calls on each layer. •

47

ln addition, the Apple IIGS workstation conuins

• the Rernole Printer Manager (RPM) for transparent printer access

• seriai drivers for the seria! port

• the ProDOS Filing Interface (PFI), which allows transparent file access by translating non-local
or network filing caUs into AFP (AppleTalk Filing PrOlocol) calis. Features of AFP that are nOl
av ai labie through ProDOS or GS/OS calls can be accessed by making AFP calis direàly through
ASP.

• AppleShare fST to provide access to AFP Servers from GS/OS.

• AppleTalk drivers for accessing file servers and RPM from GS/OS.

• a stub of the Routing Table Maintenance PrOlocol (RTMP)

• the Echo PrOlOCol (EP)

+ Nole: RTMP and EP are built into the AppleTalk firrnware on the Apple IIGS workslltion,
and your prograrn doe5 nOl need to make any calls or Llke any action to implement these
prO!ocols.

+ Nole: PFI, the AppleShare FST and AppleTalk drivers for GS/OS are 001 available in System
Scitware 4.0.

There are also special routines to provide a limer interrupt &lot code is provided to allow an Apple
IIGS worksLltion to boat directly over the network from a server thal supports boat service.

Identifying AppleTalk

To determine if an application bas been launched over the network, refer to the Ne!Launch code
Under ProDOS, to identify bOlh AppleTalk and the sl01 w~h which is is associated for printing,

refer to Apple Il AppleTalk Technical nole 14, Prlnllng Jhrough the Flrmware.

To ide!llify AppleTalk urxler ProDOS 8:

1. Issue an AppleTalk Getlnfo aU.

2 If the re is no errer resul~ AppleTalk is inst.alied. See aise 'Printing over the Network: in
Olapler 1.

48

lnfoParems

lnfoResult

DB $00

DB $02

DS 13

C Il A P TE R 3 Calls to AppleTalk PrOioms

;Synchrooous only

;GeUnfo cali number

;<- results retumed here

e •

e •

e e

OleckTalk JSR SBRXl

DB $42 ;$42 corrunand 1 for AppleTalk calis

DW InfoParmas ;Parameter list address

BCS NoATik ;handle the errer

IsATik. ;AppleTalk installed when here

NoATalk ;AppleTalk nOl installed when here

To identify AppleTalk prOiocols and AppleShare file system under System Software 5.0:

1. Set up the parameter block for a GS/OS GetFSTinfo cali using fstNum • 1.

2 Issue the GetFSTinfo caU.

3. If the fileSysiD is $0D the AppleShare fST and AppleShare are prese!L

4. If a parameter oot of range errer (453) results, the AppleShare file system is nOl present.

5. aherwise, if steps 3 and 4 are inconclusive, increment the fstNum and loop back to step 2.

To identify AppleTalk prOiocols, including LAP ûuough PRI, but excluding the file system, under
System Software 5.0:

1. Set up the parameter block for a GS/OS Dlnfo cali using deviee number one.

2 Issue the Dlnfo caU.

3. If the deviceiD is $ID, the AppleTalk main driver and AppleTalk are present

4. If a pararneter out ci range errer ($53) results, the AppleTalk prOloms are nOl present

S. Otherwise, if steps 3 and 4 are inconclusive, increment the deviee number and loop back to

step 2.

To identify AppleTalk pr01ocols, including LAP through ASP, but excluding the File system, under
System Software 4.0:

1. Issue an SPGetSutus cali.

2 If the cali returns wthout errer, AppleTalk is present.

+ Nole: With the release of System Software 5.0, earlier versions 001 supported.

ldentifying AppleTalk 49

ln addition, the Apple IIGS workstation conuins

• the Rernole Printer Manager (RPM) for transparent printer access

• seriai drivers for the seria! port

• the ProDOS Filing Interface (PFI), which allows transparent file access by translating non-local
or network filing caUs into AFP (AppleTalk Filing PrOlocol) calis. Features of AFP that are nOl
av ai labie through ProDOS or GS/OS calls can be accessed by making AFP calis direàly through
ASP.

• AppleShare fST to provide access to AFP Servers from GS/OS.

• AppleTalk drivers for accessing file servers and RPM from GS/OS.

• a stub of the Routing Table Maintenance PrOlocol (RTMP)

• the Echo PrOlOCol (EP)

+ Nole: RTMP and EP are built into the AppleTalk firrnware on the Apple IIGS workslltion,
and your prograrn doe5 nOl need to make any calls or Llke any action to implement these
prO!ocols.

+ Nole: PFI, the AppleShare FST and AppleTalk drivers for GS/OS are 001 available in System
Scitware 4.0.

There are also special routines to provide a limer interrupt &lot code is provided to allow an Apple
IIGS worksLltion to boat directly over the network from a server thal supports boat service.

Identifying AppleTalk

To determine if an application bas been launched over the network, refer to the Ne!Launch code
Under ProDOS, to identify bOlh AppleTalk and the sl01 w~h which is is associated for printing,

refer to Apple Il AppleTalk Technical nole 14, Prlnllng Jhrough the Flrmware.

To ide!llify AppleTalk urxler ProDOS 8:

1. Issue an AppleTalk Getlnfo aU.

2 If the re is no errer resul~ AppleTalk is inst.alied. See aise 'Printing over the Network: in
Olapler 1.

48

lnfoParems

lnfoResult

DB $00

DB $02

DS 13

C Il A P TE R 3 Calls to AppleTalk PrOioms

;Synchrooous only

;GeUnfo cali number

;<- results retumed here

e •

e •

e e

OleckTalk JSR SBRXl

DB $42 ;$42 corrunand 1 for AppleTalk calis

DW InfoParmas ;Parameter list address

BCS NoATik ;handle the errer

IsATik. ;AppleTalk installed when here

NoATalk ;AppleTalk nOl installed when here

To identify AppleTalk prOiocols and AppleShare file system under System Software 5.0:

1. Set up the parameter block for a GS/OS GetFSTinfo cali using fstNum • 1.

2 Issue the GetFSTinfo caU.

3. If the fileSysiD is $0D the AppleShare fST and AppleShare are prese!L

4. If a parameter oot of range errer (453) results, the AppleShare file system is nOl present.

5. aherwise, if steps 3 and 4 are inconclusive, increment the fstNum and loop back to step 2.

To identify AppleTalk prOiocols, including LAP ûuough PRI, but excluding the file system, under
System Software 5.0:

1. Set up the parameter block for a GS/OS Dlnfo cali using deviee number one.

2 Issue the Dlnfo caU.

3. If the deviceiD is $ID, the AppleTalk main driver and AppleTalk are present

4. If a pararneter out ci range errer ($53) results, the AppleTalk prOloms are nOl present

S. Otherwise, if steps 3 and 4 are inconclusive, increment the deviee number and loop back to

step 2.

To identify AppleTalk pr01ocols, including LAP through ASP, but excluding the File system, under
System Software 4.0:

1. Issue an SPGetSutus cali.

2 If the cali returns wthout errer, AppleTalk is present.

+ Nole: With the release of System Software 5.0, earlier versions 001 supported.

ldentifying AppleTalk 49

Miscellaneous calls

This section discus.ses general hoosekeeping and support caUs that the application needs to make.
These calls an: listed in Table 3-1. The sections that follow describe each cali, the par.uneter listing,
and !he result codes.

• Table 3-1 General housekeeping and support ca lis

Qlcumaod
Numhcr ~~~- Dc:ocriptloll

~1 !nit Initial ize AppleTalk firmware

$02 Getlrtfo Get information

$03 Gel Global Get global paramete~

$04 lnstaiiTimer hlSiall interval timer

!05 RernoveTirner Rernove interval tirner

$Œi Bool Bool over network

$45 CanceJTuner Cancd lnstaiiTimer

50 CH APTE R 3 Calls to AppleTalk Protocols

e e

InJt ($01)

This section provides backgroond information on !he lnit cali. The boot fde makes an lnit cali,
which causes the AppleTalk fiCIIIware to be initialized.

A Warolng Y ou should never make !he lnit cali, because it is done for you in !he
AppleTalk setup files. Making an lnit cali discoonects alllhe RAM·based
prOiocOis installed by the startup file. .t.

The A TI nit file can be found in lhe Systern:Systern.Setup direaory of the local boot volume or in
the Use~:YourNarne:Setup direaory of the AppleShare boot volume (where YourName is !he User
Name used to log on to the boot server). ln ali cases, ATinit will contain the lhree required data
fJelds UaerName, PrinterFlaga, and PrinterTuple at the end of !he fde. Before those daia
fields, A11nit may also coolain executable code or additional data fields. Silice !he lhree required
data fields are directly before ATinit's end-of.file (EOF), you can find !hern relative to ATinit's EOF
using the displacernents listed in Table 3-la.

• Table 3-Ja Offsets of required data fields

D .. placcmcnt to
ATlllll EOF

133

100

Slzc

33 Bytes

Byte

99 Bytes

FlddName Dc:ocrlpdoa

uaerNaJœ A Pascal·type string containing the
default User Name. 11 consists of a
length byte followed by up to 31
bytes of ASOI data followed by a
single unused byte. This fJeld is always
33 bytes long.

P rinterFlaga This is !he flags fJeld used by the
Rernote Print Manager's default
network printer.

PrinterTuple This field specif!CS the name of the
default network printer used by lhe
Remote Print Manager. The
PrinterTuple fidd is in standard
Name Binding Protocol (NBP) format.
This f~eld is always 99 bytes long.

If the ATinil fde is on an AppleSha.re server, il will have 6 addilional data fJelds (PathVoliD,
PathDiriD, Path, PrefixVoliD, PrefixDiriD, ~ Prefix)direaly bcfore the lhree required
data f~elds. These fJelds can also be fou nd relative to A 11nit's EOF using the displacernents listed in

Table }lb.

Miscellaneous ca ils 51

Miscellaneous calls

This section discus.ses general hoosekeeping and support caUs that the application needs to make.
These calls an: listed in Table 3-1. The sections that follow describe each cali, the par.uneter listing,
and !he result codes.

• Table 3-1 General housekeeping and support ca lis

Qlcumaod
Numhcr ~~~- Dc:ocriptloll

~1 !nit Initial ize AppleTalk firmware

$02 Getlrtfo Get information

$03 Gel Global Get global paramete~

$04 lnstaiiTimer hlSiall interval timer

!05 RernoveTirner Rernove interval tirner

$Œi Bool Bool over network

$45 CanceJTuner Cancd lnstaiiTimer

50 CH APTE R 3 Calls to AppleTalk Protocols

e e

InJt ($01)

This section provides backgroond information on !he lnit cali. The boot fde makes an lnit cali,
which causes the AppleTalk fiCIIIware to be initialized.

A Warolng Y ou should never make !he lnit cali, because it is done for you in !he
AppleTalk setup files. Making an lnit cali discoonects alllhe RAM·based
prOiocOis installed by the startup file. .t.

The A TI nit file can be found in lhe Systern:Systern.Setup direaory of the local boot volume or in
the Use~:YourNarne:Setup direaory of the AppleShare boot volume (where YourName is !he User
Name used to log on to the boot server). ln ali cases, ATinit will contain the lhree required data
fJelds UaerName, PrinterFlaga, and PrinterTuple at the end of !he fde. Before those daia
fields, A11nit may also coolain executable code or additional data fields. Silice !he lhree required
data fields are directly before ATinit's end-of.file (EOF), you can find !hern relative to ATinit's EOF
using the displacernents listed in Table 3-la.

• Table 3-Ja Offsets of required data fields

D .. placcmcnt to
ATlllll EOF

133

100

Slzc

33 Bytes

Byte

99 Bytes

FlddName Dc:ocrlpdoa

uaerNaJœ A Pascal·type string containing the
default User Name. 11 consists of a
length byte followed by up to 31
bytes of ASOI data followed by a
single unused byte. This fJeld is always
33 bytes long.

P rinterFlaga This is !he flags fJeld used by the
Rernote Print Manager's default
network printer.

PrinterTuple This field specif!CS the name of the
default network printer used by lhe
Remote Print Manager. The
PrinterTuple fidd is in standard
Name Binding Protocol (NBP) format.
This f~eld is always 99 bytes long.

If the ATinil fde is on an AppleSha.re server, il will have 6 addilional data fJelds (PathVoliD,
PathDiriD, Path, PrefixVoliD, PrefixDiriD, ~ Prefix)direaly bcfore the lhree required
data f~elds. These fJelds can also be fou nd relative to A 11nit's EOF using the displacernents listed in

Table }lb.

Miscellaneous ca ils 51

M.JR 2.

• Table 3-lb Offsets of optional data faelds

Dbplacemen& co
ATinJI EOF Slze FlddNamc DeJCriptlon

'lJ'j Ward PathVoliD The Volume ID number of the user's
AppleTalk startup application.

m Long PathDiriD The Directory ID number of the user's
AppleTalk startup application.

7ifJ 65 Bytes Pa th The Patlmame of the user's AppleTalk
startup application.

3)4 Ward Pr.fixVoliD The Volume ID number of the user's
AppleTalk default prefiX.

372 Long Pr.fixDiriD The Directory ID number of the user's
AppleTalk default prefiX.

1~ 65 Bytes Prefix The user's AppleTalk default prefiX.

The displacements in Tables 1 and 2 can be used with the GS/OS setMark cali to move the fde
mark to the beginning of any of the above fields. The SetHark call's base f~eld should be set to
SOOO 1 so the mark will be set equaJ to EOF minus the displacemenl.

When a hardware Reset ocans, whether caused by the use of the Reset key or by power-up, the
Apple IIGS reinitializes itself thrœgh the reset chain and acquires a new node number. Ali sessions,
sockets, and packets an: lost

The Super Seriai Card ID bytes are al.so set as follows (for the sl01 being used by RPM):

SCi1l5 $38
$C7U7 $18
SC70B $01
SCiOC S31

ln add~ion, the Logon prograrn wUI anoounce mail if the re is a folder ca lied MAIL localed in the
Users folder with anything in il The Logon program displays the message, "Y ou have mail
wa1ting.'

The re:;ult codes returned for the lnil Clll an: the same as those for ali system calis, as foliows:

Result Code

$0101

$0102

$0101

DeKriptJon

lnvalid command

lie2plmemory management error

Sync/ Async cali error

52 C Il APTE R 3 Calls to AppleTalk PrOiocols

.. f.IMlkWAM.i!UMl c ll acw a aU Stl!M.it

e e

e e

Getlnfo ($02)

1lae GeUnfo cali retums sorne miscelianeous information that may be needed by applications. The
parameter struàure for the Getlnfo cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synduonous only)

$01 Comma nd Byte $OZ

$OZ ResultCode Ward <···

$04 Completion Rtn Retum Long (...

$Œ This-Net <Ward> (...

SOA A-Bridge Byte <-··

$OB Hardware ID Byte (...

soc ROM Version 1 Ward <···

SOE Node Number Byte (...

The Completion Rtn Retum fldd tells the caller the address to jump to upon flnishing cornpletion
routines, socket listeraers, or protocol handlers. Y ou must go to this address by rneans of a jump
rather than an RTS. This-Net and A-Bridge retum the current values for these fields, which are
maintained by the RTMP stub. The Hardware ID field retums an ID for the Apple IIGS
workstation; the value of this ID is currently $00. The ROM Version 1 f1eld retums the ROM version
number. On an Apple Ile, the hardware ID and ROM Version 1 fields have no rneaning.

The result code retumed for the Getlnfo cali is as foliows.

Resuh Code

$0104

Description

Sync/async cali error

Miscelianeous calls 53

M.JR 2.

• Table 3-lb Offsets of optional data faelds

Dbplacemen& co
ATinJI EOF Slze FlddNamc DeJCriptlon

'lJ'j Ward PathVoliD The Volume ID number of the user's
AppleTalk startup application.

m Long PathDiriD The Directory ID number of the user's
AppleTalk startup application.

7ifJ 65 Bytes Pa th The Patlmame of the user's AppleTalk
startup application.

3)4 Ward Pr.fixVoliD The Volume ID number of the user's
AppleTalk default prefiX.

372 Long Pr.fixDiriD The Directory ID number of the user's
AppleTalk default prefiX.

1~ 65 Bytes Prefix The user's AppleTalk default prefiX.

The displacements in Tables 1 and 2 can be used with the GS/OS setMark cali to move the fde
mark to the beginning of any of the above fields. The SetHark call's base f~eld should be set to
SOOO 1 so the mark will be set equaJ to EOF minus the displacemenl.

When a hardware Reset ocans, whether caused by the use of the Reset key or by power-up, the
Apple IIGS reinitializes itself thrœgh the reset chain and acquires a new node number. Ali sessions,
sockets, and packets an: lost

The Super Seriai Card ID bytes are al.so set as follows (for the sl01 being used by RPM):

SCi1l5 $38
$C7U7 $18
SC70B $01
SCiOC S31

ln add~ion, the Logon prograrn wUI anoounce mail if the re is a folder ca lied MAIL localed in the
Users folder with anything in il The Logon program displays the message, "Y ou have mail
wa1ting.'

The re:;ult codes returned for the lnil Clll an: the same as those for ali system calis, as foliows:

Result Code

$0101

$0102

$0101

DeKriptJon

lnvalid command

lie2plmemory management error

Sync/ Async cali error

52 C Il APTE R 3 Calls to AppleTalk PrOiocols

.. f.IMlkWAM.i!UMl c ll acw a aU Stl!M.it

e e

e e

Getlnfo ($02)

1lae GeUnfo cali retums sorne miscelianeous information that may be needed by applications. The
parameter struàure for the Getlnfo cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synduonous only)

$01 Comma nd Byte $OZ

$OZ ResultCode Ward <···

$04 Completion Rtn Retum Long (...

$Œ This-Net <Ward> (...

SOA A-Bridge Byte <-··

$OB Hardware ID Byte (...

soc ROM Version 1 Ward <···

SOE Node Number Byte (...

The Completion Rtn Retum fldd tells the caller the address to jump to upon flnishing cornpletion
routines, socket listeraers, or protocol handlers. Y ou must go to this address by rneans of a jump
rather than an RTS. This-Net and A-Bridge retum the current values for these fields, which are
maintained by the RTMP stub. The Hardware ID field retums an ID for the Apple IIGS
workstation; the value of this ID is currently $00. The ROM Version 1 f1eld retums the ROM version
number. On an Apple Ile, the hardware ID and ROM Version 1 fields have no rneaning.

The result code retumed for the Getlnfo cali is as foliows.

Resuh Code

$0104

Description

Sync/async cali error

Miscelianeous calls 53

GetGlobal ($03)

The GetGiobal cali is used lO retrieve the Global Parameter area from the f11111ware. The Global
Parameter area contains the LAP and DDP header data that was extraàed by those pr010cols. The
parameter structure for the GetGiobal cali is lisled here.

Position Namc Slzc Value
$00 Async Aag Byte $00 Synchrooous Only
$01 Comma nd Byte $03
$02 Resull Code Word <···
$01 Buffer Pointer Long ·->

The data is retumed in the buffer pointed to by the Buffer Poinler field and has the following
format.

Position Namc Slzc Value
$00 LAP Deslinalion Node' Byte <-··
$01 LAP Source Node ' Byte <-··
$02 L.apType Byte <-··
$03 Hop Court/DL (MSB) Byte <-··
$01 Datagram Length (LSB) Byte <-··
$05 DDP Checksum <Word> <·-·
SiJ7 Destination Network 1 <Word> <--·
sœ Source Network 1 <Word> <···
SOB Destination Node Byte <--·
$OC Source Node Byte <--·
SOD Destination Socket Byte <···
SOE Source Socket Byte <···
SOF DDPType Byte <--·
$10 Packet Length Word <--·

The packetlength is the length or the emire packet received, including ali headers.

The Datagram Length, DDP Checksum, Destination Network '· and Source Network ' fields
are in high-byte to low-byte order. The data retumed in this cali is not valid after the ReadBuffer cali
has been execuled with the Purge Flag set (see "Calls to the link Access Protocd• later in this
chapter). This cali assumes t.hat the caller's buffer is at least 18 bytes long.

The result codes rdumed for the GetGiobal cali are the same as those for ali system calls.

C Il A PTE R 3 Calls to AppleTalk Pro10cols

InstallTlmer ($04)

The lnstaiiTimer cali allows an applicalion lo set a lime interval and to have the firmware notify it
when the interval expires. The parameter structure for the lnstaliTimer cali is listed here.

Position Namc Slze Value
$00 Async Aag Byte -->

$01 Comma nd Byte $01

$02 ResultCode Word <-··

$01 Completion Routine long -->

$Œ Running Tick Count Word <--·
$0A ' Ticks to Complete Word <-->
$OC Reserved Long x

When called synchronously, the command completes when the interval specified in the 1 Ticks to
Complete count expires. When called asynchronously, the completion routine is called when the 1

Ticks to Complete couŒ expires. The maximum value aliowed for the 1 TICks to Complete field is
up to $FFFF; however, to be compatible with the Ile, the maximum value is $1fff. The ticks are
1/4-second periods. The value in the Running Tick Cou nt f~eld contains the number of ticks since the
In il cali was made. An unlimited number or timers may be active at any given moment on the
Apple IIGS. Only eiglt timers may be active al any given moment on the Apple Ile:

Â Warning This parameter list must not be modified as long as the limer is active,
except if il is being changed to a RemoveTimer parameter list The Apple
IIGS firmware uses this list lO identify and track the timer; the list must
be available for polential use as a Remove Timer parameler list •

The 1nstaliTimer cali retums the result code for ali system calfs. Additionaliy, this cali retums an
Apple lie specifiC result code when there are too many limers active.

Kesult Code

$0105

Description

Too many timers

Mi.scellaneous calls ss

GetGlobal ($03)

The GetGiobal cali is used lO retrieve the Global Parameter area from the f11111ware. The Global
Parameter area contains the LAP and DDP header data that was extraàed by those pr010cols. The
parameter structure for the GetGiobal cali is lisled here.

Position Namc Slzc Value
$00 Async Aag Byte $00 Synchrooous Only
$01 Comma nd Byte $03
$02 Resull Code Word <···
$01 Buffer Pointer Long ·->

The data is retumed in the buffer pointed to by the Buffer Poinler field and has the following
format.

Position Namc Slzc Value
$00 LAP Deslinalion Node' Byte <-··
$01 LAP Source Node ' Byte <-··
$02 L.apType Byte <-··
$03 Hop Court/DL (MSB) Byte <-··
$01 Datagram Length (LSB) Byte <-··
$05 DDP Checksum <Word> <·-·
SiJ7 Destination Network 1 <Word> <--·
sœ Source Network 1 <Word> <···
SOB Destination Node Byte <--·
$OC Source Node Byte <--·
SOD Destination Socket Byte <···
SOE Source Socket Byte <···
SOF DDPType Byte <--·
$10 Packet Length Word <--·

The packetlength is the length or the emire packet received, including ali headers.

The Datagram Length, DDP Checksum, Destination Network '· and Source Network ' fields
are in high-byte to low-byte order. The data retumed in this cali is not valid after the ReadBuffer cali
has been execuled with the Purge Flag set (see "Calls to the link Access Protocd• later in this
chapter). This cali assumes t.hat the caller's buffer is at least 18 bytes long.

The result codes rdumed for the GetGiobal cali are the same as those for ali system calls.

C Il A PTE R 3 Calls to AppleTalk Pro10cols

InstallTlmer ($04)

The lnstaiiTimer cali allows an applicalion lo set a lime interval and to have the firmware notify it
when the interval expires. The parameter structure for the lnstaliTimer cali is listed here.

Position Namc Slze Value
$00 Async Aag Byte -->

$01 Comma nd Byte $01

$02 ResultCode Word <-··

$01 Completion Routine long -->

$Œ Running Tick Count Word <--·
$0A ' Ticks to Complete Word <-->
$OC Reserved Long x

When called synchronously, the command completes when the interval specified in the 1 Ticks to
Complete count expires. When called asynchronously, the completion routine is called when the 1

Ticks to Complete couŒ expires. The maximum value aliowed for the 1 TICks to Complete field is
up to $FFFF; however, to be compatible with the Ile, the maximum value is $1fff. The ticks are
1/4-second periods. The value in the Running Tick Cou nt f~eld contains the number of ticks since the
In il cali was made. An unlimited number or timers may be active at any given moment on the
Apple IIGS. Only eiglt timers may be active al any given moment on the Apple Ile:

Â Warning This parameter list must not be modified as long as the limer is active,
except if il is being changed to a RemoveTimer parameter list The Apple
IIGS firmware uses this list lO identify and track the timer; the list must
be available for polential use as a Remove Timer parameler list •

The 1nstaliTimer cali retums the result code for ali system calfs. Additionaliy, this cali retums an
Apple lie specifiC result code when there are too many limers active.

Kesult Code

$0105

Description

Too many timers

Mi.scellaneous calls ss

=

RemoveTlmer ($05)

The RemoveTimer cali is uscd to cancel an asynchronous lnstaliTimer cali before it completes
without calling a compleûon routine. 1t uses the ideruical parameter list as the corresponding
ln.staiiTimer tlut is being removed. The parameter struaure for the RemoveTimer cali is listed here.

Position Name Slze Value

$00 Async Ftag Byte $00 (Synchronous only)

SOI Comma nd Byte $05

$02 Result Code Ward (...

$(}j Reserved 12 Bytes x (the rest cl the ln.staiiTimer parameter list)

The Async Aag and Command bytes must be changed in the original parameter list used for the
lnstaiiTimer caU.

The RemoveTimer cali retums this result code, as weil as the result code for ali system calls.

Rcsult Code

S0103

Boot ($06)

Descrlptlon

No Timer ln.stalled

The Boa cali causes a nctwork boo! ta take place. The parameter struaure for the Boo! cali is
listed here.

Position Namc Slzc Value

$00 Async Aag Byte SOO (Synchronous on! y)

SOl Comma nd Byte $06

S02 Result Code Ward (...

If no boo! server is found, no errors are retumed and the Apple llGS workstation boas locally.

56 C 11 A PTE R 3 Calls to AppleTalk Proiocols
e

a w:ea::; 4 as ..-Paz. ;a; mo.: t.44M4ZP. nnn.:z U$1 4: ... @i.)IQIA-.Pt t .. ,g: . tt4!W:AIM

•

CancelTlmer ($45)

The CancelTuner cali is uscd to cancel an asynchronous lnstaiiTimer cali be fore ï completes. The
timer's completion rœtine will be called. It uses the identical parameter list as the corresponding
In.staUTII!lCr tlut is being removed. The parameter structure for the <:anceiTimer cali is listed here.

Position Name Slze Value

$00 Async Ftag Byte $00 (Synchronous only)

SOl Comma nd Byte $45

$02 ResultCode Ward (...

$(}j Reserved 12 Bytes x (the rest of the Install Timer parameter
list)

The Async Ftag and Command bytes must be changed in the original parameter list used for the
In.staiiTimer cali. If the limer routine has not been installed or had completed, a 'No limer
lnstalled' error ($0103) is retumed.lfthe limer is successfully canceled, the completion routine will
receive a 'Timer canceled' error ($0106). This is important as a successful result for the CanceiTimer
cali will retum error $0106 in.stead ci'No Error' ($0000).

The <:anceiTimer caU returns these result codes, as weil as the result codes for ali system calls.

Resuh COOc

$0103

$0106

Descrlptlon

No Timer ln.stalled

TllllCC canceled

Miscellaneous ca Ils 57

=

RemoveTlmer ($05)

The RemoveTimer cali is uscd to cancel an asynchronous lnstaliTimer cali before it completes
without calling a compleûon routine. 1t uses the ideruical parameter list as the corresponding
ln.staiiTimer tlut is being removed. The parameter struaure for the RemoveTimer cali is listed here.

Position Name Slze Value

$00 Async Ftag Byte $00 (Synchronous only)

SOI Comma nd Byte $05

$02 Result Code Ward (...

$(}j Reserved 12 Bytes x (the rest cl the ln.staiiTimer parameter list)

The Async Aag and Command bytes must be changed in the original parameter list used for the
lnstaiiTimer caU.

The RemoveTimer cali retums this result code, as weil as the result code for ali system calls.

Rcsult Code

S0103

Boot ($06)

Descrlptlon

No Timer ln.stalled

The Boa cali causes a nctwork boo! ta take place. The parameter struaure for the Boo! cali is
listed here.

Position Namc Slzc Value

$00 Async Aag Byte SOO (Synchronous on! y)

SOl Comma nd Byte $06

S02 Result Code Ward (...

If no boo! server is found, no errors are retumed and the Apple llGS workstation boas locally.

56 C 11 A PTE R 3 Calls to AppleTalk Proiocols
e

a w:ea::; 4 as ..-Paz. ;a; mo.: t.44M4ZP. nnn.:z U$1 4: ... @i.)IQIA-.Pt t .. ,g: . tt4!W:AIM

•

CancelTlmer ($45)

The CancelTuner cali is uscd to cancel an asynchronous lnstaiiTimer cali be fore ï completes. The
timer's completion rœtine will be called. It uses the identical parameter list as the corresponding
In.staUTII!lCr tlut is being removed. The parameter structure for the <:anceiTimer cali is listed here.

Position Name Slze Value

$00 Async Ftag Byte $00 (Synchronous only)

SOl Comma nd Byte $45

$02 ResultCode Ward (...

$(}j Reserved 12 Bytes x (the rest of the Install Timer parameter
list)

The Async Ftag and Command bytes must be changed in the original parameter list used for the
In.staiiTimer cali. If the limer routine has not been installed or had completed, a 'No limer
lnstalled' error ($0103) is retumed.lfthe limer is successfully canceled, the completion routine will
receive a 'Timer canceled' error ($0106). This is important as a successful result for the CanceiTimer
cali will retum error $0106 in.stead ci'No Error' ($0000).

The <:anceiTimer caU returns these result codes, as weil as the result codes for ali system calls.

Resuh COOc

$0103

$0106

Descrlptlon

No Timer ln.stalled

TllllCC canceled

Miscellaneous ca Ils 57

(,

CaUs to the Unk Access Protocol (LAP)

The Apple IIGS funtware provides the standard LocalTalk Link Access Protocol (UAP). lt also
provides calls to read packet dau from the receive buffers, and to atUch or remove protocol
handlers.

Table 3-2list.s the ails to the W layer. The sections that follaw describe each cali, the
parameter listing, and the resuh codes.

• Tahk 3-:Z W calls

ÛlCIUIWld
Numbcr Namo: Ducr!p<Jon

$07 LAPWrite Write IAP packet
$Œ ReadBuffer Read data from butTer

SŒ AttachProt Attach protocol

SOA RemovePrDI Remove protocol

The W firrnware maintains a number of receive buffers in ilS own reserved RAM. When a packet is
received, it is placed in the next available receive buffer. If ali buffers are full, the packet is ignored
and is !ost

Received packel5 are processed in the order they are received, with the buffers being handled as
a circular queue. When a packet is found in the buffer, the W header is pu lied olf by the W layer,
the W Type table is se:uched to determine the next protocollayer to cali, and control is then
passed to thaL layer. If the W Type is nOl found in the table, the packet is discarded. Headers and
data ;ue relrieved from the butTer by prO!ocollayers using the ReadBuffer cali.

S8 C Il A PTE R 3 Calls lo AppleTalk Protocols

44 Ai.· lQl#P$,.)14\&U.Ji!iP ,WP...OL$,·~,,4 P$Jl$$;tiJJ.,.,_),ÇJqQJ.I

e e

LAPWrlte ($07)

The LAPWrite cali is used to send a W packet. The parameter Slructure for the LAPWrite cali is
listed here.

Position Name Slze Value

$()) Async Flag Byte $00 (Synchronous only)

$01 Comma nd Byte $07

$02 Result Code Word <---

$04 Destination Node Byte -->

$05 LAPType Byte -->

sns Pointer to BDS Long -->

The W packet is sent to the node specified in the Destination Node field, with the W Type
specifled in the list The data to be sent is deterrnined by a ButTer Data Structure (BDS), indicated
by the Pointer to BDS. The format cl the BDS is shown here.

Position Name Slzc Value

$()) First Buffer Length Word -->

$02 First Buffer Pointer Long -->

sns Second Buffer Length Word -->

$Œ Second ButTer Pointer Long -->

1

v v

$xx L.ast ButTer Length Word -->

$xx Last Buffer Pointer Long -->

$xx End-of-BDS Flag Word SFFFF

The LAPWrile cali retums these result codes, as weil as the result codes for ali system calls.

Result Code

Sü:ll3
$0:.l}i

SlWi

Description

W data too large

Retry count exhausted

Illegal w type

Ca ils to the Link Access Protocol (LAP) S9

Ml!L4P!MIMJXLM4!M4tM&MJA

(,

CaUs to the Unk Access Protocol (LAP)

The Apple IIGS funtware provides the standard LocalTalk Link Access Protocol (UAP). lt also
provides calls to read packet dau from the receive buffers, and to atUch or remove protocol
handlers.

Table 3-2list.s the ails to the W layer. The sections that follaw describe each cali, the
parameter listing, and the resuh codes.

• Tahk 3-:Z W calls

ÛlCIUIWld
Numbcr Namo: Ducr!p<Jon

$07 LAPWrite Write IAP packet
$Œ ReadBuffer Read data from butTer

SŒ AttachProt Attach protocol

SOA RemovePrDI Remove protocol

The W firrnware maintains a number of receive buffers in ilS own reserved RAM. When a packet is
received, it is placed in the next available receive buffer. If ali buffers are full, the packet is ignored
and is !ost

Received packel5 are processed in the order they are received, with the buffers being handled as
a circular queue. When a packet is found in the buffer, the W header is pu lied olf by the W layer,
the W Type table is se:uched to determine the next protocollayer to cali, and control is then
passed to thaL layer. If the W Type is nOl found in the table, the packet is discarded. Headers and
data ;ue relrieved from the butTer by prO!ocollayers using the ReadBuffer cali.

S8 C Il A PTE R 3 Calls lo AppleTalk Protocols

44 Ai.· lQl#P$,.)14\&U.Ji!iP ,WP...OL$,·~,,4 P$Jl$$;tiJJ.,.,_),ÇJqQJ.I

e e

LAPWrlte ($07)

The LAPWrite cali is used to send a W packet. The parameter Slructure for the LAPWrite cali is
listed here.

Position Name Slze Value

$()) Async Flag Byte $00 (Synchronous only)

$01 Comma nd Byte $07

$02 Result Code Word <---

$04 Destination Node Byte -->

$05 LAPType Byte -->

sns Pointer to BDS Long -->

The W packet is sent to the node specified in the Destination Node field, with the W Type
specifled in the list The data to be sent is deterrnined by a ButTer Data Structure (BDS), indicated
by the Pointer to BDS. The format cl the BDS is shown here.

Position Name Slzc Value

$()) First Buffer Length Word -->

$02 First Buffer Pointer Long -->

sns Second Buffer Length Word -->

$Œ Second ButTer Pointer Long -->

1

v v

$xx L.ast ButTer Length Word -->

$xx Last Buffer Pointer Long -->

$xx End-of-BDS Flag Word SFFFF

The LAPWrile cali retums these result codes, as weil as the result codes for ali system calls.

Result Code

Sü:ll3
$0:.l}i

SlWi

Description

W data too large

Retry count exhausted

Illegal w type

Ca ils to the Link Access Protocol (LAP) S9

Ml!L4P!MIMJXLM4!M4tM&MJA

ReadBuffer ($08)

The ReadBuffer cali allows data 10 be retrieved from the current packet being processed, including
headers fcx "clieŒ protocols". lt enables praocollayers to extract on! y their own headers without
disturbing the remainder of the packet The parameter structure for the ReadBuffer cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synchronous only)

SOI Comma nd Byte sœ
$02 Result Code Ward (...

$04 Request Count Ward ···>

$OS Buffer Pointer Long ·->

SOA Purge Aag Byte --->

SOB Amount Transferred Wcxd (...

The first timc the cali is executed, the flllllware starts at the beginning of the butTer and reads the
number ci bytes specû1ed in the parameter list

+ Note: Bccusc I.AP and DDP bath read the beginning ci the buffer, you do nO! need 10
worry about thase headers. Similariy, ATP and Olher prO!ocols rernove their headers befcxe
~=the~ .

Bytes read are placed iniO the destination buffer specified in the list. The firmware maiwins a
l.ocat10n Pointer Lhat is left painting 10 the next byte after the las! one that was read. The next
time the ali is executed, it begins with the byte to which the Location Pointer is painting.

Request Coulll specifieS how many bytes to transfer. If the Request Coulll is greater than the
arnount of dat.a remaining, on! y the aaual amount remaining is transferred, and an error is retumed.
The Amou nt Transferred fldd cootains the size of the data (in bytes) actually transferred

A non-zero value in the Purge Flag fldd auses the butTer to be purged aher the transfer ci
data. When the butTer is purged, the pack et data is no longer available. If the aU is executed with
the Purge Aag set and the Request Count is less than the arnount remaining in the butTer, the
bulT er is purged and an error is retumed, indicating that nO! ail of the data has been transferred.

• Note: L\1' protocol handlers and S!rlet lislerJers must always execute this caU wlh the
Purge A ag set bef ore rompleting; if they do nol, the next packet will never be processed.

The ReadBuffer cali retums t.hese result codes, as weil as the result codes for ail system ails.

Rtsult Code Dctcrlptlon

IO:lli No packet in butTer

so:m End of butTer

IOaJJ Data 105! in purge

~ C il A PTE R 3 û.Jls 10 AppleTalk PCO(ocols

•

...............................

•

AttachProt ($09)

The AUachProt cali allows a I.AP praocol handler 10 be attached. The parameter structure for the

AtuchProt cali is listed below.

Position Name Slzc Value

$00 Async Aag Byte $00 (Synchronous only)

SOI Comma nd Byte $Œ

$02 Result Code Ward <···

$04 Protocol Type Byte ·->

$05 Protocol Address Long -->

The ProlOcol Type and Protocol Address fields specify the I.AP type and address of the handler.
These values are installed in a I.AP Type table. When a packet is received, the flllllware's interrup!
handler searches the I.AP Type table and ails the appropriate praocol handler by using the address
specified in this cali. LAP Types may be in the range frcxn SOI to $7F.

It is nO! necessary to install a Protocol Handler in order to senJa LAP packet with a LAP Type
that has not been installed. However, if a packet is reœived thal contains a I.AP type na found in
the LAP type table, the packet is discarded. The flllllware provides a atch-all type ($l'J-') ta receive
packets coruining UjJ types thal are nO! installed. Using $FF as the PrO!OCol Type in the
AtuchProt cali auses aU such packets 10 be sent to the routine specified in the Prcxocol Address
field. The protocol handler terminaleS by doing a jump 10 the Completion Routine' Retum address

that cornes frcxn the Getlnfo cali.

+ Nole.· The machine states fcx entry and exit for a LAP handler are the same as for a

completion routine.

The re;ult codes retumed fcx the AtuchPrO! ail are as follows:

Result Code

S03Ji

S03:6

so:m

Description

lllegai!.AP type

Duplicate I.AP type

Tao many protocols

û.lls 10 the Link Access Protocol (LAP) 6!

?·~::~ '*?S-j!h.S§At!:~!SJ!f~ 21S.:€PJ1;,,-Rf-f.f~~f1-_&SJ?· 8b.~?i.i.::E«4hh.A?.!tt95P .;b .. :YkJJi§?d&9l&t4!2§!Jd!fif.9!MUJI······II!!!IJIII!!I[I!I!liiWII!I
•· · ·-·'Ir

ReadBuffer ($08)

The ReadBuffer cali allows data 10 be retrieved from the current packet being processed, including
headers fcx "clieŒ protocols". lt enables praocollayers to extract on! y their own headers without
disturbing the remainder of the packet The parameter structure for the ReadBuffer cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synchronous only)

SOI Comma nd Byte sœ
$02 Result Code Ward (...

$04 Request Count Ward ···>

$OS Buffer Pointer Long ·->

SOA Purge Aag Byte --->

SOB Amount Transferred Wcxd (...

The first timc the cali is executed, the flllllware starts at the beginning of the butTer and reads the
number ci bytes specû1ed in the parameter list

+ Note: Bccusc I.AP and DDP bath read the beginning ci the buffer, you do nO! need 10
worry about thase headers. Similariy, ATP and Olher prO!ocols rernove their headers befcxe
~=the~ .

Bytes read are placed iniO the destination buffer specified in the list. The firmware maiwins a
l.ocat10n Pointer Lhat is left painting 10 the next byte after the las! one that was read. The next
time the ali is executed, it begins with the byte to which the Location Pointer is painting.

Request Coulll specifieS how many bytes to transfer. If the Request Coulll is greater than the
arnount of dat.a remaining, on! y the aaual amount remaining is transferred, and an error is retumed.
The Amou nt Transferred fldd cootains the size of the data (in bytes) actually transferred

A non-zero value in the Purge Flag fldd auses the butTer to be purged aher the transfer ci
data. When the butTer is purged, the pack et data is no longer available. If the aU is executed with
the Purge Aag set and the Request Count is less than the arnount remaining in the butTer, the
bulT er is purged and an error is retumed, indicating that nO! ail of the data has been transferred.

• Note: L\1' protocol handlers and S!rlet lislerJers must always execute this caU wlh the
Purge A ag set bef ore rompleting; if they do nol, the next packet will never be processed.

The ReadBuffer cali retums t.hese result codes, as weil as the result codes for ail system ails.

Rtsult Code Dctcrlptlon

IO:lli No packet in butTer

so:m End of butTer

IOaJJ Data 105! in purge

~ C il A PTE R 3 û.Jls 10 AppleTalk PCO(ocols

•

...............................

•

AttachProt ($09)

The AUachProt cali allows a I.AP praocol handler 10 be attached. The parameter structure for the

AtuchProt cali is listed below.

Position Name Slzc Value

$00 Async Aag Byte $00 (Synchronous only)

SOI Comma nd Byte $Œ

$02 Result Code Ward <···

$04 Protocol Type Byte ·->

$05 Protocol Address Long -->

The ProlOcol Type and Protocol Address fields specify the I.AP type and address of the handler.
These values are installed in a I.AP Type table. When a packet is received, the flllllware's interrup!
handler searches the I.AP Type table and ails the appropriate praocol handler by using the address
specified in this cali. LAP Types may be in the range frcxn SOI to $7F.

It is nO! necessary to install a Protocol Handler in order to senJa LAP packet with a LAP Type
that has not been installed. However, if a packet is reœived thal contains a I.AP type na found in
the LAP type table, the packet is discarded. The flllllware provides a atch-all type ($l'J-') ta receive
packets coruining UjJ types thal are nO! installed. Using $FF as the PrO!OCol Type in the
AtuchProt cali auses aU such packets 10 be sent to the routine specified in the Prcxocol Address
field. The protocol handler terminaleS by doing a jump 10 the Completion Routine' Retum address

that cornes frcxn the Getlnfo cali.

+ Nole.· The machine states fcx entry and exit for a LAP handler are the same as for a

completion routine.

The re;ult codes retumed fcx the AtuchPrO! ail are as follows:

Result Code

S03Ji

S03:6

so:m

Description

lllegai!.AP type

Duplicate I.AP type

Tao many protocols

û.lls 10 the Link Access Protocol (LAP) 6!

?·~::~ '*?S-j!h.S§At!:~!SJ!f~ 21S.:€PJ1;,,-Rf-f.f~~f1-_&SJ?· 8b.~?i.i.::E«4hh.A?.!tt95P .;b .. :YkJJi§?d&9l&t4!2§!Jd!fif.9!MUJI······II!!!IJIII!!I[I!I!liiWII!I
•· · ·-·'Ir

RemoveProt ($0A)

The RemoveProt cali removes the proiOcol handler of the type specified in the Protocol Type field.
The parameter structure for the RemoveProt cali is listed below.

Position Name Slze Value
$00 Async Aag Byte $00 (Synchronous only)
$01 Comma nd Byte $0A
$02 Result Code Word (...

$04 Protocol Type Byte ...)

LAP Types thal can be removed are in the range from $01 to $7F. The catch-ali type ($FF) can also be
rernoved.

The RemoveProt caU returns these result codes, as weil as the result codes for ali system calls.

Resuh Code DescriptJon

m.J5 Illegal LAP type

$Oall Type not found

62 C HA PTE R 3 c.Jis 10 AppleTalk Protocols

e e

Calls to the Datagram Dellvery Protocol (DDP)

The Daugram Delivery Protocol (DDP) for the Apple IIGS finnware provides the sundard
AppleTalk Daugram Delivery Protocol. Table 3-3lists the calls to the DDP layer. The se(lions that
follow describe each cali, the parameter listing, and the result codes.

• TablcH DDPcalls

Camnwad
Num.ber Name Detalpllon

$OB OpenSocket Open DDP socket
$OC aoseSocket aose DDP sCx:ket
$00 SendDaugram Send datagram

Calls to the Datagram Delivery Protocol (DDP) 63

RemoveProt ($0A)

The RemoveProt cali removes the proiOcol handler of the type specified in the Protocol Type field.
The parameter structure for the RemoveProt cali is listed below.

Position Name Slze Value
$00 Async Aag Byte $00 (Synchronous only)
$01 Comma nd Byte $0A
$02 Result Code Word (...

$04 Protocol Type Byte ...)

LAP Types thal can be removed are in the range from $01 to $7F. The catch-ali type ($FF) can also be
rernoved.

The RemoveProt caU returns these result codes, as weil as the result codes for ali system calls.

Resuh Code DescriptJon

m.J5 Illegal LAP type

$Oall Type not found

62 C HA PTE R 3 c.Jis 10 AppleTalk Protocols

e e

Calls to the Datagram Dellvery Protocol (DDP)

The Daugram Delivery Protocol (DDP) for the Apple IIGS finnware provides the sundard
AppleTalk Daugram Delivery Protocol. Table 3-3lists the calls to the DDP layer. The se(lions that
follow describe each cali, the parameter listing, and the result codes.

• TablcH DDPcalls

Camnwad
Num.ber Name Detalpllon

$OB OpenSocket Open DDP socket
$OC aoseSocket aose DDP sCx:ket
$00 SendDaugram Send datagram

Calls to the Datagram Delivery Protocol (DDP) 63

OpenSocket ($OB)

The OpenSocket cali is used 10 open a DDP sockel. The parameter slruàure for !he OpenSocket cali
is listed here.

Position Name Sizc Value

$00 Async Aag Byte $00 (Synchrooous only)

$01 Comma nd Byte $OB

$02 Result Code Wcrd <---

$04 Socket Number Byte <-->

$05 dien! Address Long -·->

If the Socket Number field in !he parameter list contains 0, a dynamic socket is q>ened and a socket
number in !he range ci $8:! to $FE is retumed in !he Socket Number field. If !he Socket Number
field is non-zero and is wilhin !he correà range for static socket.s ($01 to $7F), DDP attempts to
open it as a static socket The dienl Address is !he address of !he client's socket-listener routine
and must be a valid address (not 0). This address is called by the firrnware's interrupt handler when a
pack et is received for the socket being opened Socket.s 1, 2 and 4 are preinstalled and retum an erra­
if an attempt is made to open !hem without first closing the socket5.

+ Nole: Socket numbel'5 $00 and $FF are not allowed.

The OpenSocket cali retums thesc result codes, as weil as !he result codes for ali system calfs.

Rcsuh Code Description

SO;DI Too many sockets open

$0})3 Socket already open

Invalid socket type

C H A PT f R 3 Calls to AppleTalk Protocols

@1$4$ 1 4 ;:; JJ .4..11$$. aue .. ç;a t .e $$li mu . M§M t

e e

OoseSocket ($OC)

The doseSocket cali provides !he means to dose a DDP socket. The parameter slruàUre fcr the
doseSocket cali is lisled here.

