COMPLETE

/@?1;;‘%» C 4034

Pascal| ™

Copyright©, 1990
All rights reserved

Complete Technology, Inc.
2443 S. Colorado Blvd. Suite 221
Denver, CO 80222
303/758-0920

All of Complete Technology’s products are trademarks or registered trademarks
of Complete Technology, Inc. Other brand and product names are trademarks
orregistered trademarks of their respective holders.

Copyright©, 1990 Complete Technology, Inc.

Printed by L&L Productions, Inc.
ISBN: 0-929300-11-4

Table of Contents

Infroduction

About The Manual

What You Should Know

What You Need

Register Your Product

Contacting Complete Technology
Acknowledgements

Part | User's Guide

Chapter 1 Getting Started

Backing Up the Complete Pascal Master Disk

Setting Up Your System
Single Disk Drive System
Two Disk Drive System
Hard Disk Drive System
A Note On RAM Disks

Compiled versus Interpreted Languages

Where Now?

Chapter 2 Using Complete Pascal

Running Complete Pascal

Examining the Integrated Environment

Editing Source Code Files
Source Code Editing Menu
File Naming Conventions
Basic Editing Techniques

Chapter 3 Creating Programs

Compiling Alternatives

Testing a Program’s Source Code
Running a Program

Creating a Stand-alone Application
Compiling Units

Detecting Errors

Complete Pascal

-2
-2
I-4
I-4
-5
-5

1-9

1-9
1-10
1-10
1-10
1-11
1-11
1-12

2-1
22
2-3
2-4
2-5

3-1
3-2
3-2
3-3
3-3

Table of Contents

Chapter 5

Chapter 4 Creating Resources

Resources

Resource Editing
Resource Document Window
Resource Atftributes

Pascal String Resource

C String Resource

Alert String Resource

ToolStartUp Resource

Menu Bar Resource

Menu Resource

Window Resource
Window Fram Definition
Window Controls Definition

The Apple Menu
About Complete Pascal...
Desk Accessories
Open "NDA"
Remove "NDA"
The File Menu
New
Open
Close
Save
Save As...
Revert
Print Options...
Page Setup
Print
Quit
The Edit Menu
Undo
Cut
Copy
Paste
Clear
Select All
Set Font & Size
The Search Menu
Find...
Find Next
Find Selection
Replace...
Replace Same
Goto Selection
The Windows Menu
Next Window
Get Info
Last Error
The Compile Menu

Complete Pascal

Reviewing the Main Menu

4-10
4-11
4-13

5-10
5-10
5-10
5-10

Table of Contents

To Memory

To Disk

Check Syntax

Add Resources...

Preferences...
The GSOS Menu

Rename

Delete

Transfer

Part Il Programming

Chapter 6 Textbook Applications

Text Screen Textbook Applications

Chapter 7 Textbook Graphics Applications

Graphics Screen Textbook Applications
The Graphics Procedure

Chapter 8 Desktop Applications

The Apple lIGS Toolbox
The Seven Basic Toolsets
Desktop Interface Tools
Device Interface Tools
Operating Environment Tools
Sound Tools
Math Tools
How Cadlling a Routine Works
Event-Driven Programming
Program Structure
Adding Resources to an Application
Definition Procedures (DefProcs)
Large Programs and Segmentation

Chapter 9 New Desk Accessories

Getting Started
Program Structure
The DAInit Procedure
The DAOpen Function
The DAClose Procedure
The DAAction Procedure
Compiling a Desk Accessory
Installing a Desk Accessory

Chapter 10 Classic Desk Accessories (CDAs)

Program Structure
The StartUpCDA Procedure
The ShutDownCDA Procedure
Compiling a Desk Accessory

Complete Pascal

5-11
5-11
511
5-11
S5-11
5-14
5-14
S-14
5-14

Z-1
72

8-1

8-3
8-4
8-4
8-4
8-5
8-5

8-10
8-11
8-11
8-12

9-2
9-3
9-4
9-5
9-5
9-7

10-1
10-2
10-2
10-3

Table of Contents

Installing a Desk Accessory 10-3

Pary 1l Language Reference
Chapter 11 Tokens
Special Symbols 11-1
Identifiers 11-1
Directives 11-2
Numbers 11-2
Labels 11-3
Character-Strings 11-4
Constant Declarations 11-4
Comments and Compiler Directives 11-5
Chapter 12 Blocks, Scope and Activations
Definition of a Block 12-1
Rules of Scope 12-2
Scope of a Declaration 12-2
Redeclaration in an Enclosed Block 12-3
Position of Declaration Within Iis Block 12-3
Redeclaration Within a Block 12-3
Identifiers of Standard Objects 12-3
Scope of Unit Interface Identifiers 12-3
Activations 12-3
Chapter 13 Types
Simple Types 13-1
Ordinal Types 13-2
Standard Ordinal Types 13-2
Enumerated Types 13-3
Subrange Types 13-4
Real Types 13-4
Structured Types 13-5
Array Types 13-6
Record Types 13-7
Set Types 13-9
File Types 13-9
Stiing Types 13-10
Pointer Types 13-11
ldentical and Compatible Types 13-11
Type Identity 13-11
Compatibility of Types 13-12
Assignment Compatibility 13-12

Complete Pascal Table of Contents

Chapter 14 Variables

Variable Declarations

Variable References

Qualifiers
Arrays, Strings. and Indexes
Records and Field Designators
Pointers and Dynamic Variables
Variable Type Casts

Chapter 15 Expressions

Operators
Arithmetic Operators
Boolean Operators
Set Operators
Relational Operators
Comparing Ordinals
Comparing Strings
Comparing Packed Arrays of Char
Comparing Sets
Comparing Pointers
Testing Set Membership
The @ Operator
@ with a Variable
@ with a Value Parameter
@ with a Variable Parameter
@ with a Procedure or Function
Function Call
Set Constructors
Value Type Casts

Chapter 16 Statements

Simple Statements
Assignment Statement
Procedure Statement

Structured Statements
Compound Statements
Conditional Statements
If Statements
Case Statements
Repetitive Statements
Repeat Statements
While Statements
For Statements

Control Statements
Goto Statement
Cycle Statement
Leave Statement
With Statement
Null Statements

Complete Pascal

14-1
14-1
14-2
14-2
14-3
14-4
14-4

15-3
15-3
15-5
15-5
15-5
15-6
15-6
15-6
15-7
15-7
15-7
15-7
15-8
15-8
15-8
15-8
15-9
15-9
15-10

16-1
16-1
16-3
16-3
16-4
16-4
16-5
16-5
16-6
16-6
16-7
16-8
16-9
16-9
16-10
16-10
16-10
16-11

Table of Contents

Chapter 17 Procedures and Functions

Procedure Declarations 17-1
Function Declarations 17-2
Procedure and Function Directives 17-3
Forward Directives 17-4
External Directives 17-4
Inline Directives 17-5
Tocol Directives 17-5
Parameters 17-5
Value Parameters 17-6
Variable Parameters 17-6
Static Parameters 17-7
UNIV Parameter Types 17-7
Parameter List Compatibility 17-8
Chapter 18 Programs and Units
Programs 18-1
Uses Clause 18-2
Units 18-3
Chapter 19 Input and Output
File I/O in Complete Pascal 19-1
Pascal Files 19-1
Standard Procedures and Functions for All Files 19-2
The Reset Procedure 19-2
The Rewrite Procedure 19-3
The Open Procedure 19-3
The Close Procedure 19-3
The Eof Function 19-3
The Seek Procedure 19-3
The Erase Procedure 19-4
The IOResult Function 19-4
The FilePos Function 19-4
The Rename Procedure 19-5
Standard Procedures for Typed-Files 19-5
The Read Procedure with Typed-Files 19-5
The Wirite Procedure with Typed-Files 19-5
Standard Procedures and Functions for Text files 19-6
The Read Procedure with Text Files 19-6
The Readin Procedure 19-7
The Wirite Procedure with Text Files 19-7
The Writeln Procedure 19-7
The Eoln Function 19-8
The Page Procedure 19-8
Disk Files and Complete Pascal 19-8
Devices and Complete Pascal 19-8

Complete Pascal Table of Confents

Chapter 20 Standard Procedures and Functions

The Graphics Procedure
The Flow of Control Procedures

The Exit Procedure

The Halt Procedure

The Cycle Procedure

The Leave Procedure
Dynamic Allocation Procedures and Functions

The New Procedure

The Dispose Procedure
Transfer Functions

The Trunc Function

The Round Function

The Ord4 Function

The Pointer Function
Arithmetic Procedures and Functions

The Inc Procedure

The Dec Procedure

The Abs Function

The Sgrt Function

The Odd Function

The Sin Function

The Cos Function

The Exp Function

The Ln Function

The Arctan Function
Ordinal Functions

The Ord Function

The Chr Function

The Suce Function

The Pred Function
String Procedures and Functions

The Length Function

The Pos Function

The Concat Function

The Copy Function

The Delete Procedure

The Insert Procedure
Logical Bit Procedures and Functions

The BANnd Function

The BOr Function

The BXor Function

The BNot Function

The BSL Function

The BSR Function

The BRotl Function

The BRotR Function

The HiWrd Function

The LoWrd Function
Miscellaneous Procedures and Functions

The SizeOf Function

The Card Function

The Moveleft Procedure

Complete Pascal

20-1
20-1
20-1
20-2
20-2
20-2
20-2
20-2
20-3
20-3

20-3
20-3
20-4
20-4
20-4
20-4
20-4
20-4

20-5
20-5
20-5
20-5
20-6
20-6

20-6
20-6
20-7
20-7
20-7
20-7
20-7
20-7

20-8
20-8
20-8
20-8
20-8
20-9
20-9
20-9
20-9
20-9
20-9
20-10
20-10
20-10
20-10
20-11

Table of Contents

The MoveRight Procedure y 20-11

The FillChar Procedure 20-11
The ScanEq Function 20-11
The ScanNe Function 20-12
Apple IIGS Toolbox Error Handling 20-12
The IsToolError Function 20-12
The _ToolErr Variable 20-12
Part 1V Appendices
Appendix A Error Messages
Editor Errors A-1
Compiler Errors A-2
Lexical Errors A-2
Syntax Errors A-2
Semantic Errors A-3
Unit Errors A-5
Linker Errors A-5
GS/OS Error Codes A-6
General Errors A-6
Device Call Errors A-6
File Call Errors A-7
Complete Pascal Specific Errors A-7
Appendix B Compiler Directives
Classic Desk Accessory B-1
Code Segment B-2
Definition Procedure B-2
Data Segment B-2
External Referenced Variable B-3
Long Globals B-3
New Desk Accessory B-4
Stack Size B-4
Unit Symbol File Search Prefix B-5
Tool ErrorNum Check B-5
Appendix C Toolbox Interfaces
ACE C-1
ADB C-2
Controls C-3
Desk C-11
Dialogs) C-13
Events C-18
Fonts C-21
GSOS C-23
IntMath t C-34
Linekdit Cc-37
Lists C-40
Loader C-42
Locator C-44

Compleie Pascal Table of Contents

Memory
Menus

MIDI

MiscTools
NoteSeq
NoteSyn

Print

QDAuUxX
QuickDraw
Resources

SANE

Scheduler

Scrap

Sound
StdFile
TextEdit
TexiTool

Types

Windows

Appendix D

Inside Complete Pascal

Complete Pascal Memory Model

The Application Code
The Application Globals
The Runtime Stack

The Application Heap

Data Representation
Calling Conventions

Appendix E

Calling a Subprogram
Variable Parameters
Value Parameters
Static Parameters
Function Resulfs
Entry/Exit Code

Complete Pascal versus TML Pascal

Complete Pascal

C-46
C-49
C-53
C-55
C-63
C-65
C-67
C-70
C-73
C-86
C-1
C-96
C-96
Cc-97
C-100
C-103
C-111
C-113
C-115

D-1
D-1
D-2
D-2

D-5
D-5
D-6
D-7
D-7
D-7
D-8

E-1

Table of Contents

Complete Pascal Table of Contents

Introduction

Welcome to Complete Pascal for the Apple IIGS. Complete Pascal is the next generation of the
popular Apple IIGS Pascal programming language TML Pascal II. Complete Pascal
implements many new changes and features that make programming the Apple IIGS even
easier and faster. The most important change in Complete Pascal is that it fully supports and
is designed specifically for the Apple IIGS System Software version 5.0. In particular, Complete
Pascal provides complete support for Resource editing and programming with resources.

* Note: This version of Complete Pascal is designed for single machine users. If you intend
to use Complete Pascal on an AppleShare fileserver for a network of Apple 1IGS
machines, you will need to acquire the special network version of Complete Pascal which
fully supports the fileserver and network environment.

Complete Pascal is designed to meet the needs of the broadest range of Apple IIGS programmers
possible. The Complete Pascal language is solidly based upon the American National Standard
for the Pascal language with numerous extensions for programmers accustomed to other Pascal
implementations. Itis a structured, high-level language you can use to write programs for any
type or size application.

Complete Pascal implements separately compiled Units, Pascal strings, random disk I/0, and
standard subprograms such as MoveLeft, FillChar, etc. that are found in UCSD
implementations of Pascal such as Apple Pascal. And, of course, language features from the
popular Macintosh version of Complete Pascal such as type casting, bit operations, CYCLE and
LEAVE statements, and much more are found in Complete Pascal for the Apple IIGS.

In addition, Complete Pascal implements an extremely powerful Resource Editor which greatly

simplifies the process of creating menus, windows, dialogs, etc. for you programs (see Chapter
4).

Using Complete Pascal, you can create five different types of programs:

* Textbook applications.

* Graphics Textbook applications

* Desktop applications

* New Desk Accessories (NDAs)

* Classic Desk Accessories (CDAs)
Textbook applications are the most basic of all Pascal programs. These programs execute in the
Apple IIGS text screen and require no specific knowledge of the Apple IIGS Toolbox. See
Chapter 6 for more information about Textbook applications.
Graphics Textbook applications are a simple extension of the Textbook applications which
execute in the super hires graphics screen. Thus, Graphics Textbook applications can still

make simple use of Readln and Writeln routines for /O, but can also use QuickDraw to add
graphics to a program. See Chapter 7 for more information about these types of programs.

Complete Pascal |- Introduction

Desktop applications are programs like Complete Pascal. These programs make full use of the
Apple 1IGS Toolbox to create menus, windows, dialogs, etc. Desktop programs are much more
difficult to write than Textbook programs, but provide the added benefits of a graphics based
application. Chapter 8 discusses the details of creating desktop applications.

Finally, Complete Pascal can be used to create both New Desk Accessories (NDAs) and Classic
Desk Accessories (CDAs). NDAs and CDAs are special types of “mini-applications” which can
be run from within other applications. Chapter’s 9 and 10 respectively discuss the
fundamentals of NDAs and CDAs and teach you how to create both types of programs.

About The Manual

This manual has been designed to help you begin using Complete Pascal quickly and to also
serve as a reference manual when your programming level becomes more sophisticated. Each
chapter in the manual is individually numbered making it very easy for CTI to update your
documentation as future versions of Complete Pascal are released. The manual is divided into
four parts: 1) User’s Guide, 2) Programming, 3) Language Reference, and 4) Appendices. Each of
these four parts is described below.

The User’s Guide introduces you to Complete Pascal and will teach you how to set up your
system to use Complete Pascal and how to get the most out of using Complete Pascal. The
User’s Guide is intended to provide a general overview of Complete Pascal’s working
environment.

Programming delves into the fundamentals of Complete Pascal by teaching you how to write
each of the five different types of programs using Complete Pascal.

The Language Reference is a complete reference for the Pascal language features implemented
by Complete Pascal. Note that this section is a reference and not a tutorial on the Pascal
language. If you are not familiar with Pascal, you may need an additional text which teaches
the Pascal language.

The Appendices summarize the Complete Pascal error messages and I/O results, compiler
directives and Apple IIGS Toolbox Units. Additionally, an inside look at Complete Pascal’s
more advanced features is provided along with a comparison of Complete Pascal with the
original TML Pascal.

What You Should Know

Complete Pascal uses the same intuitive, easy-to-use interface popularized by the Apple
Macintosh and used in most Apple IIGS applications. If you are already familiar with this
interface then you can begin using Complete Pascal immediately. If not, be sure you know the
basic techniques of the Apple IIGS before you begin working with Complete Pascal:

* The fundamental mouse techniques of dragging, clicking, and double-clicking

* Pulling down menus and choosing commands

Complete Pascal [-2 Infroduction

* Working with windows
* Working with icons on a desktop

If you feel unsure about any of these items, the following texts are good references for reading
about these basic features of your Apple IIGS.

* Apple IIGS Owner’s Guide - particularly Chapter 3, “The Mouse and the Keyboard”.

* Your Tour of the Apple IIGS - the training disk that came with your Apple IIGS computer.
This disk includes hands-on experience using the mouse.

* Apple IIGS System Disk User’s Guide - this manual contains complete information about
the Finder.

If you are new to the Pascal programming language, or you would like to review your Pascal

programming skills, the following textbooks will offer you an excellent introduction and
tutorial:

* OA! Pascal!, Michael Clancy and Doug Cooper, W.W. Norton and Company, 1982.
* Programming in Pascal, Peter Grogono, Addison-Wesley, 1978.

If you are looking for technical references to the Pascal programming language you will find
the following documents extremely useful:

* Pascal User Manual and Report, Kathleen Jensen and Nicklaus Wirth, Springer-Verlag,
1985.

* American National Standard Pascal Computer Programming Language, ANSI/IEEE
770X2.97-1983, IEEE/Wiley-Interscience, 1983.

For those experienced Pascal programmers, or those aspiring to write the next great Apple IIGS
application, the following texts provide a wealth of information regarding the Apple IIGS
Toolbox:

* Exploring the Apple IIGS, Gary Little, Addison-Wesley, 1987.

* Mastering the Apple IIGS Toolbox, Morgan Davis and Dan Gookin, Compute!
Publications, Inc., 1987.

* Advanced Programming Techniques for the Apple IIGS Toolbox, Morgan Davis and Dan
Gookin, Compute! Publications, Inc., 1987.

v Note: Advanced Programming Techniques for the Apple IIGS Toolbox uses TML
Pascal in its discussion of programming the Toolbox.

* Apple IIGS Technical Reference, Michael Fischer, Osborne/McGraw-Hill, 1987.
Finally, there is the Apple Programmer’s and Developer’s Association (APDA). APDA is an
Apple Computer membership organization that distributes technical information to

programmers and developers. APDA is a great source for Technical Notes, programming
utilities, reference books, and information about announced (but unreleased) products.

Complete Pascal [-3 Intfroduction

You will want to obtain technical informatién about System Software version 5.0.x as it becomes
available from APDA. For information about membership and products, contact APDA
directly:

Apple Programmer’s and Developer’s Association (APDA)
Apple Computer, Inc.

20525 Mariani Avenue, MS: 33G

Cupertino, CA 95014-6299

800-282-2732

What You Need
To use Complete Pascal, you will need the following items:
¢ An Apple IIGS with at least 1024K of Random Access Memory (RAM)
* A color or monochrome monitor
¢ At least one 800K 3.5” disk drive
* One blank disk for backing up your Complete Pascal Master Disk
* Blank disks for storing the programs you create
The following items are optional for use with Complete Pascal:
* A second 3.5” disk drive or a hard disk drive
* A printer

v Important: The Complete Pascal Master Disk includes the most recent version of the
Finder and GS/OS (version 5.0 and later). If you are currently using a version of GS/OS
earlier than version 5.0 and would like to learn more about the capabilities of GS/0S
version 5.0, you can order an updated version of the Apple IIGS System Disk User’s
Guide from your Authorized Apple Dealer.

Register Your Product
Take a minute now to complete and return the Complete Pascal Registration Card to Complete
Technology. If you did not receive a registration card with your product, contact Complete

Technology’s Customer Service Department immediately.

As a registered user of Complete Pascal, you will be notified of enhancements to this product -
and be afforded discounts on other Complete Technology products.

Complete Pascal I-4 Intfroduction

Contacting Complete Technology

If you have questions concerning your product, a change of address, or any other non-technical
question, feel free to call Complete Technology’s Customer Service Department. Customer
Service is available Monday through Friday between the hours of 9:00 am and 6:00 pm
Mountain Time at 303/758-0920.

If you have technical questions concerning Complete Pascal, or any of Complete Technology’s
other Apple IIGS products, feel free to call specifically between the hours of 2:00 P.M. and 5:00
P.M. Mountain Time, Monday through Friday, at 303/758-0920.

If your prefer to write Complete Technology a letter, please address your letter to the following
address:

Complete Technology, Inc.
2443 8. Colorado Blvd. Suite 221
Denver, Colorado 80222

ES . e
————

Acknowledgements

All Complete Technology products are trademarks or registered trademarks of Complete
Technology, Inc. Other brand and product names are trademarks or registered trademarks of
their respective holders.

COMPLETE Pascal Software & Documentation
Copyright © 1990-1991 by Complete Technology, Inec.
Portions © 1989-1990 by TML Systems, Inc.

Published by Complete Technology, Inc.
2443 8. Colorado Blvd. Suite 221
Denver, CO 80222

(303) 758-0920

Complete Pascal

Project Manager: Vince M. Cooper

Program Authors: Thomas Leonard
Vince M. Cooper
Jason Coleman

Manual Authors: Robert Leonard
Thomas Leonard

Vince M. Cooper

Manual Copy Editors: Veronica Sumner
Sharon Rains

Special thanks to Lance Taylor-Warren and the staff of L&L Productions for their assistance
in the production of this software manual.

Complete Pascal -5 Introduction

tominiead-aoun tadin RER o S2rerhie 3
-ﬂa--.w? 40 iﬂmmmaﬂ amwrw tmzwa ?‘vkcmm{ﬁm
45 q; (ﬁ’ 'i} ’h‘a ’.!{ =y

"Eﬂ

=2

3

iy

g vah

Svestnndaed s¥alqaelr Yo wae 1 dnersd el 0 ;:*v

ENES bt
BiE hing éﬁ i § nﬂ**"m sqpres pdd %v«wis&d wilasivgyr B

W‘ﬁ%ﬁ\i&’}" i erhind 5:1;;

&

grgmolldl adi ot v i wpat sesTiba seaslg et

: : Lo RETRBENS

camundasl S50 el
sy an

m'-sg‘ i o

atalqareld v e}ﬂgﬁéﬁm* :v.ﬂaseeg:;m o pdvemebnnl san 41 saheny
o aﬁs:—zm% -;twodﬁgm g0 mulvma i ELE R L m:fi';w x Bove fred

hypggree] 2emes

@i e
anidd
otk
ot #
S 7
. i oan) B % e
SRR frzaa Tind? vl gentiaberd LIF 4 ALl e

16 " Introduction

Chapter 1
Getting Started

This chapter shows you how to make a backup copy of your Complete Pascal Master Disk and
how to operate Complete Pascal from either a floppy disk drive or hard disk drive
configuration. Also presented is a discussion of compilers versus interpreters and a list of
Complete Pascal’s most outstanding new features.

Backing Up the Complete Pascal Master Disk

The first time you use your Complete Pascal package, you will want to make a working copy of
your original Complete Pascal Master Disk. Programming a computer naturally lends itself to
causing problems if not disasters if programs you write get out of control. Therefore, it is
imperative that you use a working copy of the software and store the Master Disk as permanent
backup. This process involves only two simple steps:

* Initializing a blank 3.5 floppy disk

* Using the Apple IIGS Finder to create a working copy of your Complete Pascal Master
Disk. Therefore allowing you to store your Master Disk as a permanent backup.

* Note: If you are not familiar with these procedures, see your copy of the Apple IIGS
System Disk User’s Guide for a discussion of these topics.

Setting Up Your System

The following three sections describe how you might set up a working environment for using
Complete Pascal with either a single 3.5” disk drive system, a dual 3.5” disk drive system, or a
hard disk system configuration.

User's Guide 1-1 Getiing Started

Single Disk Drive System

If you are using a single 3.5” disk drive system, you will find that Complete Pascal can be used
exactly as it is shipped on the distribution disk without having to sacrifice any functionality or
performance.

The only restriction imposed by a single disk drive system is the size of the programs you
develop will be restricted to the available disk space to store them. On your working copy of
Complete Pasecal, feel free to delete the various folders containing example programs to make
room for your new programs. Of course, you do have backups of these folders on your Complete
Pascal Master Disk when you decide you need them.

The Examples folder contains those files used in the User’s Guide portion of this manual which
you should keep on your disk if you intend to follow the Guide’s discussions.

Two Disk Drive System

If you have a second disk drive, then you can take advantage of this extra storage capacity for
developing larger programs. You may find it easier to keep all of the example programs, as
well as any new programs you create, on a separate disk and access them from your second
disk drive.

+ Note: The Toollnterfaces folder should be kept on your working disk in order that all
programs compiled using Complete Pascal may share the files contained therein.

Hard Disk Drive System

While a hard disk is not required to use Complete Pascal, you will enjoy the luxury of faster
disk access and an extensive amount of disk storage space available for creating large
programs.

To use any GS/OS formatted hard disk drive with Complete Pascal, simply copy the entire
contents of the Complete Pascal working disk onto your hard disk, with the exception of the
SYSTEM folder (you obviously already have the entire GS/OS operating system installed on
your hard disk if it is up and running).

v Important: Complete Pascal is specifically designed for System Software version 5.0.x,
or greater, and GS/OS. Complete Pascal, and programs created with Complete Pascal,
cannot run on any version of ProDOS/16 or versions of GS/OS earlier than version 5.0.x.
If your hard disk is formatted with any earlier operating system contact your local Apple
Authorized Dealer for an immediate upgrade to the most recent GS/OS operating system.

A Note On RAM Disks
Traditionally, Apple II users have found using RAM disks advantageous, and have done so
without stealing available memory from an application, due to the Apple II's restriction of

permitting only 128K of memory or less to a single application.

However, Complete Pascal and the Apple IIGS operate much differently than the earlier Apple I

User's Guide 1-2 Getting Storted

computers. Complete Pascal is a memory resident application. Thus, there is no advantage to
storing Complete Pascal on a RAM disk. Further, Complete Pascal maintains, in memory, an
entire copy of the file(s) it is editing (including library files, compiled code, etc.) and uses the
Apple IIGS Memory Manager to track available memory. Thus, any RAM space you might
allocate for a RAM disk would only decrease the amount of memory Complete Pascal has
available to it for editing and compiling.

Compiled versus Interpreted Languages

Complete Pascal is a compiled language. 1In this regard, as well as others, it differs from
interpreted languages such as Apple Computer’s AppleSoft BASIC.

A programming language is characterized by its collection of statements, expressions and other
components generally known as the syntax, or structure, of the language. While programs
written in a computer language are generally understandable to the human reader, they are
totally incomprehensible to the computer. Or, in the case of the Apple IIGS, the 65816
microprocessor.

Before a statement written in a computer language can be executed by the computer, it must first
be translated into code understood by the computer - machine language. Machine language
consists of long lists of binary numbers (0’s and 1’s) that are understood by the computer as a
series of off and on states representing operations the computer is capable of performing. Of
course, a long string of 0’s and 1’s is not easily understood or readily comprehended by
humans.

A major part of any computer language is its means of translating programs into machine
language. In an interpreted language, the translation is done while the program is being
executed. This procedure is sometimes denoted as “on the fly”. If a statement in the program is
executed 100 times, the translation is also performed 100 times by the interpreter. Generally
speaking, interpreted languages run slower than compiled languages because of the need for
translation to occur during the running of the program.

On the other hand, a compiled language translates a program into machine language prior to
actually running the program. Thus, each line in the program is translated only once - during
the compilation process. In addition, the compilation process discloses all of the syntax errors
before the program is executed. Of course, the compiler cannot find errors in the program’s
logic such as infinite loops.

Generally speaking, compiled programs run significantly faster than interpreted programs.
In addition, compiled programs can run independently of any language processor. That is,
compiled Complete Pascal programs can run by themselves under GS/OS without Complete
Pascal being available. In contrast, an AppleSoft BASIC program can never be run without
having AppleSoft BASIC available to run the program (AppleSoft BASIC programs have to be
interpreted every time they are run, and only the AppleSoft BASIC language processor can
interpret the code).

Where Now?

User's Guide 1-3 Getting Started

That’s a good question! At this point you have several options available to you. If you are:

New to programming

Familiar with another Apple IIGS
programming language

Familiar with TML Pascal

User's Guide

Read the entire User’s Guide portion of this manual.
Afterwards, study Chapter’s 6 through 10 to learn about the
five different types of programs you can create using
Complete Pascal.

Be certain you have a good Pascal programming textbook
available to review the fundamentals of the Pascal
programming language. In addition, use this book’s
Language Reference and Appendices as references to your
work.

A quick review of the User’s Guide will prove useful.
Specifically, Chapter’s 4, Resources and Chapter 5, Complete
Pascal Menu Reference will provide you with an overview
of the key features found in Complete Pascal.

Then, depending upon the type of programs you will be
developing, review Chapter’s 6 through 10.

Use this book’s Language Reference and Appendices as
references to your work.

Read Appendix E - Complete Pascal versus TML Pascal.
You may choose to skip the User’s Guide entirely and start

the software right away. If so, we urge you to at least review
the topic of resources introduced in Chapter 4.

1-4 Getting Started

Chapter 2

Using Complete Pascal

With your system properly set up, you are now ready to begin examining the Complete Pascal
working environment.

In this chapter you will be introduced to the Complete Pascal editor. Chapter 3 continues this
discussion by demonstrating how the Complete Pascal editor can assist you in actually
compiling and running programs.

e —— e

Running Complete Pascal

If you have not already done so, insert your working copy of Complete Pascal into the 3.5” floppy
disk drive and turn (boot) your machine on. After the Apple IIGS completes its booting process,
you will be presented with the Apple IIGS Finder’s Desktop. Figure 2-1 illustrates the desktop’s
appearance after booting your machine.

Figure 2-1
Apple llcs Desktop

* Note: Your desktop will appear as shown in Figure 2-1 only if your system
configuration consists of a single 3.5” disk drive.

Now, invoke Complete Pascal by clicking the mouse once on the Complete Pascal icon shown on
the desktop, then pulling down the Finder’s File menu, and then selecting the Open command
(double-clicking the mouse over the Complete Pascal icon accomplishes the same result as
selecting the Open command).

Opening the Complete Pascal file will automatically load Complete Pascal into your Apple I1IGS

User's Guide 2-1 Using Complete Pascal

’s internal memory. Be patient, as the Apple IIGS requires a few moments before it completes
the loading process. Figure 2-2 illustrates Complete Pascal’s Main Menu after the program has
been successfully loaded into memory.

& File Edit 6508

Figure 2-2
Complete Pascal Main Menu

Examining the Integrated Environment

Complete Pascal has been designed to take full advantage of the Apple IIGS desktop interface
using the mouse, pull-down menus, windows, etc. This user-friendly environment makes
programming easy, as it integrates Complete Pascal’s editor and compiler into the same
working environment.

You have already examined Complete Pascal’s Main Menu (Figure 2-2). The Main Menu
remains just as you see it in Figure 2-2 until you choose to begin editing either a program’s
source code file or resource file. Because a program’s source code file is the basis to every
program you create, we dedicate the remainder of this chapter’s discussion (and Chapter 3) to
discussing those features available in Complete Pascal as they pertain to source code files. In
doing so, we will reserve our discussion of editing resource files until Chapter 4.

Figure 2-3 graphically illustrates the relationship between editing Complete Pascal source code
files versus resource files and the way in which Complete Pascal’s Main Menu changes
accordingly.

User's Guide 2-2 Using Complete Pascal

l Compléte Pascal Main Menu '
(Source Code Editing Men@ (Resource Editing Menuj

Figure 2-3
Complete Pascal’s Two Main Menus

As you can see from the diagram in Figure 2-3, you will be switching between two different
versions of Complete Pascal’s Main Menu as you move from editing a source code file to a
resource file. And vice versa.

Editing Source Code Files

Editing windows are the tools Complete Pascal provides you for entering and modifying
program source code. Complete Pascal allows you to have as many program source code files
open at the same time as available memory allows. Obviously, the greater amount of RAM you
have installed in your IIGS, the more memory space you will have available to create programs
and open windows in the editing environment.

As you open additional source code files, Complete Pascal places each file in a different editing
window with each window being independent of other open windows. Keep in mind that only
one editing window can be active at a time. By active, we are referring to the topmost window
(if more than one is open) in which all commands issued by the user are performed.

Complete Pascal also implements dialog boxes as a means of communicating with the user.
Dialog boxes are used in Complete Pascal to provide the user with requested information, or to
ask the user for required information before continuing. Dialog boxes usually include
OK/Cancel buttons or Yes/No buttons. These buttons allow you to communicate with Complete
Pascal to signify when you are finished with the dialog box.

User’s Guide 2-3 Using Complete Pascal

Source Code Editing Menu

Let’s begin taking a closer look at Complete Pascal’s source code editing features by opening an
existing source code file from disk. To do so, select the Open command from the File menu.

Open File:
<):Pascal: Examples:

(3 clockNDa.p

() skeleton. p

in! Textbook.p

O l Cancel l

®source TextFile (O Resource file

Figure 2-4
Open File Dialog Box

Figure 2-4 illustrates the standard Open File Dialog Box which results from issuing this
command. Studying the figure, you will see two buttons located in the bottom of the dialog box
which allow you to indicate whether you would like to open either a source code file or resource
file. The Open File Dialog Box will always default to open a source code file unless you specify
otherwise.

Now, open the Skeleton.p source code file using the Open File Dialog Box (It’s located inside the
Examples folder on your working disk).

Immediately upon opening the Skeleton.p source code file Complete Pascal’'s Main Menu
changes. As shown in figure 2-5, Complete Pascal’s Source Code Editing Main Menu includes
seven individual menus. These seven menus are designed to logically organize the several
commands available to you in Complete Pascal. Within each menu you will find the various
Complete Pascal commands. Using the mouse, pull-down each menu to discover just how easy
it is to locate the editing commands available to you in Complete Pascal. Most commands
found in the menus may be invoked by typing its corresponding command-key equivalent at the
keyboard rather than pulling down its menu and selecting the command with the mouse.

User's Guide 2-4 Using Complete Pascal

& File Edit Sear
: O

ch Window Compile 650S

Ry il e

HelloWorld. p —
™

{ PROGRAM HelloWorld;

§ BEGIN

Graphics(640);
Writeln ("Hello World");
Readin;

END.

Figure 2-5
Source Code Editing Menu

Chapter 5 provides a concise review of every Complete Pascal menu and menu item and should
be used as an authoritative reference. However, in addition to Chapter 5, we will be discussing
some of these commands throughout the remainder of this chapter and Chapter 4.

File Naming Conventions

When you opened the Skeleton.p source code file you may have noticed a few similarities with
some of the other file names on disk. The similarities we are referring to are the naming

conventions used to distinguish between a Complete Pascal source code file, a resource file and
a stand-alone Complete Pascal application for that matter.

Although you are not required to follow the n
will make matters more clear for
Pascal. Table 2-1 describes the n
working with Complete Pascal.

aming conventions we have adopted, it certainly
you as you become more involved with using Complete
aming conventions Complete Technology has adopted for

Table 2-1

Naming Conventions

File Type Example Description

Source Code File Skeleton.p Use a “.P” suffix on all source code filenames
Resource Files Skeleton.r Use a “.R” suffix on all resource filenames
Application File Skeleton

Complete Pascal automatically applies the same
name to a stand-alone application, less the suffix,
as its origin source code filename.

You should keep in mind that Complete Pascal does not automatically assign the correct suffix

to the files you create. Therefore, you should apply the appropriate naming conventions at the
time you initially create any new files.

User's Guide 2-

o

Using Complete Pascal

Basic Editing Techniques

Now that you understand how to open source code files and apply some set of standard naming
conventions, it’s time to review some of Complete Pascal’s most basic editing techniques.

As you will see, Complete Pascal’s editing environment includes many features similar to
some of the more popular word processing products available for the Apple IIGS. This, of course,
should be of no surprise given the techniques used in writing a program’s source code are not
much different than those used when writing a typical letter. For example, as when writing a
letter, writing source code requires that you be able to:

¢ cut, copy, paste and undo ranges of text

» search and replace ranges of text

* apply proper indentation (tabs)

* select a specific font and size to your liking
* scroll through an entire file

¢ print to an ImageWriter or LaserWriter

On the other hand, Complete Pascal’s editing environment offers plenty of commands specific
to writing and compiling a program’s source code. Some examples include:

* checking a source code file’s syntax

* running a program

* creating a stand-alone Apple IIGS application

+ invoking GS/OS commands (ie. changing a file’s name) from within Complete Pascal
* reporting program error messages

Using the source code file Skeleton.p already open in the Complete Pascal editing environment,
you should familiarize yourself with those common Apple IIGS editing features as described
above. For example, try using the Complete Pascal editing environment to: copy a range of text
and paste the selected text somewhere else in the program; change the font and font size of the
entire window; revert all changes you make to the file; and more. Remember, Chapter 5 offers
a complete overview of every menu item found in Complete Pascal’s editing environment.

After spending a few minutes studying some of the common editing commands on the
Skeleton.p program, you will begin to realize just how easy it is to write and edit programs
using Complete Pascal’s editing environment.

Familiarizing yourself with the common editing commands should be fairly straightforward.
Now, if you are ready to learn more about how Complete Pascal’s editing environment is
ideally suited to assist you with specific editing tasks related to compiling and running
programs, let’s move on to Chapter 3. On the other hand, if you would like to take a break,
simply revert all changes made to the Skeleton.p source code and exit Complete Pascal by
issuing the Quit command from the File menu.

User's Guide 2-6 Using Complete Pascal

Chapier 3

Creating Programs

In this chapter, the three different compiling options available in Complete Pascal are discussed
in order to demonstrate how to create applications and desk accessories with Complete Pascal.

_-____"_'_ﬁ———__*____i

Compiling Alternatives

Complete Pascal offers the programmer three options for compiling programs: To Memory, To
Disk and Check Syntax. The compile commands are found in the Compile menu. You can see
each of the commands by pressing and holding the mouse button down over the Compile menu.

The To Memory compile option is likely to be the one you use most often. This command
invokes Complete Pascal to compile the source code in the active editing window (the topmost
window), and then, upon successful completion, executes the program directly within the Apple
IIGS's internal memory.

The To Disk command is similar to the To Memory command except that Complete Pascal does
not immediately execute the compiled program, but rather creates a stand-alone GS/0S
application file on disk. You will use this command when you have a complete running
program free of errors and you wish to execute the program directly from the Finder.

Finally, the Check Syntax command allows you to quickly verify the syntax of a Complete
Pascal program. This option does not run the selected program nor does it create a disk file.
This is the fastest compile option available in Complete Pascal.

When a compile option is invoked by selecting any of the three compile commands, Complete
Pascal displays the Compile Progress Dialog Box. This dialog is used to display the compiler's
progress during compilation. When the Compile Progress Dialog Box's indicator bar reaches
the right side of the display, the compile process has been completed.

User's Guide 31 Creating Programs

Testing a Program’s Source Code

As already mentioned, the Check Syntax command is the fastest of the three compilation
techniques since it does not cause any code to be generated. Instead, this command instructs
Complete Pascal to verify that the program in the topmost window was written using valid
Pascal key words, statements and functions. It cannot, however, check a program for correct
logic. For example, an infinite loop in a program's source code will go undetected by the Check
Syntax command.

To study this command, open the Skeleton.p example program provided with Complete Pascal.
Pull-down the Compile menu and select the Check Syntax command. The Compile Progress
Dialog Box is immediately displayed indicating the compiler's progress as it checks the syntax
of the source code.

When the indicator bar inside the Compile Progress Dialog Box reaches the right side of the
display, compilation is complete. As you will see, Complete Pascal takes only a brief moment to
compile the Skeleton.p program. The reason for this, of course, is that Complete Pascal is a fast
compiler. In addition, the program is quite small and the Check Syntax command is the fastest
of Complete Pascal's three compile options.

A result of no errors does not necessarily mean a program is completely free of all possible
errors. However, using the Check Syntax command will ensure the program does not contain
any syntax errors.

It is important you use the Check Syntax command when you are uncertain whether your
program will run correctly. Since this command does not run the program after compiling it,
you can avoid situations where your program contains logic errors which might cause the
computer to crash.

If an error is detected in the source code of a program, Complete Pascal will stop the compilation
process, return to the Complete Pascal editor, highlight the exact location of the discovered error
and then display a descriptive error message. Errors are discussed later in this chapter in the
section "Detecting Program Errors".

Running a Program

Once you have determined your program does not contain any syntax errors by issuing the
Check Syntax command, the program can then be run. To do this, select the To Memory
command from the Compile menu. Upon selecting this command, Complete Pascal again
displays the Compile Progress Dialog Box. This time the compiler generates code for the
program. If the program does not contain syntax errors the compiled program is immediately
run.

To run a compiled program, the Complete Pascal environment temporarily shuts down by
hiding its menus, windows, etc. and then transfers control to the compiled program. The
compiled program is now in complete control of the computer as it executes. When the program
has completed execution, the Complete Pascal environment restores its menus and windows
allowing you to continue programming.

Because it is possible the compiled program may contain logic errors causing the machine to

User’s Guide 3-2 Creating Programs

crash, Complete Pascal provides a safety feature called Auto Save. If this option is turned on,
Complete Pascal automatically saves any changes you have made to the program's source code
prior to compiling. This feature ensures you will not lose your source code changes in the event
of a catastrophic error during your program's execution. The Auto Save option is discussed in
more detail in Chapter 5 under the "Preferences..." section.

To compile the Textbook.p program, first, be certain the program is in the frontmost window.
The Textbook.p program uses the text screen to read 10 numbers into a binary tree then traverse
the tree, printing it out. The program then waits for the Return key to be pressed. After the
Return key is pressed, program execution terminates and control is returned to the Complete
Pascal environment with the windows restored exactly as you left them.

—

Creating a Stand-alone Application

As seen above, the compile to memory feature of Complete Pascal is extremely fast and
interactive. However, one small problem exists — you must launch Complete Pascal every time
you want to run a Complete Pascal program. Thus, the third compilation technique available in
Complete Pascal — To Disk. This compile option allows you to create stand-alone GS/OS
application that can be run from the Apple IIGS Finder by double-clicking on its icon just as you
did the Complete Pascal icon to invoke Complete Pascal. You can even copy the compiled
application to another disk and run it from there because Complete Pascal is no longer required
after the program is compiled to disk.

Let's compile the Textbook.p program to disk. Again, open the Textbook.p source code in the
topmost window (remember the compile commands only work on the active window). Select the
To Disk command from the Compile menu to compile the Textbook.p program and create a
stand-alone application on disk. You will notice the compilation process takes significantly
longer to complete this time.

The reason for this additional amount of time results from the compiled program being written
to disk. The name of the resulting application file on disk is Textbook, and it is located in the
same folder as the Textbook.p source code file.

* Important: The name of a compiled application file is the name of the source code text
file with the “.p” suffix removed.

Compiling Units

In addition to compiling programs, Complete Pascal can compile Pascal Units. A unit cannot
be compiled to create a stand-alone application, but rather serves as a container for code. Units
are used to split a large program up into smaller more manageable pieces that can be used by
programs and other units. A unit can contain constant, type, variable, procedure and function
declarations.

Because a unit is not capable of being executed, the Complete Pascal compiler acts differently
when selecting the various compiler commands in the Compile menu. As mentioned above,
when a unit is compiled, it does not create an application that can be run. However, Complete
Pascal does save the unit’s compiled code so that other programs can use it. Thus, when

User's Guide 3-3 Creating Programs

selecting the To Memory command, Complete Pascal compiles the unit but then returns control
to the editor instead of transferring control to the compiled code as it would do for a program.
Note that Complete Pascal does save the compiled code in memory so that it can later be used by
a program.

Units can also be compiled using the To Disk command. When a unit is compiled to disk, it
does not create a GS/OS application, but rather, a Complete Pascal “.p.o” file. The “.p.o” file
contains the library's compiled source code and symbol table. When another program or unit
needs to use a unit that has not been compiled to memory using the To Memory command,
Complete Pascal searches for the compiled code on disk in a “.p.o” file.

v Important: The name of a compiled unit file is the name of the source code text file with
the “.0” suffix added. Thus, the name of a compiled unit ends with the suffix “.p.o".

The Check Syntax command behaves exactly the same for both programs and units. That is,
Complete Pascal only verifies that the unit’s source code contains legal Pascal statements.

Detecting Errors

So far in this chapter we have discussed how to compile programs using Complete Pascal.
However, our discussion has been limited to programs known to be correct. That is, they do not
contain any errors. In this section, we will discover how Complete Pascal deals with errors.

