' TBEGINNERS
GUIDE
FOR THE

UCSD PASCAL

~ byKenneth L. Bowles

BEGINNERS
GUIDE
FOR THE
UCSD PASCAL
SYSTEM

byKenneth L. Bowles

Subsidiary of McGraw-Hill
BYTE BOOKS 70 Main Street Peterborough, NH 03458

The author of the programs provided with this book have carefully
reviewed them to ensure their performance in accordance with the
specifications described in the book. Neither the author nor BYTE
Publications Inc, however, make any warranties whatever concerning
the programs, and assume no responsibility or liability of any kind for
errors in the programs or for the consequences of any such errors. The
programs are the sole property of the authors and have been registered
with the United States Copyright Office.

Copyright© 1980 Kenneth Bowles. All Rights Reserved. No part of this
book may be translated or reproduced in any form without the prior
written consent of Kenneth Bowles.

Library of Congress Cataloging in Publications Data

Bowles, Kenneth L. 1929-
Beginner’s manual for the UCSD Pascal Software System.

Includes index.
1. UCSD Pascal Software System (Computer system) 2. Pascal
(Computer program language) 1. Title.

QA76.6.B69 1980 001.6'425 79-23467
ISBN 0-07-006745-7
10 9 8 7 6

NOTE: “UCSD Pascal” is a trademark of the Regents of the University of
California. Use thereof in conjunction with any goods or services in authorized
by specific license only and any unauthorized use thereof is contrary to the
laws of the State of California.

Table of Contents

T OVeIVIEW .ot i ittt ettt et et 1
2 Orientation for Beginnersocoiieinn. 7
3 Orientation for Experienced Programmers 21
4 ScreenEditor i 37
5 FileManager (Filer)o, 65
6 Pascal Compiler - Coping with Program Errors 91
7 Quizzes for Pascal Self Study 111
8 Programming to Use Disk Files 121
9 Using Libraries of Specialized Routines (Units) 155

Appendices

A Instructions for Using UCSD Pascal System
on several popular microcomputers with integrated video
display and keyboardl 165

ATAPPLIL . .ot 165

A2RadioShackTRS80 167
A3Terak 8510a oo 169
B Instructions for Using Specific Video Display Terminals .. 171
Bl ADMB-A 171
B2 Hazeltine1500 173
B3 SorocIQ120 175
B4 Adapting the UCSD Pascal System
toYour VideoDisplay 177
C Summary of UCSD Pascal System Commands 179
ClScreenEditor 179
C2FileManager 183
C3 OperatingSystem 185
D Useful Information 187
D1 Compiler Syntax Error Messages 187
D2 Execution ErrorMessages 191
D3 Input/Output Error Messages 193
D4 Differences between UCSD Pascal
and StandardPascal 195
Elndex 199

1T Overview

1.1 Who

This book is intended to be used as an introduction and reference manual for
people just beginning to use the University of California, San Diego (UCSD)
Pascal Software System. The book is designed to be used by at least the
following three groups of people:

@ College students, high school students, and others who have never
before used a computer.

® Experienced programmers who have not used UCSD Pascal, par-
ticularly those who have been using BASIC and those not yet familiar
with interactive, video display-based, programming systems.

® Nonprogrammers who intend to use packaged programs designed to
run within the UCSD Pascal System.

Some portions of the book are designed for use by only one or two of these
groups and can readily be scanned or ignored by others.

Our intent is to make it possible and facile to learn to use the UCSD Pascal
System by working just with the book and a small computer. You may find it
useful to obtain assistance from someone already familiar with the UCSD
Pascal System, but that help should not be necessary.

2 Overview

1.2 What

If you are a beginner, and do not recognize the terms used in this section,
you may wish to skim over the rest of this overview chapter and turn directly
to chapter 2, Orientation For Beginners.

The UCSD Pascal Software System is a complete, general-purpose software
package for users of microcomputers and minicomputers. Some of the prin-
cipal features of the UCSD Pascal System are as follows:

® In general, programs written to run on the UCSD Pascal System are
portable (ie: they may be run on many different small computers
without being altered). The UCSD Pascal System is much more por-
table than most large software systems. At this writing it is being used
on machines based on the following processors and systems: the
PDP11, 8080; 8085; Z80; 6502; 6800; 9900; AM-100; the Western
Digital Microengine; and the General Automation GA16 family of
minicomputers.

® The UCSD Pascal System is designed to make it easy to develop and
use programs on a small, single-user computer with a television or
similar display screen and with one or more floppy-disk drives for
secondary storage. If you intend to use the UCSD Pascal System to
develop programs, you will need at least 48 K bytes of programmable
memory. With the volume marketing of 64 K bit memory devices ex-
pected to start in 1979, the size of memory required to run the UCSD
Pascal System should cease to be a major cost consideration for most
users.

® Though designed for program development, the UCSD Pascal System
can also be used for many special-purpose applications. Examples in-
clude: word processing; computer-assisted instruction (CAI); interac-
tive business-data processing; communications; process control; and
scientific analysis. When the computer is not to be used for program
development, it is often possible to operate the UCSD Pascal System
with much less memory space than the 48 K to 64 K bytes needed to
develop programs.

® While designed primarily for use with programs written in the Pascal
programming language, the UCSD Pascal System also allows work
with other languages.

This book concentrates on features of the UCSD Pascal System intended for
all users including beginners and students. The many advanced features of the
UCSD Pascal System are described in a separate reference manual written for
experienced programmers.

Pascal 3

1.3 Pascal

Pascal is a powerful, general-purpose programming language designed by
Professor Niklaus Wirth of the Technical University in Zurich Switzerland.
The language is named in honor of Blaise Pascal, a famous seventeenth cen-
tury mathematician. However, mathematics is by no means the only field in
which the Pascal language is found to be useful.

The standard Pascal language, consisting of Wirth’s definition published in
1971 and a few corrections made since then, was originally introduced to help
in teaching a systematic approach to good program design. You may have
heard of a method known as structured programming, with which profes-
sional programmers are able to write large and complex programs in a manner
that avoids many of the errors that plague programming work in older
languages like BASIC, COBOL, or FORTRAN. Among the practical and
usable programming languages currently in widespread use, Pascal is the best
statement of what structured programming is all about.

Pascal is coming into widespread use for writing complex programs in most
fields where computers are applied to practical problems. For these applica-
tions, the standard Pascal language is often extended to provide specialized
facilities not present in Wirth's original definition. There is no widespread
agreement on what extensions may be needed for practical applications of
Pascal. Instead there is a growing feeling that the number of extensions to the
language should be kept to a minimum in the interests of greater program por-
tability between dissimilar machines.

Virtually all of the UCSD Pascal System is programmed using a slightly ex-
tended version of the Pascal language that we will call UCSD Pascal in this
book. UCSD Pascal includes most of the standard language, and, up to the
limits of small computers, it is faithful to the standard language. Once a forth-
coming international standard for the language is approved by the Interna-
tional Standards Organization (ISO), the UCSD Pascal will be revised to
eliminate as many of the remaining differences as practical. The extensions
beyond the standard language in UCSD Pascal have been included to facilitate
teaching, by the use of nonmathematics-oriented problem examples, and to
facilitate writing a variety of large interactive programs on small computers. A
close approximation to the standard Pascal language definition may be found
in Pascal User Manual and Report, by K Jensen and N Wirth (Springer Verlag,
New York NY, 1975).

UCSD Pascal is relatively easy for beginners to learn, as proven by the
thousands of students who have completed an introductory problem-solving
and computer-programming course at UCSD. It is probably true that begin-
ners can learn to write very small programs slightly faster using BASIC than
they can using Pascal. As soon as the beginner reaches the stage of needing
more than a very few GO TO statements, learning to solve the same problem
using Pascal becomes easier. Thereafter, the larger the program, the greater
the advantage will be to use Pascal instead of BASIC. Most people who are
familiar with both Pascal and BASIC agree that any extra effort to learn Pascal
is repaid as soon as they try to write a large program.

4 Overview

1.4 How to Use this Book

This book is designed to be used both as an orientation guide for people who
are first learning to use the UCSD Pascal System and as a reference manual for
the same people once they are familiarized with the UCSD Pascal System. As a
reference manual, this book contains enough information to assist in a wide
variety of advanced applications of the UCSD Pascal System. However, ad-
vanced users with a serious interest should probably supplement this book
with the detailed reference manual (available from most distributors of the
UCSD Pascal System software and from some computer stores).

If you have not used computers before, or if your experience is with an old
system such as those using punched cards for input, you probably should start
reading this book in Chapter 2, Orientation for Beginners. If you have written
programs before using some language other than Pascal, and if you have used
an interactive computer facility, then you probably can start in Chapter 3,
Orientation for Experienced Programmers. To avoid any more duplication of
text than necessary, Chapter 3, Orientation For Experienced Programmers, is
also intended to be read by beginners who have already read Chapter 2.

Whether you are a beginner or an experienced programmer, you will find
this book easier to use if you have ready access to a microcomputer on which
you can work with several sample disk files designed specifically for use with
this book. These include the program ORIENTER, which may be supplied to
you with the name SYSTEM.STARTUP, and the text files EDITDEMO, and
COMPDEMO. Since all versions of the UCSD Pascal System have not been
distributed initially with these files, you should check with your supplier to
make sure that these files are included with your copy of the system software
on diskette.

Whether you are learning to program using Pascal or just learning to use the
UCSD Pascal System, you should concentrate on the earlier portions of
Chapter 4, Screen Editor, and Chapter 5, File Manager. These are the portions
of the UCSD Pascal System with which you will be spending most of your
time. The screen editor and the file manager are major tools for facilitating
your use of the UCSD Pascal System. Both chapters present the most frequent-
ly used commands in an order designed for beginners to quickly make prac-
tical use of the UCSD Pascal System. Since this order does not lend itself to
convenient reference use of the book, summaries of the commands are also
given in Appendix C.

If you are learning to program the computer by using Pascal, you should be
using the Pascal self-study quiz programs. These quiz programs are designed
to be used in association with the textbook Microcomputer Problem-Solving
Using Pascal, by K L Bowles, (Springer Verlag, New York NY, 1977). There is
a quiz program associated with each chapter of that textbook. If you are using
the textbook in a college or school course, you will probably be asked to show
mastery of the material from each chapter by passing its quiz. Even if you are
studying Pascal without involvement in an organized course of instruction, I
strongly recommend that you use the quiz programs until you master the
material they present. Time spent to understand the material of the earlier

How to use this Book 5
chapters of the textbook will help you save time to work through the later
chapters. The textbook lacks instructions on how to use the UCSD Pascal
System or the quiz programs. Chapter 7 of this guide gives general instructions
on how to use the quizzes. Chapter 8, Programming to Use Disk Files, of this
guide describes how to write Pascal programs which use disk files under the
UCSD Pascal System, a subject not treated in Microcomputer Problem-
Solving Using Pascal cited above.

The UCSD Pascal System provides a method of augmenting the Pascal
language for specialized programming applications using separately prepared
libraries of routines. As this book was being completed for publication, the
facilities for working with these libraries had only recently been completed. It
is expected that programmers will soon be able to choose from a rich and ex-
panding repertoire of library routines to simplify programming for many com-
mon applications. Chapter 9, Using Libaries of Specialized Routines (Units),
describes how to use library routines in the UCSD Pascal System. Directions
on how to use specific libraries of routines will generally be packaged along
with the disk or any other medium used to distribute the routines.

Though the UCSD Pascal System is designed to be used on a wide variety of
small computers, extensive use is made of several common control keys that
are not always found on the keyboards of low-cost microcomputers. In this
book, I cope with this problem by asking you to make believe that these
special keys actually exist in your keyboard. The effects of these keys can
usually be simulated using combinations of other keys. Instructions for using
the real keys to get results as if you had the imaginary special keys are given in
Appendix A for small computers and in Appendix B for video-display ter-
minals. If the machine you are using is not mentioned in Appendix A or B, the
equivalent reference information should be available from your UCSD Pascal
System supplier.

2 Orientation for
Beginners

2.1 Goals for this Chapter

® Familiarize yourself with the computer you plan to use, with its
keyboard and with the method of inserting your floppy disk to get the
UCSD Pascal System started (called bootloading).

® Learn what it means to use a command directing the computer to do
something.

® Distinguish between single-character commands and commands that
ask for data.

® Distinguish between a series of commands and a program, the latter
being a series of commands stored in the computer’s memory in such a
way that those commands can be repeated upon request.

® Learn how to translate the important, abstract control commands
used throughout this book into actions you need to perform using
your computer to implement those commands.

2.2 Getting Started

[Note: This chapter is designed to be read when you have a computer
next to you and can use the computer immediately to try out the steps
described in the book. To do this exactly as described in the book, a copy of
the file ORIENTER.CODE stored as SYSTEM.STARTUP must be on the

disk with which you bootload your computer. If your computer does not

[, 4

8 Orientation For Beginners

react as described in this chapter, check with your supplier of the UCSD

Pascal System (eg: computer store, instructor, etc.) to make sure that you

have the files designed for use with this book.]

If you are like most people when they first start to use a computer, you
probably do not know what to expect at this point. If someone who has
already used the UCSD Pascal System is available to help, a demonstration
would be beneficial to cover the material of this chapter and the next. Lacking
someone to demonstrate in person, I will give you step-by-step instructions so
that you can become familiar with the system on your own.

An unfortunate problem that we have to confront from the beginning is that
not all small computers are identical, which makes getting started more con-
fusing to a beginner. Appendix A and Appendix B contain information on
several computers and terminals to help you use UCSD Pascal in spite of dif-
ferences among small computers. Read through the rest of this section com-
pletely before referring to Appendix A or B.

First, I assume that your computer has been turned on and is functioning
correctly. Carefully insert your diskette (the one containing files associated
with this book) into the lowest numbered disk drive connected to your com-
puter. On a machine with only one drive, there is no confusion about which
drive has the lowest number. On a machine with two or more drives, they are
generally numbered starting at 0 (ie: 0, 1, etc.). See Appendix A for specific in-
structions on how to identify which drive has the lowest number, and how to
insert your diskette into that drive.

[CAUTION: The floppy disk can be damaged or ruined if not handled
carefully! Dust picked up off a table through one of the slots in the protec-
tive jacket can often ruin a disk. The disk can be ruined if your write on it
with a ball-point pen; if you fold the disk or jam it under the cover of a
three-ring notebook; if you leave fingerprints on the disk itself by holding
one of the slots in the protective jacket; or if you toss it around like a
Frisbee. All these precautions may suggest that you should have second
thoughts about getting involved with computers in the first place. Actually,
it takes just a little effort to take care of your diskettes. When you do, they
can last without damage through years of frequent use.

Both the disk and the computer might be damaged if you insert the disk
into the disk drive in the wrong direction. Out of the eight different ways in
which the disk might be inserted into the drive only one is correct. The pro-
tective envelope, within which the actual disk is stored, is generally marked
on one side with a printed label. With most computers, the correct orienta-
tion of the disk is the one achieved by holding the diskette with your right
thumb on the printed label, or at least holding the same side of the diskette
envelope.

You hold the diskette with the labelled side nearest to you, (ie: so that the
printing appears upside down to your eyes). On some machines, the disk is
inserted in a horizontal position, on others it is vertical. See Appendix A, or
other specific instructions for your machine, regarding this point.]

Getting Started 9

Once the diskette is safely in the disk drive, and the door closed, you may
have to take some additional action to get the UCSD Pascal System started. In
the jargon of the computer industry, the process of getting the system started is
called bootstrap loading or simply bootloading. When you bootload, essen-
tial parts of the UCSD Pascal System are copied from the diskette into the ac-
tive memory of the computer’s central processor unit. On some machines, you
can begin bootloading automatically by closing the door of the disk drive after
you insert the diskette. On others, you need to press a separate switch or but-
ton to initiate the bootloading process. It may be necessary to press one or
more keys on the keyboard in some specified sequence to initiate bootloading
on certain machines. Again, see Appendix A or other specific instructions for
details regarding your machine.

If the bootloading process is successful, the result will be one of the follow-
ing:

@ an announcement on the display screen that the UCSD Pascal System
is running

® a displayed figure very similar to display 2.1 shown in the following
section of this chapter

What if you get neither result? On some machines, you can detect whether
bootloading is proceeding correctly by listening to clicking noises from the
disk drive. On others, an indicator light may go on while information is being
transferred from the disk into the computer’s memory. On still others, you
may get no detectable indication that the transfer is going properly and you
will have to wait 15 seconds or more to determine whether the transfer is pro-
perly completed. I dwell on this point mainly because occasionally problems
arise with computers. In most cases, you should experience no problem in
bootloading the UCSD Pascal System for the first time. If something does go
wrong, it is advisable to go back through the steps that got you to this point,
to make sure that you have not forgotten something or to ask for help from
someone acquainted with the use of the UCSD Pascal System.

2.3 Simple Commands

When you first unpack the UCSD Pascal System disk associated with your
copy of the system, it may already be arranged to produce display 2.1 as the
result of bootloading.

If, instead, you get a display with a message similar to the following in the
middle of your screen:

WELCOME APPLEO, TO
U.C.S.D. PASCAL SYSTEM IL.1
CURRENT DATE IS 15-JUL-79

you can get the Maze output of display 2.1 by the following steps:

@ Press the X key on your keyboard. The computer should respond with
“EXECUTE WHAT FILE?” in the top line.

10 Orientation For Beginners

Diawn Fuight [ieft Biatk ielp ¥iecuts O
BRRERAERBRIRRIRIRENGY
§ ¥ #
BRBRERHON # & GopRREeie §
¥ L L
L T TTTT)
BRI EE §
LR
L §

AR T T
i

et
o
2

8
i
L1l
Bhpg

ki
§

i

i
¥
¥
§
]
§
Vi

BRoRE @ 0 wReeReeeg
§ #8 8 LI
“ORRREE BEREE BORER @
£ 8 L
LN I T T
4 L

BE &6 B BERRReE

L2 2

#
#
§
§
¢
¥
4
]
§

§

Display 2.1: Initial display for Maze exercise. Throughout this book, where appropriate, we have actual
photographs of the display screen of a computer running the UCSD Pascal System to illustrate various points,

® Type “ORIENTER” and then press the RETURN key. If the computer
responds with the Maze program output of display 2.1, you can
ignore the remaining steps in this list. If the computer responds with
“NO FILE ORIENTER.CODE", it is time to insert a disk marked as
associated with this book in place of the disk you used to bootload the
system. On most computers running the UCSD Pascal System, this
disk will be put into the left or lower numbered diskette drive, Pascal
unit number 4.

® Again press the X key. When the computer asks “EXECUTE WHAT
FILE?”, type “#4:ORIENTER” and press the RETURN key. This last
step should be successful even if all the others fail. If not, you may
wish to try the same sequence of steps several times before seeking ex-
pert assistance.

The display that appears on the screen of your computer may differ slightly
from that reproduced here in display 2.1. For example, your screen may not be
wide enough to show all of the characters on the top line of the figure. This is
not a serious problem, as the top line is intended as a reminder which can just
as easily be taken from the illustrations in this book.

Now direct your attention to the character “#” displayed just five lines
below the character R in R(ight), which is on the top line of the screen. The
display consisting of barriers made out of “@” characters is a maze. In the ex-
ercise associated with this display, you will go through the steps necessary to
find the exit from the maze, starting at the point marked with the character
“#”. The object of the exercise is to give you concrete examples and practice

Simple Commands 11

with what we call a command in computer jargon.

[Note that the character “#" on your computer's screen differs from the
same character printed in display 2.1. Depending upon the model of com-
puter or computer display terminal that you are using, the character “§"
may be marked as an underline character “__". It may be marked by being
displayed as a dark character on a light background, or the reverse if all
other characters are dark on a light background. The “#" may be blinking
on and off once or twice each second or it may be marked by some com-
bination of these methods. Whatever the method, the marker is known in
computer jargon as a cursor, and the character that is marked is said to be
located at the cursor position. I have not marked the cursor position in the
figures in this book, since it is awkward to print the cursor in a way that
suggests all of these marking methods at once.]

Now press the D key on your keyboard once. The result should be the
appearance of the character “+" immediately below the “#” character. At the
same time, the cursor position should move to mark the newly created “+". A
single D character will also appear near the bottom left side of your screen.

[If nothing at all happens on the screen in response to your pressing the D

key, chances are that you have not pressed it hard enough! Note: if you

press the D key again at this point or if you inadvertently pressed it more

than once, the bell or buzzer on your computer will sound off. If that did

not happen, do not be afraid to press D again just to see what it sounds like.

The bell is frequently used as a signal to warn you that you are attempting

to use a command that does not make sense at that particular time.]

Next, press the R key twice. The cursor should move two boxes to the right,
placing additional “+" characters on the screen as it goes. If you press R a
third time, the bell will sound again signifying that you are trying to bump into
another wall. Press D once or twice, and the result should be to move the cur-
sor down an equal number of places, again leaving “+” characters on the
screen.

By this time, you can see that you command the computer to do something
each time you press the D or R key. Note in the top line of the screen that there
are command characters associated with all four directions in which the cursor
can move within the maze. D stands for down, R stands for right, L for left,
and U for up. The top line is used as a reminder about the available command
letters, and what they are supposed to do.

The “(" character used with each command word is a reminder that only one
character needs to be pressed to initiate the associated command. When using
some other computer systems, you need to type in the whole word to initiate a
command. This is not the case when using the UCSD Pascal System.

Try your hand at finding your way out of the maze. The only way is at the
open box along the bottom line of the maze. Display 2.2 shows the result of
taking a shortcut, which is obviously wrong. Do not let the beeps of the bell,
or buzzer bother you. They simply tell you that you can not keep moving in
the direction indicated by the command letter you have just used.

Next, if you have not already done so, it would be a good time to see what
the B(ack command does by pressing B. If you have moved from the starting

12 Orientation For Beginners

Maze: U(p D(own RCight L(eft Black Hlelp X(ecute C(lear GCuit
PeERCECREGRRORORRARDSRRENRD
L] ¢ ¢
§ ShRpREsee ¢ @ sespenlee ¢
§ Brirassip B $ ¢
§ 8 BEORORBLERNRE B wotRs ¢
BRI NN
B BEG+E 0 BOR B BB B 8 B0
[ZXTXTS 2 N [
C+O0REE © GREDROBRORRED 04
$+8 '
B+BOBES £ & BEpCRROSE
L 1] L ¢’
C+ORRER BEREE SROOR ¢
¢
L4

¢
¢
¢
]
¢

o A A T T S W

-

¢
I I
B+RRE FOORE § BEROROE 000
I I '
POBLEREEE 0 1 SORRONS ¢
X I

POOREEREE SORERRRORIRIEIED

ULLLLLLDDDDLLLLODDDODDORRDDR

8
’
¢
s
L]
¢
L]

i e K Y

Display 2.2: A bad way out of the maze. Starting with the initial position as shown in display 2.1, one series of L,
R, Uand D commands results in moving to this position in the maze. The position is marked by the solid square
with a dark line in it, at the lower left of the display screen. The sequence of commands used to get to this posi-
tion is seen as a line of letters across the bottom of the screen.

position of the “4#”, each press of B will remove one “+” from the screen, back-
ing you up toward the starting point. You may already have noticed that none
of the commands U, D, R, or L will allow you to back over a “+"” already
placed on the screen. Press H to see what the H(elp command does. The maze
will disappear off the screen, and a list of brief explanations of the available
commands will appear. You can return to the maze display by pressing the
SPACEBAR key, the long thin key at the bottom of your keyboard (ie: the one
closest to you). The C key, the C(lear command, restores the maze display to
the condition it was in when you first bootloaded. The eX(ecute command is
explained in more detail in section 5 below. If at this point you press the Q key
for Q(uit, it might be best to start over by bootloading again. I will explain in
more detail what is going on in a later section.

2.4 Special Keyboard Characters

All keyboards used with computers have at least some characters designed
to be used for special purposes. I am not ready to show you all of the special
control characters. However, I can begin at this point with a few of the
characters used for moving the cursor around on the screen.

Not all computer keyboards have special keys for all of the control com-
mands that are used frequently in the UCSD Pascal System. The exercises
associated with this chapter are designed to give you practice with the special
control keys, if they are present on your keyboard, or otherwise practice with

Special Keyboard Characters 13

sample ways to simulate the action of these control keys. As a result, it is ad-
visable at this point for you to scan over the section of Appendix A or B, or the
equivalent documentation for your machine covering Special Keyboard
Characters.

2.4.1 Return

As a starting exercise, go through the maze as in the previous section leaving
a dozen “+" characters in the maze. As before, the B key causes you to back
up toward the starting location each time it is pressed. Now press the RETURN
key (marked as CR or RET on some keyboards) and note what happens. We
have arranged things for this exercise alone so that the RETURN key is an
alternate method for invoking the B(ack command. The RETURN key is used
commonly for several other purposes throughout the UCSD Pascal System.
For now, we just want you to be familiar with the RETURN key itself.

2.4.2 Control

Notice that your keyboard has at least one key marked CONTROL, or
sometimes CTRL. Two keys are used together to create the same effect on the
Radio Shack TRS-80 (see Appendix A2). This key is similar in effect to the
SHIFT key of most keyboards, in that CONTROL changes the effect you get
from pressing many of the keys on the keyboard. In the Maze exercise, if you
press the M key the computer will simply beep at you signifying that it has no
corresponding command. Now, hold down the CONTROL key, then press M
while still holding CONTROL down. Note that what happens is the same as
when you press B or RETURN. Explanation: each key on the keyboard, when
pressed, sends a unique coded message to the computer. If you hold down
SHIFT, the message may change, as from lowercase “a” to uppercase “A.” If
you hold down CONTROL, the message changes so that each key showing a
letter has some special meaning that cannot be expressed by showing a single
character on the screen. One can arrange the computer to interpret CON-
TROL +letter messages as calling for a command to be invoked, just as we
have used simple letter commands in the Maze exercise. It is often confusing to
remember the association between a CONTROL + letter combination and the
command action it is intended to invoke. Therefore, most computer
keyboards provide a few specially labelled keys which send the same messages
as the associated CONTROL +letter combinations. Practically every com-
puter keyboard has a RETURN key. For that reason, we do not have to
remember that the same effect can be obtained using CONTROL +M. Your
keyboard may have specially labelled keys for all the other important control
commands used with the UCSD Pascal System. On the lowest priced
machines, the manufacturers have saved on cost by eliminating some of the
special control keys. If you have one of those machines, you will have to learn
to use the CONTROL + letter combinations described in Appendix A, or alter-
native instructions for your machine.

14 Orientation For Beginners

2.4.3 Arrow Keys for Moving the Cursor

Now, go back through the Maze exercise using the special CONTROL com-
mands for up, down, right, and left. On some keyboards, these commands are
associated with four special control keys marked with arrows pointing in the
four directions. On others, only the left and right arrows are provided. Still
others have no arrow command keys at all for positioning the cursor. You will
need to memorize the CONTROL +letter combinations associated with up,
down, left, and right if their corresponding command keys are missing. It may
help to tape notes to your keyboard to remind you which CONTROL + letter
combinations are used to simulate the missing special command keys.

A few words about context may help you to understand what we have been
doing here. You may wonder why we need the special CONTROL + letter
combinations at all if the command letters U, D, R, and L will work just as
well. The answer is that we have arranged for those letter commands to work
as described just within the Maze exercise. In using the UCSD Pascal System,
you will see that we go from the context or environment of one world to that
of another quite frequently. A little later in this chapter, we will switch to
another world in order to illustrate how you use commands that require data.
Thus far, the commands we have been using are all invoked just by pushing
one key, or the equivalent CONTROL +letter combination. Since there are
only twenty-six letters in the English alphabet, there are not enough single
letter commands to cover all of the things we want to do in different worlds
within the UCSD Pascal System. Even if there were enough letters, you would
not want to spend the time to memorize all the letter/command associations.
The UCSD Pascal System has been designed to make use of some of the com-
monly available special control keys in order to simplify the use of the UCSD
Pascal System as much as possible. For beginners, it is unfortunate that the
lowest priced machines often lack some of these keys.

2.5 The Concept of a Program

People involved with computers use the term program with several slightly
different shades of meaning. We too shall have to do the same in this book.
Basically, a program is a sequence of commands stored in the computer in such
a way that each command in the sequence can be carried out automatically,
(ie: with no help from the operator to go from one command to the next).
Generally, the first command in the sequence is carried out, then the next, and
so on in the order the commands appear. Methods are available to alter the se-
quence of commands automatically under certain conditions. Discussion of
those methods is best left until you study the Pascal language for writing pro-
grams,

In the Maze example, the sequence of command letters appears in the lower
part of the screen in the order in which you type them, from left to right. When
more than one line is needed to hold a complete sequence, the command letters
go from the right end of one line to the left end of the next, as in the presenta-
tion of English text. The Maze program can automatically carry out each com-
mand shown at the bottom of the screen, since it is also stored in the

The Concept of a Program 15

computer’s memory. Once you have several “+" characters deposited in the
maze, press the X key and wait to see what happens. The cursor first jumps
back to its original position at the “#" character. Next the cursor follows the
same route that you followed when you first put the series of “+" characters
on the screen. The rate at which it does this is deliberately slowed down so that
you can see the correspondence between the position of the cursor within the
maze and the command character marked in the command sequence
simultaneously.

The sequence of command characters at the bottom of the screen is a crude
program. When you press X (for eXecute), the program is executed. To execute
a program is basically the same as to run the program (although the
Pascal System, like many others, makes a fine distinction between execute and
R(un as we shall see in the next chapter). Both terms are used to describe what
happens when a sequence of stored commands is carried out automatically
one-by-one. Generally, it is possible to cause a program to be executed as
many times as one wishes without altering the program as stored in the com-
puter’s memory.

In general, the symbols that we use to represent each command are assigned
arbitrarily and purely for convenience. If we spoke Spanish rather than
English, “right” would be “derecha,” “down” would be “bajo,” “up” would be
“arriba,” and “left” would be “izquierda.” It would therefore be convenient to
change the letter assignments which correspond to movement of the cursor in
the Maze example (eg: instead of “R” for “right,” we would use “D” for
“derecha,” in fact, the meaning of the letter D would change!). Thus the com-
mand letters must be regarded as codes which are assigned to shorten the
amount of input information necessary to order that a given command “ac-
tion” be carried out.

The program we have been considering here, in connection with the Maze
example, is, of course, a simpified analogy to the programs one finds on most
computers. The computer’s hardware, which you can touch or pick up,
generally understands command codes expressed as small numbers. The com-
mand actions called for by those codes are typically very simple in concept.
Even the simplest of the popular microprocessors now in use has roughly
seventy different commands with their corresponding codes. A program that
carries out any useful function usually consists of many hundreds or even
thousands of these simple commands. Fortunately, most people who use com-
puters have no need to work directly with the numbered command codes. In-
stead, we write our programs in a form that looks much closer to a sequence of
English-language statements. A translator program, called a compiler, then
converts the humanly readable form of the program into the coded sequence of
commands that the computer hardware can understand. The form that most
people use today for writing programs is called a high-level language. Insuch a
language, the form we use is at a substantially higher level than simple, coded
commands of a machine language. Pascal, BASIC, COBOL, and FORTRAN,
are all commonly used high-level languages.

In the UCSD Pascal System, a command that you tell the computer from the
keyboard to carry out is usually expressed by pressing a single key. In Pascal

16 Orientation For Beginners

and other high-level languages, a program more often consists of English
words mixed with special characters which represent commands. The English
words are used to make a program more readable than a tightly packed se-
quence of single-character commands like the program displayed at the
bottom of the screen in the Maze example. When you are issuing commands to
the computer from the keyboard, you are generally aware of the context since
the result obtained from issuing each command is apparent immediately.
Thus, effort is saved by not requiring that whole words be typed into the com-
puter to initiate the execution of each command. When you read a computer
program on paper or on the screen, many commands are lumped together
without obvious and immediate connection with the actions they cause when
executed. In this context, the readability is much more important than the im-
mediacy afforded by the single-letter encoding of the interactive commands.
Interactive commands are those you use when you interact directly with the
computer rather than waiting for a program to run.

2.6 Building Bigger Programs out of Smaller Programs

You may have noticed that we used a single-letter command, X, to call for
the program of moves through the maze to be executed. In effect, the Maze ex-
ample is a simulation of a very simple computer designed for a special pur-
pose. It happens that the simulation is a program written in the Pascal pro-
gramming language which is arranged to respond to the various command
letters we have been describing in this chapter.

There is nothing to prevent us from deciding to assign a different command
code letter to each of several different programs. Thus X might cause the ex-
ecution of one sequence of commands taking us toward the true exit of the
maze, Y might be another program which goes off toward a dead-end in the
maze, and Z might refer to yet another dead-end program. In fact, each of the
command letters assigned in the Maze program actually calls for the execution
of a small program designed to carry out a specific, simple action.

Obviously, if we can build a program out of any sequence of command
codes and can give that program another unique code, it must be possible to
build large programs from small programs. In other words, we can create a set
of special-purpose commands by writing low-level programs (ie: simple ones)
to carry out those commands. We can then create a higher-level program (ie:
one that is larger, more capable, or more complex) by using a sequence of
commands each of which calls for execution of one of the low-level programs.
We can then create an even higher-level program by using a sequence of com-
mands from the next lower level, and perhaps also from the lower levels within
the same sequence. This point is one of the main study goals of Chapter 2 in
the Bowles textbook cited in Chapter 1 of this book.

2.7 Commands that Ask for Data

Assuming that you are still working the Maze example on the computer,
now press the Q key for Quit. The result should be as shown in display 2.3.
This example is designed to illustrate how to use commands that ask for data

Commands that Ask for Data 17

in the UCSD Pascal System. It also provides a simplified orientation to the use
of built-in facilities for working with strings of characters in the UCSD Pascal
language.

Data: Iinsert Dlelete Plos RCight L{eft C(lear Q(uith

RON ROW YOUR BORT
t

Display 2.3: Initial display for a data-oriented command example.

The general idea of this example is that commands are provided which allow
you to alter the phrase “ROW ROW YOUR BOAT” displayed in the middle of
the screen. You can I(nsert additional characters wherever the arrow symbol
displayed on the next lower line happens to be pointing. You can move the ar-
row left or right using L and R as in the Maze example. You can D(elete
characters starting at the position where the arrow points by typing one X
character for each character you want deleted from the displayed phrase.
Notice that this is a completely different definition for the D command
character compared with its use in the Maze example. There should be no con-
fusion since we are now in the Data example’s world rather than that of the
Maze example. The first line of the display serves as a reminder of what the
Data world’s commands are.

2.7.1 I(nsert

Try using I(nsert to obtain the result shown in display 2.4. Do not worry if
you cannot easily use lowercase characters instead of capitals. We use lower-
case here to make the illustration more obvious.

When you press I for the I(nsert command, a message appears on the display

18 Orientation For Beginners

screen asking that you type in the characters you want inserted. The cursor
waits immediately following this prompting message. When you type
characters they appear on the screen starting at that point. You can back over
characters typed in error by using the BACKSPACE (or simply BS) key if one
exists on your keyboard. If you have no BACKSPACE key, the equivalent
command action usually can be obtained using the combination CON-
TROL+H. (See Appendix A or B for your machine if in doubt.) Once the
characters typed in are equal to what you intended, you cause those characters
to be transferred to the program controlling the I(nsert command by pressing
the RETURN key. You should then notice that a copy of the characters you
typed in has now appeared within the phrase displayed in midscreen.

Data' I(nsert DCelete PCos R{ight L(eft 0Clear Q(uith

ROK RON YOUR big old BORT
t

Enter string to be insertedbig old
Then press RETURN

Note: Use BACKSPRCE (BS) to erase characters

Display 2.4: Displayed string with additional data inserted.

2.7.2 Df(elete

The sequence of actions you employ to have Dielete take effect is very
similar to that just described. In this case, the D(elete command asks that you
type one X character for each character you want deleted in the displayed
phrase. Again, BACKSPACE can be used to erase excess characters from the
screen. RETURN causes the D(elete command action to be completed. Display
2.5 shows the appearance of the screen just before RETURN is typed to cause
deletion of the string “YOUR” from the display. Try this same operation with
your computer to observe what happens.

2.7.3 P(osition

The Data example also offers a command for finding the position of a short

Commands that Ask for Data 19

pattern string of characters within the string displayed in midscreen. Press P to
see what happens. The computer will then ask for you to type in the string of
characters you want to be found. As an example, type “BOA” followed by
RETURN. The pointer arrow on the display should move to point to the “B” at
the beginning of “BOAT.”

Data: linsert D(elete Pos R{ight L{eft ((lear Qluit

kOM ROM YOUR big old BORT
t
oxxxoli

Type an % for each character to be deleted above
Then press RETURN

Mote: Use BRCKSPRCE (BS) to erase characters

Display 2.5: Appearance of display just before pressing RETURN in the D(elete command.

2.7.4 Summary of the Data World Example

In the UCSD Pascal System, virtually all commands that require you to sup-
ply data are handled like the commands in the Data example. Press the com-
mand code key and a new prompt appears on the screen asking for data. Type
in the string of characters, usually a name or a number, and then press
RETURN. The command action is then carried out.

As pointed out earlier, commands expressed in the Pascal language gener-
ally have the appearance of English-language words instead of single
characters. Remember that earlier we described a program as a sequence of
commands stored for later use. In a program, commands that require data
must have that data supplied as part of the program. Unless the program is
specifically designed to pick up data from the keyboard, it is generally
necessary to store the data needed by the commands as part of the program
itself. The manner of supplying the data needed for the Pascal commands is
described in Chapters 1 and 2 of the Bowles textbook cited earlier. In that
book, the Turtle program, which is available on computers that have graphic
display capability, is designed to illustrate the form of using Pascal program
commands that require data.

3 Orientation for
Experienced

Programmers

3.1 Goals for this Chapter

To make effective use of this chapter, you should either have some
experience in using an interactive computer system for program development,
or you should have studied Chapter 2 of this book.

For most programmers, the principal working environment of the UCSD
Pascal System is concentrated in three facilities: the Screen Editor, the File
Manager, and the Pascal Compiler. This chapter is intended to give an overall
understanding of how the working environment is used. Details on each of the
three major facilities are left until Chapters 4, Screen Editor; Chapter 5, File
Manager; and Chapter 6, Pascal Compiler—Coping with Program Errors.

Specifically, here is what you will accomplish in this chapter:

® Learn to enter a small Pascal program into the computer, and how to
test and run that program.

® Learn how to make simple modifications in a small program already
stored on your diskette, and to test and save the modified program.

® Learn what is meant by the workfile, and how the Editor, Compiler,
and File Manager all cooperate with each other to help manage the
Workfile.

® Distinguish between the human readable text version of a Pascal pro-
gram and the code version of the same program which is executable by
the computer.

22 Orientation for Experienced Programmers

® Learn how the File Manager is used as a utility with which you can
keep track of your library of program files. Specifically, acquaint
yourself with the disk directory as a tool for telling what currently is
saved on your disk(s).

® Use the File Manager to change your copy of the UCSD Pascal System
so that it no longer implements the orientation program (Maze and
Data examples for Chapter 2) when you bootload the system.

CAUTION: Some of the steps described in this chapter, and involving
use of the File Manager, can leave your diskette changed in such a way that
it can no longer be used directly with the step-by-step descriptions in this
book. If you decide to refer ahead and make random experiments simply to
see what will happen, please be prepared for the possibility that you may
have to acquire another diskette in order to start again.

3.2 Brief Overview

In this chapter, I assume that you already know what I mean by a single
character command, and have a rough idea what is meant by a program. |
assume that you know how to bootload (bootstrap load) the UCSD Pascal
System. If in doubt, it would be best to scan through Chapter 2, even if you
are an experienced programmer. I also assume that you will be programming
in the Pascal language, even though other languages can also be used with the
UCSD Pascal System in much the same manner as described here.

The purpose of this section is to give you a quick description concerning
how the various major pieces of the UCSD Pascal System fit together. In later
sections, I give simple hands-on exercises using the computer with each of
those pieces. Depending upon your personal way of doing things, you may
find it most effective to go through the quick description first, and then the
exercises, or vice versa. In any event, you will save time in using the rest of this
guide if you take time to familiarize yourself with the big picture by going
through this section.

When you prepare a program to be executed by the UCSD Pascal System,
you write program statements in a form that can readily be understood by
anyone who understands the programming language being used. To get the
program statements into the computer in a form that the computer can under-
stand you use a large program called the Screen Editor. This is provided as a
built-in part of the UCSD Pascal System. The Screen Editor is a tool used for
purposes similar to those for which you use a pencil and eraser when writing
on a piece of paper. There is no practical way for you to write out a program
on paper in such a manner that your writing can be directly understood by the
computer. Instead, it is necessary to use a keyboard similar to a typewriter,
and each key pressed transmits an electronic message to the computer.
Without a program to make sense out of the sequences of key-press messages
that you send to the computer, those messages would be of very little value.
The Editor is the general-purpose program tool that is used to prepare pro-
grams for the computer. It can also be used for preparing and editing ordinary

Brief Overview 23

written text material, such as this book, as I describe later in this chapter.

The UCSD Pascal System provides two editor programs. I assume here that
you are going to use a computer or terminal that has a cathode-ray tube (CRT)
display screen, similar to a television screen, and thus will want to use the
Screen Editor program. The other editor, called YALOE (for “Yet Another
Line-Oriented Editor”) is intended for use on hard copy terminals, which are
much like typewriters. The Screen Editor is much easier to use than YALOE,
and provides far more help. YALOE is described in the main system reference
manual for the UCSD Pascal System.

The Screen Editor is available in two versions: the standard Screen Editor
and the “large file” Screen Editor. The large file (called “L2") version of the
screen editor has extra commands needed to handle files on disk which are
bigger than the available memory of the computer. Here I also assume that
the standard screen editor is being used in the examples of this chapter.
When you use the Screen Editor, the program text or any other material that

you are writing is saved temporarily in the computer’s memory. I say tem-
porarily because all of the contents of the computer’s memory are lost when
you turn the machine off, and arrangments are generally made for more per-
manent storage of the information on a secondary medium. Generally, the
secondary medium used with the UCSD Pascal System is a flexible diskette, or
floppy disk. When you finish changing the text of a program with the Editor,
and are ready to try it out, you must use the Editor’s Q(uit command. The
Q(uit command will respond by asking whether you wish to update the ver-
sion of your text on the diskette or other secondary medium. For simplicity I
will only refer to the diskette from now on. If you do request an update, the
text stored in the computer’s memory will be transferred to the diskette, and
stored in an area called the workfile.