Position Name Size Value

$00 Async Aag Byte $00 (Synchrooous only)

$01 Ccrnmand Byte tt
$02 Result Code Wcrd <---

$04 Socket Number Byte -->

The Socket Number specifies !he socket 10 be closed. The doseSocket caU retums lhese result
codes, as weil as !he result codes for ail system calls.

Rcsuh Code

$0~

$0~

Description

Socket not open

Invalid socket type

Calls to !he Daugram Delivery Pr~ocol (DDP) 6S

&U::&JJ&WJQJJi,Ul& UIMMI

OpenSocket ($OB)

The OpenSocket cali is used 10 open a DDP sockel. The parameter slruàure for !he OpenSocket cali
is listed here.

Position Name Sizc Value

$00 Async Aag Byte $00 (Synchrooous only)

$01 Comma nd Byte $OB

$02 Result Code Wcrd <---

$04 Socket Number Byte <-->

$05 dien! Address Long -·->

If the Socket Number field in !he parameter list contains 0, a dynamic socket is q>ened and a socket
number in !he range ci $8:! to $FE is retumed in !he Socket Number field. If !he Socket Number
field is non-zero and is wilhin !he correà range for static socket.s ($01 to $7F), DDP attempts to
open it as a static socket The dienl Address is !he address of !he client's socket-listener routine
and must be a valid address (not 0). This address is called by the firrnware's interrupt handler when a
pack et is received for the socket being opened Socket.s 1, 2 and 4 are preinstalled and retum an erra­
if an attempt is made to open !hem without first closing the socket5.

+ Nole: Socket numbel'5 $00 and $FF are not allowed.

The OpenSocket cali retums thesc result codes, as weil as !he result codes for ali system calfs.

Rcsuh Code Description

SO;DI Too many sockets open

$0})3 Socket already open

Invalid socket type

C H A PT f R 3 Calls to AppleTalk Protocols

@1$4$ 1 4 ;:; JJ .4..11$$. aue .. ç;a t .e $$li mu . M§M t

e e

OoseSocket ($OC)

The doseSocket cali provides !he means to dose a DDP socket. The parameter slruàUre fcr the
doseSocket cali is lisled here.

Position Name Size Value

$00 Async Aag Byte $00 (Synchrooous only)

$01 Ccrnmand Byte tt
$02 Result Code Wcrd <---

$04 Socket Number Byte -->

The Socket Number specifies !he socket 10 be closed. The doseSocket caU retums lhese result
codes, as weil as !he result codes for ail system calls.

Rcsuh Code

$0~

$0~

Description

Socket not open

Invalid socket type

Calls to !he Daugram Delivery Pr~ocol (DDP) 6S

&U::&JJ&WJQJJi,Ul& UIMMI

SendDatagram ($OD) The BDS Pointer points 10 a Bulfer Data Structure (BDS), which in tum points 10 the DDP data 10

e e be sent. The foonat of the BDS is shawn in the following list.

The SendDatagram cali is used 10 send a datagram. The parameter structure for the SendDatagram Position Name Size Value
cali is 1 isted as foUows:

$00 Reserved 6 Bytes -->
Position Name Sizc Value sœ First Bulfer Length Word -->
$00 Async Aag Byte $00 (Synchronous only) $œ First Buffer Pointer Long -->
$01 Comma nd Byte $00 $OC Second Buffer Length Word -->
$02 Result Code Word <--- $OE Second Bulfer Pointer Long -->
$01 Checksum Aag Byte --> 1

$05 Destination Network <Word> ---> v v
$117 Desiination Node Byte --> $xx I.ast Bulfer Length Word -->
sœ Destination Socket Byte --> $xx Last Bulfer Pointer Long -->
$IJ) Source Socket Byte ··-> $xx End-of-BOS Flag Word $FFFF
$0A DDPType Byte --->

The SendDatagram cali retums these result codes, as weil as the result codes for ail system calls.
$OB BDS Pointer Long --->

Resuh Code Description
The Checksum Aag applies only to internet packets. If the flag is 0, no checksum is calculated and

$()~ Socket not open
an internet packet has 0 in the checksum field of the DDP header. If the flag is non-zero, the DDP

$0m lnvalid socket type checksum is calculated only if the packet is an internet packet and is included in the long DDP
header. If the size of DDP data (thal is, the sum of the BOS bulfer lengths) is greater than 586, an $()~ DO P data tao large

error of $0305 is retumed. e e
• Note: A ODP socket must be opened in order 10 send a datagram

66 C Il A PT fR 3 Calls to AppleTalk Protocols Calls to the Datagram Oelivery Praocol (ODP) 67

SendDatagram ($OD) The BDS Pointer points 10 a Bulfer Data Structure (BDS), which in tum points 10 the DDP data 10

e e be sent. The foonat of the BDS is shawn in the following list.

The SendDatagram cali is used 10 send a datagram. The parameter structure for the SendDatagram Position Name Size Value
cali is 1 isted as foUows:

$00 Reserved 6 Bytes -->
Position Name Sizc Value sœ First Bulfer Length Word -->
$00 Async Aag Byte $00 (Synchronous only) $œ First Buffer Pointer Long -->
$01 Comma nd Byte $00 $OC Second Buffer Length Word -->
$02 Result Code Word <--- $OE Second Bulfer Pointer Long -->
$01 Checksum Aag Byte --> 1

$05 Destination Network <Word> ---> v v
$117 Desiination Node Byte --> $xx I.ast Bulfer Length Word -->
sœ Destination Socket Byte --> $xx Last Bulfer Pointer Long -->
$IJ) Source Socket Byte ··-> $xx End-of-BOS Flag Word $FFFF
$0A DDPType Byte --->

The SendDatagram cali retums these result codes, as weil as the result codes for ail system calls.
$OB BDS Pointer Long --->

Resuh Code Description
The Checksum Aag applies only to internet packets. If the flag is 0, no checksum is calculated and

$()~ Socket not open
an internet packet has 0 in the checksum field of the DDP header. If the flag is non-zero, the DDP

$0m lnvalid socket type checksum is calculated only if the packet is an internet packet and is included in the long DDP
header. If the size of DDP data (thal is, the sum of the BOS bulfer lengths) is greater than 586, an $()~ DO P data tao large

error of $0305 is retumed. e e
• Note: A ODP socket must be opened in order 10 send a datagram

66 C Il A PT fR 3 Calls to AppleTalk Protocols Calls to the Datagram Oelivery Praocol (ODP) 67

Calls to the Name Binding Protocol (NBP)

The Name Binding Protocol (NBP) fCJ' the Apple IIGS firmware provides the sundard AppleTalk
Name Binding Pràocol. This seàion discus.ses caUs to the NBP layer, listed in Table 3-4. The
sections !hat follow describe each cali, the parameter listing, and the result codes.

• Table }-4 NBP caUs

Command
Numhc:r Namc Description

$0E RegisterName Register name
$OF RernoveName Remove name
$10 LookupName Lookup name

$11 ConfirmName Confirm name

$46 NBPKill Cancel Asynchronous NBP cali

68 C Il APTE R 3 Calls to AppleTalk Protocols

e e

as a z: x a k. J.U!$. UI zw.•-.• ; a. t l&ktstlk Q s tt iL JI W #.L#It . U !LQii$2 XJL

RegisterName ($OE)

The RegisterName caU allows a name to be registered on the network. The parameter structure for
the RegisterName cali is listed here.

Position Name Slze Value

$00 Async F1ag Byte ·->
$01 Comma nd Byte $0E
m Result Code Word <---

$04 Completion Routine Ptr Long -->
sœ Name Structure Pointer Long -->
$OC Retry Interval Byte -->
$00 Retry Count Byte ·-->
$0E Reserved Word x
$10 Socket Number =Byte -->
$11 Check F1ag Byte -->

The Socket Number being registered is required in the parameter list, along with a pointer to a
structure containing the entity name (Name Structure Pointer). The caller supplies the Retry Cou nt
and Retry Interval. The interval is in 1/ 4-second periods. The Check Aag field specifies whether the
network and internai tables should be checked for a duplicate name. A value of 0 means the
network should be checked. A non-zero value prevents the check from occurring.

The Name Structure Pointer field points to a structure like the one in the following list. This
data structure must remain until the RemoveName cali removes the name.

Position

$00

m

Name

Reserved
Entity Name (NBP Format)

Slze

9 Bytes
Variable Length

Value

x
-->

An entity name is a character string consisting of three fields---<>bject, type, and zone. Each field
consists of a leading l·byte string length, followed by up to 32 string bytes. The string length
represents the number of bytes in the string. The three strings are concatenated without any
intervening padding for a tàal length of up to 99 bytes. (For more information, refer to Jnstde
AppleTaJk.)

The RegisterName cali returns these result codes, as weil as the result codes for ali system caUs.

Result Code

SO«ll
$0«)2

~

$0407

SO«ll

Description

Too many names

Name already exists

lnvalid name format

Incorrect address

Too many NBP processes

Calls to the Name Binding Prcxocol (NBP) 69

AHIM!Uiih ttW.. d .lEt t ù !J jj u tL a;; JUS! t Hi dtd 1 diiJ JS.Q

Calls to the Name Binding Protocol (NBP)

The Name Binding Protocol (NBP) fCJ' the Apple IIGS firmware provides the sundard AppleTalk
Name Binding Pràocol. This seàion discus.ses caUs to the NBP layer, listed in Table 3-4. The
sections !hat follow describe each cali, the parameter listing, and the result codes.

• Table }-4 NBP caUs

Command
Numhc:r Namc Description

$0E RegisterName Register name
$OF RernoveName Remove name
$10 LookupName Lookup name

$11 ConfirmName Confirm name

$46 NBPKill Cancel Asynchronous NBP cali

68 C Il APTE R 3 Calls to AppleTalk Protocols

e e

as a z: x a k. J.U!$. UI zw.•-.• ; a. t l&ktstlk Q s tt iL JI W #.L#It . U !LQii$2 XJL

RegisterName ($OE)

The RegisterName caU allows a name to be registered on the network. The parameter structure for
the RegisterName cali is listed here.

Position Name Slze Value

$00 Async F1ag Byte ·->
$01 Comma nd Byte $0E
m Result Code Word <---

$04 Completion Routine Ptr Long -->
sœ Name Structure Pointer Long -->
$OC Retry Interval Byte -->
$00 Retry Count Byte ·-->
$0E Reserved Word x
$10 Socket Number =Byte -->
$11 Check F1ag Byte -->

The Socket Number being registered is required in the parameter list, along with a pointer to a
structure containing the entity name (Name Structure Pointer). The caller supplies the Retry Cou nt
and Retry Interval. The interval is in 1/ 4-second periods. The Check Aag field specifies whether the
network and internai tables should be checked for a duplicate name. A value of 0 means the
network should be checked. A non-zero value prevents the check from occurring.

The Name Structure Pointer field points to a structure like the one in the following list. This
data structure must remain until the RemoveName cali removes the name.

Position

$00

m

Name

Reserved
Entity Name (NBP Format)

Slze

9 Bytes
Variable Length

Value

x
-->

An entity name is a character string consisting of three fields---<>bject, type, and zone. Each field
consists of a leading l·byte string length, followed by up to 32 string bytes. The string length
represents the number of bytes in the string. The three strings are concatenated without any
intervening padding for a tàal length of up to 99 bytes. (For more information, refer to Jnstde
AppleTaJk.)

The RegisterName cali returns these result codes, as weil as the result codes for ali system caUs.

Result Code

SO«ll
$0«)2

~

$0407

SO«ll

Description

Too many names

Name already exists

lnvalid name format

Incorrect address

Too many NBP processes

Calls to the Name Binding Prcxocol (NBP) 69

AHIM!Uiih ttW.. d .lEt t ù !J jj u tL a;; JUS! t Hi dtd 1 diiJ JS.Q

RemoveName ($OF)

The RemoveName cali removes the name pointed to by the Entily Name Pointer. The parameter
structure for the RemoveName cali is listed here.

Position Name Size Value

$00 Async Aag Byte $00 (Synduonous only)
$01 Comma nd Byte $OF

$02 ResultCode Ward <---

$04 Entily Name Pointer Long -->

The Entily Name Pointer poitts diTI!ctiy al the name, not to a name siTUCture as in the
RegislerName cornmand.

The RernoveName cali retums these result codes, as weil as the result codes for ali system calls.

Resuh Code Description

1003 Name not found

$00) lnvalid name format

70 C HA PTE R 3 Calls 10 AppleTalk Protorols
e e

LoolrupName ($10)

The LookupName cali perfonns a name lookup 011 the network or internet. The parameter structure
for the LookupName cali is listed here.

Position Name Size Value

$00 Async Aag Byte -->

$01 Comma nd Byte $10

$02 Result Code Ward <---

$04 Completion Routine Plr Long -->

~ Entity Name Pointer Long --->

$OC Retry lnlerval Byte -->

$00 Retry Counl Byte -->

$0E Reserved Ward x

$10 ButTer Length Ward --->

$12 ButTer Pointer Long --->

$16 Max # of Malehes Byte -->

$17 Actual # of Matches Byte <---

The caller must supply a pointer to the buffer where the matches are to be placed .(ButTer Pointér)
and the length of the butTer (ButTer Length). The structure of the data rerurned in the butTer is as
follows:

Position

$00

$02

$03

04

$OS

Name

Firsl Network #

First Node#

First Socket #

First Enumerator

Firsl Enlily Name

Slze

<Ward>

Byte

Byte

Byte

Variable Length

First internet address

(refer lo lnslde App/eTalk)

The secood and subsequent internet addresses observe the same structure. ln the following
example, :a is the address c:i the byte following the last byte of the previous Entily Name.

Calls to the Name Binding Protocol (NBP) 71

RemoveName ($OF)

The RemoveName cali removes the name pointed to by the Entily Name Pointer. The parameter
structure for the RemoveName cali is listed here.

Position Name Size Value

$00 Async Aag Byte $00 (Synduonous only)
$01 Comma nd Byte $OF

$02 ResultCode Ward <---

$04 Entily Name Pointer Long -->

The Entily Name Pointer poitts diTI!ctiy al the name, not to a name siTUCture as in the
RegislerName cornmand.

The RernoveName cali retums these result codes, as weil as the result codes for ali system calls.

Resuh Code Description

1003 Name not found

$00) lnvalid name format

70 C HA PTE R 3 Calls 10 AppleTalk Protorols
e e

LoolrupName ($10)

The LookupName cali perfonns a name lookup 011 the network or internet. The parameter structure
for the LookupName cali is listed here.

Position Name Size Value

$00 Async Aag Byte -->

$01 Comma nd Byte $10

$02 Result Code Ward <---

$04 Completion Routine Plr Long -->

~ Entity Name Pointer Long --->

$OC Retry lnlerval Byte -->

$00 Retry Counl Byte -->

$0E Reserved Ward x

$10 ButTer Length Ward --->

$12 ButTer Pointer Long --->

$16 Max # of Malehes Byte -->

$17 Actual # of Matches Byte <---

The caller must supply a pointer to the buffer where the matches are to be placed .(ButTer Pointér)
and the length of the butTer (ButTer Length). The structure of the data rerurned in the butTer is as
follows:

Position

$00

$02

$03

04

$OS

Name

Firsl Network #

First Node#

First Socket #

First Enumerator

Firsl Enlily Name

Slze

<Ward>

Byte

Byte

Byte

Variable Length

First internet address

(refer lo lnslde App/eTalk)

The secood and subsequent internet addresses observe the same structure. ln the following
example, :a is the address c:i the byte following the last byte of the previous Entily Name.

Calls to the Name Binding Protocol (NBP) 71

CL

Position

xx+OO

Name

Nat lnlemet Address (which includes the Network 1,

Node 1, and Socket 1 of the next Internet)

Nat Enumera10r Byte

Next Entity Name

lt is up to the caller to supply the values for the Max 1 of Matches, Retry Count, and Retry lnterval
fields. The Retry lnterval is in 1/4-second periods. The value for the Actual 1 of Ma!ches will be
returned in the parameter list when the cali completes.

The LookupNarne cali retums these result codes, as weil as the result codes for ali system caUs.

Resuh Code DescrlptJon

$0401 Too many narnes

$0404 User's buffet full

~ lnvalid name format

Too many NBP processes

72 C HA PTE R 3 Calls to AppleTalk Pr01ocols

e e

ConflrmName ($11)

The ÛlllfirlltNarne caU requires the narne and address being confirmed. The parameter structure for
the CoofirmName cali is listed here.

Position Name Slze Value

$00 Async Aag Byte -->

SOI Comma nd Byte $11

$02 Result Code Word <---
$04 Completion Routine Ptr Long -->
sœ Entity Narne Pointer Long -->
tt Retry lnterval Byte -->
$00 Retry Count Byte -->
$0E Reserved Word x

$10 Network Number <Word> -->

$12 Node Number Byte -->
$13 Socket Number Byte -->
$14 Aaual Socket Number Byte <---

The Retry Count and Retry Interval are required. The Retry lnterval is in 1/4 second periods. The
Actual Socket Number ficld retums the actual socket number found for the narne. The
ConfirmNarne caU will not conf1r111 a narne in the caller's own node.

The Conflri!INarne cali retums these result codes, as weil as the result codes fdr ali system calls.

Resuh Code DescrlptJon

$0«)3 Narne NOl Found

~ nvalid narne format

$0407 ncorrect address

$04Œ Too many NBP processes

Calls to the Narne Binding Praocol (NBP) 73

J!&.Ji&à&i4&Ui&&

CL

Position

xx+OO

Name

Nat lnlemet Address (which includes the Network 1,

Node 1, and Socket 1 of the next Internet)

Nat Enumera10r Byte

Next Entity Name

lt is up to the caller to supply the values for the Max 1 of Matches, Retry Count, and Retry lnterval
fields. The Retry lnterval is in 1/4-second periods. The value for the Actual 1 of Ma!ches will be
returned in the parameter list when the cali completes.

The LookupNarne cali retums these result codes, as weil as the result codes for ali system caUs.

Resuh Code DescrlptJon

$0401 Too many narnes

$0404 User's buffet full

~ lnvalid name format

Too many NBP processes

72 C HA PTE R 3 Calls to AppleTalk Pr01ocols

e e

ConflrmName ($11)

The ÛlllfirlltNarne caU requires the narne and address being confirmed. The parameter structure for
the CoofirmName cali is listed here.

Position Name Slze Value

$00 Async Aag Byte -->

SOI Comma nd Byte $11

$02 Result Code Word <---
$04 Completion Routine Ptr Long -->
sœ Entity Narne Pointer Long -->
tt Retry lnterval Byte -->
$00 Retry Count Byte -->
$0E Reserved Word x

$10 Network Number <Word> -->

$12 Node Number Byte -->
$13 Socket Number Byte -->
$14 Aaual Socket Number Byte <---

The Retry Count and Retry Interval are required. The Retry lnterval is in 1/4 second periods. The
Actual Socket Number ficld retums the actual socket number found for the narne. The
ConfirmNarne caU will not conf1r111 a narne in the caller's own node.

The Conflri!INarne cali retums these result codes, as weil as the result codes fdr ali system calls.

Resuh Code DescrlptJon

$0«)3 Narne NOl Found

~ nvalid narne format

$0407 ncorrect address

$04Œ Too many NBP processes

Calls to the Narne Binding Praocol (NBP) 73

J!&.Ji&à&i4&Ui&&

NBPKill ($46)

The NBPKill call is used to cancel an asynchronous NBP cali before il completes. The parameter
slructure for the NBPKül calllistlisted here.

Position Namc Slzc Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Comma nd Byte $46
$02 Result Code Word <---
$04 ParamBiockPointer Long --->

ParamBiockPoinler must poinlto the beginning of the parameter block thal is currently being used
by the asynchronous calllha! is lO be canceled.

The cancelled NBP cali wül romplele wilh error $0409.
The NBPKill call returns lhese result codes, as weil as the result codes for ali system calls.

Resull

S040A

74

Description

ParamBiock Na Found

CIl APTE R 3 Calls lO AppleTalk Protocols

e e

e e

Calls to the AppleTalk Transaction Protocol (ATP)

The AppleTalk Transaction PfO(ocol (A TP) for the Apple IIGS fumware provides full
implemenlalion of the ATP praocol, allowing use of ali of the features specifled in the AppleTalk
ATP. specifiCation. Table 3-S lislS calls to the ATP layer; the following section describes each of these
calls, and gives the parameler list and result codes for each cali.

• Table 3-S ATP calls

Commaod
Numbrr Namc Dctcriptk>o

$12 SendATPReq Send ATP request

$13 CancelATPReq Cancel ATP request

$14 OpenA TPSocket Open A TP respooding socket

$15 OoseA TPSocket Oose A TP responding socket

$16 GelATPReq Gel A TP request

$17 SendATPResp Send A TP response

$18 AddATPResp Add ATP response

$19 ReiATPCB Release responding coolrol block

Calls to the AppleTalk Transaction Protocol (ATP) 75

NBPKill ($46)

The NBPKill call is used to cancel an asynchronous NBP cali before il completes. The parameter
slructure for the NBPKül calllistlisted here.

Position Namc Slzc Value
$00 Async Flag Byte $00 (Synchronous only)
$01 Comma nd Byte $46
$02 Result Code Word <---
$04 ParamBiockPointer Long --->

ParamBiockPoinler must poinlto the beginning of the parameter block thal is currently being used
by the asynchronous calllha! is lO be canceled.

The cancelled NBP cali wül romplele wilh error $0409.
The NBPKill call returns lhese result codes, as weil as the result codes for ali system calls.

Resull

S040A

74

Description

ParamBiock Na Found

CIl APTE R 3 Calls lO AppleTalk Protocols

e e

e e

Calls to the AppleTalk Transaction Protocol (ATP)

The AppleTalk Transaction PfO(ocol (A TP) for the Apple IIGS fumware provides full
implemenlalion of the ATP praocol, allowing use of ali of the features specifled in the AppleTalk
ATP. specifiCation. Table 3-S lislS calls to the ATP layer; the following section describes each of these
calls, and gives the parameler list and result codes for each cali.

• Table 3-S ATP calls

Commaod
Numbrr Namc Dctcriptk>o

$12 SendATPReq Send ATP request

$13 CancelATPReq Cancel ATP request

$14 OpenA TPSocket Open A TP respooding socket

$15 OoseA TPSocket Oose A TP responding socket

$16 GelATPReq Gel A TP request

$17 SendATPResp Send A TP response

$18 AddATPResp Add ATP response

$19 ReiATPCB Release responding coolrol block

Calls to the AppleTalk Transaction Protocol (ATP) 75

Send.ATPReq ($12)

The SendATI'Req cali is used to send an A TI' request. The parameter structure for the SendATPReq
cali is listed here.

Position Namc Slzc Value

$00 Async Flag Byte ···>
$01 Comma nd Byte $12
S02 Result Code Word (...

$01 Completion Routine Pli Long ... >

sœ Dynamic Socket Number Byte (...

sœ Destination Network <Word> ... >

SOB Destination Node Byte ... >

soc Destination Socket Byte ... >

$00 A 11' Transaction ID <Word> <~~-

SOF Request Butfer Length Word ... >

$11 Request Butfer Pointer Long ... >

SIS User Bytes 4 Bytes ... >

$19 ' of Response Buffers Byte ·-->

S1A Response BOS pointer Long --->

SIE ATP Flags Byte ·->
SIF Retry 1 nterval Byte ... >
$2) Retry Count Byte -->
$21 Current Bitmap Byte (.. ->

$Z2 ' of Responses Reœived Byte (...

$23 Reserved 6 Bytes x

The Dynamic Socket Number indicates the DDP socket that A TP is using. The Response BDS
Pointer points to a Butfer Dau Structure (BOS) for the response packets. Bit 5 in the A TP Flags
field may be set to indicate an exaàly-once transaction. The other bits are nO! used in this cali. The
caller must supply the values for the Retry Count and Retry lnterval fields. The retry interval is in
114-serond periods.

The User Bytes f1eld specifies the A TI' User Bytes to be sent in the request packel You must
set the Current Bitmap fteld with the proper value for the number of packets you're requesting. For
instance, if yœ requcst packets 1 through 4, set the bitmap to SOF.

Wh ile the call is exocuting, the Result Code fteld contains SFF in the low byte. The ATP
Transaction ID (110) f~eld is valid, and the Current Bitmap and , of Responses Reœived fJelds are
updated thrœghœt call execution When the cali completes, the ' of Responses Reœived fJeld
1ndicates how many packets were reœived, and the Current Bitmap field indicates which packets
were reœived.

76 CH A PTE R 3 Calls to AppleTalk Pro10cols

&22. . 4. lJ...l.JIZ: ..). t ... L Ç.U· A . .t.,. ·*.

•

Bits 0-14 of the Actual Length field contains the length of the data received for the buffer with
which it is associated. If the data length is larger than the buffer supplied, the high bit of the A<.tual
Length field is set to indicate the overflow, and bits 0 to 14 contains the length of the data actually
transferred to the butfer. The User Bytes field contains the A 11' User Bytes retumed wih the
packet that was placed into the butfer.

The result codes retumed for the SendA TPReq cali are listed here.

Re:sult Code

$0501

~

$0507

S05œ

$050B

S050C

Dcscrlptlon

A 11' data too large

Too many active A TP calls

A TP send request aborted

A TP send request failed, retry exceeded

Too many responses expected

Unable to open DDP socket

C311s to the AppleTalk Transa<.tion Protocol (A TP) 77

&Eii!D!IR i442€&4.lZW

Send.ATPReq ($12)

The SendATI'Req cali is used to send an A TI' request. The parameter structure for the SendATPReq
cali is listed here.

Position Namc Slzc Value

$00 Async Flag Byte ···>
$01 Comma nd Byte $12
S02 Result Code Word (...

$01 Completion Routine Pli Long ... >

sœ Dynamic Socket Number Byte (...

sœ Destination Network <Word> ... >

SOB Destination Node Byte ... >

soc Destination Socket Byte ... >

$00 A 11' Transaction ID <Word> <~~-

SOF Request Butfer Length Word ... >

$11 Request Butfer Pointer Long ... >

SIS User Bytes 4 Bytes ... >

$19 ' of Response Buffers Byte ·-->

S1A Response BOS pointer Long --->

SIE ATP Flags Byte ·->
SIF Retry 1 nterval Byte ... >
$2) Retry Count Byte -->
$21 Current Bitmap Byte (.. ->

$Z2 ' of Responses Reœived Byte (...

$23 Reserved 6 Bytes x

The Dynamic Socket Number indicates the DDP socket that A TP is using. The Response BDS
Pointer points to a Butfer Dau Structure (BOS) for the response packets. Bit 5 in the A TP Flags
field may be set to indicate an exaàly-once transaction. The other bits are nO! used in this cali. The
caller must supply the values for the Retry Count and Retry lnterval fields. The retry interval is in
114-serond periods.

The User Bytes f1eld specifies the A TI' User Bytes to be sent in the request packel You must
set the Current Bitmap fteld with the proper value for the number of packets you're requesting. For
instance, if yœ requcst packets 1 through 4, set the bitmap to SOF.

Wh ile the call is exocuting, the Result Code fteld contains SFF in the low byte. The ATP
Transaction ID (110) f~eld is valid, and the Current Bitmap and , of Responses Reœived fJelds are
updated thrœghœt call execution When the cali completes, the ' of Responses Reœived fJeld
1ndicates how many packets were reœived, and the Current Bitmap field indicates which packets
were reœived.

76 CH A PTE R 3 Calls to AppleTalk Pro10cols

&22. . 4. lJ...l.JIZ: ..). t ... L Ç.U· A . .t.,. ·*.

•

Bits 0-14 of the Actual Length field contains the length of the data received for the buffer with
which it is associated. If the data length is larger than the buffer supplied, the high bit of the A<.tual
Length field is set to indicate the overflow, and bits 0 to 14 contains the length of the data actually
transferred to the butfer. The User Bytes field contains the A 11' User Bytes retumed wih the
packet that was placed into the butfer.

The result codes retumed for the SendA TPReq cali are listed here.

Re:sult Code

$0501

~

$0507

S05œ

$050B

S050C

Dcscrlptlon

A 11' data too large

Too many active A TP calls

A TP send request aborted

A TP send request failed, retry exceeded

Too many responses expected

Unable to open DDP socket

C311s to the AppleTalk Transa<.tion Protocol (A TP) 77

&Eii!D!IR i442€&4.lZW

CancelATPReq ($13)

The CanceiA TPReq cali is used to cancel an outstanding A TP request. The parameter structure of
the CanœiATPReq cali is listed here.

Position Name Sizc Value

$00 Async Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $13

S02 Result Code Word <---

$04 A TP Transaction ID <Word> ·-->

A TP Transaction ID must co~ in the identifiCation of a request lhat is currently execuling. The
C.anceiA TPReq cali retum.s this result code, as weil as the result codes for ali system calls.

Kesult Code Description

$0503 A TP control black nO(found

OpenATPSocket ($14)

The OpenATPReq cali is used ta open an A TP responding socket. The parameter structure of the
OpenA TPReq cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synchronous only)

SOl Comma nd Byte $14

S02 Result Code Word <---

$04 Socket Number Byte <··>

If the Socket Number f1eld in the paramett:r list contains 0, a dynamic socket is opened and the
number retumed in the Socket Number fidd. If a socket number is supplied by the caller, it must be
within the correct range for SUtic sockets.

The OpenATPSocket caU retums these result codes, as weil as the result codes for ali system
calls.

Resuh Code Description

SOSOA Too many ATP sor:kets

$050C Unable to open DDP socket

78 C If APTE R 3 Calls ta AppleTalk Pr()(ocols

•

OoseATPSocket ($15)

The OoseATPSocket cali closes the specified ATP responding socket The parameter structure of
the OœeATPSocket cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $15

$02 Result Code Word <---

$04 Socket Number Byte --->

The GoseA TPSocket cali returns this result code, as weil as the result codes for ali system calls.

Kesuh Code

ml2

Description

lnvalid A TP socket

Calls to the AppleTalk Transaction Pr()(ocol (ATP) 79

CancelATPReq ($13)

The CanceiA TPReq cali is used to cancel an outstanding A TP request. The parameter structure of
the CanœiATPReq cali is listed here.

Position Name Sizc Value

$00 Async Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $13

S02 Result Code Word <---

$04 A TP Transaction ID <Word> ·-->

A TP Transaction ID must co~ in the identifiCation of a request lhat is currently execuling. The
C.anceiA TPReq cali retum.s this result code, as weil as the result codes for ali system calls.

Kesult Code Description

$0503 A TP control black nO(found

OpenATPSocket ($14)

The OpenATPReq cali is used ta open an A TP responding socket. The parameter structure of the
OpenA TPReq cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synchronous only)

SOl Comma nd Byte $14

S02 Result Code Word <---

$04 Socket Number Byte <··>

If the Socket Number f1eld in the paramett:r list contains 0, a dynamic socket is opened and the
number retumed in the Socket Number fidd. If a socket number is supplied by the caller, it must be
within the correct range for SUtic sockets.

The OpenATPSocket caU retums these result codes, as weil as the result codes for ali system
calls.

Resuh Code Description

SOSOA Too many ATP sor:kets

$050C Unable to open DDP socket

78 C If APTE R 3 Calls ta AppleTalk Pr()(ocols

•

OoseATPSocket ($15)

The OoseATPSocket cali closes the specified ATP responding socket The parameter structure of
the OœeATPSocket cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $15

$02 Result Code Word <---

$04 Socket Number Byte --->

The GoseA TPSocket cali returns this result code, as weil as the result codes for ali system calls.

Kesuh Code

ml2

Description

lnvalid A TP socket

Calls to the AppleTalk Transaction Pr()(ocol (ATP) 79

GetATPReq ($16)

The GelATPReq cali prepares the specified socket to receive a request More than one GetATPReq
may be out.standing on a sockel lbe parameter structure of the GetATPReq cali is listed here.

Position Namc: Slzc: Value:
$00 Async Flag Byte --~>

SOI Comma nd Byte $I6

$02 Result Code Word <---
$()j Completion Routine Ptr Long --->

sœ Response Socket 1 Byte --->

sœ Source Network Number <Word> <---

SOB Source Node Number Byte <---

$OC Source Socket Number Byte <---

$00 ATP Transaction ID <Word> <---

$OF Request Bulfer Lenglh Word --->

Il Request Bulfer Pointer Long --->

$I5 User Bytes 4 Bytes <---

$I9 Actual Request Lenglh Word <---

SIB ATP Flags Byte <---

SIC Bitmap Byte <---

$ID Reserved Long x

When the cali completes, the parameter list romains the header data from the request. Bit 5 of the
A TP Aags field specifies whether or nct the request is an exactly-orx:e transaction.

.Â. Waming lbere is a 30-second lime-out With oo further requests of the same no
after 30 seconds, the memory that was allocated for the Control Black is
rdeased (that is, memory !hat was created for this transaction when a
request is received).

The GetATPReq call retums ~ n:sult codes, as weil as the result codes for ail system calls.

Rc:suh Code Dacrlption

$05(12 Invalid A TP socket

mJ4 Too many active A TP calls. This result cou id will ne ver be retumed

SO'iŒ Async cali aborted, socket was closed

80 C Il A PT E R 3 Calls 10 AppleTalk Prctocols

P · 44t lM A. g A.tA4h Jiij§{Q#JI 4 ·. :q u.u n

SendATPResp ($17)

The SendA TPResp cali is used to send a response to a received request.

• Note: This cali does not complete until ali packets have been sent and acknowledged .

The parameter structure for the SendA TPResp cali is 1 isted here.

Position Namc: Slzc: Value:

$00 Async Flag Byte -->

SOI Comma nd Byte $I7

$02 ResultCode Word <---

$()j Completion Routine Ptr Long -->

sœ Response Socket 1 Byte -->

sœ Dest Network Number <Word> -->

SOB Dest Node Number Byte -->

$OC Oest Socket Number Byte -->

$00 A TP Transaction ID <Word> ->

$OF 1 of Response Buffers Byte -->

$IO Toul ATP Packets Byte -->

$11 Response BOS Pointer Long -->

$I5 ATP Flags Byte -->

$I6 Current Bitmap Byte <-->

$I7 Add Routine Pointer Long -->

SIB Add Bitmap Byte <---

• Note: 11 is the responsibility of the user 10 set the biunap as indicated in lnstde AppleTali
for the number of packets being sent before the user makes the call.

lbe Apple llGS flf01W:Ue must use the correct Response Socket '(obtained from an
OpenATPSocket call), as weil as the Destination Address and ATP Transaction ID (ol:ùined from
the GetATPReq cali). The TOI2l ATP Packets fteld tells ATP the total number of packets to be sert
in the response.

The value in the 1 of Response Buffers fteld specifies how many of the Total ATP Packets are
being sent with this cali, and must match the number of packets you are sending.

CaUs to the AppleTalk Transaction Prol<xol (ATP) 81

GetATPReq ($16)

The GelATPReq cali prepares the specified socket to receive a request More than one GetATPReq
may be out.standing on a sockel lbe parameter structure of the GetATPReq cali is listed here.

Position Namc: Slzc: Value:
$00 Async Flag Byte --~>

SOI Comma nd Byte $I6

$02 Result Code Word <---
$()j Completion Routine Ptr Long --->

sœ Response Socket 1 Byte --->

sœ Source Network Number <Word> <---

SOB Source Node Number Byte <---

$OC Source Socket Number Byte <---

$00 ATP Transaction ID <Word> <---

$OF Request Bulfer Lenglh Word --->

Il Request Bulfer Pointer Long --->

$I5 User Bytes 4 Bytes <---

$I9 Actual Request Lenglh Word <---

SIB ATP Flags Byte <---

SIC Bitmap Byte <---

$ID Reserved Long x

When the cali completes, the parameter list romains the header data from the request. Bit 5 of the
A TP Aags field specifies whether or nct the request is an exactly-orx:e transaction.

.Â. Waming lbere is a 30-second lime-out With oo further requests of the same no
after 30 seconds, the memory that was allocated for the Control Black is
rdeased (that is, memory !hat was created for this transaction when a
request is received).

The GetATPReq call retums ~ n:sult codes, as weil as the result codes for ail system calls.

Rc:suh Code Dacrlption

$05(12 Invalid A TP socket

mJ4 Too many active A TP calls. This result cou id will ne ver be retumed

SO'iŒ Async cali aborted, socket was closed

80 C Il A PT E R 3 Calls 10 AppleTalk Prctocols

P · 44t lM A. g A.tA4h Jiij§{Q#JI 4 ·. :q u.u n

SendATPResp ($17)

The SendA TPResp cali is used to send a response to a received request.

• Note: This cali does not complete until ali packets have been sent and acknowledged .

The parameter structure for the SendA TPResp cali is 1 isted here.

Position Namc: Slzc: Value:

$00 Async Flag Byte -->

SOI Comma nd Byte $I7

$02 ResultCode Word <---

$()j Completion Routine Ptr Long -->

sœ Response Socket 1 Byte -->

sœ Dest Network Number <Word> -->

SOB Dest Node Number Byte -->

$OC Oest Socket Number Byte -->

$00 A TP Transaction ID <Word> ->

$OF 1 of Response Buffers Byte -->

$IO Toul ATP Packets Byte -->

$11 Response BOS Pointer Long -->

$I5 ATP Flags Byte -->

$I6 Current Bitmap Byte <-->

$I7 Add Routine Pointer Long -->

SIB Add Bitmap Byte <---

• Note: 11 is the responsibility of the user 10 set the biunap as indicated in lnstde AppleTali
for the number of packets being sent before the user makes the call.

lbe Apple llGS flf01W:Ue must use the correct Response Socket '(obtained from an
OpenATPSocket call), as weil as the Destination Address and ATP Transaction ID (ol:ùined from
the GetATPReq cali). The TOI2l ATP Packets fteld tells ATP the total number of packets to be sert
in the response.

The value in the 1 of Response Buffers fteld specifies how many of the Total ATP Packets are
being sent with this cali, and must match the number of packets you are sending.

CaUs to the AppleTalk Transaction Prol<xol (ATP) 81

The Respoose BOS field must contain room for the number of bulfers specifled in !be Total
ATP Packets fldd The format of the Response BOS is the same as thal for SendATPReq; however,
the Ac!Ual Length field is mx used, and the User Bytes are supplied by the caller rather than
rerumed by !be cali. If any of the BOS bulfers are loo small!o contain ail the daia in the packet
assigned 10 il, !be ex1r.1 data for thal packet only is los~ and no error is rerurœd

Y ou must supply a 0 in the Ackl Routine Poirùer and Add Bitmap fields. These fields are na
curren!ly used for the Apple IIGS worksLation.

The SendA TPResp cali rerums these resul! codes, as weil as the resul! codes for ali system caUs.

Kesuh Code

$0501

$0502

$0503

$0505

Description

A TP data 100 large

lnvalid ATP socke!

ATP conuol block mx found

No release reœived

sosœ Async cali aborted, sockel was clœed

$050B Too many responses expeaed

$0500 A TP Se nd Response was released

8Z CH A PTE R 3 Calls 10 AppleTalk Pro!ocols

• AddATPResp ($18)

This cali is currendy nol implemen!ed.

RelATPCB ($19)

The RdATPCB cali is used by the responding node lo release !he con!rol block and ali bulfers
associaled with a response lo an aaaly-once !ranSaclion. The con!rol block and ali held buffers are
released. Parame!er usage for !be ReiA TPCB cali is lis!ed here.

Position Namc: Slzc: Value
$00 Async Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $19

$02 Resul! Code Word <---

$04 Response Socket 1 Byte -->

$05 Dest Ne!Work Number <Word> -->

$07 Dest Node Number Byte -->

$Œ Des! Socket Number Byte -->

$09 A TP Transaaion ID <Word> -->

The ReiATPCB cali retums this resul! code, as weU as the resul! codes for ali system calls.

Kc:suh Code Description

$0503 ATP con!rol block nol found

Calls 10 the AppleTalk Transaclion Pro!ocol (A TP) 83

4§&

The Respoose BOS field must contain room for the number of bulfers specifled in !be Total
ATP Packets fldd The format of the Response BOS is the same as thal for SendATPReq; however,
the Ac!Ual Length field is mx used, and the User Bytes are supplied by the caller rather than
rerumed by !be cali. If any of the BOS bulfers are loo small!o contain ail the daia in the packet
assigned 10 il, !be ex1r.1 data for thal packet only is los~ and no error is rerurœd

Y ou must supply a 0 in the Ackl Routine Poirùer and Add Bitmap fields. These fields are na
curren!ly used for the Apple IIGS worksLation.

The SendA TPResp cali rerums these resul! codes, as weil as the resul! codes for ali system caUs.

Kesuh Code

$0501

$0502

$0503

$0505

Description

A TP data 100 large

lnvalid ATP socke!

ATP conuol block mx found

No release reœived

sosœ Async cali aborted, sockel was clœed

$050B Too many responses expeaed

$0500 A TP Se nd Response was released

8Z CH A PTE R 3 Calls 10 AppleTalk Pro!ocols

• AddATPResp ($18)

This cali is currendy nol implemen!ed.

RelATPCB ($19)

The RdATPCB cali is used by the responding node lo release !he con!rol block and ali bulfers
associaled with a response lo an aaaly-once !ranSaclion. The con!rol block and ali held buffers are
released. Parame!er usage for !be ReiA TPCB cali is lis!ed here.

Position Namc: Slzc: Value
$00 Async Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $19

$02 Resul! Code Word <---

$04 Response Socket 1 Byte -->

$05 Dest Ne!Work Number <Word> -->

$07 Dest Node Number Byte -->

$Œ Des! Socket Number Byte -->

$09 A TP Transaaion ID <Word> -->

The ReiATPCB cali retums this resul! code, as weU as the resul! codes for ali system calls.

Kc:suh Code Description

$0503 ATP con!rol block nol found

Calls 10 the AppleTalk Transaclion Pro!ocol (A TP) 83

4§&

:a.;

Calls to the Zone Information Protocol (ZIP)

This seàioo describes calls to the Zone Information Protocol (ZIP) layer oo the Apple IIGS thal
may be needed fer normal workstation use cŒnmuniCiting with and through bridges. The other
ZIP calls (describcd in lnrld8 App/8Taik), not supported on the Apple IIGS, are used for taking down
and bringing up a bridge, and woold be pan of special utililies used fŒ such purposes.

Table 3-61ists the ZIP Cllls supponed. The sections that follow describe each Clll, the
parameter listing, and the result codes.

• Table 3-6 ZIP Cllls

CDmmand
Numbct l'falK De5crlptlon

SIA GetMyZone Get wne name for my wne
SIB GetZonelist List wnes of ali networks

CH A PTE R 3 Calls to AppleTalk Protocols

•

e e

GetMyZone ($lA)

The GetMyZone cali retums the wne name of the network that the workstation is on. The
pararneter structure for the GetMyZone Clll is listed here.

Position Name Slze Value

~ Async Aag Byte -->

$01 Comma nd Byte S1A

$02 Result Code Word <···

SOt Compldion Routine Ptr Long -->

$Œ Buffer Pointer Long -->

$OC Retry lnterval Byte -->

$00 Retry Count Byte -->

$0E Reserved Word x

This Clll assumes thal the buffer is at least 33 bytes long. The Rdry lnterval is in 1/4-second
periods. The GetMyZone cali n:tums these result codes, as weil as the result codes fŒ ail system

calls.

Rcsuh Code Description

SOOll NdWork error

$00>3 ZIP not found

Calls to the Zone Information Protocol (ZIP) 85

:a.;

Calls to the Zone Information Protocol (ZIP)

This seàioo describes calls to the Zone Information Protocol (ZIP) layer oo the Apple IIGS thal
may be needed fer normal workstation use cŒnmuniCiting with and through bridges. The other
ZIP calls (describcd in lnrld8 App/8Taik), not supported on the Apple IIGS, are used for taking down
and bringing up a bridge, and woold be pan of special utililies used fŒ such purposes.

Table 3-61ists the ZIP Cllls supponed. The sections that follow describe each Clll, the
parameter listing, and the result codes.

• Table 3-6 ZIP Cllls

CDmmand
Numbct l'falK De5crlptlon

SIA GetMyZone Get wne name for my wne
SIB GetZonelist List wnes of ali networks

CH A PTE R 3 Calls to AppleTalk Protocols

•

e e

GetMyZone ($lA)

The GetMyZone cali retums the wne name of the network that the workstation is on. The
pararneter structure for the GetMyZone Clll is listed here.

Position Name Slze Value

~ Async Aag Byte -->

$01 Comma nd Byte S1A

$02 Result Code Word <···

SOt Compldion Routine Ptr Long -->

$Œ Buffer Pointer Long -->

$OC Retry lnterval Byte -->

$00 Retry Count Byte -->

$0E Reserved Word x

This Clll assumes thal the buffer is at least 33 bytes long. The Rdry lnterval is in 1/4-second
periods. The GetMyZone cali n:tums these result codes, as weil as the result codes fŒ ail system

calls.

Rcsuh Code Description

SOOll NdWork error

$00>3 ZIP not found

Calls to the Zone Information Protocol (ZIP) 85

GetZooeUst ($lB)

The GelZooeüst cali retums the complete list of zones on the internet The parameter slructure of
!he GelZoneüst cali is lisled hele.

Position Name Slzc Value

$00 Async Aag Byte ·->

$01 Comma nd Byte $lB

$02 ResultCode Word <---

$()! Completion Routine Ptr Long --->

sœ Buffer Lengtb Word --->

$0A Bulfer Pointer Long -->

$OE Bridge Node Number Byte --->

$Of Stan Index Word --->

S1l Retry Interval Byte -->

$12 Retry Count Byte -->

$13 ' Zones Retumed Word <---

SIS Reserved Long -->

The Bridge Node Number fldd specifies the bridge 10 which the cali is 10 be directed. This number
can be obuined through the Getlnfo cali. The user must provide the Bridge Node Number field in
this cali because more tban one: execution ci the cali may be required 10 getthe complete zone list.
Each execution of the cali must be direaed to the same bridge. The internai f~eld A-Bridge on the
Apple IIGS changes periodically if there is more than one bridge on the local network; therefore, the
user must supply the node number of the bridge 10 which the cali should be directed

The ButTer Pointer poirU to a bulfer where the list is to be placed The buffer will be filled
with as many zone names as will fil, starting with the entry specifled by Stan Index.

+ Nole: Stan Index must stan witb 1; it canna use O.

The value in the 1 Zones Retumed fldd indicates how many zone names have been returned in the
buffer. The Retry lnterval is in 1/4-seaxxl periods.

The GelZond.isl cali retums tbese result codes, as weil as the result codes for ali system calls.

Resull Code Description

soo:JI Network error

SOOl2 ZIP overflow

$00)3 ZIP oct found

86 CH A PTE R 3 Calls 10 AppleTalk Protocols

Calls to the AppleTalk Session Protocol (ASP)

This sectkln describes calls to the AppleTalk Session Protocol (ASP) layer on the Apple UGS
worksulion. These ASP calls follow the ASP specification very dœely.

Table 3-7lisls the ASP calls used by the Apple IIGS. The sections thal follow provide a brief
descriptkln ci each cali, as weU as the parameter listing and the result codes for each.

• Table 3-7 ASP calls

Cœlmaod
lllllllbcr Name DcacriptiDil

SIC SPGell'arms Gel parameters

$10 SPGetS!atus Gel status

SIE SPOpenSesskln Open a sesskln

$IF SPOoseSesskln dose a session

$al SPCommand Send a rommand

$21 SPWrile Write multiple packets

The SPGelPanns cali retums implementation-dependent infonnatioo regarding !he allowable sizes
ci bulfers. The maximum size of a rommand block and the maximum size of a reply or of write
data are returned in the fldcb Max Command Size and Max Data Size.

The parameter strUcture for the SPGetParms cali is listed here.