First, let's consider the components of the Complete Pascal environment. Complete Pascal is
an integrated development tool made up of three separate pieces — the editor, the compiler and
the linker. These different pieces work so closely together the user really only perceives them
as one in the same. However, knowing how these pieces work together will help you understand
the error messages Complete Pascal reports to you.

The editor, of course, is where you spend most of your time. It is responsible for editing
windows and most of the commands available in each Complete Pascal menu. The compiler is
invoked whenever you select any of the three compile commands. The compiler is responsible
for checking if syntax errors exist in your program and then generating code for the program.
Finally, the linker component of Complete Pascal is only invoked when you have chosen to
compile a program to memory or to disk. The linker is responsible for combining the compiled
code with other pieces of code your program needs (i.e. units). It is also responsible for
allocating the internal memory a program requires in order to run within the Apple I1IGS’s
memory, and for writing a compiled program to disk.

The editor only reports errors related to the editing environment. For example, it will report an
error when you ask it to save a file to a disk which is write protected or to open a file and not
enough memory is available to read the file. The compiler only reports errors related to illegal
Pascal source code. If you misspell a reserved word or forget to put a comma where one was
expected, the compiler reports an error. Finally, the linker reports errors when an attempt to
create a final program fails. This might happen if you compile a program to disk and the disk
is locked or there is not enough room to fit the compiled program on disk.

When any component of the Complete Pascal environment detects an error it first takes
whatever actions necessary to recover without causing any loss of data and then displays the
Error Dialog Box with a descriptive error message. In addition to the error message, an icon on
the left side of the dialog box is also displayed. This icon is used to indicate which component

User’'s Guide 3-4 Creating Programs

of Complete Pascal detected the error. The icon can usually help you better understand the error
message. In addition, if the error is related to a particular part of your program's source code,
the editor displays that portion of source code in the editing window and highlights the exact
location of the error. Highlighting usually occurs for detected compiler errors.

Editor errors are displayed with an upside down yield sign icon, compiler errors are displayed
with a green bug icon and the linker reports errors with a chain link icon. In addition to the
icon and error message, Complete Pascal will display an error code. If an error code is
displayed, it is the error code returned by the Apple IIGS Toolbox or GS/OS that caused Complete
Pascal to process the error. Sometimes this error code can help you better understand the
circumstance of the error.,

Appendix A provides a complete list of the errors detected by Complete Pasecal.

User's Guide 3-5 Creating Programs

User's Guide 3-6 Creating Programs

Chapter 4

Resources

Perhaps the most exciting addition to the Apple IIGS System Software v5.0 is the Resource
Manager. The Resource Manager is a special tool that manipulates resources stored in the
resource fork of GS/OS files. Recall that a file stored under the GS/OS operating system can
have two forks — the data fork and the resource fork. A file still has only one file name, but
each fork can be opened and accessed separately from the other.

GS/0S file
Resource Data
fork fork

The data fork is typically manipulated using GS/OS operating system calls to open, read, write
and close the file. The file is simply treated as a collection of bytes on a disk or some other
storage device. The organization of data in the data fork is not well defined and is typically
very different for each file type. See the GS/0S Reference for complete documentation
regarding the routines provided by GS/OS to manipulate a data fork.

The resource fork on the other hand, is manipulated using the Resource Manager. The
Resource Manager defines the precise structure for the resource fork and provides several
routines for accessing and manipulating the information stored in the resource fork. Complete
Pascal implements a Resource Editor for graphically creating and editing resources, and is the
subject of this chapter. For a complete discussion of the Resource Manager and the format of the
resource fork maintained by the Resource Manager see the Apple IIGS Toolbox Reference
Update.

—_
———————

Resources

A resource is a formatted collection of data, organized in a certain way, which represents a
menu or menu bar, a window, alert strings, or any other number of system defined or user
defined types of data. The exact structure for each type of resource is not defined by the
Resource Manager. The Resource Manager only defines how the resources are stored on the
disk, not its contents.

A program identifies a resource by its resource type and its resource ID. The resource type
defines a class or group of resources that share a common format. The resource ID uniquely
identifies a specific instance of a resource of a given resource type. Together, the resource type
and resource ID completely identify the resource and its format. Note that a resource ID is only

User’'s Guide 4-1 Resources

unique among a resource type. Two resources of different resource types can have the same
resource ID.

The resource type is a two byte integer number. The following table shows the ranges of
resource types.

Table 4-1
Apple Defined Resource Types

Range Resource Type

$0000 Invalid resource type number (do not use)
$0001 through $7FFF Available for application use
$8000 through $FFFF Reserved for system use

Among the resource types reserved for system use, Apple Computer has predefined several
resource types. These predefined resource types are used to store the representations of Apple
I1GS Toolbox elements. For example, a resource can be used to define the structure and contents
of a menu or a window. These predefined resource types are shown in the Table 4-2.

Table 4-2
Apple Defined Resource Types

Conplete Resource Type Name Resource Type Number (Hex)
rlcon $8001
rPicture $8002

Yes rControlList $8003

Yes rControlTemplate $8004

Yes rPString $8006
rStringList $8007

Yes rMenuBar $8008

Yes rMenu $8009

Yes rMenultem $800A
rTextForLETextBox2 $800B
rCtlDefProc $800C

Yes rWindParaml $800E
rWindParam?2 $800F
rWindColor $8010

Yes rTextBlock $8011
rStyleBlock $8012

Yes rToolStartup $8013
rResName $8014

Yes rAlertString $8015

Yes rText $8016
rCodeResource $8017
rCDEVCode $8018
rCDEVFlags $8019
rTwoRects $801A
rListRefl $801C

Yes rCString $801D

Yes rErrorString $8020

User's Guide 4-2 Resources

The resource type name in the table above is given for descriptive purposes. In addition, the
Apple IIGS Toolbox interface unit Resources.p uses these same names as constants whose
values are those shown in the table. The Complete column indicates if the Resource Editor
supports editing of the given resource.

As mentioned above, every resource has a resource type and resource ID. A resource ID is a
four byte long integer number. The following table shows the ranges of resource IDs.

Table 4-3
Resource ID Ranges

Range Resource Type

$00000000 Invalid resource ID number (do not use)
$00000001 through $07FEFFFF Available for application use

$08000000 through $07FFFFFF Reserved for system use

$08000000 through $FFFFFFFF Invalid values (do not use)

When creating new resources, a unique resource ID must be obtained for the resource type to
which the resource belongs. The Resource Manager provides the routine UniqueResourcelD for
this purpose. The resource IDs are very important to remember, because they are required as
parameters to several Toolbox routines which load and create menus, windows, etc.

% — — ——————
Resource Editing

As mentioned above, Complete Pascal implements a Resource Editor. The Resource Editor is
used to graphically create and edit several of the Apple predefined resource types. Using the
Resource Editor you can create menus, windows, alerts, strings and much more by simply
clicking the mouse. The resources you create can then be incorporated into a program in order
to quickly and easily create sophisticated desktop applications.

Resource Document Window

When Complete Pascal opens a resource file, it displays a window like the one shown in Figure
4-1,

User's Guide 4-3 Resources

Resource Types: Window Resources:
$8006 Pascal String [} | 1001 it
$8008 Menu bar 1002
$8009 Menu
$800R
$800E Window *: ..
$8013 Tool Startup
$8015 Alert String | —]

.S 5
INew Resource Type l @w Resource}

Figure 4-1
Resource Document Window

The window contains two scrollable lists. The list on the left side of the window displays every
resource type for which a resource exists in the resource file. The display gives the resource
type number and optionally a resource type name. Only resources for which the Resource
Editor supports are shown with resource type names. This makes it easy to distinguish which
resources can be edited and which cannot.

The list on the right side of the window displays each resource that exists for the selected
resource type in the left list. The list displays the resource’s ID number. In the figure above, the
Window resource type is selected and the file contains two Window resources (1001 and 1002).
To edit a particular resource, simply double click the mouse on its resource ID.

In addition to the two lists, the Resource document window contains a pop-up menu and a button.
The New Resource button is used to create new resources of the currently selected resource type.
For example, in the window shown above, if the New Resource button is clicked, the Resource
Editor will create a new Window resource with a unique resource ID.

The pop-up menu is used to create a new resource when the resource type does not yet exist in the
file. For example, in the window shown above, there is no C String resource, so to create a C
string resource, click the mouse in the pop-up menu and select the resource name C String.

Resource Attributes

Every resource has a set of attributes that define how the resource can be used. The attributes
are stored by the Resource Manager for each resource in the attribute flag word. In addition, the
Resource Manager provides two routines, GetResourceAttr and SetResourceAttr, to read and
write a resource’s attributes.

The Resource Editor provides an “Attr...” button in every resource editing window. Clicking
this button displays the Resource Attributes dialog box with the current settings of that resource’s
attributes. Clicking the OK button in this dialog will update the resource’s attributes to the new
settings. Figure 4-2 shows the Resource Attributes dialog.

User's Guide 4-4 Resources

cesource Attributes
[locked

[Fixed

[1 Resource Converter

[J write Protected

[Preload

[0 Doenotcrossbankin memory
U] Donot use specialmemory
[0 Page filigned

©® PurgeLevel0 QPurge Level 2
O Purge Level1l QPurge Level 3

Figure 4-2
Resource Attributes Dialog

The meaning of each of the resource attributes is discussed in the following table.

Locked

Fixed

Resource converter

Write protevcted

Preload

Do not cross bank
in memory

Do not use special
memory

Page aligned

Purge Level

User’'s Guide

If this attribute is set then the Resource Manager will call NewHandle to
create a locked handle when allocating memory for the resource.

If this attribute is set then the Resource Manager will call NewHandle to
create a fixed handle when allocating memory for the resource.

This attribute indicates whether the representation of the resource as stored
in the resource fork of a file must be converted to a different representation
when read into memory. If the attribute is set, the resource must be
converted.

If this attribute is set, the resource is write protected. This means that an
application cannot update the contents of the resource in the resource fork of
a file.

If this attribute is set, the Resource Manager will automatically load the
resource into memory with its resource file is opened. If a resource is not
set to preload then it must be explicitly loaded to memory with the Resource
Manager routine LoadResource.

If this attribute is set then the Resource Manager will call NewHandle to

create a handle which does not cross a bank of memory when allocating
storage for the resource.

If this attribute is set then the Resource Manager will call NewHandle to
create a handle which does not occupy special memory when allocating
memory for the resource.

If this attribute is set then the Resource Manager will call NewHandle to
create a page aligned handle when allocating memory for the resource.

The Resource Manager passes the purge level setting to NewHandle when

4-5 Resources

allocating memory for the resource.

* Note: The default setting for all resource attributes is NOT set and each has a default
purge level of zero (0).

Pascal String Resource

The Pascal string string (rPString) stores a string of up to 255 ASCII characters. The string
begins with an integer byte which is a count indicating the number of characters that follows in
the resource. Pascal string resources are widely used by other resource types. For example, the
resource types rMenultem, rMenu, rWindParaml and several of the rControlTemplate
variations reference a rPString resource to store their titles.

Figure 4-3 illustrates the Resource Editor window used to display and edit a rPString resource.

Pascal $tring Resource (251)

m I Cancel

fittrs...

Figure 4-3
Pascal String Resource

C String Resource

The C string (rCString) stores a string of characters which are terminated by a zero byte.
There is no restriction on the number of characters in the string resource. rCString resources
are not used often in Complete Pascal programs because Pascal provides no natural
mechanism to use these types of strings. However, the Resource Editor does support this

resource type as shown in Figure 4-4.

C String Resource (1)

] Cancel

sample G- 5tring

Attrs. ..

Figure 4-4
C String Resource

User's Guide 4-6 Resources

Alert String Resource

The Alert string (rAlertString) stores a string of characters which are terminated by a zero
byte. The string is used with the AlertWindow function from the Window Manager toolset to
display simple alert windows. The alert string resource stores the message to appear in an
AlertWindow along with special codes which define the size of the window, whether or not an
icon appears in the alert and the buttons.

For complete documentation of the format and structure of the alert string see the Window
Manager chapter of the Apple IIGS Toolbox Reference Update. Figure 6-5 shows the window
used by the Resource Editor for editing an alert string resource.

Alert String Resource (1) [0K]

A Pascal Example fAipplication:"#0]

Figure 4-5
Alert String Resource

ToolStartUp Resource

The rToolStartup is used by an application to specify the Apple IIGS Toolbox toolsets which are
required by the application and whether the application uses the 320 or 640 mode super hires

graphics screen. Figure 4-6 illustrates the Resource Editor dialog for editing a rToolStartUp
resource.

User's Guide 4-7 Resources

Tool Startup Resource (1)

O 320 Mode [0 Quickdraw fAuxiliary

® 640 Mode [0 Print Manager
[Misc Tools [LineEdit

] Quickdraw [1 Dialog Manager

[ODesk Manager [] Scrap Manager
[JEvent Manager [] Standard File

[Scheduler [Note Synthesizer
[JSound Manager [] Note Sequencer
Oapple Desktop Bus[] Font Manager

[J SANE [List Manager
dinteger Math [0 Ace
[JText Tools [0 Resource Manager

[0 Window Manager [MIDI Tools
[OMenu Manager [] TextEdit Manager

[JControl Manager

Figure 4-6
ToolStartUp Resource

The rToolStartup resource is used with the new StartUpTools function and the ShutDownTools
procedure provided in the Tool Locator toolset. These two routines used together with a
rToolStartUp completely implement the work necessary to begin using the Apple IIGS Toolbox.
These operations include:

1) Start the Resource Manager,

2) Open an application’s resource fork,

3) Allocate the appropriate amount of direct page memory for the toolsets it uses,
4) Then start every toolset used by the application.

Menu Bar Resource

The Menu Bar (rMenuBar) resource is an ordered collection of Menu resources which define a
menu bar. The resource is used by the NewMenuBar2 procedure in the Menu Manager toolset to
create an application’s menu bar. Figure 4-7 illustrates the Resource Editor window used to edit
a rMenuBar resource.

User's Guide 4-8 Resources

Menu bar Resource (1)
I [TFile Edit Shapes l

&sert Me@ [nelete MenuJ

Figure 4-7
Menu Bar Resource

The long rectangle at the top of the dialog represents the menu bar currently defined by the
resource. The scrollable list in the bottom left corner of the dialog is a complete list of every
menu resource in the open resource file. The buttons Insert Menu and Delete Menu are used to
add menus and delete menus from the menu bar. To add a new menu to the menu bar, first
select the menu in the menu bar where the newly added menu should be placed after. Then,
select the menu to add from the list of available menus, and finally click the Insert Menu
button. To delete a menu from the menu bar, select the menu in the menu bar to delete then
click in the Delete Menu button.

Menu Resource

The Menu (rMenu) resource is an ordered collection of Menultem resources which define a
menu. Menu resources are typically referenced by Menu Bar resources, but can also be used
directly by the Menu Manager toolset routine NewMenu2.

The Menu resource is one of two super resources that the Resource Editor supports (the other is
the Window resource). A Menu resource as defined by Apple Computer simply stores references
to other resources. In particular, a Pascal string resource for the menu’s title and then an
ordered list of references to Menu Item (rMenultem) resources. Each Menu Item resource then
in turn references another Pascal string resource for its title. As you can see a small menu
with only six menu items actually consists of 14 different resources. One for the Menu
Resource, one for the menu title’s Pascal string resource, and six Menu Item resources which
reference six Pascal string resources for their titles. Clearly, creating the several menus that a
typical application requires would be a very tedious task if each resource had to be individually
created and referenced. Therefore, the Resource Editor groups all of these resource editing
tasks into a single dialog to make creating and editing Menu resources easy. The Resource
Editor provides no direct means of editing a Menu Item resource. Figure 4-8 illustrates the
Menu resource editing dialog.

User's Guide 4-9 Rescurces

Menu Resource (1)

Undo il m:] Insertitem
[m El} ?:';: Delete ltem
.ff.ﬁfe O Unade(:'line Item 1D: [251]
Chear g (S)l‘::::fu Key equiv: l_}{__l E
ekt b B B
5 [0 pisabled

Figure 4-8
Menu Resource

The edit item at the top left of the dialog is the menu’s title. The scrollable list in the left side of
the dialog is the current list of menu items contained in the menu. To edit a particular menu
item, simply click on its name in the list. When a menu item is selected, its name and
settings are displayed in the several items in the right side of the dialog.

The Resource Editor allows you to specify any of the five type styles for drawing the menu
item’s title and whether the menu item has a divider line and/or is disabled. In addition, you
can specify a command-key equivalent for the menu item and a mark character. The item ID
is the value returned by TaskMaster or MenuSelect in an application when the user selects a
menu item. The Resource Editor also uses this number as the resource ID for the Menu Item
resource and its title’s Pascal string resource.

|

Window Resource

The Window (rWindParam1) resource stores the necessary information to create a window on
the Apple 11GS desktop using the NewWindow?2 function in the Window Manager toolset. The
Window resource-defines the window’s location, zoom size, title, frame definition and other
attributes. In addition, the resource can reference a list content controls. Content controls can
be buttons, check boxes, radio buttons, edit text, scroll bars, pop up menus, etc which appear in
the content of a window.

The Window resource is the second of the two super resources the Resource Editor supports (the
other is the Menu resource). Like the Menu resource, the Window resource can reference many
other resources. A window can reference a Pascal string resource for its title, and if the
window has content controls, it references a Control List (rControlList) resource. A Control List
resource then references several Control Template (rControlTemplate) resources for each
button, check box, radio button, edit text item, scroll bar, pop up meénu, etc that appears in the
content of the window. And further each Control Template may optionally reference a Pascal
string resource for its title. Clearly, creating a Window resource would be a very tedious task
if each of these items had to be created individually then referenced appropriately. Therefore,

User's Guide 4-10 Resources

the Resource Editor groups all of these resource editing tasks into a single dialog to make
creating and editing Window resources easy. The Resource Editor provides no direct means of
editing a Control List or Control Template resource. Figure 4-9 illustrates the main Window

resource editing dialog.

® 640 Mode

e ——— -—

Figure 4-9
Window Resource

The large light blue area in the center of the dialog is used to represent a 50% scale of the Apple
IIGS desktop with a window. The window represents the location and size of the window as
defined by the Window resource. To change the location of the window, simply click in the
content area of the window and drag it. To change the size of the window simply click in the
size box in the lower right corner of the window and drag. The Center button can be used to
quickly center the location of the window on the desktop. The 320 Mode and 640 Mode radio
buttons are used to inform the Resource Editor what graphics screen mode will be used when the
window is created. The Resource Editor uses this information to properly scale the window size
in the dialog.

The Frame... button is used to invoke the Frame Definition dialog to display and edit the
window’s frame information. The Controls... button is used to invoke the Content Controls
dialog to create and edit the content controls that belong in the window.

Window Frame Definition

The Frame Definition dialog, as shown in Figure 4-10, is used to define the window’s frame
attributes, zoom size, content data size and information bar height.

User’s Guide 4-11 Resources

Window frame definition

Title: |[TXEIT |

Cancel

[] Title bar
[J Close box Zoom top: 0
[0 flert frame type Zoom left: 0
[0 vertical scroll bar Zoom bottom: | 0
O Horizontal scroll bar Zoom right: P
[] 6row box
e e s et [
O Quick in content Pata width: 0
[visible Info height: 0
[Information bar
[J Zoomed

L e

Figure 4-10
Frame Definition Dialog

The meaning of each of the resource attributes is discussed in the following table.

Table 4-3
Resource Atfiribute Meanings

Attribute Meaning
Title bar Set if the window has a title bar.
Close box Set if the window has a close box.

Alert frame type

Vertical scroll bar
Horizontal

scroll bar

Grow box

Zoom box

Moveable

Quick in content

Visible

User’'s Guide

Set if the window should be drawn with an alert style frame instead of the
standard document style frame. An alert frame is typically used for
modal dialogs.

Set if the window has a vertical seroll bar.

Set if the window has a horizontal seroll bar.
Set if the window has a grow box.
Set if the window has a zoom box.

Set if the window’s title bar is to be treated as the drag region for moving
the window on the desktop.

Set if a mouse click in the content region of a window (not in the front)
should select the window as well as be treated as click in the content.

Set if the window is visible when created.

4-12 Resources

Information bar Set if the window has an information bar.

Zoomed Set if the window is initially zoomed.
Zoom rect Defines the top, left, bottom and right coordinates of the window when
zoomed.

Data height/width Defines the size in pixels of the window’s height and width.
Info height Defines the height of the information bar if the window has one.

* Note: The default setting for newly created window’s frame definition are as
displayed in Figure 6-10.

Window Controls Definition

The Window Controls dialog as shown in Figure 4-11 is used to define the window’s content
controls. The content controls are the simple button, check box, radio button, scroll bar, size box,
static text, picture, icon button, line edit, text edit, pop-up menu, and list. To create a new control
simply click the mouse on the control palette in the left side of the dialog box for the control type
desired then click the mouse in the window content area in the position where the control should
be placed.

Window Content Controls Definition

Figure 4-11
Window Content Control Definition Didlog

User’s Guide 4-13 Resources

- L]
) F: s -~
X o, B i e wprms as o T omy e P S M L x r
L N Eraay TR RS ShaE W - SRS T V33 G
P T ¢
§7 ang ‘

R () . .

ngrks @ f\if niw addd Y asdznmibyoon dedwin %‘r*m sostod del ol wdd 8

.A £ ’i---r,e. %ﬁn,fe e rfw» o wida e alsxig o e

B Sed wfx%‘xmw add Tt waed roivasyvelut i Y Sdgied &

nortioieh smatt shwabndw beleats yhwsn =Y it

o
»
by
ot
o

A i s e Ly e v = s A i s 2

A Badl

sadnes ghwobobe sl anfish i hass o 113 wugid ot
vt maie g Hevgn 6 ,,?;,é sibat xod desrs mekiod -aiﬁmw weit sns &bl

S & Sde ¢ duif ben aosm g gog Jibs. Sibw ponil Shggl ents mpdeap.des T L8
2 fered e meld f*'% sl wsiszjg wrds e ahic Tt ad? ai a2 ﬁ‘fi L, '3 5 sl ‘
iusosizdondoos 2 i*'!*:n’f*'ﬂ‘ sridiag s o7 2898 Jadnain wr;h::w 5 ;
: e A T R A TS R R R R
s %Miﬂ?{*g rhetiaod Foplue’d wenke
é {' ‘.‘ b o v i 3 e e W U N s L .
L i CJ...LJ_:'“‘ %“‘fd-r - b e e o - b e K T
3 { kN F
3 .
|
£+
i]
:
3 Sk s N 2 R AR e i s oy e i R
L.-—*:"*iwr'*"" o i wm‘%ﬂw B e e e
Pk sl _
LD S iR sty roasteen kRl
: ’

: a4 Resources

Chapter 5

Complete Pascal Menu Reference

This chapter provides a complete reference to the commands available and contained in each of
Complete Pascal's seven menus, Complete Pascal's seven menus are the Apple, File, Edit,
Search, Windows, Compile, and GSOS menus. Recall that most menu commands can be issued
by entering command-key equivalents rather than clicking the mouse on the menu and
releasing it over the menu command. A discussion of command-key equivalents is provided at
the end of this chapter.

e T TR ERnEr=———,

The Apple Menu

The Apple menu is a standard menu for Apple TIGS desktop applications such as Complete
Pascal, and is always the first menu in the menu bar. In Complete Pascal, the Apple menu has
two parts: the About Complete Pascal... command and the list of installed new desk accessories
(NDAs) available in Complete Pascal. Because, the list of desk accessories depends upon which
desk accessories are installed on your particular system disk, Figure 5-1 may not match your
menu exactly.

About Complete Pasecal... ?

The About Complete Pascal... menu item displays the About Pascal Dialog Box. The dialog
contains Complete Technology’s' address and phone number. More importantly, the version of
Complete Pascal you are using and Complete Technology’s' copyright notice also appear in the
About Pascal Dialog Box.

Desk Accessories

The desk accessory menu items represent each of the NDAs installed on your system disk.
Recall that desk accessories must be properly installed on your bootable system disk to be
available. For a desk accessory to be properly installed, it must be in the DESK.ACCS folder
which can be found in the SYSTEM folder. Selecting a desk accessory name from the Apple
menu will cause that desk accessory's window to be opened on the Complete Pascal desktop.

User’'s Guide 5-1 Complete Pascal Menu Reference

File Edit Search Window Compile 650
About Complete Pascal G2 o

Control Panel

Figure 5-1
Apple Menu

Open “NDA”

The Open “NDA” menu item is only included in the Apple menu when you have compiled the
source code of a New Desk Accessory program to memory. The actual name of the menu item
will be the word Open followed by the name of the desk accessory that was compiled. The Open
“NDA” command works just like any of the other desk accessory menu items, that is, it opens
the desk accessory causing it to display its window.

Remove “NDA”

Like the Open “NDA” menu item, the Remove “NDA” menu item is only included in the Apple
menu when you have compiled the source code of a New Desk Accessory program to memory.
The Remove “NDA” menu item will close the desk accessory if its window is open. It then
removes the desk accessory’s compiled code from memory and deallocates any memory the
desk accessory may have allocated. After the desk accessory has been removed from memory,
the Open “NDA” and Remove “NDA” menu items are removed from the Apple menu.

The File Menu

The File menu contains the various file related commands (Figure 5-2) in Complete Pascal.
The menu items are grouped into three basic categories: accessing disk files, printing, and
exiting Complete Pascal. Following is a description of each menu item contained in the File
menu.

User’s Guide 52 Complete Pascal Menu Reference

_rile' Edit Search Win

2

650S

Save fis..

Revert

Figure 5-2
File Menu

New

This item opens a new source code text window or resource window. The new window becomes
the active window ready for editing. Before the window is created, Complete Pascal asks that
you name the file associated with the window and specify whether the window is a text or
resource editing window. Complete Pascal allows as many windows to be opened as available
memory permits.

Open

The Open menu item displays the Open File Dialog Box (Figure 5-3) allowing you to select a
file for editing or compiling.

Close

This menu item closes the active (topmost) editing window. If the source code contained in the
active window has had changes made to it since last opened, you are prompted to save the
changes you have made.

User's Guide 5-3 Complete Pascal Menu Reference

Open File:
<) :Pascal: Examples:

sz (ilo'c=k'NDﬁ;p SRy
(7 skeleton.p
(3 Textbook.p

Close

A8
O Resource file

K

®source TextFile

Figure 5-3
Open File Dialog Box

Save

The Save menu item saves the contents of the active window. The original file on disk is
overwritten by the contents of the current window.

Save As...

Selecting this menu item allows you to save the contents of the active editing window to a new
disk file. To do this, you are again prompted with the Put File Dialog Box to name a file for
this window. If the filename you choose already exists in the specified subdirectory, you will be
warned of this and asked if you wish to replace the existing file. Save As is not available for
resource files.

Revert

This menu item will cause all of the editing changes you have made to be replaced with the
most recently saved version of the file. You will be asked to confirm this choice before the
operation is performed. Revert is not available for resource files.

Print Options...
This menu item displays the Print Options Dialog Box (Figure 5-4).

User’s Guide 5-4 Complete Pascal Menu Reference

& [[Edit search Window Compile 6505

T T e
N Fr

[Print Filename
[0 Print date & time
[J Print page numbers

OK l l Cancel]

Figure 5-4
Print Options Dialog Box

When Complete Pascal prints a file to the printer, it optionally prints a header across the top of
every page. The header can include the name of the file (Print Title), the current date and time
(Print Date/Time), and page numbers (Print Page Numbers). If an option is checked, Complete

Pascal prints the corresponding information in the header. If none of the options are selected, a
header is not printed.

Page Setup
This menu item displays the Page Setup Dialog Box (Figure 5-5).

The Page Setup Dialog Box is used to configure the way Complete Pascal prints a page. There
are two options: Continuous and Cut Sheet. If Continuous is selected, a header is only printed
on the first page, and no blank lines are printed at the end or beginning of a piece of paper.
This option maximizes the number of lines that can be printed on a page. However, if the paper
is misaligned, a line of text may print on the perforation in the paper.

If the Cut Sheet option is used, a header is printed at the top of every page, and blank lines are
printed at the end and beginning of every page. When this option is selected, the number of
lines per page must be set. The default setting is for standard 8 1/2 by 11 inch paper.

Finally, the Page Setup Dialog Box allows you to enter a special character sequence which
represents a Printer Command. The character sequence is sent to the printer before printing
every file. The Printer Command can be used to instruct a printer to use a special built-in font,
font size, page size, etc. In order to send a control character to the printer use the caret character
(?) followed by the appropriate letter that defines the control character. For example, [sends
an ASCII 27 (an escape character).

User’'s Guide 5-5 Complete Pascal Menu Reference

Printer Commands

r

O Continuous
O Cut Sheet Lines per page

{ 0K [Cancel]

Figure §-5
Page Setup Dialog Box

Print

The Print menu item causes the contents of the active window to be printed to the printer through
the currently selected serial port (slot). The text is printed using the built-in font of the printer.
Complete Pascal does not use the Apple IIGS Print Manager for printing.

If the Option key is held down when choosing this command, Complete Pascal prints the
currently selected text in the active window rather than the entire contents. This is especially
useful when editing large files.

Quit

Selecting Quit closes all open windows, allowing you to verify whether changes made to each
window should be saved, and then exits back to the Apple IIGS Finder.

The Edit Menu

The Edit menu contains several useful editing commands. The menu is in the standard Apple
IIGS format thus allowing it to be used with desk accessories. See Figure 5-6.

Undo

The Undo menu item allows you to undo the last editing change made in a source code edit
window. Note that after you complete an editing operation and begin a new one, the previous
edit operation can not be undone. Every new editing operation starts a new undoable operation
and the ability to undo past edits are lost.

User's Guide 5-6 Complete Pascal Menu Reference

01§ Search mpile 650§

| Select All SAk

Font & Size Y

Figure 5-6
Edit Menu

Cut

This command cuts the currently selected text. The operation deletes the selected text from the
active window and saves it into the clipboard.

Copy

This command copies the currently selected text, but does not delete it from the active window,
and saves it into the clipboard.

Paste

The Paste menu item copies the contents of the Complete Pascal clipboard into the active
window at the current insertion point. If text is currently selected then it is deleted before the
paste is performed.

Clear

The Clear menu item deletes the range of selected text from the active window, but does not save
it into the clipboard.

Select All

This command selects all text contained in the active window. It is a shortecut for selecting all
text rather than moving to the beginning of the text, clicking the mouse, and then moving to the
end of the text and shift-clicking.

User's Guide 5-7 Complete Pascal Menu Reference

Set Font & Size

The Font & Size menu item is used to select the font, font size and tab width used by the
Complete Pascal Editor for the active edit window.

The Search Menu

The Search menu contains a collection of commands which perform search and replace
operations (Figure 5-7). The Search menu also contains a Goto command that scrolls the
window content to the location of the current insertion point.

m LR) Win

Find.. &F

Find Same (wl]
Find Selection GH

dow Compile 6508

Replace.. SR
Replace Same ST

6oto Selection

Figure 5-7
Search Menu

Find...

This menu item displays the Complete Pascal Find Dialog Box allowing you to specify a search
string. Upon entering a search string and selecting the Find button in this dialog, the search
begins from the current insertion point (not the beginning of the file).

Find Next

This command searches forward in the active window, from the current insertion point, for the
next occurrence of the Find... string specified in the Find Dialog Box. Upon locating the next
occurrence, the active window scrolls to display the string. If no occurrence of the string is
found an error message is displayed.

Find Selection

This command searches forward in the active window, from the current insertion point, for the
next occurrence of the current selection in the window. Upon locating the next occurrence, the

User’s Guide 5-8 Complete Pascal Menu Reference

active window scrolls to display the string. If no occurrence of the string is found an error
message is displayed.

Replace...

This menu item displays the Complete Pascal Change Dialog Box allowing you to specify a
search string and a replacement string. Upon entering a search string and selecting the Find
button in this dialog, the search begins from the current insertion point (not the beginning of the
file). When the string is found is replaced with the substitution string. Upon locating the next
occurrence, the active window scrolls to display the string.

Replace Same

This command searches forward in the active window, from the current insertion point, for the
next occurrence of the Replace... string specified in the Replace Dialog Box. Upon locating the
next occurrence,the text string is changed and the active window scrolls to display the string.

Goto Selection

This command scrolls the active window so that the insertion point (or currently selected text)
is visible in the window.

%

The Windows Menu

The Windows menu provides several commands to arrange the open windows within the
Complete Pascal desktop and obtain information about the windows. The Windows menu also
contains the name of every open window on the desktop. Selecting the name of a window in the
Windows menu brings that window to the front. Figure 5-8 shows the contents of this menu.

& File Edit Search

HUTY I Compile 650S

Next Window & ’
6et Info.. (]|
Last Error &E

Windows Menu

User's Guide 5-9 Complete Pascal Menu Reference

Next Window

The Next Window menu item places the active window in back of all other open windows on the
screen and brings the window directly behind the previously active window to the front. This
command provides an easy method of switching between windows when it might not be possible
to click on a window because it is completely covered by another window.

Get Info

The Get Info command displays a File Information Dialog Box. The dialog box displays the
following information about the active editing window: the full pathname for the file associated
with the editing window, its size in bytes and the number of lines.

Last Error

This command displays the Complete Pascal Error Dialog Box, displaying the most recently
encountered error.

The Compile Menu

The Compile menu (Figure 5-9) contains the commands which invoke the Complete Pascal
compiler. When invoking the compiler, the contents of the active editing window are compiled.
Also included are the Add Resources... command and the Preferences... command.

€ File Edit Search Window [RL0TL] 6505 |

To Memory SM
To Disk &G0
Check Syntax GK

Add Resources..

Preferences..

Figure 5-9
Compile Menu

User's Guide 5-10 Complete Pascal Menu Reference

To Memory

This command invokes Complete Pascal to compile the source code contained in the active
editing window. If the compilation completes successfully and the active window contains a
program which is an application (rather than a unit), the state of Complete Pascal, including
all open windows, is saved and control is transferred to the compiled application. Upon
quitting the compiled program, you are returned to Complete Pascal with all of your windows
intact.

If the contents of the active window is a unit rather than a program then there is no program to
run and, therefore, no transfer of control out of Complete Pascal. Instead, the compiled code for
the unit is retained in memory so that other units and programs which use the unit will have
access to its code.

To Disk

The To Disk menu item invokes the Complete Pascal compiler to compile the contents of the
active window to disk creating a stand-alone GS/OS application file.

If the source code contained in the active window is a program then Complete Pascal creates an
S16 (filetype $B3) application load file in the same directory as the source code. On the other
hand, if the source code is a unit then the unit’s symbol table and code are saved to a “p.o” file
in the same directory as the source code.

Check Syntax

The Check Syntax command invokes the Complete Pascal compiler only to verify that the
source code contained in the active window consists of legal Pascal statements.

Add Resources...

The Add Resources... command is used to attach resources created by the Resource Editor to an
application. When the menu item is selected it presents an Open File dialog so that you can
designate the resources which belong to the application whose source code is in the topmost
editing window. When the source is compiled to memory or disk, the Complete Pascal Linker
copies the resources in the specified file into the compiled application’s resource fork.

Preferences...

Selecting the Preferences command displays the Preferences Dialog Box. The Preferences
Dialog Box is used to configure the Complete Pascal editor and compiler to your particular
needs. The information presented in the dialog is grouped into three major categories:
Compiler, Editor, and Memory. In addition, there are three buttons: OK, Cancel and Release
Memory. The Preferences Dialog is displayed in Figure 5-10 with its default settings. The next
several paragraphs describe each component of the dialog in detail.

Before discussing each component of the Preferences Dialog, an explanation of edit text items

User's Guide 511 Complete Pascal Menu Reference

and check boxes is in order. An edit text item is an item contained in the Preferences Dialog
which requires input to determine a components value, whereas a check box acts as an on/off
switch. These two mechanisms are the means by which you modify each component of the
Preferences Dialog Box.

Simply position the cursor over an edit text item, click once and begin typing to enter the value
for its component. Check boxes, on the other hand, are modified by positioning the cursor over
the check box and clicking the cursor once to toggle between on and off states (a check
representing “on").

- Compiler ~-Editor

K-Byte Symbol Table | |[JAuto Save Text
K—Byte Stack Size

-Memory
Keyboard Break Total SystemMemory: 1280k
Echo 1/0 to Printer Free Memory: 299k

Largest MemoryBlock: 94k

Unit Serach Path: [0K l l

]I:Toollnterfaces I [Cancel] ﬁelease Hemorg]

d

Figure 5-10
Preferences Dialog Box

K-byte Symbol TableThis option allows you to specify the amount of memory the Complete
Pascal compiler should allocate for a symbol table. A symbol table is
the data structure the compiler uses to store the declarations of labels,
variables, arrays, procedures and functions. For most all programs,
the default size of 12K bytes is sufficient. However, larger programs
may encounter the Compiler error Symbol Table Space Exhausted. If
compiling a program encounters this error, then you should increase
the value of this setting. 32K bytes is the largest setting allowed. This
setting can also be lowered if you are running short of memory and are
compiling small programs. The smallest allowable value is 2K bytes.

K-byte Stack Complete Pascal programs require a data structure known as the
Runtime Stack. The default value of a 8K byte stack should be sufficient
for most Complete Pascal programs. This value can be changed from
1K to 32K bytes. The Stack size may also be changed by using the
$StackSize directive.

Keyboard Break The Keyboard Break option is used to implement the Control-C abort
mechanism.

If this option is turned on, Complete Pascal generates code between each
statement to check if the control-C character has been typed. If this
option is turned off, it is impossible to abort the execution of a Complete
Pascal program. The only way to do so is to reset the Apple I[IGS. If you

User's Guide 5-12 Complete Pascal Menu Reference

Unit Search Path

Auto Save Text

do not use the Control-C abort mechanism you should turn this option off
so that your programs will be smaller and faster.

This option may also be turned off and on using the $KeyboardBreak
metastatement. See Appendix B.

The pathname specified here is where the Complete Pascal compiler
searches for unit files which have been specified in a USES clause. The
default value for this option is 1:Toollnterfaces: which specifies the
Toollnterfaces folder in the same directory as the Complete Pascal
compiler. This is the folder which contains all of the Complete Pascal
predefined units for accessing the Apple IIGS Toolbox. Recall that
Complete Pascal first searches in the current source code folder first for
a unit file and then the path specified by this option.

The Auto Save option allows you to specify whether or not changes to
any of the editing windows should be automatically saved before
Complete Pascal transfers control to a compiled to memory application.
You should select this option if your program is in the early stages of
development and might cause the Apple IIGS to crash when run. If this
option is on you will never lose any editing changes you have made, but
not explicitly saved, however, it does slow down the compile cycle since
it must write to the disk.

Total System Memory Obviously, this value can not be changed while Complete Pascal is

Free Memory

running. The total system memory is displayed for informational
purposes only. The value represents, in kilobytes, the amount of RAM
memory installed in your machine.

This number indicates how much memory is currently available. This
number is important because, it reflects whether or not Complete Pascal
has enough memory to open a new program file, compile a program to
memory, etc. Because Complete Pascal retains various pieces of
information in memory, this number can sometimes be increased by
selecting the Release Memory button described below.

Largest Memory Block This value indicates the largest block of memory available for

OK Button

Cancel Button

Release Memory

User's Guide

use by Complete Pascal.

Clicking the mouse in this button (or pressing the Return key) indicates
that you want Complete Pascal to accept all the changes to the
Preferences dialog you have made. After choosing this button, the
dialog disappears and Complete Pascal updates all options and settings.

Clicking the mouse in this button causes Complete Pascal to remove the
dialog, and to ignore any changes made to the options and settings and
to leave them as they were before the dialog was opened.

This button is used to release all memory associated with programs and
units that have been compiled to memory or loaded to memory by a
USES clause. Selecting this button will usually adjust the Free Memory
and Largest Memory Block values. Clicking the mouse in this button
does not cause the dialog box to close.

5-13 Complete Pascal Menu Reference

The GSOS Menu

The GSOS menu provides access to three GSOS commands (Figure 5-11).

& File Edit Search Window Compile {31133
' Rename..

Delete..
Transfer..

&

&

Figure 5-11
GSOS Menu

Rename

The Rename command displays the Rename File Dialog Box allowing you to choose the file
you would like to rename. After selecting a file, you are prompted to provide the new filename.
The new filename must be a legal GS/OS filename otherwise an error results.

Delete

The Delete command displays the Delete File Dialog Box allowing you to choose a file you
would like to delete. After selecting a file, you are prompted to confirm that, in fact, you would
like to delete the file. If you confirm that the file should be deleted, Complete Pascal will
permanently delete the file from the disk.

Transfer

The Transfer command displays the Transfer Dialog Box allowing you to choose an application
you would like to transfer control. Upon selecting an application, Complete Pascal asks you to
save any changed files and then automatically quits and invokes the specified application
without returning to the Apple IIGS Finder. The only way to return to Complete Pascal is to
launch it from the Finder again.

User’'s Guide 5-14 Complete Pascal Menu Reference

Chapier 6
Textbook Applications

Textbook applications are complete stand-alone, double-clickable applications that can be run
from the Apple IIGS Finder or, for that matter, even designated as a startup application. What
makes Textbook applications special is that they require no knowledge of the Apple IIGS
Toolbox. In addition, Textbook programs represent typical applications one might find in a
Pascal textbook. Hence, the name Textbook applications. Textbook applications are the easiest
type of programs to create with Complete Pascal.

Complete Pascal actually supports two types of Textbook applications: text screen and graphics
screen applications. Text screen applications execute using the 24 row by 80 column text screen
display of the Apple IIGS, while graphics screen applications execute in either the 320 or 640
mode super hires graphics screen display. For discussion purposes, text screen Textbook
applications are sometimes referred to as simple Textbook applications, while graphics screen
Textbook applications are sometimes referred to as Graphics Textbook applications.

This chapter discusses the fundamentals of setting up a simple text screen application. Chapter
7, on the other hand, provides an explanation of a graphics screen textbook application.

%

Text Screen Textbook Applications

Text screen applications are the default type of Textbook applications. And, as mentioned above
the text screen application executes using the Apple IIGS 24 row by 80 column text screen
display. As such, text screen programs do not require any knowledge of the Apple IIGS Toolbox.
Additionally, text screen applications cannot support any type of graphic display.

The following “Hello World” program illustrates the basic structure of a text screen Textbook
application. When this program is executed it will display the message “Hello World” on the
first line of the text screen, wait for the user to press the Return key and then terminate.

PROGRAM HelloWorld;

BEGIN
Writeln(‘Hello World’):
Readln;

END.

The Complete Pascal distribution disk contains a larger text screen application named
Textbook.p.

Programming 6-1 Textbook Applications

27
il =

e ni dte _;}m' an0 a.f:t ai&’rmftm "W iie
faeh @t s srotdeniiaua domiieay

= bivs mseroe ixad aasbissii
nissrtos 08 vt wey B 362 :;,ma? v,.-gmarm By
togaddts ni pduosxs sontdesiings assta e
ke T poensm $Ral BEZG T aeizausalh 20 pdlgeic
a2 ?,m-rif;s"z:.‘; alidw s. GiyanisnaT %@:vé%“?n slimie 2e o betwio

.Z.~.-.~.?:i!_f-_‘;:‘wuﬁ—ﬁ$ Sendies T enifiants ae o Deeieiay

‘14}3?3-:; 253

e

P A e

o

oy ‘rr’!‘& éh"&’@ JZ”F‘-E"’E ’*ﬁ &ﬁ‘% .W@simw E@M%{é‘ %!’ﬁg 455’,#?%4! s @f{-i — .
B : od wor MO HDI olagh sdi anlle]
.xsr{f[ﬁﬁ“}" sind Jh‘q ok ol aﬂbﬁ?ﬁv«s‘gﬁ it srloie Z5ey ol F}.ﬁ’
th n*iuéf;":g %o :9@9’1 ¥ o8 -;wwyp ’ 3
Lendizg™ manins txed B %o srbipda sleed st vl srergove “Eheds ofl: s
Sef1 am T ® sl caeevem sd valosid five H beluses éﬂt’iﬁiﬂﬁr sy gy ® - i
sinseered 5ol bes red avidef sdl eeag of e o -
il il
i nasrse jial veyre]l 8 srisiass

&2 i Textbook Applications

Chapter 7
Graphics Textbook Applications
Chapter 6 introduced the most basic of the five types of programs Complete Pascal can create —

the Textbook application. This chapter shows how this very simple type of program can be
easily extended to support graphics, hence the name Graphics Textbook applications.