3.2.1 The Workfile

To understand the purpose of the workfile, it will help to understand how
information is stored on the diskette. Information is recorded on a floppy disk
using changes in the magnetization of microscopic regions in a magnetic
coating on the plastic surface of the diskette. These regions are organized in
circular tracks whose purpose is very similar to the grooves on a phonograph
record. One diskette has a capacity for at least 90 thousand characters of text.
Some recent designs have a capacity for more than one million characters!
This space is enough to allow storage of many different programs, both in the
human readable text form and in the computer executable code form. In order
to keep track of all the information which may be on a diskette, the UCSD
Pascal System provides a directory or table of contents for the information
stored on each diskette. The disk directory gives the name of each item, its
location on the diskette, how much space on the diskette it occupies, and some
additional information needed by the UCSD Pascal System. Each entry in the
disk directory refers to a file of information stored on the disk. There is a text
file for each program, and, in most cases, there will also be a code file. The
disk may also be used for storing various other kinds of information. Again,

24 Orientation for Experienced Programmers

each collection of information referred to separately in the disk directory is
called a file.

The workfile is just one of many files stored on your diskette. However, its
entry in the disk directory uses a special naming convention that saves you
trouble while you are working on a new program or changing an old one.
When you use the Editor’s Q(uit command, and ask for an update, the text you
have been working on is saved on the disk under the directory name
“SYSTEM.WRK.TEXT"”. Any older version of the file having the same direc-
tory name is removed from the disk when you update in this manner.
Whenever you start up the Editor, it assumes first that there is a workfile on
the disk and that you wish to work with the text stored in the workfile. The
Compiler and File Manager also make assumptions about the workfile that
save you from having to take explicit actions to keep track of the file you are
currently working on.

3.2.2 Running the Edited Program

Once you are finished making changes in the text of a program using the
Editor, you will usually want to have that program changed into the form that
can be executed directly by the computer. Then you will want to try the pro-
gram to see whether it works correctly. This cannot be done until the edited
text of the program is translated into the form that will run directly on the
computer. The (Pascal) Compiler is a large program provided with the UCSD
Pascal System to translate programs saved on the disk in their text form into
the equivalent code form which can be executed directly by the computer.

I am glossing over a fine point here. The UCSD Pascal System actually
executes all programs using a special interpreter program, which makes
your computer’s processor appear to be a processor designed especially for
the purpose of executing Pascal programs. This makes it possible to use the
same code form of a Pascal program on any one of many different popular
processors, including most of those used in microcomputers.

When you bootload the UCSD Pascal System, you will find yourself in a
command world labeled “Command:” at the left of the prompt line at the top
of the screen. From the “Command:” world, you use the E(dit command to
start up the Editor. When you use the Editor’s Q(uit command, the result will
be to bring you back to the “Command:” world.

When you first receive the diskette containing your copy of the UCSD
Pascal System, the “Maze:" and “Data:"” command worlds may always ap-
pear first after bootloading. 1 will give you instructions in a later section of
this chapter on how to avoid having the “Maze:" world always appear after
using it to get oriented to the UCSD Pascal System. The “Command:”
world is what appears when you use Q(uit to get out of the “Maze:" world,
and again Q(uit to get out of the “Data:"” world.

If you elect to U(pdate the workfile when you use the Editor's Q(uit com-
mand, you can request the Compiler to translate the program text stored in the
workfile in either of two ways. The most obvious way is to use the “Com-
mand:” world’s C(ompile command. A shortcut is to use the “Command:”

Brief Overview 25

world’s R(un command. The UCSD Pascal System keeps track of what you
have been doing to the workfile, and knows whether you have changed the
text stored in the workfile since the last time you used the Compiler. When you
use the R(un command, and the workfile has been changed, the Compiler is
automatically told to translate the text in the workfile. If the Compiler finds no
errors in the program, it then saves the code form of the program on the disk,
and tells the UCSD Pascal System to go ahead and execute the program. The
compiler leaves the code form of the program in the disk file
“SYSTEM.WRK.CODE.” Thereafter, you can execute the same version of the
program over and over again using the “Command:” world’s R(un command,
without calling the Compiler into action again until you change the text form
of the workfile using the Editor. Each time your program finishes executing on
the computer, control of what happens returns to the “Command:” world
where the UCSD Pascal System waits for your next command.

3.2.3 Saving Workfiles for Future Use

Once you have finished making changes in a program you probably will
want to save that program on the disk for later use. You will also want to clear
out your workfile in order to work on another program. To do this, you use
the “Command:” world’s F(ile command, which takes you into the File
Manager’s world. Most of us have become lazy and refer to the File Manager
simply as the “Filer.” I shall do so in this guide from now on. The Filer pro-
vides commands for saving a workfile under a directory name you may
designate, for removing old files no longer needed, for transferring files from
one disk to another, for displaying the disk directory on the video display
screen, and other file-related commands. As usual, you use the “File:” world's
Q(uit command to get back to the “Command:” world.

3.3 Entering and Testing a Simple Program

Next, I will give a step-by-step account of how you enter a simple program
into the computer and then compile it and execute it. I will start from the
“Command:” world. To arrive there after bootloading, you may have to use
the Q(uit commands of the “Maze:” world and the “Data:” world if they are
initially provided on your diskette in a form that starts up automatically. In
the last section of this chapter, I will show you how to arrange to obtain the
“Command:” world directly after bootloading. It would be best not to jump to
that point right away, since some familiarity with the UCSD Pascal System
gained with a little practice will help you to avoid making an error that could
be very awkward to correct.

As subject matter, we will use the sample program STRINGI1 from Chapter
1, Section 11, of the text Microcomputer Problem Solving Using Pascal men-
tioned earlier. We reproduce that program in display 3.1 as follows:

PROGRAM STRINGI;
BEGIN
WRITE(HI');

26 Orientation for Experienced Programmers

WRITE(' /,'THERE');

WRITELN:; (*moves to start of next line*)

WRITE (‘HI THERE');

WRITELN (* THIS IS A DEMONSTRATION");

WRITELN (‘OF PROGRAM EXECUTION');
END.

Display 3.1: Sample program for familiarization with the UCSD Pascal System. This program is taken from the
book Microcomputer Problem Solving Using Pascal, by Ken Bowles, Chapter 1 section 11.

You should start from the “Command:” world by typing E for the “E(dit”
command. The screen will go blank and then, after some clicking by the
floppy disk drive, what will appear is as shown in display 3.2.

JEdit

Mo vorkfile is present. File? ((ret) for no file (esc-ret) to exit)

Display 3.2: Appearance of the screen on entry into the Editor. This message occurs when the work file has
previously been cleared with the Filer, or when the UCSD Pascal System is entered for the first time after the
computer's power is turned on.

The prompt line at the top of the screen informs you that you have arrived
in the “Edit:” world. No command options are shown yet, since no workfile is
stored on the disk, and it is necessary to establish one. The second line on the
screen requests that you type in the name of a text file already stored on the
disk, and follow by pressing the RETURN key. In the present instance, you
have no such file to use, so you simply press the RETURN key without typing
in any name. The Editor will respond with the screen display shown in display
3.3, after a short delay accompanied by some more clicking of the disk drive.

JEdit. Ridjst Clpy DClete Flind Iinset Jimp R(place Qluit Xichng Z{ap [6f]

Display 3.3: Editor's prompt line as it appears when starting an editing session with an empty workspace. The
prompt line contains abbreviated mnemonic reminders of the most common editing operations.

Except for the list of available command characters in the prompt line at the
top of the screen, the display is completely blank. This shows that the working
space used by the Editor in the computer’s memory is completely blank. It is a
blank slate on which you can start writing.

3.3.1 The I(nsert Command

To begin typing in the text of the STRING1 program, use the I(nsert com-
mand of the “Edit:” world. The somewhat cryptic prompt message that goes
with the I(nsert command tells you that you can start typing the text. Begin

Entering and Testing a Simple Program 27

with “PROGRAM"” and continue typing until you make a mistake. You can
erase a character typed in error by using the BACKSPACE key (see Appendix
A or B for an equivalent if your keyboard has no BACKSPACE key). One
character is erased for each BACKSPACE character typed and you can back
up all the way to the point where the I(nsert command’s world was entered.
Continue typing after any erasure until you finish entering a section of text
that you wish to retain. You can terminate the I(nsert command, while retain-
ing the text typed in, by pressing the ETX key which stands for “end of
text”(see Appendix A or B for your keyboard if it has no ETX key).

Within the I(nsert command’s world, you move the cursor from the end of
one line to the beginning of the next by using the RETURN key. To obtain the
two-column indentation in the third line of the STRING1 program example,
press the SPACEBAR twice. When you press RETURN to begin the subse-
quent lines, the cursor will return to the same column indented two spaces
from the left margin. This is just what you want until you arrive at the last line
containing “END.”

To eliminate the indentation for that line, there are several ways of pro-
ceeding. I will mention only the most frequently used method here, and leave
other suggestions for Chapter 4, Screen Editor. After pressing RETURN at the
end of the previous line, the cursor again comes to the third column and waits
for further characters to be typed. At that point, you can use the
BACKSPACE key to move the cursor to the left edge of the line. Press
BACKSPACE only twice to get there. If you press BACKSPACE once more,
you will return to the end of the previous line, effectively backing over and
erasing the RETURN character from the text as saved in the computer’s
memory. No harm is done by this action, but when you again press RETURN
to get back to the new line, the cursor will again go to the third column.

Now suppose that you have typed in the lines of text shown in display 3.4,
which contain several errors. The next question is how to go about correcting
those errors without having to start over again.

JEdit: RUd st Clpy DClete Flind Ilnsrt Jmp R(place G(uit X(chng Z(ap [6¢]
PROGRAX STRINGY,
BESIN

NRITECHD,

WRITE(” 7, "TREE"),

KRITELN; (s Moves to start of next line &)
KRITE('R] THERE’),
MRITELN(‘ THISA DEMSTRTION'),
KRITELWC/OF PROGRAW EXECUTION)
ﬁlb.

Display 3.4: The contents of the display screen at the end of an I(nsertion which left errors in the text.

[ne £ {157

Compare the fourth line in this figure with the fourth line in the STRING1
program in display 3.1. In display 3.4, the word THERE is misspelled TREE.

28 Orientation for Experienced Programmers

As a first step to correct this, complete the I(nsertion by pressing ETX, if you
have not already done so. If you press ETX when you are in the “Edit:” world,
the computer responds with an ASCII “bell” to give you an audible reminder
that there is no action associated with an ETX in the “Edit:” world. Next, move
the cursor so that it points to the character R in TREE. You do this by using the
four cursor positioning arrows on the keyboard, or their equivalents for your
machine as listed in Appendix A or the manufacturer’s documentation. These
are the same keys as used for moving around the maze in the example given in
Chapter 2 of this book. With the cursor pointing at the R, use the I(nsert com-
mand again. Once in the “Insert:” world, type in HE followed by pressing the
ETX key. Notice that the I(nsert command in this case moves everything start-
ing with the R over to the right-hand margin of the screen. This is done in
order to leave you blank columns into which the additional characters may be
typed. When you press the ETX key, the characters moved to the right of the
screen will be returned to connect up once again with the portion of the line
still on the left side. At this point, the misspelled word has been partially cor-
rected, and should read THEREE.

The following is a summary of what you can do with the I(nsert command:

® You enter the “Insert:” world by typing I while in the “Edit:” world.
You can then type in characters of text starting from the cursor’s posi-
tion (as it was when the “Insert:” world was entered).

® You can erase unwanted characters, of those typed in so far during
this insertion, by pressing BACKSPACE once for each character.

® You are able to erase all the characters typed so far on any whole line,
after the first RETURN is typed during the insertion, by pressing the
DEL key. The DEL key is sometimes marked as RUBOUT; see Appen-
dix A or B for your terminal if it has neither key. Press the DEL key
repeatedly to remove additional lines typed in during the current in-
sertion.

® When you decide to keep the text typed in during the use of the “In-
sert:” world, press the ETX key for “end of text.”

® If you decide to leave the “Insert:” world without keeping any of the
characters already typed in, press the ESC key for “escape.” See
Appendix A or B for equivalent if there is no ESC key on your
keyboard. This will terminate the “Insert:” world, and return you to
the “Edit:” world, with the displayed text again just as it was before
you entered the insertion.

Try using the DEL and ESC keys while using the I(nsert command to
observe what happens.

3.3.2 The D(elete Command

I continue now from the point where you have THEREE on the screen
following the use of I(nsert. To obtain THERE, you will have to delete the last
E (or the one before it). Move the cursor to point to the E you wish to remove.

Entering and Testing a Simpie Program 29

Press D, for D(elete, and observe that the screen now displays what is shown
in display 3.5.

Melete:) (Roving commmandsy ((etx) to delete, Cesc) to sbort)
_PROGRAN STRINGY,
BEGIN

HRITEC'RD);

WRITE(C 7, ‘THERER),

MRITELN, (® Noves to start of next line ®)
WRITEC‘HI THERE’),
WRITELN(THISA DEMSTRTIONT),
HRITELW(’OF PROGRAM EXECUTION
ERD.

Display 3.5: The prompt line shown upon entering “Delete:” world form the “Edit:” world using the command D
for D)elete.

Caution: On some computer terminals the ESC key is located right next
to the BACKSPACE key or the RETURN key. On such keyboards, one
must be careful to avoid accidental depression of the ESC key, especially
when long segments of text are being input.

To delete one or more characters, move the cursor to the right, or to follow-
ing lines, using the regular cursor moving commands. Each character deleted
disappears off the screen. For example, you can delete “E”); by pressing the
right-arrow four times. Just as with the “Insert:” world, you can back up by
using the BACKSPACE key. However, in the “Delete:” world, you restore
characters to the screen when you use the BACKSPACE.

Finally, when you are ready to terminate the deletion, press ETX. This will
return you to the “Edit:” world, with the text redisplayed and the deleted
characters eliminated. You can terminate the deletion using ESC, just as you
can ESC out of the “Insert:” world. Again, the displayed text returns to the
status it had before you entered the D(elete world.

3.3.3 Finish Fixing the Other Errors

Now try your hand with the Editor by fixing the errors on the last two lines
in display 3.4 containing “WRITELN.” The next to last line contains spelling
errors. The last line lacks an apostrophe just before the “)".

3.3.4 Q(uit and U(pdate your Workfile

At this point, you should be ready to compile and test the small program
displayed on your screen. Press Q for Q(uit, and you will be shown a selection
of three or four options, as shown in display 3.6.

Press U (for U(pdate) to cause the Pascal program you have been working
on to be saved in your workfile on the disk. If you press E, the Editor will ter-
minate and return to the “Command:” world, without saving anything you

30 Orientation for Experienced Programmers

have done with the Editor! Press R to R(eturn back into the “Edit:” world. The
R(eturn option saves you from embarrassing problems if you press Q(uit by
mistake while in the “Edit:” world. After selecting U(pdate, you will hear some
clicking of the disk while your program text is saved in the Workfile, and then
you will be back in the “Command:” world. (The W(rite command, if
available, is useful to record a copy of your text without leaving the Editor.)

it
Ulpdate the workfile and leave
Elxit without updating

Rieturn to the editor vithout updating
Hirite Yo a file name and return

Display 3.6: Options for Q(uit command of the “Edit:” world. The normal choice is to U)pdate a file after you
edit it. But if you have made a mistake during your editing you can completely ignore all effects of the editing ses-
sion by E(xiting without saving the file. You can R(eturn to the editor if you did not really intend to leave. And,
you can Wirite the edited file out to a named file instead of the current work file.

3.3.5 R(un your Program (If Possible)

Now press R for R(un (from the “Command:” world). The result should be a
notice at the top of the screen saying:

Compiling . . .

followed by much clicking and some additional displayed information. I will
defer explaining what is happening here until Chapter 6. For now, these
displayed lines tell you that the Compiler is busy trying to translate your
Pascal program in the workfile into the code form that can be executed by the
computer. If the Compiler finds no errors, it will save the executable code form
of your workfile on the disk, and then will cause your program to start
executing (ie: to start running). You will be notified that this is happening by
the legend “Running . . . ” at the top of the screen.

3.3.6 Coping with a Compile-time Syntax Error

If the Compiler does find an error in your Pascal program, it will not be able
to save the code form of your workfile on the disk, nor will it start execution of
your program. Instead, after more clicking of the disk you will find yourself
presented with a message and an opportunity to either continue the compila-
tion or to go back in the “Edit:” world. If you decide to continue the compila-
tion by pressing RETURN, then you may find that some later error messages
are spurious, caused by the first error. But, by continuing the compilation,
especially with a printer and a long program containing few errors, you can
take notes about what to fix when you later enter the editor.

If you answer the compiler’s query about continuing the compilation by
entering an E, you will enter the editor with the cursor pointing automatically
at the end of the logical item where the Compiler found the error. (If your copy
of the UCSD Pascal System has been preset for “student” use, this action
occurs automatically.) A message displayed in the prompt line will give an ex-

Saving your Workfile in the Disk Directory 31

planation of the error the Compiler found. An error found by the Compiler is
called a syntax error because it indicates that you have violated one or more of
the formal syntax rules which describe how a Pascal program should be con-

more details on this point. Press the SPACEBAR to display the “Edit:" world’s
prompt line so that you can fix the problem.

These comments about return to the editor from a compilation refer to
the operation of the standard Screen-Oriented Editor of the UCSD Pascal
System. As you become more familiar with the system and need to edit pro-
grams or text files which will not fit in memory all at once, you may want to
use the large file editor, which comes on the UCSD Pascal System diskettes
with the name “L2.CODE." This L2 editor understands all the commands of
the standard’ Screen-Oriented Editor, although on leaving the editor the
“W" option is not available, it has a few additional commands which enable
you to manipulate files larger than the memory available in your computer.
For documentation, see the main system reference manual for the UCSD
Pascal System.

When using the L2 editor as the system editor by changing its name from
[2.CODE to SYSTEM.EDITOR with the Filer, the automatic placement of
the cursor at the precise spot of a compilation error does not occur. This
restriction applies to versions of the L2 editor available at the time of
publication of this book.

3.4 Saving your Workfile in the Disk Directory

Eventually, you will finish editing and testing revised versions of your pro-
gram. You may then wish to start working on a completely different program,
but may also wish to save the completed program so that it can be used again
at a later time. To do this, use the F (for F(ile) command when in the “Com-

Filer Glet, S(ave, W(hat, Nlew, L{dir, R(en, Clhng, T(rans, DCate, Qluit (R |

Display 3.7: The prompt line just after entering the Filer.

mand:” world. After some clicking of the disk, you should receive the display
shown in display 3.7. The prompt line may contain only the initial letters of
these commands if your screen is narrower than 80 columns.

3.4.1 First Check your Disk Directory Using L(ist

Press L (for L(ist) to see the list of titles of all the files currently stored on
your disk. The L(ist command requests data input whereby you tell it which
disk to refer to. In the UCSD Pascal System, each disk has a volume identifier,
which is the name of the disk. This allows you to use two or more disks even
on a machine that has only one disk drive. For the present example, respond to
the prompt requesting a volume identifier by pressing “:” (the colon key)
followed by RETURN. The Filer will respond by listing the directory showing

32 Orientation for Experienced Programmers

your disk’s contents. Display 3.8 shows approximately the directory listing
you should receive at this point.

The number of entries with names prefixed by “SYSTEM.” will differ
depending upon whether your beginner’s version of the UCSD Pascal System
uses one or two diskettes. Note the two directory entries labelled
SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE. These are the two files
associated with your workfile. The first is the form saved by the Editor when

;é’:er‘ Glet, Save, What, W(ev, L(dir, R(en, Clhng, T(rans, Dlate, Gluit (F 5§
L]

SYSTER FILER 32 8-Jan-79
SYSTEM COMPILER 69 8-Jan-79
SYSTENM. PRSCAL 38 8-Jan-79
SYSTEM EDITOR 45 8-Jan-79
SYSTEN POP-14 28 B-Jan-79
SYSTEN. CHARSET 3 29-Jan-78
SYSTEM LINKER 21 8-lan-79
SYSTEN SYNTAYX 4 8-Jan-79
SYSTEM LI1BRARY 17 {-Jan-79
STRINGY. TEXY & 8-Jan-78
GRAPHY TEXT ¢ 8-Jan-79
6RAPK1. CODE 2 8-Jan-79
TURTLE CODE 1-Jan-79
QUI2{ CObE 8-Jan-79
ORIENTER CODE 3-Noy-78
EDITDEND. TEXT 14-Dec-78
CONPDENG TEXT 26-Dec-78
STRINGY CODE 6-Rpr-79
SYSTEN WRK. TEXT 7-Nay-79
SYSTEN WRE CODE 2 7-May-?9
20728 filesClisted/in-dird, 357 blocks used, 127 unused

Display 3.8: Response to the Filer's L(ist Command.

you use Q(uit followed by U(pdate starting in the “Edit:” world. The second is
the executable form of the same Pascal program, which was saved on the disk
by the Compiler.

3.4.2 Now S(ave the Workfile

Press S (for S(ave) and note the prompt for a file title on the line just below
the top line. If the workfile has not yet been S(aved in a previous version, you
will receive the message shown in display 3.9. You type in a name followed by
RETURN to complete the S(ave command. If you do not wish to lose a

Save as what file 7 §

Display 3.9: S(ave command’s prompt when the workfile has not previously been saved,

Saving your Workfile in the Disk Directory 33

;%;ET Bet, S(ave, W(hat, Nlew, L{dir, R(em, C(hng, T(rans, D(ate, QCuit [F 13 |
SYSTER FILER 32 8-lan-78
SYSTER CONPILER 63 8-Jan-78
SYSTER. PASLAL 8 &-Jan-79
SYSTEM EDITOR 45 8-Jan-79
SYSTEN. PDP-11 24 8-Jan-79
SYSTERM CHRRSEY 5 29-Jan-78
SYSTEN. LINKER 24 8-Jan-78
SYSTEN. SYRTRX 14 8-Jan-79
SYSTEN LIBRARY 17 1-Jan-79
STRINGL TEXT 4 8-Jan-78
GRAPHL. TEXY 4 B-Jam-79
GRAPHL. CODE 2 8-Jan-79
TURTLE. CODE 18 1-Jan-79
QUIZ24 CODE 4 8-Jan-79
ORIENTER CODE 12 3-Nov-78
EDITOEMD TEXT 4 14-Dec-78
COMPOEND TEXT 6 26-Dec-78
STRINGL CODE 2 6-Rpr-79
NERRANE TEXT 4 7-May-73
NEWMANE CODE 2 7-May-73
28/28 files(listed/in-dir), 357 blocks used, 127 unused

Display 3.10: Listing of directory after S(ave of “NEWNAME".

Save a5 NEWNAKE > §

Display 3.11: S(ave command’s prompt if file of the same name is already on the disk.

previously S(aved workfile, use a name different from any other already in use
in the disk’s directory. Suppose you respond to the prompt by typing in
“NEWNAME" followed by RETURN. Now repeat the L(ist command to see
the result, which is shown in display 3.10.

Notice that the entries which had been shown as SYSTEM.WRK.TEXT and
SYSTEM.WRK.CODE are now shown as NEWNAME.TEXT and
NEWNAME.CODE, respectively. If the Filer had found a previously saved file
of the same name, it would respond with a different prompt for the S(ave com-
mand, as shown in display 3.11. You can respond to this prompt either with Y
(for Y(es) or N (for N(o). If yes, then the previously saved files called
NEWNAME.TEXT and NEWNAME.CODE will be removed from the disk
directory, and your new version of the workfile(s) will be given the names:

NEWNAME.TEXT
NEWNAME.CODE

If you respond to the prompt with no, the Filer will prompt with:

Save as what file?

34 Orientation for Experienced Programmers

as described above, and you can then use almost any new name not already in
use in the disk directory. Note, however, that a workfile name cannot be
longer than 10 characters (plus “.CODE” or “ TEXT").

3.4.3 What to Do if You Want to Change a Previously Saved
Workfile

You often will save a workfile only to realize that you need to make changes
in that workfile at a later time. The Filer's G(et command allows you to
designate the name of an old file as the current name associated with the
workfile. Press G (for G(et) and note the prompt message that appears in
response. If the response is:

Get what file?

then you can type in any name previously entered when S(ave was used in
connection with a workfile (that still is stored on your disk). If it finds the
directory entry for the file name you give it, the Filer will respond with:

Text and Code files loaded
or:
Text file loaded
or:
Code file loaded
as the case may be. If the Filer prompts with:
Throw away current workfile?

you have the opportunity to avoid possible loss of your files named
SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE by typing N (for N(o). If
you type Y (for Y(es) the Filer will discard your old unsaved workfile, and then
prompt you for the file name you want loaded as your new workfile as
described above.

If you change your mind after starting the G(et command, you can return
back to the “File:” world by pressing the ESC key, or by typing in the name of
a nonexistent file followed by RETURN. After using G(et to establish the name
of a previously saved file as the current workfile, you can leave the “File:”
world using Q(uit. This returns you to the “Command:” world. If you then use
E(dit, the Editor’s world will be entered, and the first screen-full of the now
current workfile will be displayed. If you use C(ompile, instead of E(dit, the
Compiler will proceed to try to translate the form of your now current
workfile into executable form. If the Compiler succeeds, it will save the

Suppress Execution of the Maze at Bootload Time 35

resulting executable file, as usual, as SYSTEM.WRK.CODE. Regardless of
whether the Compiler succeeds, use of the Compiler will cause any previous
file with the directory name of SYSTEM.WRK.CODE to be removed from the
directory.

If, upon reaching the “Command:” world after leaving the “File:” world,
you use the R(un command, the system will attempt to execute the currently
saved form of your workfile without using either the Compiler or the Editor. If
there is no code form of the workfile on the disk, the Compiler will be invoked
to translate the text form of the workfile into executable form.

3.5 Suppress Execution of the Maze at Bootload Time

When you first receive the UCSD Pascal System, the “Maze:” world may
always appear immediately after you bootload the system. As soon as you feel
familiar with the idea of single character commands, you will probably want
to dispense with the “Maze:” and “Date:” world exercises. To do this, enter the
“File:” world by using the F(ile command while in the “Command:” world.

Now use the L(ist command, as described earlier in this chapter, and note
the entry called SYSTEM.STARTUP. That entry is a special reserved name
used with the code form of a program workfile called ORIENTER. The
ORIENTER workfile contains the programs that create both the “Maze:” and
‘“Data:” worlds. You can retain that file, but suppress its automatic execution
at bootload time, by changing its name back to ORIENTER.CODE. To do
this, press C (for C(hange). The Filer will prompt with:

Change what file?
You answer by typing in:
SYSTEM.STARTUP
followed by RETURN. The Filer will respond with:
Change to what?
You answer by typing in:
ORIENTER.CODE

followed by RETURN.

If you have followed these steps without error, the final result will be indicated
by a message verifying that the change has been made. Having made that
change, you should no longer have a file called SYSTEM.STARTUP on your
disk. You might want to check to make sure that this is correct by using the
Filer’s L(ist command.

It may help to explain what we have been doing here. When you bootload

36 Orientation for Experienced Programmers

the System, it is programmed to look through the disk directory for an exe-
cutable file called SYSTEM.STARTUP. If one is present, the program contain-
ed in that file is loaded into memory and executed automatically. If no such file
is present on the disk, then bootloading takes you immediately to the “Com-
mand:” world. Now, try bootloading again to verify that this indeed is what
happens.

You may wish to get rid of the file containing the “Maze:” and “Data:”
worlds entirely, in order to release space on your disk for other uses. To do
this, see Chapter 5, File Manager, regarding the R(emove command.

4 Screen Editor

4.1 Goals for this Chapter

To use the UCSD Pascal System effectively, you need to be familiar enough
with the Screen Editor to use it as a convenient tool. The main goal of this
chapter is to provide you with a reference summary of how the Editor is used.
In each section, the order of presentation starts with the Editor’s facilities you
are likely to use most often. See Appendix C.1 for an alphabetic summary of
the Editor’s commands with references to descriptive text in this chapter.

Many beginners do not bother to learn how to use all the available facilities
of the Editor. While you can make extensive use of the UCSD Pascal System

by knowing how to use only a small part of the Editor’s facilities, it will prob-
ably save time to become familiar with each of the Editor's commands.

Specific goals for this chapter include the following:

® Learn to use each of the principal commands of the Editor to the point
where you are comfortable in using them as tools.

® Edit a file established as the current workfile by the Filer, one named
at the time when the Editor starts up, and a new file not previously
stored on the disk.

® Terminate the Editor by updating the current workfile, by exiting
without update, and by writing a named file to disk. Check using the
Filer to see what happens in each case.

38 Screen Editor

4.2 Editor Overview

The Editor is the UCSD Pascal System’s principal tool for creating, reading,
and changing text files, ie: files of information in the form directly readable by
humans when displayed. There are two versions of the Screen Editor. The ver-
sion provided as a standard part of the System is designed to work with the
entire contents of a text file in the computer’s main memory as one unit. A
large file version of the Screen Editor is also available as part of the advanced
version of the System. Even on a machine with only 48 K bytes of memory
(and no part of the UCSD Pascal System in read-only memory) the beginner’s
version of the Screen Editor can usually handle more than 250 lines of Pascal
program text in one file. The Compiler provides a convenient means for com-
bining several of these files into a single large program, so that there is minimal
need to use the advanced large file version of the Screen Editor.

Since your display screen cannot display the entire contents of most
workfiles, the screen is used as a movable window through which you can
view the contents of the workfile. You point at the place in the workfile you
wish to view by moving the cursor up or down with the commands provided.
When moving the cursor has the effect of shifting to a text line not currently
'displayed on the screen, the Editor automatically moves the window so as to
display the section of text to which the cursor has been moved. In addition to
various commands provided to move the cursor form place to place in the
workfile, there are also commands with which you can change the content of
the workfile at the place where the cursor points.

The simplest of the cursor movement commands are the up-pointing and
down-pointing arrows (or their equivalents described for your keyboard in
Appendix A or B), and the arrow keys pointing right and left. Though the con-
tent of the Editor’s window is displayed as a sequence of lines as in a page of
printed text, you can think of the workfile stored in the computer’s memory as
if it were stored on one, long, thin, continuous strip of paper, with all the lines
connected end to end. Therefore, when the cursor is at the right end of one
displayed line, pressing the right arrow once moves the cursor to the left end of
the next line below on the display. Similarly, when the cursor points to the
left-most nonblank character in a line, pressing the left arrow returns you to
the right end of the line above.

In addition to the four arrow command keys, there are several other com-
mands for moving the cursor. If you know of a word or other string of
characters stored in the workfile, you can use the F(ind command to scan
through the workfile to look for that word or string rapidly. You can also S(et
markers in the workfile and use the J(ump command to shift the displayed win-
dow to any one of the markers. Markers at the B(eginning and E(nd of the
workfile are built into the Editor and you do not need to use the S(et command
to establish their positions. There is also a P(age command which allows you
to shift the displayed window one screen-full at a time. The direction of the
shift depends on whether the direction flag in the upper left corner of the
screen points right (“> "), ie: toward the end of the workfile, or left (“<"), ie:
toward the beginning.

Editor Overview 39

Press the keys containing the brackets “>" and “<" to change the pointing
direction. Press the TAB key, if your keyboard has one, to shift the cursor
eight columns to the right or left in the workfile, depending on which direction
the flag indicates. Press the RETURN key to command the cursor to move to
the left-most character of the line following the line where the cursor currently
points. Type a number before any of these commands to cause the command
to be repeated any number of times. The number will not be echoed on your
screen as you type.

Most of the other commands of the Editor are used to change the contents of
the workfile. I(nsert allows you to type text into the workfile starting at the
position immediately before the character pointed at by the cursor when you
enter the I(nsert command’s world. Df(elete allows you to remove characters
from the workfile, beginning where the cursor points when you enter the
D(elete: world, and ending where the cursor points when you press ETX (or
equivalent on your keyboard). R(eplace is an extension of the F(ind comand.
This allows you to specify a string of characters to substitute for the word or
string which is found after scanning through the workfile. C(opy is used to
insert into the workfile a passage of text that has previously been saved temp-
orarily in a buffer area of the computer’s memory following an I(nsert or
D(elete command. C(opy can also be used to insert a portion of the text stored
in another named workfile. The A(djust command allows you to shift the
entire line where the cursor is currently located to the left or to the right. The
eX(change command lets you type over characters stored in the workfile on a
one-for-one basis. Therefore the steps needed to make changes in the text are
simplified.

When you finish editing a workfile and need to move on to other activities,
use the Editor's Q(uit comand. This command offers several options. The
U(pdate option causes the text stored in the computer’s memory to be saved on
the disk under the reserved workfile name SYSTEM.WRK.TEXT. Any
previous version of your workfile will be lost when this happens! The E(xit
option allows you to leave the Editor without changing anything on the disk.
In this case, the text stored in the computer’s memory is lost! The Wi(rite
option allows saving the text stored in the computer’s memory under a name
that you can designate. This option permits you to continue editing without
having to restart the Editor. (W(rite is not available in the large file [“L2"]
editor.) The R(eturn option is provided to allow you to continue editing even if
you trigger the Q(uit command by pressing Q inadvertently.

4.3 Cursor Movement Commands

To provide an example large enough to give you worthwhile practice with
the Editor, I will use the workfile EDITDEMO, which is supplied in one of the
disk files associated with your copy of the system. This workfile contains a
Pascal program which combines the programs REPEAT1 and REPEAT2,
which are presented in Chapter 3 Section 8 of the book Microcomputer Pro-
blem Solving Using Pascal, referred to in Chapter 1 of this book. Each of these
two programs has been changed into a procedure in order to produce a

40 Screen Editor

workfile long enough to occupy at least two windows when viewed on a
24-line display screen. The program contained in the EDITDEMO workfile can
be compiled and executed, but it is supplied to you primarily for use as a
starter file for practicing with the Editor.

Note that the text of the two programs (procedures) has been altered
slightly from that printed in the Bowles textbook. This has been done to
keep all lines of text within the boundaries of a display which is 40 columns
wide. Most microcomputer displays offer 64 or 80 columns screen width.
We restrict the presentation here to 40 columns because that is the screen
width available on the popular Apple II computer. If you are using an
Apple 11, or another machine with only 40 columns screen width, see the
sections of Appendices A and B regarding your machine for notes on how to
simulate a screen 80 columns wide using the UCSD Pascal System.

To get started, enter the Filer from the “Command:” world by pressing F.
Then use the G(et command to establish EDITDEMO as your current
workfile. Next Q(uit from the Filer, and press E (for E(dit) from the “Com-
mand:” world. The result should be as shown in display 4.1.

dEdit Rid;st Clpy Dilete Flind I(nsrt Jinp R{place luit Xchng 2(ap [E 6F)
BROGRAN EDITOEND,

PROCEDURE REPERTY,
URR S, S6°STRING,
L, N INTEGER,
BEGIN
NRITELN(
'TYPE ANY STRING FOLLONED BY CRET)’

)l
READLN(S),

'
L =LENSTH(S),
REPEAT

$6=COPY(S, {, W)
WRITELN(SG),
N o=k,
UNTIL W)L
END (SREPERTY®),

PROCEDURE REPERT?,
VAR § STRING,

PROCEDURE REVERSE,

Display 4.1: The display on entry to the Editor with the EDITDEMO workfile.

4.3.1 Arrow Commands and their Relatives

Many machines used with the UCSD Pascal System have keyboards which
include four arrow keys intended for moving the cursor around on the screen.
The up arrow moves the cursor up one line on the screen, the down arrow one
line down. The right and left pointing arrow keys similarly move the cursor
one position to the right or left. If your keyboard lacks any of these keys, see

Cursor Movement Commands 41

the appropriate sections of Appendices A and B for instructions on how to
simulate the actions of these keys on your keyboard. If you want a more
detailed introduction to the use of the cursor positioning arrow keys, see the
sections of Chapter 2 which present the Maze example.

As an exercise at this point, note a specific place in the displayed text of the
EDITDEMO program. Move the cursor to that place using the arrow keys.
Notice that movement to the right or left will only place the cursor within the
group of characters starting with the left-most non blank character on a line,
and ending with the blank following the right-most non blank character. This
is intended to be a convenience to users, since the long runs of blank characters
displayed elsewhere on the screen are not actually stored in the computer’s
memory. Vertical movement through the runs of blanks is permitted however.
For example, start with the cursor pointing at the “G” in “STRING” within the

“"orr

down arrow 6 times to reach “;” in the line:

SG:=COPY(S, 1, N);
Now press the up arrow once, leaving the cursor in the line just above the “;”.
Next press the left arrow once, and note that the cursor jumps to the “T” in
“REPEAT".

4.3.2 Repeated Execution of an Arrow Command

On many keyboards, there is a facility automatically allowing you to
simulate repeated pressing of some keys, often including the arrow keys. This
is sometimes accomplished by holding down the key to be repeated for about
one-half second or more. On other keyboards, there is an auxiliary REPEAT
key which must be pressed in conjunction with the key you want to be
repeated. If your keyboard has this facility, try using it along with the arrow
keys for easier movement of the cursor. If your keyboard lacks the repetition
feature, the Editor program provides a partial substitute. To see how it works,
place the cursor again on the “G” in “STRING” in the line:

‘TYPE ANY STRING FOLLOWED BY <RET>'

within the REPEAT 1 procedure. Now press the “6” key followed by the down

"1y
.

arrow. The cursor should again jump to the “;” in:
SG:=COPY(S, 1, N);

You can cause repeated execution of many Editor commands by first typing in
the number of repetitions you want.

4.3.3 Moving the Cursor Off the Screen

Try moving the cursor to the bottom line of the screen. Now press the down
arrow, and note that the entire content of the screen shifts up one line. This is

42 Screen Editor

equivalent to moving the displayed window down in the text by one line, thus
revealing an additional line at the bottom of the screen, and hiding a line at the
top. Continue pressing the down arrow until the line:

PROCEDURE REPEAT2;

appears on the top line of the screen. On a 24-line screen, the effect should be
as shown in display 4.2.

PROCEDURE REPEATZ;
URR S STRING,

PROCEDURE REVERSE,
(#REVERSE THE ORDER OF CHRRRCTERS
NS¢}
URR WB ME IMTEGER,
(sBEGIN AKD END POINTERSS)
SRUE CHAR,
BEGIN
NB =1,
NE =LENGTH(S),
REPERT
(SEXCHRNGE CHAR'S WB & WE,
SHIFT N8 & NE &)
SAUE =SINE),
SINE) =SINB],
SCHB] =SRUE,
NB =NB+{,
NE =NE-1,
UNTIL NB=ME,
END C(HREVERSES),

EGIN CoREPERTZY)

Display 4.2: The display of EDITDEMO following multiple uses of the down arrow key.

The upward shifting of the screen contents is called scrolling, as if the
displayed text were actually on a scroll of paper being pulled upwards behind
the screen’s window. You cause the screen content to scroll upwards by one
line with the Editor, if the cursor is located in the bottom line of the screen and
you press the down arrow. This keeps the cursor within the displayed win-
dow. Continue pressing the down arrow (or use the repeat feature) causing the
text to scroll upwards until it stops scrolling. The cursor will then be in the last
line of text in the workfile, presenting the display shown in display 4.3.

Shifting the cursor off-screen in the other direction is more awkward on
most machines because they lack facilities for scrolling downwards. To see
what happens, move the cursor upwards carefully until it rests in the top line
displayed on the screen. Now press the up arrow one more time. The result
should be as shown in display 4.4.

In this situation as in several others, the Editor solves the problem of
displaying the new cursor position by clearing the screen and then re-
displaying to show a window with the cursor in the middle line of the screen.
On slower terminals, this operation can take considerable time.

Cursor Movement Commands 43

BEGIN ($REPERTZ®)
WRITELKC
'TYPE RNY STRING FOLLONED BY CRET)’
)}
RERDLN(S),
RHILE LENGTH(S))8 DO
BEGIN
REVERSE,
RRITELN(S)
WRITELN,
WRITELNCTYPE ANOTHER STRING'),
RERDLN(S),
END,
END (SREPEAT2®),

BEGIN (sNAIN PROGRANS)

WRITELNC’START EDITDEMO"),
WRITELN,
REPERTH,
WRITELN,
REPERT2,

1))

|

Display 4.3: The display of EDITDEMO after scrolling to the end of the workfile.

Edit Ad;st Clpy Diiete Flind Ilnsrt Jimp R(place Qurt Xichng 2Cap
HE =LERBTH(S),
REPERT
(SEXCHAMGE CHRR‘S NB & NE,
SHIFT WB & NE)
SRUE =SINEL;
SIMEY:=5[NB);
SINB) =SRVE;
¥ =HB+i,
!E - =IE*1,
UNTIL WNB=NE;
END (SREVERSES),

i
BEGIN (SREPERTZS)
HRITELN(
*TYPE ANY STRING FOLLONED BY (RET)
)
READLNCS),
WHILE LENGTH(S))8 DO
BEGIN
REVERSE,
WRITELNCS),
WRITELN,
WRITELNC TYPE ANOTHER STRING'),

Display 4.4: The display following the use of the up arrow in the top line.

4.3.4 Using SPACE, BACKSPACE, and RETURN

The SPACE bar can be used to substitute for both the right arrow and the
left arrow when you are in the “Edit:” or “Delete:” world. When the Editor’s

44 Screen Editor

direction flag, located in the upper left corner of the screen, points forward
(“>") the SPACE bar substitutes for the right arrow. When the direction flag
points backwards (“< "), ie: toward the beginning of the workfile, the SPACE
bar substitutes for the left arrow.

The BACKSPACE key is equivalent to the left arrow when you are in the
“Edit:” or “Delete:” world. The Editor’s direction flag has no effect on the
operation of the BACKSPACE key. On some keyboards which do not have a
BACKSPACE key, the combination CTRL/H has the same effect. See Appen-
dix A or B for your machine.

The RETURN key causes the cursor to jump to the beginning of the next
line. If the Editor’s direction flag points forward, then the RETURN key moves
the cursor to the first nonblank character on the next lower line in the
workfile. The displayed window is scrolled upwards if necessary to display the
next line. If the Editor’s direction flag points backwards, then the RETURN
key moves the cursor to the first nonblank character on the previous line in the
workfile. The screen window is redisplayed if the RETURN key is pressed
when the cursor is located in the top line of text on the screen and when that
line is not the first line in the workfile.

You might wonder why no special provision has been made to cause the cur-
sor to jump easily to the end of the next or previous line in the workfile. This
can be done by the simple expedient of jumping to the beginning of the line
following the line whose end you wish to jump to. Then press the
BACKSPACE (or left arrow) key once.

4.3.5 The TAB Key

The TAB key is used as an express version of the SPACE key in the Editor.
Each time you press TAB, the cursor is moved until it coincides with a column
at which a new group of eight columns starts. Thus the TAB stops are located
at columns 1, 9, 17, 25, 33,If the Editor’s return flag points forward,
then the TAB moves the cursor toward the end of the workfile. If necessary it
jumps from the end of one line to the beginning of the next. If the flag points
backwards, then the TAB moves the cursor towards the beginning of the
workfile. In some versions of the Editor, it will be possible to change the posi-
tions of the TAB-stop columns. At the time this book is being written, that
feature is not ready to be released to users.