Position Name Size Value

$00 Async Aag Byte $00 Synchrooous Only

$01 Comma nd Byte SIC

$02 Result Code Word <---

$()! Max Cornmand Size Word <---

$(Xj Max Data Size Word <---

The result codes returned for the SPGetParms cali are the same as thœe for ail system calls.

Calls to the AppleTalk Session Prctocol (ASP) 87

GetZooeUst ($lB)

The GelZooeüst cali retums the complete list of zones on the internet The parameter slructure of
!he GelZoneüst cali is lisled hele.

Position Name Slzc Value

$00 Async Aag Byte ·->

$01 Comma nd Byte $lB

$02 ResultCode Word <---

$()! Completion Routine Ptr Long --->

sœ Buffer Lengtb Word --->

$0A Bulfer Pointer Long -->

$OE Bridge Node Number Byte --->

$Of Stan Index Word --->

S1l Retry Interval Byte -->

$12 Retry Count Byte -->

$13 ' Zones Retumed Word <---

SIS Reserved Long -->

The Bridge Node Number fldd specifies the bridge 10 which the cali is 10 be directed. This number
can be obuined through the Getlnfo cali. The user must provide the Bridge Node Number field in
this cali because more tban one: execution ci the cali may be required 10 getthe complete zone list.
Each execution of the cali must be direaed to the same bridge. The internai f~eld A-Bridge on the
Apple IIGS changes periodically if there is more than one bridge on the local network; therefore, the
user must supply the node number of the bridge 10 which the cali should be directed

The ButTer Pointer poirU to a bulfer where the list is to be placed The buffer will be filled
with as many zone names as will fil, starting with the entry specifled by Stan Index.

+ Nole: Stan Index must stan witb 1; it canna use O.

The value in the 1 Zones Retumed fldd indicates how many zone names have been returned in the
buffer. The Retry lnterval is in 1/4-seaxxl periods.

The GelZond.isl cali retums tbese result codes, as weil as the result codes for ali system calls.

Resull Code Description

soo:JI Network error

SOOl2 ZIP overflow

$00)3 ZIP oct found

86 CH A PTE R 3 Calls 10 AppleTalk Protocols

Calls to the AppleTalk Session Protocol (ASP)

This sectkln describes calls to the AppleTalk Session Protocol (ASP) layer on the Apple UGS
worksulion. These ASP calls follow the ASP specification very dœely.

Table 3-7lisls the ASP calls used by the Apple IIGS. The sections thal follow provide a brief
descriptkln ci each cali, as weU as the parameter listing and the result codes for each.

• Table 3-7 ASP calls

Cœlmaod
lllllllbcr Name DcacriptiDil

SIC SPGell'arms Gel parameters

$10 SPGetS!atus Gel status

SIE SPOpenSesskln Open a sesskln

$IF SPOoseSesskln dose a session

$al SPCommand Send a rommand

$21 SPWrile Write multiple packets

The SPGelPanns cali retums implementation-dependent infonnatioo regarding !he allowable sizes
ci bulfers. The maximum size of a rommand block and the maximum size of a reply or of write
data are returned in the fldcb Max Command Size and Max Data Size.

The parameter strUcture for the SPGetParms cali is listed here.

Position Name Size Value

$00 Async Aag Byte $00 Synchrooous Only

$01 Comma nd Byte SIC

$02 Result Code Word <---

$()! Max Cornmand Size Word <---

$(Xj Max Data Size Word <---

The result codes returned for the SPGetParms cali are the same as thœe for ail system calls.

Calls to the AppleTalk Session Prctocol (ASP) 87

SPGetStatus ($ID)

The SPGetSiatus oll is used by the worksulion to obuin the current status of a known server.
The parameter strutture fŒ the SPGetStatus cali is listed here.

Position Namc: Size Value

$00 A.lync Aag Byte ···>

$01 Comma nd Byte $10

$02 Result ûxle Ward (...
$(}j cornpletion Routine Ptr Long -->

sœ SLS Network N umber <Word> ·->

SOA SLSNode Byte ···>

$OB SLS Socket Byte ·->

$OC Buffer Length Word ·->

$0E Buffer Address Long ···>

$12 Length of Status Data Word (...

The Buffer Address f~eld points to the status buffer, and the Length of Status Data field indicates
ilS size. The SPGetStatus cali retums these result codes, a.s weil a.s the result codes for ali system
calls.

Kcsuh Code

$0701

$0702

$(roi

$0705

Description

Network error

Tao many ASP caUs

SizeerrŒ.

No response from server

88 CH A PTE R 3 Calls to AppleTalk Protocols

OWct i%4.# • 3#

SPOpe~lon ($lE)

The SPOpenSession cali is used by the workstation to open a session with a known server. The
parameter structure for the SPOpenSessioncall is listed here.

Position Name Slze Value

$00 A.lync Aag Byte -->

$01 Comma nd Byte $JE

$02 Result ûxle Word (...

$()j cornpletion Routine Ptr Long ·->

sœ SLS Network Number <Word> -->

$0A SLSNode Byte ·->

$OB SLS Socket Byte ·->

$OC AUention Routine Addr Long ·->

$10 Session Reference ' Byte (...

The Anention Routine Addr points to a routine to be called wben an attention packet is received.
The 2 bytes received in the attention packet are placed in the second 2 bytes of the address pointed
to by the Anention Routine Addr. The Apple IIGS then jumps to the address 4 bytes beyond the
specified address.

The 4 bytes pointed to by AUention Routine Addr include the following:

Position

0

Namc:

Session Reference '

Allen Type

A tt en

The Allen Type includes

$00 Normal

$40 Conne1lion timeout

S8l Connection closed by server

Slzc Value
(...

<···

Word <- (from server)

The SPOpenSession caU rdUrnS these result codes, a.s weil a.s the result codes for aU system calls.

Kcsuh Code Description

$0701 Netwakerror

$0702 Tao many ASP caUs

$0705 No response from server

SIJ707 Bad version number

S07Œl Tao many sessions

$ŒW Server busy

Calfs to the AppleTalk Session Prctocol (ASP) 89

A444J&JM~Ll&t&&d&EZli

SPGetStatus ($ID)

The SPGetSiatus oll is used by the worksulion to obuin the current status of a known server.
The parameter strutture fŒ the SPGetStatus cali is listed here.

Position Namc: Size Value

$00 A.lync Aag Byte ···>

$01 Comma nd Byte $10

$02 Result ûxle Ward (...
$(}j cornpletion Routine Ptr Long -->

sœ SLS Network N umber <Word> ·->

SOA SLSNode Byte ···>

$OB SLS Socket Byte ·->

$OC Buffer Length Word ·->

$0E Buffer Address Long ···>

$12 Length of Status Data Word (...

The Buffer Address f~eld points to the status buffer, and the Length of Status Data field indicates
ilS size. The SPGetStatus cali retums these result codes, a.s weil a.s the result codes for ali system
calls.

Kcsuh Code

$0701

$0702

$(roi

$0705

Description

Network error

Tao many ASP caUs

SizeerrŒ.

No response from server

88 CH A PTE R 3 Calls to AppleTalk Protocols

OWct i%4.# • 3#

SPOpe~lon ($lE)

The SPOpenSession cali is used by the workstation to open a session with a known server. The
parameter structure for the SPOpenSessioncall is listed here.

Position Name Slze Value

$00 A.lync Aag Byte -->

$01 Comma nd Byte $JE

$02 Result ûxle Word (...

$()j cornpletion Routine Ptr Long ·->

sœ SLS Network Number <Word> -->

$0A SLSNode Byte ·->

$OB SLS Socket Byte ·->

$OC AUention Routine Addr Long ·->

$10 Session Reference ' Byte (...

The Anention Routine Addr points to a routine to be called wben an attention packet is received.
The 2 bytes received in the attention packet are placed in the second 2 bytes of the address pointed
to by the Anention Routine Addr. The Apple IIGS then jumps to the address 4 bytes beyond the
specified address.

The 4 bytes pointed to by AUention Routine Addr include the following:

Position

0

Namc:

Session Reference '

Allen Type

A tt en

The Allen Type includes

$00 Normal

$40 Conne1lion timeout

S8l Connection closed by server

Slzc Value
(...

<···

Word <- (from server)

The SPOpenSession caU rdUrnS these result codes, a.s weil a.s the result codes for aU system calls.

Kcsuh Code Description

$0701 Netwakerror

$0702 Tao many ASP caUs

$0705 No response from server

SIJ707 Bad version number

S07Œl Tao many sessions

$ŒW Server busy

Calfs to the AppleTalk Session Prctocol (ASP) 89

A444J&JM~Ll&t&&d&EZli

SPCloseSessioo ($IF)

The SPOœeSes.sion cali terminaleS an open session. The parameter structure for the SPCioseSession
cali is iisled here.

Position Namc Slzc Value
100 Async ftag Byte --->

SOl Comma nd Byte $IF

l02 ResuitCode Word <---

$04 Compietion Routine Ptr Long -->

sœ Sessioo Reference # Byte -->

The SPCiœeSession cali retums these resuit codes, as weil as the resuit codes for ali system calls.

Rcsull Code Dcscrlptlon

$0701 Network error

$0703 lnvalid reference number

90 C HA PTE R 3 Calls to AppieTalk Proox:ols

SPCommaod ($20)

The SPCœunand cali is used by the Apple IIGS workstation on an open session to send a Conunand
packet to a server. The parameter structure for the SPConunand cali is iisted bere.

Position Namc Slzc Value

100 Async ftag Byte -->

$01 Comma nd Byte $al

l02 Resuit Code Word <--

$04 Compietion Routine Plr Long -->

sœ Sessioo Reference 1 Byte -->

$Œ Conunand Block Length Word -->

$OB Conunand Block Address Long -->

$OF Reply Buffer Length Word -->

$tl Reply Buffer Address Long -->

$15 Conunand Result Long <--

$19 Reply Length Word <--

The inputs are the sessioo reference number, a conunand block buffer, and a reply buffer. The
Conunand Block Address fteld gives the address ci the command block to be sent, and the
Conunand Block Length fidd gives the number ci bytes to be senl The number ci bytes sent
cannot be greater than the maximum conunand size; otherwise, a size error is retumed in the resuk
code and no attempl made to send anything out over the network. The Reply Buffer Address fteld
points to the reply buffer, and the value in the Reply ButTer Length f~eld indicates l5 size.

Upon successful completion, the number of bytes ci reply data returrted is in the updated
Reply Length fidd, and the Cornmand Result f.eld will have a 4-byte value provided by the server.

The SPCornmand cali retums these result codes, as weil as the result codes for ali system calls.

Rcsull Code Dcscrtptlon

Wt'01 Network error

$0702 Too many ASP calls

$0703 lrrvalid reference number

Wt'04 Sizeenor
mx; No responsc from server

$070A Session clo5cd

The system now uses SPConunand calls asynchronousiy. Applications that have AppleShare
volumes mounted under System Software 5.0 and also make SPConunand caUs themselves should
now handle the "J"oo many ASP calls" error, $0702.

Calls to the AppleTalk Session Prcxocol (ASP) 91

SPCloseSessioo ($IF)

The SPOœeSes.sion cali terminaleS an open session. The parameter structure for the SPCioseSession
cali is iisled here.

Position Namc Slzc Value
100 Async ftag Byte --->

SOl Comma nd Byte $IF

l02 ResuitCode Word <---

$04 Compietion Routine Ptr Long -->

sœ Sessioo Reference # Byte -->

The SPCiœeSession cali retums these resuit codes, as weil as the resuit codes for ali system calls.

Rcsull Code Dcscrlptlon

$0701 Network error

$0703 lnvalid reference number

90 C HA PTE R 3 Calls to AppieTalk Proox:ols

SPCommaod ($20)

The SPCœunand cali is used by the Apple IIGS workstation on an open session to send a Conunand
packet to a server. The parameter structure for the SPConunand cali is iisted bere.

Position Namc Slzc Value

100 Async ftag Byte -->

$01 Comma nd Byte $al

l02 Resuit Code Word <--

$04 Compietion Routine Plr Long -->

sœ Sessioo Reference 1 Byte -->

$Œ Conunand Block Length Word -->

$OB Conunand Block Address Long -->

$OF Reply Buffer Length Word -->

$tl Reply Buffer Address Long -->

$15 Conunand Result Long <--

$19 Reply Length Word <--

The inputs are the sessioo reference number, a conunand block buffer, and a reply buffer. The
Conunand Block Address fteld gives the address ci the command block to be sent, and the
Conunand Block Length fidd gives the number ci bytes to be senl The number ci bytes sent
cannot be greater than the maximum conunand size; otherwise, a size error is retumed in the resuk
code and no attempl made to send anything out over the network. The Reply Buffer Address fteld
points to the reply buffer, and the value in the Reply ButTer Length f~eld indicates l5 size.

Upon successful completion, the number of bytes ci reply data returrted is in the updated
Reply Length fidd, and the Cornmand Result f.eld will have a 4-byte value provided by the server.

The SPCornmand cali retums these result codes, as weil as the result codes for ali system calls.

Rcsull Code Dcscrtptlon

Wt'01 Network error

$0702 Too many ASP calls

$0703 lrrvalid reference number

Wt'04 Sizeenor
mx; No responsc from server

$070A Session clo5cd

The system now uses SPConunand calls asynchronousiy. Applications that have AppleShare
volumes mounted under System Software 5.0 and also make SPConunand caUs themselves should
now handle the "J"oo many ASP calls" error, $0702.

Calls to the AppleTalk Session Prcxocol (ASP) 91

AppleShare uses a pràocol called AppleTalk Session Protocol (ASP) to mainlain a connection
(session) wilh ali servers !hat you are logged on to. Ali commands and daia transfer to the server
are sent using ASP.

The implemenUlion ci ASP on the Apple IIGS has a limil of one command outstanding
(wailing to complete) per session. This rneans !hat if one command has been sent, ilS reply must be
received before you can send the next command. Rernember, the SPCommand cali is used to send
commands over a session. If you try to issue an SPCommand before another (asynchronous)
SPCommand on the sarne session has completed, your cali will retum with a '"foo many ASP calls'
emr, $0702.

Before System Software 5.0 on the Apple IIGS, no system software made asynchronous
SPCommand calls, and therefore this error would only occur if the developer was making the
asynchronous calls. As ci System Software 5.0, the AppleShare FST uses asynchronous calls to help
prevent the loss of a connection wïh servers and to assis! the Finder in dynamically updaling
windows when a change is made to a network volume. Therefore, this error may be returned even
though the developer is not making asynchronous calls.

The error is easy to handle if you are making synchronous SPCommand cal !s. Simply make the
cali, and if il completes with error $0702, loop back and make the cali again until you can do so
wïhout error $0702. This technique forces your program to wait until ASP is free again to make the
cali.

If you are making asynchronous SPConunand calls, and you receive the $0702 error, you might
want to inslall a short (i.e., 1/4 second) tirner using the lnstaiiTirner cali, and make the SPCommand
cali again when the limer completes. Rernernber, the lnstaiiTirner has to be asynchronous, since you
are making it from the cornpletion routine of an asynchronous cali.

• Nole: When using the AppleShare FST under GS/OS, there is liltle reason to make SPCommand
calls youJSC:If, sincc IIIOI5t of the calls you can make are available through the FST as normal
me system calls or as FST-specifiC calls.

92 C HA PTE R 3 Calls to AppleTalk Protocols

SPWrite ($21)

The SPWrite cali is used by the Apple IIGS workstation during an open session to send a write
packet to the server. The pararneter structure for the SPWrite cali is listed here.

Position Name Slzc Value

$00 Async F1ag Byte -->

$01 Comma nd Byte $21

$02 Result Code Word <---

$04 Completion Routine Ptr long ->

sœ Session Reference ' Byte -->

sœ Command Block I.t:ngth Word -->

$OB Command Block Address long -->

$OF Write Daia I.t:ngth Word -->

$11 Write Data Address Long -->

$15 Reply Bulfer I.t:ngth Word -->

$17 Reply Bulfer Address long -->

$lB Command Result Long <---

$IF WriUen Length Word <---

$21 Reply I.t:ngth Word <--

The inputs are the sarne as for the SPCommand command described earlier, with the addition of the
following: the Write Data Address fteld should contain the address ci the data to be sent to the
server, and the Writc Data Length fteld gives the number ci bytes.

The outputs are the sarne as the ASPCommand command above, with the addition of the
following. Upon completion, the Written Length fteld will contain the number of bytes
successfully sent to the server.

Calls to the AppleTalk Session Protocol (ASP) 93

AppleShare uses a pràocol called AppleTalk Session Protocol (ASP) to mainlain a connection
(session) wilh ali servers !hat you are logged on to. Ali commands and daia transfer to the server
are sent using ASP.

The implemenUlion ci ASP on the Apple IIGS has a limil of one command outstanding
(wailing to complete) per session. This rneans !hat if one command has been sent, ilS reply must be
received before you can send the next command. Rernember, the SPCommand cali is used to send
commands over a session. If you try to issue an SPCommand before another (asynchronous)
SPCommand on the sarne session has completed, your cali will retum with a '"foo many ASP calls'
emr, $0702.

Before System Software 5.0 on the Apple IIGS, no system software made asynchronous
SPCommand calls, and therefore this error would only occur if the developer was making the
asynchronous calls. As ci System Software 5.0, the AppleShare FST uses asynchronous calls to help
prevent the loss of a connection wïh servers and to assis! the Finder in dynamically updaling
windows when a change is made to a network volume. Therefore, this error may be returned even
though the developer is not making asynchronous calls.

The error is easy to handle if you are making synchronous SPCommand cal !s. Simply make the
cali, and if il completes with error $0702, loop back and make the cali again until you can do so
wïhout error $0702. This technique forces your program to wait until ASP is free again to make the
cali.

If you are making asynchronous SPConunand calls, and you receive the $0702 error, you might
want to inslall a short (i.e., 1/4 second) tirner using the lnstaiiTirner cali, and make the SPCommand
cali again when the limer completes. Rernernber, the lnstaiiTirner has to be asynchronous, since you
are making it from the cornpletion routine of an asynchronous cali.

• Nole: When using the AppleShare FST under GS/OS, there is liltle reason to make SPCommand
calls youJSC:If, sincc IIIOI5t of the calls you can make are available through the FST as normal
me system calls or as FST-specifiC calls.

92 C HA PTE R 3 Calls to AppleTalk Protocols

SPWrite ($21)

The SPWrite cali is used by the Apple IIGS workstation during an open session to send a write
packet to the server. The pararneter structure for the SPWrite cali is listed here.

Position Name Slzc Value

$00 Async F1ag Byte -->

$01 Comma nd Byte $21

$02 Result Code Word <---

$04 Completion Routine Ptr long ->

sœ Session Reference ' Byte -->

sœ Command Block I.t:ngth Word -->

$OB Command Block Address long -->

$OF Write Daia I.t:ngth Word -->

$11 Write Data Address Long -->

$15 Reply Bulfer I.t:ngth Word -->

$17 Reply Bulfer Address long -->

$lB Command Result Long <---

$IF WriUen Length Word <---

$21 Reply I.t:ngth Word <--

The inputs are the sarne as for the SPCommand command described earlier, with the addition of the
following: the Write Data Address fteld should contain the address ci the data to be sent to the
server, and the Writc Data Length fteld gives the number ci bytes.

The outputs are the sarne as the ASPCommand command above, with the addition of the
following. Upon completion, the Written Length fteld will contain the number of bytes
successfully sent to the server.

Calls to the AppleTalk Session Protocol (ASP) 93

The SPWrite cali retums these result codes, as weil as lhe result codes for ali system caUs.

llcsull Code Description

$0701 Network errer

$0702 Too many ASP calls

$0703 lnvalid reference#

Size error

Bulfer error

No response from server

Session dosed

The SPWrite cali al.so has a lirnit of one oulltanding cali per session. System software dœs not
currently use asynchronous SPWrite calls, but looping until ASP retums something olher !han $0702
would be a good precaution for SPWrite, too.

+ Note: When using lhe AppleShare FST under GS/OS, lhere is !iUle reason to make SPWrite calls
yourself, since packets cao be se111 through lhe FST as normal me system calls or as FST­
spedfiC caUs.

C H A PT E R 3 Calls to AppleTalk Protocols

•

Calls to the AppleTalk Filing Protocol (AFP)

To provide transparent access 10 AFP servers for lhe operating system, flfffiware on the Apple 11
workstation translates ProDOS 8 or GS/OS filing caUs into a su~ of AFP caUs. The rode thal
performs lhis, under ProOOS 8, is the ProDOS Filing Interface (PFI). Most AFP calls, under ProDOS 8,
are supported indirectly lhrough ProDOS MU calls to lhe PFI. (For additional mformation, refer to
lhe AFP specifications and 'Calls lO lhe ProDOS Filing Interface' given later in this chapler.)

Under GS/OS, lhe functionality of al111051 ali AFP calls cao be achieved us mg sundard GS/OS caUs
or FST-SpecifiC calls lO lhe AppleShare FST.

Features of AFP thal are n<X available through operating system caUs cao be accessed by
making AFP calls direàly lhrough ASP. The followÙlg example demonstrales how to make AFP cali
GetVolParm (not available throogh ProDOS 8 and PFI) lhroogh AFP.

A Wamlng NEVER use this method to makc AFP calls !hat will affect open fdes. If
you do so, internai struclures in the AppleShare FST and/or PFI may
become corrupted and data Joss may result Always use lhe equivalent calls
under lhe AppleShare FST or PFI. Under System Software 5.0 and later, you
should use lhe FIGetSVersion callto determine lhe AFP version being used
on !hat session before construcling an AFP packet. •

longa of!
lonqi of!
a.baaddr al

65c02 al

VerboH al

K .. p AFP~l•

* AFP~le demonatratea how to make
• AFP calls uoing the ASP Protocol.

* * **. *. * * ••• *** ** ** •• * **** * ** *** **** * ** **. *

mli

AtC..ll equ
ReplyBuf!

equ

$42

equ

$BFOO

$800

jor mli
de 11 'A 'l'CAU'
de a' FILiots. .. ' ; get the list of current

ldx SeaaNunl

beq NoSeaaiona
lda ReplyBu!!

ota SPComnand+8

lda ReplyBu!f+JO

:Maaiona

;uoe the !irot voluu. in the
;liot aa an ~1•

;get &nd save ~ Session No.
;and the Volume ID

Calls to the AppleTalk Fding Praocol (AFP) 9S

The SPWrite cali retums these result codes, as weil as lhe result codes for ali system caUs.

llcsull Code Description

$0701 Network errer

$0702 Too many ASP calls

$0703 lnvalid reference#

Size error

Bulfer error

No response from server

Session dosed

The SPWrite cali al.so has a lirnit of one oulltanding cali per session. System software dœs not
currently use asynchronous SPWrite calls, but looping until ASP retums something olher !han $0702
would be a good precaution for SPWrite, too.

+ Note: When using lhe AppleShare FST under GS/OS, lhere is !iUle reason to make SPWrite calls
yourself, since packets cao be se111 through lhe FST as normal me system calls or as FST­
spedfiC caUs.

C H A PT E R 3 Calls to AppleTalk Protocols

•

Calls to the AppleTalk Filing Protocol (AFP)

To provide transparent access 10 AFP servers for lhe operating system, flfffiware on the Apple 11
workstation translates ProDOS 8 or GS/OS filing caUs into a su~ of AFP caUs. The rode thal
performs lhis, under ProOOS 8, is the ProDOS Filing Interface (PFI). Most AFP calls, under ProDOS 8,
are supported indirectly lhrough ProDOS MU calls to lhe PFI. (For additional mformation, refer to
lhe AFP specifications and 'Calls lO lhe ProDOS Filing Interface' given later in this chapler.)

Under GS/OS, lhe functionality of al111051 ali AFP calls cao be achieved us mg sundard GS/OS caUs
or FST-SpecifiC calls lO lhe AppleShare FST.

Features of AFP thal are n<X available through operating system caUs cao be accessed by
making AFP calls direàly lhrough ASP. The followÙlg example demonstrales how to make AFP cali
GetVolParm (not available throogh ProDOS 8 and PFI) lhroogh AFP.

A Wamlng NEVER use this method to makc AFP calls !hat will affect open fdes. If
you do so, internai struclures in the AppleShare FST and/or PFI may
become corrupted and data Joss may result Always use lhe equivalent calls
under lhe AppleShare FST or PFI. Under System Software 5.0 and later, you
should use lhe FIGetSVersion callto determine lhe AFP version being used
on !hat session before construcling an AFP packet. •

longa of!
lonqi of!
a.baaddr al

65c02 al

VerboH al

K .. p AFP~l•

* AFP~le demonatratea how to make
• AFP calls uoing the ASP Protocol.

* * **. *. * * ••• *** ** ** •• * **** * ** *** **** * ** **. *

mli

AtC..ll equ
ReplyBuf!

equ

$42

equ

$BFOO

$800

jor mli
de 11 'A 'l'CAU'
de a' FILiots. .. ' ; get the list of current

ldx SeaaNunl

beq NoSeaaiona
lda ReplyBu!!

ota SPComnand+8

lda ReplyBu!f+JO

:Maaiona

;uoe the !irot voluu. in the
;liot aa an ~1•

;get &nd save ~ Session No.
;and the Volume ID

Calls to the AppleTalk Fding Praocol (AFP) 9S

$4

NoError

NoSes3ion3

ErrorHand.ler

SPConrnand

AFPPacket

sta AFPPacket+2
lda ReplyBuff+Jl
sta AFPP acket + 3
jsr mli
de il'ATCall'
de a. 1 SPComnand 1

bec NoEJ:ror

jill> Error:Hand.ler

nop
nop
rts

nop

nop

rts

an op
de h'OO'
de h'20 1

de i'O'
de 14'0'

do

de i. 6'

de i4' AFPPadtet'

de i'512'
de i4 • ReplyBuff'

do 4
do 2

an op
de 11'17'

de h 1 00 1

do 2
de h'0048'

anop
de h'OO'
de n'2!'
de i'O'
de 1'512'

;make the SPConmand Call

; The re8ult is in ReplyBuff as
;specified in Inside AppleTalk

; Errorllandling routines to
; taJce ca re of unfortunate
;miohaps

;byte - sync flag
; byte - Conmand
;word - Result COda

;long - Colll>letion Routine
;Pointer

;byte - Seasion Reference

;Nurrber
;word - Command Black Length

;long- Command Black Pointer
;word - Reply Buffer Length
;long- Reply Buffer Address

;long - Command Result <-
;word - Reply Langth <-

; AFP Conmand for FPGetVolParma
;Reserved
;Voll.llœ ID

;Bitmap to retUD'l Bytes
;and Hodified Date

; byte - sync flag
; byte - Command
;word - Reeult Coda

;word - Reply Butfer Length

rree

de

do

i4'ReplyBuff' ;long - Reply Buffer Pointer
Se33Num 1 ; byte - Nuni>er of Entriea

;Returned

96 CH A PTE R 3 Calls ta AppleTalk Pro!ocols

. ; .. . AH fM Jii431\0!§)ML&l4

• Calls to the Printer Access Protocol (PAP)
Jt is not neœssary to use the Printer Access Protocol (PAP) ta print in a normal mode; the SSC enuy
point and Rernote Prin! Manager (RPM) provide transparent ProDOS printing. However, P AP may be
called directly for special purposes. Using PAP allows I!O'e cootrol and Oexibility, such as when you
want 10 use the <llooser ta communicate with a l.aserWriter ta see if (has an ImageWriter

emulator installed
This section describes calls ta the PAP layer on the Apple IIGS, which provides a full

implementation of the workstation side of P AP. These ca lis can be used for network printing,
including spooling ta servers thal provide such capabil~ies.

+ Note: If the For this section only, the Session Reference ' field is ca lied the Coonection
Reference' fidd 10 be compatible with the seltion on PAP in lnslde AppleTallt.

Table 3-8li5ls the calls ta the PAP layer. The sections the follow provide a description of each cali,
as weil as the parameter listing and the result codes for each.

• Table 3-8 PAP calls

Coalmaod
l1lllllll<r N- Deoctiptk>ll

$Z2 PAPSUtus Get server status

$23 PAPOpen Open P AP session

$24 PAPClase Close PAP session

$25 PAPRead PAP read

$;:y) PAPWrite PAP write

m PAPUnload PAP unload

Calls 10 the Printer Access Protocol (P AP)

tE&&L&

97

$4

NoError

NoSes3ion3

ErrorHand.ler

SPConrnand

AFPPacket

sta AFPPacket+2
lda ReplyBuff+Jl
sta AFPP acket + 3
jsr mli
de il'ATCall'
de a. 1 SPComnand 1

bec NoEJ:ror

jill> Error:Hand.ler

nop
nop
rts

nop

nop

rts

an op
de h'OO'
de h'20 1

de i'O'
de 14'0'

do

de i. 6'

de i4' AFPPadtet'

de i'512'
de i4 • ReplyBuff'

do 4
do 2

an op
de 11'17'

de h 1 00 1

do 2
de h'0048'

anop
de h'OO'
de n'2!'
de i'O'
de 1'512'

;make the SPConmand Call

; The re8ult is in ReplyBuff as
;specified in Inside AppleTalk

; Errorllandling routines to
; taJce ca re of unfortunate
;miohaps

;byte - sync flag
; byte - Conmand
;word - Result COda

;long - Colll>letion Routine
;Pointer

;byte - Seasion Reference

;Nurrber
;word - Command Black Length

;long- Command Black Pointer
;word - Reply Buffer Length
;long- Reply Buffer Address

;long - Command Result <-
;word - Reply Langth <-

; AFP Conmand for FPGetVolParma
;Reserved
;Voll.llœ ID

;Bitmap to retUD'l Bytes
;and Hodified Date

; byte - sync flag
; byte - Command
;word - Reeult Coda

;word - Reply Butfer Length

rree

de

do

i4'ReplyBuff' ;long - Reply Buffer Pointer
Se33Num 1 ; byte - Nuni>er of Entriea

;Returned

96 CH A PTE R 3 Calls ta AppleTalk Pro!ocols

. ; .. . AH fM Jii431\0!§)ML&l4

• Calls to the Printer Access Protocol (PAP)
Jt is not neœssary to use the Printer Access Protocol (PAP) ta print in a normal mode; the SSC enuy
point and Rernote Prin! Manager (RPM) provide transparent ProDOS printing. However, P AP may be
called directly for special purposes. Using PAP allows I!O'e cootrol and Oexibility, such as when you
want 10 use the <llooser ta communicate with a l.aserWriter ta see if (has an ImageWriter

emulator installed
This section describes calls ta the PAP layer on the Apple IIGS, which provides a full

implementation of the workstation side of P AP. These ca lis can be used for network printing,
including spooling ta servers thal provide such capabil~ies.

+ Note: If the For this section only, the Session Reference ' field is ca lied the Coonection
Reference' fidd 10 be compatible with the seltion on PAP in lnslde AppleTallt.

Table 3-8li5ls the calls ta the PAP layer. The sections the follow provide a description of each cali,
as weil as the parameter listing and the result codes for each.

• Table 3-8 PAP calls

Coalmaod
l1lllllll<r N- Deoctiptk>ll

$Z2 PAPSUtus Get server status

$23 PAPOpen Open P AP session

$24 PAPClase Close PAP session

$25 PAPRead PAP read

$;:y) PAPWrite PAP write

m PAPUnload PAP unload

Calls 10 the Printer Access Protocol (P AP)

tE&&L&

97

PAPStatus ($22)

The P APSiatus cali is used to check !he current status of a printer on !he network. lt is not
necessary to be conneàed. Y ru canuse PAPStatus without using PAPOpen fust, even if sorneone
else is printing.

The parameter struaure for the P APStatus cali is listed here.

Position Name Size Value
$00 A.sync Aag Byte -->
$01 Comma nd Byte $22
S02 Result Code Word <---
$04 Completion Rouûne Ptr Long --->
$Œ Printer Narne Pointer Long -->
soc Status Bulfer Pointer Long -->

The Printer Narne Pointer fJeld points to the NBP Entity Narne. The status bulfer must be at !east
26o bytes. The result codes rctumed for the P APStatus cali are listed here.

Result Code Description
$(8)4 Too many commands

SŒl5 Narne not found

sœJ7 Networkerror

$Œlj Server not responding

sœlB PAPin use

98 C H A PTE R 3 CaUs to AppleTalk Protocols

PAPOpen ($23)

The P APOpen ca1l 5 made by a worlcstation to open a conneàion wilh a printer (or any P AP server)
on the network. On the open connection, !he workstation may send data to !he printer (via
PAPWrite) or read data from the printer (via PAPRead).

+ Note: If !he target printer (or the PAP server) already has ilS maximum number of
connections opened, theo !his P APOpen does not complete untü one of the existing
conneaions is released (closed). Y ru should always set the flow quantum to 1; the
implementation on the Apple IIGS allows only 1 quantum from !he other side.

The parameter structure for the P APOpen cali is listed here.

Position Name Slze Value

$00 Async Aag Byte -->

$01 Comma nd Byte $23

S02 Result Code Word <---

$()! Complction Routine Ptr Long -->

$Œ Conneàion Reference 1 Byte <---

$Œ Printer Name Pointer Long -->

$OD Aow Quantum Byte <-->

$0E Status Bulfer Pointer Long -->

The bulfer pointed to by Status Buffer Pointer should be at least 26o bytes.

The result codes retumed for the PAPOpen cali are as follows.

Result Code

sœn
$(8)3

$(8)4

SŒl5

sœJ7

Â Warning

Description

Too many sessions

Quantumerror

Too many commands

Name not found

Network error

P APOpen does not retum a 'Server Busy' error. lt is up to a high-levd
routine to monitor the Result Code and keep uack of tirne-rut errors. If
yru want to tirne-oo~ !his cali should be made asynchronously. •

Calls to the Printer Access Protocol (P AP} 99

PAPStatus ($22)

The P APSiatus cali is used to check !he current status of a printer on !he network. lt is not
necessary to be conneàed. Y ru canuse PAPStatus without using PAPOpen fust, even if sorneone
else is printing.

The parameter struaure for the P APStatus cali is listed here.

Position Name Size Value
$00 A.sync Aag Byte -->
$01 Comma nd Byte $22
S02 Result Code Word <---
$04 Completion Rouûne Ptr Long --->
$Œ Printer Narne Pointer Long -->
soc Status Bulfer Pointer Long -->

The Printer Narne Pointer fJeld points to the NBP Entity Narne. The status bulfer must be at !east
26o bytes. The result codes rctumed for the P APStatus cali are listed here.

Result Code Description
$(8)4 Too many commands

SŒl5 Narne not found

sœJ7 Networkerror

$Œlj Server not responding

sœlB PAPin use

98 C H A PTE R 3 CaUs to AppleTalk Protocols

PAPOpen ($23)

The P APOpen ca1l 5 made by a worlcstation to open a conneàion wilh a printer (or any P AP server)
on the network. On the open connection, !he workstation may send data to !he printer (via
PAPWrite) or read data from the printer (via PAPRead).

+ Note: If !he target printer (or the PAP server) already has ilS maximum number of
connections opened, theo !his P APOpen does not complete untü one of the existing
conneaions is released (closed). Y ru should always set the flow quantum to 1; the
implementation on the Apple IIGS allows only 1 quantum from !he other side.

The parameter structure for the P APOpen cali is listed here.

Position Name Slze Value

$00 Async Aag Byte -->

$01 Comma nd Byte $23

S02 Result Code Word <---

$()! Complction Routine Ptr Long -->

$Œ Conneàion Reference 1 Byte <---

$Œ Printer Name Pointer Long -->

$OD Aow Quantum Byte <-->

$0E Status Bulfer Pointer Long -->

The bulfer pointed to by Status Buffer Pointer should be at least 26o bytes.

The result codes retumed for the PAPOpen cali are as follows.

Result Code

sœn
$(8)3

$(8)4

SŒl5

sœJ7

Â Warning

Description

Too many sessions

Quantumerror

Too many commands

Name not found

Network error

P APOpen does not retum a 'Server Busy' error. lt is up to a high-levd
routine to monitor the Result Code and keep uack of tirne-rut errors. If
yru want to tirne-oo~ !his cali should be made asynchronously. •

Calls to the Printer Access Protocol (P AP} 99

PAPClose ($24)

The P APOose caU is used by a workstalion to close an open connection with a printer. The
parameter structure for the PAPCiose cali is listed here.

Position Nao11: Slze Value

$00 Async Aag Byte ·->

$01 Comma nd Byte $24

$02 Result Code Ward (...

$04 Completion Routine Ptr lnng -->

sœ Session Reference ' Byte -->

The result code retumed for the P APCiose cali is as follows.

Rc:sult Code Dc:scrlpUon

$(8}2 lnvalid reference: number

100 CH A PTE R 3 Calls to AppleTalk Protocols

PAPRead ($25)

The p APRead caU is used by a workstalion to read data on a P AP connection (sent by the other end,
either a printer or a server, using a PAPWrite). The Buffer Pointer should be at !east 512 bytes times
the flow quantum retumed. The parameter structure for the P APRead cali is listed below.

Position Name Slzc: Value:

$00 Async Aag Byte -->

$01 Comma nd Byte $25

$02 Result Code Word <---

$04 Completion Routine Ptr Long ·->

sœ Session Reference ' Byte -->

$Œ Buffer Length Word <---

$OB Buffer Pointer Long -->

$01' End-<lf-File Flag Byte <---

A non-zero value is returned to signal the end of file (note that bath the LaserWriter and
lrnageWriler uses a value of non-zero).

The result codes retumed for Ùle P APRead cali are as follows.

Description

lnvalid reference: number

Too many cornmands

Session dosed

Network error$0808 PAPin use

Calls to the Printer Access Protocol (P AP) 101

444 AMI ; P S ..) J!AJJkl. 2f$.sc, iii p il JJ .t&l . : ·" .J44&. #U(YiA$Jil#.,ttt .. 41iiéi414.!i24kM.44441kJ.&.WP .M#),ta:;::;u}MQA42L&4 _&!§E®iWM ,,.KiU!k.&.xti!b&&li

PAPClose ($24)

The P APOose caU is used by a workstalion to close an open connection with a printer. The
parameter structure for the PAPCiose cali is listed here.

Position Nao11: Slze Value

$00 Async Aag Byte ·->

$01 Comma nd Byte $24

$02 Result Code Ward (...

$04 Completion Routine Ptr lnng -->

sœ Session Reference ' Byte -->

The result code retumed for the P APCiose cali is as follows.

Rc:sult Code Dc:scrlpUon

$(8}2 lnvalid reference: number

100 CH A PTE R 3 Calls to AppleTalk Protocols

PAPRead ($25)

The p APRead caU is used by a workstalion to read data on a P AP connection (sent by the other end,
either a printer or a server, using a PAPWrite). The Buffer Pointer should be at !east 512 bytes times
the flow quantum retumed. The parameter structure for the P APRead cali is listed below.

Position Name Slzc: Value:

$00 Async Aag Byte -->

$01 Comma nd Byte $25

$02 Result Code Word <---

$04 Completion Routine Ptr Long ·->

sœ Session Reference ' Byte -->

$Œ Buffer Length Word <---

$OB Buffer Pointer Long -->

$01' End-<lf-File Flag Byte <---

A non-zero value is returned to signal the end of file (note that bath the LaserWriter and
lrnageWriler uses a value of non-zero).

The result codes retumed for Ùle P APRead cali are as follows.

Description

lnvalid reference: number

Too many cornmands

Session dosed

Network error$0808 PAPin use

Calls to the Printer Access Protocol (P AP) 101

444 AMI ; P S ..) J!AJJkl. 2f$.sc, iii p il JJ .t&l . : ·" .J44&. #U(YiA$Jil#.,ttt .. 41iiéi414.!i24kM.44441kJ.&.WP .M#),ta:;::;u}MQA42L&4 _&!§E®iWM ,,.KiU!k.&.xti!b&&li

PAPWrlte ($26)

The P APWric: cali is made by a workstation lO writc: data on a P AP connection (tha1 is rc:ad by the
other end, eïher a priŒer or a server, using a PAPRc:ad). Currendy, the PAP implementation on the
Apple IIGS does not aUow you to write more than 512 bytes per cali.

The parameter structure for the PAPWrite cali is lisled here.

Position Namc Sizc: Value
$00 Async Aag Byte -->

$01 Comrnand Byte

$02 Result Code Word <---

$04 Completion Routine Ptr Long -->

sœ Connection Reference 1 Byte -->

$(1) Dal.a Length Ward -->

$OB Buffer Pointer Long -->

$OF End-of-File Flag Byte $01

The resull codes rerumed for the PAPWrite cali are lisled here.

Rcsult Code DcscrlptJon

$002 lnvalid rdc:rence number

$(8)4 Tao many comrnanŒ

~ Session dosed
$(8]7 Nc:twork errer

sœ:JA Buffer sizc: error

sœ:JB PAPin use

PAPUnload ($27)

The PAPUnload cali is used to dose ail oonnc:aion with a server, whereas PAPaose doses only one
COMection. Parameter usage for the PAPUnload cali is lisled below.

Position Namc Sizc: Value
$00 Async Aag Byte ---)

$01 Command' Byte $27

$02 Result Code Ward <---

$04 Completion Routine Ptr l.oog -->

101 CH A PTE R 3 Calls la AppleTalk PI'Oiocds

Calls to the Remote Print Manager (RPM) interface

The Apple Il worblation finnware contains interface software called the Remcte Prin! Manager
(RPM). RPM allows lr311Sparent prinling lo remcte prinlers on an AppleTalk network through the
Super Seriai Canl (SSC) enuy points and commanŒ. RPM information is stored in the A TINIT file
and is restored at boct lime; il is not necessary lO use the Chooser al every boct time.

The name of the printer 10 which oulput is lO be direcled is sel by using the PMSetPrinler cali.
RPM uses P AP lO send the data lO be printc:d; the data lo be prinled is transferred lO the finnware
one character al a lime through the SSC enlry poinl. The characters are blocked, put into packets,
then sent lO the printer specified in the PMSetPrintc:r cali.

Two lime-oots are rnaintained by RPM. One lime-out is used to flush the currenl block when
there are small delays in the character stream being sentlo RPM, as when a user is typing on the
keyboard (usually 114 second). The second lime-out is longer (usually 30 seconds), and indicales the
end of the report When this lime-out expires, the last block is sent and the P AP connection closed
The maximum value for lime-out is SIFFF for Apple Ile workstation compatibility.

Pascal Prorocol Seriai STATUS cali reiUms incorrect results. When using the Workstation card,
the Pascal ST A TIJS cali (normally used for printing) does not properly indicate whether the card is
rc:ady lO receive characters. Applications should a void this cali, as the Pascal WRITE caU in the
finnware will perform this function aulOrnalically.

Table 3-91ists the cali to the Rernote Print Manager (RPM) on the Apple IIGS worksration. The
section tha1 foUows provides a description of the cali, as weil as the parameter list and the resull
codes.

From GS/OS,)00 should always use the operaling system drivers. ln System S.O;the '.RPM'
driver is used. ln System 4.0, a generated driver using the RPM slor is used

• Table 3-9 Calls to RPM

PMSetPrinter

PMOose.Session

Set ddaull primer

Clœc an RPM session

Calls 10 the Remcte Prin! Manger (RPM) interface 103

PAPWrlte ($26)

The P APWric: cali is made by a workstation lO writc: data on a P AP connection (tha1 is rc:ad by the
other end, eïher a priŒer or a server, using a PAPRc:ad). Currendy, the PAP implementation on the
Apple IIGS does not aUow you to write more than 512 bytes per cali.

The parameter structure for the PAPWrite cali is lisled here.

Position Namc Sizc: Value
$00 Async Aag Byte -->

$01 Comrnand Byte

$02 Result Code Word <---

$04 Completion Routine Ptr Long -->

sœ Connection Reference 1 Byte -->

$(1) Dal.a Length Ward -->

$OB Buffer Pointer Long -->

$OF End-of-File Flag Byte $01

The resull codes rerumed for the PAPWrite cali are lisled here.

Rcsult Code DcscrlptJon

$002 lnvalid rdc:rence number

$(8)4 Tao many comrnanŒ

~ Session dosed
$(8]7 Nc:twork errer

sœ:JA Buffer sizc: error

sœ:JB PAPin use

PAPUnload ($27)

The PAPUnload cali is used to dose ail oonnc:aion with a server, whereas PAPaose doses only one
COMection. Parameter usage for the PAPUnload cali is lisled below.

Position Namc Sizc: Value
$00 Async Aag Byte ---)

$01 Command' Byte $27

$02 Result Code Ward <---

$04 Completion Routine Ptr l.oog -->

101 CH A PTE R 3 Calls la AppleTalk PI'Oiocds

Calls to the Remote Print Manager (RPM) interface

The Apple Il worblation finnware contains interface software called the Remcte Prin! Manager
(RPM). RPM allows lr311Sparent prinling lo remcte prinlers on an AppleTalk network through the
Super Seriai Canl (SSC) enuy points and commanŒ. RPM information is stored in the A TINIT file
and is restored at boct lime; il is not necessary lO use the Chooser al every boct time.

The name of the printer 10 which oulput is lO be direcled is sel by using the PMSetPrinler cali.
RPM uses P AP lO send the data lO be printc:d; the data lo be prinled is transferred lO the finnware
one character al a lime through the SSC enlry poinl. The characters are blocked, put into packets,
then sent lO the printer specified in the PMSetPrintc:r cali.

Two lime-oots are rnaintained by RPM. One lime-out is used to flush the currenl block when
there are small delays in the character stream being sentlo RPM, as when a user is typing on the
keyboard (usually 114 second). The second lime-out is longer (usually 30 seconds), and indicales the
end of the report When this lime-out expires, the last block is sent and the P AP connection closed
The maximum value for lime-out is SIFFF for Apple Ile workstation compatibility.

Pascal Prorocol Seriai STATUS cali reiUms incorrect results. When using the Workstation card,
the Pascal ST A TIJS cali (normally used for printing) does not properly indicate whether the card is
rc:ady lO receive characters. Applications should a void this cali, as the Pascal WRITE caU in the
finnware will perform this function aulOrnalically.

Table 3-91ists the cali to the Rernote Print Manager (RPM) on the Apple IIGS worksration. The
section tha1 foUows provides a description of the cali, as weil as the parameter list and the resull
codes.

From GS/OS,)00 should always use the operaling system drivers. ln System S.O;the '.RPM'
driver is used. ln System 4.0, a generated driver using the RPM slor is used

• Table 3-9 Calls to RPM

PMSetPrinter

PMOose.Session

Set ddaull primer

Clœc an RPM session

Calls 10 the Remcte Prin! Manger (RPM) interface 103

PMSetPrinter ($28)

The PMSetPrirur cali ~ used to determine where printed output is to be directed. The parameter
structure fa- the PMSetPrinter cali is listed bere.

Position Name Slze Value

$00 Async Flag Byte $00 (Synduonous only)

$01 Comma nd Byte $28

$02 ResultCode Word <---

$04 Entity Name Pointer Long <-->

~ Flags Byte <-->

$Œ Flush Interval Word <-->

$OB Tuneout Interval Word <--->

SOD Number of Buffers Word <-->

+ Note: For the Numbcr of Buffers f~eld, you must use a value of atleast 1 (of size 512 bytes).
NŒmally this cali aUocates buifers for you and sets this parameter to 20. The more buffers
you set, the faster the cali will be (the tradeoff is the amount of memory used).