—— —

Graphics Screen Textbook Applications

While text screen Textbook applications are simple to write and require absolutely no
knowledge of the Apple IIGS Toolbox, they are strictly limited to text input and output only.

In contrast, graphics screen Textbook applications are implemented by Complete Pascal in
order to provide for graphics output by your Pascal programs while maintaining the simplicity
of text screen Textbook applications. Namely, as little knowledge of the Apple IIGS Toolbox as
necessary. Graphics screen Textbook applications are a good place to start programming if you
would like to begin implementing limited amounts of graphics rather than having to
understand all of the complexities introduced with the Apple IIGS Toolbox.

Graphics screen Textbook applications use the Apple IIGS super hires graphics screen in either
320 or 640 mode. Thus, the Apple IIGS QuickDraw toolset can be used to create text, lines,
rectangles, ovals, polygons and any of the other graphic primitives supported by QuickDraw. In
addition, the Apple IIGS Event Manager is initialized and the mouse is activated.

The Graphics Procedure

Graphics screen Textbook applications are implemented using the predefined Complete Pascal
Graphics procedure (see Chapter 20).

PROCEDURE Graphics (screenMode : Integer) ;

The procedure has one parameter used to indicate whether the 320 or 640 mode super hires
screen should be used and should be called at the beginning of a program. The Graphics
procedure initializes and starts the Apple IIGS QuickDraw toolset and turns on the super hires
graphics screen using the designated mode. The graphics screen is initialized as all white and
does not contain a menu bar or any windows.

Programming 7-1 Graphics TextBook Applications

The following example illustrates how the Hello World program shown in the previous section
can be rewritten as a graphics screen application. Note that the only addition is a call to the
Graphics procedure.

PROGRAM HelloWorld;

BEGIN
Graphics (640) ;
Writeln (‘Hello World’):
Readln;

END.

Of course, this program does not use any of the QuickDraw graphic routines. However, it is
important to notice that the standard Pascal Readln and Writeln routines still operate in the
graphics screen. In order to begin adding some degree of graphic operation, the program must
use the Types and QuickDraw units (see Chapter 8 and Appendix C).

The following program illustrates how graphics might be added to our simple Hello World
program.

PROGRAM GraphicHelloWorld;

USES Types,
QuickDraw;

VAR aRect: Rect;

BEGIN
SetRect (aRect,10,10,30,40);
FrameRect (aRect) ;

offsetRect (aRect,25,30) ;
FrameOval (aRect) ;

OffsetRect (aRect,25,30);
FrameRRect (aRect, 20, 20) ;

MoveTo (50,30) ;
DrawString(‘Hello World’):;
END.

The Complete Pascal distribution disk contains a larger graphics screen Textbook application
named Graphics.p.

Programming 7-2 Graphics TextBook Applications

Chapier 8
Desktop Applications

Like Textbook applications, Desktop applications are complete stand-alone, double-clickable
applications that can be run from the Apple IIGS Finder. However, the similarities between the
two types of applications stop there. Desktop applications are those which take full advantage of
the Apple IIGS Toolbox, use menus, windows, dialogs, the mouse, etc., and implement the Apple
Desktop metaphor for their user interface. Desktop applications require at least a basic
understanding of how to program with the Apple IIGS Toolbox.

v Note: While this chapter outlines the basics of how to create Desktop applications using
Complete Pascal, it is by no means any attempt to be the final word on the subject.
Appendix C provides a complete listing of the Toolbox interfaces implemented by
Complete Pascal. However no documentation is provided on what these routines do or
how they work. We strongly recommend you obtain a copy of the Apple IIGS Toolbox
Reference and the Apple IIGS Toolbox Reference Update which are Apple Computer’s
complete reference for the Toolbox.

The Complete Pascal distribution disk contains the source code to a simple desktop application.
Its source code file name is Skeleton.p. Of course, Complete Technology’s Source Code Library
- Pascal product a contains broad range of example desktop applications for you to study.

e e e
The Apple lIGS Toolbox

The Apple IIGS Toolbox is a large collection of software which gives the Apple IIGS its
character. The toolbox is organized into several functional groups called toolsets, and within
each toolset are numerous functions. Complete Pascal provides complete support for the Apple
IIGS System Software version 5.0 including its new additions to the toolbox.

The toolbox which is part of System Software version 5.0 consists of 30 toolsets. The toolsets may
be grouped into six major functional categories: the seven basic tools, the desktop interface
tools, the device interface tools, the operating environment tools, the sound tools and the math
tools. The following diagram illustrates the functional organization of the toolsets.

Programming 8-1 Deskiop Applications

£, %Scrap Manager G‘%

l Apple Desktop Buﬂ%

E I Menu Manager ﬂ-- g
:}%DeskManager ﬂ—?

FatTock W

¢ u Dialog Manager
1
Resource Manage!

35 List Manager

F * Print Manager ﬁ

I T Control Manager n—?
Tool Locator R : : F
ﬂ"“‘ Line Edit

ﬂ:

B W'ndow Manager Standard File
L{“ Event Manager ,, Ean T f!' ;
_ - ont Manager
ﬂ ext Edit Manager Device Interface Tools
Memory Manage:

Desktop Interface Tools -
1 " Sound Manager
L Misc Tools ﬂ £ ge
i . Scheduler :
QuickDraw ﬁ - No:e Synlhesnze
F: y . System Loader = ﬂ
i
QuickDraw Auxiliary N W
Operating Environment Tools 1 ﬂ
The Seven Basic Tools ¢ E_{ .
 SANE { Cﬂ
MIDI
P
U Integer Math)
Sound Tools
Math Tools

The Seven Basic Toolsets

The seven basic toolsets provide the framework upon which all of the other tools are built upon.
All of these tools are used in event-driven programs.

Tool Locator

The Tool Locator is the most important of the Apple IIGS toolsets. The
Tool Locator allows you to load toolsets from disk into RAM and is
responsible for locating a toolset routine when a program calls a Toolbox
procedure or function.

Memory Manager The Memory Manager is the second most important toolset. This tool is

entirely responsible for the allocation, deallocation, and repositioning of
memory blocks on the Apple IIGS. The Memory Manager keeps track of
how much memory is free and what parts are allocated and to whom.
Whenever a program needs memory, it must ask the Memory Manager to
allocate it.

Miscellaneous Tools The Miscellaneous Tools consist mostly of system-level routines

QuickDraw

Programming

that must be available to most other toolsets.

QuickDraw is the toolset that controls the graphics environment of the
Apple IIGS and draws simple objects and text in the Super Hi-Res
graphics screen. All other tools which create graphical objects such as the
Menu and Window Manager call the QuickDraw toolset.

8-2 Deskiop Applications

QuickDraw Auxiliary This tool contains additional graphics routines which complement
the QuickDraw toolset.

Event Manager The Event Manager is responsible for detecting system events such as
mouse-clicks, keystrokes, window updates, ete. It queues the events and
then delivers the events to an application as requested.

Resource Manager The Resource Manager is responsible for implementing access to and
manipulation of the resource fork of a GS/OS file.

Desktop Interface Tools

The toolsets in this group support the Apple Desktop Interface. The desktop interface is the
visual interface between the user of an application and the computer. It includes the menu bar
and the blue colored area on the screen. Applications usually have documents on the desktop
displayed in windows and perhaps other graphic objects such as icons. Applications
implementing the desktop will always use the Menu, Window and Control managers, and
usually most of the others as well. New Desk Accessories are supported by the Desk Manager.

Control Manager The Control Manager consists of all the routines necessary to manipulate
controls. Examples of controls include seroll bars, radio buttons, check
boxes, etc.

Desk Manager The Desk Manager is the tool which enables an application to support both
classic desk accessories and new desk accessories.

Dialog Manager The Dialog Manager provides the routines which allow an application to
create and use both dialog boxes and alerts as a means of communication
between a user and your program.

Font Manager The Font Manager is the toolset which allows an application to make use
of different text fonts, font styles, ete. within QuickDraw.

Line Edit Line Edit is used to display and edit a line of text on the screen and allow
a user to edit the text.

List Manager The List Manager is used to create, display and allow selection of a
variable amount of similar data.
Menu Manager The Menu Manager controls and maintains the use of pull-down menus

and items in the menus.

Scrap Manager The Scrap Manager implements the desk scrap, which implements the
Cut, Copy, and Paste operations of an application.

Text Edit Manager The Text Edit Manager implements a multi-line text editing tool which
supports multiple fonts and font sizes, rulers and more.

Window Manager The Window Manager creates the desktop environment and is
responsible for the creation and manipulation of windows.

Programming 8-3 Desktop Applications

Device Interface Tools

The toolsets in this group are used to manage input and output between the computer and
peripheral devices and a program.

Apple Desktop Bus The Apple Desktop Bus is a method and a protocol for connecting input
devices, such as keyboards and mice with the Apple IIGS. The routines in
this toolset are used to send commands and data between the Apple
Desktop Bus Microcontroller and the rest of the system.

Print Manager The Print Manager allows an application to use QuickDraw routines to
print text and graphics to an ImageWriter or LaserWriter.

Standard File The Standard File toolset implements the standard user interface for
specifying a file to be opened or saved.

Text Tools The Text Tools provide an interface between the Apple II character device
drivers, which must be executed in emulation mode, and applications
running in native mode.

Operating Environment Tools

The operating environment tools control the interaction between low-level hardware and
software functions. While not listed here, the Memory Manager and Miscellaneous Tools
toolsets implement similar low-level operations characteristic of the Operating Environment
tools, and in many cases interact with these toolsets.

Scheduler The Scheduler delays the activation of a desk accessory or other system
task until the resources which that task/desk accessory requires become
available. This avoids potential system crashes when more than one task
attempts to use the same resource at the same time.

System Loader The System Loader is responsible for loading and relocating code for
applications and desk accessories to memory.

Sound Tools

The sound tools implement the many sound related capabilities of the Apple IIGS sound
hardware. In particular, the ENSONIQ DOC chip. Other toolsets implement MIDI and audio
compression and expansion.

Sound Manager The Sound Manager provides access to the Apple IIGS's sound hardware
for creating basic sounds.

Note Synthesizer The Note Synthesizer is used to create complex musical sounds
simulating a variety of instruments using the Apple IIGS's sound

hardware.

Note Sequencer The Note Sequencer is used to string together notes from the Note
Synthesizer into sequences, patterns and phrases that make up a song.

Programming 8-4 Desktop Applications

ACE The Audio Compression and Expansion toolset (ACE) implements a
collection of routines which compress and expand digital audio data in
order to conserve storage requirements.

MIDI The MIDI toolset implements a Musical Instrument Digital Interface for
the Apple IIGS through either of its serial ports and the Apple MIDI
adapter.

Math Tools

The math toolsets implement a wide variety of complex mathematical operations for both
integer and floating-point calculations.

Integer Math This toolset consists of a varied collection of operations for integers, long
integers and signed fractional numbers. These include multiplication,
division, conversions, etc.

SANE SANE implements the Standard Apple Numeric Environment. It is an

extended-precision IEEE 754 conformant implementation of floating point
arithmetic and transcendental functions.

How Cadlling a Tool Routine Works

This section is intended for advanced programmers who want to understand how a tool routine
is actually invoked from Pascal. If you are content with the fact that everything works and that
the tool routines are essentially additional built-in routines then feel free to skip this section.

Complete Pascal provides for programmer access to the Apple IIGS toolsets via a collection of
Pascal units. These units declare all of the procedures, functions, types, constants, etec. for each
toolset in order that they can be used from the Pascal language. There is one unit for each
toolset. Each of these 30 toolsets are listed together with the Pascal unit which declares its
interface in the table below. Appendix C provides a complete source code listing for each of
these units.

Table 5-1
Apple lIGS Toolbox

Tool Number Tool Name Pascal Unit

Programming

8-5

1 Tool Locator Locator.p

2 Memory Manager Memory.p
3 Miscellaneous Tools MiscTool.p
4 QuickDraw II QuickDraw.p
5 Desk Manager Desk.p

6 Event Manager Event.p

7 Scheduler Scheduler.p
8 Sound Manager Sound.p

9 Apple Desktop Bus ADB.p
10 SANE SANE.p

11 Integer Math IntMath.p

Desktop Applications

12 Text Tools ‘ TextTool.p

14 Window Manager Windows.p
15 Menu Manager Menus.p
16 Control Manager Controls.p
17 System Loader Loader.p
18 QuickDraw Auxiliary Routines QDAux.p
19 Print Manager Print.p

20 Line Edit LineEdit.p
21 Dialog Manager Dialogs.p
22 Scrap Manager Scrap.p

23 Standard File StdFile.p
25 Note Synthesizer NoteSyn.p
26 Note Sequencer NoteSeq.p
27 Font Manager Fonts.p

28 List Manager Lists.p

29 Audio Compression Expansion ACE.p

30 Resource Manager Resources.p
32 MIDI MIDIL.p

34 Text Edit Manager TextEdit.p

Each tool routine in a toolset is declared as either a procedure or function, depending upon
whether or not the routine returns a value on the stack, and may have zero or more parameters.
The procedure or function declaration is completed with the TOOL directive. The tool directive
is a special extension to Complete Pascal for the specific purpose of declaring interfaces to the
Toolbox.

The following procedure declaration is taken from the QuickDraw.p unit, and is the interface to
the MoveTo procedure in the QuickDraw toolset.

PROCEDURE MoveTo (h,v: Integer); Tool 4,58;

As you can see, the procedure declaration is completed with the tool directive Tool 4,58. The
first integer in the tool directive specifies the toolset to which the routine belongs. In this case, it
is toolset number 4 which is the QuickDraw toolset. The second integer is the function number
of the routine within the toolset. Every routine within a toolset is assigned a unique function
number. The MoveTo routine is assigned number 58. Together, these two integers uniquely
identify the MoveTo procedure in the entire Apple IIGS Toolbox.

The Apple IIGS defines a consistent mechanism for invoking a Toolbox routine. To invoke a
Toolbox routine, space for any function result value must first be reserved on the stack followed
by pushing the values of any parameters. Then the 65816 X-register must be loaded with the
desired Toolbox routine's function number and toolset number such that X-register = 256 *
function number + toolset number. Finally, a jump subroutine long instruction is made to the
address $E10000 which then contains a jump into the Tool Locator which finds the code
associated with the desired Toolbox routine and passes control to it. Upon returning from the
Toolbox routine, all parameters have been removed from the stack leaving the function result
value (if any) on the top of the stack. In addition, the 65816 processor's carry flag is set if an
error occurred during the execution of the Toolbox routine, and, if this occurs, then the 65816
accumulator register contains an error code.)

By using Complete Pascal's tool directive with a procedure or function declaration, the
preceding conventions are obeyed. In addition, Complete Pascal will generate a store

Programming 8-6 Deskiop Applications

accumulator instruction to the Pascal global variable _ToolErr so that potential error codes
returned by a Toolbox routine can be examined.

Thus, an invocation of MoveTo(16,20) would generate the following 65816 instructions.

pea 50010

pea 50014

1ldx $3A04 ;58 * 256 + 4
sl S$SE10000

sta _ToolErr

In order to allow programs written in Complete Pascal to perform error checking on calls to
Toolbox routines, Complete Pascal has defined the special function IsToolError which examines
the current state of the processor's carry flag. The IsToolError function should only be used
IMMEDIATELY after a call to a Toolbox routine to ensure that the state of the processor's carry
flag has not been corrupted by any intervening operations.

Thus, a program written in Complete Pascal might use the following code to detect an error
which occurs in the Toolbox routine MoveTo.

MoveTo (16,20) ;
if IsToolError then

SVTOoOlErr := ToolErr;
Writeln('Error occurred in MoveTo, #',svToolErr) ;
end;

Note that the value of _ToolErr was first saved to the temporary variable svToolErr before the
call to Writeln. This is because Writeln itself makes tool calls that would destroy the value of
—ToolErr associated with the error condition returned by MoveTo.

There are at least three cases where the compiler's generation of the STA _ToolErr instruction
is not required. These are the following:

* Many Toolbox routines do not return errors (this is the case in the above example).
* An application has otherwise guaranteed that all possible error conditions do not exist.

* An application is not effected if an error occurs, proceed regardless (usually poor
programming style, but sometimes appropriate).

If these reasons occur often enough in an application, then the generation of the STA _ToolErr
instruction can potentially increase the size of an application’s code unnecessarily. To avoid
this possibility, Complete Pascal provides the $ToolErrorChk directive to turn off and on the
generation of this instruction (see Appendix B).

For example, the following call to the Toolbox routine MoveTo would NOT generate the STA
_ToolErr instruection.

{$ToolErrorChk—-}
MoveTo (16,20) ;

While use of the $ToolErrorChk directive can save a considerable amount of code, the
programmer must be very careful of its use in order to avoid erroneously checking the value of
_ToolErr when the directive is turned off, and therefore _ToolErr has not been assigned an

Programming 8-7 Deskiop Applications

error code.

Event-Driven Programming

Desktop applications are event-driven programs. That is, the application is driven by events
from the user, not the other way around. An application usually has few clues as to when the
next event from the user will occur, nor does it know what kind of input it will be. For
example, it could be a keyboard event, a mouse event, etc.

An application decides what to do from one moment to the next by repeatedly calling the Toolbox
Event Manager function GetNextEvent or the Window Manager function TaskMaster. The
program’s code which makes these repeated calls to the toolbox is called the main event loop.
The Toolbox Event Manager will inform the application of which action is to be processed next.
Based upon this information, the application can take appropriate action. An example of one
possible implementation of the main event loop using TaskMaster is given in Program 5-1. In
this example, only a mouse click in the close box of a window, a menu selection and a mouse
click in a window’s content control are handled by the application. All other event processing
is performed by TaskMaster.

Program 8-1
Main Event Loop

procedure MainEventLoop;

var code: Integer;
begin
gMainEvent .wmTaskMask := $001FFFFF; { Allow TaskMaster to do
everything. }
gbhone := false;
repeat
code := TaskMaster (SFFFF,gMainEvent);

case code of
wInGoAway: DoClose;
wInSpecial,
wInMenuBar: HandleMenu;
wInControl: DoControlHit;

end;

until gDone;
end; { of MainEventLoop }

Clearly, different applications will handle different events in different ways. The following
table identifies each of the GetNextEvent and TaskMaster events. For detailed information
about events, consult the Apple IIGS Toolbox Reference.

Programming 8-8 Desktop Applications

Table 8-3

GetNextEvent Event Types

Type Occurrence

nullEvent Reported when no other event is available.

mouseDownEvt Generated when the user presses the mouse button.

mouseUpEvt Generated when the user releases the mouse button.

keyDownEvt Generated when the user presses any character key on the keyboard or
keypad. The character keys include all keys except the Shift, Caps Lock,
Control, Option and Apple keys which are modifier keys.

autoKeyEvt Generated when the user holds a key down. The auto-key is generated after
an initial delay and then at periodic intervals.

updateEvt This is an internally generated event indicating that the contents of a
window need to be updated (redrawn).

activateEvt This is an internally generated event when a window becomes active or
inactive. That is, when a window moves from back to front or from front to
back respectively.

switchEvt Generated when a switch control is pressed.

deskAccEvt Generated when the Classic Desk Accessory menu is invoked via the
Control-Apple-Escape key sequence.

driverEvt Generated when a device driver performs a PostEvent due to some
circumstance, usually when data transmission has occurred or has been
interrupted.

applEvt-appdEvt There can be four different application defined events generated. The
meaning of these events are defined by the application and entered into the
event queue using PostEvent.

TaskMaster Event Types

winDesk A mouse-down event occurred in the desktop (not in any window).

wlnMenuBar

wlinSpecial A mouse-down event occurred in the menu bar and then released over a
menu item which was not a desk accessory from the Apple menu or from a
menu added by a desk accessory. TaskMaster tracks the mouse until it has
been released over a particular menu item, thus selecting it.

wilnContent A mouse-down event occurred in the content region of a window.

winDrag A mouse-down event occurred in the drag region of a window.

Programming

8-9 Deskiop Applications

winGrow A mouse-down event occurred in the grow icon of a window.

winGoAway A mouse-down event occurred in the close box of a window.
wlnZoom A mouse-down event occurred in the zoom box of a window.
winlnfo A mouse-down event occurred in the information bar of a window.
wlnFrame A mouse-down event occurred in the frame of a window.
wlnactMenu A menu item was selected that was inactive.

wClosedNDA A desk accessory was closed.

wCalledSysEdit System Edit was called.

wTrackZoom A mouse-down event occurred in the active window’s zoom box but was not
released in the zoom box.

wHitFrame A mouse-down event occurred in the window’s frame of the active window.

wInControl A mouse-down event occurred in the content region of a window, but within
" the bounding rectangle of a content control.

Program Structure

The source code for a desktop application can, of course, be organized according to the
programmer’s own requirements and desires. However, every desktop application will share
the same fundamental main program structure. That is, every desktop application must start
up the Toolbox toolsets it requires, initialize any application globals, create the application
menus and windows, process events, and finally shutdown the toolset used by the application.

The following code fragment is from the source code of Skeleton.p’s main program. An
important thing to notice is that the program source code references resources. In this particular
case, the StartupTools function references a StartStop resource which defines the Toolbox toolsets
required by this application. See Chapter 4 for detailed information about resources.

Program 8-2
Skeleton.p Source Code Fragment

gMyMemoryID := MMStartUp;

gStartStopRef :=

StartupTools (gMyMemoryID, RefIsResource, Ref (kStartStopResID))
if ToolErr = noError then begin

InitializeGlobals;

SetUpMenus;

SetUpWindows;

InitCursor;
MainEventLoop;

Programming 8-10 Desktop Applications

end;
ShutDownTools(RefIsHandle,gStartStopRef);
Before starting out to program your own applications, you should spend some time studying the

complete source code and resources of the Skeleton.p application to understand the basic
structure of a desktop application.

Adding Resources to an Application

As shown in the example program above, Complete Pascal programs can not use resources.
And, Chapter 4 explained in detail how to use the Complete Pascal Resource Editor to create and
edit resources. However, in order for an application to use resources, its resources must be
copied into the resource fork of the application file itself. The CTI Linker performs this
automatically as part of the link process. The resources copied into the resource fork of the
application are those found in the resource file specified by the Add Resources... menu item of
the Compile menu.

To add resources to a program, bring the window containing the application’s main program to
the front. Then select the Add Resources... menu item from the Compile menu and select the
appropriate resource file. Complete Pascal records the selected file so that each time the
application is compiled its resources are copied into the application file.

Definition Procedures (DefProcs)

Often times, the Apple IIGS Toolbox routines must call a procedure which is actually part of
your application. These types of procedures (and sometimes functions) are given the name
Definition Procedures, or DefProcs for short. The reason for the name definition procedure is
that these routines are generally used to allow the application to provide a custom definition of
some generic operation. For example, there are Menu Definition Procedures which allow an
application to provide customized drawing procedures for drawing the representation of menus
— perhaps a menu that contains a palette of colors rather than a list of text items (see the
Complete Source Code Library - Pascal for an example of this). As you might expect, the
Toolbox also allows for definition procedures of windows, controls, lists, etc.

Another component of the Toolbox where an application must use definition procedures (and the
most likely), is with the NewWindow2 function in the Window Manager. The NewWindow2
routine contains several parameters, one of which is the address of the window’s content
definition procedure.

The content defProc routine is called by the Window Manager whenever it detects that the
content of the window must be updated (redrawn) because a portion of the window’s content
which was previously hidden has become visible.

As you might expect, Complete Pascal's memory model may not be in place when a definition
procedure is called. This can happen because the procedure is being called from the Toolbox,
and it is likely that the Toolbox has temporarily changed the state of the 65816 in such a way
that effects the way Pascal global variables are addressed.

Typically, global variables are addressed using the 65816's absolute addressing mode versus
the less efficient absolute long addressing mode since Complete Pascal ensures that the 65816's

Programming 8-11 Deskiop Applications

Data Bank Register points to the memory bank containing the program's global variables.
However, in the case of definition procedures, Complete Pascal's convention may not be obeyed
by a particular Toolbox routine (ie. the Toolbox routine has temporarily changed the value of the
Data Bank register). Thus, it is necessary to inform Complete Pascal that a particular
procedure is indeed a definition procedure and that it will be called by the Toolbox so that it
guarantees the data bank register is set to the appropriate data bank when the procedure is
called and then restored when the procedure exits. This is accomplished by using the $DefProc
compiler directive. For example:

{$DefProc}
PROCEDURE WindowContentDraw;
BEGIN
{ redraw the window contents }
END;

Large Programs and Segmentation

The Apple IIGS limits the size of a application’s code and data segments to 64K bytes. Code
segments contain the application's executable code, while data segments contain the storage
required for the application's global variables. The reason for this size restriction is that a
segment must not cross the boundaries of a bank of memory. On the Apple IIGS, a bank of
memory is 64K bytes. Thus, in order to develop applications which have more than 64K bytes of
code or 64K bytes of data, the program must be segmented. Normally, Complete Pascal creates
one code segment and one data segment for an application. To obtain more than one segment,
the compiler's $CSeg and $DSeg directives must be used.

Code segments are named so that the CTI Linker can organize the different pieces of code
together based on their code segment names. The default code segment name is “main”. In
order to change the name of the current code segment, the Complete Pascal {$CSeg segname)
compiler directive is used. When a {$CSeg segname } directive appears in a program or unit,
the code for all subsequent procedures and functions is placed in the new code segment. To
restore code segmentation back to the default segment, merely place the {$CSeg main }
directive in your program.

Data segments are named just as code segments are so that the CTI Linker can organize the
different pieces of data together based on their data segment names. The default data segment
name is ~global. In order to change the name of the current data segment, the Complete Pascal
($DSeg segname } compiler directive is used. When a {$DSeg segname } directive appears in a
program or unit, the data for all subsequent global variable declarations is placed in the new
data segment. To restore data segmentation back to the default segment, simply place the
{$DSeg ~global } directive in your program.

Unless a program absolutely requires a large amount of global storage, the ($DSeg segname }
should not be used. The reason for this is that all global storage allocated outside of the ~global
data segment is addressed using less efficient addressing modes than data allocated in the
~global data segment.

For more information regarding the use of the {$CSeg segname) and ($DSeg segname) directive
see Appendices B and D.

Programming 8-12 Desktop Applications

Chajpter 9

New Desk Accessories

A New Desk Accessory (NDA) is a “mini-application” which is accessed from the Apple menu
and executes from within the event-driven environment of desktop applications. There are
actually two types of desk accessories — Classic Desk Accessories and New Desk Accessories.
This chapter discusses only New Desk Accessories. Chapter 10 addresses Classic Desk
Accessories.

When a New Desk Accessory is selected from the Apple menu it typically creates a window on
the desktop and may also add a menu to the menu bar. An NDA relies upon the application in
which it is operating to call the appropriate Desk Manager routines (or TaskMaster) in order to
support the NDA. NDAs require this cooperation with desktop applications because NDAs are not
stand-alone programs. Instead they are a collection of procedures which are called on certain
occasions.

The Complete Pascal distribution disk contains the source code for an example NDA —
ClockNDA.p. In addition, the Complete Source Code Library - Pascal product contains more
example NDA source code.

%
Getting Started

As mentioned above, NDAs operate within the desktop environment of Apple IIGS applications.
As such NDAs assume that an application which supports NDAs will have loaded and started at
least the following Apple IIGS toolsets:

QuickDraw

Event Manager
Window Manager
Menu Manager
Control Manager
Scrap Manager
LineEdit

Dialog Manager

An NDA is allowed to call any toolbox function contained in these toolsets. If an NDA must
call routines from toolsets other than those listed above, the NDA itself must ensure the required
toolset is loaded and properly initialized.

Programming Q-1 New Desk Accessories

Program Structure

The structure of a new desk accessory's source code is quite different from that of a normal
Apple IIGS program. In particular, an NDA does not have a main program, but instead
contains four special routines — DAOpen, DAClose, DAAction, and DAInit — which are called
directly by the Apple IIGS Desk Manager at particular and well defined times. In a sense, an
NDA has four "main programs” which work together and communicate by setting global
variables. In addition, an NDA does not have a MainEventLoop procedure since the application
in which the NDA runs detects the events and passes them onto the NDA when appropriate.
However, the most noticeable distinction between the source code structure of an application and
a desk accessory is that a desk accessory is implemented as a unit rather than a program.
This is because there is no main program in an NDA.

Note that a NDA must have the four required routines, and they must be spelled exactly as
defined — DAOpen, DAClose, DAAction, and DAlInit. If you fail to provide these routines,
Complete Pascal returns an error when you attempt to compile the NDA.

In addition to the four special routines every NDA must have, three additional pieces of
information must also be provided to the Complete Pascal compiler in order for it to properly
create the NDA. These are the service period, the event mask, and its menu name. This
information is specified in Complete Pascal with the $NDA compiler directive.

{SNDA servicePeriod eventMask menuName |}

The service period defines how often the NDA should be “called” with the DARun action code
(see below) in order to service the NDA's functionality. A period of 1 is 1/60th of a second, a
period of 2 is 2/60ths of a second (or 1/30th of a second), a period of 60 is 60/60ths of a second (or
1 second), etc. A period of -1 (or $FFFF) is never. For example, if a NDA displays the current
time, then it would specify a service period of 60 so that it could update its display every second.

The event mask defines which events should be handled by the desk accessory. These values
are a subset of those used by Apple IIGS applications using GetNextEvent or TaskMaster, and
are listed below for reference from the Events unit. Of the six listed below, the update and
activate events are always passed to the desk accessory regardless of the event mask, however,
the remaining four event types must be specified explicitly. If all events should be handled by
the desk accessory then an event mask of -1 (or $FFFF) should be specified.

CONST mDownMask = $0002;
mUpMask = $0004;
keyDownMask = $0008;
autoKeyMask = $0020;

updateMask = $0040;
activeMask = $0100;
EveryEvent = SFFFF

Finally, the menu name is the name for the desk accessory which should appear in the Apple
menu of an application supporting its desk accessories.

As mentioned above, this information is specified with the compiler's $NDA directive. This
directive must appear as the first line of the program before the reserved word UNIT. For
example, the following directive specifies a service period of every 60 ticks (1 second), that all
events should be handled by the desk accessory and that the menu name for the desk accessory
is “Clock”.

Programming Q-2 New Desk Accessories

{SNDA 60 -1 Clock }
UNIT ClockNDA;

Note that the name of the unit, ClockNDA, is not the name used by Complete Pascal for the
name of the desk accessory which appears in the Apple menu. The name used is the one
specified in the $NDA compiler directive.

Thus, we arrive at the basic structure for a new desk accessory written in Complete Pascal.

{$SNDA 60 -1 Clock '}
UNIT ClockNDA;

INTERFACE

FUNCTION DAOpen: WindowPtr;

PROCEDURE DAClose;

PROCEDURE DAAction (Code: Integer; Param: LongInt);
PROCEDURE DAInit (Code: Integer) ;

IMPLEMENTATION

FUNCTION DAOpen: WindowPtr;
BEGIN

{ Code for DAOpen }
END;

PROCEDURE DAClose;
BEGIN

{ Code for DAClose }
END;

PROCEDURE DAAction {Code: Integer; Param: LongInt) ;
BEGIN

{ Code for DAAction }
END;

PROCEDURE DAInit (Code: Integer) ;
BEGIN

{ Code for DAInit }
END;

END.

The following four sections define each of the required desk accessory routines and outlines
each of their responsibilities.

The DAInit Procedure

The DAInit procedure is the very first and very last NDA procedure to be called by the Apple
IIGS Desk Manager. The DAInit procedure is first called when an application calls the
DeskStartUp procedure. At this time the NDA should perform any necessary initialization

Programming 9-3 New Desk Accessories

which is required. The DAInit procedure is last called when the DeskShutDown procedure is
called by the application, thus the NDA should perform any termination operations that are
necessary. Essentially, life begins and ends for a NDA with the DAInit procedure.

The DAlnit procedure has one integer parameter, Code, which indicates under which
circumstance the routine is being called. If Code = 0 then DAInit is being called due to a
DeskShutDown call, otherwise the call is due to a DeskStartUp call. The following example of a
DAInit procedure illustrates its basic structure.

PROCEDURE DAInit (Code: Integer);
{ The variable myWindOpen is global }
BEGIN
if Code = 0 then begin
{ A DeskShutDown Call, check that the DA window is closed }
end
else begin
{ a DeskStartUp Call, init the myWindOpen flag }
myWindOpen := false
end
END;

Since most NDA's have a window that is displayed when the desk accessory is opened, the NDA
must keep track of whether its window is open or not. The easiest way to do this is using a
global windOpen variable which holds the value true when the window is open and the value
false when the window is closed. Thus, when DAInit is called because of a DeskStartUp it
should set its global windOpen variable to false.

Note that it is possible for the DAInit procedure to be called to terminate itself due to a
DeskShutDown call when its window is still open. This can happen if a user quits an
application with a desk accessory still open on the desktop. Thus, it is imperative that your
DAlInit procedure check to be sure the window has been closed before allowing termination.

The DAOpen Function

The DAOpen function is called in order to open the desk accessory, which for most NDA's is the
time to create and display its window. A NDA is opened by a user by selecting its name from
the Apple menu. When a NDA is selected from the Apple menu, the application calls the Desk
Manager routine OpenNDA either explicitly or from TaskMaster.

If the NDA's window is not yet open when DAOpen is called then it should create the window
and specify it as a system window. A window is made a system window by calling the
Window Manager SetSysWindow routine. If DAOpen is called and its window is already
created then the DAOpen routine should ensure that its window is topmost. To make its window
topmost simply call the Window Manager routine SelectWindow. (DAOpen can be called when
its window is open and when the user selects its name more than once from the Apple menu.)
In either case, DAOpen should return, as its function result value, a pointer to its window.

Note that the NDA is told via the DAAction procedure (below) when to redraw the contents of the
NDA's window.

The following is a source code fragment showing the basic structure of the DAOpen function.

FUNCTION DAQOpen: WindowPtr;

Programming Q-4 New Desk Accessories

{ The variables myWindOpen, myWindPtr, and myWind are globals)
BEGIN

if myWindOpen then
SelectWindow (myWindPtr)

else begin

myWindOpen := true;

{ set up myWind for creating the window }
myWindPtr := NewWindow2(...);:
SetSysWindow (myWindPtr) ;

end;

DAOpen := myWindPtr;
END;

The DACIlose Procedure

The DAClose procedure is called in order to close the NDA's window. This procedure is
typically called when the user presses the mouse button in the close box of the NDA's window.
In order to prevent errors in situations when DAClose is called and the NDA's window is not
open the procedure should always check to be sure the window is open first.

PROCEDURE DAClose;
{ The variables myWindOpen and myWindPtr are globals }
BEGIN
if myWindOpen then begin

CloseWindow (myWindPtr) ;

myWindOpen := false;

end;
END;

The DAAction Procedure

The DAAction procedure is the routine which does all the work associated with the desk
accessory between the time that it has been opened until it is closed. The DAAction procedure
has two parameters — Code which indicates what type of action to perform and Param whose
meaning depends upon the Code parameter. There are nine potential values for the Code
parameter, each of which must be implemented by the DAAction procedure. These operations

are summarized in the following table together with the meaning of the Param parameter in
each case.

Table 9-1
Apple lIGS Toolbox

Action Description

DAEvent An event relevant to the desk accessory has occurred. Param points to the
EventRecord describing the event.

The DAEvent action indicates that the application detected an event which is

Programming Q-5 New Desk Accessories

associated with the desk accessory. The event could be a mouse-down in the
window’s content, an update, an activate, etc. When this action occurs, the NDA
should respond to each event type that the NDA supports.

DARun The number of ticks specified as the period for the NDA has elapsed since the last
DARun call. Param has no meaning.

DACursor This code is passed to a desk accessory if it is the frontmost window each time
SystemTask is called. The purpose is to allow the desk accessory to change the
cursor when it is over the NDA's window. Param has no meaning.

DAMenu This is passed to a desk accessory if an item from a system menu is selected.
LoWrd(Param) is the Menu ID and HiWrd(Param) is the Item ID.

DAUndo

DACut

DACopy

DAPaste

DAClear Each of these codes are passed to a desk accessory if the application determines that
the user has selected one of the standard edit commands from the Edit menu. The
DAAction procedure should assign the value of 1 in the Code parameter if the action
was handled, otherwise a value of 0 should be assigned.

The following source code fragment demonstrates the basic structure of a DAAction procedure.

PROCEDURE DAAction(Code: Integer; Param: Longint);
{ The variable myWindPtr is globals }
VAR currPort: GrafPortPtr;
BEGIN
case Code of
DAEvent: begin
case EventRecordPtr (param)”~.what of
mouseDownEvt: ;
mouseUpEvt : H
keyDownEvt: ;
autoKeyEvt: ;
updateEvt: ;
activateEvt: ;
end;
end;
DARun: begin
currPort := GetPort;
SetPort (myWindPtr) ;
SetPort (currPort) ;
end;
DACursor: begin
{ code to update the cursor }
end;
DAMenu: begin
{ code to respond to a menu selection }
end;
DAUndo: begin

Programming Q-6 New Desk Accessories

{ code to perform an Undo for the DA }
Code := 1;
end;

DACut: begin
| code to perform an Undo for the DA }
Code := 1;
end;

DACopy: begin
{ code to perform an Copy for the DA }
Code := 1;
end;

DAPaste: begin
{ code to perform an Paste for the DA }
Code := 1;
end;

DAClear: begin
{ code to perform an Clear for the DA }
Code := 1;
end;

end;

END;

Of particular interest in the DAAction procedure above is the code for the DARun action. Most
actions are only reported to the NDA when its window is topmost. However, this is not the case
for the DARun action. The DAAction procedure will always be called with the DARun action
code whenever the service period time has elapsed, regardless of whether or not its window is
topmost. Therefore, before the NDA executes any code which draws into its window it is
absolutely necessary to ensure that the window is the current grafport and to restore the previous
grafport before leaving the DAAction procedure. '

MM

Compiling a Desk Accessory

Desk accessories are compiled in the same way as applications are compiled. That is, you may
choose the To Memory, To Disk or Check Syntax commands from the Complete Pascal Compile
menu described in Chapter 3. When selecting the Check Syntax menu command, the compiling
results are the same as an application. However, when choosing To Memory or To Disk, the
compiler behaves differently for NDAs than for applications.

When choosing the To Memory command the Complete Pascal compiler is invoked to compile
and link the desk accessory. However, when the compiler successfully completes the
compilation it does not shut down the Complete Pascal environment and transfer control to the
desk accessory as it does for an application. But rather, the desk accessory is installed into
Complete Pascal's Apple menu below the installed desk accessories.

Note that three items are actually added to Complete Pascal's Apple menu. The first is a
dividing line which separates the new items from the existing items. The second item, “Open
NDA”, opens the desk accessory just as it would if the desk accessory had been installed. You
should select this item to open and test the desk accessory. The last item, “Remove NDA”,
removes the desk accessory from the Apple menu and then purges its compiled code from
memory. You should select this item when you have finished testing the desk accessory and
want to free up the memory it is using.

Programming Q-7 New Desk Accessories

Complete Pascal ensures that a desk accessory which is compiled to memory is operated on in
the exact same way as a normal installed desk accessory. The DAInit procedure is called
immediately after the desk accessory is compiled with Code <> 0 in order to emulate the call
which occurs when DeskStartUp is called for other desk accessories, and with Code = 0 in order
to emulate the DeskShutDown call. While the the desk accessory is open, the service period is
honored and all events related to the desk accessory are properly passed to it.

When choosing the To Disk compile option, Complete Pascal creates an Apple IIGS load file for
the desk accessory which is in the proper format for a NDA rather than an application. In
particular, the file is created with the GS/OS filetype of $B8 rather than $B3 for applications.
When compiling a desk accessory to disk, it is necessary to Install the desk accessory before it
can be used. This process is described in the following section.

Installing a Desk Accessory

Once you have successfully created and tested a desk accessory and would like for it to appear
in the Apple menu of all desktop applications you must install it. For an NDA to be installed, it
must reside in the SYSTEM:DESK.ACCS: directory of the boot disk so that desktop applications
supporting desk accessories may access it.

Installing a NDA consist of a simple three step process as outlined below.

* Choose the To Disk option from the Complete Pascal's Compile menu. This will compile
the NDA to disk as a GS/OS load file having the proper file type of $B8 (that is, it will not
be an application you can run from the Apple IIGS Program Launcher, but an NDA load
file).

* The Apple IIGS Desk Manager requires that all desk accessories be placed in the special
system directory SYSTEM:DESK.ACCS:. Thus, it is necessary to copy the desk accessory
load file into this directory. To do this it will be necessary to leave the Complete Pascal
environment and use the Finder to copy the file into this directory.

* Finally, the Apple IIGS must be rebooted. During the boot process of the Apple IIGS, the
special directory SYSTEM:DESK.ACCS: is searched for all currently installed desk
accessories. Since this process is only done at boot time it is necessary to reboot the
machine in order for it to recognize the new desk accessory.

Programming -8 New Desk Accessories

Chajpter 10

Classic Desk Accessories

A Classic Desk Accessories (CDA) is a “mini-application” accessible from the Apple IIGS
Classic Desk Accessory menu. A Classic Desk Accessory executes in a non-desktop, non-event
based environment. Unlike New Desk Accessories, a CDA takes full control of the machine
during what is basically an interrupt state while the CDA is in use. Classic desk accessories
are invoked by pressing the Open-Apple, Control and Escape keys simultaneously.

Complete Pascal provides direct support for implementing Classic Desk Accessories in Pascal.
In addition, the Complete Pascal Master Disk contains the source code for an example CDA
titled SHRDump.p.

Program Structure

The structure of a classic desk accessory's source code is quite different than that of a normal
Apple IIGS program (ie: Textbook and/or Desktop applications). In particular, a CDA does not
have a main program, but instead contains two special routines — StartUpCDA and
ShutDownCDA — which are called directly by the Apple IIGS Desk Manager at particular and
well defined times. In a sense, a CDA has two "main programs” which work together and
communicate by setting global variables. ;

Note that a CDA must have the two required routines identified above, and they must be spelled
exactly as defined — “StartUpCDA” and “ShutDownCDA”. If you fail to provide these routines,
Complete Pascal will report an error when you attempt to compile the CDA.

In addition to the two special routines that every CDA must have, the program must use the
compiler’s $CDA directive to indicate that the source code does in fact implement a Classic
Desk Accessory. The $CDA directive has one argument which is the name of the CDA as it
should appear in the Classic Desk Accessory menu. The format of the $CDA directive follows:

{$CDA menuName)
The location of the $CDA directive is also important. The $CDA directive must appear before
the reserved word UNIT for the directive to have any effect. An error will result if the directive

appears after the reserved word UNIT. For example:

{$CDA SHRDump }
UNIT MySHRDump;

Remember, the name of the program (MySHRDump) is NOT the name used by Complete Pascal
for the name of the desk accessory which appears in the Classic Desk Accessory menu. The

name used is the one specified in the $CDA compiler directive.

Thus, we arrive at the basic structure for a classic desk accessory written in Complete Pascal.

Programming 10-1 Classic Desk Accessories

{$CDA SHRDump)}
UNIT MySHRDump;

INTERFACE

PROCEDURE StartUpCDA;
PROCEDURE ShutDownCDA;

IMPLEMENTATION

PROCEDURE StartUpCDA;
BEGIN

{ Code for StartUpCDA }
END;

PROCEDURE ShutDownCDA;
BEGIN-

{ Code for ShutDownCDA }
END;

END.

The following two sections define each of the required classic desk accessory routines and
outlines each of the routine’s respective responsibilities.

The StartUpCDA Procedure

The StartUpCDA procedure has no parameters and is not required to perform any specific
operation or have any specific structure. The StartUpCDA procedure actually implements the
entire functionality of the CDA. The Desk Manager calls this procedure when the CDA’s name
is chosen from the Classic Desk Accessory menu. Unlike desktop applications or NDAs, a CDA
is not event-driven. Thus, the procedure is given complete control of the Apple IIGS to perform
its operations until it is complete.

PROCEDURE StartUpCDA;
BEGIN

{ Perform any and all actions for the CDA }
END;

The ShutDownCDA Function

The ShutDownCDA procedure, like the StartUpCDA procedure, has no parameters and is not
required to perform any specific operation or have any specific structure. The ShutDownCDA
procedure is called when a call to the Desk Manager DeskShutDown procedure has been made
by an application or when the Apple IIGS switches between GS/OS and ProDos8.

The ShutDownCDA procedure gives the CDA an opportunity to terminate any “tasks” the
StartUpCDA procedure my have initiated. Since most CDAs are very modal (ie. they take
control of the machine, perform their operation, and then quit), the ShutDownCDA procedure is
rarely used by a CDA.