4.3.6 The P(age Command

The P(age command is an express equivalent of the up arrow and down
arrow commands of the “Edit:” world. It is similar in concept to the TAB key
command, but moves the cursor whole lines up or down in the workfile
depending upon the current status of the Editor’s direction flag. If the direction
flag points forward, then the P(age command causes the display and the cursor
to move forward in the workfile as many lines as the screen window is high.
Thus, if the screen is 24 lines high, the displayed window will show the next 24
lines in the workfile. The cursor’s position on the screen will remain the same,
but its logical position will be moved forward by 24 lines. Similarly, if the

Cursor Movement Commands 45

direction flag points backwards then the P(age command will jump to the
previous group of screen-height lines. At the end of the workfile, the P(age
command may not display a complete window full if there are not enough
additional lines available in the workfile to fill the screen. In that case, the cur-
sor will be placed at the end of the file, and only the top half of the window
will be filled.

4.3.7 The J(ump Command and Its Relatives

The Editor’s J(ump command provides a means by which to move the cursor
quickly from one place in the file to another without having to use the up or
down arrow commands repeatedly. Here is the prompt line displayed by the
J(ump command:

> JUMP: B(eginning E(nd M(arker <esc>

Respond to this prompt with B(eginning, and the cursor will be moved sudden-
ly to the beginning of the workfile. Similarly, E(nd places the cursor at the end
of the workfile. In both cases, the screen window will be redisplayed if
necessary. If you respond with M(arker, the Editor will respond with the
following prompt:

Jump to what marker?

This refers to markers that you can place anywhere in the workfile using the
S(et command. As used with many commands in the Editor, you can press the
ESC key to simply terminate the J(ump command’s world without doing
anything.

4.3.8 The S(et Command Used for Setting Markers

The S(et command has several different purposes. These are mainly related
to setting switches which control how the Editor operates. It can also be used
to read the current values of those switches. For purposes of this section on
cursor movement commands, we will only be concerned with setting markers
into the workfile for use with the J(ump command. Various other switches that
can be reached with the S(et command are intended mainly for use in word
processing applications and are discussed later in this chapter.

To establish a marker, use the S(et command when in the “Edit:” world. The
result will be the prompt line:

> Set: E(nvironment M(arker <esc>
If you respond with M(arker, the Editor’s prompt will be:
Set what marker?

to which you can respond with a number, name, or other short identifier

46 Screen Editor

terminated by RETURN. The position of the marker will be the position of the
cursor at the time you enter the S(et command.

As an example go through the sequence of steps needed to display the por-
tion of the EDITDEMO file shown in display 4.4. Place the cursor in the blank
line between “END (*REVERSE*);” and “BEGIN. . .” which is two lines
below. Now use S(et to establish a marker simply called “1.” (Do not type in
the quotes when responding to the command.) You can check to see the result
of doing this by using the E(nvironment option of the S(et command. The
response from this option should be as shown in display 4.5 if you have suc-
cessfully established a marker called “1.” You can terminate the E(nvironment
option and the S(et command by pressing SPACE.

YEnvironnend' (options} Cetx) or {sp) to leavel
Rluto indent True
Flilling False
L{eft margin 8
R(ight margin 79
Plara margin 5
({ommand ¢h ¢
T(oken def True

968 bytes used, 15928 available

Narkers
1

Date Created 42-44-78 Last Used. 12-14-78

Display 4.5: In the “Edit:"” world. Here is the S(et command’s environment with marker 1 established.

4.3.9 J(umping to Markers

Now use J(ump to move the cursor to the B(eginning of the workfile. The
result should be as shown in display 4.1. Next, Jump to the E(nd of the
workfile, getting something like display 4.3. In this case, the cursor will be at
the very last character position in the workfile, rather than at the beginning of
the last line, as resulted from the sequence of steps that led to display 4.3.

Neither of the displays reached by jumping to the beginning or the end of the
workfile shows the text which includes the marker “1” which was set in the
previous subsection. Now use J(ump, respond to the prompt with M(arker,
and then with “1” followed by RETURN. The Editor will respond with a
display like that shown in display 4.4, and with the cursor at the same position
it had when you established the marker.

Cursor Movement Commands 47

You can establish only a limited number of markers in a workfile, usually 10
in current versions of the UCSD Pascal System. The Editor will keep track of
the logical position of each marker, even when you change the contents of the
workfile. Of course, if you delete a section of text containing a marker, it does
not make sense to maintain the position of the marker. In this case, the posi-
tion of the marker may show up almost anywhere in the text that remains. If
you use more than two or three markers, it will generally be difficult to
remember their logical positions in the text unless you give them names that
suggest their locations. However, the Editor will remember only the first 8
characters of a long marker name. If you want to reuse a marker name at a
new location, simply set it again. If you try to set too many different markers,
the Editor will prompt you on steps to follow in replacing one of the markers
already established. You can always get a listing of the markers currently
established (but not their locations) by using the E(nvironment option of the
S(et command.

4.3.10 The F(ind Command

Often you will want to jump to a position in a workfile where you have not
previously thought to leave a marker. If you remember a small part of the con-
tents of the text near that place, you can easily get there using the F(ind com-
mand. To see how the F(ind command works, using the EDITDEMO file as an
example, jump to the beginning of the workfile (again leading to the display
4.1). Now press F to enter the F(ind command’s world, with the prompt line:

>Find[1]: L(it <target> =>

The Editor now waits for you to type in a pattern string of characters which
will be the target of a fast search through the workfile. Before proceeding fur-
ther, make sure that the Editor’s direction flag points forward, as shown in the
prompt line above. If it does not, press ESC, change the direction flag by press-
ing “>", and again enter the F(ind command.

As an example, respond to the prompt shown above by typing in:

/BEGIN/

The two characters “/” serve to bracket or delimit the string of characters
which are to be found in the workfile, and they are not included in the target.
You can use any special character as a delimiter, including either the single or
double quote symbols. We use the right slash (/) because it is conveniently
located on the keyboard, and it rarely is included in the target of a F(ind com-
mand.
Note that the F(ind command distinguishes between uppercase and lowercase
characters. If you typed in “begin” or “Begin” rather than “BEGIN,” the com-
mand will respond by telling you that it could not find any occurrence of the
target string. _

As soon as you press the delimiter key (“/” in this example) for the second

48 Screen Editor

time, the F(ind command will start searching through the workfile looking for
an occurrence matching the target string you have typed in. If all goes well in
our example, the F(ind command will complete its work and the cursor will be
left pointing at the end of the sixth line of the workfile’s text, immediately
following the target pattern “BEGIN.” If at any time, while typing in your
desired target string, you decide that you wish to terminate the F(ind com-
mand so as to start over again, just press the ESC (escape) key.

4.3.11 Multiple Occurrences of the Target

In many cases, you will pick a target string that occurs more than once in the
workfile. The F(ind command starts searching (in the direction shown by the
Editor’s direction flag) from the current position of the cursor. After F(inding
the first occurrence of the target, the cursor will be displayed immediately
following that target. You may well be looking for a later re-occurrence of the
same target. It is simple enough to repeat the same F(ind comand at this point,
again typing in the same target string. However, there is an easier way.

Continuing our example with the target “BEGIN”, again press F to enter the
F(ind command. Now simply press the S key (for S(ame), and note what hap-
pens. The cursor will jump to the end of the next occurrence of “BEGIN” in the
workfile. Keep doing this several times, noting what happens. Once the last
occurrence of “BEGIN” has been found in the workfile, an error message will
appear in the prompt line at the top of the screen. In further uses of the F(ind
command using the same target, the Editor will refuse to move the cursor any
further.

Now jump back to the beginning of the workfile. This time, press 2 before
pressing F to enter the F(ind command. Note that the F(ind command’s prompt
now appears as follows:

>Find[2]: L(it <target> =>__

with the digit “2” appearing within the square brackets. This is the F(ind com-
mand's repeat factor, showing how many times the search for the target string
will be repeated once typing of the target has been completed. You can type in
any whole number as a repeat factor before typing F. This feature is not
designed to make it convenient to type in large repeat factors, and the value of
the repeat factor will not be shown on the screen until the F(ind command’s
own prompt line is displayed. You can get the result of using a very large
repeat factor without having to think about its value by typing “/” as a repeat
factor. Upon entering F(ind the resulting prompt will be:

>Find[”/"]: L(it <target> =>__

The result of doing this should be to find the last occurrence of the target
within the Workfile.

4.3.12 Finding Backwards

As mentioned earlier, the F(ind command conducts its search in the direc-

Cursor Movement Commands 49

tion shown by the Editor’s direction flag. So far we have been finding items
only in the forward direction. Now jump to the end of the workfile, and then
set the direction flag to backwards by pressing the “< " key. Next, use F(ind
for the S(ame target, noticing that the cursor stops at the end of the last occur-
rence of “BEGIN.” Use F(ind followed by S(ame again (without repeat factor)
and note that the cursor does not move. This is because the search starts from
the current cursor position, and, of course, the first occurrence of the target
found in the backwards direction is the one already adjacent to the cursor’s
position,

To perform a multiple search in the backwards direction, you may find any
of several tactics useful. After stopping at one occurrence of the target, you
can get to the next previous occurrence by using a repeat factor of 2. Another
possibility is to use the up arrow once, thus placing the cursor in the line above
the one where an occurrence of the target has just been found. This has the
effect of putting the cursor at a position in the workfile preceding the target’s
occurence just found, and another application of F(ind followed by S{ame wiil
no longer encounter that occurrence. Just as one can use the infinite repeat fac-
tor [/] to find the last occurrence of the target when going forward, you can
use the same repeat factor when going backwards to find the first occurrence
of the target starting from the end of the workfile.

4.3.13 L(iteral Targets vs Tokens

Unless you use the L(it option of the F(ind command (before typing in the
first delimiter of your target) the Editor will assume that you want to locate a
< target> consisting of one or more tokens. A token may be a complete word,
a number, a special (punctuation) character, or an identifier. In many pro-
gramming languages as in Pascal, an identifier is defined as a string of
characters which must start with a letter, and thereafter may consist of addi-
tional letters or digits. For example,

A
abc
nl123
X25p

are all identifiers in this context. In the F(ind command, the Editor
distinguishes between uppercase and lowercase letters, regardless of the rules
on this subject for any programming language. Thus:

BEGIN
begin
Begin
beGIn

are regarded as four different <target>s.
The F(ind command permits you to string together several different tokens

50 Screen Editor

into a single <target>. Moreover, it is indifferent to the number of blank
space characters between tokens in the workfile. For example, a <target>
typed in as:

S:STRING;

would be matched in the Workfile by any of the following;:

S:STRING;

S : STRING ;

S: STRING;

S: STRING;
or even:

S:

STRING;

In the last of these examples, the <target> appears in pieces shown on two
successive lines. For the purposes of the F(ind command, the end-of-line
marker separating two successive lines is to be regarded as equivalent to one
blank character. This is equivalent to the definition of end-of-line marks in a
file of type text in Pascal.

To understand the distinction between a token and a literal < target>, jump
back to the beginning of the EDITDEMO Workfile. Enter the F(ind command
and use the <target>:

/PROC/

noting that the Editor will claim that this target cannot be found. This is
because the <target> typed in does not match any complete token in the
workfile. Now enter F(ind again, this time pressing the L key followed by the S
key. The cursor will come to rest pointing at the character E within the first oc-
currence of “PROCEDURE”". The L(iteral option of the F(ind comand tells the
Editor to look for a <target> string which exactly matches the <target>
that you type in. In the L(iteral option, blank characters count exactly as they
are found, and all of the <target> string examples shown in the group just
above will be regarded as different.

4.3.14 The “=" Key Command

After finding a <target> that you want, it may sometimes be more con-
venient to have the cursor placed where the < target> begins rather than at its
end. Press the “=" key, when this situation is desired, and the cursor will be
moved to the beginning of the <target>. In fact, the “=" key command
serves as an equivalent of a jump to beginning of the “target” key even after

you have used several other cursor movement commands following the F(ind.

Commands which Change the Workfile’s Contents 51

(However, the destination of the “=" key command will change to the begin-
ning of the most recent insertion if you use the I(nsert command.)

4.3.15 The V(erify Command

The V(erify command is used to redisplay the contents of the Editor’s win-
dow, placing the cursor as near to the center of the screen as is sensible. Occa-
sionally, the Editor will lose track of characters displayed on the screen which
should have been moved. If you have any doubt about the correctness of the
displayed text following any command that changes the content of the
workfile, use the V(erify command to get a fresh display. The window
displayed by the V(erify command will be a correct representation of the text
stored in the computer’s memory.

4.4 Commands which Change the Workfile’s Contents

All of the commands described in this section are designed for use in chang-
ing the contents of the workfile copy currently stored in the computer’s main
memory. All of the commands described in the previous section are used for
moving the cursor from place to place in the workfile, but they do not change
the contents of the workfile. Some of the commands described in this section
are designed so that you can change your mind after altering the workfile con-
tents, and can return to the status of the workfile as it was before the command
was entered.

Remember that the changes you make using the commands described in this
section affect only the copy of the workfile in the computer’s active memory.
They have no affect on any copies stored on a disk. Changes on the disk are
only made through the Q(uit command which is described in the next major
section of this chapter. In general, it is a good idea to save the results of your
editing changes in the workfile on the disk periodically, (eg: once every ten
minutes or so). If instead you work without saving the workfile for a long
period, you leave yourself vulnerable to losing all your work during that
period if the electric power should fail. Since the main memory of most
microcomputers retains its stored information only as long as the electric
power is maintained, even a momentary failure of power could result in the
loss of your work. If you save your work every ten minutes or so, you will
only lose a few minutes worth of work in case of a power failure.

4.4.1 I(nsert

The I(nsert command puts the Editor in a mode allowing you to type infor-
mation into the workfile. All text characters typed while in the “I(nsert:” world
become part of the workfile stored in main memory, if you terminate the
I(nsert using the ETX (End of Text) key. On some keyboards the ETX key must
be simulated, usually with the combination of the CONTROL (or CTRL) and
C keys (see Appendix A or B for details regarding your machine). If, after
inserting a substantial amount of text, you decide to back up and start over
again, the ESC key allows termination of the I(nsert command without saving
anything typed, since the command was last entered. On some keyboards,

52 Screen Editor

ESC must be simulated, usually with the combination CTRL/X (again see
Appendix A or B for details).

The entry of information typed while in the “I(nsert:” world starts at the
position where the cursor points when the I(nsert command is entered. As
noted in the previous section, the cursor’s logical position can never be to the
left of the left-most nonblank character on a line, nor to the right of the posi-
tion immediately following the right-most nonblank character on a line. If the
cursor’s position is between those two limits when you enter the I(nsert com-
mand, the Editor will split the characters already on the same line. The por-
tion starting at the cursor’s position, when I(nsert is entered, will be pushed as
far as possible to the right side of the screen. This is illustrated in display 4.6
using a screen capable of displaying a full 80 characters of text. If your screen
is not as wide, the Editor will only push the right portion of the line as far as
possible within the actual width of the screen. (UCSD Pascal for the Apple II

Yinsert: Text ({bs} a char (deld a line} [{etx) accepts, {esc) escapes]
PROGRAN EDITDEND;

PROCEDURE REPERTY,
VAR S, 56: STRING,

L W INTEGER,
BEGIN

WRTTELNC N
'TYPE ANY STRI] NG FOLLONED BY (RET)

)i
RERDLN(S),
..zii
LosLENGTH(S),
REPEAT
56:=C0PY(S, 1,1},
NRITELM(SE),
l:="‘i;
URTIL 0L
END (SREPERTLs),

PROCEDURE REPEATZ,
VAR S STRING,

PROCEDURE REVERSE,

Display 4.6: A display of the screen after beginning the I(nsert command with the cursor in the middle of a line.
Note how the characters to the right of the cursor have been pushed as far as possible to the right.

Computer is supplied to regard the screen logically 80-columns wide, but
actually displaying only 40 columns at any window.)

Now if you type characters into the gap within the split line, the display will
remain stable unless you type enough characters to fill up the gap. Display 4.7
shows what occurs when you type in more characters than will fit within the
gap.

Notice that the right side of the line where the cursor started remains on the
screen, but it has been moved down one line to make room for additional text
to be entered. Notice also that when this happens, all the subsequent lines in
the workfile are removed from the screen. This should be of no concern to

Commands which Change the Workfile’s Contents 53

you. These subsequent lines of text are still stored in the computer’s memory.
They have been removed from the screen simply to make room for you to type
in as many lines of additional text as you like.

To continue typing at the beginning of the next line below, press the
RETURN key. Notice that the result of doing this is to place the cursor
immediately below the left-most character on the line from which the
RETURN key was pressed. Display 4.8 shows the result of typing in “XX”
immediately after pressing RETURN following the state of the workfile shown
in display 4.7.

dinsert: Text ({bsd a char,{del)> a line} [{etxd accepls, {esc) escapes]
PROGRAM EDITOERD,

PROCEDURE REPEATYL,
URR S, 56.STRING;
L, N INTEGER,
BESIN
WRITELNC 4
'TYPE ANY STRIXyzxyIsyzxyIxyzxy2xyxyIxyzxyIxyIrgzayzxy
pananiTTananaed ¥ NG FOLLOMED BY (RET)’

Display 4.7: Starting with the situation as shown in display 4.6, here we have entered a long series of “xyz"
characters. After the gap in the original line is filled in with new characters, the remainder of the original line is
moved down and the balance of the screen below is cleared.

In some cases you may not wish the indentation of a new line to be the same
as that of the line from which RETURN is pressed. You can change the inden-
tation if you press either SPACE or BACKSPACE immediately following a
RETURN and before typing in any other text. Once you have typed in any
character other than a space or a backspace at the beginning of the line, use of
SPACE or BACKSPACE on that line will no longer affect the indentation.

Quite often you will make errors while typing in characters. If you have not
typed in too many characters following an error, the easiest remedy is to use
BACKSPACE to remove the offending characters from the screen. Each time
you press BACKSPACE while in the “I(nsert:” world, one character previous-
ly typed-in will disappear from the screen. Naturally, after all characters
typed in during the present I(nsert command have been removed, no addi-
tional characters that were previously there will be removed. You can use the
D(elete command to dispose of characters displayed when in the “Edit:” world.

54 Screen Editor

The DEL key (for delete; sometimes labeled RUBOUT) can be used when in
the I(nsert command’s world as an express version of the BACKSPACE key.
Each time DEL is pressed, you remove the entire line where the cursor is
located, and the cursor returns to the end of the previous line. The DEL key
cannot be used to remove the line where the cursor was located when I(nsert
was entered, and an error message will appear on the prompt line if you try to
do this.

Occasionally, you may have reason to type in enough characters on one line
to cause part of the line to be displayed beyond the right limit of the screen, if
that were possible. If you do this, the editor will notify you of the problem by
displaying an exclamation point (!) at the right margin of the screen. The por-
tion of the text that cannot be displayed on that line is still stored in the com-
puter’'s memory. To have it displayed again on the screen, you may wish to
split the line into two by inserting a RETURN in the middle of the line.
Another possibility is to shift the whole line to the left, resulting in a smaller
indentation. This can be done with the A(djust command, which is explained
in a later section.

A common inadvertent error is the attempt to type in nonvisible control
characters, like the cursor positioning arrows. The result of doing this will be
the display of question mark characters. You can erase these characters in the
usual manner, as with any other errors.

Ynsert Text ((bs) a char, (dely & tine) [{etx) accepts, {esc) escapes)
PROGRAN EDITDENO,

FROCEDURE REPERTY,
VAR 5,56 STRING,

L, W INTEGER,
EEGIN

HRITELN(
’;;PE ANY STRIxyzxyzayzxyzayzxyzxyzxyzxyInyzxyzsyzxyIane
X
WG FOLLOMED BY <RET)

Display 4.8: Continuing the insertion of display 4.7, with a RETURN followed by “xx".

4.4.2 D(elete

The D(elete command is used to remove characters from the text stored in
the workfile copy in the computer’s memory. After entering the D(elete com-

Commands which Change the Workfile’s Contents 55

mand, you can move the cursor using any of the cursor-moving comands
described in Section 4.3.1 of this chapter, ie: the arrow commands and their
relatives. J(ump and F(ind do not work within the D(elete command’s world.

We can refer to the position of the cursor, when the D(elete command is
entered, as the entry position. Upon moving the cursor to another position,
note that all the characters between the new position and the entry position are
erased from the screen. As an exampie, consider the first window displayed for
the EDITDEMO workfile, as shown in display 4.1. Place the cursor so that it
points at the “R” in “REPEAT"” in the third line of the program. Enter D(elete,
then press the down arrow twice. The result should be as shown in display 4.9.
Now press the BACKSPACE key several times noting that characters backed
over in this fashion reappear on the screen.

As with the I(nsert command, you can terminate the D(elete command in
either of two ways. Press ETX to complete the job of removing the text en-
closed between the entry position and final position of the cursor, as estab-
lished during use of D(elete. Press ESC to terminate D(elete in such a way as to
leave the workfile just as it was before the D(elete was entered.

elete () (Hoving conmmands) {{etxd to delete, {esc) to abort!
PROGRRN EDITDEMD,

PROCEDURE

oer,
BEGIN
WRTTELMC
*TYPE ANY STRING FOLLONED BY (RET)’

);
READLN(S),

'131;

L =LENBTH(S),

REPERT
$6°=C0PY(S, 1, 1),
WRITELN(SE),
"

UNTIL 0L

EMD (eREPERTLS),

PROCEDURE REPERTZ,
URR S STRING;

PROCEDURE REVERSE,

Display 4.9: Ar example of the D(elete command after pressing the down arrow twice.

4.4.3 R(eplace

The R(eplace command is an extension of the F(ind command. For details on
the F(ind command, see Section 4.3.3. Upon entering the R(eplace command,
the following prompt line is displayed:

>Replace[1]: L(it V(fy <targ> <sub> =>

56 Screen Editor

The bracketed number and “L(it” have the same meaning as they do with the
F(ind command. “<targ>" is an abbreviated reference to the same < target>
as used with F(ind. As in the F(ind command, after typing the < target> ex-
plicitly once, subsequent uses of the same <target> can be made by using S
for S(ame. In fact, you can use F(ind to establish the < target>, and then use
the S(ame option with R(eplace to refer to the same < target> . Similarly, you
can establish the < target> explicitly using R(eplace, and then use F(ind with
the S(ame option to refer to the same < target>. After R(eplace carries out the
same search as accomplished by F(ind, it deletes the found occurrence of the
<target> and then inserts the substitution string indicated by “<sub>". As
an example, you might respond to the prompt shown above by typing in:

/BEGIN//START/

with the result that the first occurrence of “BEGIN” will be changed to
“START.” Although both <target> and substitution strings are of the same
length in this case, they need not be of equal lengths. In fact the substitution
string can be of zero length, with the result that the < target> string will simp-
ly be deleted from the workfile after it is found. As with the F(ind command,
you can use a repeat factor with R(eplace. Use the slash repeat factor (/) to
change all occurrences of the <target> to the substitution string.

Often you will want to change some occurrences of the < target> string but
not all of them in the workfile. You can change the occurrences that are found
by Roeplace selectively by using the V(erify option (abbreviated “V(fy" to keep
the prompt line as short as possible.) The V must be included in your response
to the “R(eplace” prompt before you type in the substitution string. A conve-
nient way to go through most of your workfile with R(eplace, selectively
changing only some occurrences of the <target>, is to use the slash repeat
factor (/) along with the V(erify option. Each time a new occurrence of the
< target> is found, the following prompt will appear:

> Replace[/]: <esc> aborts, R’ replaces, ‘ " doesn’t

You then have three options: press R to complete the replacement of that
occurrence with the <substitution> string, and to cause the cursor to move
on to the next occurrence of the < target> ; press the SPACE bar to bypass the
substitution, but allow the search to continue for the next occurrence of the
< target>; or press ESC to cause the R(eplace command to be terminated at
that point without either making the substitution or continuing the search.

4.4.4 C(opy

The C(opy command is used to insert passages of text that have previously
been saved in the workfile at the cursor’s position. The C(opy command’s pro-
mpt is as follows:

Copy: B(uffer F(rom file <esc>

Commands which Change the Workfile’s Contents 57

showing that the command has two distinct options.

The B(uffer option is used together with a passage of text that is
automatically saved in a buffer area of the computer’s memory whenever you
use either the I(nsert or the D(elete command. Each use of I(nsert or D(elete
saves the associated passage of text in the buffer area, removing the previously
saved contents of the buffer. After entering C(opy, press B (for B(uffer) to
have a copy of the buffer’s saved contents inserted in the workfile at the place
where the cursor points.

It is important to note that the buffer is filled with a new passage of text
whether you terminate the I(nsert or D(elete using either ETX or ESC. Thus is
it possible to mark a passage of text within the workfile using the D(elete for
later copying, but to leave the original passage intact by terminating the
D(elete using ESC.

As an example of the use of the B(uffer option, jump to the beginning of the
EDITDEMO workfile, then carry out the following steps (the display should
be the same as shown in display 4.1). First, move the cursor to point to the “V”
in “VAR” on the fourth line of the display. Now enter Dfelete and press
RETURN twice. The result will be to blank out the two lines:

VAR §,SG:STRING;
L,N:INTEGER;

from the display. Next, press ESC, with the result that the display will again
appear as in display 4.1. Now move the cursor up two lines, so that it points at
the left end of the blank line between “PROGRAM . . .” and “PROCEDURE
.. .". Next, press C for C(opy followed by B for B(uffer. The result should be
as shown in display 4.10. Note that the original two lines following PRO-
CEDURE. . .” still remain in the display. They could have been eliminated in
the same operation by terminating the D(elete command using ETX as usual.

The F(rom file option of the C(opy command is used in a similar manner,
but draws its passage of text from another workfile saved on the disk. If you
use this option, the Editor will prompt you to type the name of the file to be
copied into the current workfile. You can copy just a portion of another
workfile starting at one marker and continuing to a second marker saved in
that workfile. Those markers must be established using the Editor while work-
ing with the other workfile. It is not possible to set markers in the other
workfile without using Q(uit to get out of the Editor, typically updating the
current workfile as you go. The prompt line for the F(rom file option is as
follows:

> Copy: From what file[marker,marker]?

The pair of marker names can be omitted, and the result will be that the entire
file whose name is typed will be copied. Enclose two marker names within
square brackets. This will produce only that portion of the named workfile
enclosed between the two markers copied into the current workfile. Of course,

58 Screen Editor

the first marker should be placed earlier than the second marker in the other
workfile to make this operation sensible.

4.4.5 A(djust

The A(djust command is used to shift selected lines of text to the right or left
without changing their contents. Either single lines or groups of lines can be

Yedit: R(d;st C(py Dllete F(ind I(nsrt Jimp Riplace Quit X(chng 2ap [E 6f)
PROGRAN EDITDENO;
PR 5, 56:STRING;

L, W INTEGER;

PROCEDURE REPERTY,
VAR S, 56 STRING,
LN INTEGER,
BESIN
WRITELN(
“TYPE ANY STRING FOLLONED BY (RETY’

)

RERDLNCS),

n=g,

Lo =LENGTH(S),

REPEAY
$6:=COPYCS, 1 1),
NRITELN(SE),
Wizl

it oL

END (oREPEATES),

PROCEDURE REPEATZ,
URR S STRING,

Display 4.10: The display of EDITDEMO looks like this after using the C(opy command to copy two lines from
the Bluffer.

shifted. The A(djust command has several options shown in its prompt line as
follows:

> Adjust: L(just R(just C(enter <left, right, up, down arrows> <etx>

All of the options refer to the line in which the cursor is located. L(just causes
that line to be left justified, ie: to be pushed to the left as far as possible. R(just
causes the cursor’s line to be pushed as far right as specified by the right margin
currently specified for the Editor. To find at which columns the right and left
margins are currently set, use the E(nvironment option of the S(et command.
C(enter causes the cursor’s line to be placed half-way between the left and right
margins as currently specified.

The left and right arrows cause the cursor’s line to be shifted one position in
the indicated direction each time they are pressed. If you want to shift a group
of lines the same number of positions, start with the top line of the group and
shift it the desired amount using the left and/or right arrow keys. Next, press
the down arrow once for each additional line that you want shifted. A similar

Commands which Change the Workfile’s Contents 59

strategy applies by first shifting the bottom line of the group, then using the up
arrow for the other lines of the group. The best way to see how this works is to
experiment with it.

You terminate the A(djust command using the ETX key or its equivalent.
There are no means provided whereby you can use ESC to escape out of the
A(djust command in a way that will restore the text to the status it had before
the A(djust command was entered.

4.4.6 eX(change

Sometimes it is necessary to change a few characters in the workfile on a
one-for-one basis. The eX(change command allows you to simply type over
characters already in the workfile without going through the complications of
using D(elete followed by I(nsert. Press “X” to enter the eX(change command.
Display 4.11 exemplifies how the eX(change command is used.

Jeichange. TEXT ({bs) a char) [{esc) escapes; (etx) accepts]
PROGRA® EDITDENG,

PROCEDURE REPERTY,;
VAR S, S6: STRING;
L N INTEGER,
BEGIN
MRITELMC
“type any strfU6 FOLLONED BY (RETY
)

READLICS),

N=y;

L =LENBTH(S),

REPEAT
$6:=COPY(S, 1, M),
WRITELN(SE),
Nozieg,

UNTIL WL

END (SREPEATL®),

PROCEDURE REPERT2,
UAR S STRING,

PROCEDURE REVERSE,

Display 4.11: An illustration of the eX(change command,

To reproduce this example, jump to the beginning of the EDITDEMO workfile as in display 4.1. Move the cur-
sor to point at the “T" at the left end of the long line beginning ' TYPE ANY . . .I". Now enter eX(change by typ-
ing “X". Next, type “type any str". If your keyboard does not have lowercase characters, any alternative string
will do just as well.

Each character typed replaces one that had been in the workfile when the eX(change command was entered.
Use BACKSPACE to wipe out one of the newly typed characters, restoring the original character to the screen.
When you have no further characters to exchange, press ETX to make the changes permanent. Press ESC to
cancel any changes made so far by the eX(change command, and to restore the text of the workfile to the status it
had before the eX(change command was entered.

4.4.7 Z(ap
The Z(ap command is designed to be used following F(ind, R(eplace, and

60 Screen Editor

I(nsert commands. [Caution: do not try to use Z(ap if you follow any one of
these three commands with any other command that changes the text of the
workfile, or any command that moves the cursor — the results will be hard to
predict.] If the most recent text changing command was I(nsert, Z(ap deletes
the text that was inserted. Thus, if you end an insertion using ETX, and then
realize that you made a mistake, Z(ap allows you to start over again. If the
most recent command was F(ind, then Z(ap deletes the occurrence of the
< target> string that was found. If the most recent command was R)eplace,
then Z(ap deletes the substitution string from the text of the workfile.

Following Z(ap, you can use the B)uffer option of the C(opy command to
restore the text that was deleted by Z(ap. Thus Z(ap provides an “express”
method for finding a <target> and then moving it to an alternate place
within the workfile. You use F(ind, followed by Z(ap, then move the cursor to
an alternate location, and finally use C(opy followed by B(uffer.

If you use a repeat factor with either F(ind or R(eplace, only the most recent
<target> or substitution string will be deleted by the Z(ap command. If you
repeat the Z(ap command, it will delete the contents of the C(opy buffer, with
the effect that C(opy cannot be used to restore the effect of the first Z(ap of the
group. After Z(ap has been used once, repetition will have no effect on the
stored text in the workfile, until you use F(ind, R(eplace, or I(nsert again.

4.5 The Q(uit Command and its Options

The Q(uit command is used to leave the Editor in an orderly manner. Use of
the Q(uit command is required if you wish to save the results of an editing ses-
sion in which you have changed your workfile. You could also terminate an
editing session in a more drastic way by bootloading again, or by withdrawing
your disk from the machine. The prompt messages that appear for the Q(uit
command were shown in display 3.6.

The U(pdate option causes the contents of the computer’s memory to be sav-
ed on the disk in the reserved file SYSTEM.WRK.TEXT, ie: in the “unnamed”
workfile on the disk. Any previously saved file called SYSTEM.WRK.TEXT
will be removed from the disk as a result of this action. Having reached the
Q(uit command, there is no way for you to change the name of the file
SYSTEM.WRK.TEXT. This is already saved on the disk, in order to prevent it
from being removed. However, you can use the W(rite option of the Q(uit
command to save the contents of the computer’'s memory resulting from the
current Editor session, under a different file name. You can then use the E(xit
option to prevent the old version of the workfile from being removed from the
disk.

The E(xit option terminates the Editor without taking any action at all to
save the contents of the computer’s memory. You might use the E(xit option
after using the Editor to read the contents of a workfile without making any
changes. E(xit from the Editor will then have no affect on your disk directory.
Since data errors can sometimes be caused in the process of reading informa-
tion from the disk, or writing to it, it is best to avoid any more disk operations
than necessary. The E(xit option is a facility designed to assist in avoiding disk
operations that are not needed.

Using the Editor for Word Processing 61

The R(eturn option is provided for those of us who develop sloppy habits in
typing into the Editor. If you hit the “Q" key inadvertently, you may not have
it in mind to terminate the Editor session quite yet. Press “R” (for R(eturn) to
get back into the Editor at the same place you had been before the Q(uit was
invoked.

The W(rite option allows you to save the current contents of the computer’s
memory in a named disk file. After the disk file has been saved, the Editor ses-
sion continues. The W(rite option requests a file name using the following pro-
mpt:

Name of output file (<cr> to return) -->

You can respond by typing in the name you want the workfile to be saved
under (leaving out “. TEXT”) and following with RETURN. If you simply press
the RETURN key (referred to here as <cr> for carriage return), no disk file
will be saved and the Q(uit command will be terminated as if you had used the
R(eturn option. If you do respond to the W(rite option with a file name, the
Editor will notify you when the disk file has been saved, and then will offer
you the option of exiting or returning to the Editor. The Write option is
especially useful if your current system disk is so full that there is insufficient
space in which to store the newly edited text. Insert an alternate disk (which
has been initialized with a UCSD Pascal System directory) and use the volume
name of that disk (or “#4:”) as part of the new file name. Example #4:
NEWTEXT.

4.6 Using the Editor for Word Processing

The principal difference between uses of the Editor for word processing and
for editing programs, is the automatic filling of each line of a paragraph. In fill-
ing, the Editor scans ahead for the right margin, keeping track of the beginning
of the last word you typed in. If the Editor detects that the current word you
are typing would extend past the right margin, it automatically moves the cur-
rent word to the beginning of the next line, “filling “in the rest of the previous
line with blanks. To prepare the Editor for paragraph filling, you will need to
use the S(et command to change several switches in the Editor’s environment.
(A switch is an option which has only two states, such as “Yes” or “No,”
“True” or “False.”) Display 4.5 shows roughly the display you should get using
the E(nvironment option of the S(et command when the Editor is first entered.

As an exercise to see how paragraph filling works, change the A(uto indent
option to false, and the F(illing option to true. If your screen is not a full 80 col-
umns wide, also change the R(ight margin to a smaller value. For example, on
the Apple I computer you might want to change the R(ight margin to 39.

Within the E(nvironment sub-command's world, you select an option to be
changed by typing its leading character. For example, to change the F(illing
option type “F'. The Editor responds by placing the cursor at the first
character position of the current value of the option, eg: over the “F" in
“False.” The legend “False” will simultaneously disappear. Now type T, and
observe that the displayed value of the option changes to “True.” Similarly,

62 Screen Editor

to change the A(uto indent option, type A followed by F (for “False”) or T
(for “True”).

Now you can type in a small paragraph. Notice that you do not need to use
the RETURN key to get from the end of one line to the beginning of the next. If
the last word you attempt to type into a line cannot fit within the established
margins, the Editor will move the word to the beginning of the next line. With
a small paragraph on the screen, now try an insertion in the middle of that
paragraph. The Editor will refill all of the lines following the point of the inser-
tion, putting as many words as possible within each line, adjusting the lines so
that the last word of each line does not extend past the right margin, or is not
split between two lines.

Deleting a portion of a paragraph is slightly more complicated. To see how
it works, delete several words from the middle of your paragraph. After com-
pleting the deletion (with ETX), notice that the lines within your paragraph
have not been refilled to give the appearance of a properly filled paragraph. In-
stead, you have to call for the filling explicitly by using the M(argin command
in the “Edit:” world. After pressing M to initiate the M(argin command, the
screen will go blank for several seconds. The paragraph will then be
redisplayed with all lines correctly filled.

Within the Editor’s environment switches, the L(eft margin and R(ight
margin have the obvious roles of limiting the left and right extent of a
paragraph. The P(ara margin (for “Paragraph margin”) switch refers to the
indentation of the first line of a paragraph. If you want to change the ap-
pearance of any single paragraph, use the following steps:

® S(et the E(nvironment switches to the desired values (and leave the S(et
command by pressing SPACE).

® Place the cursor at any point within the paragraph to be changed.

® Press M for M(argin.

For word processing, the Editor is designed to be used in conjunction with a
formatter program. The formatter takes a text file as input, and sends the out-
put to a printer or to another file. In addition to the edited text , the formatted
output contains page numbers, headings, and footings, and suitable margins at
top and bottom of the printed page. The formatter may also be used to adjust
the blank spaces on each line of a paragraph so as to make both right and left
margins show a regular appearance. A preliminary version of a formatter for
the UCSD Pascal System has been in use for some time, and was used in prin-
ting the Bowles textbook cited in Chapter 1 of this book. A good general-
purpose formatter has been long delayed, but is nearing completion for general
distribution as this book is going to press. For readers familiar with the UNIX
(trademark of Bell Laboratories) operating system, the new UCSD Pascal for-
matter will have a command structure similar to that of NROFF, the UNIX for-
matter.

In general, the formatter program requires a small number of commands to
be embedded in the edited text. The usual practice is to place an escape
character in the left-most column of a line, thus identifying the line as contain-

Using the Editor for Word Processing 63

ing a command rather than text. The formatter then interprets the marked line
as a command, and does not attempt to print the content of that line. For
editing purposes, the command line has the same appearance as any other line
of text. The escape character normally used in the UCSD Pascal Editor is the
upward arrow (1). Another character often used for the same purpose is the
period (.). You can use the E(nvironment option of the S(et command to
change the command escape character to be used by the formatter to any
desired character.

For purposes of the M(argin command, the Editor recognizes the beginning
and ending lines of a paragraph by looking for either of the following:

® a completely blank line,
® a line beginning with the formatter’'s command character.

No attempt is made to include a command line within the filled part of a
paragraph.

As a final note on word processing uses of the Editor, do not try using the
M(argin command when the cursor is within a table of data, or in some other
passage which you do not want to be filled as if it were a paragraph. The
Editor will prevent this from happening if F(illing is set false. If you
inadvertently work on a Pascal program with F(illing set true, and if margin is
also inadvertently used the results become unreadable.

5 File Manager
(Filer)

5.1 Goals for this Chapter

The File Manager which is called the “Filer,” is the UCSD Pascal System’s
principal tool for keeping track of files stored on your disks. The main goal of
this chapter is to provide you with a reference summary of how the Filer is
used. As in Chapter 4, the order of presentation starts with the facilities you
are most likely to use frequently. See Appendix C2 for an alphabetic summary
of the Filer's commands, with references to descriptions in this chapter.

The full set of facilities provided with the Filer is extensive, and goes beyond
the range of tasks many beginners will need to handle. Following is a list of
specific learning goals for beginners. A good grasp of each of these goals will
simplify the use of the UCSD Pascal System considerably.

® Establish a previously saved file as the current Workfile for use with the
Editor and Compiler.

® Save the current Workfile in the disk directory for later use.

® Create a new clean Workfile without destroying any previous Workfile.

® Remove unwanted old files from your disk directory. Eliminate scattered
empty areas on the disk if necessary to make room for new files.

® Transfer a file, or group of files, from one disk to another. Transfer a text
file to your console display device or to a remote terminal or printer.

® Establish the current directory date of your disk.

-4

66 File Manager

® Initialize a new or used disk by clearing it of any previous contents using
the Z(ero command.

® Change the directory title of an old file so that you can reuse the same
title for a new file without losing the old file.

® Check your disk for possible bad blocks. Use “eX(amine” to attempt a
repair of low quality areas of the disk.

® Use the “wild card” file title characters ‘=" and “?" to simplify the use of
certain commands applied to whole groups of files.

5.2 Overview of Files and the Filer

A point of confusion for novice users of the UCSD Pascal System is that the
term file has several related but distinct meanings. Within a Pascal program,
an identifier declared to be of a type associated with a file provides a means of
referring to an input/output device. We will call this identifier the file’s inter-
nal identifier. The device may be a video display, a keyboard, a disk drive, a
remote terminal, a printer, or any one of many other possible items of
peripheral equipment.

If the input/output (I/O) device is a disk drive or perhaps a tape drive, it is
used for storing and retrieving information recorded on a secondary storage
medium such as a floppy disk. In this case, there is usually room for storage of
many different collections of information, each separately referred to as a file.
A typical file on the disk might be all the Pascal program statements for a
single program, or the executable code version or another program, or
possibly a collection of data designed to be used by another program. To keep
track of all the stored files, a directory of the files is stored on the disk. Each
disk has its own directory, which is available to the System only when the disk
is actually mounted in a disk drive connected to the computer. The directory is
basically a listing of the names of the files on the disk, their locations, the
amount of space they occupy, and other items of importance to the System.

5.2.1 Volume Identifiers

To distinguish between separate disks, each disk is given a volume iden-
tifier, ie: a name for the disk which is also stored in the directory. The volume
identifier should begin with a letter, and may consist of a total of 7 letters and
digits. The full external identifier of a disk file consists of the volume identifier
followed by the directory name of the file. In order that the System may
distinguish between the volume identifier and the directory name, the two are
separated by a colon (:). For example, you might have a disk with a volume
identifier of CLASS, and on that disk a file with a directory name of
TESTPROG.TEXT. The full title of the file would therefore be
CLASS.TESTPROG.TEXT.

Volume identifiers in the UCSD Pascal System refer not only to disks but
also to peripheral devices which have no directories. For example, the prin-
cipal CRT (or teleprinter) terminal of a small computer has the volume iden-
tifier “CONSOLE:”. Since that device has no directory and is not subdivided
logically into files, “CONSOLE:" is its full title, with no characters to the right

Qverview of Files and the Filer 67

of the colon. Your machine may also have facilities to handle the predeclared
volumes:

PRINTER:
REMOUT:
REMIN:

where “REMOUT:” and “REMIN:” are used for communicating with a remote
terminal device or telephone line. You can get a listing of the volumes
currently available on your machine by using the Filer's V(olumes command.

5.2.2 Simplified Titles for Disk Files

The UCSD Pascal System allows the user to refer to a disk file in several dif-
ferent ways. For example, this can be accomplished either by typing in a
response to a prompt, or by executing a Pascal program statement that refers
to the file. In certain common circumstances, the reference can be made
without specifying the volume identifier explicitly.