The name poiŒed to by the Entity Name Pointer field specifies the name of a netwa-k printer for
RPM, and must be in standard NBP fŒmaL No attempt is made to verify that the given name
exists on the network. The name is used only when the f1ags field specifieS a network printer. The
f1ags field contains the Hags listed in Table 3-10

• Table HO Printer name flags

Value Dac:rlptloa

Bit 7 Network printer

Bit6 Na used in the Apple IIGS

Bit 5 Postscript emulator

Bit4 Reserved

Bit3 Reserved

Bit 2 Rescrved

Bit 1 Rescrved

Bit 0 Retum selected prirxer

104 C HA PT E R 3 Calls to AppleTalk Prooxols

When set, the Netwa-k Printer bit infonns the finnware that the desired printer is on the network;
its name is pointed to by the Entity Name Pointer. If the Postscript Emulator bit is set in
conjunction with the Network Printer bit, RPM sends out the foiiowing code at the beginning of
the fim packet sent to the prilter; this tums on the ImageWriter emulator in the LaserWriter.

DC C'\UncludeProcSet IWEm 1 l'

DC H'Od'

DC C'_WBJ_ '

Bit 0 of the Flags field specifies that the cali should retum the name of the printer if il is set for
RPM. If bit 0 ~ set when the cali is made, ali of the ether bits must be clear. When the cali is
executed in this manner, the cali completes with the proper bits set in the Flags field and the printer
name is placed at the address specified by the Entity Name Pointer field.

Â Wamlng When PMSetPrinter is called with Flags f~eld bit 0 set, the buffer pointed to
by the Enlity Name Pointer field must be 100 bytes long. ~

The flush lnterval and T1me011t Interval fields allow the caller 10 set the lime values for these time­
outs. 1hey are beth specifled in 1/4-second increments; the Timeout Interval must be greater than
the Flush lnterval. If the Timeout lnterval is set 10 zero (0), then the session wül never lime out
and must be stopped via the PMOoseSession cali.

1he PMSetPri!Xer cali retums these resuk codes, as weil as the result codes for ail system calls.

lcsuh Code Description

WX11 Invalid ftag byte

WXJZ Inval id time values

Calls to the Remae Print Manger (RPM) interface lOS

wau sa K!li tt LL!tZ,P:$l# .. #Ll.O -· J74& JJ& .: t . llM i JtJMKMJAJMAf4QI;;t;;&!AJMtQJ:;t!.#&JiilAk9JL .. --

PMSetPrinter ($28)

The PMSetPrirur cali ~ used to determine where printed output is to be directed. The parameter
structure fa- the PMSetPrinter cali is listed bere.

Position Name Slze Value

$00 Async Flag Byte $00 (Synduonous only)

$01 Comma nd Byte $28

$02 ResultCode Word <---

$04 Entity Name Pointer Long <-->

~ Flags Byte <-->

$Œ Flush Interval Word <-->

$OB Tuneout Interval Word <--->

SOD Number of Buffers Word <-->

+ Note: For the Numbcr of Buffers f~eld, you must use a value of atleast 1 (of size 512 bytes).
NŒmally this cali aUocates buifers for you and sets this parameter to 20. The more buffers
you set, the faster the cali will be (the tradeoff is the amount of memory used).

The name poiŒed to by the Entity Name Pointer field specifies the name of a netwa-k printer for
RPM, and must be in standard NBP fŒmaL No attempt is made to verify that the given name
exists on the network. The name is used only when the f1ags field specifieS a network printer. The
f1ags field contains the Hags listed in Table 3-10

• Table HO Printer name flags

Value Dac:rlptloa

Bit 7 Network printer

Bit6 Na used in the Apple IIGS

Bit 5 Postscript emulator

Bit4 Reserved

Bit3 Reserved

Bit 2 Rescrved

Bit 1 Rescrved

Bit 0 Retum selected prirxer

104 C HA PT E R 3 Calls to AppleTalk Prooxols

When set, the Netwa-k Printer bit infonns the finnware that the desired printer is on the network;
its name is pointed to by the Entity Name Pointer. If the Postscript Emulator bit is set in
conjunction with the Network Printer bit, RPM sends out the foiiowing code at the beginning of
the fim packet sent to the prilter; this tums on the ImageWriter emulator in the LaserWriter.

DC C'\UncludeProcSet IWEm 1 l'

DC H'Od'

DC C'_WBJ_ '

Bit 0 of the Flags field specifies that the cali should retum the name of the printer if il is set for
RPM. If bit 0 ~ set when the cali is made, ali of the ether bits must be clear. When the cali is
executed in this manner, the cali completes with the proper bits set in the Flags field and the printer
name is placed at the address specified by the Entity Name Pointer field.

Â Wamlng When PMSetPrinter is called with Flags f~eld bit 0 set, the buffer pointed to
by the Enlity Name Pointer field must be 100 bytes long. ~

The flush lnterval and T1me011t Interval fields allow the caller 10 set the lime values for these time­
outs. 1hey are beth specifled in 1/4-second increments; the Timeout Interval must be greater than
the Flush lnterval. If the Timeout lnterval is set 10 zero (0), then the session wül never lime out
and must be stopped via the PMOoseSession cali.

1he PMSetPri!Xer cali retums these resuk codes, as weil as the result codes for ail system calls.

lcsuh Code Description

WX11 Invalid ftag byte

WXJZ Inval id time values

Calls to the Remae Print Manger (RPM) interface lOS

wau sa K!li tt LL!tZ,P:$l# .. #Ll.O -· J74& JJ& .: t . llM i JtJMKMJAJMAf4QI;;t;;&!AJMtQJ:;t!.#&JiilAk9JL .. --

PMdoseSesslon ($47)

The PMOoseSession cali is used to dose any outstanding RPM session. The pararneter structure for
the PMOoseSession cali is listed here

Position

$00

$01
$02

Name
Async Aag
Command
Result Code

The PMOoseSession cali never returos an error.

Jo6 CH APTE R 3 Calls to AppleTalk PrOIOCols

Slze

Byte
Byte
Word

Value

SOO (Synchronous orùy)
$28
<---

ProDOS 8 AFP Translator

This section describes the differences between making ProDOS 8 calls and using the AFP Translator
10 make ProDOS 8 calls over the network. The AFP Translator code captures ali ProDOS 8 MU calls.
Depending on the volume being accessed, the AFP Translator either rootes the calls to the local
Pro DOS in the Apple !1, or translates them iniO AFP caUs and sends them over the network to an
AFP file server. The AppleShare File System Translator perforrns the equivalent task under GS/OS.

Catalogs under ProDOS 8 are perforrned by opening and reading directories. However, AFP does
nOl support reading directories directly. lnstead, the AFP Translater must execute an AFP
Enurnerate cali and create a 'fake' directory for Proi)()S 8 based on the information retumed by
AFP. When narnes are retumed that contain invalid characters, the invalid characters are replaced by
the question-mark character (?) in the fake directory black that is created. Also, when the narne
retumed is longer than 15 characters, a question-mark character (?) is plaœd in the lasl position of
the narne to indicate thal the narne is actually longer than what bas been retumed. GSIOS
applications should always use GetDirEntry to read directories.

ProDOS 8 AFP Translator Access Mode

Files on the file server may be opened and read by more than one workstation on the network. Orùy
the first workstation to open the file is granted wr~e acœss to a file (subsequent workstations
have read-only acœss). If a second workstation tries 10 open the file and atternpts a Write
operation, the error Acœss Error ($4E) is retumed

If a file is open on more than one workstation and the workstation with the first open/write
acœss doses the file, the acœss paths being used by the Olher workstations that have opened the
file are n01 closed but retain their read-only acœss. The next workstation 10 open the file reœives
write access. If the files are opened with the Special Open fork cali, users can share write acœss.

Resource forks

Two forks are created for every file in an AFP 2.0 file server: a data fork and a resourœ fork. These
forks are sirnilar to the Macintœh Hierarchical File System, which bas a Resourœ Manager and uses
beth forks. Ali normal ProDOS 8 calls are defaulted 10 the data fork by the AFP Translator.

+ Note: Urùess your application is smart enough 10 know how to manipulate and maintain
resœrœ maps in the resourœ fork, the application should only use the data fork for its data
stor3ge. If you want to create a multi-u.ser or multi-launch version of yoor application, you
cannot u.se resourœ files 10 store your dat2.

An applications programmer can acœss infonnation fran the resourœ fork by setting certain bits
in the parameter cœnt of related calls. The two ProDOS 8 calls that are affected are· GeiFIJelnfo and

~

ProDOS 8 AFP Translater 107

PMdoseSesslon ($47)

The PMOoseSession cali is used to dose any outstanding RPM session. The pararneter structure for
the PMOoseSession cali is listed here

Position

$00

$01
$02

Name
Async Aag
Command
Result Code

The PMOoseSession cali never returos an error.

Jo6 CH APTE R 3 Calls to AppleTalk PrOIOCols

Slze

Byte
Byte
Word

Value

SOO (Synchronous orùy)
$28
<---

ProDOS 8 AFP Translator

This section describes the differences between making ProDOS 8 calls and using the AFP Translator
10 make ProDOS 8 calls over the network. The AFP Translator code captures ali ProDOS 8 MU calls.
Depending on the volume being accessed, the AFP Translator either rootes the calls to the local
Pro DOS in the Apple !1, or translates them iniO AFP caUs and sends them over the network to an
AFP file server. The AppleShare File System Translator perforrns the equivalent task under GS/OS.

Catalogs under ProDOS 8 are perforrned by opening and reading directories. However, AFP does
nOl support reading directories directly. lnstead, the AFP Translater must execute an AFP
Enurnerate cali and create a 'fake' directory for Proi)()S 8 based on the information retumed by
AFP. When narnes are retumed that contain invalid characters, the invalid characters are replaced by
the question-mark character (?) in the fake directory black that is created. Also, when the narne
retumed is longer than 15 characters, a question-mark character (?) is plaœd in the lasl position of
the narne to indicate thal the narne is actually longer than what bas been retumed. GSIOS
applications should always use GetDirEntry to read directories.

ProDOS 8 AFP Translator Access Mode

Files on the file server may be opened and read by more than one workstation on the network. Orùy
the first workstation to open the file is granted wr~e acœss to a file (subsequent workstations
have read-only acœss). If a second workstation tries 10 open the file and atternpts a Write
operation, the error Acœss Error ($4E) is retumed

If a file is open on more than one workstation and the workstation with the first open/write
acœss doses the file, the acœss paths being used by the Olher workstations that have opened the
file are n01 closed but retain their read-only acœss. The next workstation 10 open the file reœives
write access. If the files are opened with the Special Open fork cali, users can share write acœss.

Resource forks

Two forks are created for every file in an AFP 2.0 file server: a data fork and a resourœ fork. These
forks are sirnilar to the Macintœh Hierarchical File System, which bas a Resourœ Manager and uses
beth forks. Ali normal ProDOS 8 calls are defaulted 10 the data fork by the AFP Translator.

+ Note: Urùess your application is smart enough 10 know how to manipulate and maintain
resœrœ maps in the resourœ fork, the application should only use the data fork for its data
stor3ge. If you want to create a multi-u.ser or multi-launch version of yoor application, you
cannot u.se resourœ files 10 store your dat2.

An applications programmer can acœss infonnation fran the resourœ fork by setting certain bits
in the parameter cœnt of related calls. The two ProDOS 8 calls that are affected are· GeiFIJelnfo and

~

ProDOS 8 AFP Translater 107

42

Differences ln ProDOS 8 and AFP Translator CalJs

There are specifiC differences in the way in which ProDOS calls are transbted. This section describes
the specifJC par.uneters affected for the following for ProDOS 8 commands. Refer to Chapter 4 in
the ProVOS 8 Teclmleal Refenmœ Manuai for detailed inforrnatioo on these caUs.

• GetFHelnfo (ProDOS 8 Comrnand $C4)

• Open (ProDOS 8 Conunand $CS)

See the following sectioo for specûJCS of these calls under GS/05.

GctFUclnfo

Differences in the way in which the Ge!Filelnfo cali is used for files and diredories are described
next.

For Ffks: The parameters thal are affected by the selection of the data fork, the resource fork, or
bolh, are the size of the file and the number of blocks thal il uses. Table 3-11lisl5 these
parameters.

• Table 3-11 FUc pararneters for GetFilelnfo command

To...,

The size of the data fork

The size of the resoun:e fork

Set I'CoU.DI 10

SOA
S8A

The combined sizc d beth forks S4A or $CA

FM IJirtctoiVs: Therc is no difference from making ProDOS 8 calls in the usual manncr. (Extra

bits in the parameter count are ignored.) Table H2 lists the HFS file types !hat the file server
converts into ProDOS 8 file types.

• Table H2 FUc types

IIFS Ctalot IIFS Rie Type PloDOS Flle Type ADII.Iry Rie Type

(any) TEXT TXT(SO.f) $OOl)

pdos BINA typeless ($00) $OOl)

pdos PSYS SYS($FF) $OOl)

pdos PSI6 $83 $OOl)

pdos DM $xx SOOXl when: xx is a 2-digl
hex number and tl is a space

108 CIl APTE R 3 calls lo AppleTalk Protocols • •

If the files types in Table 3-12 are !là foond, !ben the following is converted:

4 bytes 'p' ASQJ $70 !-byte value 2-byte value

For aample, the 4-byte value for a ProDOS binary file wij) an auxiliary file type of $800 woold be $70
$06 Sœ $00. The HFS acator should be 'pdos'. This conversion allows a Macintœh computer to
create a Ille !hat can be transferred to a Macintœh server and have ilS ProDOS 8 file type set
correctly.

Differences in the way in which the Open cali is used for files and direaories are described as
follows.

FM Ffles: The Open cali tells PA what fork l wants to open. PFI rernernbers the type of fork, so
!hat ali of the other calls for the file !hat use the reference number do not have lo know the fork
type. Table 3-13lisl5 these pararneters.

• Table H3 F'de parameters for Open comrnand

Toopm

The data fork

The resource fork

For qg ryœ. sr PCoun! 10 el!bcr
PloDOS Opal Spedal Opm tort

If an open cali is attempted on a file, an attempt will be made to open the file as read/wrie dcny
wrle. If this falls, an attempt will be made to open the file as read-only dcny nahing. If this falls,
an attempt will be made to open the file as write-ooly dcny write. If this also fails, an access dcnied
errer ($4E) will be returned. This behavior is the sarnc as for GS/OS and was donc for cornpatibilly
wilh GS/OS

FtW Dlr«tories: When an Open cali for a direaory occurs, PFIIooks at the high bls of the
parameter count to find oot what the user wants to includc in the size of the files within !hat
directory. Table 3-14lisl5 these parameters. Threc types d catalog arc possible using thesc
features.

• Table H 4 Directory parameters for Open comrnand

To llad

The size d the data fork

The sizc of the rcsoun:e fork

The cornbined sizc d beth forks

for qg ttJIC- ICI PCow!l 10 c!tbcr
PloDOS Opal Spedal Opm toril

ProDOS 8 AFP Translater 109

Qt lMXSWi.#? 5 ii! . ,6 2 : a 4 1 ii 4 id; tJ J l.H tu 14 Li SSZi.ii#iUS124JQSZSQQ $1 ES& J a as a. a sa a 44

42

Differences ln ProDOS 8 and AFP Translator CalJs

There are specifiC differences in the way in which ProDOS calls are transbted. This section describes
the specifJC par.uneters affected for the following for ProDOS 8 commands. Refer to Chapter 4 in
the ProVOS 8 Teclmleal Refenmœ Manuai for detailed inforrnatioo on these caUs.

• GetFHelnfo (ProDOS 8 Comrnand $C4)

• Open (ProDOS 8 Conunand $CS)

See the following sectioo for specûJCS of these calls under GS/05.

GctFUclnfo

Differences in the way in which the Ge!Filelnfo cali is used for files and diredories are described
next.

For Ffks: The parameters thal are affected by the selection of the data fork, the resource fork, or
bolh, are the size of the file and the number of blocks thal il uses. Table 3-11lisl5 these
parameters.

• Table 3-11 FUc pararneters for GetFilelnfo command

To...,

The size of the data fork

The size of the resoun:e fork

Set I'CoU.DI 10

SOA
S8A

The combined sizc d beth forks S4A or $CA

FM IJirtctoiVs: Therc is no difference from making ProDOS 8 calls in the usual manncr. (Extra

bits in the parameter count are ignored.) Table H2 lists the HFS file types !hat the file server
converts into ProDOS 8 file types.

• Table H2 FUc types

IIFS Ctalot IIFS Rie Type PloDOS Flle Type ADII.Iry Rie Type

(any) TEXT TXT(SO.f) $OOl)

pdos BINA typeless ($00) $OOl)

pdos PSYS SYS($FF) $OOl)

pdos PSI6 $83 $OOl)

pdos DM $xx SOOXl when: xx is a 2-digl
hex number and tl is a space

108 CIl APTE R 3 calls lo AppleTalk Protocols • •

If the files types in Table 3-12 are !là foond, !ben the following is converted:

4 bytes 'p' ASQJ $70 !-byte value 2-byte value

For aample, the 4-byte value for a ProDOS binary file wij) an auxiliary file type of $800 woold be $70
$06 Sœ $00. The HFS acator should be 'pdos'. This conversion allows a Macintœh computer to
create a Ille !hat can be transferred to a Macintœh server and have ilS ProDOS 8 file type set
correctly.

Differences in the way in which the Open cali is used for files and direaories are described as
follows.

FM Ffles: The Open cali tells PA what fork l wants to open. PFI rernernbers the type of fork, so
!hat ali of the other calls for the file !hat use the reference number do not have lo know the fork
type. Table 3-13lisl5 these pararneters.

• Table H3 F'de parameters for Open comrnand

Toopm

The data fork

The resource fork

For qg ryœ. sr PCoun! 10 el!bcr
PloDOS Opal Spedal Opm tort

If an open cali is attempted on a file, an attempt will be made to open the file as read/wrie dcny
wrle. If this falls, an attempt will be made to open the file as read-only dcny nahing. If this falls,
an attempt will be made to open the file as write-ooly dcny write. If this also fails, an access dcnied
errer ($4E) will be returned. This behavior is the sarnc as for GS/OS and was donc for cornpatibilly
wilh GS/OS

FtW Dlr«tories: When an Open cali for a direaory occurs, PFIIooks at the high bls of the
parameter count to find oot what the user wants to includc in the size of the files within !hat
directory. Table 3-14lisl5 these parameters. Threc types d catalog arc possible using thesc
features.

• Table H 4 Directory parameters for Open comrnand

To llad

The size d the data fork

The sizc of the rcsoun:e fork

The cornbined sizc d beth forks

for qg ttJIC- ICI PCow!l 10 c!tbcr
PloDOS Opal Spedal Opm toril

ProDOS 8 AFP Translater 109

Qt lMXSWi.#? 5 ii! . ,6 2 : a 4 1 ii 4 id; tJ J l.H tu 14 Li SSZi.ii#iUS124JQSZSQQ $1 ES& J a as a. a sa a 44

Additional ProDOS MLI Calls

Two powerful features for =ting muk~user applications are the Special Open Fork command and
!he Byte Range Lock ccmmand. These cornmands allow applications to preserve data integrity and
conl!ol simultaneoos access to files. Table 3-151ists two new ProDOS caUs via the MU for ProDOS
8ooly.

• Table HS New ProDOS caUs

Namc

Special Open fork

Byte Range Lock

Similar to ProDOS Open cornmand, but with access
specUied by user. Use if your application allows data
to be shaced.

Used to lock out access to a portion of an open file.
Use if your application allows multiple usees to read
and write to the same file at the same lime.

110 CH A PTE R 3 C.llls to AppleTalk Protocols •

Spedal Open Fork ($43)

The Special Open Forie cali is similar to the normal Open cornmand, with !he exception of 1
addiûonal byte that bas been added to the end of !he parameter list. This addilional byte indicates
the access that the user wants to have for the file. Applications may use the resource forie if they
are designed either to run only on the network, orto run locally when !he data file is on the
network.

Under GS/OS, use the Fde System Translator cali FST_SpecifJC ($33), with cornmand setto $0003
(Special Open Forie).

The parameter sl!ucture for the Special Open Fork cali is listed here.

Position Namc Slzc Value

$00 PCount Byte $04or$84

$01 Pathname Pointer Word -->

$03 VO Buffer Word -->

$05 Reference Number Byte <--

~ Access Mode Byte -->

The PCount f~eld contains $04 if a data forie is to be opened, and contains $84 if a resource fork is to
be opened. When set, bit 5 of the PCount fidd tu ms off buffering.

AppleTalk Filing Protocol (AFP) uses !he Access Mode Byte. Wben you open a file over the
network, yoo are given certain rights (privileges); these rights indude

• Read/Wrle

• Deny Read !Deny Wrre

The Access Mode Byte is defined in Table 3-16 (ali reserved areas must be 0).

• Table 3-16 Access mode byte

llltoumbcr Dcocrlpdoll

7 Reserved

6 Reserved

Deny write access to others

4 Deny read access to olhers

3 Reserved

2 Reserved

Rcquest write access

0 Rcquest read access

Addilional ProDOS MU calls 111

Additional ProDOS MLI Calls

Two powerful features for =ting muk~user applications are the Special Open Fork command and
!he Byte Range Lock ccmmand. These cornmands allow applications to preserve data integrity and
conl!ol simultaneoos access to files. Table 3-151ists two new ProDOS caUs via the MU for ProDOS
8ooly.

• Table HS New ProDOS caUs

Namc

Special Open fork

Byte Range Lock

Similar to ProDOS Open cornmand, but with access
specUied by user. Use if your application allows data
to be shaced.

Used to lock out access to a portion of an open file.
Use if your application allows multiple usees to read
and write to the same file at the same lime.

110 CH A PTE R 3 C.llls to AppleTalk Protocols •

Spedal Open Fork ($43)

The Special Open Forie cali is similar to the normal Open cornmand, with !he exception of 1
addiûonal byte that bas been added to the end of !he parameter list. This addilional byte indicates
the access that the user wants to have for the file. Applications may use the resource forie if they
are designed either to run only on the network, orto run locally when !he data file is on the
network.

Under GS/OS, use the Fde System Translator cali FST_SpecifJC ($33), with cornmand setto $0003
(Special Open Forie).

The parameter sl!ucture for the Special Open Fork cali is listed here.

Position Namc Slzc Value

$00 PCount Byte $04or$84

$01 Pathname Pointer Word -->

$03 VO Buffer Word -->

$05 Reference Number Byte <--

~ Access Mode Byte -->

The PCount f~eld contains $04 if a data forie is to be opened, and contains $84 if a resource fork is to
be opened. When set, bit 5 of the PCount fidd tu ms off buffering.

AppleTalk Filing Protocol (AFP) uses !he Access Mode Byte. Wben you open a file over the
network, yoo are given certain rights (privileges); these rights indude

• Read/Wrle

• Deny Read !Deny Wrre

The Access Mode Byte is defined in Table 3-16 (ali reserved areas must be 0).

• Table 3-16 Access mode byte

llltoumbcr Dcocrlpdoll

7 Reserved

6 Reserved

Deny write access to others

4 Deny read access to olhers

3 Reserved

2 Reserved

Rcquest write access

0 Rcquest read access

Addilional ProDOS MU calls 111

The errors returned for this command are the same as for the Open command, as follows:

Resuh Code Description

tll 1/0error
$28 No deviee connected

$2E Disk switched

$40 lnvalid pathname syntax

$42 File Corool Block table full

$44 Path not found

S45 Volume directory not found

S46 File not found

S4A Version enor

S4B Unsupported storage type

S4E Access not allowed

$4F Buffer too small

Rcsuh Code Description

$50 File is open

$52 Unsupported Volume type

$53 lnvalid value in parameter list

$56 Bad bulfer address

$58 Not a black deviee

$5A Bünap disk address is impossible

ll:Z C H A PTE R 3 Calls to AppleTalk Prctocols

idll 10444.@40 ;ç 04

e e

•

Byte Range Lock ($44)

The Byte Range Lock <:!Il is used to Jock out access to a portion of an open me. Lock a range of
bytes to ensure exdusive access to this area of the file. The Jock keeps ali other users from reading
or writing within this arca. This feature is very helpful in a multi-user application.

+ R~: The procedure to follow is to Jock the range, modify the range, and theo unlock
the range.

Y ou must unlock an eotire range that you have locked Y ou cannet unlock part of locked range. For
Example, if you Jock the range $()()()()4100- SOOFF0080, theo the only range that you can unlock is
$(XXX)4!00- $001'R'Xm. Y ou crnkl net unlock the range $(XXX}4JOO - $00l0500J.

Under GSIOS, use the File System Translator <:!Il FST_Specific ($33), with cornmand set to $0002
(Byte Range Lock).

The following is the parameter usage for the Byte Range Lock <:!11.

Position Name Slze Value

m PCount Byte m
$01 Reference Number Byte -->

$02 Lock Flag Byte -->

$03 Offset in File 3 Bytes -->

~ Length of Lock 3 Bytes -->

m Start of Range, 3 Bytes <---
relative to
beginning of file

The Reference Number is the number giveo when a file is opened.
The function of bit 0 in the Lock Flag is to choose the function (Lock or Unlock). If bit 0 of the

Lock Flag is set, theo the range is unlocked If bi 0 of the Lock Flag is clear, theo the range is locked.
The function o(bit 6 in the Lock Flag is to choose the direction of the Offset in File (before or

after the selected reference point). If bit 6 of the Lock Flag is set, theo the Offset in File is the
leogth before the selected reference point If bl6 o(the Lock Flag is dear, theo the Offset in File is
the leogth after the selected reference point

The function o(bit 7 in the Lock Flag is to choose the reference point for the Jock (stan of me
or end d ftle). If bit 7 of the Lock Flag is set, theo the Offset in File is relative to the end of the fk
If bi 7 d the Lock Flag is dear, theo the Offset in File is relative to the start of the flle. Y ou cannot
unlock relative to the end of me because, belween the time youlock and unlock a range, the EOF
pointer coold move .

Add~ional ProDOS MU calls 113

; nkp;ec wa e. .u x w.u "' .e" ,.ms : ;; .ta . *44- s z , ; ; tu sana JJ.JSJSS2 sas œ.m a: t 1 W$ t Ci& lU 41&

The errors returned for this command are the same as for the Open command, as follows:

Resuh Code Description

tll 1/0error
$28 No deviee connected

$2E Disk switched

$40 lnvalid pathname syntax

$42 File Corool Block table full

$44 Path not found

S45 Volume directory not found

S46 File not found

S4A Version enor

S4B Unsupported storage type

S4E Access not allowed

$4F Buffer too small

Rcsuh Code Description

$50 File is open

$52 Unsupported Volume type

$53 lnvalid value in parameter list

$56 Bad bulfer address

$58 Not a black deviee

$5A Bünap disk address is impossible

ll:Z C H A PTE R 3 Calls to AppleTalk Prctocols

idll 10444.@40 ;ç 04

e e

•

Byte Range Lock ($44)

The Byte Range Lock <:!Il is used to Jock out access to a portion of an open me. Lock a range of
bytes to ensure exdusive access to this area of the file. The Jock keeps ali other users from reading
or writing within this arca. This feature is very helpful in a multi-user application.

+ R~: The procedure to follow is to Jock the range, modify the range, and theo unlock
the range.

Y ou must unlock an eotire range that you have locked Y ou cannet unlock part of locked range. For
Example, if you Jock the range $()()()()4100- SOOFF0080, theo the only range that you can unlock is
$(XXX)4!00- $001'R'Xm. Y ou crnkl net unlock the range $(XXX}4JOO - $00l0500J.

Under GSIOS, use the File System Translator <:!Il FST_Specific ($33), with cornmand set to $0002
(Byte Range Lock).

The following is the parameter usage for the Byte Range Lock <:!11.

Position Name Slze Value

m PCount Byte m
$01 Reference Number Byte -->

$02 Lock Flag Byte -->

$03 Offset in File 3 Bytes -->

~ Length of Lock 3 Bytes -->

m Start of Range, 3 Bytes <---
relative to
beginning of file

The Reference Number is the number giveo when a file is opened.
The function of bit 0 in the Lock Flag is to choose the function (Lock or Unlock). If bit 0 of the

Lock Flag is set, theo the range is unlocked If bi 0 of the Lock Flag is clear, theo the range is locked.
The function o(bit 6 in the Lock Flag is to choose the direction of the Offset in File (before or

after the selected reference point). If bit 6 of the Lock Flag is set, theo the Offset in File is the
leogth before the selected reference point If bl6 o(the Lock Flag is dear, theo the Offset in File is
the leogth after the selected reference point

The function o(bit 7 in the Lock Flag is to choose the reference point for the Jock (stan of me
or end d ftle). If bit 7 of the Lock Flag is set, theo the Offset in File is relative to the end of the fk
If bi 7 d the Lock Flag is dear, theo the Offset in File is relative to the start of the flle. Y ou cannot
unlock relative to the end of me because, belween the time youlock and unlock a range, the EOF
pointer coold move .

Add~ional ProDOS MU calls 113

; nkp;ec wa e. .u x w.u "' .e" ,.ms : ;; .ta . *44- s z , ; ; tu sana JJ.JSJSS2 sas œ.m a: t 1 W$ t Ci& lU 41&

The Offset in Fde is the dislance away from the selected reference point The l.ength of Lock is
the aroount 10 be prŒeàed by the Jock. The value in the Stan of Range field is retumed to describe
the location rdative to the stan ci the fde where the Jock begins.

Byte Range Lock retums the pœition in the flle of the locked range after every successful Jock.
lt is the respoosibüity of the user to same this infonnation (as wdl as the length of the Jock) if the
range is 10 be unlocked before dosing the flle.

The errors returned for this canmand are the sarne as for the ProDOS Open command, as follows:

Kesuh Code

~

$41)

$53

DcscrlpUon

lnvalid pann count

Pœlion out of range indic:Ues that the range yoo are attempting 10 Jock overlaps a
range that you have already locked

Access denied indicues that the range you are attempting 10 Jock overlaps a range
that you have already locked

lnvalid parameter may be retumed for a Jock length of zero (which is useless), or for
an invalid Jock Hag (such as attempting to use a negative offset from the BOF, or
unlocking relative 10 the EOF).

+ Nole: $40, $4E, & $53 are not defmed the sarne as in the rest of ProDOS 8.

lH CH APTE R 3 Calls to AppleTalk Protocols

Calls to the ProDOS Fillng Interface (PFI)

This section describes calls to the ProDOS Filing Interface (PA) on the Apple II workstation. PA
calls are utüity calls for activly on server volumes that suppon AFP through the ProDOS 8
interface. PA provides additionaJ calls 10 handle Jogging in to, Jogging out of, and mounting server
volumes.

+ Nole: Features of AFP thal are not available throogh operating system calls can be accessed
by making AFP calls directly through ASP. These AFP calls use the Session Reference 1

retumed by the FI!.ogin call, or the Session Reference 1 and Volume ID retumed by the
FiüstSessions cali. When mes are opened throogh ASP direcrly, ali Reads, Writes, and othee
calls that involve the open fork must also be done through ASP. In such cases, ali buffer
management is up to the caller.

The ProDOS Filing Interface allows server volumes to be pseudo-mounted in the empty slots of
the workstation. In this way, server volumes are considered along with local volumes, each being
accessed based on volume name. In the case of duplicate names, the server list is searched flrst.
When a ProDOS 8 ON_UNE cali is executed, the narnes ofbcrh the local volume and file server
volume are retumed with the appropriate slot and drive numbers.

Volumes from more than one server may be mounted at one time. Volumes may be pseudo
mounted in slots that are actually occupied by other cards that are not black deviees .(such as
printer cards). In such cases, the deviees actually mounted in those slots are still available for use.

Calls to the ProDOS Filing Interface (PFI)

@@J§JJ!i&Z

us

The Offset in Fde is the dislance away from the selected reference point The l.ength of Lock is
the aroount 10 be prŒeàed by the Jock. The value in the Stan of Range field is retumed to describe
the location rdative to the stan ci the fde where the Jock begins.

Byte Range Lock retums the pœition in the flle of the locked range after every successful Jock.
lt is the respoosibüity of the user to same this infonnation (as wdl as the length of the Jock) if the
range is 10 be unlocked before dosing the flle.

The errors returned for this canmand are the sarne as for the ProDOS Open command, as follows:

Kesuh Code

~

$41)

$53

DcscrlpUon

lnvalid pann count

Pœlion out of range indic:Ues that the range yoo are attempting 10 Jock overlaps a
range that you have already locked

Access denied indicues that the range you are attempting 10 Jock overlaps a range
that you have already locked

lnvalid parameter may be retumed for a Jock length of zero (which is useless), or for
an invalid Jock Hag (such as attempting to use a negative offset from the BOF, or
unlocking relative 10 the EOF).

+ Nole: $40, $4E, & $53 are not defmed the sarne as in the rest of ProDOS 8.

lH CH APTE R 3 Calls to AppleTalk Protocols

Calls to the ProDOS Fillng Interface (PFI)

This section describes calls to the ProDOS Filing Interface (PA) on the Apple II workstation. PA
calls are utüity calls for activly on server volumes that suppon AFP through the ProDOS 8
interface. PA provides additionaJ calls 10 handle Jogging in to, Jogging out of, and mounting server
volumes.

+ Nole: Features of AFP thal are not available throogh operating system calls can be accessed
by making AFP calls directly through ASP. These AFP calls use the Session Reference 1

retumed by the FI!.ogin call, or the Session Reference 1 and Volume ID retumed by the
FiüstSessions cali. When mes are opened throogh ASP direcrly, ali Reads, Writes, and othee
calls that involve the open fork must also be done through ASP. In such cases, ali buffer
management is up to the caller.

The ProDOS Filing Interface allows server volumes to be pseudo-mounted in the empty slots of
the workstation. In this way, server volumes are considered along with local volumes, each being
accessed based on volume name. In the case of duplicate names, the server list is searched flrst.
When a ProDOS 8 ON_UNE cali is executed, the narnes ofbcrh the local volume and file server
volume are retumed with the appropriate slot and drive numbers.

Volumes from more than one server may be mounted at one time. Volumes may be pseudo
mounted in slots that are actually occupied by other cards that are not black deviees .(such as
printer cards). In such cases, the deviees actually mounted in those slots are still available for use.

Calls to the ProDOS Filing Interface (PFI)

@@J§JJ!i&Z

us

Table 3-171isls the calls to the ProDOS Filing Interface (PFI) caUs. The seàions that rollow
desaibe each cali, the parameter listing, and the result codes.

• Table 3-17 PFI calls

Olalmlad- l'llalo llacrlpdon

$2A FIUserPrefiX Retums prefrx 10 user directory
$28 FI Log in Log in 10 server

oc Fll.oginCont Log in continue
$21) Fll.ogOut Log off rrom server
$2E FIMountVol Mount a server volume
$2F FIListSessions List server sessiom and volumes

$~ FITirneZone Set workstatlon time zone
$31 FIGetSrcPath Get system program source path

$32 F!Access Set/get direàory access

$33 FINaming Set/get naming conventions
$34 ConvertTime Converts lime to/from ProDOS/ AFP rorrnats

$36 FISetBurrer Provides a temporary storage space

$37 FIHooks ' Set/get notifiCition vectors

$38 Fll.ogin2. Enhanced Server Log In
$}) Fll.is1Session2 • Enhanced listing or server sessiom and volumes

$3A FIGetSVersion • Determine version or AFP log being used

'Note: These calls are na: available on an Apple ne workstalion or an Apple IIGS running pre-5.0 system
softwm.

116 C HA PT I!R 3 Calls to AppleTalk Prolocols

FIUserPrdb: ($ZA)

The FIUserPrefiX retums the ertire prefiX or the user directory.

+ Note: The Apple DGS does not rel2in this name rollowing a poweroff.

Under GS/OS, use the File System Translator cali FST _SpecifiC ($33), with command set to $0001
(GetUserPath).

The parameter structure ror the FIUserPrefrx cali is listed here.

Position Name Slze Value

m Async Aag Byte $00 (Synchmnous only)

~1 Comma nd Byte $2A

$02 ResultCode Word <---

~ Reserved Byte m
m User Name Pointer Long ·->

The user prefiX is retumed in the buffer pointed to by the User Name Pointer. This cali al ways
moves 64 bytes to the user's buffer, regardless or the dal2 being moved or the rormat Thererore
the largest string it can retum is 63 bytes (plus 1 ror the length byte). The value in the Reserved f~eld
must be o.

The result codes retumed ror the FIUserPrefJX cali are the same as thœe comm~ to ali general
system calls.

Calls to the ProDOS Filing Interface (PFI) 117

4. Li 2 ; su tWI.itAJ!i il .#;qg tt P 11&10 a .J 414 UIIZ!lt::Zii Eiii!&! UZ&M OU 5. j sa dt! !JO 2! 2. . ::su

Table 3-171isls the calls to the ProDOS Filing Interface (PFI) caUs. The seàions that rollow
desaibe each cali, the parameter listing, and the result codes.

• Table 3-17 PFI calls

Olalmlad- l'llalo llacrlpdon

$2A FIUserPrefiX Retums prefrx 10 user directory
$28 FI Log in Log in 10 server

oc Fll.oginCont Log in continue
$21) Fll.ogOut Log off rrom server
$2E FIMountVol Mount a server volume
$2F FIListSessions List server sessiom and volumes

$~ FITirneZone Set workstatlon time zone
$31 FIGetSrcPath Get system program source path

$32 F!Access Set/get direàory access

$33 FINaming Set/get naming conventions
$34 ConvertTime Converts lime to/from ProDOS/ AFP rorrnats

$36 FISetBurrer Provides a temporary storage space

$37 FIHooks ' Set/get notifiCition vectors

$38 Fll.ogin2. Enhanced Server Log In
$}) Fll.is1Session2 • Enhanced listing or server sessiom and volumes

$3A FIGetSVersion • Determine version or AFP log being used

'Note: These calls are na: available on an Apple ne workstalion or an Apple IIGS running pre-5.0 system
softwm.

116 C HA PT I!R 3 Calls to AppleTalk Prolocols

FIUserPrdb: ($ZA)

The FIUserPrefiX retums the ertire prefiX or the user directory.

+ Note: The Apple DGS does not rel2in this name rollowing a poweroff.

Under GS/OS, use the File System Translator cali FST _SpecifiC ($33), with command set to $0001
(GetUserPath).

The parameter structure ror the FIUserPrefrx cali is listed here.

Position Name Slze Value

m Async Aag Byte $00 (Synchmnous only)

~1 Comma nd Byte $2A

$02 ResultCode Word <---

~ Reserved Byte m
m User Name Pointer Long ·->

The user prefiX is retumed in the buffer pointed to by the User Name Pointer. This cali al ways
moves 64 bytes to the user's buffer, regardless or the dal2 being moved or the rormat Thererore
the largest string it can retum is 63 bytes (plus 1 ror the length byte). The value in the Reserved f~eld
must be o.

The result codes retumed ror the FIUserPrefJX cali are the same as thœe comm~ to ali general
system calls.

Calls to the ProDOS Filing Interface (PFI) 117

4. Li 2 ; su tWI.itAJ!i il .#;qg tt P 11&10 a .J 414 UIIZ!lt::Zii Eiii!&! UZ&M OU 5. j sa dt! !JO 2! 2. . ::su

FILogin ($2B)

The Fll.ogin cali is used to log in to a server. PFI caUs and operating system MU caUs executed
through the PFI cao be made only to servers mounted through this cali. The parameter structure
for the Fll.ogin cali is listed here. Only one session per server is allowed through the Fll.ogin cali. l'or
infoonation on multiple sessions, refer to information on the AppleTalk Session Protocol in lnstde
Apple Ta/k.

+ Note: If a log-in is executed direcùy Lhrough ASP, none of the PFI calls or operating system
calls will work wilh !hat session.

+ Note: Future version of the Apple IIGS may not support the F!Login cali. Apple recornrnends
that Apple UGS applications use !he Fll.ogin2 caU. If l'll.ogin is used in conjunction wilh
Fll..is!Sessions2, the Server Name and Zone Name will not be returned

Position Name Slzc Value
$00 Async Aag Byte $00 (Synchronous only)
$01 Comma nd Byte $2B
$02 Result Code Word <---

S04 SLS Network Number <Word> --->

sai SLS Node Nurnber Byte -->
$(J7 SLS Socket Nurnber Byte -->

sœ Comrnand Buffer Length Word -->

$0A Comrnand Buffer Pointer Long -->

SOE Reply Buffer Length Word -->

$10 Reply Buffer Pointer Long -->

$14 Sessioo Refercncc ' Byte <---
$15 Altn Routine Long -->

The Conunand Buffer must be in the AFP format for the I'PLogin cali, with the firsl 2 bytes
reserved for the AfP Comrnand Nurnber. When the cali completes, the Reply Buffer contains the
reply, 1f any, in AfP foonat The Session Reference • field will retum the ASP Session Reference
Number. If the cali axnpletes wilh the Login Continue Error, the caller mu51 complete the log-in
process with the server by using the FILoginCorx cali. As far as PFI is concemed, the session has
been established, unless the cali axnpletes wi!h an error other than Login Corxinue.

118 C HA PTE R 3 Gills to AppleTalk ProiOCOis

The Fll.ogin caU retums these result codes, as weil as the result codes for ali system caUs.

lcsult Code Description

$0A01 Too many sessions

$OA02 Unable to open session

$OAD3 No response from server

$0A04 Login continue

$0A13 Already logged in to server

SOA15 User not authorized

$0A16 Parameter error

SOA17 Server going down

$0A18 Bad UAM

SOA19 Bad version number

e e

e
Calls to !he ProDOS l'iling Interface (PI'I) 119

-

FILogin ($2B)

The Fll.ogin cali is used to log in to a server. PFI caUs and operating system MU caUs executed
through the PFI cao be made only to servers mounted through this cali. The parameter structure
for the Fll.ogin cali is listed here. Only one session per server is allowed through the Fll.ogin cali. l'or
infoonation on multiple sessions, refer to information on the AppleTalk Session Protocol in lnstde
Apple Ta/k.

+ Note: If a log-in is executed direcùy Lhrough ASP, none of the PFI calls or operating system
calls will work wilh !hat session.

+ Note: Future version of the Apple IIGS may not support the F!Login cali. Apple recornrnends
that Apple UGS applications use !he Fll.ogin2 caU. If l'll.ogin is used in conjunction wilh
Fll..is!Sessions2, the Server Name and Zone Name will not be returned

Position Name Slzc Value
$00 Async Aag Byte $00 (Synchronous only)
$01 Comma nd Byte $2B
$02 Result Code Word <---

S04 SLS Network Number <Word> --->

sai SLS Node Nurnber Byte -->
$(J7 SLS Socket Nurnber Byte -->

sœ Comrnand Buffer Length Word -->

$0A Comrnand Buffer Pointer Long -->

SOE Reply Buffer Length Word -->

$10 Reply Buffer Pointer Long -->

$14 Sessioo Refercncc ' Byte <---
$15 Altn Routine Long -->

The Conunand Buffer must be in the AFP format for the I'PLogin cali, with the firsl 2 bytes
reserved for the AfP Comrnand Nurnber. When the cali completes, the Reply Buffer contains the
reply, 1f any, in AfP foonat The Session Reference • field will retum the ASP Session Reference
Number. If the cali axnpletes wilh the Login Continue Error, the caller mu51 complete the log-in
process with the server by using the FILoginCorx cali. As far as PFI is concemed, the session has
been established, unless the cali axnpletes wi!h an error other than Login Corxinue.

118 C HA PTE R 3 Gills to AppleTalk ProiOCOis

The Fll.ogin caU retums these result codes, as weil as the result codes for ali system caUs.

lcsult Code Description

$0A01 Too many sessions

$OA02 Unable to open session

$OAD3 No response from server

$0A04 Login continue

$0A13 Already logged in to server

SOA15 User not authorized

$0A16 Parameter error

SOA17 Server going down

$0A18 Bad UAM

SOA19 Bad version number

e e

e
Calls to !he ProDOS l'iling Interface (PI'I) 119

-

p

Fll.oginCont ($2C)

The FILoginCont ali is used for thœe user authentication methods thal require il, such as the
National Bureau of StandaJds Daia Enayption Standard (NBS-DES) algorilhm. The parameter
suutture for the FILoginConl ali is listed here.

Position Name Size Value

$00 Async Flag Byte SOO (Synchronous only)

$01 Comma nd Byte $);;

$OZ Result Code: Word <---

$04 Session Reference ' Byte ·->

$05 Cornmand Buffer Length Word -->

$07 Cornmand Buffer Pointer Long -->

$OB Reply Buffer Length Word -->

$00 Reply Buffer Pointer Long ·-->

The Session Reference ' must be the same as that retumed by the FII.ogin cali. The Command
Buffer muSI be in the required AFP format, with the firSI 2 bytes being reserved for the AFP
command number. The reply, if any, is retumed in the Reply Buffer in AFP formatif this cali falls,
the session will be canceled. If the cali completes wilh the Login Continue error, the caller must
complete the log-in proc:ess wilh the server.

The FILoginColt caU retums these result codes, as weil as the result codes for ali sySiem calls.

Result Code Description

SOA03 No response from server

SOA04 Login continue

SOAœ lnvalid session reference number or unknown volume

SOA 15 User nol authorized

IZO C HA PT 1! R 3 Calls to AppleTalk Protocols

1 ibQ ,1§$1.1 :u eoo a LS. J. ame: as

FILogout ($2D)

The Fll..ogoul caU is used 10 log off a server. lbis cali may be used to cancel a session created by an
incomplete Login The ASP session will be canœled even if the FPI..ogœt ali (which this caU
executes) fails. The pmrneter suucture for the FII..ogout cali is listed here.

Position Name Slze Value

$00 Async Flag Byte SOO (Synchronous only)

$01 Comma nd Byte S2D

$OZ ResultCode Word <---

$04 Session Reference ' Byte ·->

The Session Reference ' f.eld designates which session is to be terminaœd. The FILogout cali
retums these result codes, as weil as the result codes for ali system calls.

Result Code Description

$OAIXi lnvalid session reference number or unknown volume

Calls to the ProDOS Filing Interface (PFI) IZI

U Li . . t 1 t iUSCIJQ!Ut. IL Si $2 t S5 :Utt as Li ll UlJL! !il JE 25 ii iL Ji l t SUC

p

Fll.oginCont ($2C)

The FILoginCont ali is used for thœe user authentication methods thal require il, such as the
National Bureau of StandaJds Daia Enayption Standard (NBS-DES) algorilhm. The parameter
suutture for the FILoginConl ali is listed here.

Position Name Size Value

$00 Async Flag Byte SOO (Synchronous only)

$01 Comma nd Byte $);;

$OZ Result Code: Word <---

$04 Session Reference ' Byte ·->

$05 Cornmand Buffer Length Word -->

$07 Cornmand Buffer Pointer Long -->

$OB Reply Buffer Length Word -->

$00 Reply Buffer Pointer Long ·-->

The Session Reference ' must be the same as that retumed by the FII.ogin cali. The Command
Buffer muSI be in the required AFP format, with the firSI 2 bytes being reserved for the AFP
command number. The reply, if any, is retumed in the Reply Buffer in AFP formatif this cali falls,
the session will be canceled. If the cali completes wilh the Login Continue error, the caller must
complete the log-in proc:ess wilh the server.

The FILoginColt caU retums these result codes, as weil as the result codes for ali sySiem calls.

Result Code Description

SOA03 No response from server

SOA04 Login continue

SOAœ lnvalid session reference number or unknown volume

SOA 15 User nol authorized

IZO C HA PT 1! R 3 Calls to AppleTalk Protocols

1 ibQ ,1§$1.1 :u eoo a LS. J. ame: as

FILogout ($2D)

The Fll..ogoul caU is used 10 log off a server. lbis cali may be used to cancel a session created by an
incomplete Login The ASP session will be canœled even if the FPI..ogœt ali (which this caU
executes) fails. The pmrneter suucture for the FII..ogout cali is listed here.