Programming 10-2 Classic Desk Accessories

PROCEDURE ShutDownCDA;
BEGIN

{ Perform any terminating actions for the CDA }
END;

Compiling a Desk Accessory

Desk accessories are compiled using the To Disk or Check Syntax commands in the Compile
menu. However the To Memory command cannot be used. The To Memory command cannot
be used because Complete Pascal has no way to automatically install a CDA after it is compiled.

When choosing the To Disk compile option, Complete Pascal creates an Apple IIGS load file for
the desk accessory which is in the proper format for a CDA rather than an application. In
particular, the file is created with the GS/OS filetype of $B9 rather than $B3 for applications.
When compiling a desk accessory to disk, it is necessary to Install the desk accessory before it
can be used. Installed CDA’s is described in the following section.

ss st e - —_—

Installing a Desk Accessory

Once you have successfully created and tested a desk accessory and would like for it to appear
in the Apple menu of all desktop applications you must install it. For a CDA to be in stalled, it
must reside in the SYSTEM:DESK.ACCS: directory of the boot disk so that desktop applications
supporting desk accessories may access it.

Installing a CDA consist of a simple three step process as outlined below.

* Choose the To Disk option from Complete Pascal's Compile menu. This will compile the
CDA to disk as a GS/OS load file having the proper file type of $B9 (that is, it will not be
an application you can run from the Apple IIGS Program Launcher, but a CDA load file).

* The Apple IIGS Desk Manager requires that all desk accessories be placed in the special
system directory SYSTEM:DESK.ACCS:. Thus, it is necessary to copy the desk accessory
load file into this directory. To do this it will be necessary to exit the Complete Pascal
environment and use the Finder to copy the file into this directory.

* Finally, the Apple IIGS must be rebooted. During the boot process of the Apple IIGS, the
special directory SYSTEM:DESK.ACCS: is searched for all currently installed desk
accessories. Since this process is only done at boot time it is necessary to reboot the
machine in order for it to recognize the classic desk accessory.

Programming 10-3 Classic Desk Accessories

A e

adbmenetd adki at shanarses retasd ApedD e deill 5% odt
sy Bagmaiss viomed oF 84T buey ot YErnEe Hangem s

myas 2 3t saia AGLY p Heland yfissdfoneias & (oW

1
3
pos

. .)
Alrysron B8

B

fazaatl wdalegmed o

fngd naaedsn x ;
v adt dReTert g

i atit el B0 9
3

e
&

st molzesiioga e nedl wedies A
3

ERN

apiitesiigya 161 DHE ascl wediny 888 T wopudalil Bl
Apat odd Hufeal of cipazstas 51 8.
seniidt adk i hodins

1% gedled prosessy datk ot eeoz

aakives e

sesqgaa w5 xg sit] blusw b yamsema Janh 2 Fdoas Droe Setneys viek

L wntleisal af af A0 & w2 Heseni jaom soy saniionsogs addssl

it $ailt oz daib dood 58 T wohnil TIARES METEVE
» H s

e 5y

»

- walnd bandive 28 4255078 eade gyl vigais g Hedmnen

oui¥ wilgmoy Hiw sUlT o Eqral) sTpmund stslgrral) @l aslivs it
ot fom Tk 3 ot guils) GE2 T sig §11) weipmry o1t wirivad o heol SOWL

Cuir hpe? AOD & tod vaduous] msteerd SOH shands wl wnfl st 048 W

lasmaize wdd oi beakiy o zobvansuson Jesh Hay Judd snriupst ﬁwtﬁé o
penznsons fash skl Yoo 6f redeesen 2 M 2ud T BOLA AT]
trsen stalomiolh adk Sixs o) wiksesosn of lbw ¥ aidt =

' aeerih aldd edat of el e

T RNeise b &5
anbaid aat S bk !

st SD0T slegyA oifs Yo saedey Jood ads guiad] tabedin ad dons Gl B wiln
daah Bsviafusi yitasriud fx 1o} hadrisss 1 BD0A FORLMETEYE « Pl
sy Aondns 6 yreasesen =i ¥ ssep foud 1o sl vhee 22 fy matdd ¢ i

Tt S ~ Classic Desk Accessories

Chajpter 11

Tokens

Lexical tokens are the smallest units of text in a Pascal program. Tokens in Pascal are
classified into special-symbols, identifiers, directives, unsigned-numbers, labels and character-
strings. Aside from character-strings, the representation of any letter (upper-case, lower-case,
font, etc.) is insignificant to the meaning of a program.

The text of a Pascal program consists of tokens and separators, where a separator is either a
blank (the space or tab characters) or a comment. Two adjacent tokens must be separated by

one or more separators if each token is an identifier, number, or word-symbol. A word-symbol
is a special case of a special-symbol.

———-- — =
Special Symbols

Special-symbols are tokens having special meanings and are used to delimit the syntactic units
of the language.

The following single characters are special-symbols:
+—*/=<>[].,():;“@{l
The following character-pairs are special-symbols:

<> <= >= 1= (* *)

The following word-symbols (or reserved-words) are special-symbols:

and else interface procedure unit
array end label program until
begin file mod record uses
body for nil repeat var
case function not set while
const goto of string with
div if or then
do implementation otherwise to
downto in packed type

Identifiers

Identifiers are names used to denote constants, types, variables, procedures, functions,
programs, units and fields in records. An identifier can be of any length so long as it fits on a
single line, however, only the first 255 characters are significant. Corresponding upper- and

Language Reference 111 Tokens

lower-case letters are equivalent in identifiers. No identifier can have the same spelling as a
word-symbol. Identifiers consist of letters, digits and underscore characters, except for the first
character of the identifier, which must be either a letter or underscore character.

identifier
i bl letter E

Examples of identifiers in Complete Pascal:

I MaxInt Writeln A very long_identifier _Datalnmit

Directives

Directives are identifiers that have special meanings in the context of a procedure declaration
or function declaration. They can otherwise be used as identifiers in all other contexts.

The directives available in Complete Pascal are:

EXTERNAL FORWARD INLINE TOOL

Further information on the EXTERNAL, FORWARD, INLINE and TOOL directives may be found in
Chapter 17.

Numbers

Numbers are unsigned-integers in decimal or hexadecimal (hexadecimal integers have the $
character as a prefix) notation representing constants of the data types Integer and LongInt.
Unsigned-reals in decimal notation represent constants of the data type Extended. The letter
'E' or 'e' preceding a scale factor means times ten to the power of.

digit sequence (—’-—j—>
hex digit sequence mj_;

| S

Language Reference 11-2

Tokens

unsigned number | jl

digit-sequence
hex-digit-sequence
unsigned-real
—b[digit-sequence j@—b‘ digit-sequence I
L reemesy/

\

>

real-type number

=)

N -
digit digit _j
> sequence sequence
3
Examples of Numbers:
1 +100 -0.1 $SAQ05D 5.329E4 NaN (1) Inf

Unless explicitly assigned to a variable of another type, any number written with a decimal
point or exponent is stored as an extended real number. All other numbers are written in the
smallest type possible (Integer or LongInt). For further information on numeric types, see
Chapter 13.

%
Labels

A label is a one to four digit-sequence whose value may be integer in the range 0..9999. Leading
zeros in a label are insignificant, e.g. the labels I and 0001 are considered equivalent. Labels
are used with Goto statements, described in Chapter 16.

Character-Strings

A character-string is a sequence of zero or more printing characters all on the same line in a

Language Reference 11-3 Tokens

program and enclosed by apostrophes. The maximum number of characters that can be in a
character-string is 255. A character-string with nothing between the apostrophes denotes a null-

string value.
character-string >© O‘
[—{ string-character ‘4-]

string-character
£ 1 #1 any printable char except O or CR 7——»

A character-string represents a value of a string type. As a string type, a character-string is
compatible not only with other string types, but also char types and packed string types.

All string-type values have a length attribute. In the case of a character-string, the length is
fixed; it is equal to the actual number of characters in the string as enclosed within
apostrophes. A pair of adjacent apostrophes within a character-string is regarded as a single
apostrophe and thus counts as a single character in the string's length. A quoted, single
character constant is compatible with both character strings and the predefined data type Char.
Examples of character-strings:

IAI I:I ‘Pascal‘ IDont lt Worry!l Tt Tr

Constant Declarations

A constant-declaration defines an identifier to denote a constant, within the block that contains
the declaration. A constant identifier may not be included in its own declaration.

[identifier |—#{(=5)—#{ constant |—+(;)

>[constant-identifier

signed-number }

constant-declaration

constant

character-string _F >

A signed-number may be an integer or real number.

Language Reference 11-4 Tokens

Comments and Compiler Directives
The constructs:

[any text not containing right-brate }
(* any text not containing star-right-parenthesis *)

are called comments and are ignored by the compiler.

The substitution of a blank for a comment or a comment for a blank does not alter the meaning
of the program. That is, a comment, as a separator, may appear anywhere in a program where
a blank may appear.

Comments of the form ...} may be nested within comments of the form (* ... *), and vice versa,
however, no other nesting of comments is available. The occurrence of the special symbol }
within a {...] comment, or the special symbol *) within a (* ... *) comment always terminates
the comment.

A compiler directive is a comment that contains a $ (dollar-sign) character immediately after
the { or (* that begins a comment. The $ character is then followed by one or more letters which
represent a specific compiler directive. Compiler directives serve to affect the behavior of the
compiler. Each of the compiler directives and their affects are described in Appendix B.

Examples of compiler directives:

{$J+} (*$CSeg Printing *)

Language Reference 11-5 Tokens

it

soviioen(

fuds giEmeRiany
For o aliag

g

dmemmen £ d

seer sxiv bas 0F i v wddte a.‘.ﬂ""“‘ﬂ »er e

[{adoygr Sxionte **ri‘ to asaETESe rw"f‘
sobgarerisd syewls Joaunaees 8 L

wafig wlsnibsmas
daie ayedinl o

; wisils tagiersiishy &= m 3
it 5 s \‘ry ‘»‘bﬁ-*gﬁfm, :T:'H-& st ,;,,»\ R '. :

fasBa 8 g gavESEin D
54t Daciiyszed 50 ?t‘fpﬁt“‘ sl

E whaegy

is Ta qudvnden =43

k

et ?ﬁa s § S FHATENYES £

fomaimel B8,

LS

e ey Tt

Chapter 12

Blocks, Scope and Activations

Definition of a Block

The block is the fundamental construct for Pascal source code. A block consists of a
declaration part and a statement part. The declaration part consists of zero or more
declarations which may appear in any order. The statement part is a compound statement and
follows the declarations. Every block is part of a procedure declaration, a function declaration,
a program, or a unit. All identifiers and labels that are declared in the declaration part of a
block are local to that block. The program block contains all other blocks; therefore,
declarations in the program block are termed global.

block jl compound-Sfﬂlﬁm‘-"‘?I_’
declaration
oo label-declaration-part | — n
constant-declaration-part | ~N
\.p“ype-declmation—part_}— e
[variable-declaration-part |- ™

%mcdme—and-funcﬁon-declaraﬁon-pan]——‘—»

The label declaration part declares labels that mark statements in the corresponding statement
part. Each label must mark exactly one statement in the statement part.

..

The constant declaration part contains constant declarations local to the block. See Chapter 11 for
more details.

label-declaration-part

constant-declaration-part

consmrdmlamﬁorﬁ»

Language Reference 12-1 Blocks, Scope and Activation

The type declaration part contains type decfarations (see Chapter 13) local to the block.

type-declaration-part

type type-declaration fT—v

The variable declaration part contains variable declarations (see Chapter 14) local to the block.

variable-declaration-part

variable-declaration IT—b

The procedure and function declaration part contains all procedure and function declarations
local to the block (see Chapter 17).

procedure-and-function-declaration-part
procedure-declaration

function-declaration

Rules of Scope

Prior to any use of an identifier or label, it must be declared. Once declared, however, its use is
valid within a defined range of the program. This range is called the scope of the declaration.

Scope of a Declaration

The appearance of an identifier or label in a declaration defines the identifier or label. That is,
the identifier or label is associated with its meaning at the point of declaration. All other applied
occurrences of the identifier or label must be within the scope of this declaration. The scope of a
declaration is the block that contains the declaration, and all blocks enclosed by that block
except as explained in the sections which follow.

Redeclaration in an Enclosed Block

Suppose that outer is a block, and that inner is another block declared within outer. If an
identifier declared in block outer has the same spelling as an identifier declared in block
inner, then block inner and all blocks enclosed by inner are excluded from the scope of the
declaration in block outer.

Language Reference 12-2 Blocks, Scope and Activation

Position of Declaration Within Its Block

The declaration of an identifier or label must precede all applied occurrences of that identifier
or label in the program text. That is, identifiers and labels cannot be used until they are
declared.

There is one exception to this rule. In a type declaration, the domain type of a pointer type can
be an identifier that has not yet been declared. However, the forward referenced identifier must
be declared somewhere in the same declaration part as the pointer type.

Redeclaration Within a Block

An identifier or label cannot be declared more than once within a block, unless it is declared
within a contained block, or if it appears in the field-list of a record declaration.

A record field identifier is declared within a record type. It is meaningful only in combination
with a reference to a variable of that record type. Therefore, a field identifier can be declared
within the same block as another identifier with the same spelling, as long as it has not been
declared previously in the same field-list. An identifier that has been declared can be used
again as a field identifier in the same block.

Identifiers of Standard Objects

Complete Pascal provides a set of standard (predeclared) constants, types, procedures, and
functions that behave as if they were declared in a block that contains the entire program.
Their scope is the entire program or unit (See Chapter 20).

Scope of Unit Interface Identifiers

The identifiers declared within the unit interface part of a unit are provided to a program or
unit which specifies the unit name in a Uses clause. These identifiers act as if they were
declared in the same block where the Uses clause appears.

R I

Activations

The execution of a block is referred to as an activation of a block. At any given time, a block
can have zero or more activations. If a block is not currently being executed, then it has zero
activations. If a block is being executed, then there is at least one activation. When a block has
more than one activation, it is said to be recursive.

Language Reference 12-3 Blocks, Scope and Activation

s ks sur syt o :
e s S
" e
-aﬁasgmb & ¥ osesiaw . & s
fffl"’%"f‘*ﬂ‘? 3’51~L2-.37'= st ﬁri-‘n,.- ‘ o
aernaidores al vino Iitgoinsas 21 4L seegd braony aabiliae beeel ‘
beviiaab sd nes Ieiiashi sl 2 srodeisdl o r& 7 ke Fral I Bl
asad toa seff 3 oze gaol 2a woiifaes smee edd 2ihe et sl o wfwm ss 4,,«..
fes an oy brisbal aest o "’3‘ tedt weidiashe b Zall-al sroie S
Sogid gres % i

bos earshasvin woted sduatenos (hewslsshuwy | O
rETROTS STHEE st sataiucs Sarid ;{.:saki s *‘rz h@rw@ﬁa.

: o] e

10 mETgerg & st habivig oty Yerw ﬁ’faf m e :
syow vadt W ore ivs apvefithiel deenl swwed ssald A oni soing
Prnegs ok aseld o o

O

iz ! N
sdnold B il aeviy (re JA ofaid ¢ Y nedinuithe o8 28 of vl 9 2f vl & s doean
oras med 3k meils haiwaaks aiad (st son 3 ook ;

a4 9hE d=ania fiy !1—*%»&.? P'ﬁﬂf
‘ TEI

sieedaw

aaff dvebd & ool

Blocks, Scope and Activation

Chapter 13
Types

When a variable is declared, its type must be given. The type of a variable determines the set
of values that the variable can assume and the operations that can be performed upon it. A type
declaration introduces an identifier to denote a type.

[deniier () — e |+

Several predefined types exist in Complete Pascal and are discussed in detail below. There

also exists a capability to create user-defined types. User-defined types are also discussed in
detail in this chapter.

- 3 m AT

L&l structured-type |- ~
> |- —
—>[oo |- ~
;+| object-type ,L >

When an identifier occurs on the left side of a type declaration, it is declared as a type
identifier for the block in which the type declaration occurs. A type identifier's scope does not
include itself, except for pointer types.

type-declaration

Simple Types

All the simple types define ordered sets of values.

—»{ ordinal-type ’ﬁ
Lﬁl real-type ’L >
An integer type identifier is one of the standard identifiers Integer or LongInt. A real type
identifier is one of the standard identifiers Real, Single, Double, Comp or Extended. The

type identifier Comp may also be spelled as Computational. See Chapter 11 on how to denote
constant integer and real type values.

simple-type

Language Reference 13-1 Types

Ordinal Types
Ordinal types are the subset of the simple types that have the following special characteristics:

* The possible values of an ordinal type are an ordered set and every value has an
ordinality which is an integral value. Except for integer types, the first value of every
ordinal type has ordinality 0, the next has ordinality 1, ete. For integer types, the
ordinality of a value is the value itself. Every value of an ordinal type except the first
has a predecessor based on the ordering of the type, and every value of an ordinal type
except the last has a successor based on the ordering of the type.

* The standard functions ord and ord4 can be applied to any value of an ordinal type, and
it returns the ordinality of the value.

» The standard function pred can be applied to any value of an ordinal type, and it returns
the ordinality of the predecessor of the value.

* The standard function succ can be applied to any value of an ordinal type, and it returns
the ordinality of the successor of the value.

Complete Pascal has four predefined ordinal types: Integer, LongInt, Boolean, and Char.
In addition, there are two classes of user defined ordinal types: enumerated types and subrange
types.

ordinal-type

b-l subrange-type J'

enumerated-type }

ordinal-type-identifier l -

Each class of ordinal types is discussed below.

Standard Ordinal Types

Integer Integer type values are a subset of the whole numbers. An integer type variable
can have a value within the range -maxint-1..maxint, that is, -32,768 to 32,767.
The standard Integer constant maxint is defined as 32,767. The range
encompasses 16-bit, two's complement integers.

LongInt Longlnt type values are also a subset of the whole numbers. A Longint type
variable can have a value within the range -maxlongint-1..maxlongint. The
standard LongInt constant maxlongint is defined as 2,147,483,647. The range
encompasses the 32-bit, two's complement integers.

Arithmetic operations with integer type operands use Integer (16-bit) or LongInt
(32-bit) precision according to the following rules:

* Integer constants in the range of type Integer are considered to be of type
Integer. Other integer constants are considered to be of type LongInt.

Language Reference 13-2 Types

* When both operands of an operator (or the single operand of a unary operator)
are of type Integer, 16-bit precision is used, and the result is of type Integer
(truncated to 16-bits if necessary). Similarly, if both operands are of type
LongInt, 32-bit precision is used, and the result is of type LongInt.

* When one operand is of type LongInt, and the other is of type Integer, the
Integer operand is first converted to LongInt, 32-bit precision is used for the
operator, and the result is of type LongInt.

* The expression on the right side of an assignment statement is evaluated
independently of the left side.

An Integer value may be explicitly converted to a LongInt by using the standard
function ord4 described in Chapter 20.

Boolean Boolean type values are denoted by the predefined constant identifiers false and
true, where ord(false)=0, and ord(true)=1. Values of type Boolean are
required by the Pascal If statement, Repeat statement, and While statement.

Char The Char type has a set of values that are the ASCII characters. The function call
0rd (Ch), where Ch is a Char value, returns the ordinality of Ch. A string constant
of length 1 may be used to denote a constant Char value. Any value of type Char
may be generated via the standard function Chr.

Enumerated Types

An enumerated type defines an ordered set of values by enumerating a collection of identifiers
that denote these values. The ordering of these values is determined by the sequence in which
the identifiers are listed. That is, for two enumeration identifiers x and ¥, if x precedes y then
the ordinal value of x is less than the ordinal value of y.

d-
enumerated-type ,@ hl identifier-list _} @ pes

When an identifier occurs within the identifier list of an enumerated type, it is declared as a
constant for the block in which the enumerated type is declared. The type of this constant is the
enumerated type in which it is declared. The ordinality of an enumerated constant is its
position in the identifier list, where the ordinality of the first enumerated constant in the list is
always 0.

Examples of enumerated types:

suit = (club, diamond, heart, spade)
color = (red, yellow, green, blue)

Given these declarations, yellow is an enumerated constant of type color with ordinality 1,
spade is an enumerated constant of type suit with ordinality 3, and so on. For the above

definitions of suit and color, the following relationships hold:

ord{club) < ord(diamond)
ord (green) > ord(red)

Language Reference 13-3 Types

pred(diamond) = club
succ (green) = blue

Subrange Types

A subrange type defines a subset of the values of some ordinal type called the host type. The
definition of a subrange type specifies the smallest and the largest value in the subrange.

o[|— () e }—>

Both constants in a subrange type must be of the same ordinal type. Subrange types of the form
a..b require that a is less than or equal to b.

subrange-type

A variable of subrange type possesses all the properties of variables of the host type, with the
restriction that its value must always be one of the values in the range defined by the subrange
type.

Examples of subrange types:
1..100

-128..127
spade. .heart

Real Types

The real types have sets of values that are subsets of the real numbers, which can be represented
in floating point notation using a fixed number of digits. In general, a floating point notation
of a value n is comprised of a set of three values m, b, and e such that m *b® = n, where b is
always 2 and both m and e are integral values within the real type's range. These m and e
values further prescribe the real types's range and precision.

There are four standard real types in Complete Pascal: Single, Double, Comp and
Extended. In addition, the standard identifier Real is defined to be equivalent to the type
Single. The real types differ in the range and precision of values they can represent.

Table 13-1

Real Types

Type ldentifier Memory Size Magnitude
Real, Single 4 bytes approx 1.4E-45to3.4E38
Double 8 bytes approx 5.0E-324 to 1.7E308
Extended 10 bytes approx 1.9E-4951 to 1.1E4932

Comp, Computational 8 bytes approx -9.2E18 to 9.2E18
Real type variables may have the possible values:

+ TFinite values (a subset of the mathematical real numbers). Note that the value zero has a
sign associated with it (i.e. zero may be either positive or negative).

Language Reference 13-4 Types

* Infinite values, +INF and -INF, which result from overflow of a real number storage type
and division of a finite number by zero.

* NaNs (Not a Number) represent the results of operations which have no mathematical
interpretation, such as the result of multiplying *ee by zero is a NaN. NaNs are

represented in textual format as NaN(x), where x is an integer that defines the source of
the NaN.

As defined in Table 13-1, the four real types differ in the range and precision of values and
storage space required.

* Single (or Real) types require 4 bytes of storage and their magnitude ranges from
approximately 1.401298464E-45 to 30402823466E38. Precision of Single values is 7 or 8
digits.

* Double types require 8 bytes of storage and their magnitude ranges from approximately
5.0E-324 to 1.7E4932. Precision of Double values is 15 or 16 digits.

* Extended types require 10 bytes of storage and their magnitude ranges from
approximately 1.9E-4951 to 1.1E4932. Precision of Extended values is 19 or 20 digits.

¢ Comp, or Computational, types require 8 bytes of storgge and their range of values is
approximately -9.2E18 to +9.2E18. The exact range is -263+1 to 263.1 (263 is treated as a
NaN). comp type variables are used for fixed-point values, where the decimal point is
placed by the application. Although Comp types may store only whole numbers, they
should not be considered extensions of integer types since Comp values are converted to
Extended before being used in caleulations.

Real types provided in Complete Pascal are implemented using the Apple IIGS Standard Apple
Numeric Environment (SANE) package. Real type operations result in code which calls SAN E.
Additional, real type operations are available in the interface file SANE.p. For complete
information about SANE, see the Apple Numerics Manual.

* Note: All real values are converted to the type Extended by the compiler before
calculations are performed so that maximum accuracy can be obtained. Thus,
calculations on data stored as the type Extended result in faster and more compact code
than calculations on data stored in other representations. The smaller representations
should be used when data storage space is more critical than execution speed.

%ﬂ
Structured Types

A structured-type, characterized by its structuring method and by its component-type(s), holds
more than one value. The type of a component may itself be structured and there is no inherent
limit on the number of levels to which types can be structured.

Languoge Reference 13-5 Types

structured type
: \
s o |
\-D-l file type —

\—! record type |

\ » structured type id |/

The use of the word PACKED in the declaration of a structured type indicates that storage
organization of all values of that type should be compressed to economize storage, even if this
causes the access of the component of a variable of this type to be less efficient.

Structured types may contain other structured types in its definition. However, use of the word
PACKED only affects the representation of one level of the structured type in which it occurs.
Although the word PACKED can be used when declaring a structured type, PACKED only affects the
storage of record and array types. Note that you cannot use components of packed variables as
actual variable parameters to procedures and functions.

< Note: Complete Pascal only supports packing to byte boundaries. Bit level packing is not
implemented. For more information regarding storage allocation and data
representation see Appendix D, Inside Complete Pascal.

Array Types

An array type defines a structured type which has a fixed number of components that are all of
the same type.

array-type

(amy)-+(0 D>+ 1>
O

»| ordinal-type |——>

The type that follows the word of is the component type of the array. The number of elements is
determined by one or more index types, one for each dimension of the array. The index type
must be an ordinal type. There is no inherent limit on the number of dimensions an array type
can have and index types of multi-dimensional arrays need not be of the same type.

index-type

<+ Note: Complete Pascal restricts the size of an array variable to 32,767 bytes of storage.

An array type of the form

packed array [1..n] of Char

Language Reference 136 Types

is referred to as a packed string type. A packed string type has certain properties not shared by
other array types (see "Identical and Compatible Types" later in this chapter).

Examples of array types:
array [1..100] of Real
packed array [color] of Boolean
array [Boolean] of Integer

array[low..high] of Boolean

If the component type of an array is also an array, then the resulting type can be considered
either an array of arrays or as a single multi-dimensional array. For example,

array [Boolean] of array [0 .. MaxSize] of Real

is equivalent to
array [Boolean , 0 .. MaxSize] of Real

A component of an array may be accessed by giving the index(es) of the component inside
brackets immediately following the array identifier. Multiple sets of brackets may be used.
For example, given the declaration

var anArray: array [1 .. MaxLength , 1 .. MaxWidth] of Real;

the expressions

anArray([1l,1]
anArray[1][1]

both access the same component, the first element of the first subarray of the array anArray.
Note that

anArray[2]

accesses the entire second subarray.

Record Types

A record type consists of a fixed collection of components called fields, each of which may be a
different type. For each component, the record type specifies the type of the field and an
identifier that names it.

field-list

variant-part

Language Reference 13-7 Types

Jfixed-part

[{_ﬁe]d-declarau’on]—)——>
O

> identifier-list ()

The fixed part of a record type specifies a field list that is always accessible in a variable of the
record type, giving an identifier and a type for each field. Each of these fields contains data
that is always accessed in the same way.

[field-declaration

Example of a record type

record
year: Integer;
month: 1..12;
day: 1:..31z
end

A variant part consists of several alternative field lists which are allocated in the same
memory space of a record variable, thus allowing data in this space to be accessed in more than
one way. Each of the lists of fields is called a variant. The variants "overlay” each other in
memory, and all fields of all variants are accessible at all times.

< Note: Complete Pascal restricts the size of a record variable to 32,767 bytes of storage.

variant-part

_p(case)Tl identifier
variant

o}~ +()—>(O—>[T (D
O+

tag-field-type
B il ol g e e ey MO

Each variant is introduced by one or more constants. All of the constants must be distinct and
must be of an ordinal type that is compatible with the tag field type. The variant part allows for
an optional identifier that denotes a tag field. If a tag field is present, it is considered a field of
the previous fixed part.

Examples of record types with variants:

record
name, firstName: string ([80];
age: 0..99;
case married: Boolean of
true: (spousesName: string [80]):

Language Reference 13-8 Types

false: ()

end
record
X,¥: Real;
case kind: figure of
rectangle: (height,width: Real):;
triangle: (sidel, side2,angle: Real):
circle: (radius: Real):
end
Set Types

A set type has a range of values that is the powerset of some ordinal type, called the base type.
Each possible value of a set type is a subset of the possible values of the base type.

s D) —+(D— oo}

“ Note: Complete Pascal restricts the base type to not more than 256 possible values. If the
base type is a subrange of integer, it must be in the limits 0..255. For more information
regarding storage allocation and data representation see Appendix D.

Every set type can hold the value | 1, called the empiy set.
Example of set type:

Set of Char
Set of 0 .. 31
set of (red, green, blue)

File Types

A file type is a structured type consisting of a linear sequence of components that are all of one
type, the component type. The component type may be any type that is not a file type or a
structured type that contains a file type component. The number of components is not fixed by
the file type declaration.

The standard file type Text denotes a special packed file of characters organized into lines.
Files of type Text are supported by special I/0 procedures discussed in Chapter 19.

“ Note: Due to the representations of types in Complete Pascal, a file of Char accesses file
components which are 16-bit words, whereas a packed file of Char (or Text) accesses file
components which are 8-bit bytes. For more information regarding storage allocation
and data representation see Appendix D.

Example of file type:

Language Reference 139 Types

IntFile = file of Integer

Complete Pascal allows file variables to be passed to procedures and functions only as variable
parameters.

Chapter 19 presents a detailed discussion of files and operations which may be performed on the
different types of files possible.

String Types

A string type value is a sequence of characters with a dynamic length attribute and a constant
size attribute from 1 to 255. The constant size is a maximum limit on the length of any value of
this type. If an explicit size attribute is not given for a string type, then it is given a size of 255
by default.

The current value of the length attribute of a string type value is returned by the standard
function Length. A nullstring is a string type value with a dynamic length of zero.

string-type size-attribute

string-type-identifier |

size-attribute

b{ unsigned-integer j -

The ordering relationship between any two string values is determined by lexical comparison
based on the ordering relationship between character values in corresponding positions in the
two strings. When the two strings are of unequal lengths, each character in the longer string
that does not correspond to a character in the shorter one compares "higher"; thus the string
value 'attribute’ is greater than the value 'at’. Two strings must always have the same lengths
to be equal.

A string is stored as a one-byte length field followed by the characters in the string. Therefore,
the length of the string can be changed by reassigning the zeroeth character as follows:

aString[0] := chr(5):

Note that this does not alter the contents of any part of the string past the zeroeth character, it
only changes the length attribute of the string.

Operators applicable to strings are specified in Chapter 15. Standard procedures and functions
for manipulating strings are described in Chapter 20.

Example of string types:
string[50]

string[255]
string

Language Reference 13-10 Types

Pointer Types

A pointer type defines a set of values that point to dynamic variables of a specified type called the
base type. A pointer type variable contains the memory address of a dynamic variable.

inter-
el b@ type-identifier

If the base type is an undeclared identifier, it must be declared in the same type declaration part
as the pointer type.

You can assign a value to a pointer variable with the New procedure, the @ operator, or the
Pointer function. The New procedure allocates a new memory area in the heap for a dynamic
variable and stores the address of that area of memory in the pointer value. The @ operator
directs the pointer variable to the memory area containing any existing variable. The Pointer
function points the pointer variable to a specific memory address. The Pointer function and
the @ operator avoid Complete Pascal's type-checking safeguards and should be used with
caution. New and Pointer are discussed in Chapter 20.

Chapter 14 discusses accessing a variable pointed to by pointers.

The predeclared constant identifier Nil represents a pointer valued constant that is a possible
value of every pointer type. Conceptually, Nil is a pointer that does not point to anything.

Example of pointer types:
“LongInt;

“Char;
~String[32];

Identical and Compatible Types

Two types may or may not be identical, and identity is required in some contexts. Other times,
even if not identical, two types need only be compatible, and other times assignment
compatibility is required.

Type Identity

There are three levels of type compatibility in Pascal:

* Two types may be the same. Two types are the same when they are declared using the
same type identifier or when their definitions can be traced back to the same type
identifier. ‘

¢ Two types may be compatible.

* Two types may be assignment compatible.

Language Reference 13-11 Types

Compatibility and assignment compatibility. are discussed below.
Identical types are required only in the following contexts:

* Between actual and formal variable parameters.

» Between actual and formal result types of functional parameters.

s Between actual and formal value and variable parameters within parameter lists of
procedural or functional parameters

* When a one-dimensional PACKED ARRAY OF Char is being compared with another via a
relational operator.

Parameters are discussed in Chapter 17.

Assignment compatibility is usually required in other contexts, although simple compatibility
is occasionally sufficient.

Compatibility of Types
Compatibility is required in most contexts where two or more entities are used together (i.e. in
expressions, and FOR statement control variables and their initial and final values, etc.).
Specific instances where type compatibility is required are noted elsewhere in this manual.
Two types are compatible if any of the following are true:

* Both are identical.

* One is a subrange of the other.

* Both are subranges of identical types.

* Both types are set types with compatible base types.

* Both are string types.

* Both are of type packed string type and have the same number of components.

Assignment Compatibility
Assignment compatibility is required whenever a value is assigned to something, either
explicitly (as in an assignment statement) or implicitly (as in passing value parameters).

A value of type to is assignment compatible with a type t; if any of the following are true:

* t; and tg are identical types and neither is a file type nor a structured type that contains a
file type component.

* t;is areal type and ty is an integer type.

Language Reference 13-12 Types

* tj and tg are compatible ordinal types, and the value of type tg is within the range of
possible values of tq.

* t and tg are compatible set types, and all the members of the value of type ty are within
the range of possible values of the base type of t;.

* tland t2 are both of type PACKED ARRAY OF Char.

* tj1s a string type or a Char type and to is a string type of a quoted character constant.

* t; is a packed string type with n components and the value of type tg is a string type of a
quoted character constant and has a length of n. This is not true, however, if n=1,

because a string constant of length 1 is a quoted character constant.

It is an error if assignment compatibility is required and none of the above is true.

Language Reference 13-13 Types

Language Reference 13-14 Types

Chajpter 14

Variables

Variable Declarations

A variable declaration is used to allocate and associate a piece of storage with a particular type.
A variable is an entity in which value(s) are stored. Each identifier in an identifier-list of a
variable declaration denotes a distinet variable possessing the type of the variable declaration.

—s{ eniiertis () (i

The occurrence of an identifier within the identifier list of a variable declaration declares it as
a variable identifier for the block in which the declaration occurs. The variable can then be
referred to throughout the block, unless the identifier is redeclared in an enclosed block.
Redeclaration creates a new variable using the same identifier, without affecting the value of
the original variable.

variable-declaration

All variables have undefined values with the start of activation of its containing block. The
main program block is activated when the program is executed. The procedure and function
blocks are activated each time the procedure or function is called.

Variables declared in procedure or function blocks can be no larger than 32K bytes.

Examples of variable declarations:

XeYrZ: real;

€3 color;

Pl,p2: person;

today: date;

operator: (plus, minus, times);
digit: Bien9s

coord: polar;

done,error: boolean

Variable References

A variable reference denotes either an entire variable, a component of a structured or string
type variable, a dynamic-variable pointed to by a pointer type variable, or a variable reached
through a function call. Syntax for the various kinds of qualifiers used for variable access is
given here.

Language Reference 14-1 Variables

variable-reference

identifier

-

Qualifiers

A variable reference is a variable identifier followed by zero or more qualifiers which modify
the meaning of the variable reference.

qualifier

index

field-designator j
20} -

There can be zero or more qualifiers following a variable identifier or function call, depending
on the levels of structure in the variable and which particular level to be accessed. For
example, given the following declaration

var aMultiDimArray: array [1..100] of array[l1..100)] of Integer
the following references are all valid expressions.

aMultiDimArray

aMultiDimArray([1]

aMultiDimArray([1, 1]

The first example accesses the entire array, the second example the entire first subarray. The
third example access just the first component of the first subarray.

Arrays, Strings, and Indexes

A specific component of an array variable is denoted by a variable reference that refers to the
array variable, followed by an index qualifier that specifies the component. A specific
character within a string variable is denoted by a variable reference that refers to the string
variable, followed by an index qualifier that specifies the character position.

i b@ expression b@ >
DY

Examples of indexed arrays:

m[i, 7]
ali-#"51

Language Reference 14-2 Variables

Each expression in the index selects a component in the corresponding dimension of the array.
The number of expressions must not exceed the number of index types in the array declaration.
The index expression must be assignment compatible with the corresponding index type.

When indexing a multi-dimension array, multiple indexes or multiple expressions within an
index can be used interchangeably. For example,

MyMatrix [i] [j]
has the same meaning as
MyMatrix [i,5]

A string variable can be indexed with a single index expression, whose value must be within
the range 0..n, where n is the declared size of the string. Indexing a string accesses one
character of the string value. The first character of a string variable (index 0) contains the
dynamic length of the string.

In general, a value cannot be assigned to an individual character position in a string unless a
character previously occupied that position. That is, if the dynamic length of the string is less
than the individual character position being manipulated, the operation will leave the string
unchanged. Values may not be assigned to character positions beyond the current length of the
string.

Predefined procedures for string manipulation are described in Chapter 20.

Records and Field Designators

A specific field of a record variable is denoted by a variable reference that refers to the record
variable, followed by a field designator that specifies the field.

teld-designator
O

Examples of field designators:

today.year
pP2”.pregnant

It is an error to access a variant component of a record that is not active. See Chapter 13 for a
discussion on variant records.

The record variable identifier and period (.) may be omitted inside a with statement that lists
the record variable identifier. See Chapter 16 for a description of the with statement.

Language Reference 14-3 Variables

Pointers and Dynamic Variables
The value of a pointer variable is either Nil, or a value that points to a dynamic variable.

The dynamic variable pointed to by a pointer variable is referenced by writing the pointer
symbol # after the pointer variable.

Dynamic variables and pointer values that point to them are created by the standard procedure
New. Additionally, the @ operator and the standard procedure Pointer may be used to create

pointer values that are not in fact pointers to dynamic variables, but are treated as such.

The constant Nil does not point to any variable. It is an error if you access a dynamic variable
when the pointer's value is Nil or undefined.

Exﬁmples of references to dynamic variables:

pl®
pl”.sibling”

Variable Type Casts

A variable reference of one type can be changed into a variable reference of another type
through a mechanism called a variable type cast.
variable-type-cast

(O—+{varbioeterence}—(D—>

When a variable type cast is applied to a variable reference, the variable reference is treated as
an instance of the type specified by the type identifier. If the variable and type identifier are
both of an ordinal type, then the size of the variable (that is, the number of bytes of storage it
occupies) may differ from the size of the type denoted by the type identifier. Otherwise, the two
sizes must be identical. A variable type cast may be followed by one or more qualifiers just as
a variable reference.

Complete Pascal does not support the type cast of set variables.
Examples of variable type casts:

type Point = record
v,h: integer;
end;
var p: Point;
1: LonglInt;

begin

p := Point (1):;

1 := LongInt (p);

LongInt (p) := LongInt (p) + $00020002;
end;

Language Reference 14-4 Variables

Chapfter 15

Expressions

Expressions denote values. The simplest expression is merely a variable reference, however,
most expressions consist of operators and operands. Most Pascal operators are binary, that is,
they have two operands. The remaining operators are unary and have only one operand.
When more than one operator appears in an expression, precedence rules are applied to
determine which operands are associated with which operators. For example, the expression:

a+b*e

can be interpreted as either (a+b)*c or a+(b*c). The precedence rules make the interpretation
unambiguous:

* When an operand appears between two operators of different precedence, it is bound to the
operator with the higher precedence.

* When an operand is written between two operators of the same precedence, it is bound to
the operator to the left.

* A parenthesized expression is always evaluated before it is applied as an
operand.

The precedence of the Complete Pascal operators are given in Table 15-1.

Table 15-1
Precedence of Operators

Operators Precedence Category

@, NOT highest exponent and unary operators
*, 1, DIV, MOD, AND second "multiplying" operators

+, -, OR third "adding" operators and sign
=, <>, €, >, <=, >=, IN lowest relational operators

Thus, a+b*c is interpreted as a+(b*c), since * has a higher precedence than +. Note that a+b-c is
interpreted as (a+b)-c, since + and - have the same precedence.

The precedence rules follow from the syntax of expressions, which are built from factors, terms,
and simple expressions.

The syntax of an expression consists of relational operators applied to simple expressions:

Language Reference 15-1 Expressions

expression

_pl simple-expression })
Lo bbb
C? (? ? (f) } Lt) Lt)_; simple-expression

Example of expressions:

x = 1.5
c in huel
done <> error
p <=q

The syntax of a simple expression consists of adding operators and signs applied to terms:

simple-expression D{E -
%r) %

Examples of simple expressions:

x+y

-3

huel + hue2
b or ¢

The syntax of a term consists of multiplying operators applied to factors:

""“—(@wg,}mzﬁ
P PP

Examples of terms:

X %y
e /(1 -e)
done and error

The syntax for a factor consists of the following basic constructs:

Language Reference 152 Expressions

factor

« bbrariablc—rcfemncc]—ﬂ
procedure-identifier —I'ﬁ
function-identifier
¥b|_unsigncd-consmm =
%ncﬁon-cw }
N~ set-constructor —

©)
%notHfactor _!—

(./)JJJ_

»>
An unsigned constant has the following syntax:
unsigned-constant
z unsigned-number }
quoted-string-constant
constant-identifier |
1.

Examples of factors:

x {variable reference])

ex {pointer to a variable}

15 {unsigned constant)

‘hello world! (unsigned constant)

(x+y+z) {sub expression}

sin (x/2) {function call}

not q (negation of a Boolean)

A8 LINRR) LWy T {set construction)
Operators

The operators are classified as arithmetic operators, boolean operators, set operators, relational
operators, and the @ operator.

Arithmetic Operators

The following two tables show the types of operands and results for the binary and unary
arithmetic operators respectively.

Language Reference 15-3 Expressions

Table 15-2
Binary Arithmetic Operations

Operator Operation Operand Type Result Type

+ addition integer, longint, or real integer, longint, or extended
- subtraction integer, longint, or real integer, longint, or extended
i multiplication integer, longint, or real integer, longint, or extended
/ division integer, longint, or real extended

div integer division integer or longint integer or longint

mod modulo integer or longint integer

The symbols +, -, and * are also used as set operators and are described later in this chapter.

The real types are Single (or Real), Double, Extended, and Comp (or Computational) and are
discussed in Chapter 13.

Table 15-3
Unary Arithmetic Operations

Operator Operation Operand Type Result Type
+ identity integer or real type same integer or real type
- sign-negation integer or real type same integer or real type

If both operands of the +, -, *, div, or mod operators are of the same integer type (Integer or
LongInt), the result is always of the same integer type. If one of the operands is type LongInt
and the other is type Integer, then the integer operand is first converted to LongInt and the
result type is LongInt. In either case, the resultant value is determined by the normal
mathematical rules for integer arithmetic. It is an error if the value of the result is outside the
range -maxint-1..maxint or -maxlongint-1..maxlongint. for Integer and LongInt result
types respectively.

< Note: The range of any operator is not infinite. Given an expression as follows:
(a+b) -c

where a, b, and ¢ are all integer values, an overflow error will result if the intermediate
result of a+b yields a result greater than maxint.

If one of the operands of the +, -, or * operators is of any real type, the result is always of type
Extended, and has a value that is an approximation of the normal mathematical result. The
result of the / operator is always type Extended.

If the operand of the identity or sign negation operator is of an integer type, the result is always
of the same integer type and the absolute value of the result is always identical to the absolute
value of the operand.

If the operand of the identity or sign negation operator is of any real type, the result is always of

type extended and the absolute value of the result is always identical to the absolute value of the
operand.

Language Reference 154 Expressions

Boolean Operators

The types of operands and results for Boolean operations are shown in the following table.

Table 15-4
Boolean Operations

Operator Operation Operand Type Result Type
or disjunction boolean boolean
and conjunction boolean boolean
not negation boolean boolean

The result of a boolean operation is determined by the normal rules of boolean logic, e.g. a
and b evaluates to true if and only if both @ and b are true.

Set Operators

The types of operands and results for set operations are shown in Table 15-5.

Table 15-5
Set Operations

Operator Operation Operand Type

+ union compatible set types
- difference compatible set types
b intersection compatible set types

The results of the set operations are determined by the normal rules of set logic. For example:
* An ordinal value c is in the set a+b if and only if ¢ is in a or in b.
* An ordinal value ¢ is in the set a-b if and only if ¢ is in a and not in b.

* An ordinal value c is in the set a*b if and only if ¢ is in a and in b.

Relational Operators

The types of operands and results for relational operations are shown in the following table.