If a reference to a file title lacks a volume identifier entirely, the System
assumes that the volume intended is the default volume. When you bootload,
the disk volume containing the UCSD Pascal operating system (the file
SYSTEM.PASCAL) is initially considered to be the default volume. If the
volume identifier of the disk from which you bootload is “MYDISK:” and you
have a file called FIRSTPROG.TEXT on that disk, then that file can be referred
to by either of the following title strings:

MYDISK:FIRSTPROG.TEXT
FIRSTPROG.TEXT

with the same results. You can use the Filer’s P(refix command to change the
default volume identifier to some disk other than the one from which you
bootloaded. Then it will still be possible to refer to the same file on
“MYDISK:” by either of the following:

MYDISK:FIRSTPROG.TEXT
*FIRSTPROG.TEXT

where the ‘™" is interpreted by the System as a substitute for the bootload disk’s
volume identifier. These conventions are designed to reduce the amount of
typing you need to do to refer to files on several different disks, particularly
when using the Filer.

5.2.3 Naming Conventions to Simplify Work with
Groups of Files

Since you will often have to work with a disk that has dozens of directory
entries, it sometimes becomes desirable to perform similar operations on many
directory entries all at once. The Filer provides several naming conventions
that simplify these operations. One common tactic is to construct the directory

68 File Manager

titles of all files belonging to a related group of files using the same prefix. For
example, most of the files provided to you as part of the system software of the
UCSD Pascal System are identified by the prefix “SYSTEM,” and include the
files:

SYSTEM.COMPILER
SYSTEM.PASCAL
SYSTEM.EDITOR
SYSTEM.FILER

The period (.) is included to make the file titles more readable to humans, and
has no special significance to the System. Because some users of the System are
accustomed to using other separator characters for this purpose, you can also
use the characters ‘/’, ‘\’, *~’, and ‘__' in file directory titles.

Some of the Filer's commands permit selective reference to all files which
have the same prefix or suffix. If one of these commands prompts for a file
title, and you respond with:

SYSTEM =

the command would refer to all of the files in the list shown above. The
character ‘=" is a wild card which substitutes for any characters in a title
following the prefix “SYSTEM". In the list of files shown above:

SYS=
or
SYSTEM.=

would have equivalent results. If you have a mixture of files with “. TEXT” and
“.CODE" suffixes, the generalized title:

=.TEXT
or
=TEXT

would refer only to the “. TEXT” files and not to the “.CODE" files.

As an extension of the wild card concept, the Filer allows you to substitute
the question mark (?) for the equals sign (=). The Filer will then halt upon
reaching each directory entry associated with the prefix or suffix, and ask
whether you wish the command to apply to that particular entry. You respond
with Y’ (for Y(es) if you wish the command to apply, and with any other
character if not. The Filer will then continue searching through the directory
looking for additional titles matching the wild card specification.

Workfile Commands 69

If you leave out the prefix and suffix in a file title, using only the ‘=" or ‘7’
character, the Filer will refer to each title in the directory.

Another possibility is to “sandwich” the wild card character between prefix
and suffix, as in:

PREF=SUFF
or
MINE?TEXT

The wild card naming conventions apply to the following commands: L(ist,
E(xtended-directory, T(ransfer, R(emove, and C(hange.

5.3 Workfile Commands

The Workfile concept is designed to simplify the number of steps a user of
the UCSD Pascal System has to take in editing, compiling and testing new pro-
grams. The Filer's Workfile commands are tools for handling the disk direc-
tory entries associated with the temporary “unnamed” Workfile and with
saved Workfiles on the disk. Each Workfile may have a “.TEXT" part and a
“ CODE" part. The “.TEXT” part is an independent disk file containing, in the
case of computer programs, the Pascal or other source programming language
statements of one program. The Text file is produced by the Editor as the result
of an editing session. The “.CODE" part of a Workfile is another disk file con-
taining executable code generated by the Compiler based on translation of the
source language statements in a text file.

When you finish an Editor session, using the U(pdate option of the Q(uit
command, the Editor leaves on disk a file called SYSTEM.WRK.TEXT, which
is what we are calling the “unnamed” or temporary Workfile. The file title
SYSTEM.WRK.TEXT is reserved by the System for this use. If you then use
the “Command:” world’s C(ompile command, the Compiler will be invoked,
and it in turn will look for a file called SYSTEM.WRK.TEXT as its input. If the
Compiler succeeds in translating the source language statements from the text
file into executable code, it will leave on disk a file called
SYSTEM.WRK.CODE. In the typical program development situation, you
can then R(un the program from the “Command:” world’s E(dit command,
and the Editor automatically assumes that you want to work with the file
SYSTEM.WRK.TEXT, if it is present on the disk.

As you can see, the two reserved file names, SYSTEM.WRK.TEXT and
SYSTEM.WRK.CODE, provide a means of communication among the Editor,
the Compiler, and the R(un command of the “Command:” world. When these
files are present you do not need to respond to the E(dit, C(ompile, or R(un
command with any file name, because it is assumed that you want to use the
files with the reserved titles.

Of course you will eventually reach the stage where you want to save a ver-
sion of the text and code files you have been working with in order to develop

70 File Manager

a different program. At that point, you enter the Filer, and use the S(ave com-
mand. The S(ave command asks for a name, which in practice can be up to 10
characters long. The Filer assumes that you want to retain the text and code
suffixes in these file titles respectively, resulting in titles that are up to 15
characters long. You might respond to the S(ave command with the name
PROBLEM1 followed by pressing the RETURN key, at which point the direc-
tory entry for SYSTEM.WRK.TEXT is changed to show its title as PRO-
BLEM1.TEXT, and similarly the entry for SYSTEM.WRK.CODE is changed
to PROBLEM1.CODE. The Filer now retains PROBLEM1 as the title of your
current Workfile. You could verify this by using the Filer's W(hat command
which displays the title of the current Workfile. At this point, the disk no
longer contains any files called SYSTEM.WRK.TEXT or
SYSTEM.WRK.CODE. However you could use Q(uit from the Filer, and use
R(un in the “Command:” world, with the result that the System will start ex-
ecution of the named Workfile, ie: PROBLEM1.CODE.

If you enter the Editor, using the “Command:” world’s E(dit command, the
Editor will load the contents of PROBLEM1.TEXT into the computer’s
memory in preparation for an Editing session. Subsequently, use of the
U(pdate option of the Editor's Q(uit command will result in the creation of a
new text file on disk called SYSTEM.WRK.TEXT. This file will be separate
and independent of the file PROBLEM1.TEXT until or unless you return to the
Filer and use the S(ave command. The S(ave command will then offer you the
option of retaining the new temporary Workfile under the name
PROBLEM1.TEXT. If you respond with Y(es, the old file under that same
name will be removed from the disk, and the temporary Workfile will be given
that name instead of SYSTEM.WRK.TEXT.

Of course many other scenarios are possible. You should find it helpful to
experiment with the Filer's four Workfile commands to gain a better
understanding of how the Workfile is used. Use the L(ist directory command,
described in Section 4, to observe the directory changes that result from using
the Workfile commands in conjunction with the Editor and Compiler.

5.3.1 G(et

Use the G(et command to establish an existing file (or a “.TEXT” and
“.CODE" pair) as the current Workfile. If no files called SYSTEM.WRK.TEXT
or SYSTEM.WRK.CODE are currently present in the disk directory, G(et will
simply ask for the name of the Workfile you want loaded into memory. For ex-
ample, your disk directory might include the files SNAP.TEXT and
SNAP.CODE. When the filer responds to G(et with the prompt:

Get what file?
or just Get? to save space in computer memory. You might answer by typing:
SNAP

followed by RETURN. The Filer will respond with:

Workfile Commands
Text and Code file loaded
if it finds the Workfile, or:
No file loaded

if not. If SYSTEM.WRK.TEXT or SYSTEM.WRK.CODE already exists in the
disk directory, then G(et will respond with:

Throw away current workfile?

If you answer with Y(es, then those files will be removed from the disk, and
the System tables will be updated to show that the SNAP files are not to be
regarded as the current Workfile. If you answer with anything other than Y(es,
the G(et command will terminate with no effect, and the Filer's main prompt
line will reappear. If you press G (for G(et) inadvertently, and wish to return
to the main level of the Filer, answer the prompt simply by pressing RETURN.

5.3.2 S(ave

Once you have created a new temporary text Workfile with the Editor (ie:
SYSTEM.WRK.TEXT) or a new temporary code Workfile with the Compiler
(ie: SYSTEM.WRK.CODE) the S(ave command can be used to give those files
permanent directory names. If the temporary files are actually on the disk, the
S(ave command’s prompt will be:

Save as what file?
or in some versions, Save as? to which you might answer:
WORK2

followed by RETURN. As a result, a directory entry for SYSTEM.WRK.TEXT
will become WORK2.TEXT, and SYSTEM.WRK.CODE will become
WORK2.CODE.

Please note: Any old files called WORK2.TEXT and WORK2.CODE will
automatically be removed from the disk by this process and replaced with
the new version of the Workfile. Thus, make sure you create a new name,
or are not concerned with any older versions of the files of the same name.

5.3.3 N(ew

The N(ew command has the effect of clearing out the current Workfile
recognized by the System so that you can begin creating a completely new text
file with the Editor. If there is a SYSTEM.WRK.TEXT or
SYSTEM.WRK.CODE on the disk when N(ew is entered, the Filer prompts
with:

72 File Manager

Throw away current workfile?

If you answer Y(es, then both the text and code files are removed from the
disk. If you answer with any key other than Y, then the N(ew command is ter-
minated without having any effect.

N(ew has no effect the actual disk files associated with a current workfile
name. As in the examples presented in earlier subsections, you might have a
named workfile SNAP active and associated with the disk files SNAP. TEXT
and SNAP.CODE following use of the G(et command. You might then try to
use N(ew, whether inadvetently or intentionally. Even if the temporary ver-
sion(s) of the workfile in SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE
were thrown away by this process, the original files SNAP.TEXT and
SNAP.CODE would not be touches by the N(ew command.

5.3.4 W(hat

The W(hat command is used to display the name of the currently active
workfile. If the files SYSTEM.WRK.TEXT and/or SYSTEM.WRK.CODE are
present, but no G(et operation has been done on a named Workfile, then the
Filer will respond with:

workfile is not named (not saved)

If a G(et has been performed on a named workfile called SNAP, then the
response to W(hat will be:

SNAP

If neither named or unnamed workfiles are present, then the response to W(hat
will be:

No workfile

5.4 Status Checking/Setting Commands

The principal source of information about the status of files in the UCSD
Pascal System is the directory of files stored on each disk. The contents of the
directory can be displayed using the L(ist directory and E(xtended directory
commands of the Filer.

The other commands in this group provide supplementary information on
the V(olumes currently accessible to I/O operations, on the D(ate stored in the
System disk from which you bootloaded, and on the default P(refix volume
name currently in force.

5.4.1 L(ist Directory

The L(ist command normally is used to display part or all of the directory of
a selected disk volume. The prompt to this command is

Status Checking/Setting Commands 73

Dir listing of what vol?
or in some versions: Dir listing of?

You can answer with an abbreviated volume name, or a complete volume
name. You can also provide an optional destination name requesting that the
directory listing be sent to some device other than the principal console device
of your machine. For example, the optional destination might be a printer con-
nected to the “REMOUT:" 1/0O port.

To list the content of the System disk from which you have bootloaded, re-
spond to the prompt by pressing the colon key (:) followed by RETURN. The
resulting display will have roughly the appearance shown in display 5.1. If the
directory is too long to be listed at once on the terminal screen, the Filer will
stop after filling the screen. It will then prompt you to press the SPACE bar to
continue, by displaying the next group of directory entries. If, at this point,
you wish to terminate the L(ist command and leave the partial directory
already on the screen, press the ESC key instead.

Sometimes you may have too long a directory to be listed all at once on the
screen, but may wish to list only selected file titles from the entire directory.
For example, you might wish to display only the titles of the text files on your
disk. You can do this, when you respond to the L(ist command’s prompt, by
following the wild card naming conventions described in Section 5.2.3, as in:

=.TEXT

This will produce what is shown in display 5.2 which is based on the directory
contents shown in display 5.1.

If you want to list the directory of a disk other than the one from which you
bootloaded, then give its volume name. For example, to list all of the directory
of a disk called OTHER, answer the L(ist command’s prompt with:

OTHER:

followed by RETURN. If you want to list only the file titles prefixed by
SYSTEM on that disk, answer with:

OTHER:SYSTEM =

followed by RETURN.

Sometimes it is useful to have a copy of the directory for one of your disks
printed out on paper. If you have a teleprinter connected to the REMOUT:
port of your computer, and wish to list out the directory of the disk called
“SNAP:,” then answer the L(ist command’s prompt with:

OTHER:,REMOUT:

74 File Manager

followed by RETURN.
5.4.2 V(olumes

The Volumes command will display a list of the identifiers of I/O volumes
currently available to programs running on your machine. Display 5.3 shows

Filer: 6let, Stave, Wihat, Mev, L(dir, Rien, (thng, T(rans, Diate, B(uit (R]
DERD:

SYSTEM. FILER R 8-Jan-79
SYSTEM CONPILER 69 8-Jan-79
SYSTEN. PASCAL 38 8-Jan-79
SYSTEM EDITOR 45 8-Jan-79
SYSTEN. POP-11 21 8-lan-79
SYSTEN. CHARSET 5 29-Jan-78
SYSTEM LINKER 2L 8-lan-79
SYSTEN. SYNTAY 14 8-Jan-79
SYSTEN LIBRRRY 17 1-Jan-79
STRINGY. TEXT 4 8-Jan-79
GRAPHY TEXT 4 8-Jan-79
GRAPHL CODE 2 8-lan-78
TURTLE. CODE 8 i-Jan-79
QU121 CODE 45 8-Jan-79
ORTENTER. COOE 12 3-Npv-78
EDITDEND TEXY 4 14-Dec-78
CONPDEND TEXT 6 26-Dec-78
STRINGS CODE 2 6-Rpr-79
18/48 frlesCluisted/in-dird, 361 blocks used, 133 unused, 124 (n largest

Display 5.1: An example of the display produced by the L(ist directory command of the
Filer,

an example. The numbers shown on the left of this list are the logical numbers
of the I/O units. You can refer to any unit by substituting for the volume iden-
tifier with an entry like this:

#4:

which refers to the disk in unit 4. N ormally, the volume names of your floppy
disk(s) will be found in units 4 and 5 in this display. The UCSD Pascal System
provides space for additional floppy-disk drives starting at unit 9. | strongly
suggest that you avoid using the unit number designation for referring to disks
with the Filer. Doing that gives you no protection if you happen to have a dif-
ferent disk than you thought actually in the drive.

5.4.3 E(xtended Directory List

The E(xtended directory command is similar to the L(ist command but pro-
vides more information in its display, as shown in display 5.4. This display in-
cludes details showing where on the disk each file begins (block number) and
the nature of the information stored in each file. These items are primarily of
use to advanced programmers.

Status Checking/Setting Commands 75

One other item shown by the E(xtended directory will often be of assistance
to readers of this book. Note that display 5.4 shows entries marked as
<unused>, along with their sizes and starting block locations on the disk.
These are areas on the disk where there are no files currently allocated. They
are areas that potentially could be used for additional files not yet stored on

;;;:}r B(et, S(ave, WChat, New, L(dir, RCen, C(hng, TCrans, Dlade, R(uit (R |
STRINGL TEXT 4 8-Jan-79

GRAPHL. TEXT 4 B-Jan-79

EDITDENG. TEXT 4 {4-Dec-78

CONPOEND. TEXT 6 26-Dec-78

4/18 files{listed/in-dir), 28 blocks used, 135 unused, 133 in largest

Display 5.2: By using a wild card specification of ": =. TEXT", the L(ist directory com-
mand shows only entries for “.TEXT" files. This screen image is based on the same
directory as found in display 5.1.

the disk. You will find that successive editing and compiling operations will
eventually leave your disk with many small unused areas separating the useful
files stored on the disk. When a substantial fraction of the disk is occupied by
useful files, it may happen that none of the individual unused areas is large
enough to provide space for a new file that needs space. If the total area con-
tained in the several unused areas is large enough to accomodate the new file,
it may be time to use the K(runch command to compress all the useful files
together, leaving all the unused space at the end of the directory. The E(xtend-
ed directory command can be used to judge when it may be useful to use the
K(runch command.

5.4.4 D(ate
The D(ate command is used to display the date information currently stored
on the disk with which you bootload. It can also be used to change the date.
Display 5.5 shows an example in which we are preparing to change the date.
Our answer to the prompt will be completed when we press the RETURN key.
If you find that the date displayed by the D(ate command is correct, ter-

76 File Manager

minate the command simply by pressing the RETURN key, without typing in a
new date. If you do supply a new date, the D(ate command will verify its
understanding of the date you have typed in.

Filer: B(et, SCave, W(hat, N(ew, L{dir, Rien, Clhng, Tlrams, Date, Ruit [@
Uols on-line:

1 (onsoLE:
2 SYSTERK:
3 GRAPHIC:
48 EB1LY:

5 & DEND:

& PRINTER:
7 RENIN:

8 REMOUT:

Root wol is - KBS
Prefix is - DENO:

Display 5.3: An example of the display produced by the V(olumes command of the
Filer.

Note that the format of the date you supply to the command must be “day
month year” where “day” is a one- or two-digit number, “year” is a two-digit
number and “month” is a three-letter abbreviation. The date command is un-
compromising about this format because the program needed to accept other
commonly used date formats unambiguously would occupy scarce space un-
necessarily in the microcomputer’s memory.

If you need to change only the day, leaving the month and year information
unchanged, simply type in the one or two digits for the new day followed by

RETURN. Otherwise it is necessary to enter all three items, separated by
dashes.

5.4.5 P(refix

The P(refix command is used to display and/or change the default volume
name prefix automatically applied by the UCSD Pascal System to file names
given to it without any explicit mention of a volume name. The prompt
message displayed by the P(refix command is:

Prefix titles by what vol?

If you wish simply to display the name of the current default volume, press the

Status Checking/Setting Commands 77

© Glet, Stave, WChat, Wlew, L(dir, R(en, Clhng, T(rans, D{ate, Quit (R B

SYSTEM FILER 32 #-Jan-79 18 542 Codefile
SYSTEN COMPILER 6% 8-Jan-79 42 512 Codefile
SYSTEH PRSCAL 3% 8-Jan-79 411 42 Datafile
SYSTER EDITOR 45 8-Jan-79 149 512 Codefile
SYSTEM POP-14 21 8-Jan-79 194 512 Datafile
SYSTEW CHRARSETY $ 28-Jan-78 215 §12 Infofile
SYSTEX LINKER 24 8-Jan-79 228 542 Codefile
SYSTEM SYNTRX 14 8-Jan-79 244 §4Z2 Textfile
SYSTEM LIBRARY 17 {-Jan-79 235 312 Datafile
STRINGL. TEXY 4 B-Jan-79 272 512 Textfile
GRAPHL. TEXT ¢ 8-Jan-79 276 342 Textfile
GRAPHY. (ODE 2 8-Jan-73 286 512 Codefile
TURTLE. CODE 18 1-Jan-79 282 512 Codefile
QUIZL CODE 435 B8-Jan-79 292 542 Codefile
ORIEWTER. (ODE {2 3-Hov-78 337 512 Codefile
EDITDENG. TEXT 4 14-Dec-78 349 512 Texifile
CO%PDERD. TEXT 6 26-Dec-78 353 512 Textfile
{ UNSED) : : 3% :

STRIKGE. CODE 2 6-Rpr-7% 368 512 (odefile
{ URYSED > 124 e

18718 files(listed/in-dir), 361 blocks used, 133 unused, 124 in largest

Display 5.4: The E(xtended directory display gives additional information about each
file. The extra columns show the starting disk address, block size, and type of file. Here
we see the E(xtended directory display corresponding to display 5.1.

colon (:) key followed by RETURN. For example, if you bootloaded from a
volume called KB99, and have not used the P(refix command to change the
default, then the P(refix command will display:

Prefix is KB99:

If you wish to change the default volume name to make it refer to a different
disk, say NEWVOL, then you should answer the prompt by typing in:

NEWVOL.:

followed by RETURN. As a result, a future program reference to a disk file
called ANYFILE.TEXT, by lacking any explicit reference to a volume name,
would have the effect of referencing the full file title
NEWVOL:ANYFILE. TEXT.

5.5 T(ransferring Files from One Place to Another

The T(ransfer command is used to copy one or more files from a source
device to a destination device. Most often, both devices are likely to be disks.
When you press the T key, the Filer prompts with:

Transfer what file?

78 File Manager

Date set: (4 310-CJan Dec)-(B8 99
Today is 7-Nay-79
¥eu date 7 24-n8YQ

Display 5.5: The D(ate command just before a new date is complete. We have entered
the new date of “24-MAY" in response to the query “New Date?"

or an alternate shorter version is simply: Transfer?
if you respond with:

SRCNAME.TEXT
followed by RETURN, the Filer will again prompt with:

To where?
to which you might answer:

NEWVOL:SRCNAME.TEXT
The Filer will then copy the file SRCNAME.TEXT from your default volume
over to the disk whose volume name is NEWVOL. It will continue the comple-
tion of each file transfer with a message similar to this:

OLDVOL:SRCNAME.TEXT --> NEWVOL:SRCNAME.TEXT

The T(ransfer command is used in a wide variety of commonly occurring
situations, some of which are described in the following subsections.

5.5.1 Shorthand Entry of the Destination File Name
Following the initial prompt “Transfer what file?”, you can type in both the

Transferring Files from One Place to Another 79

source file name and the des}ination file name separated by a comma, as in:
SRCNAME.TEXT,NEWVOL:SRCNAME.TEXT

The effect of this is the same as the example given above, in which we waited
for the second prompt message “To where?”.

We can carry this a step further by using the file name duplicator character
(S) as in:

SRCNAME.TEXT,NEWVOL:$

in which the dollar sign character will be interpreted as equal to
“SRCNAME.TEXT”
CAUTION: If the T(ransfer command responds to your typing in the source
and destination names with a message like the following:

Possibly destroy directory of NEWVOL:?
or
Destroy NEWVOL:?
or
Transfer 280 blocks? (Y/N)
then you probably have forgotten to type in even the dollar sign as an instruc-
tion of what file name to use. You should respond by pressing N for N(o, or

the RETURN key. See the next subsection regarding T(ransfer in which only
the volume names are used.

5.5.2 Disk-to-Disk Bulk T(ransfer

You can T(ransfer the entire contents of one disk to another by using disk
volume names alone for the source and destination. For example, answer the
T(ransfer command’s prompt with:

SRCVOL:,DESTVOL:
to which the Filer should respond with the prompt message:

Possibly destroy directory of DESTVOL:?

in some versions just Destroy DESTVOL:?

If you wish the T(ransfer to proceed, answer with Y(es. The result will be
that the disk whose volume name is currently DESTVOL will become an exact

80 File Manager

copy of the contents of the disk SRCVOL, including even the volume iden-
tification. Any answer other than Y(es will terminate the T(ransfer command
without any copy action taking place.

Since the result of a full volume-to-volume T(ransfer leaves two volumes
with the same name on the UCSD Pascal System at the same time, it is impor-
tant to resolve the volume name ambiguity immediately after the T(ransfer is
completed. If you intend to keep both disks on line at the same time, it would
be best to change the volume name of the destination disk. See Section 5.6.2
regarding the C(hange command.

5.5.3 Transferring Only Selected Files

There are two commonly used ways to transfer only a selected group of files
from the source disk to the destination. You can transfer all the files whose
titles begin with the characters ‘SYS' from a disk called SOURCE to a disk call-
ed DEST by responding to the T(ransfer command’s prompt as follows:

SOURCE:SYS=,DEST:SYS=

followed by RETURN. Along the same lines, you could transfer all of the text
files from your default disk to the disk called DEST as follows:

= .TEXT,DEST: = .TEXT

Note that the equals character (=) specifies all of the files on a disk if it is not
qualified with additional characters as in these examples.

If you want a simplified way to review all or part of the directory of your
source disk, indicating separately whether each file is to be transferred,
substitute the question mark (?) for the equals character (=) in these examples.
This will cause the Filer to pause after displaying each file name. If you re-
spond with Y(es, the transfer of the indicated file will be carried out. Other-
wise, the Filer will pass over the indicated file and go on to the next.

5.5.4 Disk-to-Disk Transfers with only One Disk Drive

Even if you have only one disk drive on your machine, the Filer will allow
disk-to-disk transfer operations. The T(ransfer command first copies informa-
tion from the source disk into the computer’s memory. It then prompts you to
remove the source disk, and to replace it with the destination disk. Next it
prompts you to press SPACE as a signal to proceed by copying the contents of
memory to the destination disk. In a case where the amount of information to
be copied cannot fit all at once in the computer’s memory, it may be necessary
to substitute destination disk for source disk, and back again, several times.
This will be necessary if you want to make a bulk copy of one disk to another
on a one-drive machine.

5.5.5 Rearranging the Files on One Disk

The Filer provides limited facilities to allow you to reorganize the order in

Transferring Files from One Place to Another 81

which files are stored on a single disk by using the T(ransfer command. Of
course you can respond to the T(ransfer command’s prompt with:

TESTFILE.TEXT, COPYFILE. TEXT

which will leave the old file TESTFILE.TEXT intact, but create a new file
COPYFILE.TEXT on the same disk containing the same information.

If you want to move the old file, use the same title for both source and
destination, as in:

TESTFILE.TEXT, TESTFILE. TEXT
or the equivalent:
TESTFILE.TEXT,$

This will cause a new copy of the oldfile to be made, and given the same direc-
tory name as the old file, and the directory entry pointing to the old copy of
the file will be removed.

One common situation occurs when you have an unused area near the
beginning of the directory shown at the top of the screen by E(xtended direc-
tory list, and a frequently used file near the end of the directory. Use the L(ist
command to find out how many blocks this file occupies, as shown by the
number displayed by L(ist in the column just to the right of the file titles. For
example, let us assume that the file TESTFILE. TEXT is 23 blocks long, and that
the unused area is at least 23 blocks long. You can then cause that file to be
moved to the beginning of the unused area by responding to the T(ransfer
command’s prompt with:

TESTFILE.TEXT, TESTFILE. TEXT([23]

By placing the length of the file, in blocks, at the end of the destination title
within square brackets, you tell the Filer to place the destination file as near the
beginning of the destination disk as possible without overwriting any other
file.

The use of T(ransfer in this manner, together with the M(ake command
which is described in Section 5.6.3, can sometimes be used to force the Filer to
place a copy of a file at some exact starting block number. You are not likely to
need to do this unless your disk becomes damaged in some area, which then
needs to be avoided. Normally, you can use the K(runch command to re-
arrange your disk when there are too many small unused areas, and dummy
files of type “.BAD” will prevent the use of damaged areas. See Section 5.7 for
additional information on handling damaged disks.

5.6 Directory Maintenance Commands
Grouped within this section are several commands used primarily to make

82 File Manager

changes in the directory which describes the files on a disk, rather than in the
files. You can remove a file by deleting its directory entry and marking it un-
used. You can change the directory title of a file. You can make a new file by
creating its directory entry and giving a title. You can compress all of the files
on a disk together in the lowest numbered group of blocks using the K(runch
command, thus shifting all of the unused space into one area occupying the
high-numbered blocks. Finally, you can mark a disk to show its directory
empty and all blocks unused with the Z(ero command.

5.6.1 R(emove

R(emove is used to eliminate one or more entries from a disk directory, leav-
ing the space formerly occupied by the file marked unused. R(emove only
change the directory, and all information stored within the file is left untouch-
ed by the R(emove command. The prompt message displayed by this com-
mand is:

Remove what file ?

or, in some versions, just: Remove?

You can respond with a single file title, or you can designate that several
files are to be removed selectively. To remove the file WORK.TEXT, answer
the prompt by typing in:

“WORK.TEXT”

followed by RETURN. Note that it is not sufficient to give only the simplified
name of a workfile. Thus, if you have files WORK.TEXT and WORK.CODE
on your disk, the R(emove command will respond with an error message if
you answer the prompt by typing in only “WORK". The R(emove command
does not recognize the simplified workfile name because it often happens that
you may wish to remove either the .TEXT or .CODE portion of a workfile
without losing the other portion.

You can R(emove several files with one use of the command by listing their
titles separated by commas. For example, to remove the files ALPHA.TEXT,
BETA.CODE, GAMMA.TEXT, and DELTA.TEXT, answer the prompt with:

ALPHA.TEXT,BETA.CODE,GAMMA.TEXT,DELTA.TEXT

followed at the end by RETURN. The Filer will respond with acknowledge-
ment of its action with each file actually removed. If you misspell a file title,
and the resulting title does not also exist in your directory, then the Filer will
display an error message noting that the indicated file is not in your directory.
A more effective way to remove groups of files in one operation is to use either
of the wild card naming options. For example, to remove both the text and
code portions of the workfile WORK mentioned earlier, respond to the
R(emove command’s prompt with:

Directory Maintenance Commands 83

WORK. =

Since it is common for a user to forget that other files on the disk may have the
same prefix, the Filer will display the titles of all files to be removed, and then
it will prompt with:

Update directory ?

You should review the list of titles actually displayed before responding with
Y(es, since it may be virtually impossible to reverse a mistake in this process.

If you wish to remove various files from your directory, but cannot find a
common prefix or suffix, use the question mark (?) wild card reference. The
Filer will display one file title at a time, and will wait for you to answer with
Y(es or N(o. For example, respond to the R(emove command’s prompt with:

7

to indicate that you want a list of all files on your default disk. To remove only
files whose titles end in “.TEXT” from a disk volume called AUDIT, respond
to R(emove's prompt with:

AUDIT:?.TEXT

As with the use of the equals sign wild card, the Filer will prompt at the end of
the sequence to ask whether you really want to update the directory by mak-
ing the indicated changes. If at some point you wish to terminate the R(emove
command without making any directory changes, press the ESC key to get
back to the Filer's main command world.

5.6.2 C(hange

The C(hange command is used to alter the directory titles of selected files. It
can also be used to alter the name of a disk volume. The command prompts
with:

Change what file ?

or in some versions just: Change?

The System waits until you type in the name of the file to be changed, fol-
lowed by RETURN, and then prompts for the name to which the name is to be
changed. If you answer the first prompt with:

ABC.TEXT
followed by RETURN, and answer the second prompt with:

XYZ.TEXT

84 File Manager

followed by RETURN, the Filer should respond with:
VOL3:ABC.TEXT changed to XYZ.TEXT

or:
VOL3:ABC.TEXT --> XYZ.TEXT

assuming that the file is on a volume called 'VOL3'. You could call for the same
change without waiting for the second prompt by answering the first prompt
with the following:

ABC.TEXT,XYZ.TEXT

ie: by listing both the original title and the desired new title separated by a
comma ,.

To change the name of a disk volume, use only the volume identifiers
followed by colons, making no reference to any file in the directory of that
volume. For example, if you want to change a volume name KB99 to NEWID,
answer the C(hange command'’s prompt with:

KB99:, NEWID:
followed by RETURN.

The wild card file naming options can be used with the C(hange command.
The portion of all orginal file titles respresented by the equal sign will be
duplicated in place of the equal sign in the desired new titles. Additional title
string characters may be used before or after the equal sign, or both, in either
the original or desired new titles. For example, you might have a set of files
WORK.TEXT and WORK.CODE and wish to change them to read OLD-
WORK.TEXT and OLDWORK.CODE in order to reuse the workfile name
“WORK.” To do this, answer the C(hange command’s prompt with:

WORK=,0OLDWORK =

5.6.3 M(ake

The M(ake command is used to create a new directory entry. The command
prompts with:

Make what file ?

or the shorter message:Make?

It then expects a file name as a response. Normally, you should append the

Directory Maintenance Commands 85

number of blocks the file is to occupy on the disk, within square brackets [and
], as an extension to the file title. The occasion to use M(ake sometimes arises
when you wish to prevent the assignment of files to an unused area of the disk
which you intend to occupy with another file at a later time. Thus you might
create a new temporary file called DUMMY which you want to fill a 20-block
unused area near the beginning of the disk directory. To do this, you answer
the M(ake command’s prompt with:

DUMMY/[20]

followed by RETURN. This causes the Filer to make a new directory entry for
a file called DUMMY occupying 20 blocks within the first (closest to beginn-
ing) unused area in the directory that is at least 20 blocks long. An unused area
that is located closer to the beginning of the directory will be ignored if it is 19
or fewer blocks long.

If you leave out the file length specification in the brackets, the M(ake com-
mand will create a file which completely fills the largest unused area in the
directory when the command is entered. If you use an asterisk ‘*’ in place of a
number in the file length specification, the M(ake command will place the new
file either in one-half of the largest unused area, or in all of the second largest
unused area, whichever is larger.

The M(ake command is sometimes used to change the directory information
on the number of 512-byte blocks occupied by a file. The need to do this can
arise if you run a program which creates a new file on the disk, but fails to
reduce the space occupied by that file to the minimum number of blocks need-
ed before terminating. Let us assume that you have some independent means
available to determine how many blocks the file should occupy. If the file title
is DATA, and it originally occupies 97 blocks, but you want it to occupy only
43, then use the following sequence:

A Create dummy files using the M(ake command to fill all unused areas on
your disk which occur closer to the beginning of the directory than the
entry for the file DATA.

B R(emove DATA. The result will be that the space occupied by DATA
becomes part of the first unused area on the disk.

C M(ake DATA[43].

D R(emove the dummy files created in step (a).

5.6.4 K(runch

The K(runch command moves files toward the beginning of the disk direc-
tory in such a way as to shift all unused areas into a single, large unused area at
the end of the directory. The command prompts with the following message:

Crunch what vol ?

or in some versions of the UCSD Pascal System, just:Crunch?

86 File Manager

You should answer by typing in the name of the volume you want compress-
ed, followed by a colon and then RETURN. For example, to K(runch the
volume KB99, type:

KB99:

followed by RETURN. The Filer will then respond by displaying the message:
Are you sure you want to crunch KB99: ?

or in some versions of the UCSD Pascal System:
From end of disk, block 2807 (Y/N) .

where the block number in the second message will vary depending upon the
size of your disk. If you respond with Y(es, the command will then move the
files as commanded. Recent versions of the Filer display a message confirming
the name of each file actually moved on the disk by K(runch.
CAUTION: Because the K(runch command is required to change the disk
directory, and because it does not attend to this until after finishing a fairly
lengthy sequence of operations, it is a dangerous command to use. If
K(runch is interrupted in the midst of doing its work (power failure, damag-
ed area on the disk, disk drive opened during operation, . . .) your disk
directory will no longer correctly describe the contents of your disk. It is
generally very desirable to use the B(ad-blocks command before using
K(runch. See section 5.7 regarding strategies to use if your disk does in fact
have bad blocks.

5.6.5 Z(ero

The Z(ero command creates a new empty directory on the indicated disk
volume. The previous directory on that volume will be destroyed as a result of
this operation. Z(ero prompts with:

Zero dir of what vol ?

or in some versions of the Filer: Zero dir of?
to which you respond with a volume identifier such as:

OLDVOL:

followed by RETURN. If the disk contains no directory, as would be the case
with a new disk that never has been used previously in the UCSD Pascal
System, then use the explicit unit designation in place of the volume identifier.
For example, if the disk to be Z(eroed is in your spare disk drive (the one you
do not use for bootloading), then respond with:

#5:

Directory Maintenance Commands 87

followed by RETURN. If the disk to be Z(eroed already contains an old direc-
tory, the Filer will prompt with:

Destroy OLDVOL: ?

If you answer with Y(es, the Filer will ask whether you want a duplicate direc-
tory to be created on the disk with:

Duplicate dir ?

If you respond with Y(es, the UCSD Pascal System will maintain a duplicate
copy of your disk directory for possible future use in recovering from an error
associated with the main directory on your disk. Any of several conditions
might cause such an error, as discussed in section 5.7 of this chapter. In most
cases an error in the main directory will not be reflected in the duplicate copy
of the directory. A utility program COPYDUPDIR is supplied with the UCSD
Pascal System for copying the duplicate directory into the main directory’s
area of the disk, thus allowing recovery from the error. The Filer will then ask
how many blocks are to be available for files to be stored on the disk being
Z(eroed. If the disk already has a directory, you will be asked to confirm with
a Y(es response that the same number of blocks is again to be used. If you re-
spond with N(o, or if the disk did not previously contain a directory, the Filer
will prompt with:

of blocks ?

or in some versions of the UCSD Pascal System:

Are there 280 blks on the disk? (Y/N)

where the number displayed depends on the size of your disk.

You should respond to the first of these messages with a number indicating
the maximum capacity of the disk since the Filer has no way of knowing that
capacity. If the disk is compatible with the IBM 3740 diskette (8-inch diameter,
soft-sectored, single density) the number should be 494. If it is a soft-sectored,
5-1/4 inch floppy disk with 90 K byte capacity, then the number should be
167. See Appendix A for the numbers to be used with other popular machines.
Note that the number of blocks given here includes a provision for the blocks
occupied by the bootstrap loader, the main directory, and the optional
duplicate directory, on your disk. The Filer will then ask for the volume name
you want to use with the disk being Z(eroed, with the message:

New vol name ?

You should answer with an identifier (first character a letter, other characters
may be letters or digits) up to 7 characters long. Use only uppercase letters to
avoid an annoying bug in future references to the newly Z(eroed volume. The

88 File Manager

Filer will prompt by asking you to verify the new volume name (since incor-
rectly typed volume names can lead to problems later in using the disk). If you
respond with Y(es, the Filer will then write a new directory on the disk, and the
Z(eroing process will be completed. You can terminate the Z(ero command
following any of the prompt messages by pressing the ESC key, and no new
directory will be written on the disk as a result.

5.7. Checking for Disk Errors and Repairing Them

One of the annoying facts in computing work is that secondary storage
media such as floppy disks can often transmit imperfect copies of stored infor-
mation when they are reread. If the information transmitted is not a perfect
reproduction of the information that was originally sent to the disk, it is said
to contain errors. If a code file contains just one 8-bit byte that is in error, that
code file may be effectively useless.

There are many potential causes for errors associated with disk files. Errors
can be caused by a malfunctioning disk drive, by incorrect operation of the
electronic connections between computer and disk drive, by a flawed area on
the recording surface of the disk, by dust or grime that has found its way into
the disk’s protective cover, and so on.

Some errors are marginal in nature, with the result that correct information
will be transmitted on some attempts and erroneous information will be
transmitted on others. A standard part of most software systems, including the
UCSD Pascal System, is an arrangement whereby the data read from the disk
is checked for errors. If errors are detected, the UCSD Pascal System will
automatically reread the data several times in an effort to complete a read
operation without any indicated errors. If rereading in this manner fails to pro-
duce an error-free copy of the data, the error is said to be unrecoverable. It is
not unusual for a block of data to contain unrecoverable errors, when read on
one disk drive, but to be readable without any errors at all when read on a dif-
ferent disk drive of the same type.

With careful handling of the disks and disk drives, you will usually need to
contend with very few disk-related data errors. However, anyone who makes
much use of a computer learns to cope with occasional errors. This section
deals with two commands provided with the Filer to assist in controlling disk
errors when using the UCSD Pascal System.

5.7.1 B(ad Blocks Scan

The B(ad-blocks command prompts with the message:
Bad blocks scan of what vol?
In some versions just: Bad block scan of?
You should respond with the name of the disk volume which is to be checked

for bad blocks. The disk volume must be in a disk drive and ready for use
when the B(ad-blocks command is invoked. This command reads each block

Checking for Disk Errors and Repairing Them 89

on the disk, checking for unrecoverable errors. If there are no errors at all, you
should note a regular clicking noise in the disk drive as the read/write head is
moved from track to track. If the clicking noise comes at irregular intervals,
there may be marginal errors in reading from the disk. If a block cannot be
read without errors after many tries, the Filer will display the number of the
bad block on the screen, and the B(ad-blocks command will continue scanning
for additional errors.

You should take note of the block numbers where errors are found. If you
have access to a second disk drive, it would be best to try the B(ad-blocks scan
again using that drive. If the list of bad blocks displayed with the second drive
is identical to the first list, then the signs are not good for the blocks listed. If
the list differs from the first drive to the second, then the errors are likely to be
marginal and quite possibly recoverable.

5.7.2 The eX(amine Command

The eX(amine command is provided as a tool to be used in repairing some
types of marginal floppy disk recording errors. A common type of error arises
when a disk drive uses too weak or too strong a recording signal in storing in-
formation on the disk. The problem may be the fault of either a maladjusted
disk drive or of a disk with a slightly damaged recording surface. Either way, it
is sometimes possible to rerecord the information, usually with a different disk
drive, in such a way that it can be read without errors thereafter.

Errors on reading from a disk are usually detected through use of a check
sum which is stored with each sector of information when it is recorded on the
disk. The check sum is generally computed as the result of a cyclic redundancy
check (CRC). A two-byte CRC check sum stored on the disk with the useful
data is compared with a CRC check sum computed from the useful data when
it is read from the disk. If the two are not equal (the recorded and recomputed
CRC check sums) then a read error is detected. The UCSD Pascal System
usually tries to read the same block of data, which may contain several sectors
containing their own individual CRC check sums, at least 10 times in an effort
to complete one read operation without a detected CRC error. Only if no error
free read can be completed will an unrecoverable error be detected.

The eX(amine command tries to read the blocks you select without
unrecoverable errors. If it succeeds, it then rewrites the information thus read
back to the same block on the disk. It then rereads that block, and cross-
compares the information read first with that obtained after the rewrite opera-
tion. If the two are the same, the Filer will inform you that the indicated block
“may be okay” as a result of the operation. The eX(amine command first
prompts with the message:

Examine blocks on what volume ?
or in some versions just: Examine blocks on?

After you respond with the volume name, followed by a colon and
RETURN, the Filer will prompt with:

90 File Manager

Block number-range?

in some versions, just: Block-range?

You should respond with a list of block numbers separated by commas or by
giving a starting block number and a stopping block number separated by a
dash character (—). For example:

234—240

followed by RETURN. The Filer will then prompt by displaying the names of
all files found in the directory to include blocks within this range. It will then
prompt with:

Try to fix them ?

If you respond with Y(es, the Filer will attempt the read/write operation
described above on each block in the indicated group (in the example blocks
234 through 240, inclusive). If, during this operation, the Filer finds any blocks
which cannot be read correctly after many tries, it will display a message
stating which blocks are bad. If it prompts with:

Fix them?

and you respond with Y(es, the directory will be marked showing the damaged

area of the disk to be in a file with a .BAD suffix. Subsequent K(runch opera-

tions will not attempt to move any files with the .BAD suffix.
CAUTION: Even if the eX(amine operation terminates showing that all in-
dicated areas of the disk “may be okay," it is possible that your original in-
formation has been lost. This is possible because the error checking logic is
not perfect, and the information read initially and rewritten by the
eX(amine command may in fact be in error. It would be best to check the
contents of your disk, with the Editor, by trying to eX(ecute a . CODE file,
by checking the contents of a data file with an associated program, or by
other means after using the eX(amine command.