Position Name Slze Value

$00 Async Flag Byte SOO (Synchronous only)

$01 Comma nd Byte S2D

$OZ ResultCode Word <---

$04 Session Reference ' Byte ·->

The Session Reference ' f.eld designates which session is to be terminaœd. The FILogout cali
retums these result codes, as weil as the result codes for ali system calls.

Result Code Description

$OAIXi lnvalid session reference number or unknown volume

Calls to the ProDOS Filing Interface (PFI) IZI

U Li . . t 1 t iUSCIJQ!Ut. IL Si $2 t S5 :Utt as Li ll UlJL! !il JE 25 ii iL Ji l t SUC

FIMountVol ($ZE)

Under GS/OS, use the dcviœ axtrol caU Eject to unmount volumes. (i.e. issue an ejett cali to the
driver for the volume you wish to unrnount).

The RMountVol cali is used to pseudo-mount (and unmount) server volumes on a
workstation. The parameler suuaure for the RMountVol caU is lisled here.

Position Name Slze Value
$00 Async Flag Byte $00 (Synchronous orlly)
$01 Comma nd Byte $2E
$02 Result ûxle Word <---
$Ool Session Reference ' Byte -->
$05 Mount Rag Byte -->
sai Volume Name Pointer Long -->
$0A Volume ID <Word> <---
$OC SIOI/Drive Byte <---
$0D Password Pointer Long -->

The Mount Flag field specifies whether the volume is to be mounted or unmounted, as soown in
lhe Table 3-18.

• Table H8 Bil seuings for the Mount Flag field

lill Nlllllla Sctt1A1 Doacripdoa

7 Set The requested volume is pseudo-mounled in a
sla/drive localion choscn by the fumware, provided
lhat there is a free sla/drive location.

7 Oear The volume specû~ed will be unmounted
6 Set The password to which the Password Pointer points

is placed in the packcL
0 Set This signifiC5 lhat il is a User's Volume (lhat is

rctumed in RListScssions)

Server volumes will not be mountcd into sla/drive localions already occupied by locally mounted
black deviees. The Session Reference 1 fJeld is used by the sysœm to idcntify which volume is lo be
used. The Volume ID retumcd by AfP is placed in the Volume ID field, and the sla/drive (ProDOS
format) into which the volume wu Jl'SCUdo-mounted is retumcd.

1Z2 C HA PTE R 3 Calls to ApplcTalk Protocols

The RMountVol cali retums lhese result codes, as weil as the result codes for ali system caUs.

lesuh Code Description

$OA05 lnvalid narne

~ Jnvalid session reference number or unknown volume

$0A07 Access denied

SOAœ Too many volumes mounted

$0A09 Volume nà rnounted

$0All Volume already mounled

Calls to lhe ProDOS Filing Interface (PA) 123

FIMountVol ($ZE)

Under GS/OS, use the dcviœ axtrol caU Eject to unmount volumes. (i.e. issue an ejett cali to the
driver for the volume you wish to unrnount).

The RMountVol cali is used to pseudo-mount (and unmount) server volumes on a
workstation. The parameler suuaure for the RMountVol caU is lisled here.

Position Name Slze Value
$00 Async Flag Byte $00 (Synchronous orlly)
$01 Comma nd Byte $2E
$02 Result ûxle Word <---
$Ool Session Reference ' Byte -->
$05 Mount Rag Byte -->
sai Volume Name Pointer Long -->
$0A Volume ID <Word> <---
$OC SIOI/Drive Byte <---
$0D Password Pointer Long -->

The Mount Flag field specifies whether the volume is to be mounted or unmounted, as soown in
lhe Table 3-18.

• Table H8 Bil seuings for the Mount Flag field

lill Nlllllla Sctt1A1 Doacripdoa

7 Set The requested volume is pseudo-mounled in a
sla/drive localion choscn by the fumware, provided
lhat there is a free sla/drive location.

7 Oear The volume specû~ed will be unmounted
6 Set The password to which the Password Pointer points

is placed in the packcL
0 Set This signifiC5 lhat il is a User's Volume (lhat is

rctumed in RListScssions)

Server volumes will not be mountcd into sla/drive localions already occupied by locally mounted
black deviees. The Session Reference 1 fJeld is used by the sysœm to idcntify which volume is lo be
used. The Volume ID retumcd by AfP is placed in the Volume ID field, and the sla/drive (ProDOS
format) into which the volume wu Jl'SCUdo-mounted is retumcd.

1Z2 C HA PTE R 3 Calls to ApplcTalk Protocols

The RMountVol cali retums lhese result codes, as weil as the result codes for ali system caUs.

lesuh Code Description

$OA05 lnvalid narne

~ Jnvalid session reference number or unknown volume

$0A07 Access denied

SOAœ Too many volumes mounted

$0A09 Volume nà rnounted

$0All Volume already mounled

Calls to lhe ProDOS Filing Interface (PA) 123

FIIJstSessloos ($2F)

Under GS/05, use the Volume callto determine the file system for each volume.
The RListSessiom cali is used to retrieve a list of currenl sessions being mairnined through

PFI and any volumes mounted for those sessions. The parameter structure for the FILisiSessions
cali is lmed hele.

Position Name Slze Value

soo Async Flag Byte $00 (Synchronous only)

$01 Comma nd Byte $2F

$02 ResultCode Word <--

~ Butrer Length Word -->

Sai Butrer Pointer Long ·->

$0A Entries Returned Byte <--

The list is plaœd into the specifled buffer. If the buffer is not large enough, the buffer will retain
the maximum possible number of current sessions and then retum an error. The format of the
buffer is as follows:

Position Name Slze Value

soo Session Refererx:e ' Byte <--

$01 Slot/Drive Byte <--

$02 Volume Narne 28 Bytes <--

SIE Volume ID <Word> <--

This list is repeated for every volume mounted for eac:h session. For example, if there are two
volumes mounled for session number 1, then session number 1 is listed two times. The Slot/Drive
fidd contains the slot and drive numbers (in the standard ProDOS 8 format). Bit 0 of the Slot/Drive
f~eld tells if the volume is a User's Volume. If you mount more than two servers and both have user
volumes, then the user volume found fust in the list (scanned top to bottom) returned by
RListSessions spec:ûa the user volume for use by an application.

The first byte r:J the Volume Narne neld contains the length of the narne in bytes. If there are
no volumes mou nied for a session, the value r:J the Length Byte fidd is zero and the rest r:J the
fidd is undefmed. The Volume ID fidd retums the AFP volume ID for the listed volume.

+ Note: The FIListSessionsZ cali abo retums the server and wne narne for each volume (if
FII.ogin2 was used).

The FIListSessions cali retums these result rodes, as weil as the result codes for aU system calls.

lesult Code Description

SOAOB Buffer too small

12~ C HA PT ER 3 ~ls to AppleTalk Protocols

e e

mimeZone ($30)

The FITuneZone cali 1s used by each worl<station to set its own lime zone, relative to the lime wne
set for the ser-Ver. The parameter structure for the FITimeZone cali is listed here.

+ Note: This cali has no effect under GS/05

Position Name Slze Value

soo Async Flag Byte $00 (Synchronous only)

$01 Comma nd Byte $})

$02 ResultCode Word <---

~ Time Flag Byte -->

Bit 7 on the Time Flag indicates whether the time should be added to or suttracted from the lime
wne selected; if Bit 7 is set high, it indicates that the hours should be subtracted from the time
wne on the server (thal is, as if you are going west). Bits 6 through 0 of the Time Flag indicate the
actual number of hours away from the lime zone selected; Bit 0 is the sa me ti me zone as the server.
The FITimeZone cali retums these result codes, as weil as the result codes for ali system calls.

lesult Code Desc:rlptlon

$()AOC Time nag error

Calls to the ProDOS Filing Interface (PFI) 125

JS a ; C.d$.,4@21&4!.0• ; tt .. c li 2.1 aa *' sq;.;. eau aL; JE tLM .u :a ca SJM :ua a .t a- as dt at : : a sa JE JSE cac

FIIJstSessloos ($2F)

Under GS/05, use the Volume callto determine the file system for each volume.
The RListSessiom cali is used to retrieve a list of currenl sessions being mairnined through

PFI and any volumes mounted for those sessions. The parameter structure for the FILisiSessions
cali is lmed hele.

Position Name Slze Value

soo Async Flag Byte $00 (Synchronous only)

$01 Comma nd Byte $2F

$02 ResultCode Word <--

~ Butrer Length Word -->

Sai Butrer Pointer Long ·->

$0A Entries Returned Byte <--

The list is plaœd into the specifled buffer. If the buffer is not large enough, the buffer will retain
the maximum possible number of current sessions and then retum an error. The format of the
buffer is as follows:

Position Name Slze Value

soo Session Refererx:e ' Byte <--

$01 Slot/Drive Byte <--

$02 Volume Narne 28 Bytes <--

SIE Volume ID <Word> <--

This list is repeated for every volume mounted for eac:h session. For example, if there are two
volumes mounled for session number 1, then session number 1 is listed two times. The Slot/Drive
fidd contains the slot and drive numbers (in the standard ProDOS 8 format). Bit 0 of the Slot/Drive
f~eld tells if the volume is a User's Volume. If you mount more than two servers and both have user
volumes, then the user volume found fust in the list (scanned top to bottom) returned by
RListSessions spec:ûa the user volume for use by an application.

The first byte r:J the Volume Narne neld contains the length of the narne in bytes. If there are
no volumes mou nied for a session, the value r:J the Length Byte fidd is zero and the rest r:J the
fidd is undefmed. The Volume ID fidd retums the AFP volume ID for the listed volume.

+ Note: The FIListSessionsZ cali abo retums the server and wne narne for each volume (if
FII.ogin2 was used).

The FIListSessions cali retums these result rodes, as weil as the result codes for aU system calls.

lesult Code Description

SOAOB Buffer too small

12~ C HA PT ER 3 ~ls to AppleTalk Protocols

e e

mimeZone ($30)

The FITuneZone cali 1s used by each worl<station to set its own lime zone, relative to the lime wne
set for the ser-Ver. The parameter structure for the FITimeZone cali is listed here.

+ Note: This cali has no effect under GS/05

Position Name Slze Value

soo Async Flag Byte $00 (Synchronous only)

$01 Comma nd Byte $})

$02 ResultCode Word <---

~ Time Flag Byte -->

Bit 7 on the Time Flag indicates whether the time should be added to or suttracted from the lime
wne selected; if Bit 7 is set high, it indicates that the hours should be subtracted from the time
wne on the server (thal is, as if you are going west). Bits 6 through 0 of the Time Flag indicate the
actual number of hours away from the lime zone selected; Bit 0 is the sa me ti me zone as the server.
The FITimeZone cali retums these result codes, as weil as the result codes for ali system calls.

lesult Code Desc:rlptlon

$()AOC Time nag error

Calls to the ProDOS Filing Interface (PFI) 125

JS a ; C.d$.,4@21&4!.0• ; tt .. c li 2.1 aa *' sq;.;. eau aL; JE tLM .u :a ca SJM :ua a .t a- as dt at : : a sa JE JSE cac

FIGetSrcPath ($31)

Do nd use from GS/05.
The FIGetSrcPalh cali returns lhe palhname of lhe last file lhat was opened, whelher locally or

over the network. This cali allows system programs to determine the directory they were loaded
from.

+ Note: Under ProDOS 8, the palhname of an application is put at $280 when it is loaded and
run. Refer to ProDOS 8 Techntcai Reference Manw:U (1987), section 5. 1.5 for more
information. Fcx GS/05, use Prefix 8 and the Get_Name cali (see the G:YOS Refermœ
Manua/).

The parameter structure for the FIGetSrcPath cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $31

$02 Result Code Ward <-·-

$04 Buffer Pointer Long ··->

The Bulfer Poinler field points 10 the butfer where the pathname is to be placed. The bulfer must
be at !east 129 bytes in length. The first byte of the butTer is the length of the pathname that
immediatdy follows (up to I28 bytes).

The result axles returned for the FIGetSrcPath cali are the same as fcx lhe general system calls.

126 C H A P T E R 3 Calls to Apple Talk Prouxols •

FIAccess ($32)

From GS/05, use the FST specilk calfs GetPrivileges and SetPrivileges.
The F!Access cali gets and sets direllüry access on an AFP server. The Access Rights are in AFP

format The parameter structure for the FIAccess cali is listed here.

Position Namc Slzc Value

$00 Async Aag Byte $00 (Synchronous only)
$01 Comma nd Byte $32
$02 Result Code Ward <·--
$Oi Directional Aag Byte ·->
$05 Access Rights 4 Bytes <--->
$Œ Pathname Pointer Long -->
$01) Creator Name Pointer Long -->
$11 Grœp Name Pointer Long ·->

If bit 7 of the Directional Aag is set, the access is being set. When set, bit 6 of the Directional Flag
means thatthe Creator's Name will be deal! with, whereas bit 5 of the Directional Aag means thal
the Group Name is being fœnd or set Values may get retumed into buffers pointed toby Creator
and Group Name Pointers.

If the Creator's name or GroupName are being retumed (bit 7 of the directional flag is clear), the
buffers pointed to by cmtor Name Pointer and Group Name Pointer shœld be atleast 32 bytes.

The F!Access cali retums these result codes, as wdl as the result axles for ali systt:m calls.

lesult Code Description

SOA05 !nvalid name

SOAD9 Volume mx mounted

SOAOA Unable 10 set creator

SOAOD Unable to set group

$0AOE Directory not found

SOAOF Access denied

SOAIO Miscdlaneous error

SOAIZ Unable to get crotor and/or group

Calls to the ProDOS Filing Interface (PF!)

a.amœ

1Z7

FIGetSrcPath ($31)

Do nd use from GS/05.
The FIGetSrcPalh cali returns lhe palhname of lhe last file lhat was opened, whelher locally or

over the network. This cali allows system programs to determine the directory they were loaded
from.

+ Note: Under ProDOS 8, the palhname of an application is put at $280 when it is loaded and
run. Refer to ProDOS 8 Techntcai Reference Manw:U (1987), section 5. 1.5 for more
information. Fcx GS/05, use Prefix 8 and the Get_Name cali (see the G:YOS Refermœ
Manua/).

The parameter structure for the FIGetSrcPath cali is listed here.

Position Name Slze Value

$00 Async Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $31

$02 Result Code Ward <-·-

$04 Buffer Pointer Long ··->

The Bulfer Poinler field points 10 the butfer where the pathname is to be placed. The bulfer must
be at !east 129 bytes in length. The first byte of the butTer is the length of the pathname that
immediatdy follows (up to I28 bytes).

The result axles returned for the FIGetSrcPath cali are the same as fcx lhe general system calls.

126 C H A P T E R 3 Calls to Apple Talk Prouxols •

FIAccess ($32)

From GS/05, use the FST specilk calfs GetPrivileges and SetPrivileges.
The F!Access cali gets and sets direllüry access on an AFP server. The Access Rights are in AFP

format The parameter structure for the FIAccess cali is listed here.

Position Namc Slzc Value

$00 Async Aag Byte $00 (Synchronous only)
$01 Comma nd Byte $32
$02 Result Code Ward <·--
$Oi Directional Aag Byte ·->
$05 Access Rights 4 Bytes <--->
$Œ Pathname Pointer Long -->
$01) Creator Name Pointer Long -->
$11 Grœp Name Pointer Long ·->

If bit 7 of the Directional Aag is set, the access is being set. When set, bit 6 of the Directional Flag
means thatthe Creator's Name will be deal! with, whereas bit 5 of the Directional Aag means thal
the Group Name is being fœnd or set Values may get retumed into buffers pointed toby Creator
and Group Name Pointers.

If the Creator's name or GroupName are being retumed (bit 7 of the directional flag is clear), the
buffers pointed to by cmtor Name Pointer and Group Name Pointer shœld be atleast 32 bytes.

The F!Access cali retums these result codes, as wdl as the result axles for ali systt:m calls.

lesult Code Description

SOA05 !nvalid name

SOAD9 Volume mx mounted

SOAOA Unable 10 set creator

SOAOD Unable to set group

$0AOE Directory not found

SOAOF Access denied

SOAIO Miscdlaneous error

SOAIZ Unable to get crotor and/or group

Calls to the ProDOS Filing Interface (PF!)

a.amœ

1Z7

b

FINamlng ($33)

The ANaming ali sets or linds the naming conve.xion. Pfl uses the Long Name of AFP for
ProDOS. Because ProDOS names are more restrictive than the Long Name of AFP, there may be files
and directories that cannat be acœssed by ProOOS withoot switching naming conventions.

Do not make this ali from GSIOS. GS/OS always uses the complete AFP syntax ror pathmmes.

The parameter structure for the flNaming cali is listed here.

Position Name Slze Value

soo Async flag Byte $00 (Synchronous only)

SOl Comma nd Byte $33

$a! ResultCode Word (...

SOl Directioml Flag Byte -> Emble Hag changes

$05 Naming Convemion Flag Byte <-->

The Directional Flag ena!-lcs Hag changes, and the Naming Convention Flag indicates the mming
convention 10 be used. TiiC default naming convention is ProDOS naming, with the deviee table
enabled. Table 3·19 indicates how bits are set for these Hags.

• Table 3-19 Bit settings for the FINaming ali

, .. ,
Directional

Naming
Conve.xion

lltNumber

6

7

6

7

ScttiDI

Set (1)

Oear(O)

Set(l)

Oear(O)

Set (1)

Oear(O)

Set(l)

Oear(O)

128 CH A PTE R 3 Calls to ApplcTalk PI'OIOCols

.tl !.$ t L Jt !QiiJQ)J a .c a

Descrtptloa

The deviee table enable or disable is changed
as set by bit 6 of the Naming Convention
Flag fJeld.

Retum current deviee table mode

The naming mode is changed as set by bit 7
of the Naming Conve.xion FI ag field.

Retum curre.x naming mode

Deviee Table disabled; the ProDOS deviee
table is not updated as network volumes
are mounted and unmounted.

Deviee Table embled

Use AFP Long Name mming convention

Use ProDOS mming conve.xion

ca a . ;; 444) zen; : Ji. CUit U U

The following sample program demonstrates this new function.

OevTabla
ATCall equ

mli

lonqa off
lonqi of!
absaddr of!
65C02 en
otatt
$42
equ
otz
jsr

de
de

lda

sta

$bf00

FINaminq+4

mli
il'ATCall'
a' FINaminq'
FINaminq+S

NamaHoda
DisableTabla anop

lda f$40

sta FINaminq+4
sta FINaminq+S

jor mli
de il'ATCall'

de a'FINaminq'

RastoraTabla anop

FINaminq

N-

lda f$40
sta FINaminq+4

lda N-
ota FINaminq+S

jsr mli

de il' ATCall'

de a'FINaminq'

rts
an op
de h'OO'
de h'33'

de i'O'
de h'OO'

de h'OO'

da

end

;qat tha current FINaminq settinq

;qat tha raturnad raoult
;store it until later.

; set bit 6 to ehanqe deviee table update

; sat bit 6 to disabla deviee table updata

; set bit 6 to change deviee tabla updata

;restera to the original mode

; byte - syne mode

;byte - FINaminq eonmand
; word - Re sul t
;byte - Direction flaq

;b7 - Olanqa naminq mode

;b6 - Olanqa Deviee Table updata
: it zero, nnda il returned
;byte - Hede Flaq

;b7 - F.nable AFP naminq mode

;b6 - Disabla Deviee Table updata

The result codes retumed ror the flNaming caU are the same as are common ror ali general system
ails.

Calls to the ProDOS Filing Interface (PFl)

23 1(42. i.: .il.i # .! iL ii $22

129

a 22; k.

b

FINamlng ($33)

The ANaming ali sets or linds the naming conve.xion. Pfl uses the Long Name of AFP for
ProDOS. Because ProDOS names are more restrictive than the Long Name of AFP, there may be files
and directories that cannat be acœssed by ProOOS withoot switching naming conventions.

Do not make this ali from GSIOS. GS/OS always uses the complete AFP syntax ror pathmmes.

The parameter structure for the flNaming cali is listed here.

Position Name Slze Value

soo Async flag Byte $00 (Synchronous only)

SOl Comma nd Byte $33

$a! ResultCode Word (...

SOl Directioml Flag Byte -> Emble Hag changes

$05 Naming Convemion Flag Byte <-->

The Directional Flag ena!-lcs Hag changes, and the Naming Convention Flag indicates the mming
convention 10 be used. TiiC default naming convention is ProDOS naming, with the deviee table
enabled. Table 3·19 indicates how bits are set for these Hags.

• Table 3-19 Bit settings for the FINaming ali

, .. ,
Directional

Naming
Conve.xion

lltNumber

6

7

6

7

ScttiDI

Set (1)

Oear(O)

Set(l)

Oear(O)

Set (1)

Oear(O)

Set(l)

Oear(O)

128 CH A PTE R 3 Calls to ApplcTalk PI'OIOCols

.tl !.$ t L Jt !QiiJQ)J a .c a

Descrtptloa

The deviee table enable or disable is changed
as set by bit 6 of the Naming Convention
Flag fJeld.

Retum current deviee table mode

The naming mode is changed as set by bit 7
of the Naming Conve.xion FI ag field.

Retum curre.x naming mode

Deviee Table disabled; the ProDOS deviee
table is not updated as network volumes
are mounted and unmounted.

Deviee Table embled

Use AFP Long Name mming convention

Use ProDOS mming conve.xion

ca a . ;; 444) zen; : Ji. CUit U U

The following sample program demonstrates this new function.

OevTabla
ATCall equ

mli

lonqa off
lonqi of!
absaddr of!
65C02 en
otatt
$42
equ
otz
jsr

de
de

lda

sta

$bf00

FINaminq+4

mli
il'ATCall'
a' FINaminq'
FINaminq+S

NamaHoda
DisableTabla anop

lda f$40

sta FINaminq+4
sta FINaminq+S

jor mli
de il'ATCall'

de a'FINaminq'

RastoraTabla anop

FINaminq

N-

lda f$40
sta FINaminq+4

lda N-
ota FINaminq+S

jsr mli

de il' ATCall'

de a'FINaminq'

rts
an op
de h'OO'
de h'33'

de i'O'
de h'OO'

de h'OO'

da

end

;qat tha current FINaminq settinq

;qat tha raturnad raoult
;store it until later.

; set bit 6 to ehanqe deviee table update

; sat bit 6 to disabla deviee table updata

; set bit 6 to change deviee tabla updata

;restera to the original mode

; byte - syne mode

;byte - FINaminq eonmand
; word - Re sul t
;byte - Direction flaq

;b7 - Olanqa naminq mode

;b6 - Olanqa Deviee Table updata
: it zero, nnda il returned
;byte - Hede Flaq

;b7 - F.nable AFP naminq mode

;b6 - Disabla Deviee Table updata

The result codes retumed ror the flNaming caU are the same as are common ror ali general system
ails.

Calls to the ProDOS Filing Interface (PFl)

23 1(42. i.: .il.i # .! iL ii $22

129

a 22; k.

ConvertTlme ($34)

The ConvertTtme cali converts the lime 10 either AFP format or ProDOS 8 format. The pararneter
structure for the ConvertTtme cali is 1 isted here.

Position Name Size Value
$00 Async flag Byte 00 (Synchronous orlly)
$01 Comma nd Byte $34
$02 Result Code Word <-··

$Oi Format Flag Byte ...)

$05 From DA TE"/Time Long ...)

sœ To DATE"/Time Long <-··

B<Xh the From DATE"/Time f~eld and the To DAlWirne fidd contain values (data), and not

pointers. If the Format Flag is 0, then From DATE!J'ime is in AFP format. If the Format Flag is 1,
then From DA TE!J'irne is in ProDOS format

The ConvertTime caU retums these result codes, as weil as !he result codes for ali system caUs.

Resuh Code: Description

SOAI4 Ttrne errer

130 C H A PT f R 3 Calls to AppleTalk Protocols

FISetBuffer ($36)

The FISetBuffer cali provides temporary storage space of 512 bytes and is provided for
miscellaneous use. An application must not make this cali. The parameter structure for the
F!SetBuffer cali is listed here.

Position Name Slze Value

$00 Async flag Byte $00 (Synchronous orlly)

$01 Comma nd Byte $36
$02 ResultCode Ward <···

$Oi Direction Flag Byte ...)

$05 Bulfer Length Ward -->

$(J7 Buffer Pointer Long -->

If bit 7 ci !he Direction flag is se~data will be copied from !he user's buffer 10 !he temporary
buffer, if bit 7 is clear, data will be copied from tbe temporary buffer to !he user's buffer. Buffer
length is !he amount of data in bytes, to move and must not be more !han 512. Buffer Poin!er
points to !he user's bulfers

The FISetBulfer cali retums !hese result codes.

llesuh Code

SOA1A

Description

Bulfer Too Long

Calls to the ProDOS Filing Interface (PA) 131

ConvertTlme ($34)

The ConvertTtme cali converts the lime 10 either AFP format or ProDOS 8 format. The pararneter
structure for the ConvertTtme cali is 1 isted here.

Position Name Size Value
$00 Async flag Byte 00 (Synchronous orlly)
$01 Comma nd Byte $34
$02 Result Code Word <-··

$Oi Format Flag Byte ...)

$05 From DA TE"/Time Long ...)

sœ To DATE"/Time Long <-··

B<Xh the From DATE"/Time f~eld and the To DAlWirne fidd contain values (data), and not

pointers. If the Format Flag is 0, then From DATE!J'ime is in AFP format. If the Format Flag is 1,
then From DA TE!J'irne is in ProDOS format

The ConvertTime caU retums these result codes, as weil as !he result codes for ali system caUs.

Resuh Code: Description

SOAI4 Ttrne errer

130 C H A PT f R 3 Calls to AppleTalk Protocols

FISetBuffer ($36)

The FISetBuffer cali provides temporary storage space of 512 bytes and is provided for
miscellaneous use. An application must not make this cali. The parameter structure for the
F!SetBuffer cali is listed here.

Position Name Slze Value

$00 Async flag Byte $00 (Synchronous orlly)

$01 Comma nd Byte $36
$02 ResultCode Ward <···

$Oi Direction Flag Byte ...)

$05 Bulfer Length Ward -->

$(J7 Buffer Pointer Long -->

If bit 7 ci !he Direction flag is se~data will be copied from !he user's buffer 10 !he temporary
buffer, if bit 7 is clear, data will be copied from tbe temporary buffer to !he user's buffer. Buffer
length is !he amount of data in bytes, to move and must not be more !han 512. Buffer Poin!er
points to !he user's bulfers

The FISetBulfer cali retums !hese result codes.

llesuh Code

SOA1A

Description

Bulfer Too Long

Calls to the ProDOS Filing Interface (PA) 131

Fmooks ($37)

The FIHooks cali is used for changing the default event notification routine. If the login program
passes the default attention routine (null) to PFI, the default books will be called. 1hese default
hooks cao be ekher set or retumed through this cali. The parameter structure for the FIHooks cali is
listed here.

Position Name Slze Value

$00 Async Flag Byte $00 (Synchronous only)

~1 Comma nd Byte $37

m ResultCode Wa-d <---
$()j Flag Byte Byte -->

~ MountVector Long <-->

m UnmountVector Long <-->

$00 AttentionVector Long <-->

The F1ag Byte field specifies the OS type and whether the hooks are 10 be set or returned, as shown
in Talle 1.

• Table 3-20 Bit settings for the Hook Flag field

BDNumher 5ctlilll· Deocrlptloa

7 Set (1) ProDOS 8 active.
Oear (0) GSIOS active.

6 Set (1) The hooks will be set.
Oear (0) The hooks will be retumed

5-0 Oear(O) Must be zero.

No12: If bl6 is dear, hooks to be mumed, theo bi17 is ignored and the OS type will no! be changed.

The Mount Vetta- f~eld is a pointer to the routine that will be called whenever PFI adds a new
volume to ilS internai tables.

132 C H AP H R 3 Calls to AppleTalk Protocols

e 1 e
The UnmountVector field is a pointer 10 the routine thal will be called whenever PFI removes a

volume fran ils intemal labies. The MountVector and UnmoumVetta- will be called in the
following environment:

• • Undefined

I!NTIY: Called via :JSL' (Cali cannŒ be made on the Apple Ile)
A Reg Undefined
X Reg • Low word of parameter block pointer
Y Reg • High word of parameter block poinler
D Reg • PFI direct page
B Reg PFI data bank
PReg • N V M X D

• 0 0 0
Z C E

• 0

The parameter block contains the following data:

Byte Session reference number
Byte P8 Unit #

PStringl281 Volume narne
Word Volume ID
PStringl32) Server name
PStringl331 Zone narne

EXIT: Retum via 'ffi' (Cali cannà be made on the Apple Ile)
A Reg Undefined
X Reg Undefined
Y Reg Undefined
0 Reg • PFI dirett page
B Reg PFI data bank
PReg N V M X D Z C E

•000 •00

The AttentionVector field is a pointer to the routine thal will be called whenever PFI receives a
standard attention event for one of the roounted volumes. The Attention Vector will be cal led in the
same environment as the mount and unroount vecton with the following parameter block:

Byte Session reference number
Byte Type of attention
Word Attention data
PStringl32) Server name
PString(331 Zone name

The result codes retumed fa- the FIHooks cali are the same as thœe common to ali general system
calls.

Calls to the ProDOS Filing Interface (PFI) 133

Fmooks ($37)

The FIHooks cali is used for changing the default event notification routine. If the login program
passes the default attention routine (null) to PFI, the default books will be called. 1hese default
hooks cao be ekher set or retumed through this cali. The parameter structure for the FIHooks cali is
listed here.

Position Name Slze Value

$00 Async Flag Byte $00 (Synchronous only)

~1 Comma nd Byte $37

m ResultCode Wa-d <---
$()j Flag Byte Byte -->

~ MountVector Long <-->

m UnmountVector Long <-->

$00 AttentionVector Long <-->

The F1ag Byte field specifies the OS type and whether the hooks are 10 be set or returned, as shown
in Talle 1.

• Table 3-20 Bit settings for the Hook Flag field

BDNumher 5ctlilll· Deocrlptloa

7 Set (1) ProDOS 8 active.
Oear (0) GSIOS active.

6 Set (1) The hooks will be set.
Oear (0) The hooks will be retumed

5-0 Oear(O) Must be zero.

No12: If bl6 is dear, hooks to be mumed, theo bi17 is ignored and the OS type will no! be changed.

The Mount Vetta- f~eld is a pointer to the routine that will be called whenever PFI adds a new
volume to ilS internai tables.

132 C H AP H R 3 Calls to AppleTalk Protocols

e 1 e
The UnmountVector field is a pointer 10 the routine thal will be called whenever PFI removes a

volume fran ils intemal labies. The MountVector and UnmoumVetta- will be called in the
following environment:

• • Undefined

I!NTIY: Called via :JSL' (Cali cannŒ be made on the Apple Ile)
A Reg Undefined
X Reg • Low word of parameter block pointer
Y Reg • High word of parameter block poinler
D Reg • PFI direct page
B Reg PFI data bank
PReg • N V M X D

• 0 0 0
Z C E

• 0

The parameter block contains the following data:

Byte Session reference number
Byte P8 Unit #

PStringl281 Volume narne
Word Volume ID
PStringl32) Server name
PStringl331 Zone narne

EXIT: Retum via 'ffi' (Cali cannà be made on the Apple Ile)
A Reg Undefined
X Reg Undefined
Y Reg Undefined
0 Reg • PFI dirett page
B Reg PFI data bank
PReg N V M X D Z C E

•000 •00

The AttentionVector field is a pointer to the routine thal will be called whenever PFI receives a
standard attention event for one of the roounted volumes. The Attention Vector will be cal led in the
same environment as the mount and unroount vecton with the following parameter block:

Byte Session reference number
Byte Type of attention
Word Attention data
PStringl32) Server name
PString(331 Zone name

The result codes retumed fa- the FIHooks cali are the same as thœe common to ali general system
calls.

Calls to the ProDOS Filing Interface (PFI) 133

Fll.ogin2 ($38)

The Fll..ogin2 cali is used to log in to a server. This cali work primarily like the fll.ogin cali. The
exception is thal there are three additionaJ parameters at the end of the F!Login cali structure. The
parameter structure for the F1Login2 cali is listed here.

Position Namc Slzc Value
$00 Async Aag Byte $00 (Synchronous orlly)
$01 Comma nd Byte $38
$02 Result Code Word <---
S04 SLS Network Number <Word> -->
~ SLS Node Number Byte -->
$(17 SLS Socket Number Byte -->
sœ Cornmand Buffer length Word -->
$0A Command Buffer Pointer long -->
$OE Reply Buffer length Word -->
$10 Reply Buffer Pointer Long -->
$14 Session Reference ' Byte <---
SIS AUn Routine long ·->
$19 Server Name Pointer long ->

$10 Zone Name Pointer long -->
$21 AFP Version Number Word -->

The Command Buffer must be in AFP fOimal for the F!Login2 cali, with the first 2 bytes reserved
for the AFP Comrnand Number. When the cali completes, the Reply Buffer contains the reply, if
any, in AFP format. The Session Reference 1 fldd will retum the ASP Session Reference Number. If
the cali completes wlh the login Continue Error, the caller must complete the log-in process with
the server by using the fll.oginCont cali. As far as Pfl is concemed, the session bas been established,
urlless the cal! completes wlh an error othee than Login Cœtinue.

The Server Name Poinler and Zone Name Poinler must poinl to a valid Pascal String (length
b)'1e followed by name). The AFP Version word must be in the following format

• AFPVersion 1.1" • 0101 <ha3dccimal)

• AFPVersion 2.0" • 0200 <ha3dccimal)

The high b)'te is the major version number and the low b)'1e is the minor version number.
The Server Name, Zone Name, aJX! AFP Versoo fldds are Nar used by Pfl to login to the

server. These fldds an: required for the l.iS!Sessions2 and FIGetSVersion caUs. lt is up to the
progranuner rnaking the login2 callto verify that these parameters are correct.

134 C H A PT E R 3 Calls to AppleTalk Protocols

o;u

The FJI.oginl cali retums these result codes, as weil as the result codes for ali system caUs.

lcsult Descrlptloo

$0Aill Too many sessions

$OA02 Unable to open session

$0A03 No response from server

$0A04 I.ogin continue

$0A13 Already logged in to server

$0AIS User not authorized

$0AI6 Parameter error

$0AI7 Server going down

$0AI8 Bad UAM

$0AI9 Bad version number

e

Calls to the ProDOS Filing Interface (PFI) 135

Fll.ogin2 ($38)

The Fll..ogin2 cali is used to log in to a server. This cali work primarily like the fll.ogin cali. The
exception is thal there are three additionaJ parameters at the end of the F!Login cali structure. The
parameter structure for the F1Login2 cali is listed here.

Position Namc Slzc Value
$00 Async Aag Byte $00 (Synchronous orlly)
$01 Comma nd Byte $38
$02 Result Code Word <---
S04 SLS Network Number <Word> -->
~ SLS Node Number Byte -->
$(17 SLS Socket Number Byte -->
sœ Cornmand Buffer length Word -->
$0A Command Buffer Pointer long -->
$OE Reply Buffer length Word -->
$10 Reply Buffer Pointer Long -->
$14 Session Reference ' Byte <---
SIS AUn Routine long ·->
$19 Server Name Pointer long ->

$10 Zone Name Pointer long -->
$21 AFP Version Number Word -->

The Command Buffer must be in AFP fOimal for the F!Login2 cali, with the first 2 bytes reserved
for the AFP Comrnand Number. When the cali completes, the Reply Buffer contains the reply, if
any, in AFP format. The Session Reference 1 fldd will retum the ASP Session Reference Number. If
the cali completes wlh the login Continue Error, the caller must complete the log-in process with
the server by using the fll.oginCont cali. As far as Pfl is concemed, the session bas been established,
urlless the cal! completes wlh an error othee than Login Cœtinue.

The Server Name Poinler and Zone Name Poinler must poinl to a valid Pascal String (length
b)'1e followed by name). The AFP Version word must be in the following format

• AFPVersion 1.1" • 0101 <ha3dccimal)

• AFPVersion 2.0" • 0200 <ha3dccimal)

The high b)'te is the major version number and the low b)'1e is the minor version number.
The Server Name, Zone Name, aJX! AFP Versoo fldds are Nar used by Pfl to login to the

server. These fldds an: required for the l.iS!Sessions2 and FIGetSVersion caUs. lt is up to the
progranuner rnaking the login2 callto verify that these parameters are correct.

134 C H A PT E R 3 Calls to AppleTalk Protocols

o;u

The FJI.oginl cali retums these result codes, as weil as the result codes for ali system caUs.

lcsult Descrlptloo

$0Aill Too many sessions

$OA02 Unable to open session

$0A03 No response from server

$0A04 I.ogin continue

$0A13 Already logged in to server

$0AIS User not authorized

$0AI6 Parameter error

$0AI7 Server going down

$0AI8 Bad UAM

$0AI9 Bad version number

e

Calls to the ProDOS Filing Interface (PFI) 135

____________

us.

FUJstSesslons2 ($39)

The FlüstSessions2 cali is used to retrieve a list of current sessions being maintained through PFI
and any volumes mounted for those sessions. This cali work primarily like the FIListSessions cali.
The exception is that there are Iwo additional parameters retumed for every session. The parameter
structure for the FIListSessions2 cali is listed here.

Position Name Sbe Value

~ A.!ync Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $39

$02 ResultCode Word <--

$()j Bulfer Length Word -->

~ ButTer Pointer Long -->

$0A Entries Retumed Byte <--

The list is plaœd into the specified butTer. If the buffer is not large enough, the bulfer will retain
the maximum possible number of aliTent sessions and then retum as error. The format of the
butTer is as follows:

Position Name Size Value

~ Session Reference ' Byte <--

l$01 Slot!Drive Byte <--

$02 Volume Narne 28 Bytes <--

SIE Volume ID <Word> <--

$2) Server Narne 32 Bytes <--

$40 Zone Narne 33 Bytes <--

The FIListSessions2 cali retums these result codes, as weil as the result codes for ali system calfs.

lesult Description

SOAOB ButTer too small

136 C HA PTE R 3 Calls to AppleTalk Prolocols

FIGetSVerslon ($3A)

The flGetSVersion cali is used to determine what version of AFP was used to login to a particular
server. The parameter structure for the flGeiSVersion cali is listed here.

Position Name Size

~ A.!ync Aag Byte

$01 Comma nd Byte

$02 Result Code Word

$04 Session Number Byte

$05 AFP Version Number Word

The AFP Version word will be in the following format:

0101 (hexadecimal)

0200 (hexadecimal)

• AFPVersion 1.1'

• AFPVersion 2.0'

Value

$00 (Synchronous only)

$3A

<---

-->

<---

The high byte is the ma;or version number and the low byte is the minor version number.

The flGetSVersion cali retums these result codes, as weil as the result codes for ali system calls.

Inuit Dcscrlptlon

$()AO) lnvalid session reference number

Calls to the ProDOS Filing Interface (PFI) 137

a 1.1 ts !J]Q,,W. t . 24 Iii 2 a ESC 1 J iX 1 .. · J24JJi$!$Z.i4UJ.Ak. .. LJIQC 1$1&234LQ@$UU!. 44 C 1 .id 2 j .za aJtasaaa a a: at aaa.tz tt

____________

us.

FUJstSesslons2 ($39)

The FlüstSessions2 cali is used to retrieve a list of current sessions being maintained through PFI
and any volumes mounted for those sessions. This cali work primarily like the FIListSessions cali.
The exception is that there are Iwo additional parameters retumed for every session. The parameter
structure for the FIListSessions2 cali is listed here.

Position Name Sbe Value

~ A.!ync Aag Byte $00 (Synchronous only)

$01 Comma nd Byte $39

$02 ResultCode Word <--

$()j Bulfer Length Word -->

~ ButTer Pointer Long -->

$0A Entries Retumed Byte <--

The list is plaœd into the specified butTer. If the buffer is not large enough, the bulfer will retain
the maximum possible number of aliTent sessions and then retum as error. The format of the
butTer is as follows:

Position Name Size Value

~ Session Reference ' Byte <--

l$01 Slot!Drive Byte <--

$02 Volume Narne 28 Bytes <--

SIE Volume ID <Word> <--

$2) Server Narne 32 Bytes <--

$40 Zone Narne 33 Bytes <--

The FIListSessions2 cali retums these result codes, as weil as the result codes for ali system calfs.

lesult Description

SOAOB ButTer too small

136 C HA PTE R 3 Calls to AppleTalk Prolocols

FIGetSVerslon ($3A)

The flGetSVersion cali is used to determine what version of AFP was used to login to a particular
server. The parameter structure for the flGeiSVersion cali is listed here.

Position Name Size

~ A.!ync Aag Byte

$01 Comma nd Byte

$02 Result Code Word

$04 Session Number Byte

$05 AFP Version Number Word

The AFP Version word will be in the following format:

0101 (hexadecimal)

0200 (hexadecimal)

• AFPVersion 1.1'

• AFPVersion 2.0'

Value

$00 (Synchronous only)

$3A

<---

-->

<---

The high byte is the ma;or version number and the low byte is the minor version number.

The flGetSVersion cali retums these result codes, as weil as the result codes for ali system calls.

Inuit Dcscrlptlon

$()AO) lnvalid session reference number

Calls to the ProDOS Filing Interface (PFI) 137

a 1.1 ts !J]Q,,W. t . 24 Iii 2 a ESC 1 J iX 1 .. · J24JJi$!$Z.i4UJ.Ak. .. LJIQC 1$1&234LQ@$UU!. 44 C 1 .id 2 j .za aJtasaaa a a: at aaa.tz tt

•

Chapter 4 The AppleShare
Flle System Translator (FST)

T H 1 S C H A PT E R describes the implementation of the AppleShare File

System Tr.mslator for GS/05. lt assumes a familiarity with GS/OS and

AppleTalk. Please nae that AppleShare for GS/OS encompasses na only the

AppleShare FST, but also the AppleTalk protocol stack, drivers, network

booting (if desired), switching between the GS/OS FST and the ProDOS 8 PFI

(sinœ AppleShare will be accessible from bcAh ProDOS 8 and GS/05), and

enhancements to the Finder to make it network aware. •

139

The AppleShare FST is the implementation of AppleShare for GS/05. 1t is meant to supersede
AppleShare UGS, the implementation of AppleShare for ProDOS 16. Sinœ ProDOS 16 makes calls to
ProDOS 8 to ger its work done, it patches the ProDOS 8 MU to intercept calls boond for the
network. ln this vny, both ProDOS 8 and ProDOS 16 canuse network volumes. GS/OS is completely
separate from ProDOS 8. The Pro005 8 MU will still be patched to intercepl network calls while
ProDOS 8 is running. When GS/OS is running, G5/05 will make calls directly to the AppleTalk routines
via the AppleShare FST, instead ci calling Pro005 8 to make the AppleTalk calls. lbis will increase
the speed of GS/OS programs using files on the network (rompared to ProDOS 16).

The AppleShare FST will only work with file servers supporting AFP version 2.0 or greater.

Compatibillty

An important consideration for the AppleShare File System Translator is backwards cornpatibility
with GS/OS, ProDOS 16 and ProDOS 8 implementations of AppleShare. Ali documented calls that
were added to the ProDOS 8 MU to support AppleShare will still be usable from ProDOS 8. The
RamDispatch vector at SEIIOI4 will continue to support full native mode calls fromeither ProDOS 8
orGSIOS.

The class 0 Open cali works as the Open cali for ProDOS 16. The class 1 Open cali is more
restrictive in L5 setting ci deny modes which is safer for opening files. Please use class 1 Open
whenever possible, and try to use the requested aocess parameter when possible (eg.: only ask for
read if that is ali yoo will do with the file).

File not foond and path not foond errors will be reported correct! y (when a file is not found,
the FST will check for the existence of the parent and issue a path not found if the parent does not
exist). This differs from ProDOS 16 which reported path net found for both path not found and fde
not found error conditions.

Pathname syntax

There are two kinds ci syructic resttictions on pathname syrux: those imposed by GS/OS, and
those imposed by the FST (because ci naming restricrions in AFP).

GS/OS may impose a maximum length on pathnames. The AppleShare FST does net.
Because sundard files wiU neither use na retum pathnames greater !han sœ bytes, this is a

reasonably practicallini for pathnames entered by a user.
The span ci a pathrwne is the maximum number of characters in a filename (le. between

pathname separators, including volume names). GSIOS imposes no restriction on maximum span.
The AppleShare FST restricts the maximum span to be less than 32 characters. While AFP volume
narnes are less than 28 characters, this part of the syntax is not checked. Volume names with a
length ci 28-31 will retum a volume not found error.

140 C H A PTE R 4 The AppleShare file System Translator (FSl)

GS/05 allows ·r or·:· to be a separator. The first ·r or •,• in the pathnarne is laken to be the
separator. A •:• can never be used in a fdename. A ·r cannct be used in a fdename if the separator is
• /". The AppleShare FST disallows a null byte in a pathname. Ali other charatters are pennitted. Note
that the high bit ci a character is significant. Cllaracters with values greater than or equal to 128 are
considered extended ASOI and typically display as special symbols on Macintosh and IBM systems.

Numbers as the fust filename in a partial pathname are assurned by GS/OS to be prefiX
designators. Since numbers are val id filenames in AFP, a prefiX designator shoold always be used
explicitly with partial pathnames beginning with a number. For example, "O:SSS:Hello" refers to a file
"Hello" in a fokler "555" relative to prefiX 0; "555:Hello" will give an invalid path syntax enor since
GS/OS assumes that "555:" is a prefiX designator for prefiX 555, which is invalid.

Equivalence of Macintosh and GS/OS ftle types

AppleShare file servers supporting AFP version 2.0 or greater maintain both Macintosh filetype and
creator as well as GS/OS filetype and auxtype. Since the filetype information for the two operating
systems are distinct, a workstation can set one kind of fdetype for Macintosh and another type for
GSIŒ.

The AppleShare FST will use the Apple Il fdetype and auxtype fields; it depends on the server to
derive appropriate type infonnation for Macintosh files. The AppleShare File Server version 2.0 uses a
convention also used by Apple File Exchange and the MAX cross-development tools.

Apple 11 fdes are distinguished by a Macintosh creator of "pOO;". The Apple Il filetype SYS
(·SFF) has a Macintosh filetype ci "PSYS". The Apple n fdetype 516 (•$83) has a Macintosh fdetype
of 'PSI6'. The Apple Il unknown filetype (-SOO) has Macintosh fdetype 'BINA". Apple Il text fdes
(TXT • $04) wlh auxtype of SOOOO (le. normal ASOI text, no records) has Macintosh filetype
"TEXT". These special cases allow Macintosh to display unique irons for these filetypes.

Macintosh files with cre31or 'jXios" and a filetype ci the form "XY • (two hex digits followed
by two spaces) will get Apple Il fdetype SXY and auxtype $0000. Macintosh files with creator
'pOO;" and a ftletype of the form S70uvwxyz (S70 is a lower-case 'p") have ProOOS filetype $uv and
auxtype $wxyz (note the arder ci the bytes: on the Macintosh they are stored high-low instead of
low-high).

APW source files (ProOOS fdetype $80) are given Macintosh filetype "TEXT" so that they can be
ed~ed more easily.

The conversion rules are surnmarized in the following tables. If more than one rule a pp lies, the one
closest to the top ci the table will be used.