Language Reference 155 Expressions

Table 15-6
Relational Operations

Operator Operation Operand Type Result Type
= equal to compatible set, simple, boolean

or pointer types
<> not equal to compatible set, simple, boolean

or pointer types
< less than compatible simple types boolean
> greater than compatible simple types boolean
<= less than or equal to compatible simple types boolean
>z greater than or equal to compatible simple types
boolean Ca
<= subset of compatible set types boolean
e superset of compatible set types boolean
in member of left operand: any scalar type T boolean

right operand: type SET OF T

Comparing Ordinals

When the operands of =, <>, <, >, >=, or <= are of an ordinal type, they must be of compatible
types unless one of the operands is a real type. In this case, the other operand is allowed to be an
integer type. The result is the mathematical relation of their ordinalities. When comparing
real types, the results may not be as expected since the representation of a real value is only an
approximation.

"< Note: Because of extensions provided for use with the Standard Apple Numeric
Environment (SANE), the result of a comparison can be unordered. An unordered result
occurs from a comparison involving a NaN (Not a Number). One important effect is that
NOT (a<b) is true if either a is greater than b or a and b are unordered. Use of the
Relation function, which is included in the SANE library, may be used to test for an
unordered comparison.

Comparing Strings

When the relational operators =, <>, <, >, <=, or >= are used to compare strings, they are
compared according to their lexicographic ordering. Note that any two string values can be
compared since all string values are compatible. Additionally, a Char value is compatible
with a string type value, and when the two are compared, the Char value is treated as a string
type value with length one. When a packed string type value with n components is compared
with a string type value, it is treated as a string type value with length n.

Comparing Packed Arrays of Char

The relational operators =, <>, <, >, <=, and >= can also be used to compare two values of a
packed string type if both have the same number of components. If that number is n, then the
result is the same as if the values were string type with each having a length of n. See Chapter
13 for more details on packed arrays of char.

Language Reference 156 Expressions

Comparing Sets
If a and b are set operands then

* a=b is true if, and only if, every member of @ is a member of b and every
member of b is a member of a; otherwise, a<>b.

* a<=b is true if, and only if, every member of ¢ is also a member of b.

* a>=b is frue if, and only if, every member of b is also a member of a.
Thus, a=b, and a<>b denote the equivalence and non-equivalence of the sets ¢ and b
respectively, and a<=b and a>=b denote the inclusion of ¢ in b and the inclusion of b in a
respectively.

Comparing Pointers

The relational operators = and <> may be applied to compatible pointer type operands. Two
pointers are equal if and only if they denote the same object.

Testing Set Membership

The in operator returns true if the value of the ordinal type operand is a member of the set type
operand; otherwise it yields the value false. The type of the left operand must be compatible with
the base type of the right operand.

The @ Operator

A pointer value that points to a variable, procedure, or function can be created with the @
operator. The operand and result types are shown in Table 15-7.

@ is a unary operator taking a single variable reference or a procedure or function identifier
as its operand and computing the value of its pointer. If the operand to the @ operator is a
variable reference, then the pointer value is the address in memory where the variable is
stored. If the operand to the @ operator is a procedure or function identifier, then the pointer
value is the procedure or function's entry point. The type of the value is equivalent to the

anonymous pointer type of the pointer constant nil, i.e. it can be assigned to any pointer
variable.

Table 15-7
Pointer Operations

Operator Operation Operand Type Resuli Type

@ pointer formation variable, parameter, procedure, pointer
or function

The @ operator is a unary operator taking a single variable, parameter, procedure, or function

Language Reference 157 Expressions

as its operand and computing the value of its pointer. The type of the value is equivalent to the
type of NIL and consequently can be assigned to any pointer variable. The pointer type is
discussed in Chapter 13.

@ with a Variable

Using the @ operator with ordinary variables (not parameters) is straightforward. For
example, given the declarations

type twochar = packed array [0..1] of Char;
var int: Integer;
twocharptr: “twochar;

the statement
twocharptr := @int
causes twocharptr to point to the variable int. Since the types Integer and twochar have the

same storage requirements, the value of int, when accessed via twocharptr, is reinterpreted
as type twochar.

@ with a Value Parameter

When @ is applied to a formal value parameter, the result is a pointer to the stack location
containing the actual value. Let aParam be a formal variable parameter in a procedure,
actParam be the variable passed to the procedure as aParam's actual parameter, and aPtris a
pointer variable. If the procedure then executes the statement

aPtr := @aParam

then aPtr is a pointer to actParam on the stack and aPtx” denotes the value of actParam.

@ with a Variable Parameter

When @ is applied to a formal variable parameter, the result is a pointer to the actual
parameter. In this case, the pointer is simply taken from the stack. Let aParam be a formal
variable parameter in a procedure, actParam be the variable passed to the procedure as
aParam's actual parameter, and aPtr is a pointer variable. If the procedure then executes the
statement

aPtr := @aParam

then aPtr is a pointer to actParamand aPtr” denotes the contents of actParam.

@ with a Procedure or Function

When the @ operator is applied to a procedure or function, the result will be a pointer to its entry
point. There is no mechanism in Pascal for using such a pointer. The only use for a procedure
pointer is to pass it to an Apple IIGS Toolbox procedure which the Toolbox will use to call the
designated function with an assembly language JSL instruction. Procedure pointers are

Language Reference 15-8 Expressions

commonly used with the Toolbox to implement filter procedures and definition procedures.

< Note: The @ operator should only be used in conjunction with procedures and functions
declared in the declaration part of the program or unit (global declarations) when the
resulting pointer value is passed to a Apple IIGS Toolbox routine. Procedures and
functions declared in the declaration part of another procedure or function (nested
declarations) have a different calling convention than those in the declaration part of the
program which is not compatible with the Apple IIGS Toolbox routines.

Function Call
A function call specifies the activation of the block associated with the function identifier. The
result returned by the function activation is subsequently used as an expression value. If the

function has any formal parameters, then the function designator must contain a
corresponding list of actual parameters. Each actual parameter is substituted for the

corresponding formal parameter.

Junction-call

—v-[function-identifier !
Lﬁl actual-parameter-list I—j
actual-parameter-list
D©T>| actual-parameter i_j.p@._p

actual-parameter -
~ bl expression } l

>

variable-reference

Examples of functions calls:

sum(a, 63)
sin(x+y)
eof (f)
ord(£f")

See Chapter 17 for a description of the procedure call statement.

Set Constructors

A set constructor denotes a value of a set type, and is formed by writing expressions within
[brackets]. Each expression denotes a value of the set.

Language Reference 159 Expressions

set-constructor

member-group

()=

>| expression }
L{ .-)_>| expression IJ

The notation [] denotes the empty set, which is assignment compatible to every set type. Any
member group x..y denotes as set members all values in the range x..y. If the value of x is
greater than the value of y, then x..y denotes no members and [x..yJ denotes the empty set.

member-group
>

All expression values in the member groups of a particular set constructor must be of compatible
ordinal types. If @ is the smallest ordinal value in the resulting set, and if b is the largest
ordinal value in the resulting set, then the base type of the resulting set is a..b.

Examples of set constructors:
[red, ¢, green]

{1, 5, 10.3 mo@si2 70528
[*Aar.."2%, *a'..%z', ehe{l3)]

Value Type Casts
The type of an expression can be changed to another type through a value type cast.

value-type-cast

[pcientter () epesion Q)

The expression argument must be of an ordinal type or pointer type. The result of the type cast
is of the specified type, and its ordinal value is obtained by converting the expression. The
syntax of a value type cast is almost identical to that of a variable type cast. However, value
type casts operate on values, not variables, and can therefore not participate in variable
references. That is, a value type cast may not have qualifiers appear on the left side of an
assignment statement, or as an actual parameter where the formal parameter is declared as a
VAR parameter.

Examples of value type casts:
Integer('c')

Ptr($89F2)
Boolean (0)

Lenguage Reference 1510 Expressions

Chapter 16

Statements

Statements describe algorithmic actions that can be executed. There are two classes of
statements — simple statements and structured statements. Statements may be prefixed by a
label and a labeled statement can be referenced by goto statements.

i | simple-statement
| —

A label is a non-negative integer constant, and must first be declared in a label declaration.
See Chapter 11 for more information on labels.

label
‘deigit-scquencc]“>

Simple Statements

A simple statement is a statement that does not contain any other statements. The empty
statement is a simple statement which contains no symbols and denotes no action.

simple-statement

4>l assignment-statement

procedure-statement

goto-statement |

cmpty-statement | >

empty-statement

Assignment Statement

The assignment statement can be used to perform either of two actions:

* To replace the current value of a variable by a new value as specified by an
expression.

Language Reference 16-1 Statements

* To specify an expression whose value is to be returned by a function.

assignment-statement
variable-reference
function-identifier e
The symbol := can be read as "set to." The expression must be assignment compatible with the

type of the variable or the result type of the function. The function identifier must be the
function identifier of the enclosing function block.

The variable reference on the left side identifies a variable of any type except a file type. With
most variables, the variable reference is simply an identifying name, but four special cases
exist in which the variable is followed by a qualification:

* string element the variable name is followed by the element’'s index number enclosed
in brackets.

* array element the variable is identified by the array name followed by an index value,
enclosed in square brackets, for each dimension of the array.

* record field the variable name must be preceded by the name of its containing
record and a period. The exception to this rule is if the statement is
within the scope of a WITH statement for the associated record.

* dynamic variable the variable reference is identified by the name of its pointer
followed by a caret.

In addition, a variable reference on the left side may be type cast. Refer to Chapter 13 for more
information on type compatibility and syntax for variable references and type casts.

Examples of assignment statements:

x = yiz

o} := (1<=i) and (1<100);
i := sqgr (k) - (1 * 3J);
huel := [blue,succ (c)]

< Note: It is not specified whether the variable-reference is evaluated before or after the
evaluation of the expression. However, once the variable-reference is established, it is
not altered by side-effects of the remaining execution of the assignment-statement. Thus,
the outcome of

A[i] := Some_ function(i);
depends on whether Some function modifies i and, if so, whether Some function is

evaluated before or after A[i]. A program is erroneous if it relies upon a particular
order of evaluation.

Language Reference 16-2 Statements

Procedure Statement

A procedure statement specifies the activation of the procedure block denoted by the procedure
identifier. If the procedure has any formal parameters, then the procedure statement must
contain a matching list of actual parameters. Each actual parameter is substituted for the
corresponding formal parameter as part of the procedure call.

procedure-statement

—»Lprocedum-idcn&ﬁer | .
L.l actual-parameter-list]—/

The identifier used to activate a procedure must be identical to the identifier used in the
procedure or function declaration. The parameters in the procedure or function declaration are
called formal parameters; those in the calling statement are called actual parameters. The
values of the actual parameter list are said to be passed to the formal parameters as part of the
call. The number of parameters in the formal parameter list must be equivalent and
compatible with the parameters in the actual parameter list. Three exceptions exist for actual
and formal parameter compatibility:

* Subrange types are equivalent to their base types.
* A formal parameter of type Longint will accept an actual parameter of type Integer.

* Formal parameters preceded by univ accept any actual parameter that occupies the same
space in memory. See Chapter 19 for a complete discussion on univ.

The actual parameters specified in any procedure or function call must also follow the
following rules:

* Actual variable parameters, as opposed to value parameters, must be variables. Actual
variable parameters cannot be constants, expressions, or elements of packed variables.

* The value of any actual string variable may be passed to any formal variable string
parameter, regardless of length.

* If the value of an actual parameter exceeds the range of a formal parameter, an execution
error will result.

Examples of procedure statements:
PrintHeading;

Transpose (a,n,m);
Find (name, address)

Structured Statements

Structured statements are made up of other statements that are to be executed either
conditionally (conditional statements), repeatedly (repetitive statements), or in sequence
(compound statement or with statement).

Language Reference 16-3 Statements

Structured-statement

F[compound-statement

conditional-statement

repetitive-statement

with-statement II

Compound Statements

The compound statement specifies the execution of a sequence of statements in the order in
which they are written. The compound statement is treated as one statement in contexts where
only a statement is allowed.

compound-statement

O~

The body of every Pascal procedure, function, and main program consists of a single compound
statement. To create a single compound statement out of a sequence of individual statements,
preface the sequence with BEGIN and terminate it with END, separating the internal statements
with semicolons. Compound statements may be nested within other compound statements. In
this case, each END associated with a compound statement is paired with the nearest preceding
BEGIN.

Example of a compound statement:

begin
HER Al &
x = y;
y = z
end

Conditional Statements

A conditional statement selects one or none of its component statements for execution.

ADl if-statement
L’i case-statemnent

conditional-statement

Language Reference 16-4 Statements

If Statements

The if statement executes a single controlled statement (which may be a compound statement as
defined above) if a Boolean expression is true. An optional else clause may be added that
executes another statement if the Boolean expression is false. The statement associated with
the else clause may also be a compound statement.

if-statement

—D@_plixpression WHstatcmcnt

Lb@!seHstatemem

The expression between the if and then, usually formed out of relational and logical operators,
must have a Boolean type.

Nesting of if statements is allowed. In this case, each else is always associated with the
nearest if statement that is not already associated with an else.

Examples of if statements:

if x < 1.5 then
z = xty
else
Z = 2.5

if pl <> nil then
Pl := pl~._father;

Case Statements

case-statement ;
case expression (of)

Ny S

Language Reference 16-5 Statements

expresstion o statemen

constant
expresstion

O«

otherwise-clause

—-———-h@—b(otherwisc | saement |—>

The case statement executes the statement prefixed with the case constant that equals the value
of the selector. If no such case constant exists and an otherwise clause is present, the
statement following the word otherwise is executed; if no otherwise clause is present then
execution continues with the statement following the case statement.

Any of the controlled statements in the case clause or the default statement following otherwise
may be either single statements or compound statements as defined above.
Examples of case statements:

case operator of

plus : x := xty;

minus: x := x-y;

times: x := x*y
end;

case i of
1 X := sin(x);
2 X := cos(x):;
3,4,5 : x := exp(x);
otherwise x := 1ln(x)
end

Repetitive Statements
Repetitive statements specify a group of statements to be executed repeatedly.

repetitive-statement

»[repeat-statement

while-statement

for-statement } >

If the number of repetitions is known beforehand, the for statement is an appropriate statement
to use, otherwise the while or repeat statements are used.

Repeat Statements

A repeat statement contains an expression that controls the repeated execution of a sequence of

Language Reference 16-6 Statements

statements contained within the repeat statement.

repeat-staternent

——((repeat)—C s:atemm::ljv(umil)——-)Ijxpression >

The expression must yield a result of the standard type Boolean. The statements between the
symbols repeat and until are repeatedly executed in sequence until, at the end of a sequence,
the expression yields the value true. The sequence of statements is executed at least once,
because the expression is evaluated after the execution of each sequence.

Repeat and until create their own compound statement out of the statements they control; there
is no need to use begin and end as required for other compound statements.

Examples of repeat statements:

repeat

mod j;

T

I

I
[O

k
-
3
il j
repeat
process(f") ;

Read (f)
until eof(f)

While Statements

A while statement contains an expression that controls the repeated execution of a statement.

while-statement

———»{(while)_>l expression @ statement

The expression must yield a result of the standard type Boolean. The expression is evaluated
before each pass of the contained statement is executed. The contained statement is repeatedly
executed as long as the expression yields the value true. If the expression yields false at the
beginning, the statement is not executed.

The statement controlled by the while statement may be either a single statement or a
compound statement as defined earlier in this chapter.

Examples of while statements:

while a[i] <> x do
i = i+1

while i > 0 do begin

if odd([i] then
Z 1= g % g

Language Reference 167 Statements

s -
x. s
end

i div 2;
x % x

I

% Note: Care must be taken with both while and repeat statements to ensure some
practical means to change the value of the Boolean control expression, or to escape by
means of a goto or Leave statement or Exit call. Otherwise, the program will never
exit the loop and therefore never terminate. Leave and Exit are defined later in this
chapter.

For Statements

The for statement causes a statement to be repeatedly executed while a progression of values is
assigned to a variable called the control variable.

for-statement

for)—s{ e (%)

expression

The first expression following the := is called the initial-value. The second expression after the
= is called the final-value. The control variable, initial-value, and final-value must all be
compatible. See Chapter 13 for information on type compatibility.

The control variable is a scalar type (e.g. Integer, Char, Boolean, subrange, or user-
defined). Therefore, it cannot be an array or string element, a record field, or a dynamic
variable. The control variable must be declared in the block that contains the for statement. It
is assigned a new value by the for statement prior to each pass through the statement it
controls. The value of the control variable is accessible in the statement controlled by the for
statement.

If the token after the first expression is the keyword to, the control variable is to be incremented
prior to each pass through the statement. Execution of the for statement continues until the
control variable obtains a greater value than the final-value. If the token after the first
expression is the keyword downto, the control variable is decremented prior to each pass
through the for statement. Execution of the for statement continues until the control variable
obtains a lesser value than the final-value.

Below are several rules to follow when writing for statements:
* The control variable must be a simple variable declared in the local scope.

* If the control variable is a subrange type or user-defined scalar, it must be capable of
accepting all values from the initial-value to the final-value, inclusively.

* The control variable must not be modified within the statement controlled by the for
statement.

* The control variable may not be included in either the initial-value or final-value
expressions.

Language Reference 16-8 Statements

* The control variable may be unspecified upon termination of the for statement.

* The initial-value and final-value expressions are evaluated just once, prior to the first
pass. Changing the value of these expressions within the for statement will not alter the
behavior of the for statement.

* If the initial-value and final-value are equal, the for statement will execute exactly once.
Examples of for statements:

for i := 2 to 63 do
if a[i] > max then
max := af[i]
for C := red to blue do Check (C) ;

%____._ ——
Control Statements

The repetition statements, conditional statements, assignment statements, and procedure and
function calls are sufficient to handle almost all programming jobs. Situations may arise,
however, that may demand immediate transfer or suspension of program execution. For such
cases, Complete Pascal provides the following tools:

* the Goto statement to transfer control directly to any other program statement within the
same block.

* the Cycle statement to force an immediate reiteration of a repetitive statement.
* the Leave statement to cancel the enclosing repetitive statement.

* the Halt statement to immediately stop program execution.

Goto Statement

The goto statement transfers program control to the statement immediately following the

specified label.
o

The following rules must be observed when using a goto statement:

golo-statement

* The label referenced by a goto statement must be in the same block as the goto statement,
or within a block which encloses the block containing the goto statement.

* Jumping into a structured statement from outside that structured statement can have
undefined effects and is illegal. However, Complete Pascal does not detect the occurrence
of such a goto statement.

See Chapter 13 for more information on labels.

Language Reference 16-9 Statements

Cycle Statement

The Cycle statement passes program control to the end of the statement controlled by the
enclosing while, repeat, or for statement. Use of the Cycle statement outside of a while, repeat,
or for statement will result in an error.

Example of the cycle statement:

for i:=1 to 100 do begin
if a[i] <= 0 then cycle;
f(ali]):

end;

< Note: The word cycle is not a reserved word. If cycle is redefined, cycle statements
may not be used within the scope of that definition.

Leave Statement

The Leave statement terminates the enclosing while, repeat, or for statement and passes control
to the statement immediately following the enclosing repetition statement. Use of the Leave
statement outside of a while, repeat, or for statement will result in an error.

Example of the leave statement:

while i < 63 do begin
if a[i] = x then leave;
=il
end;
<% Note: The word leave is not a reserved word. If leave is redefined, leave statements
may not be used within the scope of that definition.

With Statement

The with statement is a shorthand method for specifying the fields of a record. Within a with
statement, the fields of one or more record variables can be referenced using only their field
identifiers. The syntax of a with statement is as follows:

with record

with variable do H stalcmenl}—r

access
(=

The occurrence of a variable in the with statement must denote a record variable. Within a
with statement, each variable reference is first checked to see if it can be interpreted as a field
of the record variable. If so, it is always interpreted as such, even if a variable with the same
name is accessible.

The following rules govern the use of with statements:

Language Reference 16-10 Statements

* When listing a record that is a field of another record, list the containing record earlier
in the list or list that field in explicit form.

* With statements may be nested. When with statements are nested, the enclosing with
statements remain valid within the nested with statements.

* When several records have fields of the same name, with accesses the field of that record
name last in the list of the with statement.

* Where a record field identifier is the same as a variable or other identifier declared
outside the record, with accesses the field.

Examples of a with statement:

with date do
if month = 12 then begin

month := 1;
Year := vyear + 1
end

else month := month + 1

This is equivalent to:

if date.month = 12 then begin

date.month := 1;
date.year := date.year + 1
end

else date.month := date.month + 1
When more than one record variable reference appears in a with statement as follows:

with var,, vary, ... var_ do

statement

n

it is considered equivalent to the following sequence of nested with statements:

with var, do
with var, do
with var, do
statement

Thus, if vary in the above statements is a field of both varj and varg, it is interpreted to mean
varg.var, and not varj.var,.

Null Statements

Null statements are statements that do not contain anything. Unnecessary semicolons are
interpreted by the Pascal compiler as null statements. The result of unnecessary semicolons is
two statements where only one was intended. Most of the time, this is harmless, but it
occasionally causes an error when only one statement is allowed.

Language Reference 16-11 Statements

Gromay malaialave o 22l Davony wplione

Badans grs ediieranisiz fiiow s RN 3
&imﬂm dirw hadear art g

ARG *ame;-‘

SR

Sr g miab
franey #add Ta Brall o4 sensonse dive ‘ﬂrssﬁgs STREs wiky aﬂ.mmf;
feide e a2t e

harmisabh wafiiiny

e

T

5
,

¥)
B Ll
- e &) % 3
FRIE S i ’ 5
Y A b s H .

I % figaten. a¥sh =2

e : g o it g letiine i e Sk SauEs mregin fHie
wentio g tnemalate 4B & or pieange maeriey aldaley broust 200 :

Ghr R . ’f
adasmatais f8w Baspen s sacernper wamﬁ adt 53 Hiauiyss :

4 .‘5%?1*:1
o sz
JFmE

kB

55 ’*Ff&n ;

 Lenguage Reference 1612 1 | e el

Chajpter 17

Procedures and Functions

Procedures and functions allow you to nest additional blocks in the main program block or
define blocks within a unit. Procedures and functions are also known together as
subprograms. Each procedure or function has a heading followed by a block or a special
directive. A procedure is activated by a procedure statement, and a function is activated by the
evaluation of an expression that contains a function call.

This chapter describes the different types of procedures and functions and their parameters.

Procedure Declarations

A procedure declaration associates an identifier with a block as a procedure so that it can be
activated by a procedure statement.

procedure-declaration

*ﬂroccdme-hcadingw procedure-body 1—>®—>
rocedure-bod
3 ~< 2 block ~~

inline unsigned-integed —

—»_tool)—»f unsimed-inteMgned-integeH

é
2
y

The procedure heading specifies the identifier for the procedure, and the formal parameters, if
any.

procedure-heading

—>{Cproceti)—
!

&[formal-parameter-list |/

The syntax for a formal parameter list appears later in this chapter.

Language Reference 17-1 Procedures and Functions

A procedure is activated by a procedure statement, which gives the procedure's identifier and
any actual parameters required by the procedure. The statements to be executed upon activation
of the procedure are specified by the statement part of the procedure's block. If the procedure's
identifier is used in a procedure statement within the procedure's block, the procedure is
executed recursively. That is, it calls itself while it is executing.

Example of a procedure declaration:

procedure Num2String (N: Integer; var S: string);
var V: Integer;
begin
V := Abs (N);
Sae=ad B3
repeat
S := Concat (Chr (V mod 10 + Ord ('0")),S):
V 1= V div 10;
until Vv = 0;
if Vv < 0 then S := Concat('-',S8):
end;

Instead of the block in a procedure or function declaration, a FORWARD, EXTERNAL, INLINE or
TOOL directive may be given in its place. See the "Procedure and Function Directives” section
in this chapter for more details concerning directives.

Function Declarations

A function declaration associates an identifier with a block as a function so that it can be
activated by a function call to compute and return a value of some type.

function-declaration

——b{ function-heading I—b@—b{ function-body I-b@—b
unction-bod:
£ Yy block ~

orwari

() \

\—(tool)—»{ unsigned-intege]—(,) unsigned-intege}———b~

L

The function heading specifies the identifier for the function, the formal parameters, if any,
and the type of the function result. The function result type may be any simple or structured

type.

Language Reference 17-2 Procedures and Functions

Jfunction-heading

& type-identifig

E_.} fonnal—parameter-lla(

A function is activated by the evaluation of a function call, which gives the function's identifier
and any actual parameters required by the function. The function call appears as an operand
in an expression. The expression is evaluated by executing the function and, in effect,
replacing the function call with the value returned by the function.

The statements to be executed upon activation of the function are specified by the statement part
of the function's block. The block should normally contain at least one assignment statement
that assigns a value to the function identifier. The result of the function is the last value
assigned. If no such assignment statement exists, or if it exists but is not executed, the value
returned by the function is undefined.

If the function's identifier is used in a function call within the function's block, the function is
executed recursively.

Example of a function declaration:

function Num2String (N: Integer): string;
var V: Integer;

S: String;
begin
V := Abs (N);
3 oy ¥V
repeat

S := Concat(Chr (V mod 10 + Ord ('0')),S);
V := V div 10;
until v = 0;
if V < 0 then S := Concat('-',S);
Num2String:=S§;
end;

A function can be declared FORWARD, EXTERNAL, INLINE or TOOL in same manner as a
procedure as described above.

% Note: If the return value of the function is a record type or a pointer to a record type, it
cannot be used in the list of a with statement to assign values to the fields of the record.
The compiler will interpret use of the function's identifier in the with statement as a
function call.

Procedure and Function Directives
The block part of a procedure or function may be replaced with one of three directives:

* FORWARD allows the procedure or function to be declared immediately while allowing the

Language Reference 17-3 Procedures and Functions

procedure or function block to be defined at a later time.

¢ EXTERNAL allows procedures and functions to be written in another language and linked
to the Pascal program.

* INLINE allows machine language instructions to replace the block of a procedure or
function.

* TOOL designates a procedure or function as an Apple IIGS Toolbox routine.

Forward Directives

A procedure declaration that has the directive FORWARD instead of a block is called a forward
declaration. Somewhere after the forward declaration, the procedure is actually defined by a
defining declaration — a procedure declaration that uses the same procedure identifier and
includes a block. The defining declaration may repeat the formal parameter list, but if the
formal parameter list is repeated it must be identical to the forward declaration. The forward
declaration and the defining declaration must be in the same declaration part, but need not be
contiguous. That is, other procedures, functions, types, variables, etc. can be declared between
them and can call the procedure that has been declared forward. Forward declarations allow
mutual recursion.

The forward declaration and the defining declaration constitute a complete declaration of the
procedure. The procedure is considered to be declared at the place of the forward declaration.
Forward procedures and functions may not be written in the interface part of a unit.

Example of a forward declaration:
procedure Proc2 (m,n: integer); forward;

procedure Procl (x,y: real);
begin

Proc2 (4,5);
end;

procedure Proc2 (m,n: integer);
begin

Procl (8.3,2.4);
end;

External Directives

A procedure declaration, whose body is declared EXTERNAL, defines the Pascal interface to
routines assembled or compiled in a language other than Complete Pascal. The external code
for the procedure must be available at link time.

Examples of an external declaration:

procedure GotoXY(x,y: Integer); External;

Language Reference 17-4 Procedures and Functions

In this example, GotoXY is an external procedure that must be linked to the host program prior
to execution.

It is the responsibility of the programmer to ensure the external procedures and functions are
compatible with their companion declarations in the Pascal program. The linker does not
check for compatibility.

Inline Directives

The INLINE directive allows you to write machine code in place of a procedure's block. The
code may only consist of a sequence of integer constants which each represent a single byte of
65816 machine code. When the procedure is called, the compiler generates the machine code
specified by the INLINE directive. If the procedure has any parameters, they are pushed onto the
stack before the code is generated.

The inline directive is intended for writing small routines. For example, the following
procedure would clear the 65816 Interrupt Disable flag by generating the CLI instruction.

Example of an inline declaration:

procedure GenCLI; inline $58:;

Tool Directives

The TOOL directive is used to define the body of a procedure to be one of the Apple IIGS Toolbox
routines. The Apple IIGS Toolbox is divided into several toolsets and then into individual tool

routines. Each toolset is identified by a unique ¢ool number, and each tool routine within a
toolset is assigned a unique function number. Using this special method of describing an Apple
IIGS Toolbox routine provides Complete Pascal with the information it needs to generate a call
into the Toolbox. For example, the MoveTo procedure in the QuickDraw toolset (tool number 4)
is assigned the function number 58. Thus, the tool declaration is as follows.

Example of a tool declaration:

procedure MoveTo(h,v: Integer); Tool 4,58;

Parameters
The declaration of a procedure or function specifies a formal parameter list. Each parameter
declared in a formal parameter list is local to the procedure or function being declared, and

can be referred to by its identifier in the block associated with the procedure or function.

formal-parameter-list

"@ (—h’ parameter-declaration } J b@ >
O

Language Reference 17-5 Procedures and Functions

parameter-declaratio

n
) e o]

Procedure and function declarations may have any or all of three kinds of formal parameters:
» pariable: a group of parameters preceded by the keyword var.
* value: a group of parameters without being preceded by the keyword var.

* static: a group of parameters preceded by the word static.

Value Parameters

A formal value parameter acts like a variable local to the procedure or function, except that it
gets its initial value from the corresponding actual parameter upon activation of the procedure
or function. Changes made to a value parameter do not affect the value of the actual parameter.

A value parameter's corresponding actual parameter in a procedure statement or function call
must be an expression, and its value must not be of a file type or of any structured type
containing a file type.

The actual parameter must be assignment compatible with the type of the formal value
parameter. If the parameter type is string, then the formal parameter is given a static size
attribute of 255.

< Important: If the size of the formal parameter (in bytes of storage) is greater than 4
bytes, then the actual parameter is passed by address and then the value of the actual
parameter is copied into local variable space. Therefore, assignments to the formal
parameter do not affect the value of the actual parameter.

The actual parameter and formal parameter must be assignment compatible. This restriction
can be overridden by declaring the parameter as Univ. Univ is described below.

Variable Parameters

A variable parameter is used when the value of a parameter must be passed back from a
procedure or function to the caller. The corresponding actual parameter in a procedure
statement or function call must be a variable reference. The formal variable parameter
represents the actual variable during the activation of the procedure or function, so any changes
to the value of the formal parameter are immediately reflected in the actual parameter.

Within the procedure or function, any reference to the formal variable parameter accesses the
actual parameter itself. The actual parameter and formal parameter must be assignment
compatible. This restriction can be overridden by declaring the parameter as univ, which is
described below. If the formal parameter is string, it is given the length attribute 255, and the
actual variable parameter must be a string type with a length of 255.

Language Reference 17-6 Procedures and Functions

File types can only be passed as variable parameters.

Components of variables of any packed structured type cannot be used as actual variable
parameters.

“ Note: If accessing an actual variable involves indexing an array, finding the identified
variable of a pointer, or finding the field of a record, the action is executed prior to the
activation of the procedure or function. Caution should be taken in accessing variables
found in a relocatable block on the heap. Compaction of the heap can cause the original
object to be moved, possibly leading to unpredictable results.

Static Parameters

Static parameters are a special extension to Complete Pascal for the Apple IIGS. They have been
added for the specific purpose of obtaining improved code generation. Static parameters are
treated exactly like value parameters described above except for the restriction that a static
formal parameter should not be assigned a new value within the procedure or function.

Value parameters whose formal type requires more than 4 bytes of storage are passed by
address and then copied into the local storage for the formal parameter so that assigning new
values to the formal value parameter does not affect the actual parameter (see Appendix D).
However, there are cases when the formal parameter is only read from and never written to. In
these cases, it is not necessary to copy the actual parameter value into local storage for the
formal parameter, the formal parameter may access the actual parameter directly.

Static parameters reduce the amount of stack space required by an application, and reduce
execution time by not having to copy the value of an actual parameter into local storage for the
formal parameter.

< Warning: Complete Pascal does NOT check that a static parameter is never written to.
It is the responsibility of the programmer to ensure the correct usage of static parameters.

UNIV Parameter Types

When the word UNIV appears before the type identifier in the formal parameter list, the
restriction that the actual parameter and formal parameter must be assignment compatible in
the case of value parameters, and identical in the case of variable parameters is not enforced.
When UNIV is used, the actual parameter may be of any type so long as the number of bytes
required to store a value of the actual parameter's type is the same as that of the formal
parameter.

Longuage Reference 17-7 Procedures and Functions

Here is an example of a UNIV parameter:

TYPE Ptr = “Char;
VAR alLong: LongInt;
aPtr:s: . PLEs

procedure aProc(p:

begin
end;

begin
aProc (aLong);
aProc (aPtr);
end.

univ 'Ptr);

Parameter List Compatibility

Parameter list compatibility is required of the parameter lists of corresponding formal and
actual procedural or functional parameters.

Two formal parameter lists are compatible if they contain the same number of parameters and
if the parameters in corresponding positions match. Two parameters match if one of the

following is true:

¢ They are both value parameters of identical type.

* They are both variable parameters of identical type.

* The formal parameter has UNIV before its type, and the actual parameter is a value or
variable of the same size. The parameters must still both be value parameters, or both be

variable parameters.

Language Reference

17-8

Procedures and Functions

Chapter 18

Programs and Units

Complete Pascal provides two basic constructs which are the fundamental units of a piece of
Pascal source code. These are programs and units. The main difference between a program
and a unit, is that a program represents a complete application which can be compiled and
executed. A unit, however, can not be executed by itself, it is merely a construct in which parts
of a program can be defined and compiled independently of a program. Programs and units
are independently compiled. Their object files are combined by the Complete Pascal linker to
form a single executable file.

Part I of this manual provides information about how to compile and link programs and units.
In addition, Part II provides detailed information about how to create each of the types of
programs supported by Complete Pascal.

Programs

A Pascal program has the form of a procedure declaration except for its heading and an
optional USES clause.

program

——{ program-heading }_po block |-»(")
®

The occurrence of an identifier immediately after the word program in the program heading
declares it as the program's identifier. Program parameters, as described by Jensen and Wirth
and the ANS Standard have no meaning to Complete Pascal.

% Note: TML Pascal versions 1.x, associated a special meaning with the presence of the
file parameters Input and Output in the program heading. They were used to signal to the
compiler that it should create the Plain Vanilla operating environment. Complete Pascal
NO LONGER associates any special meaning with the file parameters Input and Output.
To create the Plain Vanilla (now called Textbook Graphics) operating environment, call
the procedure Graphics.

program-heading

—b(progmwdemiﬁer—} g
1@&L program-parameters]—b@f

program-parameters - - -
identifier-list

Language Reference 18-1 Programs and Units

Uses Clause

The USES clause is used to identify those units which are required by a program or unit in
order to compile successfully.

ses-clause
" »(Cuses)—»{ identifierlist |——»-

When Complete Pascal encounters an identifier (the name of a unit) in a USES clause, it must
find the unit’s compiled object code file which contains the unit’s object code and symbol table.
To do this, the string ".p.o" is appended to the unit name to form a file name. For example, the
following statement

uses Globals, FileStuff;
causes the files Globals.p.o and FileStuff.p.o to be opened.

The uses clause in the main program lists all units required by the program. Such units
include those used directly by the main program and indirectly by units used by the main
program.

It is possible that the unit’s compiled object code file name may not match the unit’s name. In
this case, the compiler's $U directive must be used to specify the filename which contains the
unit. The $U directive must appear immediately before the unit name in the USES clause. For
example, the USES clause given above might be rewritten as

uses Globals,
{$U :MyDisk:SharedStuff:FileStuff.p.o } FileStuff;

As the example illustrates, the $U directive is typically used to specify a units complete
pathname when the file is not located in the same directory as the source code being compiled.
The $U directive is fully documented in Appendix B.

When a unit named in a USES clause uses other units itself, the names of those units must also
appear in the uses clause, and they must appear before the unit is named.
Consider the following example:

UNIT UnitA; UNIT UnitB;
INTERFACE USES UnitA;
type Colors=(red,white,blue); INTERFACE
IMPLEMENTATION type Rec = record
END. i: Integer;
c: Colers;
end;

IMPLEMENTATION
END.

PROGRAM MyProgram;
USES UnitA, UnitB:
VAR aRec: Rec;
BEGIN

END.

Language Reference 18-2 Programs and Units

In this example, the program MyProgram declares a variable aRec of type Rec, which is
declared in unit unitB. Therefore, a USES clause is used to name UnitB. However, UnitB has
a uses clause which names UnitA Thus, the uses clause in the program MyProgram must name
Unita in its uses clause, and further it must appear before UnitB.

If a unit has been recompiled, then all units which use it must also be recompiled. This is
required so that all dependent units do not attempt to reference unit declarations that might
have changed or no longer exist. For instance, in the example above, if UnitB is recompiled,
then MyProgram must also be recompiled, but unitA need not be recompiled. And if Unita is
recompiled then both UnitB and MyProgram must be recompiled.

Units

Units are the basis for modular programming in Complete Pascal. Units are compiled
separately from one another and should be used to organize large programs into logically
related parts. Dividing a program into several units also reduces the amount of time necessary
to recompile a piece of code.

There are several reasons for using units in Pascal programming:
* They help modularize large programs.

* They make common declarations and blocks easily available to many different
programs.

* They can be used to make sections of source text private from the rest of the program.
The syntax for units follows:

Lb(unit)—bl identifir |—+(Y)]

I interface-part }-—>| implementation-part O—b

The identifier following the reserved word unit is the unit identifier. This is the name that
other units as well as the main program use in a USES clause to specify that the unit's
declarations should be made available.

interface-part

T) -

The interface part of a unit declares constants, types, variables, procedures, and functions that
are public. That is, the declarations made in the interface part are available to other units or
programs that name the unit in a USES clause. In other words, the scope of the public
declarations is the entire program or unit that uses the unit. The program or unit that uses a
unit can access the public declarations just as if they had been declared in its own block.

Language Reference 18-3 Programs and Unifs

Label declarations are not permitted in the interface part of a unit. Procedures and functions
in the interface part are declared by giving only the procedure or function name, the formal
parameters (if any), and the result type (if a function). No code block is given for a procedure
or function declaration in the interface part. Instead, the procedure or function heading is
repeated in the implementation part where its code block is declared. Procedure and function
declarations in the interface part behave as if the FORWARD directive had been specified.
However, procedure and function declarations may have the EXTERNAL, INLINE and TOOL
directives in the interface part since they will not have a code block in the implementation part.

Variables, procedures and functions which appear in the interface part are termed global. The
entire unit is within the scope of the block in which the uses clause that references the unit
appears.

The interface part may contain a uses clause, so any unit can use another unit.

implementation-part

implementation >

declaration

The implementation part, which follows the last declaration of the interface part, declares any
constants, types, variables, procedures, or functions that are private, that is, not available to the
program or unit which uses it. Private procedures and functions are declared like procedures
and functions in programs, with a procedure or function heading and a body.

All public procedures and functions declared in the interface part are redeclared in the
implementation part. The only exception are thos procedures and functions declared using the
EXTERNAL, INLINE and TOOL directives. Formal parameters and result types may be
omitted, but if they appear, they must be identical to the previous declaration.

.

Language Reference 18-4 Programs and Units

Chapter 19
Input and Output
This chapter describes the standard input and output (I/O) procedures and functions provided by

the Complete Pascal compiler for the manipulation of files. The predefined procedures and
functions which do not affect I/O are described in Chapter 20.

, s s ——
File 1/0 in Complete Pascal
Complete Pascal provides two ways to implement input and output:

* I/O routines in the Apple IIGS Toolbox.

* I/O procedures and functions built into Complete Pascal.
The most direct method of accessing the Apple IIGS screen, keyboard, and mouse is through the
Apple IIGS Toolbox routines for QuickDraw and the Event Manager. The GS/OS v5.0 File
System calls also provide complete access to the Apple IIGS operating system for manipulating
files. Appendix C contains a list of all interface files to the Apple IIGS Toolbox.
Complete Pascal's built-in routines provide the easiest way to access the contents of files and

perform I/O operations with external devices. The remainder of this chapter discusses each of
these routines in detail.

x__j_

Pascal Files

In Complete Pascal, files are accessed using a file variable. A file variable is simply a
variable which is declared to be some file type (see Chapter 13). Complete Pascal supports two
different types of files:

* Text files

* Typed files (also called Structured files)
Text files are declared with the predefined type Text. Text files store data as sequences of
character organized into lines. Complete Pascal provides several special 1I/0 procedures and
functions which operate on lines of text.
Complete Pascal predefines two Text files for every program: Input and Output. Input is

defined to be a read-only file, reading data from the keyboard. Output is defined as a write-
only file, writing data to the screen (text screen or graphics screen).

Language Reference 19-1 Input and Output

Typed files consists of a sequence of components. Whereas a component in a text file is a
single character, the component in a typed file can be of any type other than a file type or a
structured type containing a file type. A single occurrence of a component is called a logical
record.

Examples of files:

var aFile: text; { Example of a text file |}
var aFile: file of integer; { Example of a typed file }

File variables refer to files consisting of a sequence of components. For text files, that
component is always of type Char. For typed files, the component can be any Pascal type except
for a file type or a structured type containing a file. In any case, the component is considered a
logical record. Files may have any number of logical records, but only one is accessible at a
time with the file variable. The position of the accessible logical record with respect to the
beginning of a file is called the current file position.

Prior to using a file variable, it must be associated with a file. Making this association is
called opening a file. There are three procedures that are used to open a file: Reset, Rewrite,
and Open. Each procedure is defined in detail later in the chapter.

<+ Note: The file variables Input and Output are predefined and are opened
automatically at the start of the program.

To open a file, its external name must be given. This name can be any valid Apple IIGS
(GS/0S v5.0) file pathname or device name.

Standard Procedures and Functions for All Files

The procedures and functions described in this section may be used with any text or typed file.

The Reset Procedure

Syntax: Reset (£ [, title 1)
Reset opens an existing file for input or "rewinds"” an open file by repositioning the current file
position to the zero component. The file is opened for sequential read access only. When an
already existing file is reset, its contents are not erased. f is a file variable of any file type.
title is an optional string expression.

If title is provided in the parameter list, then Reset attempts to open an already existing file
with the name title and then associates the file variable £ with the external file. If title is
not a valid GS/OS file pathname or device name, or if the file cannot be opened, an error is
returned in IOResult.

If title is not provided in the parameter list, then £ must already be associated with an open

file. In this case, Reset repositions the file position to the zero component of the file. If fis not
already associated with a file, then an error is returned in IOResult.

Language Reference 19-2 Input and Output

The Rewrite Procedure
Syntax: Rewrite (£ [, title])

Rewrite opens an existing file or creates a new file for output or "rewinds” an open file by
repositioning the current file position to the zero component. The file is opened for sequential
write access only. When an already existing file is opened with rewrite, its contents are
erased. fis a file variable of any file type. title is an optional string type expression.

If title is provided in the parameter list, then Rewrite creates and opens a new external file
with the name title and then associates the file variable £ with the external file. If the file
already exists, it is opened and its entire contents erased.

If title is not provided in the parameter list, then £ must already be associated with an open
file. In this case, Rewrite repositions the file position to the zero component of the file. If £ is
not already associated with a file, then an error is returned in IOResult.

The Open Procedure

Syntax: Open (£, title)

Open opens an existing file or creates a new file. The file is opened for random read and write
access. When an already existing file is opened, its contents are not erased. £ is a file variable

of any file type. titleis an optional string type expression.

If title is not a valid GS/OS file pathname or device name, or if the file cannot be opened, an
error is returned in IOResult.

The Close Procedure
Syntax: Close (£)

Close closes the open file. f£ is a file variable of any file type. The association between £ and
its external file is broken and the file system marks the external file "closed”.

The Eof Function

Syntax: Eof (£)
Result Type: Boolean

Returns the end of file status of a file. £ is a file variable. Eof (f) returns true if the current
file position is beyond the last component of the file, otherwise it returns false.

Language Reference 19-3 Input and Output

The Seek Procedure
Syntax: Seek (£, n)

Changes the current file position to the file component n and reads the new current logical
record into the file window variable. f is a file variable, and n is an expression of type
LongInt. For text files, the logical record size is one byte. The number of the first file
component is zero. If the value of n is greater than the number of components in the file, then
the current file position is moved to the end of the file, and Eof (£) is true.

The Erase Procedure
Syntax: Erase (title)

Erases an external file. title is a string type expression. The external file with the name
title is deleted from its external storage device.

The IOResult Function

Syntax: IOResult
Result type: Integer

Returns an integer value that is the status of the last I/O operation performed. A value of zero
indicates successful completion of the last I/O operation, while a non-zero indicates an error.
Note that TOResult returns the status of the last I/O operation performed. Thus, the following
two statements do not provide the results one might expect.