6 Pascal Compiler -
Coping with
Program Errors

6.1 Goals for this Chapter

The Pascal Compiler is used to translate Pascal programs from their human
readable Text form (saved on the disk by the Editor) into their directly
executable code form, which the Compiler saves on the disk. The Compiler is
designed to translate the entire contents of a text file in one continuous opera-
tion. Unlike the Editor and the Filer, the Compiler has hardly any interactive
commands. However, it is possible to change certain controls which govern
the way in which the Compiler does its work. This is done using Compiler
Directives, which are written in the form of Pascal language comments that
start with the dollar sign character ($). One of the main purposes of this
chapter is to present those Compiler directives available in the UCSD Pascal
System which are of use to beginning users of the system.

Also included in this chapter is a discussion of strategies for coping with pro-
gram errors. If your program contains statements which fail to conform with
the syntax rules of the Pascal language, the Compiler will halt at each point
where it finds an error. When the UCSD Pascal System is supplied primarily
for use by students, the Compiler terminates upon finding the first syntax
error, and the Editor is automatically reentered with the cursor pointing at the
offending item. As the System is supplied to others, the Compiler will runin a
different manner intended to simplify development of large programs. You
then have the option of returning immediately to the Editor to correct the syn-

Vo 8

92 Pascal Compiler-Coping with Program Errors

tax errors, or of continuing with the compilation to see if there are any addi-
tional errors.

Once the Compiler can go through the entire program file without finding
any syntax errors, execution of the program may halt abruptly with the
display of an execution error message (also called a run-time error message,
since it occurs while the program is running). The run-time message contains
coded information which can be used to find the place in the text of the Pascal
program where the execution error occurred. Illustrations of both syntax and
execution errors are given in this chapter, along with various suggestions on
how to go about resolving the errors.

Following is a list of specific learning goals for beginners.

® Use the include-file option to compile a program from Pascal procedures
located in two or more separate text files.

® Use the swapping option which allows running the Compiler on
machines with a minimum amount of main memory.

® Use the Compiler’s list option directing its output to the console display
screen of your computer. Use the procedure number and byte offset
values shown in the listed output to find where a run-time error has
occurred.

® Place several types of syntax errors in a test program intentionally, and
note how they are identified by the Compiler.

6.2 Preliminaries

The UCSD Pascal Compiler is an adaptation of the “portable” Pascal-P
compiler developed by Urs Ammann at the Swiss Technical University in
Zurich. The UCSD version has been substantially changed in order to run on
microcomputers with restricted memory capacity, and in order to handle the
UCSD extensions to the Pascal language. Like the Zurich original, the UCSD
Compiler makes just one pass through the source program in a text file. The
one-pass design allows the Compiler to run relatively quickly, consistent with
the objective to make UCSD Pascal system as interactive as possible.
However, this goal requires the Compiler to occupy a relatively large amount
of memory space.

To run the Compiler, you need not only the memory space for the ex-
ecutable code of the Compiler, operating system, and P-machine interpreter,
but also space for the working memory used by the Compiler. On most
machines, the full Compiler (plus operating system and interpreter) barely fits
within a total memory capacity of 48 K bytes. This leaves so little space for
working memory, that only tiny programs can be compiled. To cope with this
problem there are two common solutions. Of course the simplest solution,
conceptually, is to add more memory capacity. A total capacity of 56 K bytes
is sufficient to compile quite large Pascal programs.

The other solution causes the Compiler to be operated as if it were two
separate programs which are swapped in and out of memory, with only one
part of the Compiler occupying memory at any instant. This arrangement

Comments and Compiler Directives 93

releases more than 5 K bytes to be used for the Compiler’s working memory,
and it makes 48 K a reasonable memory limit even if you want to work with
fairly large Pascal programs. Unfortunately the swapping arrangement also
causes the Compiler to run much slower than it does when not swapped. The
reason for this is that each swap requires a large part of the Compiler’s
executable code to be read again from disk into memory. The degree to which
the Compiler will be slowed down by swapping depends upon the type of disk
you are using, and on the manner in which it is interfaced to the computer.
Using standard 8-inch floppy disks, the compile speed drops from about 600
lines per minute to about 300 lines per minute in computer systems using the
LSI-11 or 8085 processors.

The Compiler performs its translation tasks by breaking the source program
into tokens. Each token is a logically separate item. Examples of tokens include
identifiers (the programmer supplied symbolic names for variables, pro-
cedures, etc), individual special characters like the semicolon, comma, or
equal sign, and integer or real constants (numbers). In a few special cases, two
characters together comprise a token (“..”, “:=", “<>", “<=", and
“> ="), An entire quoted string such as ‘this is a string’ comprises one token.

If the Compiler finds a place in the source program which fails to conform
with the syntax of the Pascal language, it halts and causes a brief message to be
displayed explaining the nature of the error. As it proceeds through the text of
the source program, the Compiler maintains a pointer showing where the next
token to be scanned begins. Thus, when an error is detected, the pointer
indicates the beginning of the token immediately following the token found to
be in error. Note that space characters in a Pascal program simply separate ad-
jacent tokens. A space character is permitted between any pair of adjacent
tokens. Unless both tokens are identifiers, the space is not required. From the
point of view of the syntax, any number of adjacent space characters are con-
sidered to be the equivalent of just one separator. Also the end of one line is
considered to be adjacent to the beginning of the next, and thus is considered
to be equivalent to one space character in the program text. However,
remember that it is not permitted to break any single token into two or more
parts located on separate lines.

6.3 Comments and Compiler Directives

A comment may be placed in a Pascal program at any point where a space
character would be permitted. In the UCSD Pascal System, a comment may
begin with the character-pair “(*" and end with the matching pair “*y' or it
may begin with a left curly bracket (“{") and end with a right curly bracket
(“}"). As with the five two-character tokens discussed earlier, no space is
allowed between the asterisk and either the left parenthesis or right paren-
thesis. Thus, the Compiler will not recognize

(* illegal comment *)

as a comment. However, the following would be recognized as a comment:

94 Pascal Compiler-Coping with Program Errors

(* this is a legal comment *)

Of course, the main reason why comments are permitted in Pascal programs
is to encourage programmers to include notes which explain what each portion
of a program is intended to do. Though a well written Pascal program should
be relatively easy to read and understand without comments, judiciously plac-
ed comments can greatly improve the reader’s chances of understanding a pro-
gram quickly and thoroughly.

While a comment embedded in a Pascal program is not considered to be part
of the program, and thus does not constitute tokens to be translated into
executable object code, it is possible for the Compiler to extract information
from the characters contained within a comment. The UCSD Pascal Compiler
recognizes any comment that begins with a dollar sign character as a directive
to the Compiler itself. Note that the dollar sign must be the first character
following "(*" or the left curly bracket (“{"). There can be no intervening
SPACE characters.

Compiler directives are instructions to the Compiler which cause it to
change selected switches controlling the way it operates. For example, the
Comopiler is capable of sending a specially formatted copy of the source pro-
gram text to a printer, or to a disk file for later printing, or even directly to the
computer’s console video display. This formatted output adds substantially to
the time taken by the Compiler to complete its program translation tasks.
Consequently the formatted output is normally not activated. However, the
source program can contain a Compiler directive, the list directive, instructing
the Compiler to begin generating the formatted output. If the slower formatted
output is not needed throughout the entire source program, another Compiler
directive can be included at the appropriate point in the source program to
deactivate the formatted output thereafter. Details on the list directive will be
given in a later section of this chapter.

6.4 Include Directive

Sometimes it is convenient to keep portions of a Pascal program in separate-
ly edited text files. The include directive tells the Compiler to regard the entire
text contained in a named text file as if it were part of the source program text
at the point where the include directive occurs. For example, in the following
small piece of a program:

PROGRAM TEST;
VAR X, Y, Z;
BEGIN

(*$I PREAMBLE.TEXT *)
IF X> =100 THEN

“$I” would instruct the Compiler to treat all of the program statements con-

Include Directive 95

tained in a file called PREAMBLE.TEXT as if they had been included within
the text of the program at the point immediately following “BEGIN.”

One situation in which one might use the include directive occurs when one
wants to develop several programs, all of which are to have an identical sec-
tion of program statements. Of course, if the included file is changed, then all
of the programs which use the include directive referring to that file will have
to be recompiled in order to take advantage of the changes.

Occasionally, one wants to include a file which contains CONST, TYPE,
VAR, PROCEDURE, and FUNCTION declarations. If the program file con-
taining the include directive must also have its own set of declarations, it is
implied that there must be a relaxation of the Pascal syntax requirement that
CONST declarations occur before TYPE declarations, TYPE must occur
before VAR, and so on. The UCSD Pascal Compiler allows relaxation of this
strict sequence in the special case in which the include directive occurs between
the last variable declared in a VAR list, and the first PROCEDURE or FUNC-
TION heading declared in the main program.

For reasons associated with the limited amount of memory available on
most microcomputers, the UCSD Pascal Compiler cannot handle an include
directive embedded within the text of a file which itself is included.

The include mechanism also requires the Compiler to establish a buffer
memory area to be used with the included file, and also to allocate memory for
other special purposes. As a result, the include directive may not be of any
practical use on some machines which have no more than 48 K bytes of main
memory.

Conpiling

PASCAL Compiler [11 8.A.1)
{ B o
REPERTY [1799 words]
(9 .
REVERSE [1752 words]
¢33 :
REPERTZ [4796 words)
¢ 4N e
BLONUP { 1728 words]
¢ &N
AL11 =]e]
MRITELMCL, - 7RI, (KK
Line 72, error 4 (spX(continue), {esc)(terminate), ET |

Display 6.1 An example of the Compiler’s output display showing a syntax error.

96 Pascal Compiler-Coping with Program Errors

6.5 The Compiler’s Display and the List Directive

As the Compiler works its way through the text of the source program, it is
capable of generating two kinds of displayed or printed output designed to
assist a user in keeping track of its progress. The principal uses of this output
are associated with program debugging, and will be discussed further in later
sections of this chapter.

Normally, the Compiler displays only a very terse summary of its progress
as it goes through the source program. Display 6.1 provides an example.

{ (s$L CONSOLE:s)

i PROGRAN EDITDEND,

3 UAR 61,

3 82,

3 63,64 INTEGER,

; 81,82, 83:B00LEAN,

1 PROCEOURE REPEATH,

1 UAR S, $6:STRING,
83 L, N INTEGER,

¢ BEGIN

0 WRITELNC

& 'TYPE ANY STRING FOLLONED BY CRET)’ .
3),
3 READLN(S),
2 N,

75 L =LENGTH(S).

81 REPERT

81 S6:2COPY(S,1,N),
97 MRITELN(SE),

16 WoaNey,
122 UNTIL WL
124 END (eREPERTLs),
144 §

H

-
- N TR o TP LN e 8D PP e

-
-

P A
- T LA

[
oo

.‘
LY -3

1
{
1
i
1
i
i
i
i
1
1
2 1
13 1
{
i
{
{
i
{
{
i
i
i
{

e B0 DS P Pod
R R]

Display 6.2 When the list directive is activated the compiler will produce a formatted listing of the program.
Here is an example using the console output device for display.

In this display, a line with the following appearance:

shows how many lines of Pascal source text have been compiled so far. One
period is displayed for each line compiled, as the line is being compiled. The
number within brackets at the left margin is the number of lines already com-
piled at the time when this line begins to be displayed.

A line with the following appearance:

REPEAT1 [1844 words]

shows the name of the procedure or function body (executable statement part)
which the Compiler is just beginning to translate. It also shows the number of
2-byte memory words still available for use by the Compiler for working

The Compilers Display and the List Directive 97

storage. Most of the Compiler’s working storage is used to keep a table of the
declared identifiers that are currently usable within the program. You should
notice a marked reduction in the available storage space when compiling a
program which employs a large number of declared identifiers.The output
generated by the list directive is illustrated in display 6.2.

In addition to showing the text of the source program as it is being compiled,
on a line-by-line basis, this display also includes formatted information of
potential use in program debugging. The list option is activated by the direc-
tive:

(*$L. CONSOLE:)

which may be seen in the top line of display 6.2. “CONSOLE:" is the volume
identifier of the main system display on output operations (it also is used for
input from the keyboard). In its place you could put any desired disk file title,
making sure to use the suffix “.TEXT". The resulting file will contain the for-
matted listing generated by the Compiler in a form that can be read using the
Editor. If your machine has a “PRINTER:" or “REMOUT:"” volume, substitute
either volume name for “CONSOLE:” to have the listing sent to an external
printer or other remote terminal device.
The list option can be deactivated by the directive:

(*sL— %)

In display 6.2, the number displayed at the left is the number of the program
text line being compiled. Next to the right is the digit “1” on each line. This is
the number of the program segment. Separately compiled program segments
provide a means of controlling overlays in the UCSD Pascal System, ie: a
means to conserve on memory space when working with large programs. The
rules on preparing programs containing separately compiled segments are
beyond the scope of this book, but they are described in the main reference
manual for the UCSD Pascal System.

To the right of the segment number, there is a number immediately followed
by a colon. This number is assigned by the Compiler as a unique identification
of each program block (procedure or function) within a segment. The main
program is always block number 1. The block numbers are assigned in the
order of appearance of the PROCEDURE and FUNCTION headings. The
order of appearance of the procedure and function identifiers in the Compiler’s
normal display corresponds to the appearance of the executable parts of each
block, and thus may not be the same as the order of block number
assignments.

Immediately to the right of the colon is the character “D” (in lines that per-
tain to the declarations) or a number (in lines containing executable program
statements). A number indicates the level of nesting of Pascal statements, and
it may be useful in finding unmatched BEGIN . . . END pairs in a program.

The final column of numbers, located just to the left of the Pascal program

98 Pascal Compiler-Coping with Program Errors

statements proper, is to be interpreted differently depending upon whether the
associated lines are declarations or executable statements. On a declaration
line, the number tells how many 2-byte memory cells intervene between the
base address of the block and the first declared identifier in a group. Unfor-
tunately, the “first” declared identifier in a list such as Gl1, G2, G3, G4 in
display 6.2 is really the identifier that we read as last, ie: G4. Thus G4 is at
location 3, G3 is at location 4, G2 is at location 5, and G1 is at location 6. The
next location, 7, is allocated to B3 in this example. These location numbers will
be of very little use to beginning users of the UCSD Pascal System. They are
intended for use with a debugger program capable of displaying a dump of the
program’s working memory contents.

On a line containing executable statements, the number in the last column
tells how many bytes of compiled code were generated before the first code
bytes of the current line started being generated. These numbers can be of con-
siderable assistance to a beginner who is searching for the source of a run-time
error in a program. We will explore that topic in some detail in a later section.

6.6 Miscellaneous Compiler Switch Directives

All of the miscellaneous Compiler switch directives tell the compiler to start
or stop doing something as it goes through the source program. In each case,
the directive is selected using a single character followed by either a plus
character (“+") to turn the switch “on,” or a minus character (“—") to turn the
switch “off.” For example:

(*$5+%)

turns on the Compiler’s swapping mode, which conserves memory space. On
the other hand:

(*$5—7)
turns swapping off.

6.6.1 Enable GOTO Directive

For reasons associated with the teaching approach used in the Bowles text-
book cited in Chapter 1, the Compiler normally prevents the use of the Pascal
GOTO statement. GOTO statements are considered a potent source of errors
in program logic, and their use should be avoided wherever possible. On the
other hand, there are occasional situations where the GOTO can be used to
provide an escape from an error situation in such a way as to allow a program
to run more efficiently. For that reason, the UCSD Pascal Compiler can be
conditioned to allow the GOTO statement through use of the “G +" directive,
ie:

(*$G+*)
6.6.2 1/0O Check Switch

As supplied to users, the UCSD Pascal System terminates a program abnor-

The Compilers Display and the List Directive 99

mally in the event of an error encountered during an input/output (I/0)
operation. The Compiler can be instructed not to generate the code which
checks on the result of an I/O operation using the option:

(*$I—")

Means are available then for the programmer to provide program checks to
determine how to cope with an I/O error. This subject is beyond the scope of a
book for beginners. Details may be found in the main reference manual for the
UCSD Pascal System. Unless you find it essential to do your own checking for
/0 errors in a program, I strongly urge you to forget about the I/O check
switch directive! However, its use is discussed in this book in Chapter 8, “Pro-
gramming to use Disk Files.”

6.6.3 Quiet Compilation Switch

If your computer’s principal console device is a hard-copy printer rather
than a display terminal or if your display is restricted to run at hard-copy
speeds, you may want to suppress the Compiler’s normal progress messages in
order to save time. The UCSD Pascal System has a control switch called
“SLOWTERM"” which, if set to true, indicates that you have a slow terminal
device. The Compiler’s quiet switch directive suppresses normal progress
messages if it is turned on. If your copy of the UCSD Pascal System has
SLOWTERM set to true, then the quiet switch will automatically be turned on.
If not, you can produce the same effect with the directive:

(*$Q+%)

Conversely, if you want to turn off the suppression of progress messages, use
the directive:

(*$Q—")

The status of your SLOWTERM control switch can be changed using the
utility program SETUP, which is supplied with the UCSD Pascal System.
SETUP is a self-documented program which provides its own instructions.
You may have to step through various irrelevant option switches using SETUP
before you reach the SLOWTERM option. The program provides a command
that allows you to avoid reviewing all the remaining options after changing
SLOWTERM.

6.6.4 Swapping Mode Switch

The swapping mode switch directive causes the Compiler to be executed as if
it were two separate programs which alternate in their use of the same area of
the computer’s memory. This allows the Compiler to be used on a machine
with roughly 5 K bytes less main memory than would otherwise be required
to compile a program of any given size. It also has the undesired effect of mak-

100 Pascal Compiler-Coping with Program Errors

ing the Compiler run less than half as fast as it otherwise would run in the
absence of the swapping switch. The name of the option describes the swapp-
ing back and forth of the two parts of the Compiler. If you intend to use the
swapping mode option, the following line must be the first line of your text file
(following any optional comments):

(*$S+)

Unlike some of the other switch directives, the swapping mode cannot be turn-
ed on and off at will during a compilation. It must remain on for the entire
compilation if the option is to be used at all.

For some microcomputers with restricted amounts of main memory, the
UCSD Pascal System will be supplied to users with the swapping switch option
turned on by default. If you have a copy supplied in this way, you can turn
swapping off (if that makes any sense given the memory available to your
computer) using the directive:

(*$S—7)

Recent versions of the Compiler begin compiling with the swapping mode
turned off, but invoke swapping when it is needed to allow the compilation to
continue. With this feature, you can forget about the (*$S+ *) directive.

6.7 Syntax Errors

If the Compiler finds a section of program text which fails to conform with
the syntax rules of Pascal, it halts and causes an error message to be displayed.
If the STUDENT option switch of the operating system is set to true, the first
syntax error will cause the Compiler to terminate and turn over control to the
Editor automatically. Use the SETUP program, which is largely self-
documented, to reset the STUDENT option to false. An example of the display
you should expect to see is shown in display 6.1, which refers to a sample pro-
gram called COMPDEMO, which is supplied as one of the files in the standard
UCSD Pascal System disks.

In display 6.1, the right-parenthesis character “)” which should have been
placed just to the left of the semicolon has been left out of the program. The
Compiler’s progress display contains copies of the line where the program
error is found (up to the token where the Compiler notes the error) and the
previous program line. The symbol “< < < <" amount to a cursor pointing to
the token found to be in error.

The bottom line shown in display 6.1 notes the number of the line where the
syntax error is found, gives the code number of the error, and then provides
several options. If you press the E key, to invoke the E(dit option, the result
will be the same return to the Editor that takes place automatically when the
STUDENT option switch of the operating system is set to true. In that case, a
message briefly describing the nature of the syntax error will be displayed at
the top of your screen (assuming that there is a copy of the file SYSTEM.SYN-

Syntax Errors 101

TAX on your bootload disk). This is shown in display 6.3 which replicates the
Editor’s display resulting from this operation. The Editor’s cursor is left point-
ing at the same position where the symbol “< < < <” pointed when the Com-
piler halted. You can continue at this point to use the Editor by pressing the
space bar.

3 expected. Type (sp
FUNCTION BLOWUP(X ¢ INTEGER) 'BOOLERN,
URR

1,18 UB INTEGER;

CH:CHAR,

RORRRAYIS 18] OF INTEGER,

B =¥,
FOR 1:=LB 70 UB DO
BEGIN
RLIY =181,

MRITELNCL, 0 7 ALY B
END,
BLOWUP =UB) 18,
END (sBLONUPS),

BEGIN (¢NAIN PROGRANS)
WRITELNC/START EDITDENO"),
WRITELN,

REPERTY,
WRITELK,
REPEATZ
WRITELY,

Display 6.3 Screen editor display (small file version) after a syntax is detected by the Compiler, and the user is
returned to the Editor.

The two other command options made available by the Compiler, as shown
in display 6.1, are intended for use in working with large programs. If you
press the space bar when the Compiler has halted, the Compiler will continue
attempting to compile the rest of the program. Because of the nature of the
Compiler, this may or may not be a sensible thing to do. Some syntax error
conditions leave the Compiler confused, and all it can do is to produce an
unending sequence of error messages at the same program location. Other er-
ror conditions are not as drastic and the Compiler can sometimes continue all
the way to the end of the program with no problem. If you suspect that the
Compiler has become confused after a sequence of syntax error conditions,
you can terminate further compilation without automatically invoking the
Editor by pressing the ESC key while the Compiler is halted.

The bottom line in display 6.1 contains only the coded number of the syntax
error, and not the explicit error message displayed in the top line by the Editor
as seen in display 6.3. The main reason for this is that provisions to show an
explicit error message in the Compiler’s display would require the use of addi-
tional program memory. Since the Compiler is already almost too big to fit
within a 48 K byte memory (along with the operating system and interpreter),
the decision was made to leave out the explicit error message at this point. A

102 Pascal Compiler-Coping with Program Errors

complete list of the numbered syntax error messages used in UCSD Pascal
System may be found in Appendix D1 of this book.

If you are working with a large Pascal program, it may be most efficient to
use a printed listing of the program as an aid during compilation. When the
compiler halts and shows an error message, write a brief note about the error
at the place in the listing where the error occurs. Then instruct the Compiler to
continue by using the space option. Continue noting your errors until the com-
pilation has been completed, or until it is obvious that the Compiler has lost its
way. This method saves the time that would otherwise be taken in multiple
switching back and forth from Compiler to Editor to Compiler. . . . It also
simplifies the process that you should go through after noting each error — ie:
the visual search for errors similar to the one just flagged by the Compiler.

The following subsections provide suggestions on how to find some of the
more troublesome syntax errors that often arise in the use of the UCSD Pascal
System.

6.7.1 Unmatched BEGIN . . . END Pairs

One of the more common errors in writing Pascal programs is the failure to
match each BEGIN in a source program with a corresponding END. The pro-
blem is exaggerated when one uses a display screen for most program editing
work, since then it is often the case that both BEGIN and matching END can-
not be displayed on the screen at the same time. While the Compiler has no
trouble discovering that each BEGIN has not been matched with an END (or
vice versa), it generally points to the problem at a point far removed from the
place in the source program where the error is actually caused. Display 6.4
illustrates the problem.

62 1 5b 9 RCARRAY(L. 18] OF INTEGER,
68 1 58 § BEGIN

BLONUP [1728 words)
8 1 51 8 LB:=X;

3 UB:=y,

6 FOR !:=LB 70 UB 00

i8 BEGIN

18 REI):=]sl,

kT4 NRITELNCE, 70 7, ALLD),

83 (sEND; ¢)

85 BLONUP =UB > 18,

98 EMD (sBLONUPe),

97

97 BEGIN (sMAIN PROGRANS)

97 MRITELM(’START EDITDENO"),
{31 REPEATZ,
133 WRITELN,
141 IF BLONUP(S,15) THEN }
149 NRITEC Upper Bound too large’),

{
{
1
{
{
1
1
1
i
i
i
i
i
b}
i

WRITEC'Upper Bound too large’),
{ TN _
Line B4, error € (spdicontinue), (esc)(terminate), Ecdith

Display 6.4 Syntax Error caused by BEGIN not matched by END.

Syntax Errors 103
Upon return to the Editor, the full error message that is displayed reads:
Illegal symbol (possibly missing ‘;" in line above)

Considering that the actual error occurs 13 lines earlier in the program, at line
75, this message is far from helpful.

The section of program that is shown here is the same as shown in display
6.3, but the missing right parenthesis has been correctly restored in line 74.
Line 75 shows the END enclosed as a comment, thus preventing the Compiler
from regarding the END as part of the program. The Compiler thus goes on
translating, and regards the END in line 77 as matching the BEGIN in line 72,
even though the comment in line 77 makes it clear to a human reader that this
END was intended to be the closing token of the BLOWUP function. The
Compiler carries on assuming that the subsequent lines are still part of the
BLOWUP function. This can be seen by the fact that program code generation
(the right-most column of numbers) does not start from zero upon entering the
main program block in line 79. Another indicator is that the main program
statements are all shown as part of block #5 in the block-number column of the
display.

The failure to match END'’s with their corresponding BEGIN's is often a dif-
ficult error to trace to its cause when working with a large program. The block
number and bytes-generated columns of the Compiler’s list option provide a
mechanism which should help materially to find these errors.

6.7.2 Comment Not Completed with a Closing “*)” Symbol

In a similar vein, it is all too easy to forget to finish a comment with the
necessary closing ((*)” or “#" symbol. Display 6.5 provides an illustration. In
this case, the actual error occurs on line 77, where an asterisk has been left out.
The Compiler does not detect an error until line 80. The message correspond-
ing to error 14 reads:

; expected (possibly on line above)

Again not very helpful. Since correct syntax clearly does not require a
semicolon on line 79, we must look for other evidence.

Again we notice that the Compiler failed to start generating code at the
opening BEGIN of the main program block (line 79), instead showing that 96
bytes of code had been generated in block 5 at that point. The block number
should be 1, since line 79 is the first line of executable code in the main pro-
gram block, and the byte-count should be 0. See line 68 for the corresponding
correct byte count for block 5.

In this case, the error is relatively easy to detect by noting the failure of code
generation to start over at the beginning of a new block. Another common
indicator is the failure to advance the bytes-generated counter from line to line
in an area of the program which contains a sequence of executable statements.
When this occurs, something has clearly happened to prevent the code genera-
tion. Usually the reason is an incomplete comment.

104 Pascal Compiler-Coping with Program Errors

£2 38
63 5:0
64 50
65 5P
$:b
50
59

184
3 FUNCTION BLONUP(X, ¥ INTEGER) ‘BOOLERN,
S URR
S 1,18, U8 INTEGER,

6 : § Ci:Chag,

& - 9 R-ARRAVIL.. 18] OF INTEGER,

6 4 8 BEGIN

BLOWUP [£728 vords]
CHd. 6 1 51 8 LB,
] k] UQZ*\’;
" € FOR I:=LB T0 UB DO
72 18 BEGIN
73 18 RLT) slsl,
74 32 NRITELMCL, 0 7 801D,
75 8% END;
6 92 BLONUP.=UB > 18,
7 97 END (sBLOWUP),
8 87
9 37 BEGIN (eNRIN PROGRANS)

BEGIN (WMRIN PROGRAMS)
NRITELN (¢ .
Line 79, error $4 (spd)(continue), Cesc)(termimate), E(dit)

e e
(TR PP PP PP ET P R RT

Display 6.5 Errors can be caused by improperly using or omitting the closing delimiter in a comment, as shown
here.

6.7.3 Nested IF Statements

Nested IF statements are an invitation to make syntax errors, some of which
the Compiler is unable to detect. Display 6.6 provides an example of a correct
small program for use in seeing how some of the errors arise.

In this case, one of the best clues for checking correct program construction
is the column of numbers representing depth of nesting, ie: the numbers
immediately to the right of the column of colon characters. Notice that the
nesting depth is increased by 1 each time a statement controlled by another is
entered. It is reduced by 1 when the same controlled statement terminates. For
example, the IF statement in line 9 controls the IF statement starting in line 10.
Line 9 is at level 1, while line 10 (the controlled statement) is at level 2. The
ELSE in line 12 refers back to the IF . . . THEN in line 10, and hence is shown
at level 2. The compound statement (BEGIN . . . END) starts in line 13 at level
3, being controlled by the IF. . . THEN . . . ELSE. . . at level 2, and it ends in
line 16, again at level 3.

Now consider display 6.7, in which we have placed an additional BEGIN
. . . END pair to make the program logic a little more obvious. This program
is still correct, and carries out the same steps shown in display 6.6. However,
the additional compound statement brings an additional level of nesting. Thus
the new BEGIN in line 10 of display 6.7 is at level 2, while the IF . . . THEN in
line 11 is at level 3. This same IF . . . THEN had been at level 2 in display 6.6.

The addition of extra BEGIN . . . END pairs is often useful when working
with a complicated set of nested IF statements as a way to force the program
logic to go as one plans. If the extra compound statement is redundant, as in

Syntax Errors 105

display 6.7, no harm is done since the Compiler generates no corresponding
code. However, the extra compound statement makes it unnecessary for the
programmer to trace back through the nested IFs to make sure that the ELSE in
line 17 of display 6.6 (line 19 of display 6.7) belongs to the IF. . . THEN in line
9 of both figures.

1b 4 PROGRAK IFBONB,
i 3 VAR W, %, ¥, 20 INTEGER;

i 19 § BESIN

[FBONE [1965 words]

{ 4. LI U 0 | 8 NRITEC’Enter value of ¥:7); READLNCN);

, 49 NRITE{'X:’), RERDLN(X);

81 NRITEC'Y:"), READLE(Y);

143 2=

116 IF ¥ > % THEM

124 1F N 2 Y THEN

126 2= ¥

126 ELSE

134 BEGIN

13 IF § = ¥ THEN

136 7 =¥

136 10

139 ELSE

14 =¥

{44 WRITELNC'Z#° D),

19 176 EWD

A Pl e Jute

i
i
i
i
i
{
i
i
i
i
i
{
i
i

28 Vines, 8 secs, 157 lines/min
Snallest available space = 1995 vords

Display 6.6 A program containing nested IF statements with no errors.

Unfortunately, one sometimes decides to clarify a set of nested IF statements
by using extra compound statements after getting a large part of the nested
structure into the program via the Editor. Thus, a common error is to add the
END but forget the corresponding BEGIN that should be placed earlier in the
program. Display 6.8 provides an illustration.

The extra END appears on line 17. It should be matched by a BEGIN be-
tween lines 9 and 10. The END on line 17 is indented two columns less than
line 16, a natural step to take when increasing the indentation by two for each
additional statement level, and decreasing the indentation correspondingly for
each statement level terminated. This time the Compiler again generates the
ubiquitous “illegal symbol” message (error 6), which is virtually equivalent to
“something is wrong but I don't see what.”

The clue to look for in this situation is the level numbers on lines 15, 16, and
17. Since the level is shown as 0 in line 17, the Compiler considers this END to
be the match for the BEGIN in line 4, ie: the opening BEGIN of the block. But
visual inspection of the program, if a reasonable effort at logical indentation
has been made in writing the program, quickly shows that it had not been
intended that the END in line 17 would be the closing END of the block.
Otherwise that END would have been placed in the program with no indenta-
tion. At this point we trace back, and discover that the level 3 statements are

106 Pascal Compiler-Coping with Program Errors

properly balanced, but that there is no BEGIN at level 2 to match the END in
line 17. Since the nested IF structure began at level 1 in line 9, the END should
necessarily have matched a BEGIN at level 2 somewhere after line 9. Thus the

problem is narrowed quickly to the point where the infraction effectively took
place.

Command. ECdit, R(un, F(ile, Clomp, L(ink, X(ecute, R(ssem, blebug,? 11 08

IFBONE [1905 words)
C O 5 4 1 8 WRITECEnter value of W /), READLACK),
49 WRITEC'X:”); READLNCX),
81 WRITEC'Y:"), READLN(Y),
13 7=,
116 IF W) X THEN
120 BEGIN
121 IF §) ¥ THEN
126 Ry
126 ELSE
134 BEGIN
134 IF W=V THEN
- 136 2 sy
136 £
139 END
139 ELSE
W 7 ey
144 WRITELN(237,),
10 176 END

1
i
{
{
i
i
i
1
{
i
{
i
i
i
i
i

[e O S T U RN Y

22 Tines, 8§ secs, 164 lines/nin
Snallest available space = 1905 words

Display 6.7 The nested IF program of display 6.6 showing an extra BEGIN , . , END pair.

PASCAL Conptler (118 A 1)
¢ B 11 1D f (e$L CONSOLE o)
2 1 1.0 1 PROGRAN IFBONB,

304 40 3 URR N,X,Y,2 INTEGER,
€ 118 e eEsIn

IFBONE [1985 words)
O S 1 11 § NRITEC’Enter value of W:7), READLNCN),

49 NRITEC'X: "), RERDLNC(YX),
81 NRITEC’Y."), READLN(Y),

113 72:=0,

116 IF W) X THEN

124 IF ¥) ¥ THEN

126 2 =N

126 ELSE

134 BEGIN

134 IF W = ¥ THEN

136 FARE N

136 ENp

138 END

i
i
i
i
1
{
{
i
4
H
i
i

e Pl o G P ks i o G e P Pt
T G LM B a3 NS G D B e o e

Exp
ELSE ((((
Line 47, error 6 (spd(continue), C(esc)(terminate), Edit]

Jisplay 6.8 An example of a set of nested IF statements with an unmatched extra END statement, leading to a
ompile error.

Syntax Errors 107

Conmand’ E(dit, RCun, Flile, Clomp, L(ink, X(ecute, R(ssen, Diebug,? (1108
{ ® S G B4 1 (s$L CONSOLE:®)

F A S W8 { PROGRAM 1FBONB,

311 10 3 URR N, X,¥, 2 INTEGER;

¢ 1 18 & BEGIN

1FBONE [1985 words)

(& s 4 14 § WRITEC‘Enter value of W:); READLA(E),
A 49 HRITEC/X:"); RERDLKYX);
81 MRITEC‘Y:"); READLM(Y);
113 2:=8,

446 IF W > X THEM

12 IF ¥) ¥ THEK

126 7= M

126 ELSE

i IF ¥ = v THEN

136 P |

136 ELSE

144 2 s

144 NRITELNC 2=, D),

8 § 1% 176 EWD

- -~

i
i
i
i
i
i
i
1
1
i
i
i

h g gl G P e b P ot o e el
[WFIQERYY ERY SENE Rl

18 Vines, 7 secs, 147 lines/nin
Snallest available space ® 1985 words

Display 6.9 An example of nested IFs with BEGIN . . . END missing.

Next, let’s see what happens if one neglects to put in both the BEGIN and the
END in a situation where the program logic is changed as a result. This is
illustrated in display 6.9.

In this illustration, the ELSE in line 15 has been left indented as if it belongs
still with the IF . . . THEN in line 9. However, if that were true, then the level
of line 15 would be 1, as associated with the same ELSE in displays 6.6 and 6.7.
Since the level in line 15 is actually 3, it is clear that the ELSE associates back to
the IF . . . THEN in line 13, thus having quite a different effect than it did in
the preceding displays. Here, there has been no error of syntax detectable by
the Compiler, but there may well have been an error of program logic detec-
table because the level entries are not consistent with the indentation used
when editing the program.

6.8 Execution (Run-Time) Errors

An execution error occurs at run-time, ie: while a program is running, if the
program attempts an illegal action. A list of the execution errors detectable by
the UCSD Pascal System is given in Appendix D2 of this book. The most likely
error in most programs is a “value range error,” indicating that the program
tried to assign a value outside the declared range of an array index or subrange
variable. Other common errors are “stack overflow” (to run out of working
memory space), “integer overflow” (attempting to assign an integer value
larger than can be expressed within a 16-bit memory word), “divide by zero,”
and “string too long."”

When a run-time error occurs, the System halts and displays a three-line
error message on the principal console device. The top line displayed is one of

a—~ rascal CLompiler-Coping with Program Errors

the messages tabulated in Appendix D2. The second line contains an entry
such as:

S#1, P44, I4 14

meaning that the program halted in segment 1, procedure (block) 4, and at a
code offset of 14 bytes from the beginning of the block. These numbers corres-

pond to the numbers in the second, third, and fifth columns of the Compiler’s
list option output.

As a concrete example, consider displays 6.10 and 6.11. Display 6.10 shows
a section of the program file COMPDEMO. Not shown is the statement which
calls the function BLOWUP, in which the variable X is given the value 5, and Y
the value 15. Display 6.11 shows the output of this program. The top few lines
in display 6.11 result from the parts of COMPDEMO which have simply been
copied from the EDITDEMO program used in Chapter 4.

148 READLN(S),
167 D, -
169 END (SREPERT2S),
184
3 FUNCTION BLONUP(X, ¥ INTEGER) BOOLEAN,
S UAR
S 1,LB,UB INTEGER,
8§ CH CHAR,
9 RARRAYEY 18] OF INTEGER,
BEGIN
8 (B=X
3 0By,
6§ FOR 1'=LB 10 UB DO
18 BEGIN
18 IO
32 WRITELNCI, 7 ACID),
85 END,
92 BLONUP:=UB) 18,
97 END (¢BLONUPS),
112
8 BEGIN (*NRIN PROGRANS)
8 MRITELN(‘START EDITDEND”).
36 WRITELN,

33
3:2
38
kN |
b
§b
5D
50
5D
58
51
34
54
52
$:3
5:3
52
51
58
59
18
{1
14

Ll e e e il el e o A e o S

Display 6.10 A compiler list option display of the function BLOWUP.

At the bottom of display 6.11, we see that the program “blew up” (also call-
ed bombing or abending) in segment 1, block 5, and at a point in the code 24
bytes from the beginning of the block. Referring to display 6.10, we see that
this offset occurs within line 73, which starts in byte 18 and ends in byte 31.
Since the error was a “value range error,” we immediately suspect the index
value I in the subscripted array variable A[I]. There are no other items in line
73 which would correspond to a value range error. Now we trace back
through the program to see where I might have taken on a value outside the

Syntax Errors 109

range 1..10 which was declared in line 67. Since the value of UB is initialized to
the value of Y when the function was entered, and since the value of Y is 15,
we see that the FOR statement will inevitably generate a value of 11. This is the
first value outside the declared range, and hence is the value which will trigger
the value range error. We cross-check this conclusion with the displayed out-
put of the program itself in display 6.11. The program ran long enough to
display lines for values of I ranging from 5 through 10, but it failed to continue
to display values from 11 through 15. Thus the conclusion is confirmed that
the value range error arose because of a value of I outside the allowed range.

As an exercise, try using a similar method to find the error in the REVERSE
procedure of the same program. This can be found by running the program,
and by responding to the second prompt message with a string which contains
an even number of characters, for example “even.”

Of course, not all execution errors are as easy to find as the errors illustrated
in this section. The error message allows you to find out which block contains
the statement where the program finally blew up. It may then be necessary to
insert extra WRITELN statements into the program to determine the values of
essential variables at times immediately before the execution error occurs.
These values may or may not make sense relative to the program logic, and it
may be necessary to go back to earlier points in the program, again with extra
WRITELN statements, to determine how the essential variables took on the
offending values.

Running. ..
STRRT EDITDEND

TYPE RHY STRING FOLLOWED BY (RET)
ANy

8
1]
Aty

TYPE ANY STRING FOLLOMED BY (RET)
25

36
4

81

3
&
b
8. 64
LB
168 198

Ualue range error
SH PES, 182
Type (spaced to continuell

Display 6.11 Running COMPDEMO in order to show a run-time error gives this display.

7 Quizzes for
Pascal Self Study

7.1 Goals for this Chapter

A set of automated interactive quiz programs is available for use coor-
dinated with study of the textbook Microcomputer Problem Solving Using
Pascal, by K L Bowles, Springer-Verlag publishers, New York and Heidelberg,
1977. The quizzes are to be available in a separate package from distributors of
the UCSD Pascal System. All of the quizzes will be available in both self-study
and class-study (grades recorded) versions.

Our main goal in this short chapter is to introduce the two styles of quizzes
that are available. One style contains drill-and-practice exercises designed to
review the principal study goals of Chapters 1 through 5, and 7 through 11, of
the Bowles textbook. The other style provides automated testing for correct
execution of small programs written as procedures or functions. The drill-and-
practice quizzes are generally self-documenting. The programming quizzes are
accompanied by brief specification sheets, each of which states the problem to
be solved by one of the testable programs.

If you are a beginner seeking to make effective use of the UCSD Pascal
System, your goal should be to go through all of the quizzes, repeating if
necessary until you pass each one. If you are using this book in connection
with an organized class, your instructor will specify how to use the automated
quizzes.

1411

112 Quizzes for Pascal Self Study

7.2 Drill-and-Practice Quizzes

Each of the drill-and-practice quizzes are supplied as a “.CODE” file, and
associated “.DATA" file, for use with a special testing program. The quiz pro-
grams are designed to run under Version II.1 of the UCSD Pascal System, and
later versions which include facilities for “Intrinsic Units.” (Though Version
II1.0 has a higher number, it does not have Intrinsic Units.) To use the testing
program, you need the files:

TESTER.CODE
TESTER.DATA
SYSTEM. LIBRARY

The SYSTEM.LIBRARY file must contain the Intrinsic Units designed for use
with the quiz programs.

The directory names of the quiz programs have an obvious connection with
the associated chapter in the Bowles textbook. For example, QUIZ8.CODE
and QUIZ8.DATA are for use with chapter 8. To use this quiz, go to the
“Command:” world, press X (for eX(ecute), and then respond to the prompt
with:

TESTER

followed by RETURN, in the usual manner. The TESTER program prompts
you with a request for the number of the textbook chapter for which you want
quizzes.

Please note that the information shown in this book has been displayed
on a display screen having 80 column lines. The quizzes will also be
available in slightly altered versions for 40-column displays like that on the
Apple 1l computer.

When you answer the TESTER's prompt, instructions for the first of several
quiz questions will appear after a short delay for reading the quiz materials
from the disk. Each drill-and-practice quiz contains several questions, which
are selected in random order when you run the program.

Each question is itself a subprogram (Pascal procedure or function) which
selects the detailed information presented on the screen from a random pool of
quiz data. Therefore, each time a particular question is presented, the detailed
information in the question will vary, and/or the order in which the informa-
tion is presented will vary. In effect, each question subprogram can generate
hundreds or thousands of similar questions which differ in their detailed sub-
ject content.

Display 7.1 shows the display generated by one of the questions in QUIZ1,
at a point when we have partly completed the required answers to the ques-
tion.

Drill-and-Practice Quizzes 113

Question 2° ldentifiers

Indicate, by typing Y(es) or N(o) {(ind then
(RET>), whether each of the following exanples is
an (identifier) obeying the PASCAL syntax rules:
In this question, each exanple is either

EXACTLY OME (identifier) OR something else

To pass this question you must ansver 18
exanpies correctly before getting 18 vrong

{number correct: § wrong: 8)
auizes ? K
THRT’S CORRECY

Special character ‘¥ not alloved

Press RETURN to continue, CESCY to Quitd

Display 7.1 A display generated by an identifier question of Quiz #1.