Equivalence of Macintosh and GS/05 file types 141

a ::::: ua;s; .t.PSS4Wl#IB 14 L s a 1$1 lU .. t,;;; SLJ$41. X:3 Si L .$ UUL il a 144Utts a::.: 4 Ptt t.CklJSMSSC di li à22!.IZ a. . :: ii œn212 t sa :ua a tu

The AppleShare FST is the implementation of AppleShare for GS/05. 1t is meant to supersede
AppleShare UGS, the implementation of AppleShare for ProDOS 16. Sinœ ProDOS 16 makes calls to
ProDOS 8 to ger its work done, it patches the ProDOS 8 MU to intercept calls boond for the
network. ln this vny, both ProDOS 8 and ProDOS 16 canuse network volumes. GS/OS is completely
separate from ProDOS 8. The Pro005 8 MU will still be patched to intercepl network calls while
ProDOS 8 is running. When GS/OS is running, G5/05 will make calls directly to the AppleTalk routines
via the AppleShare FST, instead ci calling Pro005 8 to make the AppleTalk calls. lbis will increase
the speed of GS/OS programs using files on the network (rompared to ProDOS 16).

The AppleShare FST will only work with file servers supporting AFP version 2.0 or greater.

Compatibillty

An important consideration for the AppleShare File System Translator is backwards cornpatibility
with GS/OS, ProDOS 16 and ProDOS 8 implementations of AppleShare. Ali documented calls that
were added to the ProDOS 8 MU to support AppleShare will still be usable from ProDOS 8. The
RamDispatch vector at SEIIOI4 will continue to support full native mode calls fromeither ProDOS 8
orGSIOS.

The class 0 Open cali works as the Open cali for ProDOS 16. The class 1 Open cali is more
restrictive in L5 setting ci deny modes which is safer for opening files. Please use class 1 Open
whenever possible, and try to use the requested aocess parameter when possible (eg.: only ask for
read if that is ali yoo will do with the file).

File not foond and path not foond errors will be reported correct! y (when a file is not found,
the FST will check for the existence of the parent and issue a path not found if the parent does not
exist). This differs from ProDOS 16 which reported path net found for both path not found and fde
not found error conditions.

Pathname syntax

There are two kinds ci syructic resttictions on pathname syrux: those imposed by GS/OS, and
those imposed by the FST (because ci naming restricrions in AFP).

GS/OS may impose a maximum length on pathnames. The AppleShare FST does net.
Because sundard files wiU neither use na retum pathnames greater !han sœ bytes, this is a

reasonably practicallini for pathnames entered by a user.
The span ci a pathrwne is the maximum number of characters in a filename (le. between

pathname separators, including volume names). GSIOS imposes no restriction on maximum span.
The AppleShare FST restricts the maximum span to be less than 32 characters. While AFP volume
narnes are less than 28 characters, this part of the syntax is not checked. Volume names with a
length ci 28-31 will retum a volume not found error.

140 C H A PTE R 4 The AppleShare file System Translator (FSl)

GS/05 allows ·r or·:· to be a separator. The first ·r or •,• in the pathnarne is laken to be the
separator. A •:• can never be used in a fdename. A ·r cannct be used in a fdename if the separator is
• /". The AppleShare FST disallows a null byte in a pathname. Ali other charatters are pennitted. Note
that the high bit ci a character is significant. Cllaracters with values greater than or equal to 128 are
considered extended ASOI and typically display as special symbols on Macintosh and IBM systems.

Numbers as the fust filename in a partial pathname are assurned by GS/OS to be prefiX
designators. Since numbers are val id filenames in AFP, a prefiX designator shoold always be used
explicitly with partial pathnames beginning with a number. For example, "O:SSS:Hello" refers to a file
"Hello" in a fokler "555" relative to prefiX 0; "555:Hello" will give an invalid path syntax enor since
GS/OS assumes that "555:" is a prefiX designator for prefiX 555, which is invalid.

Equivalence of Macintosh and GS/OS ftle types

AppleShare file servers supporting AFP version 2.0 or greater maintain both Macintosh filetype and
creator as well as GS/OS filetype and auxtype. Since the filetype information for the two operating
systems are distinct, a workstation can set one kind of fdetype for Macintosh and another type for
GSIŒ.

The AppleShare FST will use the Apple Il fdetype and auxtype fields; it depends on the server to
derive appropriate type infonnation for Macintosh files. The AppleShare File Server version 2.0 uses a
convention also used by Apple File Exchange and the MAX cross-development tools.

Apple 11 fdes are distinguished by a Macintosh creator of "pOO;". The Apple Il filetype SYS
(·SFF) has a Macintosh filetype ci "PSYS". The Apple n fdetype 516 (•$83) has a Macintosh fdetype
of 'PSI6'. The Apple Il unknown filetype (-SOO) has Macintosh fdetype 'BINA". Apple Il text fdes
(TXT • $04) wlh auxtype of SOOOO (le. normal ASOI text, no records) has Macintosh filetype
"TEXT". These special cases allow Macintosh to display unique irons for these filetypes.

Macintosh files with cre31or 'jXios" and a filetype ci the form "XY • (two hex digits followed
by two spaces) will get Apple Il fdetype SXY and auxtype $0000. Macintosh files with creator
'pOO;" and a ftletype of the form S70uvwxyz (S70 is a lower-case 'p") have ProOOS filetype $uv and
auxtype $wxyz (note the arder ci the bytes: on the Macintosh they are stored high-low instead of
low-high).

APW source files (ProOOS fdetype $80) are given Macintosh filetype "TEXT" so that they can be
ed~ed more easily.

The conversion rules are surnmarized in the following tables. If more than one rule a pp lies, the one
closest to the top ci the table will be used.

Equivalence of Macintosh and GS/05 file types 141

a ::::: ua;s; .t.PSS4Wl#IB 14 L s a 1$1 lU .. t,;;; SLJ$41. X:3 Si L .$ UUL il a 144Utts a::.: 4 Ptt t.CklJSMSSC di li à22!.IZ a. . :: ii œn212 t sa :ua a tu

ProDOS ·> &bdntosh convnslon

Pro DOS Macintosh
File type Auxtype Creator
$00 ml~ 'pdos'
$BO(SRC) (any) 'pdos'
$04 (TXT) ml~ 'pdos'
$FF(SYS) (any) 'pdos'
$B3 (S16) (any) 'pdos'
$uv $wxyz 'pdos'

Macintosh -> ProDOS conversion

Macintosh Pro DOS

Creator Filetype Filetype
(any) 'BINA' $00

(any) 'TEXT' $04 (TXT)

'pdos' 'PSYS' SFF(SYS)
'pdos' 'PS16' $B3(S16)

'pdos' 'XYM't SXY
'pdos' 'p' $uv $wx $yz $uv
(any) (any) $00

t Where X, Y are hel diails (i.e. 'O'·"i' or 'A'·'F'), and 11 is a space

142 CH APTE R 4 The AppleShare File System Translator (FSI)

Filetype

'BINA'

'TEXT'

'TEXT'

'PSYS'

'PS16'

'p' $uv $wx Syz

Auxtype

$(XX()

ml~

$(XX()

ml~

$(XX()

Swxyz

ml~

System calls

This section describes differences of parameters between the AppleShare FST and the ProDOS FST.
Please see the GS'Œ Reference Manual, Volume 1 for more detailed infoonation about these calls.
Any caUs na documented here behave as specûled in the GS'Œ Reference Manual,

CREA TE ($01)

The ProDOS filetype and auxtype will be set to the values given in the cali; by default, the
Macintosh creator will be set to 'pdos' and the Macilllosh filetype will be derived according to the
rules above. Ali files will be created as extended mes (i.e. have both a data and a resourœ fork) since
there is no way to distinguish between a fork of length 0 and a fork thal does 001 exist

ln a class 1 cali, the EOF and resource_EOF fldds are ignored. This is because the defmition of
the cali states that the forl(s' EOFs will be set to 0, and it is impossible with AFP to allocate space in
a fork past its EOF.

Only the low byte of the filetype and low word of the auxtype will be used If the high byte of
the fdetype or high word of the auxtype is non-zero, an invalid parameter error will be retumed.

SET_FILE_INFO ($05)

The ProDOS filetype and auxtype will be set to the values given in the cali; by default, the
Macintosh creator will be set to 'pdos' and the Macintosh filetype wiU be derived according to the
rules above. The option _list data is the same as for the GET _ALE_INFO cali, exœpt that only the
Finder lnfo is used (the ether fields cannct be set}, any data past the Finder lnfo f~eld is ignored.

If the file_sys_id field is n<X the same as AppleShare's file system ID ($00), then the option_list
is ignored. Ali FSTs will retum their file system ID in the first word of the optioo_list and will
ignore setting of the optioo_list info if the file_sys_id does 110(match theirs. This allows
applications to always get and set the oplion_list as part of the copying process even when
copying from Drle file system to an<Xher.

System caUs 143

ProDOS ·> &bdntosh convnslon

Pro DOS Macintosh
File type Auxtype Creator
$00 ml~ 'pdos'
$BO(SRC) (any) 'pdos'
$04 (TXT) ml~ 'pdos'
$FF(SYS) (any) 'pdos'
$B3 (S16) (any) 'pdos'
$uv $wxyz 'pdos'

Macintosh -> ProDOS conversion

Macintosh Pro DOS

Creator Filetype Filetype
(any) 'BINA' $00

(any) 'TEXT' $04 (TXT)

'pdos' 'PSYS' SFF(SYS)
'pdos' 'PS16' $B3(S16)

'pdos' 'XYM't SXY
'pdos' 'p' $uv $wx $yz $uv
(any) (any) $00

t Where X, Y are hel diails (i.e. 'O'·"i' or 'A'·'F'), and 11 is a space

142 CH APTE R 4 The AppleShare File System Translator (FSI)

Filetype

'BINA'

'TEXT'

'TEXT'

'PSYS'

'PS16'

'p' $uv $wx Syz

Auxtype

$(XX()

ml~

$(XX()

ml~

$(XX()

Swxyz

ml~

System calls

This section describes differences of parameters between the AppleShare FST and the ProDOS FST.
Please see the GS'Œ Reference Manual, Volume 1 for more detailed infoonation about these calls.
Any caUs na documented here behave as specûled in the GS'Œ Reference Manual,

CREA TE ($01)

The ProDOS filetype and auxtype will be set to the values given in the cali; by default, the
Macintosh creator will be set to 'pdos' and the Macilllosh filetype will be derived according to the
rules above. Ali files will be created as extended mes (i.e. have both a data and a resourœ fork) since
there is no way to distinguish between a fork of length 0 and a fork thal does 001 exist

ln a class 1 cali, the EOF and resource_EOF fldds are ignored. This is because the defmition of
the cali states that the forl(s' EOFs will be set to 0, and it is impossible with AFP to allocate space in
a fork past its EOF.

Only the low byte of the filetype and low word of the auxtype will be used If the high byte of
the fdetype or high word of the auxtype is non-zero, an invalid parameter error will be retumed.

SET_FILE_INFO ($05)

The ProDOS filetype and auxtype will be set to the values given in the cali; by default, the
Macintosh creator will be set to 'pdos' and the Macintosh filetype wiU be derived according to the
rules above. The option _list data is the same as for the GET _ALE_INFO cali, exœpt that only the
Finder lnfo is used (the ether fields cannct be set}, any data past the Finder lnfo f~eld is ignored.

If the file_sys_id field is n<X the same as AppleShare's file system ID ($00), then the option_list
is ignored. Ali FSTs will retum their file system ID in the first word of the optioo_list and will
ignore setting of the optioo_list info if the file_sys_id does 110(match theirs. This allows
applications to always get and set the oplion_list as part of the copying process even when
copying from Drle file system to an<Xher.

System caUs 143

GET_FILE_INFO ($06)

Folders wïh no see files and no see folders access will have the read bit in their access word deared;
files, and foldees with see files or see folders, have the ir read bit set. If the file's resource fock is not
empty, the stOC3ge_type will be returned as $05 (extended), otherwise il will be returned as
$01/$02/$03 (seedling, sapling, or tree) depending on the daia fork's length. The option_list's daia ls
structured as follows:

word

32 bytes

long

4 bytes

Fîle_Sys_ID ($00 for AppleShare)

Finder Jnfo

Parent Directory ID

Acœss righ!S (same fonnat as Get-/SeiPrivileges)

See Figure 4-14 for a diagram of the oplion_list structure.

See /nstde MactntJsh IV, and Madntosh Technical Notes for a description of the Finder lnfo

The access righ!S field for directories ls in the sarne format as used in the GetPrivileges and
SetPrivileges calls. For files, the fteld is set to ali zeros. Note: thls f~eld was included to allow
applications like the Fînder to detennine what access a user has to a folder without having to do a
separate GetPrivileges cali.

OPEN ($10)

The access, fddype, auxtype, and option _list parameters are as described in the SET _FlLE_INFO cali.
If request_access ls $0000 (as penn~ted). an auempt wül be made to open the file as re:ad/write,
deny read/write. If thls faüs, an auempt wül be made to open the file as read-only, deny wr~e. If
thls faüs, an auempt will be made to open the file as write-only, deny read/write. If thls also faüs,
an access denied error ($4E) will be retumed.

If the class ls 0, an attempl will be made to open the file as read/write deny write. If thls fa ils
an attempt will be made to open the file as read-only deny nothing. If thls faüs, an auempt will be
made to open the ftle as write-only deny wrle. If thls a iso faüs, an access denied error ($4E) will be
retumed Thls behavior ls the same as for GS/05 and was done for cornpaûbü~y with GS/OS

Note thal using dass 0 Open allows files to be opened by multiple users and does not fully
prevert one user from changing daia thal another user ls reading, but il does allow multiple usees
to read a file without changing existlng code. Oass 1 Open preverts one user from wriling daia thal
another user ls reading, but does na allow multiple users to read a file without explicitly asking for
read-only access. Pulling a füe in a folder wïh no make changes access will cause both dass 0 Open
and dass 1 Open with reque:st_access • 0 to open the me for read-only and will allow multiple usees
to read the file (and na allow the file to be written to).

144 C H A PTE R 4 The AppleShare File System Trans la tor (FSl)

If request_access ls $0001 (read-only), the file will be opened as read-ooly, deny write. If il is

$0003 (read/write), the file will be opened as read!wrile, deny read/write.lf il is $0002 (write-only),
the file will be opened as wr~e-only, deny read/write. If the file cannot be opened wïh the
requested mode, an access denied error wül be retumed.

If you want to open a ftle with permissions differentthan above, yoo should use the FST
specûiC command "Special Open Fork'. Thal cali is essentially the sarne as the open command, but il
le!S you control ali of the pennission bits yourself.

+ Note: The System Loader loads files by opening them Read-only, Deny Write (request_access
<1'1 $0001).

By default, ooffering will be tumed on for files or directories opened with thls cali. The buffer will
not be filled untü the fiCSt Read or Get_Dir_Entry callls made (so that buffering may be turned off
after the open but before the first read). The size of the buffer for files ls 512 bytes; for directories
il is 2048 bytes.

Folders with neither see files nor see folders access righ!S cannot be opened (since the only valid
operation on an open folder ls GET_DIR_EN!l!Y). The returned error code is $4E (access denied).

With a dass 1 cali, aU of the pararneters after the resource number are file information. Think of
thls as a combined GET FlLE INFO and OPEN cali (and in fact, thal is how il behaves). ln
particular, the access w~d r~rned ls not an indication of the access righ!S you have when the file
ls opened; il is really a "best case' access to the file. The actual access you gd when ~ing the file
ls controlled by several things: the access word, access privileges to ancestor and parent foldees, and
access restrictions ('deny modes') imposed by othee usees who have the file open.

Note thal using a dass 1 open with request_access • 0, ls usually not a good idea since yoo
don't know what access you realfy got to the file (unûl you try) because the FST will try several
combinalions as described above. If your application can deal wïh several different kinds of access
to the file, il ls best to try those different access modes individually untü you gd one you can
handle. For example, if you can handle e~r read-write or read-only access but prefer read-write, try
opening the file with request_access • 3 (read-wr~e). If this fails, try opening with request_access •
1 (read-only). Thls way you will know exactly what access you have to the file. Rernember, too that
if you use dass 1 open for read-wr~e. nobody dse will be able to open the file and multiple usees
won1 be able torun your application at the same lime.

If you use a dass 1 cali with POJurt > 4 (i.e. you are asking for file info to be rdurned), and yœ
don1 have privileges to see the abject you are opening (if the object is in a drop folder, for example),
the cali wül retum with an error S4E (access denied), since you don1 have access to gd the file info
you requested.

System c:alls !45

GET_FILE_INFO ($06)

Folders wïh no see files and no see folders access will have the read bit in their access word deared;
files, and foldees with see files or see folders, have the ir read bit set. If the file's resource fock is not
empty, the stOC3ge_type will be returned as $05 (extended), otherwise il will be returned as
$01/$02/$03 (seedling, sapling, or tree) depending on the daia fork's length. The option_list's daia ls
structured as follows:

word

32 bytes

long

4 bytes

Fîle_Sys_ID ($00 for AppleShare)

Finder Jnfo

Parent Directory ID

Acœss righ!S (same fonnat as Get-/SeiPrivileges)

See Figure 4-14 for a diagram of the oplion_list structure.

See /nstde MactntJsh IV, and Madntosh Technical Notes for a description of the Finder lnfo

The access righ!S field for directories ls in the sarne format as used in the GetPrivileges and
SetPrivileges calls. For files, the fteld is set to ali zeros. Note: thls f~eld was included to allow
applications like the Fînder to detennine what access a user has to a folder without having to do a
separate GetPrivileges cali.

OPEN ($10)

The access, fddype, auxtype, and option _list parameters are as described in the SET _FlLE_INFO cali.
If request_access ls $0000 (as penn~ted). an auempt wül be made to open the file as re:ad/write,
deny read/write. If thls faüs, an auempt wül be made to open the file as read-only, deny wr~e. If
thls faüs, an auempt will be made to open the file as write-only, deny read/write. If thls also faüs,
an access denied error ($4E) will be retumed.

If the class ls 0, an attempl will be made to open the file as read/write deny write. If thls fa ils
an attempt will be made to open the file as read-only deny nothing. If thls faüs, an auempt will be
made to open the ftle as write-only deny wrle. If thls a iso faüs, an access denied error ($4E) will be
retumed Thls behavior ls the same as for GS/05 and was done for cornpaûbü~y with GS/OS

Note thal using dass 0 Open allows files to be opened by multiple users and does not fully
prevert one user from changing daia thal another user ls reading, but il does allow multiple usees
to read a file without changing existlng code. Oass 1 Open preverts one user from wriling daia thal
another user ls reading, but does na allow multiple users to read a file without explicitly asking for
read-only access. Pulling a füe in a folder wïh no make changes access will cause both dass 0 Open
and dass 1 Open with reque:st_access • 0 to open the me for read-only and will allow multiple usees
to read the file (and na allow the file to be written to).

144 C H A PTE R 4 The AppleShare File System Trans la tor (FSl)

If request_access ls $0001 (read-only), the file will be opened as read-ooly, deny write. If il is

$0003 (read/write), the file will be opened as read!wrile, deny read/write.lf il is $0002 (write-only),
the file will be opened as wr~e-only, deny read/write. If the file cannot be opened wïh the
requested mode, an access denied error wül be retumed.

If you want to open a ftle with permissions differentthan above, yoo should use the FST
specûiC command "Special Open Fork'. Thal cali is essentially the sarne as the open command, but il
le!S you control ali of the pennission bits yourself.

+ Note: The System Loader loads files by opening them Read-only, Deny Write (request_access
<1'1 $0001).

By default, ooffering will be tumed on for files or directories opened with thls cali. The buffer will
not be filled untü the fiCSt Read or Get_Dir_Entry callls made (so that buffering may be turned off
after the open but before the first read). The size of the buffer for files ls 512 bytes; for directories
il is 2048 bytes.

Folders with neither see files nor see folders access righ!S cannot be opened (since the only valid
operation on an open folder ls GET_DIR_EN!l!Y). The returned error code is $4E (access denied).

With a dass 1 cali, aU of the pararneters after the resource number are file information. Think of
thls as a combined GET FlLE INFO and OPEN cali (and in fact, thal is how il behaves). ln
particular, the access w~d r~rned ls not an indication of the access righ!S you have when the file
ls opened; il is really a "best case' access to the file. The actual access you gd when ~ing the file
ls controlled by several things: the access word, access privileges to ancestor and parent foldees, and
access restrictions ('deny modes') imposed by othee usees who have the file open.

Note thal using a dass 1 open with request_access • 0, ls usually not a good idea since yoo
don't know what access you realfy got to the file (unûl you try) because the FST will try several
combinalions as described above. If your application can deal wïh several different kinds of access
to the file, il ls best to try those different access modes individually untü you gd one you can
handle. For example, if you can handle e~r read-write or read-only access but prefer read-write, try
opening the file with request_access • 3 (read-wr~e). If this fails, try opening with request_access •
1 (read-only). Thls way you will know exactly what access you have to the file. Rernember, too that
if you use dass 1 open for read-wr~e. nobody dse will be able to open the file and multiple usees
won1 be able torun your application at the same lime.

If you use a dass 1 cali with POJurt > 4 (i.e. you are asking for file info to be rdurned), and yœ
don1 have privileges to see the abject you are opening (if the object is in a drop folder, for example),
the cali wül retum with an error S4E (access denied), since you don1 have access to gd the file info
you requested.

System c:alls !45

READ ($12)

The READ C311 will not be supported for direc10ries. GS/OS directories will not be synthesized. One
should use the Get_Dir_Enuy cali to enumerate directories. A read on a directory will retum error $4E
(acce.ss denied).

If pan of the range to be read is locked by aoother workstation, a $4E error wiU be retumed and
the transfer count will be set to indicate the number of bytes transferred before the locked range
was encounlered.

• Note: There may be byleS thal were not part of the locked range, but were not transferred.

Regardless ci the value in the cache priori:y field, data will not be put in the system cache. By
defaullthe FST maintains a block bulfer containing the 5 I 2 bytes of the block containing the
current mark. This block bulfer can be controlled on a per-fde basis by the FST specifie cali 'Bulfer
Control'.

If bulfering is disabled and newline mode bas been enabled with more !han one newline
character, the read will be completed one byte at a lime. This is done because tbe server's newline
mechanism providcs fa only one newline character. Beware thal this mode of reacling a file
imposes tremendous amou nu of overhead and should be avoided if at ali possible.

WRITE ($13)

Regardless ci the value in the cache priori: y field, data will not be put in the system cache. By
default the FST maintains a block bulfer containing the 512 bytes of the block containing the
current mark. This block buffer can be controlled on a per-fde basis by the FST specifie caU 'Bulfer
Control'.

Wri:es to clirectories are not allowed. They will retum error $4E (access denied).

UOSE ($14)

The fde will always be dosed, even if there is an error. This is because any error an application gets
may not be correctable by the applicaOOn or the user (eg. the data to be flushed before the close is
locked by another workstation, or a connection bas been Jo& with the server).

146 C H A P TE R 4 The AppleShare File System Translator (FS1)

SET_EOF ($18)

If a forie is extended (made longer), the additional bytes will be allocated but mighl not ali be zero.
In a class 1 C311, if the base indicates Lhat the EOF should be set to EOF - displacement, the

server's current EOF will be detennined and the EOF will be set relative to thal; this could be
different than the worlcstations assumplion of the EOF if anolher worlcstation bas modif1ed the
fork's EOF. This could also deJete data thal anolher workstation bas written between the times
when the current EOF was determined and the new EOF set.

This cali will foo:e any bulfered data to be written to the server. The EOF will be set after this
data is wriuen.

GET_EOF ($19)

The fork's EOF will be determined from the server; this may not match the workstation's
assumplion of the EOF if another workstation bas modified the fork's EOF. Note !hat another
workstation could change the EOF after cornpletion of this cali, making the results inaccurate.

This cali will force any buffered data to be written to the server. The EOF will be determined
after this data is wriuen.

GET_DIR_ENTRY ($1C)

Get_Dir_Entry is not supported for files. It will retum the error $4E (access denied).
Polders enumerated by GET _DIR_ENTRY that have nei:her see fdes nor see folders will have

the read bit in their access wad deared. Folders wi:h see files or see folders will have the read bit
set.

The access, fdetype, auxtype, and option _list parameters are as the GET _FILE_INFO C311. The
FST will intemally maintain the directory entry number (entry _num) to allow forward and
backward scanning ci the directory. By default, severa! entries will be bulfered for better
performance (this can be disabled by using the FST Specifie C311 'Bulfer Control'). An end ci
directory error ($61) will be retumed when an entry is requested that does not exisl in the bulfer (or
buffering is disabled for the directory), and that entry cannot be read from the server.

Since AppleShare is a shared me system, entry _num may change for a file, even while the
directory is being scanned bccause othee users cou Id add or deJete files in the clirectory. Also, if the
base and clisplacement fields are lxlh zero, the total number of entries wiU be retumed. Note !hat
more or fewer ertries may actually be retumed if the directory is enumerated since other machines
can =te and deJete files while you are enumeraling the directory.

The best way to enumerate a directory is to simply open the directory and make successive
Get_Dir_Entry calls wi:h base and displacemenllxlh set to $0001. When yeu get an error $61 (end of
directory), you are f01ished enumerating. Yeu should .remove duplicate enlries from yeur list.

System calls 147

READ ($12)

The READ C311 will not be supported for direc10ries. GS/OS directories will not be synthesized. One
should use the Get_Dir_Enuy cali to enumerate directories. A read on a directory will retum error $4E
(acce.ss denied).

If pan of the range to be read is locked by aoother workstation, a $4E error wiU be retumed and
the transfer count will be set to indicate the number of bytes transferred before the locked range
was encounlered.

• Note: There may be byleS thal were not part of the locked range, but were not transferred.

Regardless ci the value in the cache priori:y field, data will not be put in the system cache. By
defaullthe FST maintains a block bulfer containing the 5 I 2 bytes of the block containing the
current mark. This block bulfer can be controlled on a per-fde basis by the FST specifie cali 'Bulfer
Control'.

If bulfering is disabled and newline mode bas been enabled with more !han one newline
character, the read will be completed one byte at a lime. This is done because tbe server's newline
mechanism providcs fa only one newline character. Beware thal this mode of reacling a file
imposes tremendous amou nu of overhead and should be avoided if at ali possible.

WRITE ($13)

Regardless ci the value in the cache priori: y field, data will not be put in the system cache. By
default the FST maintains a block bulfer containing the 512 bytes of the block containing the
current mark. This block buffer can be controlled on a per-fde basis by the FST specifie caU 'Bulfer
Control'.

Wri:es to clirectories are not allowed. They will retum error $4E (access denied).

UOSE ($14)

The fde will always be dosed, even if there is an error. This is because any error an application gets
may not be correctable by the applicaOOn or the user (eg. the data to be flushed before the close is
locked by another workstation, or a connection bas been Jo& with the server).

146 C H A P TE R 4 The AppleShare File System Translator (FS1)

SET_EOF ($18)

If a forie is extended (made longer), the additional bytes will be allocated but mighl not ali be zero.
In a class 1 C311, if the base indicates Lhat the EOF should be set to EOF - displacement, the

server's current EOF will be detennined and the EOF will be set relative to thal; this could be
different than the worlcstations assumplion of the EOF if anolher worlcstation bas modif1ed the
fork's EOF. This could also deJete data thal anolher workstation bas written between the times
when the current EOF was determined and the new EOF set.

This cali will foo:e any bulfered data to be written to the server. The EOF will be set after this
data is wriuen.

GET_EOF ($19)

The fork's EOF will be determined from the server; this may not match the workstation's
assumplion of the EOF if another workstation bas modified the fork's EOF. Note !hat another
workstation could change the EOF after cornpletion of this cali, making the results inaccurate.

This cali will force any buffered data to be written to the server. The EOF will be determined
after this data is wriuen.

GET_DIR_ENTRY ($1C)

Get_Dir_Entry is not supported for files. It will retum the error $4E (access denied).
Polders enumerated by GET _DIR_ENTRY that have nei:her see fdes nor see folders will have

the read bit in their access wad deared. Folders wi:h see files or see folders will have the read bit
set.

The access, fdetype, auxtype, and option _list parameters are as the GET _FILE_INFO C311. The
FST will intemally maintain the directory entry number (entry _num) to allow forward and
backward scanning ci the directory. By default, severa! entries will be bulfered for better
performance (this can be disabled by using the FST Specifie C311 'Bulfer Control'). An end ci
directory error ($61) will be retumed when an entry is requested that does not exisl in the bulfer (or
buffering is disabled for the directory), and that entry cannot be read from the server.

Since AppleShare is a shared me system, entry _num may change for a file, even while the
directory is being scanned bccause othee users cou Id add or deJete files in the clirectory. Also, if the
base and clisplacement fields are lxlh zero, the total number of entries wiU be retumed. Note !hat
more or fewer ertries may actually be retumed if the directory is enumerated since other machines
can =te and deJete files while you are enumeraling the directory.

The best way to enumerate a directory is to simply open the directory and make successive
Get_Dir_Entry calls wi:h base and displacemenllxlh set to $0001. When yeu get an error $61 (end of
directory), you are f01ished enumerating. Yeu should .remove duplicate enlries from yeur list.

System calls 147

RFAD_BLOCK. ($22)

This cali will retum an cnu $88 (nctwork error) for AppleShare deviees, in order 10 be <XJtnpatible
with System Oisk 3.2. Remember, the preferred melhod for identifying a network volume is by
doing a Volume cali and seeing thal the file_sys_id • $00.

WRITE_BLOŒ ($23)

This is an inval id operation for an AppleShare deviee. This cali always retum an error. The CUITent
error code is S4E (aa:ess denied). This is different from the $88 retumed under 3.2, and may change in
the future.

FORMAT ($24)

This is an inval id operation for an AppleShare deviœ. This cali always retum an error. The CUITent
error code is $28 (write prtteàed). This is different from the $88 retumed under 3.2, and may
change in the future.

ERASE_DISK ($25)

This is an inval id operation for an AppleShare deviœ. This cali always retum an error. The cuiTent
eiTor code is $28 (write prtteàed). This is different from the $88 retumed under 3.2, and may
change in the future.

148 C H A P T E R 4 The AppleShare File System Tr:anslator (FST)

GET_BOOT_VOL($28)

If GSIOS 1s booled over AppleTalk, this conunand will retum the name or the user volume on the
server the user logged in 10 during booting. Ali system files should be present on this volume just
like any aller boot volume.

GET_FSf_INFO ($28)

The file_sys_id will be retumed as $00 (AppleShare). The attribute parameter will be retumed as
SOOOO (System Cali Manager should not uppercase pathnames, do not dear high bits of pathname,
this is a black FST, formatling nct supported). The block_size parameter will be retumed as 512; this
value is only useful in deterrnining the number or bytes used, free, and talai on a volume (since
these values are given in blocks).

FSf_SPEOFIC ($33)

Used 10 make control calls to the FST. The FSf specifiC calls are described in the section titled 'FST
Specilk Calls" following.

System calls !49

tu u Lb. U.Al42jJ(,Jtz t 501 :z a t Ji_ !2 .014 ii. 2 i!ik.J!IHQ!IQUA U 2. h4U,!X 4J. tt 5 U 1 3d 2.4 SW4

RFAD_BLOCK. ($22)

This cali will retum an cnu $88 (nctwork error) for AppleShare deviees, in order 10 be <XJtnpatible
with System Oisk 3.2. Remember, the preferred melhod for identifying a network volume is by
doing a Volume cali and seeing thal the file_sys_id • $00.

WRITE_BLOŒ ($23)

This is an inval id operation for an AppleShare deviee. This cali always retum an error. The CUITent
error code is S4E (aa:ess denied). This is different from the $88 retumed under 3.2, and may change in
the future.

FORMAT ($24)

This is an inval id operation for an AppleShare deviœ. This cali always retum an error. The CUITent
error code is $28 (write prtteàed). This is different from the $88 retumed under 3.2, and may
change in the future.

ERASE_DISK ($25)

This is an inval id operation for an AppleShare deviœ. This cali always retum an error. The cuiTent
eiTor code is $28 (write prtteàed). This is different from the $88 retumed under 3.2, and may
change in the future.

148 C H A P T E R 4 The AppleShare File System Tr:anslator (FST)

GET_BOOT_VOL($28)

If GSIOS 1s booled over AppleTalk, this conunand will retum the name or the user volume on the
server the user logged in 10 during booting. Ali system files should be present on this volume just
like any aller boot volume.

GET_FSf_INFO ($28)

The file_sys_id will be retumed as $00 (AppleShare). The attribute parameter will be retumed as
SOOOO (System Cali Manager should not uppercase pathnames, do not dear high bits of pathname,
this is a black FST, formatling nct supported). The block_size parameter will be retumed as 512; this
value is only useful in deterrnining the number or bytes used, free, and talai on a volume (since
these values are given in blocks).

FSf_SPEOFIC ($33)

Used 10 make control calls to the FST. The FSf specifiC calls are described in the section titled 'FST
Specilk Calls" following.

System calls !49

tu u Lb. U.Al42jJ(,Jtz t 501 :z a t Ji_ !2 .014 ii. 2 i!ik.J!IHQ!IQUA U 2. h4U,!X 4J. tt 5 U 1 3d 2.4 SW4

FST_SPECIFIC calls

The FST _SPEOAC cali is used to make special caUs to the AppleShare FST. The FST number must be
$00 (AppleShare). A conunand ci $0000 is inval id. Conunands SOOOE through $FFFF are reserved.

If the corrunand number is out ci range, error $53 (invalid pararneter) will be retumed Error $52
(unknown volume type) will be retumed if a refnum for a me opened by anO!her FST is used Error
$52 will also be retumed if a pathname uses a deviee name for a deviee Olher than an AFP
(AppleShare) driver. Error $45 (volume llO(found) will be retumed if a pathname specifies a volume
name thal does nOl match any moonted AppleShare volume (even if a volume by that name exists
for a different file system).

Buffer Control ($0001)

word PCount (minimum • 3)

word FSTI • $D

word Corrunand • 1

word Referena: 1

word Buffer Disable Hags (defauk • $0000)

Bit 15 set • Disable buffering (every read/write goes to server,every
GetDirEntty lranslated inlo a single FPEnumerate).

Bis 0-14 Reserved

• Figure 4-1 Buffer Control

Buffet Control

pCount (min-3)

fstNwn • $0
(01)

co= ndNum • $0001
(02)

refNum
(03)

fla~
(04)

Buffer Disable

ISO C H A P TE R 4 The AppleShare File System Translater (FST)

Conunand $0001 is the Buffer Control command It is followed by a ward specifying the reference
number of a ftle/direàory whase buffering is to be enabled/disabled The next ward is optional. It
specifieS the buffer disable Hags; if the high bit is set, then buffering is disabled for that
file/direaory. The default value of the buffer disable parameter is $0000 (tum on buffering). A file
referena: number of 0 is inval id.

For folders, the buffer size is 2048 bytes. When buffering is off, each Get_Dir_Entty will
immediately cause an enumerate of one entry from the server. When a Get_Dir_Entty cali is made
with buffering on, the requested entty will be retumed from the buffer if possible. Otherwise, the
buffer will be filled with as many enlries from the server as possible, induding the requested entty;
then the requested entry will be retumed The buffer is llO(pre-filled when the folder is opened
The number of enlties kept in the buffer is variable and depends on the size of the long and shan
names of the files!folders.

For mes, the buffer size is 512 bytes (the sarne as the black size reponed by the FS1J. When
buffering is off, every Read and Write callttansfers data from/ta the user's data buffer directly
ta/from the server. When buffering is on, and a Read or Write of 512 bytes or more is made, any
unwritten data in the buffer is written and the Read/Write is made fromlto the user's data buffer
directly ta/from the server.

When buffering is on and a Read or Write of less than 512 bytes is made, the black (512 bytes,
with a starting offset that is a multiple of 512 bytes) containing the first byte to be read/written is
read into the buffer; if the black was already in the buffer, no read is done; if a different black is in
the buffer, any unwritten data is written and the new black is read into lbe buffer. The read/write
then proceeds to the end of the buffer. If the read/write extends past the end of the buffer, any
unwritten data is written and the next black is read into the buffer. The read/write tben completes
by readinglwriting from'lo the buffer.

Unbuffered reads with 0 or 1 newline characters are handled directly by the server (i.e. the read
to the server requests the same number of bytes as the user requested). Unbuffered reads with 2 or
more newline characters tum into reads of one character at a lime from the server (until a newline is
encountered or ali bytes have been read or end ci file reached); please ncu thal this takes a LONG
lime, and yoo are probably better off nOl using 2 or more newline characters with buffering off.

Buffered reads wth 1 or more newline characters become reads ci 512 bytes at a lime, on 512
byte boundaries (as if t were a read ci less than 512 bytes). Each block is read into the buffer and
then the bytes are copied 10 the user's data buffer one at a lime (while being compared against ali
the newline characters). Buffered reads with no newline characters are as desaibed above.

System caUs lSl

FST_SPECIFIC calls

The FST _SPEOAC cali is used to make special caUs to the AppleShare FST. The FST number must be
$00 (AppleShare). A conunand ci $0000 is inval id. Conunands SOOOE through $FFFF are reserved.

If the corrunand number is out ci range, error $53 (invalid pararneter) will be retumed Error $52
(unknown volume type) will be retumed if a refnum for a me opened by anO!her FST is used Error
$52 will also be retumed if a pathname uses a deviee name for a deviee Olher than an AFP
(AppleShare) driver. Error $45 (volume llO(found) will be retumed if a pathname specifies a volume
name thal does nOl match any moonted AppleShare volume (even if a volume by that name exists
for a different file system).

Buffer Control ($0001)

word PCount (minimum • 3)

word FSTI • $D

word Corrunand • 1

word Referena: 1

word Buffer Disable Hags (defauk • $0000)

Bit 15 set • Disable buffering (every read/write goes to server,every
GetDirEntty lranslated inlo a single FPEnumerate).

Bis 0-14 Reserved

• Figure 4-1 Buffer Control

Buffet Control

pCount (min-3)

fstNwn • $0
(01)

co= ndNum • $0001
(02)

refNum
(03)

fla~
(04)

Buffer Disable

ISO C H A P TE R 4 The AppleShare File System Translater (FST)

Conunand $0001 is the Buffer Control command It is followed by a ward specifying the reference
number of a ftle/direàory whase buffering is to be enabled/disabled The next ward is optional. It
specifieS the buffer disable Hags; if the high bit is set, then buffering is disabled for that
file/direaory. The default value of the buffer disable parameter is $0000 (tum on buffering). A file
referena: number of 0 is inval id.

For folders, the buffer size is 2048 bytes. When buffering is off, each Get_Dir_Entty will
immediately cause an enumerate of one entry from the server. When a Get_Dir_Entty cali is made
with buffering on, the requested entty will be retumed from the buffer if possible. Otherwise, the
buffer will be filled with as many enlries from the server as possible, induding the requested entty;
then the requested entry will be retumed The buffer is llO(pre-filled when the folder is opened
The number of enlties kept in the buffer is variable and depends on the size of the long and shan
names of the files!folders.

For mes, the buffer size is 512 bytes (the sarne as the black size reponed by the FS1J. When
buffering is off, every Read and Write callttansfers data from/ta the user's data buffer directly
ta/from the server. When buffering is on, and a Read or Write of 512 bytes or more is made, any
unwritten data in the buffer is written and the Read/Write is made fromlto the user's data buffer
directly ta/from the server.

When buffering is on and a Read or Write of less than 512 bytes is made, the black (512 bytes,
with a starting offset that is a multiple of 512 bytes) containing the first byte to be read/written is
read into the buffer; if the black was already in the buffer, no read is done; if a different black is in
the buffer, any unwritten data is written and the new black is read into lbe buffer. The read/write
then proceeds to the end of the buffer. If the read/write extends past the end of the buffer, any
unwritten data is written and the next black is read into the buffer. The read/write tben completes
by readinglwriting from'lo the buffer.

Unbuffered reads with 0 or 1 newline characters are handled directly by the server (i.e. the read
to the server requests the same number of bytes as the user requested). Unbuffered reads with 2 or
more newline characters tum into reads of one character at a lime from the server (until a newline is
encountered or ali bytes have been read or end ci file reached); please ncu thal this takes a LONG
lime, and yoo are probably better off nOl using 2 or more newline characters with buffering off.

Buffered reads wth 1 or more newline characters become reads ci 512 bytes at a lime, on 512
byte boundaries (as if t were a read ci less than 512 bytes). Each block is read into the buffer and
then the bytes are copied 10 the user's data buffer one at a lime (while being compared against ali
the newline characters). Buffered reads with no newline characters are as desaibed above.

System caUs lSl

CCl

Byte Range Lod ($0002)

word PCourt • 7

word FSTI. $0

word Cornmand. 2

word Reference 1

word lock Aag

Bill5 set Lock range
de:!r Unlock range

Bill4 set Offset relative to EOF
de:!r Offset relative to start of file

long Offset in File

long Length of Range

long Start of Range (retumed)

For the Lock Aag, the following constants can be combined:

Lock_Range. $8)00

Relative_to_EOF • $4000

152 C H A PT f R 4 The AppleShare File System Translator (FST)

a : . a Q _t.;sz;;~. a_;)#. QL "")QM_ ' '

•
œx.a .:us;z;za saxeau;;q_.; POf

• Figure 4-2 Byte Range Lock

pCount (ntin= 7)

fstNwn=SD
(01)

comrrwtdNurn = S0002
(02)

.refNum
(03)

lockPlag
(04)

fileOffset
(05)

rangei..ength
(06)

rangeS tart
(07)

Lock Plag

~ 3
RelatiYe to !!OF

Lockl!ange

:;z;:z .tt, a

System calls 153

a us.: :a.t :a a: dltJ .li dk! 14

CCl

Byte Range Lod ($0002)

word PCourt • 7

word FSTI. $0

word Cornmand. 2

word Reference 1

word lock Aag

Bill5 set Lock range
de:!r Unlock range

Bill4 set Offset relative to EOF
de:!r Offset relative to start of file

long Offset in File

long Length of Range

long Start of Range (retumed)

For the Lock Aag, the following constants can be combined:

Lock_Range. $8)00

Relative_to_EOF • $4000

152 C H A PT f R 4 The AppleShare File System Translator (FST)

a : . a Q _t.;sz;;~. a_;)#. QL "")QM_ ' '

•
œx.a .:us;z;za saxeau;;q_.; POf

• Figure 4-2 Byte Range Lock

pCount (ntin= 7)

fstNwn=SD
(01)

comrrwtdNurn = S0002
(02)

.refNum
(03)

lockPlag
(04)

fileOffset
(05)

rangei..ength
(06)

rangeS tart
(07)

Lock Plag

~ 3
RelatiYe to !!OF

Lockl!ange

:;z;:z .tt, a

System calls 153

a us.: :a.t :a a: dltJ .li dk! 14

Corrunand $0002 is lhe Byte Range lock command. Il is followed by five required parameters (so
the PCount f~eld sixluld be 7, 2 for FST 1 and Command, 5 for the parameters of Byte Range lock).
The first pararneter is a word collaining the reference numher ci the file to lock. The second
parameter is the lock Flag.lf billS is set, the range will be locked; if dear, il will be unlocked lfbit
14 is set, the offset is rdative 10 the end of the file; if clear, the offset is relative to the start of the
file. Ali Olher biiS are reserved and should be setto O. The next parameter is a long word containing
the cifset iniO the file (may be negative if relative to the end of the file). The next parameter is the
length ci the range 10 be locked. The last parameter is the actual start ci the locked range (relative
to the beginning of the file) as retumed by the server.

Possible errors are: $4D (pœ ilion out ci range -- user already has sorne Œ ail of range already
locked, or unlocking a range na locked by thal user), $4E (access denied --sorne Œ ail of range is
locked by another user), $43 (invalid reference number), $53 (invalid parameter).

Special Open Fork ($0003)

word PCount (minimum • 5)

ward FST• • SD

ward

ward

long

ward

Command-3

Referenœ • (returned)

Pointer lo class 1 palhnarne

Access mode

Bit 0
Bill
Bits 2,3
Bit 4
Bit 5
Bits6 .. 15

Request Read Access
Request Write Access
Reserved
Deny Read to others
Deny Write lo others
Reserved

word Resourœ number (default •$0000)

tS4 C H A P T E R 4 The AppleShare File System Trans la tor (FS1)

• Figure 4-3 Special Open Fork

Speclal Open Fork

pCount (min-S)

fstNum• $D
(01)

conunandNum - $<XXJ3
(02)

refNum
(03)

pathname
(04)

accessMode
(05)

forkNum
((Xi)

Access Word

Deny Write Request W rite

Command $0003 is lhe Special Open Fork command. Il is followed by three required parameters and
OCIC oplional parameter (so lhe PCount f~eld shœld be 5 or 6: 2 for lhe FSTI and Command, and 3 Œ
4 fŒ the parameters ci Special Open Fork). The first parameter is lhe reference number (ref_num)
retumed by GS/05 10 the access patlt Use this ref_num lhe same as you would a ref_num retumed
by an OPEN call The second parameter is a pointer 10 a dass 1 string representing the pathnarne of
the fie 10 be opened The third parameter is the access mode giving lhe read/write penni.ssions
desired and 10 be denied to others as described below. The forth, and oplional, parameter is the
resource number: a value ci $OOOJ will cause lhe data fork 10 be opened, a value ci $0001 will cause
the resourœ fork 10 be opened; a value ci $0000 is assumed if lhe parameter is not given.

System caUs 155

Corrunand $0002 is lhe Byte Range lock command. Il is followed by five required parameters (so
the PCount f~eld sixluld be 7, 2 for FST 1 and Command, 5 for the parameters of Byte Range lock).
The first pararneter is a word collaining the reference numher ci the file to lock. The second
parameter is the lock Flag.lf billS is set, the range will be locked; if dear, il will be unlocked lfbit
14 is set, the offset is rdative 10 the end of the file; if clear, the offset is relative to the start of the
file. Ali Olher biiS are reserved and should be setto O. The next parameter is a long word containing
the cifset iniO the file (may be negative if relative to the end of the file). The next parameter is the
length ci the range 10 be locked. The last parameter is the actual start ci the locked range (relative
to the beginning of the file) as retumed by the server.

Possible errors are: $4D (pœ ilion out ci range -- user already has sorne Œ ail of range already
locked, or unlocking a range na locked by thal user), $4E (access denied --sorne Œ ail of range is
locked by another user), $43 (invalid reference number), $53 (invalid parameter).

Special Open Fork ($0003)

word PCount (minimum • 5)

ward FST• • SD

ward

ward

long

ward

Command-3

Referenœ • (returned)

Pointer lo class 1 palhnarne

Access mode

Bit 0
Bill
Bits 2,3
Bit 4
Bit 5
Bits6 .. 15

Request Read Access
Request Write Access
Reserved
Deny Read to others
Deny Write lo others
Reserved

word Resourœ number (default •$0000)

tS4 C H A P T E R 4 The AppleShare File System Trans la tor (FS1)

• Figure 4-3 Special Open Fork

Speclal Open Fork

pCount (min-S)

fstNum• $D
(01)

conunandNum - $<XXJ3
(02)

refNum
(03)

pathname
(04)

accessMode
(05)

forkNum
((Xi)

Access Word

Deny Write Request W rite

Command $0003 is lhe Special Open Fork command. Il is followed by three required parameters and
OCIC oplional parameter (so lhe PCount f~eld shœld be 5 or 6: 2 for lhe FSTI and Command, and 3 Œ
4 fŒ the parameters ci Special Open Fork). The first parameter is lhe reference number (ref_num)
retumed by GS/05 10 the access patlt Use this ref_num lhe same as you would a ref_num retumed
by an OPEN call The second parameter is a pointer 10 a dass 1 string representing the pathnarne of
the fie 10 be opened The third parameter is the access mode giving lhe read/write penni.ssions
desired and 10 be denied to others as described below. The forth, and oplional, parameter is the
resource number: a value ci $OOOJ will cause lhe data fork 10 be opened, a value ci $0001 will cause
the resourœ fork 10 be opened; a value ci $0000 is assumed if lhe parameter is not given.