Reset (£, 'myfile');
Writeln('IOResult for Reset = ',IOResult);

The call to the TO0Result function in the Writeln parameter list actually returns the status of
the Writeln operation for the string 'IOresult for Reset = ' since that was the most recent
I1/0 operation, and not the call to Reset. Instead the previous two statements should be
rewritten as:

Reset (f, 'myfile") ;
svIOResult := IOResult;
Writeln('IOResult for Reset = ', svIOResult):;

The FilePos Function

Syntax: FilePos (f)
Result type: LongInt

Returns the current file position of the opened file £. The first logical record in a file is called
the zeroeth position. With typed files, a logical record is an occurrence of the component type.
With text files, the component type is one byte. £ is a file variable reference and the file
referred to by f must be open.

Language Reference 19-4 Input and Output

The Rename Procedure
Syntax: Rename (OldName, NewName)
Renames an exiting external file. 0ldName and NewName are string type expressions. The

external file named oldName is renamed to NewName. If a file with the name OldName can not
be found then an error is returned in IOResult.

—*—__—_-—___———-__‘___*————_m—-—_____i
Standard Procedures for Typed-Files

The procedures discussed in this section are used to randomly access logical records of typed
files. The component type of typed files may be any type other than file type or structured type
containing a file type.

The Read Procedure With Typed-Files
Syntax: Read (f, v; (. vy, ey ¥ 1)

Reads a file component into a variable. £ is a file variable, and each parameter v is a variable
of the same type as the component type of the file £. For each parameter v, the file component at
the current file position is read into v and the file position advances to the next file component.
If an attempt is made to read past the end of file, then an error is returned by IOResult.

The Read procedure is also used with text files as described below. With text files, the file
variable £ is an optional parameter since, if it is omitted, the read statement would then read
from standard input (i.e. the keyboard) which is defined as type text. When the read procedure
is used with typed-files, the file reference variable is required.

The Write Procedure With Typed-Files
Syntax: Write (£, v9 [, vo , ..., Y3)

Writes each variable v into a file component. f is a file variable, and each parameter v is a
variable of the same type as the component type of the file £. For each parameter v the value of v
is written to the file component at the current file position and the file position is advanced to
the next file component. If the current file position is at the end of the file, then the file is
expanded to include the new file component.

The write procedure is also used with text files as described below. With text files, the file
variable f is an optional parameter since, if it is omitted, the write statement would then write to
standard output (i.e. the screen) which is defined as type text. When the write procedure is used
with typed-files, the file reference variable is required. :

Language Reference 19-5 Input and Qutput

Standard Procedures and Functions for Text Files

Text files are distinguished from all other types of files by the fact that they are organized into
a collection of lines terminated by the carriage return character. Text files are unique from
files defined as file of Char since the former is organized into lines while the latter may
not.

No procedure or function defined in this section requires an explicit file variable parameter. If
no file variable parameter is given, either the predefined file Input or output will be assumed
based on the type of operation performed by the procedure or function. If the procedure or
function is performing an input operation, the predefined file Input is assumed, otherwise
Output is assumed.

The Read Procedure With Text Files

Syntax: Read ([£, 1 ¥3 [s Vo smmmmesiponiippr—-od

Reads one or more values from a text file into the corresponding parameters v;. f, if
specified, is a variable of type Text. If £ is omitted, the standard file Input is assumed, which
is associated with the Apple IIGS keyboard. Each v is a variable of an Integer, Longint,
Real, Char, or String type.

Read a Char type variable. With a Char type variable, Read reads one character from the file
and assigns that character to the variable. If Eof (f) was true before the read was performed,
then the value Chr (0) is returned. If Eoln(f) was true before the read was performed, then the
value Chr (13) is returned. The next read will start with the next character in the file.

Read an Integer or Longlnt type variable. With an Integer or Longint type variable,
Read expects a sequence of characters which form a signed whole number. All spaces, tabs,
and end of lines are skipped until the beginning of the numeric string is found. Then all
characters which are not a space, tab or end of line are assumed to be part of the numeric
string. The string is then interpreted as a numeric value. If any characters in the string do
not represent a signed whole number, then an error is returned by T10Result. The next read
will start with the character which terminated the numeric string.

Read a Real type variable. With a Real type variable, Read expects a sequence of characters
which form a signed floating point number. All spaces, tabs, and end of lines are skipped until
the beginning of the numeric string is found. Then all characters which are not a space, tab or
end of line are assumed to be part of the numeric string. The string is then interpreted as a
floating point value. If any characters in the string do not represent a real number, then an
error is returned by IOResult. The next read will start with the character which terminated
the numeric string.

Read a String type variable. With a string type variable, Read reads all characters into the
string variable up to, but not including, the next end of line character. The next read will start
with the end of line character which terminated the read. Note that successive reads of a string
type will not read successive lines from the file since a read of a string type variable never
advances past an end of line character.

Longuage Reference 19-6 Input and Qutput

The Readln Procedure

Syntax: Readln ([£, %y oM s 4 P g

This procedure is an extension of the Read procedure. After performing the same operations as
Read would perform for the parameter list, Read1n skips to the beginning of the next line of the
Input file by skipping all characters in the Input file until an end of line character is found
and then reading that end of line character. If no other lines exist, eof (f) becomes true.
Again, if f is omitted, then the standard file Input is assumed.

The Write Procedure With Text Files

Syntax: Write ([£,]vl[,vz, cee 0 vy 1)
Writes one or more values to a file of type Text. If £ is omitted, the standard file Output is
assumed which is associated with the Apple IIGS screen. Each v is an expression of an
Integer, Longint, Real, Char, Boolean or String type.

Each v is known as a write-parameter. Each write-parameter has the form
OQutExpr [: MinWidth [: DecPlaces .3

where OutExpr is an output expression of an allowable type. Minwidth and DecPlaces are
expressions with integer-type values.

MinWidth specifies and minimum field width. MinWidth must be greater than or equal to zero.
Exactly Minwidth characters are written (using leading spaces if necessary), except when
OutExpr has a value that must be represented in more than MinWidth characters; in this case,
enough characters are written to represent the value of outExpr. Likewise, if Minwidth is
omitted, then enough characters as necessary are written to represent the value of OutExpr.

DecPlaces specifies the number of decimal places in a fixed-point representation of a real
value. It can be specified only if OutExpr has a real-type value, and if Minwidth is also
specified. If specified, it must be greater than zero. If DecPlaces is not specified, a floating-
point representation is written.

The Writeln Procedure

Syntax: Writeln ([£, 1 vy [, vp 4 wou, weardl

This procedure is an extension to the Write procedure. After performing the same operations as
Write would perform for the parameter list, writeln writes the end of line character to the file
(a carriage return).

Language Reference 19-7 Input and Qutput

The Eoln Function

Syntax: Eoln [(£)]

Result Type: Boolean

Returns the end of line status of a file. £ must be declared as a file of type Text. Eoln(f)
returns true if the character at the current file position is the end of line character or if
Eof (f) is true, otherwise it returns false.

The Page Procedure
Syntax: Page [(f) 1]

Writes the form feed character to a text file. £ must be declared as a file of type Text. If £ is
omitted then the standard file output is assumed.

Disk Files and Complete Pascal

When specifying an external file to any of the standard Complete Pascal procedures, the file's
pathname must be given. A pathname consists of a file name optionally preceded by the file's
volume name and zero or more directory names. The volume name, directory names, and file
name are separated by colons (;). For example,

MyVolume :MyDirl: ... :MyDirN:MyFile

In addition, the old style ProDOS/16 pathname syntax may also be used. ProDOS/16 uses the
slash (/) separator rather than the colon (:) seperator. For example,

/MyVolume/MyDirl/ ... /MyDirN/MyFile

For complete information about GS/OS and pathnames see the GS/0OS Reference.

Devices and Complete Pascadal

In addition to external disk files, Complete Pascal supports a set of devices for input and output.
These devices are any legal GS/0OS device such as the keyboard, the display, and the printer.
The keyboard and display devices are automatically available when the program begins
execution with the standard file variables Input and Output respectively.

The printer is also available as a text device, but must be explicitly opened using the Rewrite
procedure with the device name “.PRINTER”. For example,

PROGRAM TestPrinter;

var f: Text;

begin
Rewrite(f, ' .PRINTER"') ;

Language Reference 19-8 Input and Output

for i := 1 to 10 do
Writeln(f, 'Hello printer');
Close (f) ;
end;

The device names “.PRINTER” and “.CONSOLE” are predefined by GS/0S. Other device

names may be created for the modem port or other slots. For more information about device
names see the GS/OS Reference.

Language Reference 19-9 Input and Output

Language Reference 19-10 Input and Output

Chajpter 20

Standard Procedures and Functions

This chapter describes all the standard, predeclared procedures and functions provided in
Complete Pascal, except for the standard Input/Output procedures and functions which are
documented in Chapter 19.

Standard procedures and functions are predeclared. Since predeclared entities act as if they
were declared in a block surrounding the program or unit, no conflict arises from a
declaration that redeclares the same identifier within the program except that it hides the
predeclared procedure or function. However, predeclared procedures and functions may not be
used as actual parameters for procedures and functions.

——— ———— —

The Graphics Procedure

Syntax: Graphics (screenMode: Integer);

The Graphics procedure is used to initialize the Complete Pascal Textbook Graphics
programming environment. This procedure should be called as the very first statement in the
main body of a program. The procedure initializes the Apple IIGS Toolbox QuickDraw and
Event Manager toolsets and places the screen in Super Hi-Res 320 or 640 mode depending upon
the value of the screenMode parameter. The screen can be used for standard input and output
with the Readln, Writeln and other I/O routines. QuickDraw graphics can also be done in this
screen.

The Graphics procedure is provided in Complete Pascal in order to make programming
graphics as simple and easy possible. The Complete Pascal Textbook Graphics programming
model is fully described in Chapter 7 of this manual.

— —ee e o — —
—_— —_— —

The Flow of Control Procedures

The procedures in this section allow for immediate branching of control in a program.

The Exit Procedure
Syntax: Exit (id)
The Exit procedure causes execution of a particular block to terminate immediately, where a

block can be either a procedure or function, or the entire program. Essentially, it is equivalent
to a goto statement to a label at the very end of the block identified by id.

Language Reference 20-1 Standard Procedures and Functions

The Halt Procedure
Syntax: Halt

The Halt procedure causes execution of a program to terminate immediately.

The Cycle Procedure
Syntax: Cycle

The Cycle procedure causes the execution of the body of a loop to skip to the end of the loop and
continue execution of the next iteration of the loop. The Cycle procedure is only meaningful in
a for loop, a while loop, and a repeat loop. If it appears outside of the context of these statements,
it has no affect. ‘See Chapter 16 for more details.

The Leave Procedure
Syntax: Leave

The Leave procedure causes the execution of the body of the loop in which it occurs to terminate
and continue execution with the first statement after the loop. The Leave procedure is only
meaningful in a for loop, a while loop, and a repeat loop. If it appears outside of the context of
these statements, it has no affect. See Chapter 16 for more details.

Dynamic Allocation Procedures and Functions

These procedures are used to manage the heap, a memory area that is unallocated when a
program begins execution. The heap used by the dynamic allocation procedures is the Apple
IIGS heap, and the routines are implemented using the Apple IIGS Memory Manager. See the
Memory Manager chapter of the Apple IIGS Toolbox Reference for details regarding memory
management on the Apple IIGS.

The New Procedure
Syntax: New(p)

New(p) creates a new variable of the base type of p, and makes p reference it. p can be a pointer
variable of any type. The value of p is referenced as p”".

New actually calls the Memory Manager routine NewHandle to allocate a region of memory and
returns a pointer to the allocated block of memory.

An error if the heap does not contain enough free space to create the new variable. In this case,
pis set to nil and the HeapResult function will be set to indicate the error.

Language Reference 20-2 Standard Procedures and Functions

The Dispose Procedure
Syntax: Dispose(p)

Dispose (p) destroys the dynamic variable referenced by p and returns its memory region to
the heap. p must be a variable that was previously assigned by the New procedure or was
assigned a meaningful value by an assignment statement. The value of p then becomes
undefined and it is an error to subsequently make reference to any values previously
associated with p.

%

Transfer Functions

Transfer functions are used to transfer a value from one type to another. Note that the standard
procedures Pack and Unpack as defined by the Pascal Standard are not implemented in
Complete Pascal.

The Trunc Function

Syntax: Trunc (x)
Result Type: LongInt

Trunc(x) returns a LongInt result that is the value of the real type variable x truncated to the
nearest whole number that is between 0 and x inclusive. It is an error if the result of this
rounding is outside the range -maxlongint-1. .maxlongint.

The Round Function

Syntax: Round (x)
Result Type: LongInt

Round (x) returns a LongInt result that is the value of the real type variable x rounded to the
nearest whole number. If x is exactly halfway between two whole numbers, the result is the
whole number with the greatest absolute magnitude. It is an error if the result of this rounding
is outside the range -maxlongint-1. . -maxlongint.

The Ord4 Function

Syntax: 0rd4 (x)
Result Type: LongInt

Ord4 (x) returns the ordinal number of an ordinal type or pointer type value. 0rd4 corresponds
toOrd, except that the type of the result is always LongInt.

Language Reference 20-3 Standard Procedures and Functions

The Pointer Function

Syntax: Pointer (x)
Result Type: theanonymous pointer type

Pointer converts an Integer or Longint value to a Pointer type. The return value of
Pointer (x) is a pointer to the physical address denoted by the value of x. This pointer is of the
same type as nil in that it is assignment compatible with any pointer type. The value of
Pointer (0) is Nil.

Arithmetic Procedures and Functions

Arithmetic procedures and functions perform numeric operations on real or integer type values.
The implementation of these routines can be generated directly by the compiler, or achieved by
using the SANE routines built into the Apple IIGS Toolbox.

The Inc Procedure

Syntax: Inc (x)
Increments the Integer or LongInt type variable x by one (1).

The Dec Procedure
Syntax: Dec (x)

Decrements the Integer or LongInt type variable x by the value one (1).

The Abs Function

Syntax: Abs (x)
Result Type: same type as parameter.

Returns the absolute value of x; i.e. if x is negative, —x is returned; otherwise x is returned. x
is an integer or real type argument.

The Sqrt Function

Syntax: Sqrt (x)
Result Type: Extended

If x is non-negative, Sqrt returns an Extended value which is the square root of x. However, if

x is negative, a diagnostic NaN (Not a Number) is produced and the invalid operation signal is
set. See Apple Numerics Manual for more information on NaNs.

Language Reference 204 Standard Procedures and Functions

The Odd Function

Syntax: odd (x)
Result Type: Boolean

Returns True if x is odd, i.e. not divisible by 2 without a remainder. If x is even, it returns
False. x is an expression of an ordinal type.

The Sin Function

Syntax: Sin (x)
Result Type: Extended

Returns the trigonometric sine of x. X is any real type expression and is assumed to represent
an angle in radians. If x is infinite, a diagnostic NaN is produced and the invalid operation
signal is set.

The Cos Function

Syntax: Cos (x)
Result Type: Extended

Returns the trigonometric cosine of x. X is any real type expression and is assumed f.o
represent an angle in radians. If x is infinite, a diagnostic NaN is produced and the invalid
operation signal is set.

The Exp Function

Syntax: Exp (x)
Result Type: Extended

Returns the value of e*, where e is the base of the natural logarithms. If floating-point
overflow occurs, the result is +inf. Xis any real type expression.

The Ln Function

Syntax: Ln (x)
Result Type: Extended

Ln(x) returns the natural logarithm (log,) of x. X is any real type expression. If x is
negative, a diagnostic NaN is produced and the invalid operation signal is set.

Language Reference 20-5 Standard Procedures and Functions

The Arctan Function

Syntax: Arctan (x)
Result Type: Extended

Returns the principle value, in radians, of the arctangent of x. X is any real type expression.
All numeric values of x are valid, including +Inf.

Ordinal Functions

The ordinal functions in this section operate on the ordinal value of scalar and pointer types.
Refer to Chapter 13 for more information on scalar and pointer types.

The Ord Function

Syntax: ord (x)
Result Type: Integer or LongInt

Ord returns the ordinal number of a scalar or pointer type value. If x is of type Integer or
LongInt, the result type is the same as x. If x is a pointer type, the result is the corresponding
address of the dynamic variable pointed to by x, of type LongInt. If xis of an ordinal type, the
result is of type Integer and the value is the ordinality of x . The standard procedure Ord4
should be used if the result type LongInt is desired, regardless of the type of x.

The Chr Function

Syntax: Chr (x)
Result Type: Char

Returns the Char value whose ordinal number is x. For any Char value ch, the following is
always true: chr(ord(ch)) = ch.

The Succ Function

Syntax: Suce (x)
Result Type: same as parameter

Returns the successor of x. It is an error if x is the last value in the type of x, i.e. it has no
SuCCessor.

Language Reference 20-6 Standard Procedures and Functions

The Pred Function

Syntax: Pred (x)
Result Type: same as parameter

Pred(x) returns the successor of x. It is an error if x is the first value in the type of x, i.e. it has
no predecessor.

o s e e

String Procedures and Functions

The string procedures and functions do not accept as parameters packed array of character
types, but rather only string types.

The Length Function

Syntax: Length (str)
Result Type: 1Integer

Returns the dynamic length of the string, str.

The Pos Function

Syntax: Pos (substr, str)
Result Type: Integer

Pos (substr, str) searches for substr within str, and returns an Integer value that is the
index of the first character of substr within str. If substr is not found, Pos(substr, str)
returns zero.

The Concat Function

Syntax: Concat (stry [, stry, ...str,})
Result Type: anonymous string type

The Concat function concatenates all the parameters in the order in which they are written,
and returns the concatenated string. Note that the number of characters in the result cannot
exceed 255.

The Copy Function

Syntax: Copy {source, index, count)
Result Type: String type

The Copy function returns a string containing count characters from the string source,
beginning at source [index] .

Language Reference 20-7 Standard Procedures and Functions

The Delete Procedure
Syntax: Delete (dest, index, count)

The Delete procedure removes count characters from the value of the string dest, beginning at
dest [index] .

The Insert Procedure
Syntax: Insert (source, dest, index)

The Insert procedure inserts the string source into the string dest. The first character of
source becomes dest [index].

Logical Bit Procedures and Functions

This section describes a set of procedures and functions for bit manipulations. These routines
correspond to a set of essentially identical machine instructions of the 65816.

The BAnd Function

Syntax: BAnd (argl, arg2)
Result Type: Integer or LonglInt

BAnd returns the logical AND of its two arguments. argl and arg2 are both expressions of a
scalar type.

The BOr Function

Syntax: BOrx (argl, arg2)
Result Type: Integer or LongInt

BOr returns the logical OR of its two arguments. argl and arg2 are both expressions of a
scalar type.

The BXor Function

Syntax: BXor (argl,arg2)
Result Type: Integer or LonglInt

BXor returns the logical exclusive OR of its two arguments. argl and arg2 are both
expressions of a scalar type.

Language Reference 20-8 Standard Procedures and Functions

The BNot Function

Syntax: BNot (argl)
Result Type: Integer or LongInt

BNot returns the logical negation (one's complement) of its argument. argl is an expression of
a scalar type.

The BSL Function

Syntax: BSL (arg)
Result Type: Integer or LongInt

BSL shifts left the bits of arg by one bit. arg is an expression of a scalar type. A zero is shifted
into the low-order bit vacated by the shift operation.

The BSR Function

Syntax: BSR(arg)
Result Type: Integer or LongInt

BSR shifts right the bits of arg by one bit. arg is an expression of a scalar type. A zero is
shifted into the high-order bit vacated by the shift operation.

The BRoilL Function

Syntax: BRotL(arg)
Result Type: Integer or LongInt

BRotL rotates left the bits of arg by one bit. arg is an expression of a scalar type. Bits are
shifted out of the low-order position and back into the high-order position.

The BRoiR Function

Syntax: BRotR (arg)
Result Type: Integer or LongInt

BRotR rotates right the bits of arg by one bit. arg is an expression of a scalar type. Bits are
shifted out of the high-order position and back into the low-order position.

The HiWrd Function

Syntax: HiWrd(arg)
Result Type: Integer

HiWrd returns the high order word of the scalar or pointer value arg, that is, bits 31-16 of a

Language Reference 209 Standard Procedures and Functions

LongInt. If arg is not a 32-bit value, HiWwrd returns zero. When the argument is a simple
variable or array access, no code is generated by this function because the argument is simply
addressed and used as an Integer.

The LoWrd Function

Syntax: LoWrd (arg)
Result T'ype: Integer

LoWrd returns the low order word of the scalar or pointer value arg, that is, bits 15-0 of a
LongInt. When the argument is a simple variable or array access, no code is generated by
this function because the argument is simply addressed and used as an Integer.

Miscellaneous Procedures and Functions

This section describes byte-oriented procedures and functions as well as routines that operate on
packed character arrays.

The byte-oriented routines allow a program to treat any variable simply as a sequence of bytes.
No regard is given to data types. The byte-oriented routines discussed in this section are
Moveleft, MoveRight, and SizeOf.

The packed character array routines discussed in this section are ScanEq, ScanNE, and
FillChar. Parameters to these routines cannot be subscripted and the routines always begin
with the first character of the array.

The SizeOf Function

Syntax: SizeOf (id)
Result Type: LongInt

Returns the number of bytes occupied by the variable or type id. The value of SizeOf is
determined by the Complete Pascal compiler, which treats it as a constant at compile time.

The Card Function

Syntax: Card(s)
Result Type: Integer

Counts the number of elements in the set s and returns an Integer value which is the
cardinality of the set, that is, the number of members in the set.

Language Reference 20-10 Standard Procedures and Functions

The Moveleft Procedure
Syntax: MoveLeft (source, dest, count)

MoveLeft copies a block of count contiguous bytes of storage from source to dest beginning at
the lowest memory address of the blocks (the first byte of source and dest). Source and dest
are variable references of any type other than a file type or a structured type containing a file
type. Count is an Integer expression and is not range checked. When source and dest
overlap, you should use this procedure if source is at the higher memory address.

The MoveRight Procedure
Syntax: MoveRight (source, dest, count)

MoveRight copies a block of count contiguous bytes of storage from source to dest beginning
at the highest memory address of the blocks (the last byte of source and dest). Source and

The FillChar Procedure
Syntax: FillChar(dest, count, ch)
FillcChar fills a block of count contiguous characters of storage with the specified character ch

beginning at the address of dest. Dest is a variable reference of type Packed Array of Char.
Count is an integer expression and is not range checked. ch is a value of a character type.

The ScanEq Function

Syntax: ScanEq(limit, ch, source)
Result: Integer

limit is an integer expression truncated to 16 bits and is not range checked. Ch is a character
type. Source is a variable parameter with a value of type Packed Array of Char.

Language Reference 20-11 Standard Procedures and Functions

The ScanNe Function

Syntax: ScanNe (limit, ch, source)
Result: Integer

ScanNe operates the same as ScanEq except that it scans for the first character not equal to ch.

Apple lIGS Toolbox Error Handling

The Apple IIGS Toolbox defines a convention for reporting errors that may have occurred in the
execution of a toolbox routine. If an error is detected during the execution of a toolbox routine,
then upon exiting the tool call and returning to the application, the 65816 carry flag is set and
the accumulator contains an error code describing the error that was detected. Complete Pascal
provides a mechanism to obtain this information in a Pascal program.

The IsToolError Function

Syntax: IsToolError
Result Type: Boolean

Returns true if the last Apple IIGS Toolbox routine returned an error, otherwise false.
IsToolError tests the carry flag of the 65816 processor to determine if an error exists. The
function must be called immediately after a tool call, before any other operation is performed
that might affect the 65816 carry flag. In the case that the tool call is a function and the function
appears in an expression, the result of IsToolError may be incorrect since the evaluation of the
expression may have affected the carry flag. In this case, a program should test the value of the
variable _ToolErr described below.

The _ToolErr Variable

Syntax: _ToolErr
Type: Integer

The _ToolErr variable contains the error code returned by the last call to an Apple IIGS Toolbox
routine. A non-zero value indicates an error. The compiler generates code which stores the
value of the accumulator into the variable _ToolErr immediately after the tool call returns,
before any other operation is performed that might destroy the value.

Example usage of IsToolError and _ToolErr:

h := NewHandle(100,myMemoryID,0,Ptr(0));

if IsToolError then begin
theErr := _ToolErr;
Writeln(‘Error allocating memory:’,theErr);
end;

Language Reference 20-12 Standard Procedures and Functions

Note that _ToolErr was saved to a temporary variable before calling the standard procedure
Writeln. This is necessary because the implementation of the Writeln procedure calls several

Apple IIGS Toolbox routines which would overwrite the value of _ToolErr and cause an
erroneous error number to be output.

Many of the Apple IIGS Toolbox routines are defined to never return a non-zero error code
because no error is possible. Complete Pascal, however, does not know this and still generates
the appropriate code to save the tool error value into _ToolErr. If an application would like to
avoid having this code generated, it may use the ($ToolErrorCheck-} directive to turn off this
code generation. For more information, see Appendix B.

* Note: TML Pascal versions 1.x defined the variable ToolErrorNum to have the same

meaning as _ToolErr. The variable ToolErrorNum may still be used, however, the new
standardized name is —ToolErr, and is the preferred name.

Language Reference 20-13 Standard Procedures and Functions

Language Reference 20-14 Standard Procedures and Functions

Appendlix A

Error Messages

This appendix lists all of the Complete Pascal editor, compiler and linker errors as well as
GS/0S and IOResult error codes. Explanatory notes follow some of the error messages to help

clarify the message, and in some cases additional notes appear explaining how to solve the
error.

Some messages contain the special character A" which is substituted by Complete Pascal with
an identifier, label, or some other value to help make the error message as meaningful as
possible.

Editor Errors

* When Complete Pascal detects that you are running dangerously low on memory. In
order to avoid the potential loss of data you are recommended to free some memory by
closing a document window. You may also choose the Release Memory option from the
Preferences dialog.

“Memory is getting low. Close a document window.”
* You are not allowed to open the same file more than once.
“Can't open that file. The file already open in another window.”

* An error occurred while reading the document from disk. This could happen if the file is
damaged or the disk has been removed from the disk drive.

“Error reading file.”

* This error is reported when Complete Pascal is unable to save the contents of a document
window to disk. This is usually because the disk is locked, removed from the disk drive
or the disk is full.

“Error saving file.”

* This error is reported after you have chosen to delete a disk file using the Delete...
command from the GSOS menu and the disk has been removed from the disk drive or
the disk is locked.

“Error deleting file.”

* This error is reported after you have chosen to rename a disk file using the Rename...
command from the GSOS menu and you have specified an illegal filename, the disk has
been removed from the disk drive or the disk is locked.

“Error renaming file.”

Appendices A-1 Error Messages

* When an operation has failed due to the lack of available memory.

“Insufficient memory to complete that operation.”

Compiler Errors

Lexical Errors
¢ A string constant literal is missing its closing quote.
“String constant must not exceed source line.”
* The syntax for a numeric literal value is incorrect.
“Error in numeric literal.”
¢ An illegal character has been detected in the soure file.
“Illegal character in input.”

* The end of file was reached before the program or unit was correctly terminated with a
period.

“Incomplete program.”
* The Complete Pascal compiler skipped to the end of file searching for the end of a
comment. If you open a comment with either { or (* then it must be terminated with } or

*) respectively. See Chapter 11.

“End of file encountered while reading a comment.”

Syntax Errors

These error messages indicate that a program contains illegal Pascal syntax. While the error
message indicates the symbol that it is expecting when it detected the error, it is usually possible
that other symbols could also repair the syntax error. If you are unfamiliar with Pascal syntax
then you should study Chapters 11 through 20.

“Identifier expected.”

“Unexpected symbol.”

“Integer constant expected.”

“Error in statement.”

“Error in expression.”

“'BEGIN' expected.”

“'DO" expected.”

“'END' expected.”

“ 'IMPLEMENTATION" expected.”

Appendices A-2 Error Messages

“ 'INTERFACE' expected.”
“'OF" expected.”

'"PROGRAM' or 'UNIT" expected.”
‘'THEN' expected.”

"TO" or ' DOWNTO' expected.”
"UNTIL' expected.”

'Y expected.”

't expected.”

‘(" expected.”

“'[' expected.”

“'T expected.”

“" expected.”

=' expected.”

“* expected.”

'.." expected.”

“'" expected.”

“© v,

=" expected.”

R R & R & & &

“® v

“

Semantic Errors

* When the same identifier has been declared more than once in the current block.
“Duplicate identifier.”

* In an array declaration, the lower bound is declared to be greater than the upper bound.
“Low bound exceeds high bound.”

* In the following contexts, the specified type must be a scalar or a subrange type such as
Integer, Char, Boolean, etc. The type is also not allowed to be a real type.
“Identifier is not of appropriate class.”
“Identifier not declared.”
“Sign not allowed.”
“Incompatible subrange types.”
“File not allowed here.”
“Tagfield type must be scalar or subrange.”
“Index type must be scalar or subrange.”

“Base type must be scalar or subrange.”

* When the type of an expression passed as a parameter to one of Complete Pascal’s
predefined procedures or functions is incorrect. See Chapters 19 and 20.

“Error in type of standard subprogram parameter.”

* When a parameter list for a function or procedure declared FORWARD is repeated, or in
a unit interface which does not match the current declaration.

“Repitition of parameter list is not identical to previous declaration.”

Appendices A-3 Error Messages

« File parameters must always be specified as VAR.
“File value parameter not allowed.”

« Complete Pascal does not permit the use of expressions whose type is Longlnt for case
expressions, for loop control variables or indexing arrays.

“LongInt case/control variable/index expression are not implemented.”
» The following semantic errors are self-explanatory.

“Missing result type in function declaration.”

“Fixed point formatting allowed only for real types.”
“Number of parameters does not agree with declaration.”
“Actual parameter may not be PACKED for VAR formal parameter.”
“Operands are not assignment compatible.”

“Tests on equality allowed only.”

“Strict inclusion not allowed.”

“File comparison not allowed.”

“Illegal type of operand(s).”

“Type of operand must be Boolean.”

“Set element type must be scalar or subrange.”

“Set element types not compatible.”

“Type of variable is not array.”

“Index type is not compatible with declaration.”

“Type of variable is not record.”

“Type of variable must be pointer.”

“Illegal parameter substitution.”

“Illegal type of loop control variable.”

“Boolean expression expected.”

“Assignment of files not allowed.”

“Label type incompatible with selecting expression.”
“Subrange bounds must be scalar.”

“No such field in this record.”

“Actual parameter must be a variable.”

“Control variable must not be declared on intermediate level.”
“Multidefined case label.”

“Again forward declared.”

“Multidefined label.”

“Multideclared label.”

“Undeclared label.”

“Error in base set.”

“Illegal function result assignment.”

“Must EXIT to an enclosing subprogram.”

“Control variable must not be formal.”

“Assignment to control variable is not allowed.”

“Forward referenced type "~" not completed in previous.”
“Forward declared subprogram "A" not completed in previous.”
“Label "A" was declared but not defined in previous block.”
“Size of string must be between 1 and 255.”

“@ is not allowed for expressions or INLINE and TOOL subprograms
“Type cast to a different size is not allowed.”

“Too many nested scopes of identifiers.”

“Too many nested procedures and/or functions.”

Appendices A-4 Error Messages

“Index expression out of bounds.”
“Implementation restriction.”

Unit Errors

When a unit named in a uses clause uses another unit itself which does not appear in the
current uses clause.

“The unit "A" require is required to USE this unit.”

When you specify the same unit name more than once in a uses clause. Also, when a
unit named in a uses clause has the same name as the unit or program it is within.

“Repitition of unit not allowed.”
When a unit named in this unit’s uses clause has been recompiled. To correct the error,
you must recompile the units named in a unit’s uses clause.

“This unit must be recompiled.”

When the “.p.o” file for the named unit cannot be found in either the current unit prefix or
the Unit Search Path specified in the Preferences dialog.

“Unable to find/open unit's symbol file.”

When the compiler is unable to create, open or write to the unit's “.p.o” file. The disk
may be locked, removed from the disk drive or full.

“Unable to write unit symbol file for this unit.”

Whenever you receive a new version of Complete Pascal you must recompile all of your
units.

“Unit must be recompiled with current version of compiler.”
When the number of declarations in this unit has exhausted the available memory
allocated for the unit's symbol table. You should adjust the symbol table size in the

Preferences dialog.

“Symbol table space exhausted.”

Linker Errors

Either of the following two errors may occur when you have specified the same segment
name in a {$DSeg segname } and {$CSeg segname } compiler directive.

“Out of Memory. N

“Segment "A" specifed as both CODE and DATA.”

A CODE or DATA segment became larger than 64K bytes. You must resegment your
program so that the segment does not exceed this limit. See Chapter 16.

Appendices A-5 trror Messages

“Segment "~" too large.”

* An externally defined label cannot be found by the linker. You should recheck the
spelling of the symbol to make sure it is correct.

“Unresolved linker reference to symbol "A".”

« After a Compile To Disk completes successfully, the linker attempts to write the
application load file to disk. This error is reported if this file cannot be created and/or
opened. This can happen if the disk is locked or has been removed from the disk drive.

“Unable to create/open application file.”
 This error is reported when Complete Pascal was able to create and/or open the output

application file, but encountered an error during writing. This is usually caused because
of a locked disk or a disk becoming too full to write the entire file to disk.

“Error in writing to application file.”

GS/0OS Error Codes

This section lists the possible result codes of the standard function IOResult which reports the
success of an I/O operation. The codes correspond to those returned by GS/OS, except for result
codes -1, -2, and -3, which are generated by the Complete Pascal runtime routines for Pascal
specific errors. The GS/OS error codes are provided here for reference. For complete
documentation regarding these error codes consult Apple Computer's GS/OS Reference manual.

General Errors

$00 No error
$01 Invalid GS/OS call number

$04 Parameter count out of range
$07 GS/OS is busy

Device Caill Errors

$10 Device not found

$11 Invalid device number

$20 Invalid request

$21 Invalid control or status code
$22 Bad call parameter

$23 Character device not open

$24 Character device already open
$25 Interrupt table full

$26 Resources not available

$27 1O error

$28 No device connected

$29 Driver is busy

$2B Device is write protected

$2C Invalid byte count

$2D Invalid block address

$2E Disk has been switched

$2F Device off line or no media present

Appendices A-6 Error Messages

Appendices A-7 Error Messages

File Call Errors

$40
$43
$44
$45
$46
$47
$48
$49
$4A
$4B
$4C
$4D
$4E
$4F
$50
$51
$52
$53
$54
$57
$58
$59
$5A
$5B
$5C
$5D
$5F
$60
$61
$62
$63

Invalid pathname syntax

Invalid reference number
Subdirectory does not exist
Volume not found

File not found

Create or rename with existing name
Volume full error

Volume directory full

Version error

Unsupported storage type
End-of-file encountered

Position out of range

Access not allowed

Buffer too small

File is already open

Directory error

Unknown volume type

Parameter out of range

Out of memory

Duplicate volume name

Not a block device

Specified level outside legal range
Block number too large

Invalid path names for ChangePath
Not an executable file

Operating system not supported
Too many applications on stack
Data unavailable

End of directory has been reached
Invalid FST call class

File does not contain required resource

Complete Pascal Specific Errors

o3
2

-3 Numeric string conversion error in textfile.

Appendices

Textfile is not open for reading.
Textfile is not open for writing.

A-8

Error Messages

Appendix B

Compiler Directives

Complete Pascal provides for several directives (or options) which affect the operation of the
compiler and/or the code generated by the compiler. These compiler directives are written
within the Pascal comment delimiters (.-} or (*...*). A directive always begins with the symbol
'$' and must appear immediately inside the opening comment delimiter and is followed by a
letter (case insensitive) which designates the particular directive.

There are two types of directives: a switch directive and a parameter directive. A switch
directive turns on or off a particular compiler feature by specifying'+' or '-' ,respectively,
immediately after the directive letter. A parameter directive has one or more string arguments
such as filenames or segment names. A string argument is terminated by a blank, an
asterisk, or a right brace. If a string argument must contain one of these characters, then the

string should be enclosed in single quotes.
Examples of compiler direcitves:
(*SLongGlobals+ *)
{$CSeg NewSeg }

The following sections describe each of the compiler directives available in Complete Pascal.

e —————

Classic Desk Accessory

{($CDA menuName)
The CDA directive is used to inform the compiler that a program implements a Classic Desk
Accessory rather than a GS/0S application. The structure of a desk accessory program is
somewhat different than an application. In particular, Complete Pascal must generate a special

header which contains the CDA’s name in the Classic Desk Accessory menu.

For complete information about writing Classic Desk Accessories in Complete Pascal see
Chapter 10.

Because the compiler must generate special code for desk accessories before any code in a
program, the option MUST appear before the reserved word UNIT in your source code for it to
have any affect. Consider the following source code fragment:

{3CDA SHRDump }
UNIT MySHRDump;

end.

Appendices B-1 Compiler Directives

Code Segment

{$CSeg segname)}

Default: ($CSeg main }
The CSeg option directs the compiler as to which code segment all subsequent subprograms
should be allocated. The default code segment has the special reserved name main. For other

code segment names, any string of characters is allowable so long as it does not contain a
space. See Chapter 8 for more information regarding the use of code segments.

Definition Procedure
{$DefProc)

The $DefProc directive is used to inform the Complete Pascal compiler that the next procedure
or function which appears in the source code implements an Apple IIGS Toolbox definition
procedure. A definition procedure is implement exactly like any othe procedure or function
except that the compiler generates slightly different code. In particular, the compiler generates
code which sets the 65816 data bank register equal to the memory bank containing the Pascal
global variables. When the procedure exits, code is generated which restores the data bank
register.

Data Segment
($DSeg segname)
Default: {$DSeg ~global }

The DSeg option directs the compiler as to which data segment all subsequent global variable
declarations should be allocated. The default data segment has the special reserved name
~global, for other data segment names, any string of characters is allowable so long as it does
not contain a space, although conventions usually have the name begin with the tilde (~)
character. Remeber that the ~global data segment is the special segment in which the compiler
uses the more efficient absolute addressing rather than absolute long addressing. See Chapter 8
for more information regarding the use of data segments.

Appendices B-2 Compiler Directives

External Referenced Variable
{($J+} or ($J-)
Default: ($J-)
The External Referenced Variable directive informs Complete Pascal that subsequent global
variable declarations should not have storage allocated. Rather, the global variable declaration
is treated as an external reference to a global variable declared elsewhere.
Typically, this directive is used for Pasecal to access global storage declared in 65816 assembly
language. However, it may be used with any language compatible with Complete Pascal
linking conventions.
Consider the following source code fragment:
VAR GlobVarl: integer;
{J+ }
GlobVar2: integer;

{J-}

GlobVar3: integer;

%

Long Globals
{$LongGlobals+)} or {$LongGlobals- }
Default: ($LongGlobals-)

This option directs the compiler to either turn on (+) or off (-) the generation of absolute long
addresses for global variables in the ~global data segment. Normally, the compiler generates
code which sets the 65816 Data Bank register to the memory bank containing the global
variables allocated in the ~global data segment. However, there are several occasions where a
program can not rely on this assumption. In order to guarantee that the compiler generates
code which correctly addresses a program’s global variables in the ~global data segment under
the conditions stated above, this option should be turned on, thus forcing absolute long
addressing for all global variables.

Appendices B-3 Compiler Directives

New Desk Accessory
($NDA period eventMask menuName)

The NDA directive is used to inform the compiler that a program is actually a New Desk
Accessory rather than a GS/OS application. The structure of a desk accessory program is
somewhat different than an application. In particular, Complete Pascal must generate a special
header which contains the period, in 60ths of a second, in which the desk accessory needs
periodic servicing, an event mask which describes what kinds of events the desk accessory
must act on, and the name for the desk accessory that should appear in an application's Apple
Menu.

For complete information about writing New Desk accessories in Complete Pascal see Chapter
9.

Because the compiler must generate special code for desk accessories before any code in a
program, the option MUST appear before the reserved word UNIT in your source code for it to
have any affect. Consider the following source code fragment:

{SNDA 60 -1 CTIClock }
UNIT CTIClock;

end.

Stack Size

{$StackSize numbytes }
Default: {$StackSize 8096 }

The StackSize directive is used to inform Complete Pascal as to how much space (in bytes of
memory) should be allocated for the application's runtime stack. The runtime stack is used to
store the return addresses of subprogram calls made during execution of a program and for a
subprogram's local variables. Thus, the use of local variables in your program directly affects
the runtime stack size your program requires.

The default runtime stack size is 8K, or 8096 bytes. If a program requires more or less storage,
then this option should be used. However, at least 1K or 1024 bytes, and no more than 40K or
40960 bytes, may be requested. However, Complete Pascal does not check the value specified in
the directive. See Appendix D for more information regarding the runtime stack.

Note that this option MUST appear before the reserved word PROGRAM in your source code for
it to have any affect. Consider the following source code fragment:

{StackSize 10240 }
PROGRAM myProg;
begin

end.

Appendices B-4 Compiler Directives

Unit Symbol File Search Prefix
(8U GSOS prefix)
Default: {$U 0:)

This option allows an application to specify any legal GS/0OS prefix for the purpose of searching
for unit symbol files (“.p.o” files). The Complete Pascal compiler does not recompile the
interface part of units specified in a USES clause, but rather loads a precompiled symbol table of
the declarations in a unit from a “p.o” file. To search for these files, Complete Pascal
maintains a current unit prefix used to create the full pathname of a “.p.0o” file. The default
prefix is "0:" which is the GS/OS prefix for the current directory. This unit prefix can be
changed to any legal prefix using this comiler directive. For example,

USES Types,
{$U :CTI:MYSTUFF: } HandyRoutines;

Note that if a “.p.o” file cannot be found using the compiler's unit prefix the Complete Pascal
compiler will also attempt to find the file by using the Unit Search Path specified in the
compiler's Prefrences Dialog (See Chapter 3). If the required “.p.o” file cannot be found using
either prefix then an error is reported.

% e ——— ———— ——
Tool ErrorNum Check

{$ToolErrorChk+) or {$ToolErrorChk-}
Default: ($ToolErrorChk+)

This directive allows an application to control the automatic generation of error checking code
for Apple IIGS Toolbox calls. As discussed in Chapter 20, Complete Pascal generates a STA
_ToolErr instruction after every call to a Toolbox routine so that the special Complete Pascal
global variable _ToolErr always contains the error code of the most recently called Toolbox
routine. A non-zero _ToolErr indicates an error occured during the exectuion of the last
Toolbox routine, and the value of ~ToolErr is an error code that can be used to determine the
cause of the error.

In many cases, an application does not need to check the value of _T'0olErr after Toolbox calls,

and would rather not have the STA —ToolErr instruction generated in order to decrease the code
size of an application. To achieve this, the $ToolErrorChk directive is turned off.

Appendices B-5 Compiler Directives

n;mj“:.:f:':a Yo supyrag s ot nfang 2 AR hugel gaa ¥
s afigpiesyt Joa eseh voligames lgzpa® mqiﬂew
o 2l Tsderye heligaroeng 8 shaal xsekyac dem
aasad wisianeld ecJﬁ sapdl o snzies.
Hasieh sdT i Togl 8% afading Dot sl adhun 6
“wd pes SR R il ersdoeyih fnsvres edl e} 0w
' algserr 1 eriiiewh younan w

c@snk twcHEehasid
tanee] adelgmmold ool ﬁ*—m 1m.§ aweliguass sdd Griias iu.f

wibd m¥ Bsﬁm*qﬁ At Aot %rﬂ"é ad1 gulzy ol ol e
spige Brees? ad fognss 3l Co.g. ¢ bsvirepay o83 Y '

= Wm@ybmﬁ“ ﬁfﬂ (AR 7 P

Hoedl) et oo

shos naidieds e Yo ‘*&kﬁﬁ'ﬁﬂm sifaarcdits adi lendies aF How
AT g aaspismey tmeesT stefguenl) 0% sdandD ¢ Bagssiorit sx’&
{gpsmet sisigend febean edl Jusdi oo snidpoy wediewl & o B
xodloo’l Beflay wiinsses Jiem s G shos aotis ot AR
Jepl and do aoelsissxs adi sl Seypted weire B R

sdt snimyarab of hesy o rev dodl ebed wab £ i ‘—\.&;_

o

f,ut tabin it I
i bamwid of gvitrevih D Tiiied”

TEfERY mmﬁﬁ“ﬁ{'f et

aham wild szusas S L
e, am.’é awﬁ fﬁ*&s-:, %-.

o B-6 & : Compiler Directives

ks wudina® vwits i EindT g gubgy ol :faaécﬁ b B n"‘nn ::.-ﬁ.r'l;; ';wf;.f Higeah R BOEEE WL

()

Appendix C
Apple lles Toolbox Units

The Apple IIGS Toolbox is the large collection of sophisticated software which is part of every
Apple IIGS. The Toolbox implements the QuickDraw Super Hi-res Graphics engine as well as
the Apple Desktop Interface which includes windows, menus, dialogs, controls and much more.