The philosophy of each of the quiz questions is to encourage you to practice
answering factual questions until you indicate a reasonable mastery of the sub-
ject matter. Thus, you are generally permitted at least one chance to answer a
question, or part of a question, incorrectly without failing the question. If you
do answer incorrectly, the quiz program will repeat with the same subquestion
or a similar subquestion at a later time. The self-test quiz program will allow
you to try each question twice. It will give a summary when the program ter-
minates, showing how many questions you answered correctly and how many
you failed. A passing grade for the entire quiz will be indicated if you fail no
more than two questions as presented. Since each question is repeated once if
you fail it the first time, this means that you generally will have to pass each
question correctly once in order to pass the quiz as a whole.

In the question presented in display 7.1, you answer each choice with Y(es
or N(o. The program responds by indicating whether your answer is correct.
You are required to answer ten choices correctly with no intervening wrong
answers. As an incentive to analyze the displayed strings, to indicate whether
they are legally constructed identifiers, the question will be failed if you get 10
answers wrong before you get 10 correct in a row.

Display 7.2 illustrates a second question from Quiz #1. This question uses a
modified multiple-choice strategy. The program displayed by the question
contains some lines that are correct and some that are incorrect because they
violate the Pascal syntax rules. The selection of right or wrong for each line is
random, and thus will vary each time the program is run. The question asks
you to consider a specific line of the program displayed. It then displays a

114 Quizzes for Pascal Self Study

statement about that line. If the statement correctly describes that line, then
answer Y(es. Otherwise answer N(o, and the question will display another
choice.

Question 1 Syntax
PROGRAK APISEY
STRRT

WRITELNC This’, ‘15 a demonstration’),
WRITELNC of “PASCAL’‘ program execution’),
WRITELNC Type (CR> to cont *), (s avatt response +)
CLEARSCREEN
KOVE(-5)
PENCOLOR(BLACK),
ROVE(S),
TURN(SS, -188),
TURNCDONN)
KOVE(30),
READLN,
WRITELNC Bye for now ')
(600bBYE)
EXp
TRLLY: Correct - | krong - 8

¥

1

INCORRECT because of Quotels) nissing (y/m)? j

Display 7.2 A program syntax question from Quiz #1.

For each line you are asked to consider, there are several (multiple) choices.
The order in which the choices are presented is random, and thus varies each
time the question program is run. In this case, you are required to answer for 5
lines correctly, in order to pass the question. If you answer incorrectly, the
“wrong” count will be increased by 1, and the “correct” count will be reset to
zero. Unlike the multiple choice questions that are familiar to most students,
this “concealed multiple choice” approach makes it almost impossible to pass a
question by guessing the answers, one must analyze them.

Display 7.3 illustrates a question that requires the operator to type in a
string of characters folowed by RETURN. Display 7.3 is a snapshot of the
screen just after we have entered an incorrect string, as seen on the third line
on the right side of the display. The question program compared our input
string, typed into that line, with a string generated internally by the question
program itself. Since the two were not equal, the question program then
displayed the expected (ie: correct) answer as shown.

Display 7.4 shows a repeat of the same question program which occurred
later in running the same quiz. This time we have typed a correct answer
where prompted to do so on the third line on the right side. The question pro-
gram displays a message of congratulation at the bottom of the screen, and it
then waits for a RETURN before terminating.

Display 7.5 illustrates another question from Quiz #2, in this case one that
requires simple integer constants as answers.

Drill-and-Practice Quizzes 115

Buestion 2. Procedures
PROGRAN QUIZ2.
AR X ChaR,
PROCEDURE P(CH CHAR) |
BEEIN
BRITECP 7 CH, "), Enter the EXNCT sequence of cCharacters
£ (oPs), that should be displaged by the progran
PROCEDURE SCCN (i), NizZrLene,
sl
RITEC'S " In, 7,),
W), Serry, the expected amswver is.
E (sfs), "
PROCEDURE R(CH Chll), PEEBLZPZ
BEGIN
PO,
BRITEC'R (W, 7, "),
0z,
END (sRe),
34
LW,
KX,
]

Prass RETURN or space to contimue, Cesc) to guit)

Display 7.3 Question from Quiz #2 requiring a string to be typed in.

Suestion 1. Procedures
PROGRAR QUIZZ,
YRR X CHAR,
PROCEDURE P(CH CHAR),
BEGIN
WRITEC'P.” CH, 7, "), Enter the EXRCT sequence of characters
END (ePs), that should be displayed by the progran
PROCEDURE Q(CH CHAR), QUIZZ 06,76,
BEGIN
MRITEC'Q:’ CH, ", 3,
PICH),
END (90s1),
PROCEDURE R(CH CRAR),
BEGIN
P(CHY,;
NRITEC'R:’ CH,”, "),
QT
END (#Rs),
BERIN
X.2'6",
0N,
£ND
Fantastic' Press RETURN or space to comtinue, (esc) to quit |§

Display 7.4 Question shown in display 7.3, but with correct answer.

116 Quizzes for Pascal Self Study

Question 1 firith Express
Anseer 3 correctly without (ntervening errors
Three wrong answers terninates the question

Given

AR W, X, ¥, 20 INTEGER,

Right. 3 rong 8

Enter the value of the follovwing arithaetic expression ? i

(HeR)e¥8]

Press RETURN to continve, {escaped to quit f§

Display 7.5 Quiz #2 question requiring numeric answers.
Finally, after completing (either correctly or incorrectly) all of the questions
presented by a Quiz program, the program will display a summary showing

how you fared. Display 7.6 illustrates this summary in a case where we failed
the Quiz by getting too many questions wrong.

Command E(dit, Riun, F(ile, Clompile, X(ecute, Dlebug, I(nit, HGa1t [I b1

In this quiz, you got 3 correct, and 2 wrong

This is not a passing score

Display 7.6 Summary displayed at end of a quiz session.

Programming Quizzes 117

7.3 Programming Quizzes

Each of the programming quizzes is accompanied by a specification describ-
ing a problem for which you are to write a Pascal program as the solution. In
each case, the specification includes an exact description of input and output
parameters (or the type of a function) designed for use with a program which
tests whether your program actually solves the problem correctly. In the self-
test versions of the quiz system, the tester program should be executed in the
usual way. For the programming quizzes, the TESTER program expects to find
an executable SYSTEM.WRK.CODE file containing the executable procedure
or function that you want to have tested.

As an example, one programming quiz asks for conversion of a decimal
number, expressed as a string of decimal characters, into an octal number, ex-
pressed as a string of octal characters in an output parameter (variable).
Display 7.7 illustrates part of the solution to the problem, shown as an Editor
display with part of the program lines missing.

JEdit Rid st Clpy Dllete Flind I(nsrt Jimp R(place Qluit X{chng Z(ap [E 6!
;2962% bunny, '

SEGMENT PROCEDURE STUPROC(UAR SOURCE STRING),
URR OCTAL STRING,
BROCHAR BOOLEAN,

PROCEDURE DECTOOCTALCINN STRING, UAR OUT STRING);
UAR [X DIGIT INTEGER,

CHOCUAR,

S STRINGILL,
BESIN

QUT ="s", (skrror heres)

FOR 1:=4 70 LEMGTHCIMM) DO

BEGIN END,

EXD (sDECTOOCTALS),

BEGIN (sNAIN PROGRANS)
0CTAL =77,
DECYOOCTAL(SOURCE, OCTAL),

END (sSTUPROCH),

BEGIN
END

Display 7.7 Part of solution program for Programming Quiz 12A.
Notice that the procedure containing the solution is headed with:
SEGMENT PROCEDURE STUPROC(C(. . .

where “SEGMENT” is a reserved identifier which tells the Compiler to
translate this procedure so that it can be called into execution by another pro-
gram. The entire heading line for this procedure must be exactly as specified in
the information sheet accompanying the programming quiz.

In most respects, you develop (Edit and Compile) the solution program for a

118 Quizzes for Pascal Self Study

programming quiz in the same manner that you develop other programs in the
UCSD Pascal System. To fool the Compiler into thinking that you are compil-
ing a complete program, you must supply a dummy PROGRAM heading, and
a dummy compound statement to take the place of the executable part of the
main program block. Thus the format of the complete solution program is:

PROGRAM DUMMY; (*any name is ok*)

(* any required TYPE declarations go here *)

SEGMENT PROCEDURE STUPROC((* specified parameters here *));
VAR

BEGIN
executable body of STUPROC
END (*STUPROC*);

BEGIN (* dummy main program body *)
END.

Display 7.8 shows the display generated by the TESTER program after
testing an incorrect solution to the decimal-octal conversion problem. In this
case, we deliberately caused the error by inserting an irrelevant asterisk
character in the output string. You may notice that the amount of information
the TESTER program can give you is very limited concerning what went
wrong in your program. Display 7.9 illustrates the display for a sorting pro-
blem, in which slightly more information is available from TESTER.

Comnand E(dit, R(un, Flile, CComp, Link, X(ecute, R(ssen, M(ehog,” ([51§
Enter the wmit nuaber please - 12

Mich quiz version in that wait are you testing? A

Testing in progress

Bell. Bt ca 1 say? Your procedure didn’'t vork right
I passed you decinal "1734° and the procedure returned '1734°
The correct amswer is “336°

Display 7.8 Display generated by TESTER for decimal-octal problem.

Programming Quizzes 119

command Efdit, Riun Fiole, Clomp, Liink, X(ecute, Rissem Diebug,? 1 5

YOUR RNSNER CORRECT ANSMER

YES YES” “JELLY
ROURD "ROUND’ 410
“PEEL "PEEL’ LIFTY
LIFT ‘LIFTY “HONKEY’
‘OROER” "ORDER’ “ROUND’
NOULD- “WOULD” "ORDER’
TJELLY TJELLY’ "PEEL’
‘KIND ‘KIND” ‘UERY’
“UERY’ "UERY’ “WOULD”
‘WONKEY’ "MONKEY’ ‘YES’

Bs you can see, your procedure did not work

Display 7.9 TESTER display for incorrect sort problem solution.

The TESTER program can help you to find out what went wrong with your
solution, but it cannot point out the reason for the error within your program.
In general, TESTER is programmed to call your procedure several times with
various input data values chosen to test for special cases. Most beginning pro-
grammers find it all too easy to write a program which solves a specified pro-
blem for typical data values, but which fails to cope with certain values that
can sometimes occur. TESTER tries to test for correct handling of all of the
special cases that can occur within the range of the specified problem.

In debugging your solution for a programming quiz problem, you may find
it helpful to write your own driver program to call your SEGMENT procedure
or function. There is no hidden magic associated with the required dummy
program heading or its executable body. Thus, you can add program
statements which turn the DUMMY program into a complete executable pro-
gram which calls your SEGMENT procedure or function, passing your own in-
put data for testing. You can run or execute this program in the normal man-
ner. When you think that you have the program running correctly, you can
then try executing the TESTER program to evaluate your solution.

NOTE: All variables and procedures used by your SEGMENT procedure or
function must be declared within that procedure or function. If declared
globally as part of the main DUMMY program heading, they will not be
available to your procedure or function when it is called by the TESTER
program. The results if you do this will be unpredictable!

Another debugging strategy is the use of WRITELN statements embedded

120 Quizzes for Pascal Self Study

within your solution program to trace the values of important variables as the
program is executed. In this way, you can follow the steps your program takes
in working with the data, and often can find the point where the program fails
to do what is needed correctly. You can also insert extra READLN statements,
which cause processing to halt until you press the RETURN key, to freeze the
display at strategic points so that it can be studied. Note that the TESTER pro-
gram will scan through your source program looking for READLN statements,
and several other statements related specifically to the problem version.
TESTER will not pass you if it finds one of these “forbidden” statements. The
objective is to reject problem solutions which use tricks to avoid developing
the program logic required by the problem specification. You can complete
your debugging of a program using the extra READLN statements, then
remove those statements after the program appears to run correctly. TESTER
should then award a “pass” for the correct solution.

8 Programming
to Use Disk Files

8.1 Goals for this Chapter

Perhaps the single most important area of applications programming of con-
cern to users of the UCSD Pascal System is the handling of disk files. Whether
your interest is in business data bases, word processing, experimental data
collection, process control, or some other field, you are likely to need to work
with disk files. None of the published textbooks currently available, including
the Bowles textbook cited in Chapter 1, contains information designed to help
beginners make use of disk files in their Pascal programs.

The main goal of this chapter is to provide an introduction to programming
for disk files using the UCSD Pascal System. It is unfortunate that the present
accepted standard definition of the Pascal language lacks facilities for several
important aspects of disk file handling. Since UCSD Pascal extends the stan-
dard language to allow random access handling of disk files, readers are
warned that some of the facilities described in this chapter will not be found in
all Pascal systems, or will differ in those systems.

Specific learning goals for this chapter include the following steps:

a) Create a new disk file containing structured records.

b) Update selected records in the file created in step (a).

c) Using a Pascal program, create a new text file on disk. Read the contents
of this file using the Editor.

122 Programming to Use Disk Files

d) Process the data contained in the file contained in step (c), changing
selected data within that file. Read the contents of the altered file to
check your results.

e) Write a program capable of running without abnormal termination, even
if certain disk processing input/output errors are encountered.

Note: This chapter does not provide a comprehensive review of all kinds of
disk-oriented input/output facilities that are available with the UCSD
Pascal System. Readers interested in going further should obtain the main
reference manual for the UCSD Pascal System.

8.2 Overview

Disk files are coming to be used almost universally in small general-purpose
computer systems. The disk storage devices now available range from the
smallest of the mini-floppy disk drives, capable of storing roughly 90 K bytes,
up to the very large multidrive hard disk systems, capable of storing billions of
bytes. The UCSD Pascal System has been designed from the beginning with
floppy disks in mind. The System is also being used on hard disk based
machines, but generally in a mode which logically simulates one or more
floppy disk drives.

While both disks and tapes are used as secondary magnetic storage media
for computers, and share some characteristics, the disks have an important ad-
vantage in allowing relatively fast random access to a record located anywhere
within a file. In contrast, access to an arbitrarily chosen record on a tape file
may require minutes of tape movement before that record can be reached. The
program development facilities of the UCSD Pascal System are designed to
take advantage of the random access characteristics of floppy disks. While the
System can be used, in principle, with tape files, they cannot be used as the
main secondary storage device which supports interactive program develop-
ment.

Disk files are commonly used for any and all of the following purposes:

® Storage of information one wishes not to lose when the computer is turn-
ed off.

® Storage of files of information too large to fit within the computer’s main
memory all at once.

® Saving data representing the status of a partially completed long com-
puting task. This permits restarting the task without repeating the entire
computation, should the task be interrupted for any reason.

® Communication of files of data from one machine to another via
physical transportation of the disks themselves.

In programming to use disk files one must be concerned about several levels
of detailed information. On one level, the physical characteristics of the disk
medium and the mechanical drive on which it runs are important. The rela-

Overview 123

tionship of these characteristics to the UCSD Pascal System, and the resulting
file decriptions are the subject of Section 8.3

In Pascal, a file is an ordered sequence or collection of data items all of
which are of the same declared type. In this sense, a file is similar to an array.
Unlike an array, a Pascal file may contain a variable number of data items.
Moreover, the time required for a program to gain access to any cne data item
in a file may range from tens of milliseconds (ie: hundredths of a second) to
several tenths of a second. The time taken to access an item in an array is
typically only a few tens of microseconds (ie: tens of millionths of a second).
Because of these differences, the means of handling the storage of data into
Pascal files, and retrieval of data from those files, is very different from the
handling of Pascal arrays.

The data items stored in Pascal files are often composed of structured data
types, usually Pascal Records. Formally, a file may be composed of items
declared to be of any type that can be declared in the language. One exception
is that a file of items that are themselves files is generally not allowed. A
special file type of considerable importance among Pascal users is the Text file,
which consists of a stream of single character items broken into lines. General-
ly a text file is accessed sequentially whether on disk or on tape rather than by
random record selection.

Pascal language facilities for handling files take the form of built-in pro-
cedures and functions. The philosophy surrounding these procedures and
functions in the accepted standard definition of Pascal (See Jensen & Wirth,
cited in Chapter 1) is oriented to the use of magnetic tape files. UCSD Pascal
includes two additional built-in procedures (SEEK and CLOSE), and slightly
altered definitions of those in the standard language in order to provide ran-
dom disk access following a philosophy very close to that of the standard
language. These changes are considered controversial among language
specialists in the Pascal community, and should be regarded as unique to
UCSD Pascal. Other Pascal implementations use their own approaches, each
typically altering the standard language in subtle but different ways. For this
reason, readers are strongly urged to isolate their uses of input/output
references to disk files in a small number of easily modified procedures and/or
functions. This will reduce the effort needed to modify a program developed in
UCSD Pascal for use in another system.

Section 8.4 of this chapter presents the built-in facilities of Pascal for work-
ing with disk files composed of structured data. Wherever practical, without
detracting from the readability of the presentation, differences between stan-
dard Pascal and UCSD Pascal are pointed out.

Section 8.5 applies the built-in facilities to random access handling of disk
files.

Section 8.6 discusses text files with particular attention to their storage on
disks. Since text files are byte-stream oriented, they may also provide the best
means of handling input/output connected with a wide variety of peripheral
devices, including those interfaced to the UCSD Pascal System by users
themselves.

124 Programming to Use Disk Files

Section 8.7 discusses error recovery, a troublesome but extremely important
topic. Disks and tapes provide imperfect media for the storage of data, and it is
generally necessary to provide means for coping with errors. Errors can be
made in the process of recording data on a disk, in reading the data back from
the disk, or even in passive storage intervening between recording and
reading.

Section 8.8 provides a preliminary overview of a number of library facilities
that should eventually become available with the UCSD Pascal System for
working with disk files. These include Sort, Merge, and Indexed Sequential
Access routines. The capability to provide these facilities selectively, thus
using up scarce memory space only when they are needed, is a recent addition
to the System. Now that this capability is available, it is anticipated that the
library of specialized routines for use with UCSD Pascal will grow rapidly.

8.3 Physical Description of UCSD Pascal Disk Files

Data is recorded on magnetic disks for digital computers in a manner
reminiscent of recording on home phonograph records. In both cases, the
information is contained in a large number of (nearly) circular tracks. The
tracks of a phonograph record actually form one long spiral track. On a com-
puter disk, the tracks are separate concentric circles which are not connected
with each other.

Digital information is stored on a computer disk within a thin magnetic
recording surface very similar to the surface of a magnetic recording tape. The
important difference between a computer disk (or tape) and a cassette tape
intended for playing back music is the manner in which the information is
expressed electronically. On a computer disk, the manner of recording is
designed to store binary digital information with a very low probability that
errors will be made on playback.

Within one of the tracks on a computer disk, the data is stored as a stream of
binary bits. Usually, the stream of bits is a multiple of 8-bits long, and logical-
ly considered to be a stream of 8-bit bytes. Typically, the full capacity of one
track on a floppy disk is about 4000 bytes. On a hard disk, it can be substan-
tially larger. Usually, the disk is made to rotate continuously, because the
time delay to start the disk drive spinning fast enough for data to be read can
be at least several seconds. The rate of rotation results in the transfer of data
between disk and computer so fast that it cannot be processed while the
transfer is under way. Transfer rates for floppy disks range generally from
roughly 20,000 bytes per second to more than 60,000 bytes per second.
Transfer rates for hard disks run from about 300,000 to more than one million
bytes per second. '

This high transfer rate generally requires that there be some means for
transferring only part of a track between disk and computer during any single
read or write operation. On the first industry-wide standard floppy disks (the
8-inch diameter disks compatible with IBM's model 3740), each track is broken
up into 26 sectors, where each sector stores 128 bytes of data. To keep the cost
of the interface equipment connecting the computer with the disk drive as low

Physical Description of UCSD Pascal Disk Files 125

as possible, each sector in this design contains additional information for con-
trolling errors and for identifying the address number of the sector. In the IBM
design, the disk has a total of 77 tracks. Data transfers are initiated by the
computer’s operating system software, based on requests from user programs,
and require specifying both the track number, and the number of the sector
wanted within the track.

Later floppy disks brought to the competitive marketplace have varied the
original IBM design in many ways. There are mini-floppies (5% inch
diameter), double- and single-sided floppies, double-density floppies (com-
pared with the original IBM density, ie: number of bytes per track), hard-
sectored floppies (which substitute guiding holes punched in the disk for the
soft-sector addressing information described above), and sector sizes differing
from the original 128 bytes. Moreover, the order in which the sectors are
numbered within a track for addressing purposes varies from machine to
machine for reasons having to do with efficiency.

8.3.1 Sector Interleaving

On many microprocessor-based machines, the disk interface hardware is
relatively simple and leaves much of the logic to be carried out by the com-
puter’s central processor. This makes it impossible to read or write two or
more adjacent sectors on the disk during a single rotation. If sectors in adjacent
locations going around one track are given numbers in sequential 1, 2, 3, 4, ...
order, the result can be to force a full rotation of the disk in between read or
write transfers involving sectors with adjacent numbers. Transfers of groups
of sectors with adjacent numbers are so common that the numbering is often
arranged to provide a physical separation between sectors with adjacent
numbers. Thus, the (logical) sector number sequence on one track might be 1,
14, 2, 15, 3, 16, In reading the sequential sectors 1, 2, 3, ... there is a time
delay between finishing the read of one sector, and starting the next, because
of the rotation time associated with the intervening sector not found in that
sequence. For example, after finishing the read of sector 2, there is a time
delay for sector 15 to be passed over before reading of sector 3 can begin. This
time delay is used by the computer’s central processor to catch up with its
work associated with the read operation. In that way, it becomes possible to
read a second sector after wasting only 1/26th of one disk revolution (for the
IBM 3740 compatible diskettes), rather than having to wait for more than one
complete revolution if the sectors were in adjacent physical locations.

Not all floppy disk-based machines use alternate sector interleaving such as
that just described. Some have hardware fast enough that interleaving is not
required. Others use three-way, four-way, or other interleaving factors.

8.3.2 512-Byte Blocks — Universal Units of Disk Transfer

Since the UCSD Pascal System is designed to run on a wide variety of
machines, the scheme used for transferring data between disk and computer is
logically transparent to virtually all of the floppy disk variations just describ-

126 Programming to Use Disk Files

ed. Instead, the System regards all disk files as if they were composed of
blocks 512-bytes long. In this respect, a block can be thought of as if it were a
logical sector. The System interacts with the hardware through a set of low
level driver routines known as the “Basic I/O Subsystem,” or BIOS. The BIOS
accepts a request for transfer of a numbered block, and takes care of collecting
the actual sectors on the disk which in combination make up the block. From
the point of view of the operating system (the control software part of the
UCSD Pascal System), all disk input/output transfers take place via 512-byte
blocks. Details of how the BIOS for each different machine copes with the
actual physical sectors on the disk are of no direct concern to the software,
nor to most programmers.

The blocks on a disk are given successive integer numbers starting at 0 and
counting upwards, ie: 0, 1, 2, 3, 4, Since the number of sectors on one
track often does not work out to provide capacity exactly equal to an integer
multiple of 512-bytes, some blocks overlap two tracks. The BIOS is expected
to accept a block number, and to handle all the details of making the
equivalent of that block out of the sectors actually stored on the disk. The
operating system retains an area of memory called a buffer for each file which
is in use. The buffer has capacity to store one complete block. The upper part
of Figure 8.1 illustrates this part of the process.

8.3.3 Structured Logical Records

Of course it is recognized that very few programmers will find it convenient
to declare a Record type for their disk files that just happens to be exactly 512
bytes long. It is much more usual for the length of a Record to be less than 512
bytes and not evenly divisible into 512 bytes. Also, some Records are longer
than 512 bytes, but not an integer multiple of 512.

To provide maximum flexibility for the Pascal programmer, the UCSD
Pascal System takes care of packing logical typed Records into the 512-byte
blocks when writing to the disk, and unpacking the Records when reading
from the disk. All of the necessary bookkeeping is done so that the program-
mer does not need to be directly concerned with the calculation of which
block(s) any logical Record will occupy. Moreover, a logical Record may
overlap from one block of another, allowing full use to be made of the storage
capacity of each block in the file except for the last one which usually is only
partially occupied.

As a result, the user’s Pascal program needs only to request access to a
specific logical record in a file by using its number. For reading the N-th logical
record from the file, Figure 8.1 shows how the operating system and BIOS
routines team up to transfer just the requested Record into the window
variable associated with the file. A similar process takes place in the reverse
direction when writing to the disk. For a discussion of programming fine
points associated with the file and its window variable, see Section 8.4 of this
chapter.

Sometimes the logic of a program will make it desirable to include Records
which are declared to be laid out quite differently, mixed together within the

Physical Description of UCSD Pascal Disk Files 127

FLOPPY DISK

(Just before 4-sector block starts to be picked

READ/WRITE HEAD

ERNATE
BYTE
TORS

w

BIOS

ROUTINES

. [’
.

‘ 512

Nth RECORD
BUI

OPERATING SYSTEM @

1/0 ROUTINES L]

(.
-

USER'S PROGRAM

WINDOW VARIABLE

L_/\/\/—

COMPUTER’S MEMORY

Figure 8.1 Nfustration of steps invoked on read of N-th record.

128 Programming to Use Disk Files

same file. Pascal allows you to declare that the last field of a Record type has
several different variants. For example, we might want to mix together records
on people and on inventory items within the same file. We might also want to
slip an occasional note into the file in the form of a long packed array of
characters not broken into independent fields. The declarations associated
with these records might appear as shown in listing 8.1.

TYPE RECTYPE=(PERSON,INVENTORY,MEMO);
PERSREC=
RECORD
NAME,COMPANY:STRINGI[32];
STREET:STRING]J20];
CITYSTATE:STRINGI30];
TEL:PACKED ARRAYI0. .9] OF CHAR;
BALANCE:INTEGER]8]
END;
INVREC=
RECORD
ITEMNAME:STRING|40];
PLANT:INTEGER;
LOCATION:PACKED ARRAY][0. .3] OF CHAR;
VALUE:INTEGER]6];
DATE__ACQUIRED:PACKED ARRAY/0. .5] OF CHAR
END;
NOTEREC=PACKED ARRAY]/0. .131] OF CHAR;
RECDEF=
RECORD CASE RECTYPE OF
PERSON:(PERS:PERSREC);
INVENTORY:(INV:INVREC);
MEMO:(NOTE:NOTEREC)
END;
VAR
RD:RECDEF;

I will defer until Section 8.4 any Pascal programming consideration of how
to associate these Record types with a file. Notice that the type PERSREC
occupies a total of 136 bytes (strings include a length field; the total length of a
string variable must fill an even number of bytes), INVREC occupies 58 bytes,
and NOTEREC 132 bytes. Since the UCSD Pascal System has no way to
enforce which of the three types will occupy the variable RD at any instant, it
is necessary for RD to occupy the maximum record size regardless of which
type occupies RD. A similar consideration makes it necessary for a file con-
structed on disk from variant type records to use the size of the largest variant
as the size of all records stored on the disk. In our example, this would mean
that a substantial amount of disk space would be wasted if a large part of the
file actually consisted of records of the INVREC type.

Physical Description of UCSD Pascal Disk Files 129

If you consider using disk storage for large numbers of records using several
different Record types which differ markedly in size, it probably would be best
to create separate files in order to save space. This is a situation where tape
files have an advantage in that variable length records only occupy enough
space on the tape to accomodate their individual sizes. Variable length records
could also be arranged to occupy only their individual sizes on a disk.

This would imply either that access to these records would have to be
sequential (ie: not random), or that a relatively complex indexing scheme
would have to be used. The only simple method available in the UCSD Pascal
System for storing variable length records on disk files uses text files, as
discussed in the following subsection.

8.3.4 Text Files

The conceptual view of a text file in Pascal is that it consists of an indefinite
number of lines, each line being composed of an indefinite number of
characters followed by an end-of-line marker. In this section we present a brief
discussion of how this concept is implemented in the UCSD Pascal System.
Programming details are deferred until Section 6 of this chapter. Most begin-
ners who follow the Pascal rules on text files will have very little reason to be
concerned with the file characteristics described in the rest of this section. They
are presented here for those curious enough to get into trouble if they do not
understand these details. The details will also be helpful to readers who wish to
write programs which transfer text data between the UCSD Pascal System and
another system which uses simpler text file conventions.

In many small computer systems which use the fixed length block scheme
for disk storage, the storage of text information within the blocks is very sim-
ple. The characters in each line are written into a block-sized buffer area in
memory until the block fills up. The block is then transferred to the disk, and
the buffer cleared for additional characters. The remaining characters on the
line are then written into the buffer, and the end-of-line marker is also written
into the buffer. Unfortunately, there is no standard end-of-line marker used in
the computer industry. One common scheme uses the two character sequence
CR LF, where “CR” is the ASCII carriage return character, and “LF” is the
ASCII line feed character. (ASCII is the American Standard Code for Informa-
tion Interchange.) Others use just a single CR or LF character, and still others
use characters selected from the ASCII set or from other codes.

The design of text files in UCSD Pascal has been strongly influenced by the
requirements of the screen-oriented Editor. The objective was to make the
Editor as fast and user-responsive as possible. Several of the design decisions
have made UCSD Pascal text files less similar to text files in other popular
microcomputer systems than is probably necessary. Some of the loss in Editor
responsiveness associated with the simple popular text file formats could be
made up using carefully chosen built-in (assembly language) procedures made
available to the Editor (which is a large Pascal program). Thus, the description
given here applies to UCSD Pascal text files in their form at the time this book

130 Programming to Use Disk Files

is being written (mid-1979). In future versions of the UCSD Pascal System, it is
possible that some changes will be made.

The principal differences between UCSD Pascal text files and the simpler
format found on most small systems are as follows:

® The end-of-line character is a single ASCII CR character.

® Blank characters at the beginning (left side) of a line are compressed into
an indentation code which consists of an ASCII DLE character (decimal
value is 16) followed by a character representing the number of blanks.
The decimal equivalent value of this second character is 32 plus the
number of blanks represented by the code. The indentation code-pair is
missing if there are no blanks at the beginning of a line.

® The text is written into the disk file in two-block logical records called
pages, 1024 bytes long.

® No line of text is split between the end of one page and the beginning of
the next. Instead, the empty space at the end of a page, which is too short
to accomodate the line that would otherwise start there, is filled with
ASCII NUL characters. The binary or decimal value of a NUL character
is zero.

® Page number zero of a text file is reserved for control information used
by the screen Editor. Text is stored in a text file starting at the beginning
of page number one. Unless you use special I/O facilities intended for ad-
vanced users of the UCSD Pascal System, a Pascal program using a text
file will not be able to refer to the contents of page zero.

Note that the page-oriented layout and the page zero requirement are the
reasons why the minimum size of a text file in the UCSD Pascal System is 4
blocks.

8.4 Working with Structured Data Files

The general philosophy associated with input/output operations in Pascal is
conceptually similar to the model of a magnetic tape file. In this concept, the
usually imaginary tape is seen as resting in a position such that one record of
the type associated with the file will be transferred upon the next request for an
input or output operation. The record is transferred from the tape to a special
buffer variable associated with the file as a result of executing a GET state-
ment. Similarly, the content of the buffer variable is transferred to the tape as
a result of executing a PUT statement. The pointer indicating where the tape is
positioned is advanced by the length of one record when GET or PUT is
executed.

In UCSD Pascal, as in standard Pascal, repeated execution of GET results in
successive transfers of records in the sequence in which they are recorded on a
disk. In standard Pascal, PUT may only be executed when the position pointer
is at the current end-of-file position. One reason for this rule is that computer
tape drives are not generally built to allow overwriting a previously written
record within a file. Since UCSD Pascal is designed for work with disk files
which do allow overwriting records within a file, repeated execution of PUT is

Working with Structured Data Files 131

allowed as long as the file’s position pointer indicates a record location within
the range allocated to the file. UCSD Pascal provides a built-in SEEK state-
ment for assigning a new value to the file’s position pointer. Standard Pascal
provides no equivalent of the SEEK facility.

All Pascal input and output data transfers take place via the buffer variable.
Hence the buffer variable is sometimes referred to as a window through which
the file may be viewed. The window, ie: buffer, is treated as if it were an
ordinary variable for purposes of assigning value to or from that variable
within the Pascal program. However, the buffer variable behaves unlike
ordinary variables in the sense that certain input/output operations leave the
content of the buffer variable undefined, even when a value has previously
been assigned by the Pascal program.

Pascal READ and WRITE statements are really composite statements con-
structed using GET and PUT respectively, in addition to implicit assignment
statements involving the file’s buffer variable.

In addition to dealing with the actual transfer of data to or from a disk file,
the programmer also has to be concerned with instructions to the operating
system on how the file should be handled. Until a file is opened (readied by the
system for either input or output) using a Pascal RESET or REWRITE state-
ment, the UCSD Pascal operating system does not allocate space for the
512-byte buffer illustrated in Figure 8.1. Moreover, it is necessary for the pro-
gram to inform the operating system what directory name is to be associated
with a file. The file declaration specifies the program’s internal identifier and
record type. However, the same file in the same program can be made to refer
to many different disk files, each having a different directory name. In UCSD
Pascal, the RESET and REWRITE statements of standard Pascal have been
extended to provide the means for the program to communicate the file’s
directory name to the operating system. This allows one program to compute
the directory names of several different files, each being associated with the
same internal file identifier in the program at separate times. For each declared
file variable, only one of the actual disk files can be open at one time for input
and/or output transfers.

Since there are several possible dispositions of a disk file after it has been
used in a UCSD Pascal program, the program must generally inform the oper-
ating system how to close the file. This is done using the CLOSE statement, a
UCSD extension to the language which does not exist in standard Pascal.
CLOSE with the LOCK option requests the operating system to retain the
directory entry of a new file for future use. If LOCK is not used, a file newly
created by the program will be regarded as temporary, and the disk space it
occupies during the program execution will be marked as unused when the
CLOSE action takes place. In addition to controlling the disposition of a file's
directory entry, the CLOSE statement also informs the operating system that it
may release the buffer space associated with the file for other uses. A CLOSE
without LOCK is automatically invoked if no CLOSE statement has been
explicitly executed before termination of the block (procedure or function) in
which the file is declared.

132 Programming to Use Disk Files

Because the number of data items stored in a file may vary, it is necessary to
provide a facility whereby a Pascal program repetition statement involving
input or output may be told when to stop. For structured data files, the only
facility provided for this purpose in standard Pascal is the built-in function
EOF (End-Of-File). For reasons associated with fundamental differences be-
tween tape and disk files, UCSD Pascal treats the interaction between EOF
and GET, PUT, and SEEK in ways that differ significantly from the handling
of EOF in Standard Pascal. Subsection 8.4.8 describes the handling of EOF in
some detail because of its importance in controlling the other disk related
statements.

As a final introductory note, RESET and CLOSE are automatically executed
by UCSD Pascal for the predeclared files INPUT, OUTPUT, and
KEYBOARD. Moreover, the definition of INPUT and QUTPUT files in UCSD
Pascal differs from Standard Pascal because of fundamental differences in
handling single-character transfers involving interactive terminals.

8.4.1 File Declarations and the Buffer (Window) Variable

If T is a predeclared or user-declared data type in a Pascal program, one
declares a file identifier, for example FID, along with other variable declara-
tions as in:

TYPE
T=RECORD
IFIELD:INTEGER;
B:BOOLEAN;
S:STRING:
END;
VAR
FID:FILE OF T;
X,Y:INTEGER;
A,B:T;

The buffer variable associated with the file FID is referred to as FID1. The up
arrow or carat character should not be confused with the up arrow cursor
positioning key on your keyboard. On some keyboards, the up arrow
character used to qualify the file identifier so as to refer specifically to its buffer

variable, may be a carat character. Assuming that RESET or REWRITE has
previously been executed for this file, it is then possible to assign the value of -
the file’s buffer variable, for example,

A :=FIDt

or, if B has previously been assigned a set of values, then:

Working with Structured Data Files

[
(93]
W

FIDt :=B

Since the file is associated with a record type, it is also possible to assign
individual fields from within the record as with any other record type variable.
For example,

X :=FID1 .IFIELD
or

FIDt .IFIELD :=A.IFIELD

8.4.2 GET, PUT, READ, and WRITE

Assuming that the file FID has been declared as in Section 8.4.1, that the file
is open, and that the position pointer of the indicated file points to a record
actually stored on the disk, then:

GET(FID)

transfers one record from the disk file into the buffer variable FID . The record
transferred is the one referred to by the position pointer. After the record is
transferred, the position pointer associated with the file is advanced by one
record position. Here again UCSD Pascal differs from Standard Pascal, in
which GET advances the position pointer before transferring the record. The
order is reversed in UCSD Pascal in order to make SEEK operate in a
straightforward manner.

If the position pointer associated with the file points to a position not
occupied by a record when GET(FID) is executed, then the End-Of-File flag
associated with the file becomes set to true (see Section 8.4.8 regarding EOF),
and the content FID1 is left undefined. Experimentation with UCSD Pascal will
show you that execution of GET(FID) with EOF already set to true, or when
the position pointer points outside the range of record numbers contained in
the file, will leave the content of FID! unchanged. This is not a behavior you
should depend on, since Standard Pascal specifies that the contents of FID1 are
undefined under these conditions.

Assuming the declarations shown in Section 8.4.1, READ(FID,A) is
equivalent to the following compound statement:

BEGIN
A :=FIDt;
GET(FID)
END

This definition is contained in the draft standard description of Pascal circu-
lated for comments at the end of 1978. Previous definitions of Standard Pascal
restricted the use of READ to text files. As a result, current versions of UCSD
" Pascal still do not support this use of READ for structured data files.

134 Programming to Use Disk Files

Again assuming that the file FID is open, and that the position pointer points
to a legal record position, then the statement:

PUT(FID)

transfers the current contents of the buffer variable FID! to that record posi-
tion in the disk file. It then advances the position pointer to the next position.
Once again, the transfer of data takes place in Standard Pascal after the posi-
tion pointer is advanced.

In Standard Pascal, the only legal record position prior to execution of a
PUT statement is the position just before the first unoccupied record position
at the end of the file. In UCSD Pascal, because of the need to update any
record in a disk file, the legal record positions include all positions starting
with record zero, and extending to the highest numbered unused position
following the current end of the file. Therefore, the condition of EOF(FID),
before PUT(FID) is executed, has no effect on the PUT operation. If PUT
transfers data to a record position located beyond the last currently occupied
record in the file, ie: in an unused area immediately following the file and adja-
cent to it, then the disk directory will be updated to show that the file occupies
all positions up to and including the position to which the transfer took place.

In UCSD Pascal, execution of PUT(FID) has no effect on the EOF(FID) flag
unless it attempts to transfer data to an illegal record location, for example a
location within a file which follows the open file to which PUT refers. In that
case, EOF(FID) is set true, and no data transfer takes place. In versions of
UCSD Pascal distributed before early 1979, execution of PUT(FID) when it
refers to an illegal record location will also cause an input/output execution
error. This will cause the program to terminate abnormally unless the Com-
piler's IOCHECK option has been turned off. If the program is expected to
PUT data to all available unused positions, it will be necessary to use this
option until the design error causing this abnormal termination can be cor-
rected. See Section 8.7 on error recovery for further details.

Analogous to READ, the new draft description of Standard Pascal defines
WRITE(FID,A) to mean:

BEGIN
FID1:=A;
PUT(FID)

END

Again because older descriptions of Standard Pascal limited WRITE to opera-
tion with text files, UCSD Pascal does not yet allow use of WRITE with struc-
tured data files.

8.4.3 RESET, REWRITE, and CLOSE

As described in the introduction to Section 8.4, a program must inform the

Working with Structured Data Files 135

operating system when to allocate memory space to the block buffer for a disk
file, and which file in the disk directory to equate with the internal file iden-
tifier. In the examples shown here, I will continue to use the internal file iden-
tifier FID, as declared in the example of Section 8.4.1, but of course any
declared file identifier could be used. The program passes the necessary infor-
mation to the operating system by executing a RESET or a REWRITE state-
ment. After one of these statements is executed successfully, ie: without repor-
ting an error, the file is then regarded as open and thus available to the pro-
gram for input and output operations.

Unlike Standard Pascal, UCSD Pascal allows mixed input and output opera-
tions following either RESET or REWRITE. The new draft description of Stan-
dard Pascal states that if PUT(FID) is not separated from a previous GET(FID)
or RESET(FID) by an intervening execution of REWRITE(FID), then the results
to be expected from the PUT are implementation dependent. Since UCSD
Pascal is designed to allow random access updating of disk files, it differs in
several detailed respects from Standard Pascal regarding the opening and clos-
ing of disk files, and regarding the detection of end-of-file status (see Section
8.4.8).

8.4.4 RESET

To open a pre-existing disk file, ie: one with a directory entry already on the
disk, use:

RESET(FID, < title-string>)

where <title-string> may be either a quoted string or a string variable.
Assuming that S is a variable of type STRING, either:

RESET(FID, ‘DATAFILE’)

or:

S :='DATAFILE’;
RESET(FID,S)

would open a file with the directory title DATAFILE for use associated with
the internal identifier FID. Notice that this arrangement allows the value of the
string variable S to be assigned while the program is running, perhaps through
use of a READ(S) statement which calls for the user of the program to type in
the name of the file.

The string parameter which gives the file’s directory title in a RESET state-
ment is a nonstandard extension unique to UCSD Pascal. Both Standard
Pascal and UCSD Pascal provide the form:

RESET(FID)

136 Programming to Use Disk Files

In Standard Pascal, this is used to open the file, but the means of associating
the file title with the internal identifier are left to be defined by the implemen-
tor (ie: the person or organization that arranges to install Pascal within a soft-
ware system).

Once the file FID is open, both Standard Pascal and UCSD Pascal use
RESET(FID) for the same basic purposes. The file’s position pointer is moved
back to the beginning of the file, and the contents of the first record stored in
the file are assigned to the file’s buffer variable. Although UCSD Pascal is
oriented to disk files, this operation is like performing a rewind operation on a
magnetic tape, and then executing a single (hidden) GET(FID) statement.

Either form of the RESET statement sets EOF(FID) = FALSE in UCSD
Pascal, assuming that there is no error indication. An error will be indicated if
RESET(FID, filetitle) cannot be completed because the requested filetitle can-
not be found in the disk directory. The same form of RESET will also cause an
error indication if FID is already open, since no indication will be available to
the operating system at that point on what to do with the disk file that is
already open. Repeated execution of RESET(FID) does not produce any error
indication, since the only effect is to cause GET and PUT operations to start
again at the beginning of the file. An error indication of either type mentioned
here will cause your program to terminate abnormally unless you use a Com-

- piler directive which suppresses 1/O error terminations, This option is pro-
vided to allow the programmer to arrange for program recovery in the case of
input or output errors. See Section 8.7 of this chapter for details.

8.4.5 REWRITE

To open a new disk file, one with a title not matched by an existing directory
entry, use:

REWRITE(FID, < title-string>)

where the title string is required. Unlike RESET, REWRITE in UCSD Pascal
has no optional form without a title string parameter. REWRITE in Standard
Pascal uses no title string, and leaves optional the question of how the direc-
tory title will be established.