System caUs 155

The access word is arranged as follows (if the bit is set, the condition is asserted):

Bit 0 Request Read Access

Bit 1

Bit 2,3

Bit 4

Bit 5

Bits 6 .. 15

Request Wr~e Access

Reserved

Deny Read to others

Deny Write to others

Reserved

By default; files opened with SpeciaiOpenFork will have buffering tumed off (to prevent 'state•
data when ether users are writing to the file).j This can be changed wth the BufferControl cali.

+ Note: Thi<; parameter has the same meaning as in the ProDOS 8 Special Open Fork command.

Possible errors: same as for OPEN command A deny mode conflict will result in an access denied
error.

156 C H A P TE R 4 The AppleShare File S~tem Translater (fSD

GetPrivlleges ($0004)

word PCount (min • 4)

word FSTI • $D
word Command • 4
long Pointer to dass 1 pathname
long Access Rights (retumed)

byte User Summary

byte Wortd

byte Group

byte Owner

Bit 0
Bit 1

See Folders allowed
See Files allowed

Bit 2
B~3 .. 6
Bit 7

Make Olanges allowed
Reserved

Bit 0
Bit 1

Owner (set if you are folder owner)

See Folders
Seefdes

Bit 2 Make Changes
Bits 3 .. 7 Reserved

Bit 0 See Folders
Bit 1 See Files
Bit 2 Make Changes
B~ 3 .. 7 Reserved

Bit 0 See Folders
Bit 1 See fdes
Bit 2 Make Changes
B~ 3 .. 7 Reserved

long Pointer to GS/OS output buffer for Owner Name
long Pointer to GS/OS œtput buffer for Group Name

System calls 157

The access word is arranged as follows (if the bit is set, the condition is asserted):

Bit 0 Request Read Access

Bit 1

Bit 2,3

Bit 4

Bit 5

Bits 6 .. 15

Request Wr~e Access

Reserved

Deny Read to others

Deny Write to others

Reserved

By default; files opened with SpeciaiOpenFork will have buffering tumed off (to prevent 'state•
data when ether users are writing to the file).j This can be changed wth the BufferControl cali.

+ Note: Thi<; parameter has the same meaning as in the ProDOS 8 Special Open Fork command.

Possible errors: same as for OPEN command A deny mode conflict will result in an access denied
error.

156 C H A P TE R 4 The AppleShare File S~tem Translater (fSD

GetPrivlleges ($0004)

word PCount (min • 4)

word FSTI • $D
word Command • 4
long Pointer to dass 1 pathname
long Access Rights (retumed)

byte User Summary

byte Wortd

byte Group

byte Owner

Bit 0
Bit 1

See Folders allowed
See Files allowed

Bit 2
B~3 .. 6
Bit 7

Make Olanges allowed
Reserved

Bit 0
Bit 1

Owner (set if you are folder owner)

See Folders
Seefdes

Bit 2 Make Changes
Bits 3 .. 7 Reserved

Bit 0 See Folders
Bit 1 See Files
Bit 2 Make Changes
B~ 3 .. 7 Reserved

Bit 0 See Folders
Bit 1 See fdes
Bit 2 Make Changes
B~ 3 .. 7 Reserved

long Pointer to GS/OS output buffer for Owner Name
long Pointer to GS/OS œtput buffer for Group Name

System calls 157

4 (__

• figure 44 Get Privileges

Owner ~~

-
-

Get Privileges

pCount (min•4)

fs!Num • $D
(01)

commandNum • $0004
(02)

pathname
(03)

accessRights
(04)

ownerName
(05)

groupName
(06)

Access Rights

~rite

Read
Search

User Summary

World

Group

Owner

158 C HA P T E R 4 The AppleShare file System Translator (fS'D

Command $0004 is the GetPrivileges command. Il is followed by four parameters, the first two of
which are required (so the minimum PCount is 4 and the maximum is 6). The first parameter is a
poinler to a class 1 pathname of a directory whose access privileges are to be set or retrieved. The
second parameter is a long where access rights for the directory will be returned. The third
parameter is a pointer to a GS/OS output buffer where the owner's name will be stored. The fourth
parameter is a pointer to a GS/OS output buffer where the group narne will be stored

The access rights field consists of four bytes: one each for user summary, world access, group
acœss, and owner access. For each of these bytes, bit 0 is search access (see folders), bit 1 is read
access (see fdes), and bit 2 is write access (make changes). The user summary byte reflects the
access that the current user has for that directory; if bit 7 is set, the current user is the owner of the
directory.

If the fol der is owned by the guest user (usually displayed as '<Any User>'), the owner name
will be retumed as a null string. If the folder has no group associated with it, the group narne will be
returned as a null string.

Possible errors include: $4B (l:od storage type) if the pathname specifies a file instead of a folder.

System calls 159

4 (__

• figure 44 Get Privileges

Owner ~~

-
-

Get Privileges

pCount (min•4)

fs!Num • $D
(01)

commandNum • $0004
(02)

pathname
(03)

accessRights
(04)

ownerName
(05)

groupName
(06)

Access Rights

~rite

Read
Search

User Summary

World

Group

Owner

158 C HA P T E R 4 The AppleShare file System Translator (fS'D

Command $0004 is the GetPrivileges command. Il is followed by four parameters, the first two of
which are required (so the minimum PCount is 4 and the maximum is 6). The first parameter is a
poinler to a class 1 pathname of a directory whose access privileges are to be set or retrieved. The
second parameter is a long where access rights for the directory will be returned. The third
parameter is a pointer to a GS/OS output buffer where the owner's name will be stored. The fourth
parameter is a pointer to a GS/OS output buffer where the group narne will be stored

The access rights field consists of four bytes: one each for user summary, world access, group
acœss, and owner access. For each of these bytes, bit 0 is search access (see folders), bit 1 is read
access (see fdes), and bit 2 is write access (make changes). The user summary byte reflects the
access that the current user has for that directory; if bit 7 is set, the current user is the owner of the
directory.

If the fol der is owned by the guest user (usually displayed as '<Any User>'), the owner name
will be retumed as a null string. If the folder has no group associated with it, the group narne will be
returned as a null string.

Possible errors include: $4B (l:od storage type) if the pathname specifies a file instead of a folder.

System calls 159

:;.a "

SetPrivUeges ($0005)

word PO>unt (min • 4)
word fST# • $0
word Cornnwld• 5
long Pointer to dass 1 pathname
long Access Rights

byte Reserved
byte World

byte Group

byte Owner

Bit 0
Bill
Bil2
s-.. 3 .. 7

BilO
Bill
Bit2
B--.3 .. 7

Bit 0
Bill
Bit 2
s-.. 3 . .7

See Foiders
SeeFdes
Make Changes
Reserved

See Folders
See Fdes
Make Changes
Reserved

See Folders
Seefdes
Make Changes
Reserved

long Pointer to buffer where Owner Name is stored (same format as a GS/OS output buffer,
but the buffer length ward is ignored).

long Pointer to buffer where Group Name is stored (same format as a GS/OS output buffer,
but the butTer length ward is ignored).

160 CH APTE R 4 The AppleShare File System Translator (FST)

sa a a. QidJ p a au a: a : :;;

• Flpte 4-5 Set Privileges

1---

1--

1---

SetPrivileges

pCount (min-4)

fstNum• SD
(01)

cornmandNum • $0005
(02)

pathname
(03)

accessRights
(04)

ownerName
(05)

groupName
(06)

Access Rights

'«rite

World

Group

Owner

Read
Search

a wu a ; 4 t tt : . aue. as : :.e.;sew::

System caUs 161

au; 42 ib!lli.ll4

:;.a "

SetPrivUeges ($0005)

word PO>unt (min • 4)
word fST# • $0
word Cornnwld• 5
long Pointer to dass 1 pathname
long Access Rights

byte Reserved
byte World

byte Group

byte Owner

Bit 0
Bill
Bil2
s-.. 3 .. 7

BilO
Bill
Bit2
B--.3 .. 7

Bit 0
Bill
Bit 2
s-.. 3 . .7

See Foiders
SeeFdes
Make Changes
Reserved

See Folders
See Fdes
Make Changes
Reserved

See Folders
Seefdes
Make Changes
Reserved

long Pointer to buffer where Owner Name is stored (same format as a GS/OS output buffer,
but the buffer length ward is ignored).

long Pointer to buffer where Group Name is stored (same format as a GS/OS output buffer,
but the butTer length ward is ignored).

160 CH APTE R 4 The AppleShare File System Translator (FST)

sa a a. QidJ p a au a: a : :;;

• Flpte 4-5 Set Privileges

1---

1--

1---

SetPrivileges

pCount (min-4)

fstNum• SD
(01)

cornmandNum • $0005
(02)

pathname
(03)

accessRights
(04)

ownerName
(05)

groupName
(06)

Access Rights

'«rite

World

Group

Owner

Read
Search

a wu a ; 4 t tt : . aue. as : :.e.;sew::

System caUs 161

au; 42 ib!lli.ll4

P.

Command $0005 is the SetPrivilege.s conunand. Ils parameter list is the same as for the GetPrivilege.s
coounand acept thal the access rights, owner name, and group name fields are input instead of
OUlput (sinœ the values are being set, not retrieved). The owner name and group name point to
structures similar to a GS/OS output buffer where the first word (normally a total buffer length) is
ignored, the nen word is the string length, and the rest of the bu !fer is the string itself. This
structure defmition allows you to do a GetPrivileges cali, rnodify the data, and do a SetPrivileges cali
using the sarne owner name and group name pointers (the same way you can share the option_list
parameter for Get_File_lnfo and Set_File_lnfo).

Setting the owner name to the null string assigns the folder to the guest user (usually known
as '<Any User>'). The string '<Any User>' is 001 a valid user name (unless you have a registered
user by that narne). Selling the group name to the null string causes no group to be associated with
the folder (and therefore the group's access rights are ignored).

Possible errors include: $4B (bad storage type) if the pathname specifies a file instead of a folder,
$4E (access denied) if the user is 001 the current owner of the folder, $7E (unknown user) if the user
name given is na the name of a registered user, and $7F (unknown group) if the group name given
is 001 the name of a group.

162 CH APTE R 4 The AppleShare File System Translater (FST)

e e

User Info ($0006)

word PCount (min • 4)

word FSTI • $0

word Command • 6
word Deviee number (of any volume on the desired server)

long Pointer to GS/05 output buffer for User Name

long Pointer to GS/OS output buffer for Prirnary Group Name

• Figure 4-6 User lnfo

Userlnfo

pCount (min•4)

fstNum • $0
(01)

commandNum • $ooo6
(02)

deviceNum
(03)

userName
(04)

pimaryG roupName
(05)

Command S0006 is the User lnfo command. This command will retum the user name and primary
group name of a user. ft has two required parameters and one optional parameter. The first
pararneter is the deviee number of a volume 011 the server whœe user info is to be retumed The
second pararrieter is a pointer to a GS/OS output buffer where the user name is retumed. The third
parameter (op!ional) is a pointer to a GS/05 OUlpul buffer where the user's prirnary group name is
returned.

If the user is logged 011 as a guest, the user name will be retumed as a nu li string. If the user has
no primary group, then 1 will be returTICd as a null string.

System caUs

44Miii&ll • 1 ' ' ' • • ~ ~ '.);~. !tl'',.: tt

163

Ai&

P.

Command $0005 is the SetPrivilege.s conunand. Ils parameter list is the same as for the GetPrivilege.s
coounand acept thal the access rights, owner name, and group name fields are input instead of
OUlput (sinœ the values are being set, not retrieved). The owner name and group name point to
structures similar to a GS/OS output buffer where the first word (normally a total buffer length) is
ignored, the nen word is the string length, and the rest of the bu !fer is the string itself. This
structure defmition allows you to do a GetPrivileges cali, rnodify the data, and do a SetPrivileges cali
using the sarne owner name and group name pointers (the same way you can share the option_list
parameter for Get_File_lnfo and Set_File_lnfo).

Setting the owner name to the null string assigns the folder to the guest user (usually known
as '<Any User>'). The string '<Any User>' is 001 a valid user name (unless you have a registered
user by that narne). Selling the group name to the null string causes no group to be associated with
the folder (and therefore the group's access rights are ignored).

Possible errors include: $4B (bad storage type) if the pathname specifies a file instead of a folder,
$4E (access denied) if the user is 001 the current owner of the folder, $7E (unknown user) if the user
name given is na the name of a registered user, and $7F (unknown group) if the group name given
is 001 the name of a group.

162 CH APTE R 4 The AppleShare File System Translater (FST)

e e

User Info ($0006)

word PCount (min • 4)

word FSTI • $0

word Command • 6
word Deviee number (of any volume on the desired server)

long Pointer to GS/05 output buffer for User Name

long Pointer to GS/OS output buffer for Prirnary Group Name

• Figure 4-6 User lnfo

Userlnfo

pCount (min•4)

fstNum • $0
(01)

commandNum • $ooo6
(02)

deviceNum
(03)

userName
(04)

pimaryG roupName
(05)

Command S0006 is the User lnfo command. This command will retum the user name and primary
group name of a user. ft has two required parameters and one optional parameter. The first
pararneter is the deviee number of a volume 011 the server whœe user info is to be retumed The
second pararrieter is a pointer to a GS/OS output buffer where the user name is retumed. The third
parameter (op!ional) is a pointer to a GS/05 OUlpul buffer where the user's prirnary group name is
returned.

If the user is logged 011 as a guest, the user name will be retumed as a nu li string. If the user has
no primary group, then 1 will be returTICd as a null string.

System caUs

44Miii&ll • 1 ' ' ' • • ~ ~ '.);~. !tl'',.: tt

163

Ai&

59

Copy Flle ($0007)

word

word

word

long

PCount (min • 4)

FSTI. $0

Conunand•7

Pointer 10 class 1 string of source pathname

long Poinler to class 1 string of destination pathname

• Figure 4-7 Copy File

CopyFUe

pCount (min•4)

fstNum • SO
(01)

commandNum • $0007
(02)

sourœPathName
(03)

destPathName
(04)

Cornmand $0007 is the Copy FUe cornrnand. This comrnand wül cause a fde on a server to be copied
by the server. The copy may be between differenl volumes as long as bath volumes are on the
same server. This cali has two required parameters. The first is a poinler 10 a class 1 string
containing the source filc's name. The second is a pointer 10 a class 1 string containing the
destination file's name.

Possible errors indude: $53 (inval id parameter) if either volume is not a server volume or if the
volumes are not on the same server, S4A (version error) if the server does not support this cali.

tM C HA PTE R 4 The ApplcShare File System Translater (FS'Ij

GetUserPath ($0008)

word

word

word

long

PCount (min • 3)

FSTI • $0

Comrnand• 8

Pointer 10 class 1 string containing prefiX (retumed)

• Figure 4-8 GetUserPath

GetUserPath

pCount (min•3)

fslNum• SD
(01)

commandNum • $0008
(02)

prefax
(03)

Command $0008 is the GetUserPalh command. Il retums a poinler 10 a dass 1 string containing the
palhname of the user's folder on the user volume, using colons as sepa.r:aton and wilhout a trailing
coi on. The prefix string is not written iniO a class 1 output buffer, so you should copy the string
into local buffer of sufficient sile. If there is no user volume rnounted, or the user name cou ki not

be determined for sorne reason, a data unavailable error is retumed ($60). This palh is constructed on
each cali (unlike the FIUserPrefax caU). The Slling's COnleniS wül not change unlü the next cali to
GetUserPath. DO NOT rnodify the string. The string is sutable for use as a parameter 10 a SetPrefiX
caO.

System calls

li 41 Ch di ta a;: a:;e s :a u .a a:a tpaaa : :::u:sa 21 LS:J.l& a L

165

, li! SL 4

59

Copy Flle ($0007)

word

word

word

long

PCount (min • 4)

FSTI. $0

Conunand•7

Pointer 10 class 1 string of source pathname

long Poinler to class 1 string of destination pathname

• Figure 4-7 Copy File

CopyFUe

pCount (min•4)

fstNum • SO
(01)

commandNum • $0007
(02)

sourœPathName
(03)

destPathName
(04)

Cornmand $0007 is the Copy FUe cornrnand. This comrnand wül cause a fde on a server to be copied
by the server. The copy may be between differenl volumes as long as bath volumes are on the
same server. This cali has two required parameters. The first is a poinler 10 a class 1 string
containing the source filc's name. The second is a pointer 10 a class 1 string containing the
destination file's name.

Possible errors indude: $53 (inval id parameter) if either volume is not a server volume or if the
volumes are not on the same server, S4A (version error) if the server does not support this cali.

tM C HA PTE R 4 The ApplcShare File System Translater (FS'Ij

GetUserPath ($0008)

word

word

word

long

PCount (min • 3)

FSTI • $0

Comrnand• 8

Pointer 10 class 1 string containing prefiX (retumed)

• Figure 4-8 GetUserPath

GetUserPath

pCount (min•3)

fslNum• SD
(01)

commandNum • $0008
(02)

prefax
(03)

Command $0008 is the GetUserPalh command. Il retums a poinler 10 a dass 1 string containing the
palhname of the user's folder on the user volume, using colons as sepa.r:aton and wilhout a trailing
coi on. The prefix string is not written iniO a class 1 output buffer, so you should copy the string
into local buffer of sufficient sile. If there is no user volume rnounted, or the user name cou ki not

be determined for sorne reason, a data unavailable error is retumed ($60). This palh is constructed on
each cali (unlike the FIUserPrefax caU). The Slling's COnleniS wül not change unlü the next cali to
GetUserPath. DO NOT rnodify the string. The string is sutable for use as a parameter 10 a SetPrefiX
caO.

System calls

li 41 Ch di ta a;: a:;e s :a u .a a:a tpaaa : :::u:sa 21 LS:J.l& a L

165

, li! SL 4

OpenDesktop ($0009)

word

word

word

word

long

PCount (min • 4)

FST# • $D

Coounand• 9

Desktop refnum (retumed)

Pointer 10 class 1 string of path/volume name

• Figure t-9 OpenDesktop

pCount (min=4)

cam.mandNum = $0009
(02)

desktopRetNum
(03)

pathname
(04)

Command $0009 is the OpenDesktop command. lt takes a volume/path name and retums a desktop
refnum (Dll!efnum). A desktop refnum must be supplied for ali odx:r desktop database calls
(currenlly, only for geUing/setting file comments)

166 CH APTE R 4 The AppleShare file System Translator (fSD

OoseDesktop ($OOOA)

word

word

word

word

long

PCount (min • 4)

FST# • $D

Command ·$A

Desktop refnum

Pointer to class 1 string of path!volume name

• Figure 4-10 OoseDesktop

pCount (min=4)

commandNum = IOOOA
(OZ)

desktopRetNum
(03)

pathname
(04)

Command $000A is the OoseDesktop command. lt takes a desktop refnum and volurne!path name
and frees ali resources allocated when thal refnum was opened

System calls

ç 4 A ,se;;JJ!A .· · l. :"':E?.c'f;'fJuil4A: û6.{U,k:iiJJIJJ&\t&4.&&fll4LWif!SdfibM!&E4li!L§,

167

OpenDesktop ($0009)

word

word

word

word

long

PCount (min • 4)

FST# • $D

Coounand• 9

Desktop refnum (retumed)

Pointer 10 class 1 string of path/volume name

• Figure t-9 OpenDesktop

pCount (min=4)

cam.mandNum = $0009
(02)

desktopRetNum
(03)

pathname
(04)

Command $0009 is the OpenDesktop command. lt takes a volume/path name and retums a desktop
refnum (Dll!efnum). A desktop refnum must be supplied for ali odx:r desktop database calls
(currenlly, only for geUing/setting file comments)

166 CH APTE R 4 The AppleShare file System Translator (fSD

OoseDesktop ($OOOA)

word

word

word

word

long

PCount (min • 4)

FST# • $D

Command ·$A

Desktop refnum

Pointer to class 1 string of path!volume name

• Figure 4-10 OoseDesktop

pCount (min=4)

commandNum = IOOOA
(OZ)

desktopRetNum
(03)

pathname
(04)

Command $000A is the OoseDesktop command. lt takes a desktop refnum and volurne!path name
and frees ali resources allocated when thal refnum was opened

System calls

ç 4 A ,se;;JJ!A .· · l. :"':E?.c'f;'fJuil4A: û6.{U,k:iiJJIJJ&\t&4.&&fll4LWif!SdfibM!&E4li!L§,

167

GetComment ($0008)

word

word

word

word

long

long

PCount (min • 5)

FSTI. $0

Coounand • SB

Desktop refnum

Pointer to class 1 string of pathname

Pointer to class 1 output buffer for comment

• Figure 4-11 GetCommert

pCOIIIlt (min=5)

fstiWm .. fD
(01)

commandNum• fOOOB
(02)

desktoplletNurn
(03)

pathname
(04)

comment
(05)

Cornrnand $0008 is lhe Ge!Comment command. Il takes a DTI!efnum and a pathname and returns
a string (lhe comment associated with that file'folder). If no comment has been stored for !hat
file'folder, lhen a nuU string will be retumed for lhe cornmert.

168 C H A P T E R 4 The AppleShare File System Translator (FST)

.#5 sa t &t.?.AM4.M4 44! : e a sn .; e e XL a ç "4l!$$kl!S 4! su t;s

SetComment ($OOOC)

word

word

word

word

long

long

PCount (min • 4)

fSTI • $0

Command•SC

Desktop refnum

Pointer to class 1 string of pathname

Pointer to class 1 string of comment (default • nul! string)

• Figure 4-12 SetComment

pCOIIIlt (min=4)

fstNurn=SD
(01)

commandNum= toooc
(02)

desktoplletNum
(03)

pathrwne
(04)

comment
(05)

Cornrnand SOOOC is the SetCornment command. lt takes a DTI!efnum, a pathname, and a string. If
lhe string is non-nul!, theo the comment for !hat pathname will be set to the given string. If lhe
string is null, theo the comment for that pathname will be removed. Note: if the comment string is
longer than 199 characters, il will be trunc:lled to 199 characters without an errer.

System calls 169

a;: 1 z 22! UL!S&b Lill SJJ.!Stt&S 4 ! 1 2 SZL 1 SJQ

GetComment ($0008)

word

word

word

word

long

long

PCount (min • 5)

FSTI. $0

Coounand • SB

Desktop refnum

Pointer to class 1 string of pathname

Pointer to class 1 output buffer for comment

• Figure 4-11 GetCommert

pCOIIIlt (min=5)

fstiWm .. fD
(01)

commandNum• fOOOB
(02)

desktoplletNurn
(03)

pathname
(04)

comment
(05)

Cornrnand $0008 is lhe Ge!Comment command. Il takes a DTI!efnum and a pathname and returns
a string (lhe comment associated with that file'folder). If no comment has been stored for !hat
file'folder, lhen a nuU string will be retumed for lhe cornmert.

168 C H A P T E R 4 The AppleShare File System Translator (FST)

.#5 sa t &t.?.AM4.M4 44! : e a sn .; e e XL a ç "4l!$$kl!S 4! su t;s

SetComment ($OOOC)

word

word

word

word

long

long

PCount (min • 4)

fSTI • $0

Command•SC

Desktop refnum

Pointer to class 1 string of pathname

Pointer to class 1 string of comment (default • nul! string)

• Figure 4-12 SetComment

pCOIIIlt (min=4)

fstNurn=SD
(01)

commandNum= toooc
(02)

desktoplletNum
(03)

pathrwne
(04)

comment
(05)

Cornrnand SOOOC is the SetCornment command. lt takes a DTI!efnum, a pathname, and a string. If
lhe string is non-nul!, theo the comment for !hat pathname will be set to the given string. If lhe
string is null, theo the comment for that pathname will be removed. Note: if the comment string is
longer than 199 characters, il will be trunc:lled to 199 characters without an errer.

System calls 169

a;: 1 z 22! UL!S&b Lill SJJ.!Stt&S 4 ! 1 2 SZL 1 SJQ

GetScvrName ($0000)

word PCount (min • 4)

word fST#. $D

word Command • $0

long Pointer to dass 1 pathname

long Pointer to class 1 output buffer for server name

long Pointer to dass 1 output bulfer for zone name

• Figure 4-13 GetSrvrName

GetScvrName

pû)unt (min•4)

fs!Num• SD
(01)

commandNum • $0000
(02)

pa!hname
(03)

serverName
(04)

zoneName
(OS)

Command $0000 is the GetSrvrName oommand. Il takes a pathname and retums the server name
and zone name for !hat volume. If e~her of the server name or zone name buffer pointers are nul!
($0000 0000), t.hat string will 001 be returned. If the server name or wne name are unknown, they
wül be returned as nul! strings.

170 C HA P TE R 4 The AppleShare File System Translator (FST)

Option List

• Figure 4-14 Option List

option_ list

Buffer Size
$0000

(~ $002E)
$0002

Data Size
($002A)

$0004
File_Sys_ID • $00

$0006

Finder lnfo
(32 Bytes)

$0026

Parent
Di riO

$002A

Access Righ!5

$002E

System calls 171

ti&Zk4it&tU &li&&

GetScvrName ($0000)

word PCount (min • 4)

word fST#. $D

word Command • $0

long Pointer to dass 1 pathname

long Pointer to class 1 output buffer for server name

long Pointer to dass 1 output bulfer for zone name

• Figure 4-13 GetSrvrName

GetScvrName

pû)unt (min•4)

fs!Num• SD
(01)

commandNum • $0000
(02)

pa!hname
(03)

serverName
(04)

zoneName
(OS)

Command $0000 is the GetSrvrName oommand. Il takes a pathname and retums the server name
and zone name for !hat volume. If e~her of the server name or zone name buffer pointers are nul!
($0000 0000), t.hat string will 001 be returned. If the server name or wne name are unknown, they
wül be returned as nul! strings.

170 C HA P TE R 4 The AppleShare File System Translator (FST)

Option List

• Figure 4-14 Option List

option_ list

Buffer Size
$0000

(~ $002E)
$0002

Data Size
($002A)

$0004
File_Sys_ID • $00

$0006

Finder lnfo
(32 Bytes)

$0026

Parent
Di riO

$002A

Access Righ!5

$002E

System calls 171

ti&Zk4it&tU &li&&

General implementation
When handling file system calls, the FST will itself create and send AFP paclrers to the server 35

opposed to trying to make the ails through PFI.
The only syntu checking thal will be performed on pathmmes is thal the span (maximum

length ri a filerwne component) is less Ibm or equal to 32 characters (the max for AFP}, GS/05
itself will enforce the re!lriction against colons and nulls in a patlmme component.

Nonnally, patluwnes sent to the server will be relative to the roà ri the volume (i.e. the
ancestor ID wiU be 2 • the volume directory). When a patlmme is too long to ft in a packet, the
FST will break il up into packet-size chunks by taking 35 many componenrs from the start of the
path as possible, flllding ls DiriD, and repeat 35 needed urd a DiriD and partial path is obained fa
accessing the file. This will cause more network traffiC, but allow for long patluwnes.

The session/volume level infonnation will be obtained from AppleShare deviee drivers. The
.AFPn drivers lltlintlin the relationship between an AppleSiwe volume and a Deviee Information
Block (DIB). The FST maintains the Volume Control Recad (VCR) for AppleShare volumes thal are
mounted.

If interrupts are disabled when the FST has to make an AppleTalk cali (i.e. an SPCommand or
SPWrite), an VO Erra' (error code $27) will be retumed instead of IRikingthe cali. ln most cases, this
erra will be propagated back to the user. Nae thal sorne calls may na require an AppleTalk callto
be 11t1de (such 35 GetMark) and will complete correctly with interrupts disabled; sorne ails (such 35

Head and Wrile wilh small request cou!U, or GetDirEriry) may or may na complete w~
interrupts disabled (depending on the currentlltlrk, any data thal is buffered, etc.). Il is strongly
encouraged thal file system ails should na be made with irierrupts disabled!

172 C H A P T E R 4 The AppleShare File System Translator (FST)

c a a a _a1Z&LJts t !!2 . il ç k 2 ##!$ Jk ..

Appendix A Result Codes

T H 1 S A P P E N D 1 X summarizes the result codes for calfs to the Apple

IIGS workstation. Table A-llis!S each code by number, with a brief

description. •

173

za:ae:au . liU(us uau se I&C.&L&Eii US.$2S22t lE ;::at 1 id 224

General implementation
When handling file system calls, the FST will itself create and send AFP paclrers to the server 35

opposed to trying to make the ails through PFI.
The only syntu checking thal will be performed on pathmmes is thal the span (maximum

length ri a filerwne component) is less Ibm or equal to 32 characters (the max for AFP}, GS/05
itself will enforce the re!lriction against colons and nulls in a patlmme component.

Nonnally, patluwnes sent to the server will be relative to the roà ri the volume (i.e. the
ancestor ID wiU be 2 • the volume directory). When a patlmme is too long to ft in a packet, the
FST will break il up into packet-size chunks by taking 35 many componenrs from the start of the
path as possible, flllding ls DiriD, and repeat 35 needed urd a DiriD and partial path is obained fa
accessing the file. This will cause more network traffiC, but allow for long patluwnes.

The session/volume level infonnation will be obtained from AppleShare deviee drivers. The
.AFPn drivers lltlintlin the relationship between an AppleSiwe volume and a Deviee Information
Block (DIB). The FST maintains the Volume Control Recad (VCR) for AppleShare volumes thal are
mounted.

If interrupts are disabled when the FST has to make an AppleTalk cali (i.e. an SPCommand or
SPWrite), an VO Erra' (error code $27) will be retumed instead of IRikingthe cali. ln most cases, this
erra will be propagated back to the user. Nae thal sorne calls may na require an AppleTalk callto
be 11t1de (such 35 GetMark) and will complete correctly with interrupts disabled; sorne ails (such 35

Head and Wrile wilh small request cou!U, or GetDirEriry) may or may na complete w~
interrupts disabled (depending on the currentlltlrk, any data thal is buffered, etc.). Il is strongly
encouraged thal file system ails should na be made with irierrupts disabled!

172 C H A P T E R 4 The AppleShare File System Translator (FST)

c a a a _a1Z&LJts t !!2 . il ç k 2 ##!$ Jk ..

Appendix A Result Codes

T H 1 S A P P E N D 1 X summarizes the result codes for calfs to the Apple

IIGS workstation. Table A-llis!S each code by number, with a brief

description. •

173

za:ae:au . liU(us uau se I&C.&L&Eii US.$2S22t lE ;::at 1 id 224

• Table A·l Descriplion of result codes

Code lkocrlptlon

Result Codes common to aJJ system caJJs

$OOXl No error
$0101

$0102

$0103

$0]1)1

$0105

$()]~

Resu/1 Codes for lAP Ca/Js (l02u)

$0al1

$0:.u!

$0<l:J3

$0W4

$0a)S

$();ni

$0ll7

$()~

$0a:J]

Result Codes for DDP Ca/Js (SOJ;a)

$0~1

$()~

$0:ffl

$031)1

$0m

$()~

Resuit Codes for NBP Ca/Js (S04xx)

m:J1

$04l2

$003

SO«l4

som
$0«))

$007

$0403

lnvalid comrnand

Heap/memory management error

No limer inslalled

Synd A.sync cali error

Too many times

T1mer Cancelled

No packet in buffer

End of buffer

lAP daia too large

Retry counl exhaus1ed

lllegallAP type

Duplicate lAP lype

Too many prOlocols

Type nOl found

Data los! in purge

Too many socke!S open

Socket nOl open

Socket already open

lnvalid socket type

DDP data loo large

No ~idge available

Too many names

Name already exii!S

Name not found

User's bulfer full

Wildcard nOl allowed

lnvalid namc format

1 ncorrect address

T oo many NBP processes

174 A PP EN D 1 X A Result Codes

• Table A·l Descriplion of result codes (conlinued)

Code

$04Œ

$040A

Result Codes for A1P Ca/Js (S05:a)

mn
$lf.iJ2

$0503

$0504

$0505

som
$0507

$(fflj

$05(1)

$050A

$0508

$050C

$0500

Result Codes for ZJP Calls (S06xx)

$00)]

SOOl2
$00)3

Result Codes for ASP Ca/Js (S07xx)

$(JiU]

mJ2

m>3
$(rn)4

$0705

m6
mil
ml3
mJ)

SOiUA

Result Codes for PAP Ca/Js (S08xx)

$œ:ll

lkocrlptlon

NBP aborted

NBP Param Block not Found

A TP data 100 large

Inval id A TP socket

A TP control block nOl fou nd

Too many active A TP calls

No release received

No response active

A TP send requesl aborted

A TP send request failed, retry exceeded

Async cali aborted, sockel was clœed

Too many ATP socke!s

Too many responses expected

Unable to open DDP sockel

A TP Send Response wa.s released

Network error

ZIP overtlow

ZIP nOl found

Nelwork error

Too many ASP calls

lnvalid reference number

Sizeernx

Buffer error

No response from server

Bad version number

Too many sessions

Server busy

Session closed

Too many sessions

Result codes

itiiU!ML

17S

• Table A·l Descriplion of result codes

Code lkocrlptlon

Result Codes common to aJJ system caJJs

$OOXl No error
$0101

$0102

$0103

$0]1)1

$0105

$()]~

Resu/1 Codes for lAP Ca/Js (l02u)

$0al1

$0:.u!

$0<l:J3

$0W4

$0a)S

$();ni

$0ll7

$()~

$0a:J]

Result Codes for DDP Ca/Js (SOJ;a)

$0~1

$()~

$0:ffl

$031)1

$0m

$()~

Resuit Codes for NBP Ca/Js (S04xx)

m:J1

$04l2

$003

SO«l4

som
$0«))

$007

$0403

lnvalid comrnand

Heap/memory management error

No limer inslalled

Synd A.sync cali error

Too many times

T1mer Cancelled

No packet in buffer

End of buffer

lAP daia too large

Retry counl exhaus1ed

lllegallAP type

Duplicate lAP lype

Too many prOlocols

Type nOl found

Data los! in purge

Too many socke!S open

Socket nOl open

Socket already open

lnvalid socket type

DDP data loo large

No ~idge available

Too many names

Name already exii!S

Name not found

User's bulfer full

Wildcard nOl allowed

lnvalid namc format

1 ncorrect address

T oo many NBP processes

174 A PP EN D 1 X A Result Codes

• Table A·l Descriplion of result codes (conlinued)

Code

$04Œ

$040A

Result Codes for A1P Ca/Js (S05:a)

mn
$lf.iJ2

$0503

$0504

$0505

som
$0507

$(fflj

$05(1)

$050A

$0508

$050C

$0500

Result Codes for ZJP Calls (S06xx)

$00)]

SOOl2
$00)3

Result Codes for ASP Ca/Js (S07xx)

$(JiU]

mJ2

m>3
$(rn)4

$0705

m6
mil
ml3
mJ)

SOiUA

Result Codes for PAP Ca/Js (S08xx)

$œ:ll

lkocrlptlon

NBP aborted

NBP Param Block not Found

A TP data 100 large

Inval id A TP socket

A TP control block nOl fou nd

Too many active A TP calls

No release received

No response active

A TP send requesl aborted

A TP send request failed, retry exceeded

Async cali aborted, sockel was clœed

Too many ATP socke!s

Too many responses expected

Unable to open DDP sockel

A TP Send Response wa.s released

Network error

ZIP overtlow

ZIP nOl found

Nelwork error

Too many ASP calls

lnvalid reference number

Sizeernx

Buffer error

No response from server

Bad version number

Too many sessions

Server busy

Session closed

Too many sessions

Result codes

itiiU!ML

17S

9t a

• Table A-1 Desaiplion of result codes (cortinued)

Code

œJZ
$(8)3

sœ>4

ml5
~

007
~

$(B)A

Resuls Codes for RPM Calls (109:a)

sœJB
Slml
$0'»2

ResuJI Codes for PFI Calls (SOAxx)

SOADI
SOA02
SOAD3
$OAD4
SOA05
SOAI)'j

SONJl
SOAœ
SOA09
SOAOA
SOAOB
SOAOC
SOAOD
SOAOE
SOADF
SOAIO
SOAII
SOA12
SOA13
SOA14
SOAI5
SOAI6
SOAI7
SOAI8
SOAI9

Delcrlpdoa

lnvalid reference number
Quantum error

Too many cornmand.~
Name not found

Session closed

Network error

Server nŒ responding
Buffer size error

PAPin use
lnvalid Hag byte
lnvalid lime values

Too many sessions
Unable 10 open session
No response from server
Login continue
1 nvalid name
lnvalid session reference number or unknown volume
Unable 10 open volume
Too many volumes mounted
Volume not rnounted
Unable to set creator
Buffer too small
Time Hag enur
Unable to set group
Directory not found
Access denied
Miscl:llaneouserror
Volume already mounled
Unable 10 gel creator and/or group
Already logged in to server
r~me errer
User not authorized
Parameter errer
Server going down
Bad UAM
Bad version number

176 APPENDIX A ResultCodes

Appendix B Be AppleShare Aware

AN 'APPLESHARE AWARE" prograrnisaprogramthatcanbe

successfully run from an AppleShare file server. Such a program should be able

10 load and save files on a file server, and be fully functional. Il should be able

10 handle error conditions in a reasonable manner (such as putting up a dialog

box instead of aashing the machine), and the user shoukl be able to quit from

the program and retum 10 a calling program (instead of having to reboot or

power off the machine).

This document describes sorne steps you can take as a developer to help make

your programs AppleShare aware. Il also describes sorne things you can do to

make your programs even more usable in an AppleShare environmelll (such as

being multi-launch), and how to take advantage of sorne AppleShare·specific

features. •

177

.:: t aapu iQZ§.#Zt a: as iL 4 41 SUlU .2 $1.2 23!S:SkW 2 ÇPC.\UU! 420 lU dlJ! 2 233§ il&.... k sss a ua u.:: ur ::a

9t a

• Table A-1 Desaiplion of result codes (cortinued)

Code

œJZ
$(8)3

sœ>4

ml5
~

007
~

$(B)A

Resuls Codes for RPM Calls (109:a)

sœJB
Slml
$0'»2

ResuJI Codes for PFI Calls (SOAxx)

SOADI
SOA02
SOAD3
$OAD4
SOA05
SOAI)'j

SONJl
SOAœ
SOA09
SOAOA
SOAOB
SOAOC
SOAOD
SOAOE
SOADF
SOAIO
SOAII
SOA12
SOA13
SOA14
SOAI5
SOAI6
SOAI7
SOAI8
SOAI9

Delcrlpdoa

lnvalid reference number
Quantum error

Too many cornmand.~
Name not found

Session closed

Network error

Server nŒ responding
Buffer size error

PAPin use
lnvalid Hag byte
lnvalid lime values

Too many sessions
Unable 10 open session
No response from server
Login continue
1 nvalid name
lnvalid session reference number or unknown volume
Unable 10 open volume
Too many volumes mounted
Volume not rnounted
Unable to set creator
Buffer too small
Time Hag enur
Unable to set group
Directory not found
Access denied
Miscl:llaneouserror
Volume already mounled
Unable 10 gel creator and/or group
Already logged in to server
r~me errer
User not authorized
Parameter errer
Server going down
Bad UAM
Bad version number

176 APPENDIX A ResultCodes

Appendix B Be AppleShare Aware

AN 'APPLESHARE AWARE" prograrnisaprogramthatcanbe

successfully run from an AppleShare file server. Such a program should be able

10 load and save files on a file server, and be fully functional. Il should be able

10 handle error conditions in a reasonable manner (such as putting up a dialog

box instead of aashing the machine), and the user shoukl be able to quit from

the program and retum 10 a calling program (instead of having to reboot or

power off the machine).

This document describes sorne steps you can take as a developer to help make

your programs AppleShare aware. Il also describes sorne things you can do to

make your programs even more usable in an AppleShare environmelll (such as

being multi-launch), and how to take advantage of sorne AppleShare·specific

features. •

177

.:: t aapu iQZ§.#Zt a: as iL 4 41 SUlU .2 $1.2 23!S:SkW 2 ÇPC.\UU! 420 lU dlJ! 2 233§ il&.... k sss a ua u.:: ur ::a

;u

Multi-launch applications

A multi-launch appliation is one thal can be launched (executed) by more than one computer at a
lime_ Mulli-lauoch applica!i011.1 are parucularly importait for the Apple Il family since most schools
use Apple ll's and il is common for an entire dass 10 use the same application at the same time.
Teachers are much more likely to use a mulli-launch application on a file server than 10 distribute
individual disk.s for each student.

The Apple Il operating system has tradilionally been a single user, single computer operating
system and file system. With the addition of AppleShare support 10 the Apple Il, many computers
(and many types of computers) can share the same files (on the file server) at the same lime. lt is
na hard to make a program multi-launch; il just takes sorne thinking and care about how you use
files.

The first thing to remember about multi-launch applications is that one copy of the application
will be shared by several computers. The system loader will lake care of opening and loading the fde
in a safe manner such thal severa! computers can load the application at the same tirne. As the
programmer, you must remember that you should na write to the application files (to save
configuration infonnation, for example) just like you shouldn't write in books borrowed from a
library -- other people have 10 use il, too.

System Software 5.0 has a new feature called the '0' prefiX. It is a system prefiX defined when
your applialion is launched. If the application was launched from an AppleShare volume, it will be
set to the name of the user's folder on the fde server. If the appliation was launched from a non­
AppleShare volume, il will be set 10 the name of the folder containing the application. If you use
the '@' prefiX as part of the pa!hname fOf saving configuration infOfmation, it will auiOmatically
go in a safe place, separate fOf each user. For example, if your program was called 'Fred', you might
use the pathname 'O:FredConfig' for SIOfing preferences and configUration data

Sharing open ftles

The dass 1 version of the Open cali lets you supply a parameter indialing the access you require 10
the open fde. Y ou can s'pecify read, write, read and wrile, Of 'as pennitted'. If you request read
permission (request_access•l), it will also deny cthers the abilily 10 write 10 the fde (so they can'!
change the data you are reading). If you request write or read and write (request_access •2 or 3,
respeaively), il will deny cthers the ability 10 open the file al ali (so they canna read data as you
are changing il, and so they canna overwrite your changes 10 the data). Realize that 'as pennitted'
(request_access-o) will fU'SI try 10 open the file for read and wrile (meaning no other computer can
open it}, if !hat fails, il will try read-only; if !hat faib, it will try write-only. Nae that there is no
way of knowing whal access you have 10 the fde, and you may na have readlwrite access. If your
program opens fdes, think about how il uses the conten!S of the fdes, and open them in an
appropriate manner.

178 A PP END 1 X B Be AppleShare Aware

FOf example, an adventure game might wantto load a map of rooms in a dungeon. ln this
example, the program real! y only needs to read the contents of the file, and not modify the file.
Since ali yœ need 10do is read the fde, you should open the file read-Qnly (request_access•l).lfyou
do this, and severa! computers run the program at the same lime, they will ail be able to open the
dungeon fde successfully (since a read-only open allows others to open the file read-Qrily). If you
use request_access•O, Of donl even supply the fJeld (il is optional), orily the first computer will be
able to open the file; the rest will get an error when trying to open the fde (access denied, S4E).

As a second example, consider a word processing program. It would wanl 10 read from the file
so !hat it can be displayed or printed. It would also want 10 wrile to the file so that it can be edited
and save the changes. ln this case, the program would open the file with request_access•3 (read and
write). Donl assume thal request_access•O will give you read and write access; other users who
have opened the file, or access privilege settings may restrict your access. Also, the file should be
kept open the entire time the file is being edited If you don'!, anaher computer cou Id open the fde
fOf editing after you have closed it. Then, the edited version thal is wrilten last will stay, and ali
other versions will be overwritten.

As a third example, considera file copying program Oike the Finder). lt would open the source
file read-ooly (so that other computers can copy il or use il). It would open the destination file
write-Qrily (request_access•Z) since it only needs to write 10 the file, and no other computer should
be allowed to read or write to the copy while il is being written. Nae thal opening the destination
fOf read and write could cause the open to fail if access privileges to the file prevent read access
(such as if the file is in a 'drop folder').

The class 0 version of the Open cali is compatible with the ProDOS 16 Open cali. Since it did nct
provide a mechanism 10 tell the operating system what access was needed to the file, it allows files
to be opened in a manner that is oct compldely safe in order that severa! computers could open the
same file at the same lime (!he first computer 10 open the file could poten!ially change il as cther
computers are trying to read from it). The dass 1 Open cali is safe, and allows you 10 specify the
access !hat you require to the file.

Ali authors are strongly encouraged to use the dass 1 version of the Open cali and 10 use a non­
zero value for the request_access faeld This way, files can be shared if possible, and if the open
succeeds, you will know !hat you have the access to the file that you need.

Interrupts
AppleTalk needs to have interrupts enabled 10 funaion correc!ly. When interrupts are off, packets
canna be received from or sen! 10 other computers. This will cause nerwOfk services to stop
funaioning. One particularly visible aspect of this problem is lœing a conneaion with a file server.
It only takes four consecutive missed packets for the WOfk.station 10 assume the server has shut
dawn or has become unreachable.

Do oct leave interrupts disabled any longer than ahlolutely necessary. Beware thal if interrupts
are disabled inside a loop, !hat the effea is mukiplied by the number of ilerations. Leaving
inlerrupts disabled for just a few microseconds could cause a packd 10 be missed. Obviously, there
are sorne times when interrupts must be disabled, such as in a critical timing loop for a disk driver.

1 nterru pts 179

JQU,

;u

Multi-launch applications

A multi-launch appliation is one thal can be launched (executed) by more than one computer at a
lime_ Mulli-lauoch applica!i011.1 are parucularly importait for the Apple Il family since most schools
use Apple ll's and il is common for an entire dass 10 use the same application at the same time.
Teachers are much more likely to use a mulli-launch application on a file server than 10 distribute
individual disk.s for each student.

The Apple Il operating system has tradilionally been a single user, single computer operating
system and file system. With the addition of AppleShare support 10 the Apple Il, many computers
(and many types of computers) can share the same files (on the file server) at the same lime. lt is
na hard to make a program multi-launch; il just takes sorne thinking and care about how you use
files.

The first thing to remember about multi-launch applications is that one copy of the application
will be shared by several computers. The system loader will lake care of opening and loading the fde
in a safe manner such thal severa! computers can load the application at the same tirne. As the
programmer, you must remember that you should na write to the application files (to save
configuration infonnation, for example) just like you shouldn't write in books borrowed from a
library -- other people have 10 use il, too.

System Software 5.0 has a new feature called the '0' prefiX. It is a system prefiX defined when
your applialion is launched. If the application was launched from an AppleShare volume, it will be
set to the name of the user's folder on the fde server. If the appliation was launched from a non­
AppleShare volume, il will be set 10 the name of the folder containing the application. If you use
the '@' prefiX as part of the pa!hname fOf saving configuration infOfmation, it will auiOmatically
go in a safe place, separate fOf each user. For example, if your program was called 'Fred', you might
use the pathname 'O:FredConfig' for SIOfing preferences and configUration data

Sharing open ftles

The dass 1 version of the Open cali lets you supply a parameter indialing the access you require 10
the open fde. Y ou can s'pecify read, write, read and wrile, Of 'as pennitted'. If you request read
permission (request_access•l), it will also deny cthers the abilily 10 write 10 the fde (so they can'!
change the data you are reading). If you request write or read and write (request_access •2 or 3,
respeaively), il will deny cthers the ability 10 open the file al ali (so they canna read data as you
are changing il, and so they canna overwrite your changes 10 the data). Realize that 'as pennitted'
(request_access-o) will fU'SI try 10 open the file for read and wrile (meaning no other computer can
open it}, if !hat fails, il will try read-only; if !hat faib, it will try write-only. Nae that there is no
way of knowing whal access you have 10 the fde, and you may na have readlwrite access. If your
program opens fdes, think about how il uses the conten!S of the fdes, and open them in an
appropriate manner.