As discussed in Chapter 8, Complete Pascal provides access to the Apple IIGS Toolbox with a
collection of predefined Pascal Units. This appendix lists the source code to each of these
predefined units so that you can use them in your programs. The following units are provided
in this appendix:

* ACE « ADB

* Controls * Desk

* Dialogs * Events

* Fonts * GSOS

* IntMath ¢ LineEdit
* Lists * Loader

¢ Locator * Memory
* Menus « MIDI

* MiscTool * NoteSeq
* NoteSyn * Print

* QDAux * QuickDraw
* Resources * SANE

¢ Scheduler * Scrap

* Sound * StdFile
* TextEdit ¢ TextTool
* Types * Windows

In addition, the Index to this manual alphabetizes each of the Toolbox procedures and functions
referenced in this Appendix.

—————— e ——————— = —

ACE

{t***************t**t*********#*ti*********t*

; File: ACE.p

i Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

itt*i*****t*t****i*********i***********i,

UNIT ACE;

INTERFACE

Appendices C-1 Apple IIGS Toolbox Units

USES Types;

CONST aceNoError = 50;
acelsActive = $1D01;
aceBadDP = $1D02;
aceNotActive = $1D03;
aceNoSuchParam = $1D04;
aceBadMethod = $1D05;
aceBadSrc = $1DO06;
aceBadDest = $1D07;
aceDatatOverlap = $1D08;
aceNotImplemented = S1DFF;

PROCEDURE ACEBootInit;

PROCEDURE ACEStartUp

(dPageAddr: Integer) ;

PROCEDURE ACEShutDown;

FUNCTION ACEVersion: Integer;

PROCEDURE ACEReset;

FUNCTION ACEStatus: Boolean;

FUNCTION ACEInfo

(infoIltemCode: Integer): Longint;

PROCEDURE ACECompBegin;

PROCEDURE ACECompress
(src: Handle;
srcOffset: Longint;
dest: Handle;
destOffset: Longint;
nBlks: Integer;
method: Integer) ;

PROCCEDURE ACEExpand
(src: Handle;
srcOffset: Longint;
dest: Handle;
destOffset: Longint;
nBlks: Integer;
method: Integer) ;

PROCEDURE ACEExpBegin;

IMPLEMENTATION

END.

ADB

(*******************‘i****tt**i*i*****&****t*t

D

File: ADB.p

Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

;

*****'k***i*t****ttt*t*i****xt****tt******t**}

UNIT ADE;

Appendices C-2

{Error
{Error
{Error
{Error
{Error
{Error
{Error
{Error
{Error
{Error

Apple IIGS Toolbox Units

INTERFACE
USES Types:

CONST cmndIncomplete = 50910; {error - Command not completed. }
cantSync = 50911; {error - Can't synchronize }
adbBusy = $0982; {error - Busy (command pending) }
devNotAtAddr = $0983; {error - Device not present at address }
srqListFull = $0984; {error ~ JLidst Full)
readModes = S000A; {ReadKeyMicroData - }
readConfig = $000B; {ReadKeyMicroData - }
readADBError = 5000C; {ReadKeyMicroData - }
readVersionNum = 3000D; {ReadKeyMicroData - }
readAvailCharsSet = $S000E; {ReadKeyMicroData -)
readAvailLayout = $000F; {ReadKeyMicroData - }
readMicroMem = $0009; {ReadKeyMicroMem - }
abort = $0001; {SendInfo - command }
resetKbd = $0002; {SendInfo - command }
flushKbd = $0003; {SendInfo - command)}
setModes = $0004; {SendInfo - 2nd param is pointer to mode byte }
clearModes = $50005; {SendInfo - 2nd param is pointer to mode Byte }
setConfig = $0006; {SendInfo - 2nd param is pointer to SetConfigRec }
synch = 50007; {SendInfo - 2nd param is pointer to SynchRec }
writeMicroMem = $0008; {SendInfo - 2nd param is pointer to MicroControlMemRec}
resetSys = $0010; {SendInfo - command } y
keyCode = 50011; {SendInfo - 2nd param is pointer to key code byte. }
resetADB = $50040; {SendInfo - command }
transmitADBBytes = 50047; {SendInfo - add number of bytes to this }
enableSRQ = 50050; {SendInfo - command - ADB address in low nibble}
flushADBDevBuf = 50060; {SendInfo - command - ADB address in low nibble}
disableSRQ = $0070; {SendInfo - command - ADB address in low nibble}
transmit2ADBBytes = $0080; {SendInfo - add ADB address to this}
listen = 50080; {SendInfo - adbCommand = listen + (16 * req) +

(adb address) }
talk = $00C0; {SendInfo - adbCommand = talk + (16 * reqg) +
(adb address) }

TYPE ReadConfigRecPtr = "ReadConfigRec;
ReadConfigRec =
PACKED RECORD
rcRepeatDelay: Byte;
rcLayoutOrLang: Byte;
rcADBAddr Byte;
END;
SetConfigRecPtr = "“SetConfigRec;
SetConfigRec -
PACKED RECORD
scADBAddr: Byte;
sclayoutOrLang: Byte;
scRepeatDelay: Byte;
END;
SynchRecPtr = “SynchRec;
SynchRec =

PACKED RECORD
synchMode: Byte;
synchKybdMouseAddr : Byte;

Appendices C-3

{ Output Byte: Repeat / Delay }
{ Output Byte: Layout / Language }
{ Output Byte: ADB address -

keyboard and mouse }

{ keyboard and mouse }

Apple lIGS Toolbox Units

synchLayoutOrLang: Byte;
synchRepeatDelay: Byte;
END;
ScaleRecPtr = ~ScaleRec;
ScaleRec =
RECORD
xDivide:
yDivide:
xOffset:
yOffset:
xMultiply:
yMultiply:
END;
PROCEDURE ADBBecotInit;
PROCEDURE ADBStartUp;
PROCEDURE ADBShutDown;
FUNCTION ADBVersion: Integer;
PROCEDURE ADBReset;
FUNCTION ADBStatus: Boolean;
PROCEDURE AbsOff;
PROCEDURE AbsOn;
PROCEDURE AsyncADBReceive
(compPtr: Ptr);
PROCEDURE ClearSRQTable;
PROCEDURE GetAbsScale
(VAR datalnPtr: ScaleRec);
FUNCTION ReadAbs: Integer;
PROCEDURE ReadKeyMicrcoData
{dataLength: Integer;
dataPtr: PLr;
adbCommand : Integer);
PROCEDURE ReadKeyMicroMem
{dataLength: Integer;
dataPtr: Ptr;
adbCommand : Integer);
PROCEDURE SendInfo
(dataLength: Integer;
dataPtr: Ptr;
adbCommand: Integer);
PROCEDURE SetAbsScale
{dataOutPtr: ScaleRec);
PROCEDURE SRQPoll
(compPtr: Ptr;
adbRegAddr : Integer);
PROCEDURE SRQRemove
(adbRegAddr : Integer):;
PROCEDURE SyncADBReceive
{inputWord: Integer;
compPtr: Ptr;
adbCommand : Integer) ;
IMPLEMENTATION
END.
Appendices C-4

Integer;
Integer;
Integer;
Integer;
Integer;
Integer;

Apple IGS Toolbox Units

Controls

{l************i*********iﬁi********t*****t*t*

; File: Controls.p

Copyright Apple Computer, Inc. 1986-89
All Rights Reserved

e N wp we W

***********i*****t**i*********i***t*i*ﬂ'***ft’

UNIT Controls;

INTERFACE
USES Types, QuickDraw, Events;

CONST wmNotStartedUp = $1001; {error - Window manager was not started first. }
noConstraint = $0000; {Axis Parameter - No constraint on movement. }
hAxisOnly = $0001; {Axis Parameter - Horizontal axis only. }
vAxisOnly = 50002; {Axis Parameter - Vertical axis only. }
simpRound = $0000; {CtlFlag - Simple button flag }
upFlag = $0001; {CtlFlag - Scroll bar flag. }
boldButton = $0001; {CtlFlag - Bold round cornered outlined button.}
simpBRound = $0001; {CtlFlag - Simple button flag }
downFlag = $50002; {CtlFlag - Scroll bar flag. }
simpSquare = $0002; {CtlFlag - Simple button flag }
simpDropSquare = $0003; {CtlFlag - Simple button flag }
leftFlag = $50004; {CtlFlag - Scroll bar flag. }
rightFlag = $0008; {CtlFlag - Scroll bar flag. }
dirScroll = $0010; {CtlFlag - Scroll bar flag. }
horScroll = 50010; {CtlFlag - Scroll bar flag. }
family = $007F; {CtlFlag - Mask for radio button family number }
ctlInVis = $0080; {CtlFlag = invisible mask for any type of control }
inListBox = $88; {CtlFlag - }
simpleProc = 5$00000000; {Ct1lProc - }
checkProc = $02000000; {CtlProc - }
radioProc = $04000000; {CtlProc - }
scrollProc = $06000000; {CtlProc - }
growProc = 508000000; {CtlProc - }
drawCtl = $0000; {DefProc - Draw control command. }
calcCRect = 50001; {DefProc - Compute drag RECT command. }
testCtl = 50002; {DefProc - Hit test command. }
initctl = $0003; {DefProc - Initialize command. }
dispCtl = $0004; {DefProc - Dispose command. }
posCtl = $0005; {DefProc - Move indicator command. }
thumbCt1 = 50006; {DefProc - Compute drag parameters command. }
dragCtl = 50007; {DefProc -~ Drag command. }
autoTrack = 50008; {DefProc - Action command. }
newValue = 50009; {DefProc - Set new value command. }
setParams = S000A; {DefProc - Set new parameters command.)}
moveCt 1 = $S000B; {DefProc - Move command. }
recSize = $000C; {DefProc - Return record size'command. }
noHilite = 50000; {hiliteState - Param to HiliteControl }
inactiveHilite = SO0FF; {hiliteState - Param to HiliteControl)}
noPart =. 50000; {PartCode - }

Appendices C-5 Apple IGS Toolbox Units

simpleButton = $0002; {PartCode - }

checkBox = $50003; (PartCode - }

radioButton = 50004; {PartCode - }

UpArrow = $0005; {PartCode - }

downArrow = $0006; {PartCode - }

pageUp = 50007; {PartCode - }

pageDown = 50008; {PartCeode - }

growBox = S5000A; {PartCode - }

thumb = $0081; {PartCode - }

fCtlTarget = $8000; {CtlRec.ctlMoreFlags - is current target of
typing commands }

fCtlCanBeTarget = $4000; {CtlRec.ct1lMoreFlags - can be made the target
control }

fCtlWantEvents = $2000; {Ct1lRec.ctlMoreFlags — control can be called
view SendEventToCtl)}

fCtlProcRefNotPtr = $1000; {CtlRec.ctlMoreFlags - set = ID of defproc,
clear = pointer to defproc}

fCtlTellAboutSize = 50800; {CtlRec.ctlMoreFlags — set if ctl needs
notification when size of owning window changes}

fCtlIsMultiPar = $0400; {Ct1lRec.ctlMoreFlags - set if ctl needs
notification to be hidden }

titlelsPtr = $00; {Ctl Verb - }

titleIsHandle = 501; {Ctl Verb - }

titleIsResource = 502; {Ctl Verb - }

celorTableIsPtr = 5007 {Ctl Verb - }

colorTableIsHandle = $04; {Ctl Verb - }

colorTableIsResource = $08; {ctl Verb - }

ctlHandleEvent = $0D; {DefProc message - }

ctlChangeTarget = $0E; {DefProc message - }

ct1lChangeBounds = SOF; {DefProc message - }

ct1lWindChangeSize = $10; {DefProc message =- }

ctlHandleTab = 511; {DefProc message - }

ctlHideCtl = $12; {DefProc message - }

singlePtr = $0000; {InputVerb - }

singleHandle = 50001; {InputVerb - }

singleResource = $0002; {InputVerb - }

ptrToPtr = $0003; {InputVerb - }

ptrToHandle = $0004; {InputVerb - }

ptrToResource = $0005; {InputVerb - }

handleToPtr = $0006; {InputVerb - }

handleTcHandle = $0007; {InputVerb - }

handleToResource = $0008; {InputVerb - }

resourceToResource = $0009; {InputVerb - }

simpleButtonControl = $80000000; {ProcRefs - }

checkControl = 5$82000000; {ProcRefs - }

radioControl = $84000000; {ProcRefs - }

scrollBarControl = 586000000; {ProcRefs - }

growControl = $B8B0O00000; {ProcRefs - }

statTextControl = 5$81000000; {ProcRefs - }

editLineControl = $83000000; {ProcRefs - }

editTextControl = $85000000; {ProcRefs - }

popUpControl = $87000000; {ProcRefs - }

listControl = 589000000; {ProcRefs - }

iconButtonControl = SOTFF0001; {ProcRefs - }

pictureControl = $8D000000; {ProcRefs - }

noCtlError = $1004; {Error — no controls in window }

noSuperCtlError = $1005; {Error - no super controls in window)

noCtlTargetError = 51006; {Error - no target super control }

Appendices C-6 Apple IGS Toolbox Units

notSuperCtlError

1

$1007; {Error — action can only be done on super control }

canNotBeTargetErro = $1008; {Error - conrol cannot be made target }
noSuchIDError =.%1009; {Error - specified ID cannot be found }
tooFewParmsExrror = $100A; {Error - not enough params specified}

noCtlToBeTargetError = $100B; ({Error - NextCtl call, no ctl could be target }
noWind Err = $lo00cC; {Error - there is no front window }

TYPE {SIFC UNDEFINED WindowPtr }

WindowPtr = GrafPortPtr;
{$SETC WindowPtr := 0 }
{$ENDC}
BarColorsHndl = "BarColorsPtr;
BarColorsPtr = "“BarColors;
BarColors

RECORD

barOutline: Integer;
barNorArrow: Integer;
barSelArrow: Integer;

{ color for outlining bar, arrows, and thumb }

{ color of arrows when not highlighted)

{ color of arrows when highlighted }
barArrowBack:Integer; { color of arrow box's background }
barNorThumb: Integer; { color of thumb's background when not highlighted }
barSelThumb: Integer; { color of thumb's background when highlighted}
barPageRgn: Integer; (color and pattern page region: high byte - 1

= dither, 0 = solid)}
barInactive: Integer; { color of scroll bar's interior when inactive}

END;
BoxColorsHndl = “BoxColorsPtr;
BoxColorsPtr = “BoxColors;
BoxColors =
RECORD
boxReserved: Integer; { reserved }
boxNor: Integer; { color of box when not checked }
boxSel: Integer; { color of box when checked }
boxTitle: Integer; ({ color of check box's title }
END;
BttnColorsHndl = “BttnColorsPtr;
BttnColorsPtr = “BttnColors;
BttnColors -
RECORD
bttnOutline: Integer; { color of outline }
bttnNorBack: Integer; { color of background when not selected }
bttnSelBack: Integer; { color of background when selected }
bttnNorText : Integer; { color of title's text when not selected }
bttnSelText: Integer; { color of title's text when selected }
END;
Ct1lRecHndlPtr = "“CtlRecHndl;
Ct1RecHndl = “CtlRecPtr;
CtlRecPtr = ~CtlRec;
CtlRec =
PACKED RECORD
ctlNext: Ct1RecHndl; { Handle of next control. }
ctlOwner: WindowPtr; { Pointer to control's window. }
ctlRect: Rect; { Enclosing rectangle. }
ctlFlag: Byte; { Bit flags. }
{

ctlHilite: Byte; Highlighted part. }

Appendices -7 Apple lIGS Toolbox Units

ctlID: Longint;
ctlMoreFlags:Integer;
ctlVersion: Integer;
END;
LimitBlkHndl = ~LimitBlkPtr;
LimitBlkPtr = “LimitBlk;
LimitBlk -
RECORD
boundRect: Rect; { Drag bounds.
slopRect: Rect; { Cursor bounds.
axisParam: Integer; ({
dragPatt: Bte; {
END;
RadioColorsHndl = ~RadioColorsPtr;
RadioColorsPtr = “RadioColors;
RadioColors =
RECORD
radReserved: Integer; { reserved }
radNor: Integer; {
radSel: Integer; {
radTitle: Integer; {
END;
PROCEDURE CtlBootInit;
PROCEDURE CtlStartUp
(userID: Integer;
dPageAddr: Integer);
PROCEDURE CtlShutDown;
FUNCTION ctlVersion: Integer;
PROCEDURE CtlReset;
FUNCTION CtlStatus: Boolean;

ctlValue:
ctlProc:
ctlAction:
ctlData:
ctlRefCon:
ctlColor:

ctlReserved: PACKED ARRAY

PROCEDURE CtlNewRes;

PROCEDURE DisposeControl
(theControlHandle:
PROCEDURE DragControl

Appendices

(startX:
startY:

limitRectPtr:

slopRectPtr:
dragFlag:

Integer;
LongProcPtr;

Longint;
Longint;

PET

theControlHandle:
FUNCTION DragRect
(actionProcPtr:
dragPatternPtr:

startX:
startY:
dragRectPtr:

limitRectPtr:

Control's value.

}

{

{ Control's definition procedure. }
LongProcPtr; { Control's action procedure. }

{ Reserved for CtrlProc's use. }

{ Reserved for application's use. }

{ Pointer to appropriate color table. }

[1..16] OF Byte;

{ Reserved for future expansion }

CtlRecHndl) ;

Integer;
Integer;
Rect;

Rect;
Integer:
CtlRecHndl) ;

VoidProcPtr;
Pattern;
Integer;
Integer;
Rect;

Rect;

Movement constrains.
Pointer to 32 byte Pattern for drag outline.}

color of radio button when off }
color of radio button when on }
color of radio button's title text}

Apple IIGS Toolbox Units

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

FUNCTION

FUNCTION
FUNCTION

FONCTION

FUNCTION

FUNCTION

FUNCTION

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

PROCEDURE

FUNCTION

PROCEDURE

PROCEDURE

slopRectPtr:
dragFlag:
DrawControls
(theWindowPtr:
DrawOneCtl
(theControlHandle:
EraseControl
(theControlHandle:
FindControl
(VAR foundCtl:
pointX:
pointY:
theWindowPtr:
GetCtlAction
(theControlHandle:
GetCtlDPage: Integer;
GetCtlParams
(theControlHandle:
GetCtlRefCon
(theControlHandle:
GetCtlTitle
(theControlHandle:
GetCtlValue
(theControlHandle:
GrowSize: Longint;
HideControl
(theControlHandle:
HiliteControl
(hiliteState:
theControlHandle:
KillControls
(theWindowPtr:
MoveControl
(newX:
newy:
theControlHandle:
NewControl
(theWindowPtr:
boundsRectPtr:
titlePtr:
flag:
value:
paraml:
param2:
defProcPtr:
refCon:
__colorTablePtr:
SetCtlAction
(newActionPtr:
theControlHandle:
SetCtlIcons
(newFontHandle:
SetCtlParams
(param2:
paraml:
theControlHandle:
SetCtlRefCon
(newRefCon:

Appendices

Rect;
Integer): Longint;

WindowPtr) ;
Ct1lRecHndl) ;
Ct1lRecHndl) ;

CtlRecHndl;

Integer;

Integer;

WindowPtr) : Integer;

CtlRecHndl) : LongProcPtr;

CtlRecHndl) : Longint;
CtlRecHndl) : Longint;
CtlRecHndl) : Ptr;

CtlRecHndl) : Integer;

Ct1lRecHndl) ;

Integer;
CtlRecHndl) ;

WindowPtr) ;

Integer;
Integer;
CtlRecHndl) ;

WindowPtr;
Rect;

PEY;
Integer;
Integer;
Integer:;
Integer;
LongProcPtr;
Longint;
Ptr): Ct1lRecHndl;
LongProcPtr;
CtlRecHndl);

FontHndl) : FontHndl;
Integer;
Integer;

Ct1lRecHndl) ;

Longint;

Apple IIGS Toolbox Units

theControlHandle:
PROCEDURE SetCtlTitle
(title:
theControlHandle:
PROCEDURE SetCtlValue
(curValue:
theControlHandle:
PROCEDURE ShowControl
{theControlHandle:
FUNCTION TestControl
(pointX:
pointY:
theControlHandle:
FUNCTION TrackControl
(startX:
startY:
actionProcPtr:
theControlHndl:
FUNCTION NewControl2
(ownerPtr:
inputDesc:
inputRef:
FUNCTION FindTargetCtl:
FUNCTION MakeNextCtlTarget:
PROCEDURE MakeThisCtlTarget
{targetCtlRecHndl:
PROCEDURE CallCtlDefProc
(__ctlRecHndl:
defProcMessage:
__param:
PROCEDURE NotifyControls
(__mask:
message:
__param:
window:
FUNCTION SendEventToCtl
(targetOnlyFlag:
__WindowPtr:
extendedTaskRecPtr
FUNCTION GetCtlID
(theCtlHandle:
PROCEDURE SetCtlID
(newID:
theCtlHandle:
FUNCTION GetCtlMoreFlags
{theCtlHandle:
FUNCTION SetCtlMoreFlags
(newID:
theCtlHandle:
FUNCTION GetCtlHandleFromID
(_ WindowPtr:
ControlID:
PROCEDURE SetCtlParamPtr
{SubArrayPtr: Ptr);
FUNCTION GetCtlParamPtr: Ptr;
FUNCTION CMLoadResource
(__ResType:
__ResID:

Appendices

CtlRecHndl) ;

Str255;
CtlRecHndl) ;

Integer:
CtlRecHndl) ;

CtlRecHndl) ;

Integer;
Integer;
CtlRecHndl) : Integer;

Integer;

Integer;

LongProcPtr;
CtlRecHndl) : Integer;

WindowPtr;
RefDescriptor;
Ref): CtlRecHndl;
Ct1lRecHndl;
Ct1lRecHndl;

Ct1lRecHndl)

CtlRecHndl;
Integer;
Longint) ;

Integer;
Integer;
Longint;
WindowPtr) ;
Integer;
WindowPtr;
Ptr): Boolean;

CtlRecHndl) : Longint;

Longint;
CtlRecHndl) ;

CtlRecHndl) : Longint;

Longint;
CtlRecHndl) : Longint;

WindowPtr;
Longint) : CtlRecHndl;

Integer;
Longint) : Handle;

C-10

Apple IIGS Toolbox Units

PROCEDURE CMReleaseResource

{__ResType: Integef;
__ResID: Longint) ;
PROCEDURE InvalCtls
(__WindowPtr: Longint) ;
IMPLEMENTATION
END.
Desk

{tt*t***i*i*******i********i****k***********i

;i File: Desk.p

; Copyright Apple Computer, Inc. 1986-89
¢ All Rights Reserved

*t***t*******t****t*titiii***t**************}
UNIT Desk;

INTERFACE
USES Types, Events;

CONST daNotFound = $0510; {ferror - desk accessory not found }
notSysWindow = $0511; {error - not the system window }
eventAction = $0001; {NDA action code - }
runAction = 50002; {NDA action code - }
undoAction = $0005; {NDA action code - }
cutAction = $0006; {NDA action code - }
copyAction = 50007; {NDA action code - }
pasteAction = $0008; {NDA action code - }
clearAction = $0009; {NDA action code - }
cursorAction = 50003; {NDRaction code - }
undo = $0001; {System Edit - edit type }
cut = 50002; {System Edit - edit type)
copy = $0003; {System Edit - edit type }
paste = $0004; {System Edit - edit type }
clear = $50005; {System Edit - edit type }

PROCEDURE DeskBootInit;
PROCEDURE DeskStartUp;
PROCEDURE DeskShutDown;

FUNCTION DeskVersion: Integer:;
PROCEDURE DeskReset;
FUNCTION DeskStatus: Boolean;

PROCEDURE ChooseCDA;
PROCEDURE CloseAllNDAs;
PROCEDURE CloseNDA

(refNum: Integer) ;
PROCEDURE CloseNDAByWinPtr
(theWindowPtr: GrafPortPtr);

Appendices C-11 Apple IGS Toolbox Units

PROCEDURE FixAppleMenu
(startingID:

FUNCTION GetDAStrPtr:

FUNCTION GetNumNDAs:

PROCEDURE InstallCDA
(idHandle:

PROCEDURE InstallNDA
(idHandle:

FUNCTION OpenNDA
(idNum:

PROCEDURE RestAll;

PROCEDURE RestScrn;

PROCEDURE SavehAll;

PROCEDURE SaveScrn;

PROCEDURE SetDAStrPtr
(altDispHandle:
stringTablePtr:

PROCEDURE SystemClick
(eventRecPtr:
theWindowPtr:
findWndwResult:

FUNCTION SystemEdit
(editType: Integer):

FONCTION SystemEvent
(eventWhat:
eventMessage:
eventWhen:
eventWhere:
eventMods:

PROCEDURE SystemTask;

PROCEDURE AddToRunQ
(headerPtr:

PROCEDURE RemoveFromRunQ
(headerPtr:

PROCEDURE RemoveCDA
(idHandle:

PROCEDURE RemoveNDA
(idHandle:

IMPLEMENTATION

END.

Appendices

Integer) ;
Ptr;

Integer;
Handle) ;

Handle) ;

Integer) : Integer;

Handle;
Ptr):;

EventRecord;
GrafPortPtr;
Integer);
Boolean;
Integer;
Longint;
Longint;
Point;
Integer) : Boolean;
Ptr):;

Ptr);

Handle) ;

Handle) ;

C-12

Apple IGS Toolbox Units

Dialogs

{ti'ii’**i!*i**t***********t***ti**************

File: Dialogs.p

LTI

i Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

N

t**i#*t********t******tt*k****t*****ti**
UNIT Dialogs;

INTERFACE
USES Types, QuickDraw, Events, Controls,

CONST badItemType = $150A;
newltemFailed = $150B;
itemNotFound = $150C;
notModalDialog = $150D;
getInitView = $0001;
getInitTotal = 50002;
getInitValue = 50003;
scrollLineUp = $0004;
scrollLineDown = $0005;
scrollPageUp = $0006;
scrollPageDown = 50007;
scrollThumb = $0008;
buttonItem = $S000A;
checkItem = 5S000B;
radioItem = 5000C;
scrollBarItem = 5000D;
userCtlItem = S000E;
statText = $000F;
longStatText = 50010;
editLine = $0011;
iconItem = $0012;
picItem = $0013;
userItem = $0014;
userCtlItem2 = 50015;
longStatText?2 = 50016;
itemDisable = $B000;
minItemType = S000A;
maxItemType = $001se;
ok = $0001;
cancel = $0002;
inButton = 50002;
inCheckBox = 50003;
inRadioButton = $0004;
inUpArrow = $0005;
inDownArrow = $50006;
inPagelUp = $50007;
inPageDown = $0008;
inStatText = 50009;
inGrow = S000A;

Appendices

"***]

Windows, LineEdit;

{error -
{error -
{error -
{error -
{Command
{Command -
{Command -
{Command -
{Command -
{Command -
{Command -
{Command -
{Item Type
{Item Type
{Item Type
{Item Type
{Item Type -
{Item Type -
{Item Type -
{Item Type -
{Item Type -
{Item Type -
{Item Type -
{Item Type -
{Item Type -
{Item Type -

I vt o o
e b e vt

|

B e S

—

{Item Type Range -~ }
{Item Type Range - }

{ItemID - }

{ItemID - }

{ModalDialog2
{ModalDialog2
{ModalDialog2
{ModalDialog2
{ModalDialog2
{ModalDialog2
{ModalDialog2
{ModalDialog?
{McdalDialog?

C-13

Part
Part
Part
Part
Part
Part
Part
Part
Part

code
code
code
code
code
code
code
code

Tt S et b et St et et

cede

Apple IIGS Toolbox Units

inEditLine = $000B; , {ModalDialeog2?2 - Part code

}
inUserItem = 5000C; {ModalDialog2 - Part code }
inLongStatText = 5000D; {ModalDialog2 - Part code }
inIconItem = S000E; {McdalDialog2 - Part code }
inLongStatText2 = S000F; {ModalDialog2 -)
inThumb = 50081; {MeodalDialog2 - Part code }
okDefault = $0000; {Stage Bit Vector .- }
cancelDefault = $0040; {Stage Bit Vector - }
alertDrawn = 50080; {Stage Bit Vector - }

{SIFC UNDEFINED atItemListLength } {AlertTemplate - Default number of Item
Templates }
atItemListLength = $0005;

{$SETC atItemListLength := 0}

{SENDC}

{$IFC UNDEFINED dtItemListLength }
{DialogTemplate - Default number of Item
Templates }

dtItemListLength = 50008;
{$SETC dtltemListLength := 0}
{ SENDC}
TYPE DialogPtr = WindowPtr;
ItemTempHndl = "“ItemTempPtr;
ItemTempPtr = ~“ItemTemplate;
ItemTemplate
RECORD
itemID: Integer;
itemRect: Rect;
itemType: Integer;
itemDescr: Ptr;
itemValue: Integer;
itemFlag: Integer;
itemColor: Ptr; { pointer to appropriate type of color
table }
END;
AlertTempHndl = “AlertTempPtr;
AlertTempPtr = “AlertTemplate;
AlertTemplate =
RECORD
atBoundsRect: Rect;
atAlertID: Integer;
atStagel: Byte;
atStage2: Byte;
atStage3: Byte;
atStaged: Byte;
atItemList: ARRAY [l..atItemListLength] OF ItemTempPtr;
{ Null terminated array }
END;
DlgTempHndl = “DlgTempPtr;
DlgTempPtr = ~DialogTemplate;
DialogTemplate =
RECORD

dtBoundsRect: Rect;
dtVisible: Boolean;

Appendices C-14 Apple IGS Toolbox Units

dtRefCon:
dtItemList:
END;
IconRecordHndl -
IconRecordPtr =
IconRecord =
RECORD
iconRect:
iconImage:
END;
UserCtlItemPBHndl =
UserCtlItemPBPtr =
UserCtlItemPB =
RECORD
defProcParm:
titleParm:
param2:
paraml:
END;
PROCEDURE DialogBootInit;
PROCEDURE DialogStartUp
{(userID:
PROCEDURE DialogShutDown;
FUNCTION DialogVersion:
PROCEDURE DialogReset;
FUNCTION DialogStatus:
FUNCTION Alert
(alertTemplatePtr:
filterProcPtr:
FUNCTION CautionAlert
(alertTemplatePtr:
filterProcPtr:
PROCEDURE CloseDialog
(theDialogPtr:
FUNCTION DefaultFilter
(theDialogPtr:
theEventPtr:
itemHitPtr:
FUNCTION DialogSelect
(theEventPtr:
VAR resultPtr:
VAR itemHitPtr:
PROCEDURE DisableDItem
(theDialogPtr:
itemID:
PROCEDURE DlgCopy
(theDialogPtr:
PROCEDURE DlgCut
(theDialogPtr:
PROCEDURE DlgDelete
(theDialogPtr:
PROCEDURE DlgPaste
(theDialogPtr:
PROCEDURE DrawDialog

Appendices

Longint;

ARRAY [1..dtItemListLength] OF ItemTempPtr;
{ Null terminated array }

~“IconRecordPtr;
“IconRecord;

Rect;
PACKED ARRAY [1..1] OF Byte;

“UserCtlItemPBPtr;
“UserCtlItemPB;

Longint; { ? should

Ptr;
Integer;
Integer;

Integer);
Integer;
Boolean;

AlertTemplate;

WordProcPtr): Integer;

AlertTemplate;
WordProcPtr): Integer;

DialogPtr);
DialogPtr;
EventRecord;
IntPtr): Boolean;
EventRecord:;
WindowPtr;

Integer): Boolean;

DialogPtr;
Integer);

DialogPtr);
DialogPtr) ;
DialogPtr) ;

DialogPtr);

C-15 Apple

this be a LongProcPtr? }

IIGS Toolbox Units

PROCEDURE

PRCCEDURE

FUNCTION

FUNCTION
FUNCTION

FUNCTION

PROCEDURE

FUNCTION

FUNCTION

FUNCTION

PROCEDURE

PROCEDURE

FUNCTION

FUNCTION

PROCEDURE

FUNCTION

FUNCTION

FUNCTION

PROCEDURE

FUNCTION

(theDialogPtr:
EnableDItem
(theDialogPtr:
itemID:
ErrorSound
{soundProcPtr:
FindDItem
(theDialogPtr:
thePoint:
GetAlertStage:
GetControlDItem
(theDialogPtr:
itemID:
GetDefButton
(theDialogPtr:
GetDItemBox
(theDialogPtr:
itemID:
itemBoxPtr:
GetDItemType
(theDialogPtr:
itemID:
GetDItemValue
{(theDialogPtr:
itemID:
GetFirstDItem
(theDialogPtr:
GetIText
(theDialogPtr:
itemID:
VAR text:
GetNewDItem
(theDialogPtr:
itemTemplatePtr:
GetNewModalDialog
(dialogTemplatePtr:
GetNextDItem
(theDialogPtr:
itemID:
HideDItem
(theDialogPtr:
itemID:
IsDialogEvent
(theEventPtr:
ModalDialog
(filterProcPtr:
ModalDialog2
(filterProcPtr:
NewDItem
(theDialogPtr:
itemID:
itemRectPtr:
itemType:
itemDescr:
itemValue:
itemFlag:
itemColorPtr:
NewModalDialog

Appendices

DialogPtr)

DialogPtr;
Integer);

VoidProcPtr);

DialogPtr;
Point): Integer;
Integer;

DialogPtr;
Integer) : CtlRecHndl;

DialogPtr): Integer;

DialogPtr;
Integer;
Rect) ;

DialogPtr;
Integer) : Integer;

DialogPtr;
Integer): Integer;

DialogPtr) : Integer;

DialogPtr;
Integer;
Str255);

DialogPtr;
ItemTemplate) ;

DlgTempPtr) : DialogPtr;

DialogPtr;
Integer) : Integer;

DialogPtr;
Integer};

EventRecord) : Boolean;
WordProcPtr) : Integer;
WordProcPtr): Longint;

DialogPtr;
Integer;
Rect;
Integer;
Ptr;
Integer;
Integer;
PLr) ;

C-16

Apple IIGS Toolbox Units

FUNCTION

(dBoundsRectPtr:
dVisibleFlag:
dRefCon:

NewModelessDialog

(dBoundsRectPtr:
dTitle:
dBehindPtr:
dFlag:
dRefCon:
dFullSizePtr:

FUNCTION NoteAlert

PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

(alertTemplatePtr:
filterProcPtr:
ParamText
(paramO:
paraml:
param2:
param3:
RemoveDItem
(theDialogPtr:
itemID:
ResetAlertStage;
SellText
{theDialogPtr:
itemlD:
startSel:
endSel:
SelectIText
(theDialogPtr:
itemID:
startSel:
endSel:
SetDAFont
(fontHandle:
SetDefButton
(defButtonID:
theDialogPtr:
SetDItemBox
(theDialogPtr:
itemID:
itemBoxPtr:
SetDItemType
{itemType:
theDialogPtr:
itemID:
SetDItemValue
(itemValue:
theDialogPtr:
itemID:
SetIText
(theDialogPtr:
itemID:
theString:
ShowDItem
(theDialogPtr:
itemID:
StopAlert
(alertTemplatePtr:

Appendices

Rect;
Boolean;
Longint): DialogPtr;

Rect;

S5tr255;
DialogPtr;
Integer:

Longint;

Rect) : DialogPtr;

AlertTempPtr;
WordProcPtr) : Integer;
Str255;
Str255;
Str255;
Str255);

DialogPtr;
Integer);

DialogPtr;
Integer;
Integer;
Integer);

DialogPtr;
Integer;
Integer;
Integer);

FontHndl) ;

Integer;
DialogPtr)

N

DialogPtr;
Integer;
Rect) ;

Integer;
DialogPtr;
Integer):;

Integer;
DialogPtr;
Integer) ;

DialogPtr;
Integer;

Str255);

DialogPtr;
Integer);

AlertTempPtr;

C-17 Apple

HGS Toolbox Units

filterProcPtr:
PRCCEDURE UpdateDialog
(theDialogPtr:

updateRgnHandle:

IMPLEMENTATION
END.

Appendices

WordProcPtr): Integer;

DialogPtr;
RgnHandle) ;

C-18

Apple IIGS Toolbox Units

Events

(ti*******i’t****i******t***tt*&**************

File: Events.p

e se owa

i Copyright Apple Computer, Inc. 1986-89
;7 All Rights Reserved

r

*****ii!i**i*\l’**********t*****t*****i****t*t}

UNIT Events;

INTERFACE
USES Types;

CONST emDupStrtUpErr = $0601; {error - duplicate EMStartup Call }
emResetErr = 50602; {error - can't reset error the Event Manager }
emNotActErr = 50603; {error - event manager not active }
emBadEvtCodeErr = 50604; {error - illegal event code }
emBadBttnNoErr = $0605; {error - illegal button number }
emQSiz2LrgErr = 50606; {error - queue size too large)
emNoMemQueueErr = $0607; {error - not enough memory for queue }
emBadEvtQErr = 50681; {error - fatal SYys error - event queue damaged }
emBadQHndlErr = $0682; {error - fatal sys error - queue handle damaged)
nullEvt = 50000; {Event Code - }
mouseDownEvt = $0001; {Event Code - }
mouseUpEvt = 50002; {Event Code - }
keyDownEvt = 50003; {Event Code - }
autoKeyEvt = $0005; {Event Code - }
updateEvt = 50006; {Event Code - }
activateEvt = $0008; {Event Code - }
switchEvt = $0009; {Event Code - }
deskAccEvt = $5000A; {Event Code - }
driverEvt = S000B; {Event Code - }
applEvt = $000C; {Event Code - }
app2Evt = $000D; {Event Code - }
app3Evt = $000E; {Event Code - }
app4Evt = S000F; {Event Code - }
mDownMask = 50002; {Event Masks - }
mUpMask = $0004; {Event Masks - }
keyDownMask = $0008; {Event Masks - }
autoKeyMask = $0020; {Event Masks - }
updateMask = $0040; {Event Masks - }
activeMask = $50100; {Event Masks - }
switchMask = $0200; {Event Masks - }
deskAccMask = $50400; {Event Masks - }
driverMask = $0800; {Event Masks -)
applMask = 51000; {Event Masks - }
app2Mask = $2000; {Event Masks - }
app3Mask = $4000; {Event Masks - }
appdMask = $8000; {Event Masks -)}
everyEvent = SFFFF; {Event Masks - }
jeTickCount = $00; {Journal Code - TickCount call }
jcGetMouse = $01; {Journal Code - GetMouse call)

Appendices C-19 Apple IGS Toolbox Units

jcButton = 502; . {Journal Code - Button call }

jcEvent = 504; {Journal Code - GetNextEvent and EventAvail calls}
activeFlag = $0001; {Modifier Flags - set if window being activated }
changeFlag = $0002; (Modifier Flags - set if active wind changed state }
btnlState = $50040; {Modifier Flags - set if button 1 up }
btn0State = 50080; {Modifier Flags — set if button 0 up }
appleKey = $0100; {Modifier Flags - set if Apple key down }
shiftKey = $0200; {Modifier Flags - set if shift key down }
capsLock = $50400; {Modifier Flags - set if caps lock key down}
optionKey = 50800; {Modifier Flags - set if option key down }
controlKey = $1000; {Modifier Flags - set if Control key down }
keyPad = $2000; {Modifier Flags - set if keypress from keypad
TYPE EventRecordHndl = “EventRecordPtr;
EventRecordPtr = “EventRecord;
EventRecord =
RECORD
CASE Integer OF
0: (what: Integer; { event cocde }

message: Longint; { event message }

when: Longint; { ticks since startup }

where: Point; { mouse location }

modifiers: Integer; { modifier flags }

)z

is (wmhat : Integer;

wmMessage: Longint;

wmWhen : Longint;

wnmWhere: Point;

wmModifiers: Integer;

wmTaskData: Longint; ({TaskMaster return value.}

wmTaskMask: Longint; {TaskMaster feature mask.}

wmLastClickTick: Longint;

wmClickCount: Integer;

wmTaskData2: Longint;

wmTaskData3: Longint;

wmTaskDatad: Longint;

wmLastClickPt: Point;);

END;

PROCEDURE EMBootInit;
PROCEDURE EMStartUp
(dPageAddr: Integer;

queueSize: Integer;
xMinClamp: Integer;
xMaxClamp: Integer;
yMinClamp: Integer;
yMaxClamp: Integer;
userID: Integer):;
PROCEDURE EMShutDown;
FUNCTION EMVersion: Integer;
PROCEDURE EMReset;
FUNCTION EMStatus: Boolean;
FUNCTION Button
(buttonNum: Integer): Boolean;
FUNCTION DoWindows: Integer;
FUNCTION EventAvail
{(eventMask: Integer;

VAR eventPtr: EventRecord) : Boolean;

Appendices C-20 Apple IIGS Toolbox Units

PROCEDURE FakeMouse

(changedFlag: Integer;

modLatch: Integer;

xPos: Integer;

YPos: Integer;

ButtonStatus:Integer);
FUNCTION FlushEvents

{eventMask: Integer;

stopMask: Integer): Integer;
FUNCTION GetCaretTime: Longint;
FUNCTION GetDblTime: Longint;
PROCEDURE GetMouse

(VAR mouseLocPtr: Point):
FUNCTION GetNextEvent

(eventMask: Integer;

VAR eventPtr: EventRecord) : Boolean;
FUNCTION GetOSEvent

(eventMask: Integer;

VAR eventPtr: EventRecord) : Boolean;
FUNCTION OSEventAvail

(eventMask: Integer;

VAR eventPtr: EventRecord): Boolean;
FUNCTION PostEvent :

(eventCode: Integer;

eventMsqg: Longint): Integer;
PROCEDURE SetEventMask

(sysEventMask: Integer) ;
PROCEDURE SetSwitch;
FUNCTION StillDown

(buttonNum: Integer) : Boolean;
FUNCTION WaitMouseUp

(buttonNum: Integer): Boolean;
FUNCTION TickCount: Longint;
FUNCTION GetKeyTranslation: Integer;
PROCEDURE SetKeyTranslation

(kTransID: Integer);
PROCEDURE SetAutoKeyLimit

(newLimit: Integer);
IMPLEMENTATION
END.
Appendices C-21

Apple IGS Toolbox Units

Fonts

{*itt*****tt"ti‘*tt*********ttti****t*i*******

; File: Fonts.p

Copyright Apple Computer, Inc. 1986-89

; All Rights Reserved
*

*****************************t**i*ttt******}

UNIT Fonts;

INTERFACE

USES Types, QuickDraw;

CONST fmDupStartUpErr = $1BO1; {error - duplicate FMStartUp call }
fmResetErr = $1B02; {error - can't reset the Font Manager }
fmNotActiveErr = $1B03; {error - Font Manager not active }
fmFamNotFndErr = $1B04; {error - family not found }
fmFontNtFndErr = $1B0S; {error - font not found }
fmFontMemErr = $1B06; {error - font not in memory }
fmSysFontErr = $1B0O7; {error - system font cannot be purgeable }
fmBadFamNumErr = $1B08; {error - illegal family number }
fmBadSizeErr = $1B09; {error - illegal size }
fmBadNameErr = $1BOA; {error - illegal name length }
fmMenuErr = $1BOB; {error - fix font menu never called }
fmScaleSizeErr = $1BOC; {error - scaled size of font exeeds limits}
newYork = 50002; {Family Number - }
geneva = $0003; {Family Number - }
monaco = $0004; {Family Number - }
venice = 50005; {Family Number - }
london = $0006; {Family Number - }
athens = $0007; {Family Number - }
sanFran = $0008; {Family Number - }
toronto = $0009; {Family Number - }
cairo = $000B; {Family Number - }
losAngeles = $000C; {Family Number - }
times = $0014; {Family Number - }
helvetica = $0015; {Family Number - }
courier = $0016; {Family Number - }
symbol = $0017; {Family Number - }
taliesin = 50018; {Family Number - }
shaston = S$FFFE; {Family Number - }
baseOnlyBit = $0020; {FamSpecBits - }
notBaseBit = 50020; {FamStatBits -)}
memOnlyBit = $0001; {FontSpecBits - }
realOnlyBit = 50002; {FontSpecBits }
anyFamBit = $0004; {FontSpecBits }
anyStyleBit = 50008; {FontSpecBits)
anySizeBit = 5$0010; {FontSpecBits)
memBit = 50001; {FontStatBits }
unrealBit = 50002; {FontStatBits }
apFamBit = 50004; {(FontStatBits }
apVarBit = 50008; {FontStatBits }

Appendices C-2

Apple IIGS Toolbox Units

purgeBit =
notDiskBit =
notFoundBit -
dontScaleBit =
TYPE FontStatRecHndl
FontStatRecPtr =
FontStatRec =
RECORD
resultiD:
resultStats:
END;

PROCEDURE FMBootInit;

PROCEDURE FMStartUp
(userID:

dPageAddr :

PROCEDURE FMShutDown;

FUNCTION FMVersion:

PROCEDURE FMReset;

FUNCTION FMStatus:

PROCEDURE AddFamily
(famNum:

famName:

PROCEDURE AddFontVar
(fontHandle:

newSpecs:

FUNCTION ChooseFont
(currentID:

famSpecs:

FUNCTION CountFamilies
{famSpecs:

FUNCTION CountFonts
(desiredID:

fontSpecs:

FUNCTION FamNum2ItemID
(famNum:

FUNCTION FindFamily
(famSpecs:
positionNum:

famName :

PROCEDURE FindFontStats
(desiredID:
fontSpecs:
positionNum:

VAR resultPtr:

PROCEDURE FixFontMenu
(menulD:

startingID:
famSpecs:

FUNCTION FMGetCurFID:

FUNCTION FMGetSysFID:

PROCEDURE FMSetSysFont
(newFontID:

FUNCTION GetFamInfo
{famNum:

famName:
FUNCTION GetFamNum
Appendices

$0010; {FontStatBits - }
$0020; {FontStatBits - }
$8000; {FontStatBits - }
$0001; {Scale Word - }

= “FontStatRecPtr;
“FontStatRec;

FontID;
Integer;

Integer;
Integer)

Integer;

Boolean;

Integer;
Stx255) ;

FontHndl
Integer)

. N

FontID;
Integer): FontID;

Integer): Integer;
FontIiD;
Integer) : Integer;

Integer): Integer;
Integer;
Integer;
Str255): Integer;
FontID;

Integer;

Integer;
FontStatRec) ;

Integer;
Integer;
Integer)
FontID;
FontID;

.