This statement requests the operating system to establish a new temporary
directory entry for the file, and to allocate the block buffer area in memory
needed for input and output operations. The directory entry will be made per-
manent as a result of executing a CLOSE(FID,LOCK) statement. Any file
already on the disk with a directory title which matches the title string will be
removed in order to make way for the new file. Vestiges of a directory entry
for the new file will also remain on the disk after the REWRITE is executed, if
you open the door of the floppy disk-drive and/or take the disk out of the
machine. This is not an action that we advise, since the directory entry left on
the disk in that way will probably not reflect accurately how many records
have actually been PUT into the file. In fact, the directory will probably show
that the file occupies the entire unused area to which it was allocated when the
REWRITE was executed!

Working with Structured Data Files 137

The form of the title string used with REWRITE will determine which un-
used area on the disk the operating system will use in allocating space to the
file. If you use a simple title string such as:

NEWFILE

then the file will be allocated starting at the beginning of the largest unused
area currently in the directory. It will then be legal to execute PUT(FID) opera-
tions referring to any record position throughout that (initially) unused area.
The ultimate size of the file, as shown in the directory after the file is closed,
will be the number of blocks starting at the beginning of the unused area, and
extending through the highest numbered block to which a PUT(FID) operation
is directed.

If you know in advance that the new file will not have to occupy more than
a certain number of blocks, then an alternate form of title string may be useful.
For example, if the number of blocks desired is no more than 15, then use the
form:

NEWFILE[15]

Unfortunately, it is not possible to substitute a variable identifier for the
desired number of blocks within this title string. However, the value actually
passed to the REWRITE(FID,S) statement can be computed by the program, if
the value of a STRING variable S is composed using the STRING operations
provided in UCSD Pascal.

The operating system will respond to:

REWRITE(FID, NEWFILE[27]")

by allocating the file to the first unused area in the directory which contains at
least 27 blocks. If no unused area at least 27 blocks long can be found, then an
1/0 error indication will result. In case of an error, the program will terminate
abnormally unless the methods described in Section 8.7 of this chapter are
used.

If you want to create two or more independent new files that are to be open-
ed simultaneously, it will be necessary to use a strategy which, in effect, allows
simultaneous creation of several temporary directory entries. One strategy
would use REWRITE to request the space needed for the smallest file first. A
SEEK to the last desired record position of that file should then be executed
(see Section 8.4.7 for details), followed by PUT(FID) and then
CLOSE(FID,LOCK) on the file. Then the same sequence can be repeated for
the next larger file.

8.4.6 CLOSE

After the completion of a program’s work in a disk file, it may be necessary
to request the operating system to deallocate the block buffer area assigned to

138 Programming to Use Disk Files

the file in memory. In the case of a new file opened with REWRITE, a perma-
nent directory entry must be completed, if the file is to be retained. In the case
of an established file opened with RESET, the directory may have to be
updated to reflect the use of record positions that had previously been in the
unused area adjacent to the file. In UCSD Pascal, these operations are
accomplished in response to execution of a CLOSE statement, of which there
are several forms. Standard Pascal provides no equivalent operation.

If the file has been opened with RESET, or if a new file opened with
REWRITE is not to be retained, then use:

CLOSE(FID)

If the file is new, having been opened using REWRITE, and you wish to re-
tain the file with a permanent directory entry, then use:

CLOSE(FID, LOCK)

If you wish to use a program to remove a disk directory entry with an effec-
tive equivalent of the R(emove command of the Filer, then open the file using:

RESET(FID, < title-string>)
followed by:

CLOSE(FID, PURGE)

All forms of CLOSE will mark the file FID no longer open. Further attempts
to use GET, PUT, SEEK, EOF, READ, or WRITE referring to the file FID will
result in an I/O execution error indication. Unless the method described in
Section 8.7 is used, the program will then terminate abnormally. If a program
terminates normally, without ever executing CLOSE for any file that is open at
termination time, then the first illustrated form of CLOSE is automatically
executed for each open file.

8.4.7 SEEK

To change the position pointer associated with an open file FID, use:
SEEK(FID, <record-number>)

where the record number is an integer valued arithmetic expression. For
example,

SEEK(FID, 57);
SEEK(FID, INTVAR);
SEEK(FID, LASTREC - 2*I)

If the value of the record number is non-negative, then the next GET(FID) or

Working with Structured Data Files 139

PUT(FID) to be executed will refer to the disk record indicated by that value. If
the value of the record number is negative, then the result of the SEEK is
undefined. (In Versions 1.5, 11.0, and IL.1 of UCSD Pascal, SEEK with a
negative record number will be executed but it has no effect.)

SEEK with a non-negative record number always sets EOF(FID) to false,
regardless of whether the value of <record-number> is within the areas
where GET or PUT operations would be legal. It is necessary to execute GET
or PUT to discover whether EOF(FID) will remain false thus signifying suc-
cessful completion of the GET or PUT. There is no equivalent of SEEK in Stan-
dard Pascal. At the time this book is being written (mid-1979), successive
execution of SEEK without an intervening GET, PUT, EOF, or RESET referred
to the same file may produce undefined results. Moreover, if <record-
number> is large, the time taken for execution of SEEK may become excessive
(several seconds). Both problems are under review, and SEEK may be improv-
ed in future versions of UCSD Pascal.

8.4.8 EOF
The built-in “End-Of-File” function:

EOF(FID)

is used to determine the result of an input or output operation. Because of a
desire to keep UCSD Pascal extensions beyond Standard Pascal to a minimum,
EOF works somewhat differently in UCSD Pascal than in Standard Pascal
when dealing with a disk file. This makes it unnecessary to extend the language
with another special function to handle virtually the same purpose for disk
files alone.

If the disk file FID is already open, RESET(FID) will leave EOF(FID) set to
false. If the disk file referred to by <title-string> is present in the disk direc-
tory, then RESET(FID, < title-string >) will leave EOQOF(FID) set to false. Other-
wise, an I/O execution error will be indicated. If there is enough room to
allocate space for the requested new file, REWRITE(FID, < title-string>) will
leave EOF(FID) set to false. Otherwise, an 1/O execution error indication will
result. If the record position pointer associated with an open file FID points to
any position starting with position zero, and ending with the last position con-
taining a valid data record, then GET(FID) will leave EOF(FID) set to false. If
the position pointer points to a location beyond the last valid data record, then
GET(FID) will leave EOF(FID) set to true.

If the record position pointer associated with an open file FID points to any
position already established within the file, or to any position within the unus-
ed area following the file, then PUT(FID) will leave EOF(FID) set to false.
Otherwise, PUT(FID) will leave EOF(FID) set to true (and as UCSD Pascal is
currently released, an I/O execution error will also be indicated). SEEK(FID,
< record-number >) will leave EOF(FID) set to false if the value of <record-
number> is non-negative. Otherwise the value of EOF(FID) will not be chang-
ed. If EOF(FID) is executed when the file FID is not open, it will return the
value true.

140 Programming to Use Disk Files

8.4.9 Sample Program: Sequential File-to-File Copying

In this section we provide a simple concrete example of the use of the
facilities just described for handling structured data files in UCSD Pascal. In
this example, we copy the contents of one file into a new file on the disk. Both
files are then left on the disk. Additional examples showing random access use
of structured data disk files are shown in Section 8.5.

PROGRAM FILECOPY;
CONST RECSIZE=199;
TYPE
STRUCTURE=
PACKED ARRAYJ0..RECSIZE] OF CHAR;
VAR
RECNUM:INTEGER;
FIN,FOUT:FILE OF STRUCTURE;
BEGIN
RESET(FIN,‘OLDFILE’);
REWRITE(FOUT, NEWFILE');
RECNUM: =0;
WRITE(‘Copying’);
WHILE NOT EOF(FIN) DO
BEGIN
FOUT!:=FINt;
PUT(FOUT);
RECNUM; =RECNUM +1;
WRITE(.");
GET(FIN);
END;
WRITELN;
WRITELN(RECNUM, ‘records copied’);
CLOSE(FOUT,LOCK);
END.

Listing 8.2 Sample program which copies from OLDFILE to NEWFILE.

In the simple example shown in listing 8.2, we ignore the internal layout of
the fixed length records of type STRUCTURE. All we are concerned about is
their total size, which is one more than the constant RECSIZE, or in this case
200 bytes. There is no information in the directory entry for a file indicating
the structure of the records contained in the file. However, the directory does
contain an integer value representing the number of the last record stored in
the file. This number, multiplied by the size of the structured records originally
PUT into the file, controls the value returned by EOF(FIN) following each use
of GET(FIN). Thus, it is possible to refer to an old file by associating the input
file type with a structure whose size is not the same as that used in creating the
old file. However doing this will yield records not matched to those originally
written into the file, and the EOF function will return TRUE for a GET when
the position pointer does not point at the actual end of the file.

Random Access Handling of Disk Files 141

In this sample program, we assume that the file with the directory title
OLDFILE exists on the disk before the program is run. A file called NEWFILE
might also exist before the program is run, but that previous file will be remov-
ed as a result of the REWRITE statement in this program. If you want to avoid
inadvertent loss of an old file in this way, it would be best to try to RESET the
old file (ie: the existing file with the title NEWFILE) as a first step. Your pro-
gram can then inform you if the RESET(FIN, < old-filename>) succeeds. If it
does not, you will have to use the error recovery approach described in Sec-
tion 8.7 of this chapter to avoid abnormal termination of your program. The
program FILECOPY leaves its new copy in the file NEWFILE. This program
displays two lines on the computer’s console device, namely:

COpYING vvvevveneniiiiniininenannn.
27 records copied

as direct verification for the user that the program is actually doing its work.
The first line displays one dot after the PUT of the associated record is com-
pleted. The second line provides a simple summary. In general, you will pro-
bably find it useful to provide some visual indication of activity in any pro-
gram that spends much time in disk I/O or other time consuming compu-
tations.

Notice that the GET takes place after the PUT within the main WHILE loop
of the program. This is because the first GET effectively takes place as a part of
the RESET statement referring to the input file FIN. The last executed GET
statement switches the EOF(FIN) flag to true, and this information is
immediately used to terminate the WHILE statement.

8.5 Random Access Handling of Disk Files

In this section, we will start with a disk file containing name, address, and
telephone number information on some imaginary people. We will then illus-
trate how to go about updating selectively chosen records already in the file,
and also appending additional records to the file.

In the example given here, we will assume that it makes sense to determine
which record to select from the file by simply making use of its record number.
In practical applications, this is obviously not a suitable procedure, and some
means of indexing the records in the file must be used. The last subsection pro-
vides a brief discussion of indexing strategies, but no solid sample program
example because of space limitations.

8.5.1 Sample Program UPDATE

The three parts of listing 8.3 show a sample program which illustrates the
creation and updating of a simple file. Display 8.1 shows a portion of the
screen display associated with this program. All of the disk file handling is
accomplished in the main program, listing 8.3c. In a larger program containing
indexed access to the stored records, management of available record positions
and other amenities, the disk file handling statements should be isolated in

142 Programming to Use Disk Files

procedures which can be readily altered without changing the whole program.
This strategy reduces the amount of effort that may be necessary to change the
program when moving from one machine to another with differing
characteristics.

Handling of input from the keyboard and display on the screen is very sim-
ple in this sample program. In this program, the user is prompted to type-in
the number of the record wanted. The current contents of the record are then
displayed in a meaningful format. The user is then prompted to type in new
contents for each field in the record separately. If the user wishes to leave a
field unchanged, RETURN skips to the next field. ESC(ape followed by
RETURN jumps out of the field updating cycle without any further change of a
field. If the requested record position is in the unused area following the
previous end of the file, the program prompts immediately for new contents.

(*$G+™) ‘
PROGRAM UPDATE;
TYPE
STRUCTURE=
RECORD
NAME,COMPANY:STRINGI32];
STREET:STRING[20];
CITYSTATE:STRINGI30];
TEL:STRING[10]
END;
VAR
RECNUM:INTEGER;
BUEF:STRUCTURE;
TITLE:STRING:;
FID:FILE OF STRUCTURE;

PROCEDURE ZEROREC(VAR REC:STRUCTURE);
BEGIN
WITH REC DO
BEGIN
NAME:=";
COMPANY:=";
STREET:=";
CITYSTATE:=";
TEL:=";
END;
END (*ZEROREC™);

PROCEDURE SHOWREC(REC:STRUCTURE);
BEGIN
WRITELN;
WITH REC DO
BEGIN

Random Access Handling of Disk Files

WRITELN('NAME: " NAME);
WRITELN('‘COMPANY: ", COMPANY);
WRITELN('STREET: ", STREET);
WRITELN('CITY&STATE: " CITYSTATE);
WRITELN('TELEPHONE: " TEL);

END;

END (*SHOWREC®).

Listing 8.3a: First part of sample program UPDATE.

PROCEDURE GETREC(VAR REC:STRUCTURE);
LABEL 1;
VAR S:STRING;

FUNCTION READIT(VAR T:STRING):BOOLEAN;
BEGIN

READLN(S);

READIT: =FALSE;

IF LENGTH(S)>0 THEN

143

IF S[LENGTH(S)]=CHR(27(*ESC*)) THEN READIT:=TRUE

ELSE
T:=S;
END (*READIT*);

BEGIN
WRITELN(RETURN skips item with no change;’,
"ESC+RETURN skips whole Record’);

WRITELN;
WITH REC DO
BEGIN
WRITE(NAME: ;
IF READIT(NAME) THEN GOTO 1;
WRITE(COMPANY: ;
IF READIT(COMPANY) THEN GOTO 1;
WRITE('STREET: ;
IF READIT(STREET) THEN GOTO 1;
WRITE('CITY&STATE:);
IF READIT(CITYSTATE) THEN GOTO 1;
WRITE(TELEPHONE:)
IF READIT(TEL) THEN GOTO 1;
END;

Listing 8.3b: Second part of sample program UPDATE.

1:
END (*GETREC*),

144 Programming to Use Disk Files

BEGIN (*main program™)
WRITEC(File title:’);
READLN(TITLE);
(*$I—*) (*turn off I/0O error checking*)
RESET(FID, TITLE);
IF IORESULT< >0 THEN REWRITE(FID, TITLE);
(*$I+ *) (*tum on I/0 checking again*)
RECNUM: =0;
WHILE RECNUM > =0 DO
BEGIN
WRITELN;
WRITE('‘Record number:’);
READLN(RECNUM);
IF RECNUM > =0 THEN
BEGIN
SEEK(FID,RECNUM);
GET(FID);
IF EOF(FID) THEN
BEGIN
WRITELN('Enter new Record:’);
ZEROREC(FID1);
END
ELSE
BEGIN
WRITELN(‘Old Record:’);
SHOWREC(FIDt);
WRITELN;
WRITELN(‘Enter Changes:);
END;
GETREC(FIDt);
SEEK(FID,RECNUM);
PUT(FID);
END;
END (*WHILE®);
CLOSE(FID,LOCK);
END.

Listing 8.3c: Third part of sample program UPDATE.

The Compiler directive (*$I—*) turns off the IOCHECK option so that the
program can cope with the problem that may arise if the file whose directory
name is read into TITLE happens not to be on the disk. In this simple program,
the response to this is to create a new file using the REWRITE statement. The
use of the IOCHECK option in connection with recovery from 1/O errors is
discussed in Section 8.7 of this chapter. If the IOCHECK option were not turn-
ed off, and the requested file not in the directory, then the RESET statement
would cause the program to terminate abnormally.

Random Access Handling of Disk Files 145

Running
Fule title NAMEFILE

Record nusber 3
014 Record

KANE Bull, Terry
COnPRIY Ramona Stock Fars
STREEY. Box 48 RFD #2
CITYASTRTE Ramona, CA 52865
TELEPHONE 789-1573

Enter Changes
RETURN skips iten with no change, ESCRETURN skips whole Record

NANE

CONPANY

STREET

CITYASTRTE Anytown, U S Al

Display 8.1: Hlustration of display with UPDATE program.

The program cycles, each time requesting a new record number until a
negative record number is typed in. It then terminates after closing the file with
LOCK. If the file was already on the disk when the program started, the LOCK
option would be ignored when the CLOSE statement was executed.

No provision is made for the problem which would occur if the requested
record position were outside the existing file or unused area immediately
following the file. In that case, this program will terminate abnormally. In
addition, no provision is made for the case in which one simply wishes to read
a record, and thus make no change at all in the record stored on the disk. In
that situation, the PUT(FID) statement is not needed.

8.5.2 Indexed Access: Efficiency Considerations

While the design of data bases for use in the UCSD Pascal System is beyond
the scope of this book, a few comments on efficiency and the construction of
indexes may prove helpful.

In the terms relevant to this chapter, an index is a logical device which
allows rapid determination of the position number of a record within a data
file. The sequential index, which is one of the simplest data designs, is also one
of the most useful in the interactive environment for which the UCSD Pascal
System is designed. A sequential index is basically a table in which each entry
is a record containing two fields:

® A copy of one field of a record from the main data file, for example the
name of a person. This field is the key referred to by the index.

146 Programming to Use Disk Files

® The position number of the data record in the main data file which is
associated with the value of the key in field (a).

The “table” might be stored, during processing, in an array of records con-
taining these two fields. It is more likely to be stored on two levels, one (called
the coarse index) in a small array, and the other (called the fine index) stored in
a file. Because of space limitations, only one page of this file will be brought
into the computer’s memory at any one time (see below for a definition of
page).

In any event, the records in the index table are sorted according to the value
of the key, usually in ascending order. This makes it possible to use an efficient
searching algorithm such as a binary search to find any entry having a specific
key value in the index. In the interactive situation, one often knows only an
approximate value for a desired key. One may not even know whether a given
key is stored in the file and index. Either way, a binary search yields the loca-
tion in the index where the key would be located if it were present. It is then
possible to display a listing of a few index entries both before and after the one
desired. A visual scan of this list will allow using a simple process to indicate
whether the full data record associated with any particular index key value
should be retrieved from the main data file. The record position number
associated with the key in the index table entry is then used to make the desired
random access to the data file. Many people refer to the use of a sequential
index to make random access to a data file, as the Indexed Sequential Access
Method, or simply ISAM, because of the widespread use of that term on the
large IBM computers.

In a floppy disk-based interactive system, as in any other, there are ques-
tions about the design of the index, the order in which the data records of the
main file should be stored, and many others. Typically the sequential index file
is broken up into groups of several dozen to several hundred index table
- records, each group being stored in a separate large record in the index file.
This makes it possible to bring a whole group of index table records into main
memory in one GET operation. With a floppy disk file, the time required to
complete one GET operation will be about 0.3 seconds on the more expensive
machines, to more than one second on the more economical mini-floppy based
machines. As a result, each group or page of index table entries should contain
a reasonably large number of index entry records. If the number gets larger
than can be accomodated in roughly half of one floppy disk track, then the
time taken just to transfer the index page into memory becomes an important
consideration.

If the size of the index is large enough to occupy several pages, a small
coarse index should be maintained just to allow fast computation of the
number of the index page in which a desired key value will be found. The time
taken to perform a binary search within one index page will usually be far
smaller than the time taken to access, ie: GET, just one index page from the
disk. The entries in the coarse index usually contain copies of the last key value
found in each page of the main index, which is now called the fine index. In
floppy disk-based systems, the size of the coarse index will almost always be

Text Files 147

quite small. It therefore can be loaded into memory when the program is
initialized, and maintained there without disk accesses until the files are
closed.

If the sorted sequential index table is arranged to fill every available index
record positon, then there will be serious problems in providing rapid interac-
tive response to a user who is updating a file. Each update will probably re-
quire adding a new index record somewhere in the middle of the index, or
deleting an old record from the middle. Even on large hard-disk based systems,
the time taken to re-sort a sequential index is likely to be prohibitive. In some
large systems, updates for a sequential index are kept temporarily in an
overflow page. A search then requires looking both in the sorted area where
the key is likely to be found, and in the overflow area. With floppy disks, the
extra time needed to make access to both the main sorted area of the index,
and also to the overflow area, may be prohibitive. In this case, an alternati.=
strategy may be better. In this strategy, a portion of each index page is kept
unused and available for expansion of the contents of the page. It then is onlv
necessary to PUT the updated page containing the key when the update opera-
tion terminates.

Maintenance of the main data file will probably require occasional sorting at
times when it is desired to conduct a batch (non-interactive) or bulk update
operation involving a large fraction of all the data records in the file. Batch
operations usually proceed sequentially from beginning to end of a file, rather
than using randomly ordered accesses. The time needed to sort the main data
file in a floppy disk system will probably run into many minutes, or even
hours. However, the time saved in making it unnecessary to use an index in the
batch update will often more than compensate for the time taken in the sort.

The data records are usually not moved during interactive updating
activities. New records are appended to the end of the file, or they replace
records that have been marked as empty during previous update transactions.
Once it becomes necessary to sort the main data file, any indexes referring to
that file must also be updated. The simplest and most efficient procedure will
probably involve rebuilding the indexes after the sort is completed.

8.6 Text Files

Much of the input/output environment of Standard Pascal is designed for
working with text files which can be thought of as stored on magnetic tape.
UCSD Pascal provides two similar kinds of files for handling text streams of
characters. A general description of text files in UCSD Pascal was given in Sec-
tion 8.3 of this chapter. One kind, associated with the predeclared type TEXT,
works essentially the same as type TEXT in Standard Pascal. The other,
associated with type INTERACTIVE, is intended primarily for use with
interactive terminal devices. However, both types can be used with disk files
however. File variable declarations have the following appearance:

FT.TEXT;
FI:INTERACTIVE

148 Programming to Use Disk Files

Differences between these two forms are explained in the following sections.

8.6.1 READ and WRITE

The READ statement is used to obtain characters from the input device, and
to assign value based on those characters to a variable within the program. If
the variable is of type INTEGER or REAL, the value represented by the input
stream of characters is converted into the internal binary form used by the pro-

gram.
If CH is a variable of type CHAR, then

READ(FT,CH)
is equivalent to:

BEGIN
CH :=FTt;
GET(FT)
END

while:
READ(FI,CH)
is equivalent to:
BEGIN
GET(FL);
CH := HIt
END

In effect, a READ involving a variable of any other type causes repeated use
of this form. If X is a variable of type INTEGER or of type REAL, then:

READ(FT,X)
 and:

READ(FL,X)

_ carry out format conversion of the imput character stream, and the internal
binary form of the number is assigned to X. In either case, termination of the
- READ aperation occurs upon detection of the first character which is not legal-
ly part of a constant of INTEGER or REAL type, as the case may be. In either

case, the value of the window variable is left equal to the first non-numeric -

character following the number scanned by the READ statement. This is
equivalent to including the first implicit GET(FI) operation of the next

Text Files 149

READ(H, . ..) at the end of READ(FILX). Consequently, the next
READ(F], . . .) statement omits execution of the first implicit GET(FI). In this
way, a sequence of READ(FI, . . .) or READ(FT, . . .) operations will produce
the same values when reading the same disk file.
Note that RESET(FI, < title-string>) does not execute an implied GET(FI),
whereas RESET(FT, < title-string>) executes GET{(FT) automatically. If S is a
variable of type STRING, then:

READ(FT,S)
and:

READ(FI,S)
both assign all characters from the input stream te S up to the next end-of-line -
character, or up to the maximum capacity of S. The end-of-line character is
not moved into the string, and the file’s character pointer is left pointing at the
end-of-line character.

Output using:

WRITE(FT,CH)

or:

WRITE(FI,CH)

both produce the equivalent of:

BEGIN
FTt .= CH;
PUT(FT)
END

In other words, output using WRITE gives the same results regardless of
whether the file is declared to be of type INTERACTIVE or TEXT. If WRITE
refers to a variable of type INTEGER or REAL, then format coaversion takes
place from internal binary form to an external stream of characters.

8.6.2 EOLN, READLN, WRITELN: Ead-Of-Line

Text files in Pascal are subdivided into lines, each consisting of a sequence of
characters terminated by an end-of-line marker. In UCSD Pascal, the end-of-
line marker is a single ASCII CR control character (carriage return) which has
a decimal value of 13. In Standard Pascal, the end-of-line marker is not regard-
ed as a character, and it cannot be handled in the way normal characters are
handled. If you use conventional Pascal 1/O operations with text files in

150 Programming to Use Disk Files

UCSD Pascal, you will have no occasion to work directly with the CR control
character.

The built-in function EOLN (< file-identifier>) returns the value TRUE
when the position pointer of a text file points at an end-of-line marker. This
occurs at the termination of a READ statement which finishes its work because
it encounters an end-of-line marker. Consider the program fragment shown in
listing 8.4.

WRITELN;
RESET(FT);
WHILE NOT EOF(FT) DO
BEGIN
WHILE NOT EOLN(FT) DO
BEGIN
READ(FT,CH);
WRITE(CH);
END;
READLN(FT);
WRITELN:
END;

Listing 8.4: Program fragment showing use of EOLN(FT).

The first WRITELN statement moves the video display cursor to the left
margin of a new line. (Remember that READ or READLN, without an explicit
reference to a file identifier, refer by default to the predeclared file INPUT,
which in UCSD Pascal obtains characters from the keyboard. Similarly
WRITE and WRITELN refer by default to the file OUTPUT.)

RESET(FT) leaves EOLN(FT) and EOF(FT) set to false. Individual characters
from the first line in the file are then assigned to the character variable CH, and
then written to the computer’s console display device. READ(FT,CH) for the
last text character on a line assigns that character to CH, and then executes the
GET(FT) which picks up the end-of-line character. This leaves EOLN(FT) set
to true, and the WHILE loop terminates.

READLN(FT) is equivalent to:

BEGIN
WHILE NOT EOLN(FT) DO GET(FT);
GET(FT);

END

which causes the file’s position pointer to skip to the beginning of the next line
of text. At the end of the WHILE statement in this fragment, the position
pointer points to the end-of-line marker, the value returned by EOLN(FT) is
set to true, and the contents of the window variable FT is a space character.
The single GET(FT) then advances the pointer and picks up the first character

Text Files 151

on the next line. The matching WRITELN does the equivalent on the display in
preparation for the next line of text.

To produce precisely the same result using a disk file FI declared to be of
type INTERACTIVE, the program fragment in listing 8.5 should be used:

WRITELN;
RESET(FI);
WHILE NOT EOF(FI) DO
BEGIN
WHILE NOT EOLN(FI) DO
BEGIN
READ(FI,CH);
IF NOT EOLN(FI) THEN
WRITE(CH);
END;
READLN(FI);
WRITELN;
END;

Listing 8.5: Program fragment showing use of EOLN(FI).

The extra IF NOT EOLN(FI) . . . within the inner compound statement is
needed to suppress writing the blank character assigned to CH by the last
READ(FI,CH) on a line. If the program is only to be used for display purposes,
there may be no reason to include the extra IF statement, since the display of
this implied blank will usually not be noticed. If the program is to be used for
copying one disk file into another, there may be no reason to use files of type
INTERACTIVE, since WRITE statements function in the same manner for files
of both type TEXT and type INTERACTIVE. Thus, the principal reason for
using the program fragment shown in listing 8.4 would be a desire to use
precisely the same program taking its input character stream either from a disk
file or from the keyboard (by using the title string “CONSOLE:").

In order to account for the difference between handling of files of type
INTERACTIVE, from those of type TEXT, READLN(FI) is equivalent to the
fragment:

WHILE NOT EOLN(FI) DO GET(FI)

The trailing GET(FI) is not needed, as in the case of READLN(FT) since the
next READ(F], . . .) statement will implicitly perform a GET(FI) as its first
action. ,

WRITELN(FT) is equivalent to WRITELN(FI), and both have the effect of
appending an end-of-line marker to the output file.

8.6.3 Efficiency Considerations

For practical reasons associated with the way in which text files have been
implemented in the UCSD Pascal System, it will generally cost much less pro-

152 Programming to Use Disk Files

cessing time to READ into variables of type INTEGER, REAL, or STRING
than to carry out the equivalent steps using repeated READ(CH) with
associated program logic. The same general observation also applies to
WRITE.

Note that it is often convenient in UCSD Pascal to fill a sequence of
character positions with space characters using a statement like this:

WRITE(< output-file-identifier>,” ": < field-width>)

where < field-width> is an integer valued expression. This is compiled to be
roughly the equivalent of:

FOR I: =1 TO < field-width> DO WRITE (< output-file-identifier>," ’)
and thus is much slower than:
WRITE(< output-file-identifier>, S: <field-width>)

where S is a variable of type STRING which has been preassigned a string of
space characters.

If you plan to work with large text files in UCSD Pascal, you will probably
find it useful to become acquainted with several built-in procedures and func-
tions provided with the UCSD Pascal System expressly for working with pack-
ed arrays of characters (of which strings are a special case). These include
MOVERIGHT, MOVELEFT, SCAN, and FILLCHAR. These are implemented
so as to run about as fast as the host processor will support (usually in
assembly language).

8.7 Error Recovery

Before you do much work with disk files, you will learn that I/O related
processing errors do occur, and that it would be best to write programs
capable of recovering from those errors without terminating abnormally. The
potential sources of error are many. They include the following, as well as
others not mentioned here:

® Marginal recording or playback error due to a flawed surface on the
disk, or due to improper adjustment of the disk drive. This often will
cause just a single isolated bit to be recovered by a program incorrectly.
Most machines provide hardware intended to check for errors of this
type. The operating system then rereads the data on input, and attempts
to complete a GET operation without an error being signalled. The data
thus obtained will usually be correct, but may contain an error in one or
more bytes.

® Failure of a recording or playback operation with the result that a com-
plete 512-byte block of data is unrecoverable (ie: for all practical pur-
poses destroyed). This can happen as a result of having an intermittent
electronic failure, or as a result of a power failure at the time when a PUT

Error Recovery 153

operation is in progress.

® Failure of a READ statement due to encountering data of the wrong for-
mat. For example, a READ into an INTEGER variable will expect to find
a space character, ‘+’, ‘—’, or a numeric digit. If the first character is a
letter or special punctuation character, the READ statement will fail on a
format 1/0 error.

® Loss of a complete disk for some reason. An example might be excessive
temperature in the room where the disk is stored. Another might be
failure of the disk drive mechanism.

® An attempt to PUT a record outside the disk area allocated to a file.

® An attempt to open a disk file that is not currently available on a disk
drive (or volume) connected to the machine.

® An attempt to create a new disk file with a title that matches the title of a
file already in the disk directory.

The UCSD Pascal System is programmed to terminate abnormally when an
input/output related error is detected in a user program, unless the program-
mer has suppressed error termination logic using the Compiler directive
(*$I — ™). If this option is in use, then the programmer can determine whether
each I/0 statement has completed its work properly by checking the value of
the built-in function IORESULT which returns an integer value. If the value of
IORESULT is zero, then the most recent I/O related statement terminated nor-
mally, ie: with no error. Otherwise, the value of IORESULT is determined by
the nature of the error, and it can be used to control whatever recovery action
the programmer may wish to take. The values of IORESULT correspond to the
[/0 error messages given in Appendix D3 of this book.

Just how your program should proceed to cope with an error once it has
been discovered is a large topic that I cannot discuss in more than a cursory
way in this book. As a brief example, let us assume that you want to create a
new disk file which is to occupy an area of 100 blocks. Since the disk may
already contain other files, it is possible that there will be no unused area large
enough to hold the file. A suitable recovery procedure for the user of your pro-
gram might be to mount an alternative disk, which has previously been ini-
tialized with a UCSD Pascal file directory, but which is known to have
enough space for the file. The program fragment shown in listing 8.6 shows
how this might be handled.

(*$1-")
REPEAT
REWRITE(FID, ‘VOLID:NEWFILE[100]);
RSLT:=IORESULT;
IF RSLT < >0 THEN
IF RSLT=8 THEN
WRITELN('No room for file; Please mount another disk’)
ELSE
IF RSLT=9 THEN
WRITELN('Requested volume is not on-line’)

154

ELSE
WRITELN(‘Unable to open new file! Check disk drive’);
UNTIL RSLT =0;
(*$1+ %)

Listing 8.6: Program fragment illustrating use of IORESULT.

This program fragment is designed to loop until the REWRITE statement
terminates normally. The user is given suggestions about how to cope with the
most likely errors. The integer variable RSLT is needed to provide temporary
storage for the value of IORESULT at termination of the REWRITE statement.
Otherwise the WRITELN statement containing an error message will reset the
value of IORESULT to zero, and the loop will terminate immediately whether
there is an error or not!

In general, the IOCHECK option should be enabled again after any section
of a program which requires it to be turned off in order to cope with specific
errors. Otherwise the program may encounter an I/O error from which it
cannot recover, yet it might continue to run causing further damage. To re-
enable the IOCHECK option use the Compiler directive (*$I + *) as shown in
listing 8.6.

As a general strategy for recovering from errors in working with disk files,
you should generally arrange to save backup copies of master disk files
periodically. How long the period is will depend upon how much work you
are willing to do in recovering from an error which completely destroys the
current working version of a file containing important data. To assist in back-
ing up to an earlier version of your working file, it may be useful to retain a
text file containing a copy of all input from the keyboard which resulted in
updates to that file. It then should be possible to rerun the update program
using the copied audit trail of input text from that file, and thus to recreate the
state of the main data file as it was just before the fatal error took place.

9 Using Libraries
of Specialized

Routines (Units)

9.1 Goals for this Chapter

Once you have become an experienced beginner in the use of Pascal, you are
likely to realize that it would be possible to extend the Pascal language to
simplify the writing of programs in whatever field of applications you might
happen to prefer. Rather than extending the language itself, it turns out to be
better to provide sets of preprogrammed routines which perform frequently
needed computations in various fields of applications. In the UCSD Pascal
System, a set of preprogrammed routines can be grouped together in a
separate Unit in such a way that any of the routines (procedures or functions)
may be used as if they had been declared within the using Pascal program.
Several Units may be grouped together into a disk file called a Library.

The main goal of this chapter is to provide an introduction showing how
preprogrammed Units and Libraries can be used by Pascal programmers.
Instructions on how to prepare a Unit to be used in this manner are beyond the
scope of this book, but may be found in the main reference manual for the
UCSD Pascal System. The introduction provided here is left rather general of
necessity. Since dozens or even hundreds of preprogrammed Units for the
UCSD Pascal System are likely to become available within the coming years,
specific instructions on how to use each unit will have to be supplied along
with the Units themselves in executable form.

156 Using Libraries of Specialized Routines

9.2 The Reason for Having Preprogrammed Units

A principal reason for the growing popularity of Pascal is the fact that the
language is powerful yet very concise. By “powerful” we mean that Pascal can
be used with a minimum of effort to write programs in almost any field of
applications, not to mention its use in writing system software. By “concise”
we mean that the translation of Pascal programs into executable form requires
a relatively small and relatively simple compiler compared with the compilers
needed for COBOL, FORTRAN, PL/I, or similar general-purpose programm-
ing languages. Another principal strength of Pascal is that programs written in
Pascal tend to be relatively “clean,” ie: free of logical errors, compared to pro-
grams written in the other popular languages to perform the same actions.

Soon Pascal will almost certainly be given the status of a standardized pro-
gramming language by the International Standards Organization. A growing
community of programmers have come to realize that Professor Wirth's
original design for Pascal provides a remarkable balance between conciseness
and power. Programmers who have started to use Pascal for creating large and
complex programs often have realized that the language lacks various
specialized facilities that they know are built into COBOL, FORTRAN, PL/I
or other high-level languages. They have then tried to bring about agreement
with other programmers who want to use Pascal for similar purposes on how
Pascal should be extended to provide the missing facilities. It has turned out to
be virtually impossible to obtain any such agreement, because very few pro-
grammers agree on details of how the extensions should be designed. The only
point on which agreement has been growing is that an international standard
on Pascal is needed, and that it should be based almost entirely on Wirth's
original definition of Pascal, with a few minor errors or misconceptions cor-
rected.

In addition to interest in the conciseness and cleanness of Pascal, a large part
of the Pascal user community has a strong interest in the portability of pro-
grams written in Pascal. In other words, they want a Pascal program written
for one machine or software system to perform in the same way on another
machine or software system. Typically, programs written in the older high-
level languages BASIC and FORTRAN have lacked portability because each
implementor has chosen to extend or alter these languages in the interest of
making certain specialized tasks easier, and in the real or imagined interest of
obtaining an advantage over commercial competitors. Even programs written
in COBOL, which has the best long-term record of respect for the language
standard, lack portability because of differences in the software systems within
which the COBOL programs are to run. In effect, the language definition is
always extended somewhat because of the input/output environment imposed
by the software system provided with the host machine. The computer
industry is still a long way from reaching agreement on standards for software
systems. Thus, it has been inevitable that virtually every implementation of
Pascal extends Wirth’s definition for the base language, and some implementa-
tions also differ in detailed ways from his definition. Fortunately, the political

Overview of Units 157

process of obtaining agreement on an international standard definition for
Pascal seems to be leading to a reduction in the differences from the base
language.

The UCSD Pascal System has been designed to enhance the portability of
application programs among many different small machines. This has been
accomplished by arranging to run the same complete software system on all of
these machines, thus avoiding the effective language differences imposed by
the software. Unfortunately, the UCSD Pascal language differs slightly from
the standard definition. In addition, UCSD Pascal contains several extensions
that were found important in the early development of the UCSD Pascal Soft-
ware System. Efforts are now in progress to revise the UCSD Pascal language
in such a way as to improve its compatibility with a new international stan-
dard for Pascal.

With the understanding born of experience, the preprogrammed units faci-
lity, recently added to UCSD Pascal, now provides a way to extend the utility
of the language through the use of a very small set of simple extensions to the
standard base language. This facility now makes it possible to reduce the
number of extensions contained in the UCSD Pascal language, while allowing
the utility of UCSD Pascal to be greatly expanded.

9.3 Overview of Units

In UCSD Pascal, a Unit is a collection of procedures and/or functions which
can be used as if they were declared within the using program. A Unit may also
contain CONST, TYPE, and VAR declarations, and these may be used as if
they were declared in the using program. A Unit is similar to an Include file
(see Chapter 6, Section 6.4 of this book) in that the contents of the Unit are
prepared separately from the text of the program in which it will be used.
Unlike an Include file, a Unit is usually compiled separately from the using
program. This makes it unnecessary to spend the time needed to compile the
Unit each time it is used.

An Include file is just an ordinary text file, the contents of which are
substituted by the Compiler for the directive:

(*9I include-file-name *)

Thus the Compiler must treat the entire contents of the Include file as if they
were contained in the main source program file. If the Include file is long, then
a large amount of compile time may be needed each time one compiles the pro-
gram file containing the Include directive, even though the Include file may
never be changed.

A Unit is prepared in two main sections, the INTERFACE section and the
IMPLEMENTATION section. The INTERFACE section contains CONST,
TYPE, and VAR declarations, as well as PROCEDURE and FUNCTION
heading declarations. All of these declarations look just as they would if the
same declarations were placed directly in the program which uses the Unit. All
of the declarations in the INTERFACE section are intended to be treated as if

158 Using Libraries of Specialized Routines

they were actually present within the declarations at the global level of the
program which uses the Unit. The IMPLEMENTATION section contains any
LABEL declaration, and additional CONST, TYPE, VAR, PROCEDURE and
FUNCTION declaration, along with the local declarations and executable
parts of all the PROCEDUREs and FUNCTION:S.

The using program may refer only to the items contained in the INTER-
FACE section. All of the contents of the IMPLEMENTATION are considered
to be private to the Unit, and not available directly to the using program. The
contents of the INTERFACE section are considered to be public and thus avail-
able directly to the using program.

During compilation of the using program, the contents of the INTERFACE
section of a Unit are treated as if they were in an Include file referred to by an
Include directive at the beginning of the using program. This allows the com-
piler to treat the public parts of a Unit just as if they had been included in the
using program. Since the IMPLEMENTATION section of the Unit is precom-
piled, it does not need to be compiled again. In other words, the executable
code part of the Unit needs to be generated by the Compiler only once, not
each time the Unit is used. However, the routines (PROCEDUREs and FUNC-
TIONs) whose headings appear in the INTERFACE section of the Unit may be
called by the using program just as if their entire contents had been compiled
along with the program.

The advantage of this approach is that a programmer can now be given a
large library of routines designed to carry out most of the primitive operations
commonly needed to write Pascal programs for almost any field of applica-
tions. For example, anyone who writes a program designed to display data on
a terminal screen, or to collect input data by filling in the blanks in a form
displayed on the screen, needs to perform certain simple operations over and
over again. These operations may include placing the cursor at a particular
location on the screen, clearing all parts of a line to the right of the cursor,
clearing the entire screen from the cursor location to the end, underlining a
specified field of columns on one line and accepting only certain data values
within that field, and so on. A Screen-Control Unit providing routines for
these and other purposes should be available for use with the UCSD Pascal
System by the time this book is published. Moreover, different versions of this
Unit will be available to cope with the different characteristics of various
popular terminals, though the using programs will always refer to the same
PROCEDURE and FUNCTION headings. To convert such a program for use
with a new terminal, it will (usually) only be necessary to provide a Screen-
Control Unit designed for that terminal.

As the UCSD Pascal System comes into widespread commercial use, it is
expected that libraries of Units for a wide variety of purposes will become
available through the vendors of the System itself. Since an experienced pro-
grammer will have little difficulty in preparing a Unit that others could use, it
is likely that the vendors will offer a selection of Units to buyers, just as a book
publisher offers a selection of books in the same field.

A sample unit and its use 159

9.4 A Sample Unit and its Use

Listing 9.1 shows the INTERFACE section of a simplified Screen-Control
Unit. Listing 9.2 shows a test program SCDEMO which uses this Unit.
Whenever possible, arrangements will be made with commercial distributors
of the UCSD Pascal System to include both the test program and the Unit with
the files made available with the System. You should then be able to experi-
ment with the program to verify your understanding of how Units work.