178 A PP END 1 X B Be AppleShare Aware

FOf example, an adventure game might wantto load a map of rooms in a dungeon. ln this
example, the program real! y only needs to read the contents of the file, and not modify the file.
Since ali yœ need 10do is read the fde, you should open the file read-Qnly (request_access•l).lfyou
do this, and severa! computers run the program at the same lime, they will ail be able to open the
dungeon fde successfully (since a read-only open allows others to open the file read-Qrily). If you
use request_access•O, Of donl even supply the fJeld (il is optional), orily the first computer will be
able to open the file; the rest will get an error when trying to open the fde (access denied, S4E).

As a second example, consider a word processing program. It would wanl 10 read from the file
so !hat it can be displayed or printed. It would also want 10 wrile to the file so that it can be edited
and save the changes. ln this case, the program would open the file with request_access•3 (read and
write). Donl assume thal request_access•O will give you read and write access; other users who
have opened the file, or access privilege settings may restrict your access. Also, the file should be
kept open the entire time the file is being edited If you don'!, anaher computer cou Id open the fde
fOf editing after you have closed it. Then, the edited version thal is wrilten last will stay, and ali
other versions will be overwritten.

As a third example, considera file copying program Oike the Finder). lt would open the source
file read-ooly (so that other computers can copy il or use il). It would open the destination file
write-Qrily (request_access•Z) since it only needs to write 10 the file, and no other computer should
be allowed to read or write to the copy while il is being written. Nae thal opening the destination
fOf read and write could cause the open to fail if access privileges to the file prevent read access
(such as if the file is in a 'drop folder').

The class 0 version of the Open cali is compatible with the ProDOS 16 Open cali. Since it did nct
provide a mechanism 10 tell the operating system what access was needed to the file, it allows files
to be opened in a manner that is oct compldely safe in order that severa! computers could open the
same file at the same lime (!he first computer 10 open the file could poten!ially change il as cther
computers are trying to read from it). The dass 1 Open cali is safe, and allows you 10 specify the
access !hat you require to the file.

Ali authors are strongly encouraged to use the dass 1 version of the Open cali and 10 use a non­
zero value for the request_access faeld This way, files can be shared if possible, and if the open
succeeds, you will know !hat you have the access to the file that you need.

Interrupts
AppleTalk needs to have interrupts enabled 10 funaion correc!ly. When interrupts are off, packets
canna be received from or sen! 10 other computers. This will cause nerwOfk services to stop
funaioning. One particularly visible aspect of this problem is lœing a conneaion with a file server.
It only takes four consecutive missed packets for the WOfk.station 10 assume the server has shut
dawn or has become unreachable.

Do oct leave interrupts disabled any longer than ahlolutely necessary. Beware thal if interrupts
are disabled inside a loop, !hat the effea is mukiplied by the number of ilerations. Leaving
inlerrupts disabled for just a few microseconds could cause a packd 10 be missed. Obviously, there
are sorne times when interrupts must be disabled, such as in a critical timing loop for a disk driver.

1 nterru pts 179

JQU,

·---------------,
lnlerrupl$ must be on for an incoming packet to be reœived. Therefore, repeatedly tuming

interrupts on and off can be just as bad as leaving them off the enlire lime. For example, if a section
of code has interrupl$ disabled 8!% of the lime and enabled 20% of the time, you will miss
approximately 8!% of aD incoming packe!S.

Remember, interrupt hancllers Oike heartbeat tasks) execute with interruJJI$ off. Keep their run
lime as short as possible (such as setting a flag for a foreground task to check).

Do not make operating system calls with interrupts disabled. These calls could potentially take
long periods of lime to complete (for example, a large me read). AppleShare calls will not be able to
complete with interrupl$ disabled.

Multi-user applications

A mulli-user application is an application that lets several users access and possibly change sorne
common data at the sarne time. A multi-user application is usually mulli-launch. A typical example is
a database program that lets several users view and edit records at the sarne time. In this case, the
read/write protections are applied to individual records instead of the enlire file. Doing this requires
using sorne commands specifiC to AppleShare.

First, you would use the FST _SpedfiC cali SpecialüpenFork to open the me (forie). With this cali
you nct only provide the access you want to the file, but the access you will allow others to the
flle. For example, a database file migtt be opened for read/write, deny nothing. This way, ali users
can open the file and read and write to it at the sarne time. (buffering off).

To prevent one workstation from wriling to the file and corrupting informatioo being read or
written by another workstation, you use the fST _Specifie cali ByteRangeLock. ft takes an open fde
refnum, sorne flags, an offset into the fde, and a length. The Oength) number of bytes starting at
the given offset can be Iocked or unlocked. When a range of bytes is locked, no other workstation
can read or write those bytes; in fact, the same workstation using a different refnum canno1 access
those bytes. Ncte that you can Jock a range past the EOF of the flle, which is neœssary when
extending the size of the flle.

For example, you might want lo add a new record to a database. First, you would Jock the
header of the file and read il in to determine wbere to place the new record Then you would Jock
the range wbere the new record will be Iocated. Next, update the header to indicate the new record
has been allocated, write out the header, and unlock il. Now, write the new record to the range you
have Iocked, and unlock the range_

Remember that you should have locked any range of bytes that you are reading or writing, and
that you should re-read a range of b'ile$ if you have unlocked and locked il again. Note thal
buffering is disabled by default for the SpeciaiOpenFork caD to prevent inconsistencies between the
buffer's and the fde's contents (with the normal Open cali, this is not a problem sinœ no other
workstation i5 allowed access that could cause such an inconsistency).

180 A PP END 1 X B Be AppleShare Aware •

Appendix C Apple II AppleShare
Compatibillty Test Script

TH 1 s A p P E ND 1 X is a test script to be followed for ali applications

tested for AppleShare compatibility. This is a general feature test script

covering only those features common to most applications. The test script

tests compatibility only and not whether programs are AppleShare aware.

Ncte: The AppleShare Compalibility Test Script is under development and is

subject to revision. Please submit any suggestions or revisions for it to:

AppleShare Compatibility Test Script, MIS 75-3T, Apple Computer, Inc., 20525

Mariani Ave., Cupertino, CA 95014. •

181

w a e szqz;aao "' sa 1 li&!! 11 tt2. . .&4$AUUJl!.!. .!.., Xi QHUJIL! !2 1Qkttt.U23! lill.EE a s 2 ilS a 1 csas.sa ü&A

·---------------,
lnlerrupl$ must be on for an incoming packet to be reœived. Therefore, repeatedly tuming

interrupts on and off can be just as bad as leaving them off the enlire lime. For example, if a section
of code has interrupl$ disabled 8!% of the lime and enabled 20% of the time, you will miss
approximately 8!% of aD incoming packe!S.

Remember, interrupt hancllers Oike heartbeat tasks) execute with interruJJI$ off. Keep their run
lime as short as possible (such as setting a flag for a foreground task to check).

Do not make operating system calls with interrupts disabled. These calls could potentially take
long periods of lime to complete (for example, a large me read). AppleShare calls will not be able to
complete with interrupl$ disabled.

Multi-user applications

A mulli-user application is an application that lets several users access and possibly change sorne
common data at the sarne time. A multi-user application is usually mulli-launch. A typical example is
a database program that lets several users view and edit records at the sarne time. In this case, the
read/write protections are applied to individual records instead of the enlire file. Doing this requires
using sorne commands specifiC to AppleShare.

First, you would use the FST _SpedfiC cali SpecialüpenFork to open the me (forie). With this cali
you nct only provide the access you want to the file, but the access you will allow others to the
flle. For example, a database file migtt be opened for read/write, deny nothing. This way, ali users
can open the file and read and write to it at the sarne time. (buffering off).

To prevent one workstation from wriling to the file and corrupting informatioo being read or
written by another workstation, you use the fST _Specifie cali ByteRangeLock. ft takes an open fde
refnum, sorne flags, an offset into the fde, and a length. The Oength) number of bytes starting at
the given offset can be Iocked or unlocked. When a range of bytes is locked, no other workstation
can read or write those bytes; in fact, the same workstation using a different refnum canno1 access
those bytes. Ncte that you can Jock a range past the EOF of the flle, which is neœssary when
extending the size of the flle.

For example, you might want lo add a new record to a database. First, you would Jock the
header of the file and read il in to determine wbere to place the new record Then you would Jock
the range wbere the new record will be Iocated. Next, update the header to indicate the new record
has been allocated, write out the header, and unlock il. Now, write the new record to the range you
have Iocked, and unlock the range_

Remember that you should have locked any range of bytes that you are reading or writing, and
that you should re-read a range of b'ile$ if you have unlocked and locked il again. Note thal
buffering is disabled by default for the SpeciaiOpenFork caD to prevent inconsistencies between the
buffer's and the fde's contents (with the normal Open cali, this is not a problem sinœ no other
workstation i5 allowed access that could cause such an inconsistency).

180 A PP END 1 X B Be AppleShare Aware •

Appendix C Apple II AppleShare
Compatibillty Test Script

TH 1 s A p P E ND 1 X is a test script to be followed for ali applications

tested for AppleShare compatibility. This is a general feature test script

covering only those features common to most applications. The test script

tests compatibility only and not whether programs are AppleShare aware.

Ncte: The AppleShare Compalibility Test Script is under development and is

subject to revision. Please submit any suggestions or revisions for it to:

AppleShare Compatibility Test Script, MIS 75-3T, Apple Computer, Inc., 20525

Mariani Ave., Cupertino, CA 95014. •

181

w a e szqz;aao "' sa 1 li&!! 11 tt2. . .&4$AUUJl!.!. .!.., Xi QHUJIL! !2 1Qkttt.U23! lill.EE a s 2 ilS a 1 csas.sa ü&A

Introduction

There are ten phaseli oftesting: In.suJiation, Launching, General Operations, Füe Checkout, Server
Alens, Pritting, Macintosh/ Apple Il interactions, Concurrent Operations, Boundary Conditions, and
Playtime. Make sure that you know the application thorouglùy before you begin the test phases.

Complete the check lis! by placing a check in the appropriate section, or a N/ A if the test is Où

applicable to the application you are working oo. A 'NO' response indicates a bug or script error. If
your response indicates a bug, nae the bug number(s). If the script is in error or needs an addition
or modifiCation, write in 'Script Error' oo the BUGIIine. Add a reference number to your notatioo
and make a cooesponding n<Xe at the end ci the script ncting the error, your addition, or
modif~cation. The test script will be revised from your note, so please be specifie.

Repeat this test script for each configuration desaibed in the AppleShare Compatibility Spread
shed. Ail operations are to be done with an Apple Ile or IIGS unless <Xherwise noted.

Please use this script as a jumping off point Al the end of the script is an area to n<Xe your
own tests as well as suggestions for additional tests. lt is important to test beyond the script to
caver areas that may have been glanced over or te5ted only from one angle. When you do expand
beyond this document, however, please note ali tests and results and note whether you think thal
you tests should be made a regular part of this script

Preparation

Before you can begin testing the application(s), you must follow these steps:
1. lnsull the server CPU, one Macintosh workstation, two Apple Il workstations, preferably one

Apple Ile workstation and ooe Apple IIGS workstatioo, Peek stalion on network, one
laserWriter and lmageWriter.

2. Set up server for Apple Il usees following instruaions in the Admin guide.
3. Registcr at lost two usees in addition to the administrator. User 1 must have the primary

group of Student. User 2 must have the primary group ci Teacher.
4. Set up {code namel as foreground application oo server and capture a LaserWriter and an

lmageWriter (Il and LQ).

5. Set up user 1 so that default printcr is {code namel captured printer.
6. Set up the olher user 2 so that def:ault printer is a network printer.
7. install the Arislotle Menu Management and Menu display programs orto the server foUowing

the directiom in the Aristale manual.
8. In.stall Apple Il System Utilïies, BASIC S)'51em, the operating s)'51em, and the Finder (if

Apple IIGS woricstalion is being used in test) onto server.
9. Log onto server from workstation.

18Z A PP 1! ND 1 X C Apple Il AppleShare Compatibility Test Script

Test Script

DATE t------t

TESTER 1------i

APPLICATION 1------i

DEVELOPER 1------i

VERSION L.------'

D Check if test run bo<Xing off server

D Check if test run bo<Xing off ws disk

SERVER CPU 1-------1

SOFIWARE VERSION 1-------t

SYSTEM DISK 1-------t

HOPS FROM WORKSfATION 1-------t

ZONES FROM WORKSfATION L.------...J

WORKSfATION 1 CPU

SOFIWARE VERSION

....----------------,SYSTEM DISK

COMMENTS ROM VERSION 1------1

MEMORY 1------t

SOFIWARE VERSION (-:...-----1

SYSTEM DISK 1-------1

ROM VERSION 1-------t

MEMORY 1------1

{CODE NAMEI VERSION 1------1

S&P VERSION 1------1

SUPER SERJAL CARO SLOT 1------1

Test script

J!t@JQWU

183

CAS

Introduction

There are ten phaseli oftesting: In.suJiation, Launching, General Operations, Füe Checkout, Server
Alens, Pritting, Macintosh/ Apple Il interactions, Concurrent Operations, Boundary Conditions, and
Playtime. Make sure that you know the application thorouglùy before you begin the test phases.

Complete the check lis! by placing a check in the appropriate section, or a N/ A if the test is Où

applicable to the application you are working oo. A 'NO' response indicates a bug or script error. If
your response indicates a bug, nae the bug number(s). If the script is in error or needs an addition
or modifiCation, write in 'Script Error' oo the BUGIIine. Add a reference number to your notatioo
and make a cooesponding n<Xe at the end ci the script ncting the error, your addition, or
modif~cation. The test script will be revised from your note, so please be specifie.

Repeat this test script for each configuration desaibed in the AppleShare Compatibility Spread
shed. Ail operations are to be done with an Apple Ile or IIGS unless <Xherwise noted.

Please use this script as a jumping off point Al the end of the script is an area to n<Xe your
own tests as well as suggestions for additional tests. lt is important to test beyond the script to
caver areas that may have been glanced over or te5ted only from one angle. When you do expand
beyond this document, however, please note ali tests and results and note whether you think thal
you tests should be made a regular part of this script

Preparation

Before you can begin testing the application(s), you must follow these steps:
1. lnsull the server CPU, one Macintosh workstation, two Apple Il workstations, preferably one

Apple Ile workstation and ooe Apple IIGS workstatioo, Peek stalion on network, one
laserWriter and lmageWriter.

2. Set up server for Apple Il usees following instruaions in the Admin guide.
3. Registcr at lost two usees in addition to the administrator. User 1 must have the primary

group of Student. User 2 must have the primary group ci Teacher.
4. Set up {code namel as foreground application oo server and capture a LaserWriter and an

lmageWriter (Il and LQ).

5. Set up user 1 so that default printcr is {code namel captured printer.
6. Set up the olher user 2 so that def:ault printer is a network printer.
7. install the Arislotle Menu Management and Menu display programs orto the server foUowing

the directiom in the Aristale manual.
8. In.stall Apple Il System Utilïies, BASIC S)'51em, the operating s)'51em, and the Finder (if

Apple IIGS woricstalion is being used in test) onto server.
9. Log onto server from workstation.

18Z A PP 1! ND 1 X C Apple Il AppleShare Compatibility Test Script

Test Script

DATE t------t

TESTER 1------i

APPLICATION 1------i

DEVELOPER 1------i

VERSION L.------'

D Check if test run bo<Xing off server

D Check if test run bo<Xing off ws disk

SERVER CPU 1-------1

SOFIWARE VERSION 1-------t

SYSTEM DISK 1-------t

HOPS FROM WORKSfATION 1-------t

ZONES FROM WORKSfATION L.------...J

WORKSfATION 1 CPU

SOFIWARE VERSION

....----------------,SYSTEM DISK

COMMENTS ROM VERSION 1------1

MEMORY 1------t

SOFIWARE VERSION (-:...-----1

SYSTEM DISK 1-------1

ROM VERSION 1-------t

MEMORY 1------1

{CODE NAMEI VERSION 1------1

S&P VERSION 1------1

SUPER SERJAL CARO SLOT 1------1

Test script

J!t@JQWU

183

CAS

•• 4

l.lnstalJatloo

I.a. If the applialtion lw an install routine, attempt to install

applialtion oo a server volume.

Was auemp1 sucœssfull

If~ was 1101 sucœssjW, note et'I'Or message or

type of fat/ure.

l.b. If install W35 IKl sucœssful or if application does IKl have

an install routine, copy application to server volume.

Note utt/Uy used 10 ropy.

Was attempt sucœssfull (W'ere ail fl1es tnstal/ed thal were

~lObe?)

If~ was not sucœssfuJ, note et'I'Or message or

type of fat/ure.

If you annot place the application on a server volume at ali,
follow the script pladng ooly the documert oo lhe server. Set
up privileges to the application so !hat bah User 1 and User 2
have access to il

YF.S

BUGI

YF.S

BUGI

184 A P P E N 0 1 X C Apple Il AppleShare Compatibility Test Script

NO

NO

2. Launchlng

Section 2.a lhrough 2.c are to be tested either by bootlng cXJ a workstation disk and launching the program
from which the applialtion is to be launched, or by setting the program from which the application is to be
launched as the startup application and bootlng off the server. NOle which procedure is to be used in the
following test on page ooe of lhis script. For information oo how to set an application as a startup application,
refer to the [Code Narnel Admin Manual.

Note: exctpt where nrted, l does IKl matter which user you log oo as.

2.a l.aunchln& from ProDOS 8

Enter applicatioo's prefiX (path up to application).

Enter RETIJRN.

enter application's pathname (palh including application).

Enter REllJRN

Is launch sucœssfull

Note: if you have trouble launching, check amount of

RAM, or set server volume to hardcoded pathname.

2.b l.aunchln& from BASIC

Type 'PRI3'

Enter RETIJRN

YFS

BUGI

Type 'prefiX / 1 and enter application's prefiX (palh up to application)

Enter RETIJRN

Type 1- 1 and enter narne of application.

Enter REllJRN

Is launch sucœssfull

Note: if you have trouble launching, check amount of

RAM, a set server volume to hardcoded pathname.

YF.S

BUGI

NO

NO

Test script 185

a sz;q,p • e .; . u; & Li 2521 lt . J&22l!i!St;U(Z$2SO!&h%$(14 Z#P! !#iii J JUJQ.Jitttl 2 UWS ELZE a .L .1 a: $2 41$ QJU S.Q

•• 4

l.lnstalJatloo

I.a. If the applialtion lw an install routine, attempt to install

applialtion oo a server volume.

Was auemp1 sucœssfull

If~ was 1101 sucœssjW, note et'I'Or message or

type of fat/ure.

l.b. If install W35 IKl sucœssful or if application does IKl have

an install routine, copy application to server volume.

Note utt/Uy used 10 ropy.

Was attempt sucœssfull (W'ere ail fl1es tnstal/ed thal were

~lObe?)

If~ was not sucœssfuJ, note et'I'Or message or

type of fat/ure.

If you annot place the application on a server volume at ali,
follow the script pladng ooly the documert oo lhe server. Set
up privileges to the application so !hat bah User 1 and User 2
have access to il

YF.S

BUGI

YF.S

BUGI

184 A P P E N 0 1 X C Apple Il AppleShare Compatibility Test Script

NO

NO

2. Launchlng

Section 2.a lhrough 2.c are to be tested either by bootlng cXJ a workstation disk and launching the program
from which the applialtion is to be launched, or by setting the program from which the application is to be
launched as the startup application and bootlng off the server. NOle which procedure is to be used in the
following test on page ooe of lhis script. For information oo how to set an application as a startup application,
refer to the [Code Narnel Admin Manual.

Note: exctpt where nrted, l does IKl matter which user you log oo as.

2.a l.aunchln& from ProDOS 8

Enter applicatioo's prefiX (path up to application).

Enter RETIJRN.

enter application's pathname (palh including application).

Enter REllJRN

Is launch sucœssfull

Note: if you have trouble launching, check amount of

RAM, or set server volume to hardcoded pathname.

2.b l.aunchln& from BASIC

Type 'PRI3'

Enter RETIJRN

YFS

BUGI

Type 'prefiX / 1 and enter application's prefiX (palh up to application)

Enter RETIJRN

Type 1- 1 and enter narne of application.

Enter REllJRN

Is launch sucœssfull

Note: if you have trouble launching, check amount of

RAM, a set server volume to hardcoded pathname.

YF.S

BUGI

NO

NO

Test script 185

a sz;q,p • e .; . u; & Li 2521 lt . J&22l!i!St;U(Z$2SO!&h%$(14 Z#P! !#iii J JUJQ.Jitttl 2 UWS ELZE a .L .1 a: $2 41$ QJU S.Q

2.c 1 annchtog from UGS Flndcr

.. Run !his test only if testing IIGS worksution. Olherwise skip to 2 d

Double dick oo appliai1ion.

ls launch successjuJ?

m

Nole: if you have trouble launching, check amou nt of

RAM, or set server volume to hardcoded pathname.

BUGt

2.d. Launching from ArlstotJc Menu Dlsplay.

From server Admin program, set user's stanup application to Menu Display program.

NO

Log on to server as User 2 and launch Management Program. Follow instruaioos in Aristotle manual to create a
class providing User 1 with access to the application.

Boo! off server as User 1.

Select Menu Display

/s launch successfuJ?

NoU!: if you have trouble launching, check amou nt of

RAM.

m

BUG#

186 A PP f ND lX C Apple II AppleShare Compallbility Test Scripl

NO

3. General Operations

The following tests are geared toward !he 'typical' application that produœs data mes and indudes basic
editing features. If the application you are testing does not indude such features, rruuk N?A in m box and
write in more applicable tests. Applicable tests would indude only lhose !hat involve network activity.

Before beginning lhe following tests, launch application in any one of !he preceding ways. ln subsequent tests
of this product, launch using another method.

Note the method)OU are ustng llJ launch iJfrJIIcalion.

3.a Open application and create or open a large documert

Are operattons sucœssfuJ?

3.b Cut and paste within document or between documem

in different directories and volumes (bath on the server and

local)

local) .Are operatiOns sucœssfuJ?

3.c Save document to server.

Are operattons successfuJ?

3.d Saving under differem name

3.d.l Save as different name in same directory.

ls aJtempt sucœssftd?

3.d2 Save 10 a server dire!lory to which have complete

access.

ls saœ sucœssftd?

m NO

BUGt

m NO

BUG#

m NO

BUG"

m NO

BUGI

YES NO

BUG#

Test script 187

2.c 1 annchtog from UGS Flndcr

.. Run !his test only if testing IIGS worksution. Olherwise skip to 2 d

Double dick oo appliai1ion.

ls launch successjuJ?

m

Nole: if you have trouble launching, check amou nt of

RAM, or set server volume to hardcoded pathname.

BUGt

2.d. Launching from ArlstotJc Menu Dlsplay.

From server Admin program, set user's stanup application to Menu Display program.

NO

Log on to server as User 2 and launch Management Program. Follow instruaioos in Aristotle manual to create a
class providing User 1 with access to the application.

Boo! off server as User 1.

Select Menu Display

/s launch successfuJ?

NoU!: if you have trouble launching, check amou nt of

RAM.

m

BUG#

186 A PP f ND lX C Apple II AppleShare Compallbility Test Scripl

NO

3. General Operations

The following tests are geared toward !he 'typical' application that produœs data mes and indudes basic
editing features. If the application you are testing does not indude such features, rruuk N?A in m box and
write in more applicable tests. Applicable tests would indude only lhose !hat involve network activity.

Before beginning lhe following tests, launch application in any one of !he preceding ways. ln subsequent tests
of this product, launch using another method.

Note the method)OU are ustng llJ launch iJfrJIIcalion.

3.a Open application and create or open a large documert

Are operattons sucœssfuJ?

3.b Cut and paste within document or between documem

in different directories and volumes (bath on the server and

local)

local) .Are operatiOns sucœssfuJ?

3.c Save document to server.

Are operattons successfuJ?

3.d Saving under differem name

3.d.l Save as different name in same directory.

ls aJtempt sucœssftd?

3.d2 Save 10 a server dire!lory to which have complete

access.

ls saœ sucœssftd?

m NO

BUGt

m NO

BUG#

m NO

BUG"

m NO

BUGI

YES NO

BUG#

Test script 187

3.d.3 Save 10 a server direàory 10 which you have no

see files privilege.

ls save sucœssjid and/ar me:sstlRe approprlole?

3.d.4 Allemptto save to a server directory to which

yœ have no make changes privilege.

ls save prohlhlled and message appropr1a1e.1

le Save while quilting application

ls aJtempt sucœssfuJ?

YES

BUGt

YES

BUGt

YES

BUGt

3.f Place application in direàory to which you have no write access

Attempt 10 launch application.

ls launch sucœssful?

YES

BUGt

3.g Place document in a server direàory to which you have no write access

3. g.l Attempt 10 open document

ls save prohlhlled and message appropr1ale?

3.g.Z Altempt 10 save ch2nges 10 document

/s save prohtbUed and message O{Proprlale

3.g.3 dœe document

ls operalton sucœssfull

YES

BUGt

YES

BUGt

YES

BUG#

188 A PP EN D 1 X C Apple Il AppleShare Compaûbility Test Script

H a sa as: tt •m4&JL • • a u

NO

NO

NO

NO

NO

NO

NO

3.h Excessive or unnecessary server activity renders an

application inrompatible.

ls the appllcalton compalible tn thts regard?

ls the appllcalton runntng much slower than locaJJy?

3.i Enter any additional general operations tested and their resulrs:

Ooeration:

. $:. !. t i!i l UJ t a; LE ;;;:aL Lt! lb$.1$ S24 ,QXMI t 1 • Cl t.ttuts X J#t .

YES NO

BUGI

Re lt su :

Cl{ BUG

BUGt

Cl{ BUG

BUGt

Cl{ BUG

BUGt

Cl{ BUG

BUGt

Cl{ BUG

BUG'

Cl{ BUG

BUG#

Cl{ BUG

BUG'

Test script 189

t Li ca: tt x a . .: a

3.d.3 Save 10 a server direàory 10 which you have no

see files privilege.

ls save sucœssjid and/ar me:sstlRe approprlole?

3.d.4 Allemptto save to a server directory to which

yœ have no make changes privilege.

ls save prohlhlled and message appropr1a1e.1

le Save while quilting application

ls aJtempt sucœssfuJ?

YES

BUGt

YES

BUGt

YES

BUGt

3.f Place application in direàory to which you have no write access

Attempt 10 launch application.

ls launch sucœssful?

YES

BUGt

3.g Place document in a server direàory to which you have no write access

3. g.l Attempt 10 open document

ls save prohlhlled and message appropr1ale?

3.g.Z Altempt 10 save ch2nges 10 document

/s save prohtbUed and message O{Proprlale

3.g.3 dœe document

ls operalton sucœssfull

YES

BUGt

YES

BUGt

YES

BUG#

188 A PP EN D 1 X C Apple Il AppleShare Compaûbility Test Script

H a sa as: tt •m4&JL • • a u

NO

NO

NO

NO

NO

NO

NO

3.h Excessive or unnecessary server activity renders an

application inrompatible.

ls the appllcalton compalible tn thts regard?

ls the appllcalton runntng much slower than locaJJy?

3.i Enter any additional general operations tested and their resulrs:

Ooeration:

. $:. !. t i!i l UJ t a; LE ;;;:aL Lt! lb$.1$ S24 ,QXMI t 1 • Cl t.ttuts X J#t .

YES NO

BUGI

Re lt su :

Cl{ BUG

BUGt

Cl{ BUG

BUGt

Cl{ BUG

BUGt

Cl{ BUG

BUGt

Cl{ BUG

BUG'

Cl{ BUG

BUG#

Cl{ BUG

BUG'

Test script 189

t Li ca: tt x a . .: a

4. Flle Checkout

An application is said to have a fde-cl!eckout problem if il allows two or more users to open the same document
and save changes to it concurrently, such that they overwrite each other's changes. Acceptable solutions to his
problem indude nol allowing subsequent users to open the document, making subsequenl users change the
name of their versioo of the document, or allowing subsequent users to pen the document for read access only.

4.a Place document in a folder to which two users have full

access. From each work statioo launch a local copy of the
applicatioo.

4.a.l From work station one, open the document

From work station two, try to open the same

document.

If lhe document cam101 be opened, ts lhe message

lnformtng)W so clear?

YES

BUGI

If the document cann01 be opened frorn work station two, skip to section 5.

4.a.2 From work station one, rnake changes to the

document and then save. From work station two,

make changes to the document and auempt to save.

Am)W prwenled from savtng and tnsiiUC/ed 10 saœ

lhe flk the ftJe under anolher name?

4.a.3 From both work stations, rnake changes to the

document Save changes from work station one.

Quit form work station two.

Am)W prevenJed from savtng and tnsiiUC/ed 10 saœ

lhe ft1e under a1101her name!

YES

BUGI

YES

BUGI

190 A PP END 1 X C Apple Il AppleShace Cornpatibility Test Script

NO

NO

NO

If work station two is told to save the document under a differenl name, try the following:

4.a.4 From either work station, make sorne changes,

save, make more changes, and save once more.

Am)W aJJowed 10 saœ the tbcument wtthoul reœtvtng

a mess(/8e thallhe ftJe has been edtled by anolher user?

YES NO

BUG'

4.b Sorne applications that do not exhibit a fde-checkout problem will allow subsequenl users to open a
document if the first user has only read access to the document. ln such a case, subsequent users have only read
access to the document as weil.

Place the document in a direaory to which work

station one has only read access and to which work

station two has full access. Open the document from

work station one.

Attempt to open the document forrn work station

two.

If the auempt ts successfuJ, ts lhelll a cJear message

tnformtng lhe user thal they cannol IMRe changes 10
lhe document?

YES NO

BUGI

Test script 191

!&M§!J&Jœtet ==

4. Flle Checkout

An application is said to have a fde-cl!eckout problem if il allows two or more users to open the same document
and save changes to it concurrently, such that they overwrite each other's changes. Acceptable solutions to his
problem indude nol allowing subsequent users to open the document, making subsequenl users change the
name of their versioo of the document, or allowing subsequent users to pen the document for read access only.

4.a Place document in a folder to which two users have full

access. From each work statioo launch a local copy of the
applicatioo.

4.a.l From work station one, open the document

From work station two, try to open the same

document.

If lhe document cam101 be opened, ts lhe message

lnformtng)W so clear?

YES

BUGI

If the document cann01 be opened frorn work station two, skip to section 5.

4.a.2 From work station one, rnake changes to the

document and then save. From work station two,

make changes to the document and auempt to save.

Am)W prwenled from savtng and tnsiiUC/ed 10 saœ

lhe flk the ftJe under anolher name?

4.a.3 From both work stations, rnake changes to the

document Save changes from work station one.

Quit form work station two.

Am)W prevenJed from savtng and tnsiiUC/ed 10 saœ

lhe ft1e under a1101her name!

YES

BUGI

YES

BUGI

190 A PP END 1 X C Apple Il AppleShace Cornpatibility Test Script

NO

NO

NO

If work station two is told to save the document under a differenl name, try the following:

4.a.4 From either work station, make sorne changes,

save, make more changes, and save once more.

Am)W aJJowed 10 saœ the tbcument wtthoul reœtvtng

a mess(/8e thallhe ftJe has been edtled by anolher user?

YES NO

BUG'

4.b Sorne applications that do not exhibit a fde-checkout problem will allow subsequenl users to open a
document if the first user has only read access to the document. ln such a case, subsequent users have only read
access to the document as weil.

Place the document in a direaory to which work

station one has only read access and to which work

station two has full access. Open the document from

work station one.

Attempt to open the document forrn work station

two.

If the auempt ts successfuJ, ts lhelll a cJear message

tnformtng lhe user thal they cannol IMRe changes 10
lhe document?

YES NO

BUGI

Test script 191

!&M§!J&Jœtet ==

5. Sever Alerts

To test how application handle server alerts, initiale server shutdown, theo cancel severa! times during the
rollowing operations:

5.a !die OK? BUG? 1

5.b Loading application OK? BUG? 1

5.c Reading rrom server OK? BUG? 1

5d W riting to server OK? BUG? 1

5.e Cutting and pasting OK? BUG? 1

s.r Printing to a network printer OK? BUG? 1

5.g Printing to (Code Namel OK? BUG? 1

5.h Converting document OK? BUG? 1

5.i Sending data (communication programs) OK? BUG? 1

5.j Receiving data (communication programs) OK? BUG? ,
5k Closing document OK? BUG? 1

5J Quitting application OK? BUG? ,

192 A PP END 1 X C Apple Il AppleShare Cornpatibility Test Script

NA .a . Alli u;:;:;m; _.z;;; a :: Ci tx 4# Si Ç& J J.!i$!1.G.14MIMU k!Ohk Jfl!it Hi. !)Jii!SIW

6. Prlntlng

6.a Prin! to a network lmageWriter (Il & LQ)

Js aJiilrnPI sucœss[uJ?

6.b Prin! to a network LaserWriter (Il & NT)

Is aJtempt sucœssful?

6.c Log on as the same user rrom two work stations. Begin

printing from work station one and change printer selected in

Ch005er or Admin ronn the second work station.

Dœs prlnl job complete sucœssfu!Jy?

6.e Complete (ûxle Namel worksheet and attach to script.

YFS

BUGI

YFS

BUGI

BUGI

stt :a :a: u .& a 1 122 J a :s 11. ...

NO

NO

NO

Test script 193

:a 2 t i!U IUt t 1 4

5. Sever Alerts

To test how application handle server alerts, initiale server shutdown, theo cancel severa! times during the
rollowing operations:

5.a !die OK? BUG? 1

5.b Loading application OK? BUG? 1

5.c Reading rrom server OK? BUG? 1

5d W riting to server OK? BUG? 1

5.e Cutting and pasting OK? BUG? 1

s.r Printing to a network printer OK? BUG? 1

5.g Printing to (Code Namel OK? BUG? 1

5.h Converting document OK? BUG? 1

5.i Sending data (communication programs) OK? BUG? 1

5.j Receiving data (communication programs) OK? BUG? ,
5k Closing document OK? BUG? 1

5J Quitting application OK? BUG? ,

192 A PP END 1 X C Apple Il AppleShare Cornpatibility Test Script

NA .a . Alli u;:;:;m; _.z;;; a :: Ci tx 4# Si Ç& J J.!i$!1.G.14MIMU k!Ohk Jfl!it Hi. !)Jii!SIW

6. Prlntlng

6.a Prin! to a network lmageWriter (Il & LQ)

Js aJiilrnPI sucœss[uJ?

6.b Prin! to a network LaserWriter (Il & NT)

Is aJtempt sucœssful?

6.c Log on as the same user rrom two work stations. Begin

printing from work station one and change printer selected in

Ch005er or Admin ronn the second work station.

Dœs prlnl job complete sucœssfu!Jy?

6.e Complete (ûxle Namel worksheet and attach to script.

YFS

BUGI

YFS

BUGI

BUGI

stt :a :a: u .& a 1 122 J a :s 11. ...

NO

NO

NO

Test script 193

:a 2 t i!U IUt t 1 4

7. Macintosh/ Apple fi Interactions

7.a From a Macintosh workstation,

7.a 1 Read data last written to server by II

7.a2 Update data last written to server by Il

7a3 Delete data last written to server by Il

7. b from an Apple Il workstation,

7.b.1 Read dat.a last wriUen to server by the
Macintosh

7.b.2 Update data last written to server by
Macintosh

7 b.3 Del ete last data wriuen to server by
Macintosh

OK? BUG?

OK? BUG?

OK? BUG?

OK? BUG?

OK? BUG?

OK? BUG?

194 A PP f N D 1 X C Apple Il AppleShare Compatibility Test Script

,
,
,

,

,

,

• •

• •

7 .c Cooduct various oper:1tions with Macintosh/ Apple Il related
translators (such as those provided with Apple file Exchange)

Ooeration: Result:

()(BUG

BUGI

()(BUG

BUG1

()(BUG

BUGI

()(BUG

BUGI

()(BUG

BUGI

()(BUG

BUGI

()(BUG

BUGI

Test script 19S

7. Macintosh/ Apple fi Interactions

7.a From a Macintosh workstation,

7.a 1 Read data last written to server by II

7.a2 Update data last written to server by Il

7a3 Delete data last written to server by Il

7. b from an Apple Il workstation,

7.b.1 Read dat.a last wriUen to server by the
Macintosh

7.b.2 Update data last written to server by
Macintosh

7 b.3 Del ete last data wriuen to server by
Macintosh

OK? BUG?

OK? BUG?

OK? BUG?

OK? BUG?

OK? BUG?

OK? BUG?

194 A PP f N D 1 X C Apple Il AppleShare Compatibility Test Script

,
,
,

,

,

,

• •

• •

7 .c Cooduct various oper:1tions with Macintosh/ Apple Il related
translators (such as those provided with Apple file Exchange)

Ooeration: Result:

()(BUG

BUGI

()(BUG

BUG1

()(BUG

BUGI

()(BUG

BUGI

()(BUG

BUGI

()(BUG

BUGI

()(BUG

BUGI

Test script 19S

,,.

This phase of testing involves two different workstations trying to work with the same document or
application at the same time. Note that concurrent operations differ from simultaneous q>erations. Sorne of
the following operations are nct likely to occur concurrently. Use you judgment and first test those operations
that are m06t likely to occur. Test the remainder only if you have time. Mark the space wlh OK if yœ
encounter no problem with that step of the script Otherwise, fill the spa ce wlh the appropria te bug
number(s).

The vertical axis represents work station one, while the horizontal axis represents work station IWo.

8.a Test the following with an Apple Il and work station one and an Apple Il as work station two.

Work station one (WS 1) always work.s with the documert. Work station IWo (WS 2) always work.s from
ProDOS, System Util lies, or BASIC.

WSJ WS2 - mani ulatin~ document

OOPY RENAME DELITE DENY ACCESS MOYE

OPEN

SAVE

CUT&PASTE

CON VERT

PRINT

Q.OSE

OUIT

8.b Test the following with two Apple Ils

Work sutioo one (WS 1) al ways works with document Work 5Ution IWO (WS 2) always works fonn ProDOS,
System Utilities, or BASIC.

WSJ WS2 - mani IUiatin~ documert

COPY RENAME DELITE DENY ACŒSS MOYE

OPEN

SAVE

CUT&PASTE

CON VERT

196 A P PEN D 1 X C Apple Il AppleShare Ccxnpatibility Test Script

1= QUIT 1 1 1 1 1 1 1

B.c Test the following with a Macirtosh as work station one (WS 1) and an Apple Il as work station IWo (WS 2).

WS 1 always work.s with the documert, while WS 2 always works from ProDOS, System Utilities, or BASIC.

WSJ WS2 - mani ulatin~ document

OOPY RENAME DELITE DENY ACCESS MOYE

OPEN

SAVE

CUT&PASTE

CONVERT

PRINT

Q.OSE

1 QUIT

S.d Test the follawing with an Apple Il as work sution one (WS 1) and a Macintosh as work station two (WS 2)

WS 1 always work.s with the documert, while WS 2 al ways works from ProDOS, System Utilities, ex BASIC.

WSI WS2 - mani IUiatinl! document

mPY RENAME DELITE DENY ACCESS MOYE

OPEN

SAVE

CUT&PASTE

CONVERT

PRINT

Q.OSE

1 QUIT

Test script 197

ln&& à;:; .. XW:t .k.Wti.Jk!Ut..&M ,QUZ liLl$ 1 il &$!UA!il.UUCK t!U :SUM!ll!AMWJU JSU$.!'!I.I!IIIIIII!III!IIII•B!IIIIII!llll!lllll••••••lflllllrii!I•III!JIIIIIIIIIIIIIIIII!·······II!l!lllli!I.!IIII!IWJIIIIIIIIIII!II····

,,.

This phase of testing involves two different workstations trying to work with the same document or
application at the same time. Note that concurrent operations differ from simultaneous q>erations. Sorne of
the following operations are nct likely to occur concurrently. Use you judgment and first test those operations
that are m06t likely to occur. Test the remainder only if you have time. Mark the space wlh OK if yœ
encounter no problem with that step of the script Otherwise, fill the spa ce wlh the appropria te bug
number(s).

The vertical axis represents work station one, while the horizontal axis represents work station IWo.

8.a Test the following with an Apple Il and work station one and an Apple Il as work station two.

Work station one (WS 1) always work.s with the documert. Work station IWo (WS 2) always work.s from
ProDOS, System Util lies, or BASIC.

WSJ WS2 - mani ulatin~ document

OOPY RENAME DELITE DENY ACCESS MOYE

OPEN

SAVE

CUT&PASTE

CON VERT

PRINT

Q.OSE

OUIT

8.b Test the following with two Apple Ils

Work sutioo one (WS 1) al ways works with document Work 5Ution IWO (WS 2) always works fonn ProDOS,
System Utilities, or BASIC.

WSJ WS2 - mani IUiatin~ documert

COPY RENAME DELITE DENY ACŒSS MOYE

OPEN

SAVE

CUT&PASTE

CON VERT

196 A P PEN D 1 X C Apple Il AppleShare Ccxnpatibility Test Script

1= QUIT 1 1 1 1 1 1 1

B.c Test the following with a Macirtosh as work station one (WS 1) and an Apple Il as work station IWo (WS 2).

WS 1 always work.s with the documert, while WS 2 always works from ProDOS, System Utilities, or BASIC.

WSJ WS2 - mani ulatin~ document

OOPY RENAME DELITE DENY ACCESS MOYE

OPEN

SAVE

CUT&PASTE

CONVERT

PRINT

Q.OSE

1 QUIT

S.d Test the follawing with an Apple Il as work sution one (WS 1) and a Macintosh as work station two (WS 2)

WS 1 always work.s with the documert, while WS 2 al ways works from ProDOS, System Utilities, ex BASIC.

WSI WS2 - mani IUiatinl! document

mPY RENAME DELITE DENY ACCESS MOYE

OPEN

SAVE

CUT&PASTE

CONVERT

PRINT

Q.OSE

1 QUIT

Test script 197

ln&& à;:; .. XW:t .k.Wti.Jk!Ut..&M ,QUZ liLl$ 1 il &$!UA!il.UUCK t!U :SUM!ll!AMWJU JSU$.!'!I.I!IIIIIII!III!IIII•B!IIIIII!llll!lllll••••••lflllllrii!I•III!JIIIIIIIIIIIIIIIII!·······II!l!lllli!I.!IIII!IWJIIIIIIIIIII!II····

9. Boundary Conditions

9.a Perform the foUowing operations running with as little memOI'{ as DC6Sible:

9.a.l Load application OK? BUG?

9.a2 Read from disk OK? BUG?

9.a.3 Write to disk OK? BUG?

9.a4 Cut and Paste OK? BUG?

9.a5 Print to network printer OK? BUG?

9.a.6 Print to lûxle Namel OK? BUG?

9.a.7 Convert document OK? BUG?

9.a8 aose document OK? BUG?

9.a.9 Quit application OK? BUG?

Wha! is the !east memory with which the application can run?

9.b. Perform the foUowing operations with a full server volume

9.b.l Load application OK? BUG?

9.b2 Read from disk OK? BUG?

9b3 Write to disk OK? BUG?

9.b.4 Cut and Pa.ste OK? BUG?

9.b.S Print to network printer OK? BUG?

9.b.6 Print to lûxle Namel OK? BUG?

9b.7 Convert document OK? BUG?

9b8 aose document OK? BUG'

9b9 Qu il appl ica1ion OK? BUG?

198 A P P EN D 1 X C Apple Il Apple5hare CompatibUity Test Script

,
,
,
,
,
,
,
,
,

,
, • ,
,
,
,
,
,
,

•

10. PJaytlme

Sorne applications may not conform weil to the operations in this test script. This is your chance to exercise
those aspects ri the application thal you fee! were not tested enough.

As time allows, play with the application, conducting operations nct included in this test script Sorne ideas to
consider are: More exotic operations, Applicaûon-specifJC operations, Concurrent operations involving more than
two work stations, simuluneous (as opposed to concurrent) operations

Operation: Result:

ac BUG

BUG1

ac BUG

BUGI

ac BUG

BUGI

ac BUG

BUGI

ac BUG

BUG#

ac BUG

BUGI

ac BUG

BUG#

Test script 199

téJWYZ

9. Boundary Conditions

9.a Perform the foUowing operations running with as little memOI'{ as DC6Sible:

9.a.l Load application OK? BUG?

9.a2 Read from disk OK? BUG?

9.a.3 Write to disk OK? BUG?

9.a4 Cut and Paste OK? BUG?

9.a5 Print to network printer OK? BUG?

9.a.6 Print to lûxle Namel OK? BUG?

9.a.7 Convert document OK? BUG?

9.a8 aose document OK? BUG?

9.a.9 Quit application OK? BUG?

Wha! is the !east memory with which the application can run?

9.b. Perform the foUowing operations with a full server volume

9.b.l Load application OK? BUG?

9.b2 Read from disk OK? BUG?

9b3 Write to disk OK? BUG?

9.b.4 Cut and Pa.ste OK? BUG?

9.b.S Print to network printer OK? BUG?

9.b.6 Print to lûxle Namel OK? BUG?

9b.7 Convert document OK? BUG?

9b8 aose document OK? BUG'

9b9 Qu il appl ica1ion OK? BUG?

198 A P P EN D 1 X C Apple Il Apple5hare CompatibUity Test Script

,
,
,
,
,
,
,
,
,

,
, • ,
,
,
,
,
,
,

•

10. PJaytlme

Sorne applications may not conform weil to the operations in this test script. This is your chance to exercise
those aspects ri the application thal you fee! were not tested enough.

As time allows, play with the application, conducting operations nct included in this test script Sorne ideas to
consider are: More exotic operations, Applicaûon-specifJC operations, Concurrent operations involving more than
two work stations, simuluneous (as opposed to concurrent) operations

Operation: Result:

ac BUG

BUG1

ac BUG

BUGI

ac BUG

BUGI

ac BUG

BUGI

ac BUG

BUG#

ac BUG

BUGI

ac BUG

BUG#

Test script 199

téJWYZ

• Test should be made whether program bas, as il should not do, written 10 ellier of ls forks
(code, daia). This may be done by duplicating the program me, l'urming the tests, then running
a fde compare program as an addilionaltest Before the fde compare is run, an additlonal
reconfiguration ri the program from its reconfiguration menu(s) should be one of the test

stops. Program recoofiguration is an operation particularly likdy 10 involve the program wriling
to ilself.

• Afler ins1211ation application files, files installed should be noted. At the end of the test, the
dircctory should be compared to idenlify any prog13111 generated tempor2ry me names. Any
fo:ed temporary file names may indicate an incompatibility.

• Test should indude an evaluation of extent of the extent of program segmentation, if any.

• Try 10 swt up over the network from two Apple Ils at the same lime. Launch the same
appliation form bolh work stations at the same lime. Do this when logged on as different
users, and the same user.

• Concurrency and boundary tests should be done when starting up over the network, if
pœsible.

• Can a me be deleted while yœ have il open (or being ediled)? If so, you have a file checkout
problem.

• Does the application reasonably handle the server shutting down (see operatiom in Server
Alerts section)?

ZOO A P P EN D 1 X C Apple Il AppleShare Compatibüity Test Script

	Contents
	Preface
	1 - Application Development
	2 - Programming Guidelines
	3 - Calls to AppleTalk Protocols
	4 - The AppleShare File System Translator (FST)
	Appendix A - Result Codes
	Appendix B - Be AppleShare Aware
	Appendix C - Apple II AppleShare Compatibility Test Script