UNIT SCDEMO;
INTERFACE
TYPE
SCCHSET = SET OF CHAR;
SCKEYCOMMAND =
(BACKSPACEKEY,ETXKEY,UPKEY, DOWNKEY,LEFTKEY,
RIGHTKEY,NOTLEGAL);

VAR
SCCH:CHAR;

PROCEDURE SCINITIALIZE;

PROCEDURE SCLEFT;

PROCEDURE SCRIGHT;

PROCEDURE SCUP;

PROCEDURE SCDOWN;

PROCEDURE SCGETCCH (VAR CH:CHAR;
RETURNONMATCH:SCCHSET);

FUNCTION SCMAPCRTCOMMAND(KCH: CHAR):

SCKEYCOMMAND;

(*IMPLEMENTATION starts here™)

PROGRAM TESTSCUNIT;

(*$U SCDEMO.CODE*) (*use only if SCDEMO not in
SYSTEM.LIBRARY ¥)

USES SCDEMO;

VAR DONE:BOOLEAN;
CH:CHAR;
CHOK:SCCHSET;

PROCEDURE SQUAWK;

BEGIN
WRITE(CHR(7(*BEL*)));

END;

PROCEDURE CONTROL(CMD:SCKEYCOMMAND);
BEGIN

160 Using Libraries of Specialized Routines

IF CMD IN [BACKSPACEKEY, UPKEY, DOWNKEY, LEFTKEY,
RIGHTKEY, ETXKEY] THEN
CASE CMD OF
BACKSPACEKEY:
BEGIN
SCLEFT;
WRITE("’);
SCLEFT;
END;
LEFTKEY: SCLEFT;
RIGHTKEY: SCRIGHT;
UPKEY: SCUP;
DOWNKEY: SCDOWN;
ETXKEY: DONE: =TRUE
END (*CASE™)
ELSE
SQUAWK;
END (*CONTROL*);

BEGIN (*MAIN PROGRAM*)

SCINITIALIZE;
CHOK:=[CHR(0)..CHR(31), ‘A"..’Z'];
WRITE
("‘Arrow keys move cursor; ETX terminates; BS erases visible

chars’);
DONE: =FALSE;
REPEAT
SCGETCCH(CH,CHOK);
[F CH IN[CHR(0)..CHR(31)] THEN

ELE}?NTROL(SCMAPCRTCOMMAND(CH))

WRITE(CH);
UNTIL DONE;
END.

The program TESTSCUNIT makes use of the procedures and functions con-
tained in the SCDEMO Unit. TESTSCUNIT also makes use of the scalar type
SCKEYCOMMAND, and the variable SCCH, both of which are delcared in
the INTERFACE section of the Unit.

For example, the first statement in the main section of the program
TESTSCUNIT is a call to the procedure SCINITIALIZE which is contained in
the Unit SCDEMO. Only the heading of the procedure appears in the INTER-
FACE section. In effect, the heading of the procedure here is like a FORWARD
procedure declaration. The body of the procedure is declared in the IMPLE-
MENTATION section of the Unit, and its detailed contents are of no concern

A sample unit and its use 161

to us in working on the program. Of course one needs to know what each pro-
cedure in the Unit does in order to write the program sensibly. The
SCINITIALIZE procedure is used to load initial values into tables used by the
other procedures and function in the Unit.

The program TESTSCUNIT provides a means of moving the cursor about
on the screen, and for typing uppercase letters wherever the cursor may be
located. The BACKSPACE key (or its equivalent found in Appendix A or B)
may be used to back over and erase a displayed character. Pressing the ETX
key causes the program to terminate. Cursor movement is controlled by the
procedures SCUP, SCDOWN, SCRIGHT, and SCLEFT, all of which are con-
tained in the Unit.

The procedure SCGETCCH is used to read one character (a command
character) from the keyboard, returning the value of that character in the
variable parameter CH. The procedure fails to return if a character typed on
the keybaord is not in the set RETURNONMATCH. Instead, additional
characters are read from the keyboard until a character falling in that set is
pressed. In the main program of TESTSCUNIT, the variable CHOK is initia-
lized to the set of characters considered “OK” when SCGETCCH is called
within the REPEAT loop.

If the character returned by SCGETCCH falls in the group of control
characters, which in ASCII code have decimal equivalent values ranging from
0 to 31, then the procedure CONTROL is called. The single parameter of
CONTROL is of type SCKEYCOMMAND, which is the scalar type declared
in the Unit. But the values returned by SCGETCCH correspond to the codes
assigned to the keys on your keyboard. Since there are no industry standards
on which character codes should be associated with the cursor positioning
arrows (up, down, right, left), it is necessary to arrange for the arrow keys to
cause the corresponding display procedures to be called. This is accomplished
with the help of the function SCMAPCRTCOMMAND which accepts a
character value as its input parameter, and returns a value of type
SCKEYCOMMAND. This function makes use of a table hidden in the Unit
which relates each ASCII control code to one value of type SCKEYCOM-
MAND. The values in the table are initialized by the procedure
SCINITIALIZE, often by reading information stored in the miscellaneous
information file supplied with the UCSD Pascal System. The program SETUP,
also supplied with the System, can be used to alter the miscellaneous informa-
tion file if you have a video terminal other than those for which the System is
commonly supplied.

You might ask why we do not simply arrange to have the arrow keys move
the cursor on the screen without having to handle the problem explicitly in a
Pascal program. The reason is that many programs are written to control the
response to cursor movement key commands in different ways depending
upon circumstances. For example, in the Editor’s I(nsert command, use of the
arrow keys could cause a mess on the screen if they were not trapped out and
translated into the question-mark character (“7”). However, outside the I(nsert
command, the Editor makes use of the arrow keys to move the cursor in the
familiar way.

162 Using Libraries of Specialized Routines

Notice the two lines immediately following the program’s heading line, ie:

PROGRAM TESTSCUNIT;
(*$U SCDEMO.CODE®)
USES SCDEMO:;

The Unit is made available to the program by the USES statement, which must
appear immediately following the PROGRAM heading, before any of the pro-
gram’s own declarations. The comment line contains an optional compiler
directive which informs the Compiler which disk file to reference for any
subsequent Units referred to by the USES statement. If all the Units you wish
to employ are in the file SYSTEM.LIBRARY, then there is no need to employ
the directive:

(*sU library-filename *)

since the Compiler assumes that all Units referred to in the USES list are to be
found in SYSTEM.LIBRARY unless told otherwise. If you want to use Units
called UNITA and UNITB, both located in the SYSTEM.LIBRARY, and also
the Unit SCDEMO as above, then the USES statement should read as follows:

USES UNITA,UNITSB,
(*$U SCDEMO.CODE*)
SCDEMO;

If Units from several different files are to be used, then place the appropriate
Compiler directive referring to each file before the list of Units contained in
that file in the USES statement. The program may contain only one USES
statement.

9.5 Linker Complications

In versions 1.5, I1.0, and III.0 of the UCSD Pascal System, which were
released earlier than version II.1, it is necessary to use the Linker to bind
together a program and the separately compiled Units that the program USES.
Beginning with version II.1, Intrinsic Units have become available, and do not
require the use of the Linker.

To explain the possible confusion about the version numbers, version II1.0

differs from II.0 primarily by providing facilities for executing two or more

procedures concurrently. This feature was necessary to make practical the

Western Digital Microengine (a trademark of Western Digital), and other

possible microprocesor implementations of UCSD Pascal, since there is no

other means of writing interrupt input/output routines. Intrinsic Units re-
quire modifications to both 11.0 and II1.0 versions, and hence 11.1 is a later

version than both 11.0 and III.0.

Version II.1 requires that all Intrinsic Units be in the library file called
SYSTEM.LIBRARY. Later version will relax this restriction.

Linker Complications 163

If you have a version of the System which provides Intrinsic Units, then you
can probably ignore the rest of this section. If your version of the System
requires the Linker for all Units referred to by a USES statement in a program,
then the following notes should help. More detailed information on the Linker
is contained in the main Reference Manual on the UCSD Pascal System.

If all Units you wish to use are contained in the file SYSTEM.LIBRARY,
then the Linker is automatically executed the first time you use the R{un com-
mand following an E(dit change in your program file. The Linker is not
executed immediately if you use the C(ompile command after editing changes.
After a successful compilation, the next R(un command will invoke the Linker
if necessary to complete the linking of the Units used by the program.

You can execute the Linker independently of the R(un command by using
the L(ink command in the main “Command:” world of the System. It is
necessary to do this when your program uses Units from files other than the
SYSTEM.LIBRARY. Figure 9.1 shows the interaction with the Linker needed
to bind together the compiled code file SYSTEM.WRK.CODE with the code
file of the Unit SCDEMO to obtain a complete program code file
TESTSCUNIT.CODE. In this figure, input sequences typed by the user are
shown underlined. <RET> indicates pressing of the RETURN key.

Linker [I1.0]

Host file? SYSTEM.WRK.CODE<RET >
Opening SYSTEM.WRK.CODE
Lib file? SCDEMO.CODE <RET>
Opening SCDEMO.CODE ‘
Lib file? <RET>

Map name? <RET>

Reading TESTSCUN

Output file? TESTSCUNIT.CODE
Linking SCDEMO #10

Linking TESTSCUN #1

Figure 9.1: Interaction with the linker.

The host file is the program code file generated by the Compiler from your
program text file. In Figure 9.1, the reserved file name of workfile is used.

The legend “Lib file?” requests the name of a library file containing Units
that are to be linked. A simple <RET> rather than the name of a file tells the
Linker that no more library files are to be linked. “Map name?” can be the
name of a file into which a detailed directory of the linked data items and
routines will be written. In the example of Figure 9.1, <RET > tells the Linker
not to bother with generation of the directory file.

The “Output file?” is the name of the executable code file to be linked
together from the code file generated by the Compiler, and all of the Units used
by the program in that code file. Be sure to use a *“ CODE" suffix in this name
so that the resulting file may be executed.

The final lines with the legend “Linking” list the segment numbers attached

164 Using Libraries of Specialized Routines

to each of the Units linked, as well as the main program itself. These segment
numbers may be useful in finding the source of an abnormal program termina-
tion due to an execution error, as described in Section 6.8 of Chapter 6. In
general, you will not have access to the Pascal source program text file of a
Unit, and will have to refer the problem to the supplier of the Unit if an
execution error occurs in a Unit.

9.6 The Librarian

A utility Librarian program file called LIBRARY.CODE is supplied with the
UCSD Pascal System for the purpose of binding together various separately
compiled Units into a single library file. As this book was going to press, the
rules for using this program were changing to accomodate the new Intrinsic
Units. As a result, we are unable to give detailed instructions on use of the
Librarian in this book. Details will be issued for distribution to users when
they are available.

In general, a beginning user of the UCSD Pascal System should expect to
obtain a complete set of Units bound together into a library file by ‘anyone
who sells/provides that user with a copy of the UCSD Pascal System. This
should make it unnecessary to employ the Librarian program until the user has
developed a reasonable level of sophistication in use of the UCSD Pascal
System. A user who wishes to join separately prepared Units into an existing
library file will have to use the Librarian to do so. The main Reference Manual
for the UCSD Pascal System, or updates thereto, will be the best source of
information on using the Librarian for the version of the System you are using.

APPENDIX Al
Apple II™ Computer

Machine Configuration

The Apple II (trademark of Apple Computer Inc.) requires an add-on
memory board from Apple Computer, called the Language Card, to use the
UCSD Pascal System, 48 K programmable memory bytes, and at least one
floppy disk drive. Follow installation instructions supplied by APPLE Com-
puter.

The standard Apple II television display can display only 40 columns of
text. Nevertheless, the UCSD Pascal System treats the Apple II display as if it
were a full 80 columns wide. At any instant, you can see only 40 of the 80
columns. Press Control +A to see either the left half or the right half of the
logical 80-column screen. Press Control+A again to see the other half. In
some contexts, you can cause the display to shift horizontally in such a way as
to keep the cursor on the screen by pressing Control +Z.

Disk Notes

Assuming that the disk interface card is in slot 6, PORT 1 of the Apple II
disk interface is logical Unit #4 in the UCSD Pascal System. PORT 2 is logical
Unit #5. When the power is on, the computer looks for a disk containing the
UUCSD Pascal Interpreter file (SYSTEM.APPLE) on Unit #4. As the System is
initially supplied by Apple Computer either the disk marked “APPLE1:" or the
disk marked “APPLE3:” can be in Unit #4.

If you have just one disk drive, the disk marked “APPLEQ:" should be

148

166

substituted for “APPLE1:" or “APPLE3:" after the powerup bootstrap loading
sequence completes its work. Press RESET to get the System to reinitialize
itself so that you can use “APPLEO:" for program development. With a two-
drive Apple Il configuration, “APPLE1:” is normally in logical Unit #4,
“APPLE2:" is normally ir Unit #5.

The standard Apple II configuration uses 5-V4 inch floppy disks of either the
hard-sectored or soft-sectored styles (the Apple II ignores the sector tracking
hole). Blank disks must be formated using a program called FORMATTER
which is supplied with the System. Each disk has a capacity for 280 of the

512-byte blocks used with the UCSD Pascal file system.

Special Keyboard Keys

To get Press
ESC ESC
DEL CTRL+X
RET RET
EOF CTRL+C
backspace — (left arrow key)
ETX CTRL+C
TAB CTRL+I
Break Reset, forces System to re-initialize!
down arrow CTRL+L
up arrow CTRL+O
left arrow — (left arrow key)
right arrow — (right arrow key)
] shift +M
[CTRL+K
LF CTRL+]J
Stop CTRL+S, stops display of text until pressed again
DC1 CTRL+Q, in Editor’s I(nsert jumps to left margin

screen swap

auto-follow
Flush

CTRL+A, 40 spaces at a time, turns off auto-follow
CTRL+Z, displayed 40 columns follow the cursor
CTRL+F, discards output waiting to be displayed

APPENDIX A2
TRS-80™ Computer

Machine Configuration

To use the UCSD Pascal System with the TRS-80 (trademark of Radio
Shack Corporation) you need the TRS-80 Expansion Interface unit with a total
of at least 48 K bytes of memory. Practical use of the System really requires
two of the Mini-Disk drives.

Software Notes

The UCSD Pascal System for the TRS-80 is distributed under license by
FMG, a subsidiary of Applied Data Corporation, 5280 Trail Lake Drive, Suite
14, Forth Worth, Texas 76133. Details on how to bootstrap load the System,
and an operating UCSD Pascal with the TRS-80 are supplied by them with the
software.

Special Keyboard Keys

Since the TRS-80 has no CONTROL key, it must be simulated by pressing
the SHIFT key simultaneously with the down arrow, which are adjacent on the
left side of the keyboard. This combination is shown as CTRL/DA in the
following table.

167

168

To get

ESC
DEL
RET
EOF
backspace
ETX
TAB
Break
down arrow
up arrow
left arrow
right arrow
]

[
LF

Stop
DC1
Flush

Press

Break key

CTRL/DA+U

ENTER

CTRL/DA+C

— (left arrow key)

CTRL/DA+C

CTRL/DA+1

CTRL/DA+B

| (down arrow key)

t (up arrow key)

— (left arrow key)

— (right arrow key)

shift+right arrow

shift +left arrow

| (down arrow key)

CTRL/DA+ @, stops display until pressed again
CTRL/DA +Q, Editor’s I(nsert jumps to left margin
CTRL/DA+F, discards output waiting for display

APPENDIX A3
Terak 8510a™ Computer

Machine Configuration

The 8510a is a product of Terak Corporation (Terak is their trademark),
14405 North Scottsdale Road, Scottsdale, Arizona 85260. The 8510a is built
around the Digital Equipment Corporation LSI-11 processor. It is widely used
together with the UCSD Pascal System by educational institutions which are
members of EDUCOM, a nonprofit consortium of universities and colleges.

Disk Drive Numbers

#5 (optional
Terak 8512 QX1

on/off/bootstrap switch

#4
Terak 8510 QX0

Disks are inserted into the drives with the label closest to you and facing
toward the ceiling. Push the disk all the way and close the door. The 8510a
uses 8-inch diameter soft-sectored floppy disks compatible with the IBM 3740
diskette.

Disks will eject automatically upon opening the drive door either by directly
opening the door or using the open button, newer models have this feature.

169

170

Special Keyboard Keys

To get

ESC
DEL
RET
EOF
BS
ETX
Break
down arrow
up arrow
left arrow
right arrow
LF
TAB
DC1
Alpha
Stop
Flush

Press

ESC
DEL
RET
ETX
BS
ETX
CTRL+9 (numeric pad)
} (down arrow key)
I (up arrow key)
~— (left arrow key)
— (right arrow key)
linefeed key or CTRL+]
TAB or CTRL+I
DC1, in Editor’s I(nsert jumps to left margin
DC2, Upper/Lowercase toggle
DC3, or CTRL+S
CTRL+F

APPENDIX B1

ADM23-A™ Terminal

Special Keyboard Keys

To get

ESC
RET
DEL
EOF
backspace
TAB
ETX
Break
down arrow
up arrow
left arrow
right arrow
Stop
Flush

Notes:

Press

ESC

RETURN

RUBOUT

CTRL+C

left arrow key
CTRL+I

CTRL+C

CTRL+B

| (down arrow key)
t (up arrow key)

— (left arrow key)
— (right arrow key)
CTRL+S

CTRL+F

a) ADM3-A is a trademark of Lear Siegler Inc.

171

172

b) The key assignments shown here are suggested by the UCSD Pascal Pro-
ject, but not required. Because it is easy to change these assignments using the
SETUP program, some vendors may use other key assignments.

APPENDIX B2

Hazeltine 1500 Terminal

Special Keyboard Keys

To get Press
ESC ESC
RET RETURN
DEL Shift +DEL
EOF CTRL+C
Backspace BACKSPACE
TAB TAB
ETX CTRL+C
Break BREAK or CTRL+@
down arrow CTRL+K
up arrow CTRL+L
left arrow BACKSPACE
right arrow CTRL+P
Stop CTRL+S
Flush CTRL+F

Notes: The key assignments shown here are suggested by the UCSD Pascal
Project, but not required. Because it is easy to change these assignments using
the SETUP program, some vendors may use other key assignments.

173

APPENDIX B3
Soroc IQ 120 Terminal

Special Keyboard Keys

To get Press
ESC ESC
RET RETURN
DEL RUBOUT
EOF CTRL+C
Backspace left arrow key
TAB TAB
ETX CTRL+C
Break BREAK
down arrow (down arrow key) |
up arrow (up arrow key) 1
left arrow (left arrow key) —
right arrow (right arrow key) —
Stop CTRL+S
Flush CTRL+F

Notes: The key assignments shown here are suggested by the UCSD Pascal
Project, but not required. Because it is easy to change these assignments using
the SETUP program, some vendors may use other key assignments.

178

APPENDIX B4
Adapting the UCSD Pascal

System to Your Video Display

When the UCSD Pascal System is bootstrap loaded, it loads the contents of
a file called SYSTEM.MISCINFO into memory. SYSTEM.MISCINFO con-
tains a table of information which includes the character codes commonly used
with video terminals. Many of the distributors of the UCSD Pascal System are
now including separate files corresponding to popular terminals. If one of
these files corresponds to your terminal, it should be used in place of the
SYSTEM.MISCINFO file supplied with the System. The titles of these separate
files usually bear an obvious relationship to the name of the terminal and to
MISCINEFO. For example:

SOROC.MISCINFO

If you can use the Filer at all, even if the displayed information is not exactly
like that shown in the figures in Chapter 5 of this book, you can change the
directory name of the MISCINFO file for your terminal to SYSTEM.MIS-
CINFO. For backup purposes, you would be well advised to change the name
of the SYSTEM.MISCINFO file initially supplied to you to another name.

If there is no MISCINFO file for your terminal with your copy of the UCSD
Pascal System, you probably can adapt the System to your terminal using the
program SETUP. The file SETUP.CODE should be on one of your disks.
SETUP allows you to change the video display and associated keyboard con-

CE Reind

178

trol codes in the memory table initialized from the SYSTEM.MISCINFO file.
The following sequence should be used:

® eX(excute SETUP (from the “Command:” world).

® Use the C(hange option of Setup.

® Use the P(rompted option of Change.

® Bypass each item you wish to leave unchanged by pressing N(o.

® For each item you wish to change, press Y (for Y(es) The program will
prompt for a new value, which by default should be entered as a decimal
number. The program will again prompt and ask whether you want to
change the same item. If not, continue by pressing N.

® When you have examined or changed all the desired items, you can jump
out of the loop by pressing “!” (exclamation point). Press Q for Q(uit
twice to reach the “Quit:"” world of this program. The D(isk option will
leave a file called NEW.MISCINFO on the disk. To use this new file,
change its name to SYSTEM. MISCINFO and then bootload the System
again.

In addition to changing the SYSTEM.MISCINFO file, adaptation of a new
terminal to current versions of the UCSD Pascal System usually requires
changing an internal procedure of the operating system which handles the
built-in GOTOXY procedure. This must be accomplished by separately com-
piling a substitute GOTOXY procedure designed for use with your terminal.
The new procedure must then be bound into the operating system using a pro-
gram called BINDER, which is also supplied with the System software. The
process of making this change is not difficult, but does require some caution.
We suggest that you enlist the help of someone with experience in the use of
the UCSD Pascal System to make this change. Further details are available in
the main Reference Manual for the UCSD Pascal System.

APPENDIX C1

Screen Editor Commands

< repeat factor> is a number typed before any of the following commands.
If not typed at all, value of <repeat factor> is assumed to
be 1. “/” in place of a number causes repetition until the end
of the file is reached.

<direction> is either forward or backward. Current <direction> is
indicated by the broken bracket in 1st character position of the
prompt line. “>" signifies foward. “<” signifies backward.
Press “>" key to force direction to be forward, or "< to force
backward.

<down-arrow> moves < repeat-factor> lines down
<up-arrow > moves < repeat-factor> lines up
<right-arrow> moves <repeat-factor> spaces right
<left-arrow> moves <repeat-factor> spaces left

< space> moves <repeat-factor> spaces in <direction>

<back-space> moves <repeat-factor> spaces left

<tab> moves < repeat-factor> tab positions in < direction>

<return> moves to the beginning of line <repeat-factor> lines in
indicated < direction>

g changes indicated < direction> to backward

B S changes indicated < direction> to forward

- PY(S

= moves to the beginning of what was just found, replaced,
inserted, or exchanged

A(djust: Adjusts the indentation of the line that the cursor is on. Use the arrow
keys to move. Moving up or down adjusts line above or below by
same amount of adjustment as on the line you were on. <repeat-
factor> is valid. <ETX> terminates.

C(opy: Buffer - Copies what was last inserted, deleted, or zapped into the file
at the position of the cursor.

File - Copies from a portion of all of a text file that exists in the direc-
tory. Partial files are identified by use of file markers.

Dl(elete: Treats the starting position of the cursor as the anchor. Use any
moving commands to move the cursor. <ETX> deletes everything
between the cursor and the anchor. <ESC> cancels the deletion.

F(ind: Operates in Literal or Token mode. Finds the <target> string. Use any
special character to delimit the <target>. <repeat-factor> is valid.
<direction is applied. “S” may be substituted for the < target>
previously used.

I(nsert: Inserts text. Use < Backspace> to erase one inserted character,
 erases last inserted whole line. <ETX> accepts inserted
text. <ESC> cancels the insertion.

J(ump: Jumps to the B(eginning, E(nd, or previously set marker.

M(argin: Adjusts anything between two blank or command lines to the
margins which have been S(et in the E(nvironment. Command lines
are identified by “1” in 1st column. Invalidates the copy buffer.

P(age: Moves the cursor one page in indicated <direction> . < repeat-fac-
tor> is valid. <direction> is applied.

Q(uit: Leaves the editor. You may U(pdate, E(xit, W(rite, or R(eturn.

R(eplace: Extension of the F(ind command. Operates in L(iteral or T(oken
mode. Replaces the <target> string with the <substitute > string.
V(erify option asks you to indicate whether each occurrence of the
<target> is to be replaced or skipped. “S” may substitute for either
<target> or <substitute> and means that previous < target> or
<substitute> is to be used <repeat factor> applies. <direction>

is valid.

<ESC> aborts R(eplace before specifications are complete.

181

S(et: M(arkers by assigning a string name to them.
E(nvironment for:
A(uto-indent, F(illing, M(argins, T(oken, and C(ommand characters.

V(erify: Redisplays the screen with the cursor in center of screen.

eX(change: Exchanges the current text for the text typed while in this mode.
Each line must be done separately. <back-space> causes the
original character to re-appear. <ETX> completes the exchange.

Z(ap: Treats the starting position of the last thing found, replaced, or inserted
as an anchor and deletes everything between the anchor and the current
cursor position.

APPENDIX C2
File Manager Commands

'

<wild> indicates wildcards can be used. “=" substitutes for all or part of
each file name, and cuases automatic reference to all files matching
the resulting pattern. “?” is similar to “=""but requests the user to
indicate whether each individual file should be affected by the com-
mand.

B(ad blocks: Scans the disk and detects bad blocks.
C(hange: Changes a file or volume name. <wild>

D(ate: Lists the current system-disk date, and enables the user to change all or
part of that date.

E(xtended list: Lists the specified directory as in L(dir but in more detail.
<wild>

G(et: Loads the designated file into the workfile.

K(runch: Moves the files on the specified volume so that all the unused blocks
are moved to the end of the disk.

L(dir: List a specified disk’s directory or any subset thereof to the volume and

v o~ -

184

file specified (“CONSOLE:"” is default).
<wild>

M(ake: Creates a directory entry with the specified name and size.

N(ew: Clears the workfile (workspace).

P(refix: Changes the current default volume identifier to the volume specified.
Q(uit: Returns user to the “Command:” world.

R(emove: Removes file entries from the specified directory. <wild>

S(ave: Saves the workfile under the name specified by the user.

T(ransfer: Copies the specified file(s) to the given destination. <wild>
W(hat: Identifies the name and state (saved or not saved) of the workfile.
V(olumes: Lists volumes currently on-line, along with their unit numbers.
eX(amine: Attempts to physically repair suspected bad blocks.

Z(ero: Creates a blank directory on the specified volume. The previous direc-

tory is no longer retrievable. Creates a directory on previously
uninitialized disks (but does not format a previously unformatted disk).

APPENDIX C3
Operating System Commands

A(ssem: Executes the Assembler (SYSTEM.ASSEMBLER). The Assembler
expects its input in SYSTEM.WRK.TEXT and generates its output in
SYSTEM.WRK.CODE.

C(omp: Executes the Pascal Compiler (SYSTEM.COMPILER).

D(ebug: This is a hook intended to execute a user program under control of
the system debugger. As this book went to press, the debugger still
needed too much debugging to be released, and it probably will not
be in your copy of the System.

E(dit: Executes the Screen Editor (SYSTEM.EDITOR).

F(ile: Executes the File Manager (SYSTEM.FILER).

H(alt: Stops execution of the Pascal P-machine Interpreter. The System must
be bootloaded to restart.

I(nit: Re-initializes the System.

L(ink: Executes the System’s Linker program, used for linking together
separately compiled Units, and Segment procedures, with a user’s main
host program.

10

186

U(ser: Re-starts the program which most recently was executed.

eX)ecute: Prompts for the name of a CODE file for a program to be executed.
If that name (leaving off the “.CODE") is typed in, and terminated
with RETURN, and the name is found in the disk directory, then the
named program will be exectued.

APPENDIX D1
Compiler Syntax
Error Messages

4 7

20:
21:

22

O 00Ok W

: Error in simple type

: Identifier expected

: PROGRAM’ expected
: ') expected

: '+ expected

: [llegal symbol

: Error in parameter list
: 'OF expected

: (" expected

:Error in type

‘" expected

I']” expected

‘END’ expected

I, expected

Integer expected
‘=" expected
“BEGIN'" expected
Error in declaration part
eerror in < field-list>
‘" expected

*" expected

: ‘Interface’ expected

1TQ~

188

23:
: ‘Unit’ expected

24

50:
51:
52:
53:
S54:
55:
S56:
57:
58:
59:

101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:

‘Implementation’ expected

Error in constant

‘. =" expected

‘THEN' expected

‘UNTIL’ expected

‘DO’ expected

‘TO’ or DOWNTO' expected in for statement
‘TF" expected

‘FILE’ expected

Error in <factor> (bad expression)

Error in variable

Identifier declared twice

Low bound exceeds high bound

Identifier is not of the appropriate class

Undeclared identifier

sign not allowed

Number expected

Incompatible subrange types

File not allowed here

Type must not be real

< tagfield> type must be scalar or subrange
Incompatible with <tagfield> part

Index type must not be real

Index type must be a scalar or a subrange

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard procedure parameter
Unsatisified forward reference

Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure
Function result type must be scalar, subrange or pointer
File value parameter not allowed

A forward declared function’s result type can't be re-specified
Missing result type in function declaration

F-format for reals only

Error-in type of standard procedure parameter

Number of parameters does not agree with declaration
Illegal parameter substitution

Result type does not agree with declaration

Type conflict of operands

Expression is not of set type

Tests on equality allowed only

Strict inclusion not allowed

133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144
145:
146:
147.
148:
149:
150:
151:
152:
153:
154:
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
174:
182:
183:
184:
185:
186:

189

File comparison not allowed

Illegal type of operand(s)

Type of operand must be boolean

Set element type is not compatible with the declaration
Set element types must be compatible

Type of variable is not array

Index type is not compatible with the declaration
Type of variable is not record

Type of variable must be file or pointer

Illegal parameter solution

Illegal type of loop control variable

[llegal type of expression

Type conflict

Assignment of files not allowed

Label type incompatible with selecting expression
Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not allowed
Assignment to formal function is not allowed
No such field in this record

Type error in read

Actual parameter must be a variable

Control variable cannot be formal or non-local
Multidefined case label

Too many cases in case statement

No such variant in this record

Real or string tagfields not allowed

Previous declaration was not forward

Again forward declared

Parameter size must be constant

Missing variant in declaration

Substitution of standard proc/func not allowed
Multidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

Standard file was re-declared

Undeclared external file

Pascal function or procedure expected

Nested units not allowed

External declaration not allowed at this nesting level
External declaration not allowed in interface section
Segment declaration not allowed in unit

Labels not allowed in interface section

190

187:
188:
189:
190:
191:
192:
193:
194.
195:
201:
202:
203:
204:
250:
251:
252:
253:
254:
256:
257:
258:
259:

300:
301:
302:
303:
304:
398:
399:

400:
401:
402:
403:
404:
405:
406:

Attempt to open library unsuccessful

Unit not declared in previous uses declaration
‘Uses’ not allowed at this nesting level

Unit not in library

No private files

‘Uses’ must be in interface section

Not enough room for this operation
Comment must appear at top of program
Unit not importable

Error in real number — digit expected
String constant must not exceed source line
Integer constant exceeds range

8 or 9 in octal number

Too many scopes of nested identifiers

Too many nested procedures of functions
Too many forward references of procedure entries
Procedure too long

Too many long constants in this procedure
Too many external references

Too many externals

Too many local files

Expression too complicated

Division by zero

No case provided for this value
Index expression out of bounds
Value to be assigned is out of bounds
Element expression out of range
Implementation restriction
Implementation restriction

Illegal character in text

Unexpected end of input

Error in writing code file, not enough room
Error in reading include file

Error in writing list file, not enough room
Call not allowed in separate procedure
Include file not legal

APPENDIX D2
Execution Error Messages

(fatal) indicates a fatal errorr.

System error (fatal)

Invalid index, value out of range
No segment, bad code file
Procedure not present at exit time
Stack overflow

Integer overflow

Divide by zero

Invalid memory reference <bus timed out>
User break

System 1/0 error (fatal)

10 User 1/0 error

11 Unimplemented instruction

12 Floating point math error

13 String too long

14 Halt, Breakpoint

15 Bad Block

O W NI U WL O

All fatal errors either cause the system to rebootstrap, or if the error was
totally lethal to the system, the user will have to reboot manually. All errors
cause the system to re-initialize itself. :

o 94

APPENDIX D3

Input/QOutput Error Messages

O O NGV WD = O

No error

Bad block, parity error (CRC)

Bad unit number

Bad mode, Illegal operation

Undefined hardware error

Lost unit, unit is no longer on-line

Lost file, file is no longer in directory
Bad title, illegal file name

No room, insufficient space

No unit, no such volume on line

No file, no such file on volume
Duplicate file

Not closed, attempt to open an open file
Not open, attempt to access a closed file
Bad format, error in reading real or integer
Ring buffer overflow

193

APPENDIX D4
Differences Between UCSD
Pascal and Standard Pascal

In so far as possible, “Standard Pascal” as used here means the Pascal
language as defined in the new draft document that is expected to become the
basis for an international standard Pascal language.

1. Case Statement
In standard Pascal, an error is caused if none of the constants which label
the controlled statements is equal to the current value of the Selector of the
Case Statement. In UCSD Pascal, no error indication results from this situa-
tion, and processing simply drops through to the statement following the
Case Statement.

2 .Dynamic Memory Allocation
Standard Pascal provides the built-in procedure DISPOSE(P) which
indicates that the dynamically allocated variable Pt is no longer needed.
UCSD Pascal does not (yet) provide DISPOSE. Instead, the more primitive
MARK and RELEASE procedures are provided.

3. Comments
The UCSD Pascal compiler recognizes a dollar sign character (“$") in the
first character contained in a comment as an indication that the comment is a
directive to the compiler. Standard Pascal makes no explicit provision for
compiler directives.

195

196

10.

. INTERACTIVE Files

UCSD Pascal augments Standard Pascal by providing the predeclared type
INTERACTIVE, which is similar to type TEXT. Type INTERACTIVE
simplifies handling of single character input/output to interactive terminal
devices. The standard files INPUT and OUTPUT are of type INTER-
ACTIVE in UCSD Pascal. See Chapter 8 of this book for details.

. Random Access Disk Files

Standard Pascal contains no explicit provisions for direct random access to
specific records in a disk file. UCSD Pascal augments the language with the
built-in procedure SEEK, which sets the value of the current file pointer. In
adition, RESET, REWRITE, GET, and PUT are redefined for disk files. See
Chapter 8 of this book for details.

. GOTO and EXIT

Standard Pascal allows GOTO to a label outside the block in which the
GOTO statement appears. UCSD Pascal currently restricts GOTO to a
label within the same block. UCSD Pascal provides a limited equivalent of a
GOTO out of the local block by using the built-in procedure EXIT(pro-
cedure name). This is equivalent to a GOTO to a label after the last
executable statement of the named procedure, which must currently be in
execution.

. Packed Variables

Standard Pascal provides the built-in procedures PACK and UNPACK for
transferring data between a PACKED array, and an equivalent array which
is not PACKED. Standard Pascal provides no facilities for packing and
unpacking PACKED records. UCSD Pascal does not provide PACK and
UNPACK, as of yet, but does permit direct assignments of value to refer to
the components of a PACKED record. UCSD Pascal does not permit a com-
ponent of a PACKED array or record to be used as a VAR parameter.

. Procedural and Functional Parameters

Standard Pascal permits the identifier of a procedure or function to be pass-
ed as a parameter. This permits one procedure (or function) to use another
that has been passed in as a parameter. UCSD Pascal does not yet provide
this facility.

. Program Headings

UCSD Pascal will accept the Standard Pascal form for the program
heading, which includes a list of files in the form of parameters. However,
UCSD Pascal does not require this list of file names, and does nothing with
the list if it is provided.

Segment Procedures
UCSD Pascal permits one to declare a SEGMENT procedure or function,
thus causing the procedure or function to be treated as overlayable (only

11.

12.

13.

197

loaded into memory when actually in use). Standard Pascal has no
equivalent of this concept.

Separately Compiled Units

UCSD Pascal allows a collection of procedures, functions, and related
CONST, TYPE, and DATA declarations to be compiled separately into a
unit. The Unit can then be used by other programs without the need to
recompile. Standard Pascal contains no equivalent of this concept. See
Chapter 9 of this book for details.

Sets

UCSD Pascal limits a variable of type SET to have at most 4080 elements.
Most other implementations of Pascal limit the number to 64 or less. Stan-
dard Pascal does not specify how many elements a set must have.

String Variables

UCSD Pascal provides the predeclared type STRING for working with
sequences of characters. A variable of type STRING is equivalent to a
PACKED ARRAY [1 . . upper-bound] OF CHAR, with a hidden length
byte also included. String variables are supported with the built-in pro-
cedures INSERT and DELETE, and the builtin functions LENGTH, POS,
COPY, and CONCAT. Assignment statements and comparison operations
use only the number of characters in a string as indicated by the length byte,
and do not require that the full declared length of the packed array be pre-
sent. READ and WRITE are also extended to refer directly to string
variables. Standard Pascal specifies no equivalent to type STRING.

14. Long Integers

UCSD Pascal allows the use of integers up to 36 decimal digits long. This
requires the programmer to specify the number of digits desired if the size of
the integer is to be longer than the size supported by the computer’s pro-
cessor (usually 16 bits on small machines).

APPENDIX E
INDEX

Note: Items containing “(’ as second character are commands or command
options. Items with lowercase first character are generic.

Page

A(djust - Editor 58
arrow command - Editor 40
arrow keys 14
A(uto indent - Editor 62
BACKSPACE - Editor 27
43

B(ad blocks - Filer 88
BIOS 126
block - disk 126
B(lock-range - Filer 89
bootload 9
B(uffer - Editor 57
buffer - I/0 126
buffer variable 132

C(enter - Editor 58

L

200

C(hange - Filer
CLOSE

coarse index
CODE

CODE file

C(ommand char - Editor
Comment - Compiler
COMPDEMO program
Compiler

CONSOLE:
CONTROL key
C(opy - Editor

CR - Carriage Return
crunch directory

CTRL (see CONTROL key)
cursor
cursor movement

Data: example
D(ate - Filer
declaration - file
DEL - Editor
D(elete - Editor

directive - Compiler
directory - disk

direction flag - Editor
diskette

disk file

dollarsign - Compiler
down arrow
drill & practice

Editor
End-line character
End of line

E(nvironment - Editor
EOF

83
137
146

69

25
62
93
109
25

97
13
56
129
85

13
14
39

16
75
132
54
28
54

93
23
72
138
44
23

67
122
94
40
112

22
129
149

45
139

201

EOLN _ 149
Equalsign command - Editor 50
errors - disk 88
error record - [/0O 152
ESC - Editor D(elete 28
ESC - Editor I(nsert 28
ETX - Editor D(elete 27
ETX - Editor I(nsert 26
eX(amine - Filer 89
eX(change - Editor _ 59
E(xecute 14
E(xecute CODE file 10
execution error 107
E(xit - Editor 32
E(xtended directory - Filer 74
file 23
66

F(iling - Editor 61
F(ind - Editor _ 47
fine index 146
floppy disk 124
F(rom file - Editor 67
GET(FID) 133
G(et - Filer 34
70

GOTO switch - Compiler 98
indexed access 145
IMPLEMENTATION section 157
Include - Compiler directive 94
indentation - Editor 27
I(nsert - Editor 26
51

INTERACTIVE file type 124
INTERFACE section 157
interleaving 125
170 check - Compiler directive 98
153

J(ump - Editor 45

K(runch - Filer 85

202

Large File Editor

left arrow key

Librarian

Linker

List - Compiler directive
L(ist - Filer

L(it - Editor

L(iteral - Editor
LOCK (CLOSE)
logical record

M(ake - Filer
M(argin - Editor
M(arker - Editor
marker - Editor
Maze: exercise

N(ew - Filer
ORIENTER program

P(age - Editor
page - text file

P(aragraph margin
P(refix - Filer
program concept
programming quiz
prompt line

PURGE (CLOSE)
PUT(FID)

Quiet - Compiler directive
Q(uit - Editor

READ
READLN
R(emove - Filer

repeated commands - Editor
R(eplace - Editor

38

40
164
162

96

31

72

47
55
49
138
126

84
61
45
57

71
10
35
44
130

62
76
14
117
26

138
134
99
30
60

148
149
148

82

41
55

RESET
RET (return key)
R(eturn - Editor

RETURN - Editor

REWRITE
right arrow
R(ight margin

RUBOUT - Editor

R(un - a program

run-time error
S(ame - Editor

S(ave - Filer

scrolling - Editor
sector
SEEK

sequential file

S(et M(arker - Editor

S(et E(nvironment - Editor
SPACE - Editor

structured record

<sub> - Editor

switch - Compiler

Swapping - Compiler directive
syntax error

SYSTEM.LIBRARY
SYSTEM.STARTUP
SYSTEM.WRK.CODE
SYSTEM.WRK.TEXT
TAB - Editor

< target> - Editor
TESTER program
TEXT

Text file

TEXT file type

203

135
13
30

43
54
136
40
61

59
24
30
107
56

32
71
42
125
138

140
45
45
43

126

55
98
99
30
100
162
35
69
69
44

48
112
69
23
129

147

204

title - file
title string

token - Compiler
token - Editor

T(ransfer - Filer
Unit - precompiled
<unused> - Filer
up arrow key
U(pdate - Editor

USES (a Unit)
variant record

V(erify - Editor

volume
V{(olume - Filer

Wihat - Filer
wildcard - Filer
window variable

workfile

WRITE

WRITELN

W(rite to file - Editor
eX(amine - Filer
eX(change - Editor

eX(ecute - CODE file
Z)ap - Editor
Z(ero - Filer

= command - Editor
$ - Compiler directive

67
135
126

93

49

77
157
75
40
24
29

162
128
51
55
66
74

72
68
126
132
23
69

148
149
30
89
59

59

86

50
95

For information on the availability of the UCSD Pascal System and the collec-
tion of sample programs used in this book, contact your local computer store

or: SofTech Microsystems Inc. Telephone: (714) 578-6105 Address: 9494 Black
Mountain Rd San Diego CA 92126 TWX: 910-335-1594

Please do not contact the author. All availability inquires must be forwarded
to SofTech Microsystems in connection with the University of California
license agreement with that firm.

BEGINNERS
.~ GUIDE

FOR THE

| UCSD PASCAL|

1 SYSTEM |
| byKenneth L. Bowles

by Kenneth Bowles

Written by the originator of the University of California, San Diego (UCSD)
Pascal Software System, this highly informative book is designed as an orientation
guide for learning to use the UCSD Pascal System. For the novice, this book steps
through the System, bringing the user to a sophisticated level of expertise. Once
familiar with the System, you will find the guide an invaluable reference tool for
creating advanced applications.

The UCSD Pascal Software System, available from SofTech Microsystems Inc,
9494 Black Mountain Road, San Diego CA 92126, is a complete, general-purpose
software package for users of microcomputers and minicomputers. The package of-
fers a wealth of useful features, including:
® Programs which may be run without alteration on the DEC PDP-11 or General

Automation minicomputers, the Western Digital Microengine or on 8080, 8085,

280, 6502, 6800, 9900, or AM-100 based microcomputers (includes the popular

Apple II and Radio Shack TRS-80 microcomputers).
® Ease of program development and use on a small, single-user computer with a

display screen and one or more floppy-disk drives.
® A powerful Pascal compiler which supports interactive applications, strings,

direct access disks, and separately compiled modules.
® A complete collection of development software: operating system, file handler,
screen-oriented tex! editor, link editor, etc.

About the Author

Kenneth L. Bowles is Director of the Institute for Information Systems, an interdisciplinary
research institute at the University of California, San Diego. Dr. Bowles organized the UCSD
Pascal Project in 1974. The UCSD Pascal System has been licensed to over 1,000 individuals
and organizations, and is currently in use on thousands of stand-alone systems. He earned his
Ph.D. degree at Cornell University, and teaches an introductory problem-solving and
computer-programming course which has grown to reach approximately 70 percent of the en-
tire UCSD student population. Dr. Bowles is a Fellow of the IEEE, and has lectured extensively
throughout the world. His major research interests include computer communications, soft-
ware engineering, and educational applications of microcomputers. He is the author of
numerous engineering research papers as well as the book, Microcomputer Problem-Solving
Using Pascal (1977).

ISBN 0-07-006745-7

	00001
	00002
	00003
	00004
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	xBack