FontID);

Integer;

Str255) : Integer;

C-23

Apple IIGS Toolbox Units

PROCEDURE

PROCEDURE

FUNCTION

PROCEDURE

PROCEDURE
PROCEDURE

(famName :
InstallFont
(desiredID:
scaleWord:
InstallWithStats
(desiredID:
scaleWord:
resultPtr:
ItemID2FamNum
(itemID:
LoadFont
{(desiredID:
fontSpecs:
positionNum:

VAR resultPtr:

LoadSysFont;

SetPurgeStat
(theFontID:
purgeStat:

IMPLEMENTATION

END.

Str255) : Integer;

FontID;
Integer);

FontID;
Integer;
Ptr);

Integer) : Integer;

FontID;
Integer;
Integer;
FontStatRec);

FontID;
Integer);

GSOS

{**

; File: GSOS.p

Copyright Apple Computer, Inc.

; All Rights Reserved
*

1986-89

***)

UNIT GSOS;

INTERFACE

USES Types;

CONST readEnable

writeEnable

fileInvisible
backupNeeded

renameEnable

destroyEnable

startPlus
eofMinus
markPlus

Appendices

= 50001; {access — read enable bit: CreateRec,

OpenRec access and requestAccess fields }

= 50002; {access - write enable bit: CreateRec,

OpenRec access and requestAccess fields }

= 50004; {access - Invisible bit }
= $0020; {access - backup needed bit: CreateRec,

OpenRec access field. (Must be 0 in
requestAccess field) |}

= $0040; {access - rename enable bit: CreateRec,

OpenRec access and requestAccess fields }

= $S0080; {access - destroy enable bit: CreateRec,

OpenRec access and requestAccess fields }

= $0000; {base - > setMark = displacement }

= 5$0001; {base - > setMark = eof - displacement }
= $50002; {base - > setMark = mark + displacement }
C-24 Apple IIGS Toolbox Units

markMinus = 50003;

cacheOf f = $0000;
cacheOn = $0001;
badSystemCall = $0001;
invalidPcount = $0004;
gsosActive = 507

{$IFC UNDEFINED devNotFound }

devNotFound = 510;

invalidDevNum = $11;

drvrBadReq = $20;

drvrBadCode = $0021;
drvrBadParm = $0022;
drvrNotOpen = 50023;
drvrPriorOpen = $0024;
irqTableFull = $0025;
drvrNoResrc = 50026;
drvrIOError = $0027;
drvrNoDevice = 50028;
drvrBusy = 50029;
drvrWrtProt = $002B;
drvrBadCount = $002C;
drvrBadBlock = $002D;
drvrDiskSwitch = $002E;
drvrOffLine = $002F;
badPathSyntax = $0040;
invalidRefNum = $0043;

{$IFC UNDEFINED pathNotFound }

pathNotFound = $44;
{$SETC pathNotFound := 0}

{SENDC}

volNotFound = 50045;

{$IFC UNDEFINED fileNotFound }
fileNotFound = $50046;
{$SETC fileNotFound := 0}

{SENDC}

dupPathname = $0047;
volumeFull = $0048;
volDirFull = $0049;
badFileFormat = S004A;

{$IFC UNDEFINED badStoreType }

badStoreType = $004B;

Appendices

{base - > setMark = mark - displacement)
{cachePriority - do not cache blocks
invloved in this read }

{cachePriority - cache blocks invloved in
this read if possible }

{error - bad system call number)}

{error - invalid parameter count }

{error - GS/0S already active }

{error - device not found }

{$SETC devNotFound := 0}
{$ENDC}

{error - invalid device number }

{error - bad request or command }

{error - bad control or status code }
{error - bad call parameter }

{error - character device not open }
{error - character device already open }
{error - interrupt table full }

{error - resources not available }
{error - I/O error }

{error - device not connected }

{error - call aborted, driver is busy }
{error - device is write protected }
{error - invalid byte count }

{error - invalid block address }

{error - disk has been switched }

{error - device off line/ no media present}
{error - invalid pathname syntax }
{error - invalid reference number }

{error - subdirectory does not exist }

{error - volume not found }

{error - file not found }

{error - create or rename with existing
name }

{error - volume full error }

{error - volume directory full }

{error - version error (incompatible file
format) }

{error - unsupported (or incorrect) storage
type }

{$SETC badStoreType := 0}
{$ENDC}
C-25 Apple lIGS Toolbox Units

{SIFC UNDEFINED eofEncountered } {error - end-of-file encountered }

eofEncountered = 5004C;
{SSETC eofEncountered := 0}
{SENDC)
outOfRange = $004D; {error - position out of range }
invalidAccess = SO004E; {error - access not allowed }
buffTooSmall = $004F; {error - buffer too small }
fileBusy = $0050; {error - file is already open }
dirError = $0051; {error - directory error }
unknownVol = 50052; {error - unknown volume type }
{$IFC UNDEFINED paramRangeErr } {error - parameter out of range }
paramRangeErr = $0053;
{$SETC paramRangeErr := 0}
{SENDC}
outOfMem = $0054; {error - out of memory }
dupVolume = 50057; {error - duplicate volume name }
notBlockDev = $0058; {error — not a block device }
{SIFC UNDEFINED invalidLevel)} {error - specifield level outside legal
range }
invalidLevel = 50059;
{$SETC invalidlevel := 0}
{SENDC}
damagedBitMap = $005A; {error - block number too large }
badPathNames = $S005B; {error - invalid pathnames for ChangePath }
notSystemFile = $005C; {error - not an executable file }
osUnsupported = $005D; {error - Operating System not supported }
{SIFC UNDEFINED stackOverflow } {error - too many applications on stack }
stackOverflow = S005F;
{$SETC stackOverflow := 0}
{ SENDC}
dataUnavail = $0060; {error - Data unavailable }
endOfDir = 50061; {error - end of directory has been reached
}
invalidClass = $0062; {error - invalid FST call class }
resForkNotFound = $0063; {error - file does not contain required
resource }
invalidFSTID = $0064; {error - error - FST ID is invalid }
proDOSFSID = $0001; {fileSysID — ProDOS/SOS }
dos33FSID = $0002; {fileSysID - DOS 3.3)}
dos32FSID = 50003; {fileSysID - DOS 3.2 }
dos31FSID = 50003; {fileSysID - DOS 3.1 }
applelIPascalFSID = 50004; {fileSysID - Apple II Pascal }
mfsFSID =-$0005; {fileSysID - Macintosh (flat file system) }
hfsFSID = $0006; {fileSysID - Macintosh (hierarchical file system)}
lisaFsSID = 50007; {fileSysID - Lisa file system }
appleCPMFSID = 50008; {fileSysID - Apple CP/M }
charFSTFSID = 50009; {fileSysID - Character FST }
msDOSFSID = 5000A; {fileSysID - MS/DOS }
highSierraFSID = S000B; {fileSysID - High Sierra }
is09660FSID = $000C; {fileSysID - 1ISO 9660 }
appleShareFSID = $000D; {fileSysID - ISO 9660 }

Appendices C-26 Apple IIGS Toolbox Units

characterFsT = 54000; {FSTInfo.attributes - character FST }
ucFST = $8000; {FSTInfo.attributes - SCM should upper case
pathnames before passing them to the FST }
onStack = $8000; {QuitRec.flags - place state information
about quitting program on the quit return stack }
restartable = $4000; {QuitRec.flags - the quitting program is
capable of being restarted from its dormant
memory }
seedling = $0001; {storageType - standard file with seedling
structure }
standardFile = $0001; {storageType - standard file type (no
resource fork) }
sapling = 50002; {storageType - standard file with sapling
structure }
tree = 50003; {storageType - standard file with tree
structure }
pascalRegion = $0004; {storageType - UCSD Pascal region on a
partitioned disk }
extendedFile = 50005; {storageType - extended file type (with
resource fork) }
directoryFile = $000D; {storageType - volume directory or
subdirectory file }
minorRelNumMask = $00FF; {version - minor release number }
ma jorRelNumMask = $7F00; {version - major release number
finalRelNumMask = $8000; {version - final release number }
isFileExtended = $8000; {GetDirEntryGs - }
TYPE GSString255Hndl = "GSString255Ptr;
GSString255Ptr = ~GSString255;
GSString255
RECORD
length: Integer; {Number of Chars in text field)
text: PACKED ARRAY [1..255] OF CHAR;
END;
GSString255Hnd1Ptr = "GSString255Hndl1;
GSString32Hndl = "GSString32Ptr;
GSString32Ptr = "“GSString32;
GSString32 =
RECORD
length: Integer; {Number of characters in text field }
text: PACKED ARRAY [1..32] OF CHAR;
END;
ResultBuf255Hndl = "ResultBuf255Ptr;
ResultBuf255Ptr = "ResultBuf255;
ResultBuf255 =
RECORD
bufsize: Integer;
bufstring: GSS5tring255;
END;
ResultBuf255Hnd1Pty = "ResultBuf255Hndl;
ResultBuf32Hndl = "ResultBuf32Ptr;
ResultBuf32Ptr = "ResultBuf32;
Appendices Cc-27 Apple lIGS Toolbox Units

ResultBuf32 =

RECORD
bufsize: Integer;
bufsString: GSString32;
END;
ChangePathRecPtrGs = “ChangePathRecGS;
ChangePathRecGS =
RECORD
pCount : Integer;
pathname: GSString255Ptr;
newPathname: GSString255Ptr;
END;
CreateRecPtrGS = “CreateRecGS;
CreateRecGS
RECORD
pCount : Integer;
pathname: GSString255Ptr;
access: Integer;
fileType: Integer;
auxType: Longint;
storageType: Integer;
eof: Longint;
resourceEOF: Longint;
END;
DAccessRecPtrGS = “DAccessRecGS;
DAccessRecGS -
RECORD
pCount: Integer;
devNum: Integer;
code: Integer;
list: Ptr;
requestCount: Longint;
transferCount: Longint;
END;
DevNumRecPtrGS = "“DevNumRecGS;
DevNumRecGS i
RECORD
pCount : Integer;
devName: GSString255Ptr;
devNum: Integer;
END;
DInfoRecPtrGS = “DInfoRecGS;
DInfoRecGS =
RECORD
pCount: Integer; { minimum = 2 }
devNum: Integer;
devName : GSString32Ptr;
characteristics: Integer;
totalBlocks: Longint;
slotNum: Integer;
unitNum: Integer;
version: Integer;
devicelD: Integer;

Appendices

C-28 Apple IIGS Toolbox Units

Integer; {must be 0 for SetFilelInfo}

headLink: Integer;
forwardLink: Integer;
extendedDIBptr: Longint;
END;
DIOCRecPtrGS = "DIORecGS;
DIORecGS =
RECORD
pCount : Integer;
devNum: Integer;
buffer: PLr;
requestCount: Longint;
startingBlock: Longint;
blockSize: Integer;
transferCount: Longint;
END;
DirEntryRecPtrGs = “DirEntryRecGS;
DirEntryRecGS =
RECORD
pCount : Integer;
refNum: Integer;
flags: Integer;
base: Integer;
displacement: Integer;
name: Ptr;
entryNum: Integer;
fileType: Integer;
eof: Longint;
blockCount : Longint;
createDateTime: TimeRec;
modDateTime: TimeRec;
access: Integer;
auxType: Longint;
fileSysID: Integer;
optionList: ResultBuf255Ptr;
resourceEQOF: Longint;
resourceBlocks: Longint;
END;
ExpandPathRecPtrGS = "ExpandPathRecGS;
ExpandPathRecGS =
RECORD
pCount : Integer;
inputPath: GSString255Ptr;
outputPath: ResultBuf255Ptr;
flags: Integer;
END;
FileInfoRecPtrGS = “FileInfoRecGS;
FileInfoRecGS =
RECORD
pCount : Integer;
pathname: GSString255Ptr;
access: Integer;
fileType: Integer;
auxType: Longint;
storageType:
createDateTime: TimeRec;

Appendices

Apple IIGS Toolbox Units

modDateTime: TimeRec;
optionList: Longint;
eof: Longint;
blocksUsed: Longint; {must be 0 for SetFilelInfo}
resourceEOF : Longint; {must be 0 for SetFileInfo}
resourceBlocks: Longint; {must be 0 for SetFileInfo})
END;
FormatRecPtrGS = “FormatRecGS;
FormatRecGS =
RECORD
pCount: Integer;
devName : GSString32Ptr; {device name pointer}
volName: GSString32Ptr; {volume name pointer}
fileSysiD: Integer; { file system ID }
reqgFileSysID: Integer; { in; }
END;
FSTInfoRecPtrGS = “FSTInfoRecGS;
FSTInfoRecGS =
RECORD
pCount : Integer;
fstNum: Integer;
fileSysID: Integer;
fstName: ResultBuf255Ptr;
version: Integer;
attributes: Integer;
blockSize: Integer;
maxVolSize: Longint;
maxFileSize: Longint;
END;
InterruptRecPtrGS = “InterruptRecGS;
InterruptRecGS =
RECORD
pCount : Integer;
intNum: Integer;
vrn: Integer; { used only by BindInt }
intCode: Longint; { used only by BindInt }
END;
IORecPtrGS = “IORecGS;
IORecGS =
RECORD
pCount : Integer;
refNum: Integer;
dataBuffer: Ptr;
requestCount: Longint;
transferCount: Longint;
cachePriority: Integer;
END;
LevelRecPtrGS = "LevelRecGS;
LevelRecGS =
RECORD
pCount: Integer;
level: Integer;
END;
Appendices C-30 Apple IGS Toolbox Units

{ full pathname or a

filename depending on call }

{ full pathname or a

filename depending on call)}

{For extended files: dataFork/

resourceFork}

{Value of file's access attribute}

Integer; {Value of file's fileType attribute)

NameRecPtrGS = “NameRecGS;
NameRecGS =
RECORD
pCount : Integer;
pathname: GSString255Ptr;
END;
GetNameRecPtrGS = "GetNameRecGS;
GetNameRecGS =
RECORD
pCount: Integer;
dataBuffer: ResultBuf255Ptr;
END;
NewlineRecPtrGS = “NewlineRecGS;
NewlineRecGS =
RECORD
pCount: Integer;
refNum: Integer;
enableMask: Integer;
numChars: Integer;
newlineTable: Ptr;
END;
OpenRecPtrGS = “OpenRecGS;
OpenRecGS
RECORD
pCount : Integer;
refNum: Integer;
pathname: GSString255Ptr;
requestAccess: Integer;
resourceNumber: Integer;
access: Integer;
fileType:
auxType: Longint;
storageType: Integer;
createDateTime: TimeRec;
modDateTime: TimeRec;
optionList: IntPtr;
eof: Longint;
blocksUsed: Longint;
resourceEOF: Longint;
resourceBlocks: Longint;
END;
OSShutdownRecPtrGs = ~0SShutdownRecGS;
0OSShutdownRecGS =
RECORD
pCount : Integer; { in }
shutdownFlag: Integer; { in }
END;
Appendices C-31

Apple IIGS Toolbox Units

PositionRecPtrGS = ~PositionRecGS;
PositionRecGS =
RECORD
pCount: Integer;
refNum: Integer;
position: Longint;
END;
EOFRecPtrGS = ~EOFRecGS;
EOFRecGS =
RECORD
pCount: Integer;
refNum: Integer;
eof: Longint;
END;
PrefixRecPtrGS = "“PrefixRecGS;
PrefixRecGS =
RECORD
pCount : Integer;
prefixNum: Integer;
CASE Integer OF
0: (getPrefix: ResultBuf255Ptr;);
1: (setPrefix: GSString255Ptr;);
END;
QuitRecPtrGS = ~QuitRecGS;
QuitRecGS =
RECORD
pCount : Integer;
pathname: GSString255Ptr; {pathname of next app to run}
flags: Integer;
END;
RefnumRecPtrGS = ~RefNumRecGS;
RefNumRecGS =
RECORD
pCount: Integer;
refNum: Integer;
END;

SessionStatusRecPtrGS
SessionStatusRecGS < -
RECORD

]

~“SessionStatusRecGS;

pCount: Integer; { in: min =1 }
status: Integer; { out: }

END;
SetPositionRecPtrGS = ~SetPositionRecGS;
SetPositionRecGS =
RECORD
pCount : Integer;
refNum: Integer;
base: Integer;
displacement: Longint;
END;
SysPrefsRecPtrGS = ~SysPrefsRecGS;

Appendices C-32 Apple lIGS Toolbox Units

SysPrefsRecGS =

RECORD
pCount :
preferences:
END;
VersionRecPtrGS =
VersionRecGS e
RECORD
pCount:
version:
END;
VolumeRecPtrGs -
VolumeRecGS -
RECORD
pCount :
devName :
volName:
totalBlocks:
freeBlocks:
fileSysID:
blockSize:
END;

PROCEDURE BeginSessionGS

(VAR pblockPtr:
PROCEDURE BindIntGS

(VAR pblockPtr:
PROCEDURE ChangePathGS

(VAR pblockPtr:
PROCEDURE ClearBackupBitGs

(VAR pblockPtr:
PROCEDURE CloseGS

(VAR pblockPtr:
PROCEDURE CreateGSs

(VAR pblockPtr:
PROCEDURE DControlGS

(VAR pblockPtr:
PROCEDURE DestroyGS

(VAR pblockPtr:
PROCEDURE DInfoGS

(VAR pblockPtr:
PROCEDURE DReadGS

(VAR pblockPtr:
PROCEDURE DStatusGS

(VAR pblockPtr:
PROCEDURE DWriteGs

(VAR pblockPtr:
PROCEDURE EndSessionGS

(VAR pblockPtr:
PROCEDURE EraseDiskGS

(VAR pblockPtr:
PROCEDURE ExpandPathGs

(VAR pblockPtr:
PRCCEDURE FlushGs

(VAR pblockPtr:
PROCEDURE FormatGs

Appendices

Integer;
Integer;

“VersionRecGS;

Integer;
Integer;

“VolumeRecGS;

Integer;
GSString32Ptr;
ResultBuf255Ptr;
Longint;
Longint;
Integer;
Integer;

SessionStatusRecGS) ;
InterruptRecGS) ;
ChangePathRecGS) ;
NameRecGS) ;
RefNumRecGS) ;
CreateRecGS) ;
DAccessRecGS) ;
NameRecGS) ;
DInfoRecGS) ;
DIORecGS) ;
DAccessRecGS) ;
DIORecGS) ;
SessionStatusRecGS) ;
FormatRecGS) ;
ExpandPathRecGS) ;

RefNumRecGS) ;

C-33

Apple IIGS Toolbox Units

(VAR pblockPtr: FormatRecGS) ;
PROCEDURE GetBootVolGS

(VAR pblockPtr: NameRecGS) ;
PROCEDURE GetDevNumberGs

(VAR pblockPtr: DevNumRecGS) ;
PROCEDURE GetDirEntryGS

(VAR pblockPtr: DirEntryRecGS) ;
PROCEDURE GetEOFGS

(VAR pblockPtr: EOFRecGS) ;
PROCEDURE GetFileInfoGS

(VAR pblockPtr: FileInfoRecGS) ;
PROCEDURE GetFSTInfoGS

(VAR pblockPtr: FSTInfoRecGS) ;
PROCEDURE GetLevelGS

(VAR pblockPtr: LevelRecGS) ;
PROCEDURE GetMarkGS

(VAR pblockPtr: PositionRecGS) ;
PROCEDURE GetNameGS

(VAR pblockPtr: GetNameRecGS) ;
PROCEDURE GetPrefixGS

(VAR pblockPtr: PrefixRecGS) ;
PROCEDURE GetVersionGS

(VAR pblockPtr: VersionRecGS) ;
PROCEDURE GetSysPrefsGS

(VAR pblockPtr: SysPrefsRecGS) ;
PROCEDURE NewlineGS

(VAR pblockPtr: NewlineRecGS) ;
PROCEDURE NullGS

(VAR pblockPtr: IntPtr);
PROCEDURE OpenGS

(VAR pblockPtr: OpenRecGS) ;
PROCEDURE QuitGs

(VAR pblockPtr: QuitRecGS) ;
PROCEDURE ReadGS

(VAR pblockPtr: IORecGS) ;
PROCEDURE ResetCacheGS

(VAR pblockPtr: IntPtr):;
PROCEDURE SessionStatusGS

{VAR pblockPtr: SessionStatusRecGS) ;
PROCEDURE SetEOFGS

(VAR pblockPtr: SetPositionRecGS) ;
PROCEDURE SetFileInfoGS

(VAR pblockPtr: FileInfoRecGS);
PROCEDURE SetLevelGS

(VAR pblockPtr: LevelRecGS) ;
PROCEDURE SetMarkGs

(VAR pblockPtr: SetPositionRecGS) ;
PROCEDURE SetPrefixGS

(VAR pblockPtr: PrefixRecGS) ;
PROCEDURE SetSysPrefsGS

(VAR pblockPtr: SysPrefsRecGS) ;
PROCEDURE UnbindIntGS

(VAR pblockPtr: InterruptRecGS);
PROCEDURE VolumeGS

(VAR pblockPtr: VolumeRecGS) ;
PROCEDURE WriteGS

(VAR pblockPtr: IORecGS) ;

Appendices C-34 Apple IIGS Toolbox Units

PROCEDURE OSShutdownGS

(VAR pblockPtr:
PROCEDURE FSTSpecific

(VAR pBlockPtr:

IMPLEMENTATICN
END.

OSShutdownRecGS) ;

Ptr);

IntMath

‘**********************t*********************

File: IntMath.p

All Rights Reserved

; Copyright Apple Computer, Inc. 1986-89

t*****t******ti"****it***til‘**********i*}

UNIT IntMath;

INTERFACE
USES Types;

CONST imBadInptParam

imIllegalChar
imOverflow

imStroOverflow
minLongint

minFrac
minFixed
minInt
maxInt
maxUInt
maxLongint
maxFrac
maxFixed
maxULong

unsignedFlag
signedFlag

Appendices

$0BO1;

= $0B02;

$0BO3;

$0B04;
$80000000;

$80000000;
$80000000;
$8000;
$TFFF;
SFFFF;
S$7FFFFFFF;
$TFFFFFFF;
$TFFFFFFF;
SFFFFFFFF;

$0000;
$0001;

C-35

{error - bad input parameter }

{error - Illegal character in string})

{error - integer or long integer

overflow }

{error - string overflow }

{Limit - minimum negative
long integer }

{Limit - pinned value for
Frac overflow }

{Limit - pinned value for
Fixed overflow)

{Limit - Minimum negative
integer }

{Limit - Maximum positive
integer }

{Limit - Maximum positive
integer }

{Limit - maximum positive
Longint }

{Limit - pinned value for
Frac overflow }

{Limit - pinned value for
Fixed overflow }

{Limit - maximum unsigned
{SignedFlag - }
{SignedFlag - }

Apple lIGS Toolbox Units

signed
negative
negative
signed
signed
unsigned
signed
positive
positive

Long }

TYPE IntDivRecPtr
IntDivRec
RECORD
quotient:
remainder:
END;
LongDivRecPtr
LongDivRec
RECORD
quotient:
remainder:
END;
DivRecPtr
DivRec
LongMulRecPtr
LongMulRec
RECORD
lsResult:
msResult:
END;
WordDivRecPtr
WordDivRec
RECORD
quotient:
remainder:
END;
PROCEDURE IMBootInit:;
PROCEDURE IMStartUp;
PROCEDURE IMShutDown;
FUNCTION IMVersion: Integer;
PROCEDURE IMReset;
FUNCTION IMStatus: Boolean;
FUNCTION Dec2Int
(strPtr:
strLength:
signedFlag:
FUNCTION Dec2Long
(strPtr:
strLength:
signedFlag:
FUNCTION Fix2Frac
(fixedValue:
FUNCTION Fix2Long
(fixedValue:
PROCEDURE Fix2X
(fixedValue:
VAR extendPtr:
FUNCTION FixATan2
(inputl:
input2:
FUNCTION FixDiv
(dividend:
divisor:
FUNCTION FixMul

Appendices

~IntDivRec;

Integer; { quotient from SDivide }

Integer; { remainder from SDivide]}

~“LongDivRec;

Quotient from LongDiv }
remainder from LongDiv }

Longint; {
Longint; {

~DivRec; (* for backward compatability *)
LongDivRec;
“LongMulRec;
Longint; { low 2 words of product }
Longint; { High 2 words of product }
“WordDivRec;
Integer; { Quotient from UDivide }
Integer; { remainder from UDivide }
Ptr;
Integer;
Boolean) : Integer;
Ptr;
Integer;

Boolean) : Longint;
Fixed): Frac;

Fixed) : Longint;

Fixed;
Extended) ;

Longint;
Longint) : Fixed;

Longint;
Longint) : Fixed;

C-36

Apple IIGS Toolbox Units

FUNCTION

FUNCTION

FUNCTION

PROCEDURE

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

FUNCTION

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

PROCEDURE

FUNCTION

FUNCTION

(multiplicand:
multiplier:
FixRatio
(numerator:
denominator:
FixRound
(fixedValue:
Frac2Fix
(fracValue:
Frac2X
(fracValue:
VAR extendPtr:
FracCos
(angle:
FracDiv
(dividend:
divisor:
FracMul
(multiplicand:
multiplier:
FracSin
(angle:
FracSqrt
{(fracValue:
Hex2Int
(strPtr:
strLength:
Hex2Long
(strPtr:
strLength:
HexIt
(intValue:
HiWord
(longValue:
Int2Dec]
(wordvalue:
strPtr:
strLength:
signedFlag:
Int2Hex
(intValue:
strPtr:
strLength:
Long2Dec
(lengValue:
SEXPEY:
strLength:
signedFlag:
Long2Fix
(longValue:
Long2Hex
(longValue:
strPtr:
strlLength:
LongDivide
(dividend:
divisor:
LongMul

Appendices

Fixed;
Fixed) : Fixed;

Integer;
Integer) : Fixed;

Fixed) : Integer;
Frac) : Fixed;

Frac;
Extended) ;

Fixed) : Frac;

Longint;
Longint) : Frac;

Frac;
Frac): Frac;

Fixed) : Frac;
Frac): Frac;

Ptr;
Integer): Integer;

Ptr;
Integer) : Longint;

Integer): Longint;
Longint) : Integer;

Integer;
PEX;

Integer;
Boolean) ;

Integer;
PEX;
Integer) ;

Longint;
PEY:

Integer;
Boolean) ;

Longint) : Fixed;
Longint;
Prry

Integer) ;

Longint;
Longint) : LongDivRec;

C-37 Apple lIGS Toolbox Units

(multiplicand: Longint:

multiplier: Longinﬁ}: LongMulRec;
FUNCTION LoWord

(longValue: Longint) : Integer;
FUNCTION Multiply

(multiplicand: Integer;

multiplier: Integer): Longint;
FUNCTION SDivide

(dividend: Integer;

divisor: Integer): IntDivRec;
FUNCTION UDivide

(dividend: Integer;

divisor: Integer) : WordDivRec;
FUNCTION X2Fix

(extendPtr: ExtendedPtr) : Longint;
FUNCTION X2Frac

(extendPtr: ExtendedPtr) : Longint;
IMPLEMENTATION
END.

LineEdit

{i****t’******l'*\ﬁ\!**i’i*ttitt*t**t**ii*********

File: LineEdit.p

Copyright Apple Computer, Inc. 1986-89
All Rights Reserved

I T T

i***&ﬁ**i&&**i*t**ti**t***i****************}

UNIT LineEdit;

INTERFACE
USES Types, QuickDraw, Events;

CONST leDupStrtUpErr = $1401; {error - duplicate LEStartup call }
leResetErr = $1402; {error — can't reset Line Edit }
leNotActiveErr = $1403; {error - Line Edit not active)}
leScrapErr = 51404; {error - desk scrap too big to copy }
leJustLeft = 50000; {Justification - }
leJustCenter = $0001; {Justification = }
leJustFill = $0002; {Justification - }
leJustRight = SFFFF: {Justification - }

TYPE LERecHnd1l = “LERecPtr;

LERecPtr = ~LERec;
LERec -
RECORD
leLineHandle: Handle;
lelength: Integer;
leMaxLength: Integer;
leDestRect: Rect;

Appendices C-38 Apple IIGS Toolbox Units

leViewRect: . Rect;

lePort: GrafPortPtr;
leLineHite: Integer;
leBaseHite: Integer;
leSelStart: Integer;
leSelEnd: Integer;
leActFlg: Integer;
leCarAct: Integer;
leCarOn: Integer;
leCarTime: Longint;
leHiliteHook: VoidProcPtr;
leCaretHook: VoidProcPtr;
leJust: Integer;
lePWChar: Integer;
END;
PROCEDURE LEBootInit;
PROCEDURE LEStartUp
(userID: Integer;
dPageAddr: Integer);
PROCEDURE LEShutDown;
FUNCTION LEVersion: Integer;
PROCEDURE LEReset;
FUNCTION LEStatus: Boolean;
PROCEDURE LEActivate
{leRecHandle: LERecHndl);
PROCEDURE LEClick
{eventPtr: EventRecord;
leRecHandle: LERecHndl);
PROCEDURE LECopy
(leRecHandle: LERecHndl);
PROCEDURE LECut
(leRecHandle: LERecHndl);
PROCEDURE LEDeactivate
(leRecHandle: LERecHndl);
PROCEDURE LEDelete
(leRecHandle: LERecHndl);
PROCEDURE LEDispose
(leRecHandle: LERecHndl);
PROCEDURE LEFromScrap;
FUNCTION LEGetScraplen: Integer;
FUNCTION LEGetTextHand
(leRecHandle: LERecHndl): Handle;
FUNCTION LEGetTextLen
(leRecHandle: LERecHndl): Integer;
PROCEDURE LEIdle
(leRecHandle: LERecHndl);
PROCEDURE LEInsert
(textPtr: Ptr;
textLength: Integer;
leRecHandle: LERecHndl);
PROCEDURE LEKey
(theKey: CHAR;
modifiers: Integer;
leRecHandle: LERecHndl) ;
Appendices C-39

Apple IIGS Toolbox Units

FUNCTION LENew
(destRectPtr:
viewRectPtr:
maxTextLen:

PROCEDURE LEPaste
(leRecHandle:

FUNCTION LEScrapHandle:

PROCEDURE LESetCaret

Rect;
Rect;

Integer) : LERecHndl;

LERecHndl) ;
Handle;

(caretProcPtr: VoidProcPtr;

leRecHandle:
PROCEDURE LESetHilite

LERecHndl) ;

(hiliteProcPtr: VoidProcPtr;

leRecHandle: LERecHndl):;
PROCEDURE LESetJust

{(just: Integer;

leRecHandle: LERecHndl);
PROCEDURE LESetScraplen

(newLength: Integer) ;
PROCEDURE LESetSelect

(selStart: Integer;

selEnd: Integer;

leRecHandle: LERecHndl);
PROCEDURE LESetText

(textPtr: Ptr;

textLength: Integer;

leRecHandle: LERecHndl);
PROCEDURE LETextBox

(textPtr: Ptr;

textLength: Integer;

rectPtr: Rect;

just: Integer);
PROCEDURE LETextBox2

(textPtr: Ptr;

textLength: Integer;

rectPtr: Rect;

just: Integer) ;

PROCEDURE LEToScrap:;

PROCEDURE LEUpdate
(leRecHandle:

FUNCTION GetLEDefProc:

IMPLEMENTATION
END.

Appendices

LERecHndl) ;
Ptr;

C-40

Apple IGS Toolbox Units

Lists

(t*i****#********‘k******i****i***i****ti*****

; File: Lists.p

’

i Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

H

*tt'k**ﬁ****t*********i’**i****k*t*********tt"

UNIT Lists;

INTERFACE
USES Types, QuickDraw, Events, Controls;

null terminated string type }
null terminated string type)
only one selection allowed }
single selection only }
{memFlag - Sets member flag to disabled }

{memFlag - Sets member flag to selected }

Frame color }
Unhighlighted text color }
Highlighted text color }
Unhighlighted background color }

Highlighted backgraound color }

{ Pointer to string, or custom }

{ Handle of Next Control }
{ Window owner }

{ Enclosing Rect }
{ Bit 7 visible, Bit 0 string type,
Bit 1 multiple }
{ (not used) }

{ First member in display }

{ Address of list definition procedure}
{ Address of list action procedure }

view size,

CONST cString = $0001; {ListType bit mask
LIST_STRG = $0001; {ListType bit mask
selectOnlyOne = $0002; {ListType bit mask
LIST SELECT = $0002; {ListType bit mask
memDisabled = 540;
memSelected = $5B0;

TYPE LColorTableHndl = "LColorTablePtr;
LColorTablePtr = "LColorTable;

LColorTable =
RECORD
listFrameClr: Integer; {
listNorTextClr: Integer; {
listSelTextClr: Integer; {
listNorBackClr: Integer; {
listSelBackClr: Integer; {
END;
MemRecHndl = "MemRecPtr;
MemRecPtr = “MemRec;
MemRec =
PACKED RECORD
memPtr: PLr;
memFlag: Byte; { Bit Flag }
END;
ListCtlRecHndl = "“ListCtlRecPtr;
ListCtlRecPtr = ~ListCtlRec;
ListCtlRec =
PACKED RECORD
ctlNext : Ct1lRecHndl;
ctlOwner: GrafPortPtr;
ctlRect: Rect;
ctlFlag: Byte;
ctlHilite: Byte;
ctlValue: Integer;
ctiProc: LongProcPtr;
ctlAction: LongProcPtr;
ctlData: Longint; { Low
Appendices C-41

High = total members }

Apple IGS Teolbox Units

ctlRefCon:

Longint;

{ Not used }

ctllolor: LColorTablePtr; { Null for default colors }
ctlMemDraw: VoidProcPtr; {Address of routine to draw members}
ct1MemHeight : Integer; { Member's Height in Pixels }
ctlMemSize: Integer; { Bytes in member record }
ctlList: MemRecPtr; { Adress of first member record in array }
ctlListBar: CtlRecHndl; { Handle of list contrlo's scroll bar
control }
END;
ListRecHndl = ~ListRecPtr;
ListRecPtr = ~ListRec;
ListRec =
RECORD
listRect: Rect; { Enclosing Rectangle }
listSize: Integer; { Number of List Members }
listView: Integer; { Max Viewable members)}
listType: Integer; { Bit Flag }
listStart: Integer; { First member in view }
listCtl: CtlRecHndl; { List control's handle)
listDraw: VoidProcPtr; { Address of Custom drawing routine}
listMemHeight: Integer; { Height of list members }
listMemSize: Integer; { Size of Member Records }
listPointer: MemRecPtr; { Pointer to first element in MemRec array }
listRefCon: Longint; { becomes Control's refCon }
listScrollClr: BarColorsPtr; { Color table for list's scroll bar}
END;
PROCEDURE ListBootInit;
PROCEDURE ListStartup;
PROCEDURE ListShutDown;
FUNCTION ListVersion: Integer;
PROCEDURE ListReset;
FUONCTION ListStatus: Boolean;
FUNCTION Createlist
(theWindowPtr: WindowPtr;
__listRecPtr: ListRecPtr) : ListCtlRecHndl;
PROCEDURE DrawMember
(memberPtr: MemRecPtr;
__listRecPtr: ListRecPtr);
FUNCTION GetListDefProc: LongProcPtr;
PROCEDURE NewList
(memberPtr: MemRecPtr;
__listRecPtr: ListRecPtr);
FUNCTION NextMember
(memberPtr: MemRecPtr;
__listRecPtr: ListRecPtr): MemRecPtr:
FUNCTION ResetMember
{_ listReebtr: ListRecPtr): MemRecPtr;
PROCEDURE SelectMember
(memberPtr: MemRecPtr;
__listRecPtr: ListRecPtr) ;
PROCEDURE SortList
(comparePtr: VoidProcPtr;
_AistRecPtr: ListRecPtr):;
PROCEDURE DrawMember?2
{itemNumber : Integer;
ctlHandle: Ct1RecHndl) ;
Appendices C-42 Apple IGS Toolbox Units

FUNCTION NextMember?2

(itemNumber: Integer;

ctlHandle: CtlRecHndl) : Integer;
FUNCTION ResetMember?2

(ctlHandle: CtlRecHndl) : Integer:
PROCEDURE SelectMember?2

(itemNumber : Integer;

ctlHandle: CtlRecHndl) ;
PROCEDURE SortList?2

(comparePtr: Ptr:

ctlHandle: CtlRecHndl) ;
PROCEDURE NewList2

(drawProcPtr: ProcPtr;

listsStart: Integer;

listRef: Ref;

listRefDesc: RefDescriptor;

listSize: Integer;

ctlHandle: CtlRecHndl) ;
IMPLEMENTATION
END.

EEE

Loader

{************i*******tt*****i*******i********
¢ File: Loader.p

i Copyright Apple Computer, Inc. 1986-89

;7 All Rights Reserved

t**iﬁ*t*i’****i‘*‘l**********************}

UNIT Loader;

INTERFACE
USES Types;

CONST idNotFound = $1101; {error - segment/application/entry not found }
idNotLoadFile = $1104; {error - file is not a load file }
idBusyErr = $1105; {error - system loader is busy }
idFilVersErr = $1107; {error - file version error }
idUserIDErr = $1108; {error - user ID error }
idSequenceErr = $1109; {error - segnum out of sequence)
idBadRecordErr = $110A; {error - illegal load record found)
idForeignSegErr = $110B; {error - segment is foreign }

TYPE InitialLoadOutputRecPtr = “InitialloadOutputRec;
InitialLoadOutputRec =

RECORD
userlID: Integer;
startAddr: Ptr;
dPageAddr: Integer;

Appendices C-43 Apple lIGS Toolbox Units

buffSize: Integer;

END;
RestartOutRecPtr = "RestartOutRec;
RestartOutRec =
RECORD
userID: Integer;
startAddr: Ptr;
dPageAddr: Integer;
buffSize: Integer;
END;
LoadSegNameQutPtr = “LoadSegNameOut;
LoadSegNameQut =
RECORD
segAddr: PLr;
fileNum: Integer;
segNum: Integer;
END;
UnloadSegOutRecPtr = “UnloadSegOutRec;
UnloadSegOutRec =
RECCRD
userID: Integer;
fileNum: Integer;
segNum: Integer;
END;

PROCEDURE LoaderInitialization;
PROCEDURE LoaderStartUp;
PROCEDURE LoaderShutDown;

FUNCTICON LoaderVersion: Integer;
PROCEDURE LoaderReset;
FUNCTION LoaderStatus: Boolean;
PROCEDURE GetLoadSegInfo
(userID: Integer;
loadFileNum: Integer;
loadSegNum: Integer;
bufferPtr: Ptr):

FUNCTION GetUserID

(pathNamePtr: Ptr): Integer;
FUNCTION GetUserID2

{pathNamePtr: Ptr): Integer;
FUNCTION InitialLoad

(userID: Integer;

loadFileNamePtr: Ptr;

spMemFlag: Boolean) : InitialLecadOutputRec;
FUNCTICN 1InitialLoad2

(userID: Integer;

loadFileNamePtr: PEY;

spMemFlag: Boolean;

inputType: Integer): InitiallLoadOutputRec;
FUNCTION LGetPathname

(userID: Integer;

fileNumber: Integer): Ptr;
FUNCTION LGetPathname2

{(userID: Integer;

fileNumber: Integer): Ptr;

Appendices C-44 Apple IIGS Toolbox Units

FUNCTION

FUNCTION

PROCEDURE

FUNCTION

FUNCTION

FUNCTION

FUNCTION

PROCEDURE

FUNCTION

GetPathname
(userID:
fileNumber:
GetPathname?2
{useriD:
fileNumber:
RenamePathname
(oldPathname:
newPathname:
LoadSegName
(userID:

loadFileNamePtr:
loadSegNamePtr:

leoadSegNum
(userID:
loadFileNum:
loadSegNum:
Restart
(userID:
UnloadSeg
(segmentPtr:
UnloadSegNum
{(userID:
loadFileNum:
loadSegNum:
UserShutDown
(userlID:

restartFlag:

IMPLEMENTATION

END.

e ————————————— e
%

Locator

Integer;
Integer): Ptr;

Integer;
Integer): Ptr;

Ptr;
Ptr);

Integer;
Ptr;
Ptr): LoadSegNameOut;

Integer;
Integer;
Integer): Ptr;

Integer):

Ptr): UnloadSegOutRec;
Integer;

Integer;

Integer) ;

Integer;

Integer): Integer;

{*******i************t*t*************i!’******

; File: Locator.p

. w

; Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

’

*ﬁ'h*****************t*****i**t*****t**i**iﬁﬁ)

UNIT Locator;

INTERFACE
USES Types;

CONST

toolNotFoundErr
funcNotFoundErr
toolVersionErr
SysStrtMtErr
messNotFoundErr
fileInfoType

Appendices

$0001;
$0002;
$0110;
$0100;

= 50111;

50001,

{exror - }
{error - }
{error - }
{error -
{error - }

{MessageCenter - Message type parameter }

C-45

RestartOutRec;

can't mount system startup volume }

Apple IIGS Toolbox Units

addMessage = $0001; {MessageCenter action parameter }
getMessage = $0002; (MességeCenter action parameter }
deleteMessage = 50003; {MessageCenter action parameter }
mvReturn = 50001; {TLMountVolume like ok for dialogs }
mvEscape = $0002; {TLMountVolume like cancel for dialegs }
sysTool = $0000; {Tool Set Spec }
userTool = $8000; {(Tool Set Spec }
TYPE MessageRecHndl = “MessageRecPtr;
MessageRecPtr = "MessageRec;
MessageRec =
RECORD
messageNext: MessageRecHndl;
messageType: Integer;
messageData: Integer;
fileNames: PACKED ARRAY [1..1] OF Str255;
END;
ToolSpec =
RECORD
toolNumber: Integer:;
minVersion: Integer;
END;
StartStopRecordPtr = “StartStopRecord;
StartStopRecord =
RECORD
flags: Integer;
videoMode: Integer;
resFilelD: Integer;
dPageHandle: Handle;
numTools: Integer;
END;
PROCEDURE TLBootInit;
PROCEDURE TLStartUp;
PROCEDURE TLShutDown;
FUNCTION TLVersion: Integer;
PROCEDURE TLReset;
FUNCTICN TLStatus: Boolean;
FUNCTION GetFuncPtr
(userOrSystem: Integer;
funcTSNum: Integer): Ptr;
FUNCTION GetTSPtr
(userOrSystem: Integer;
tSNum: Integer): Ptr;
FUNCTION GetWAP
(userOrSystem: Integer;
tSNum: Integer): Ptr;
PROCEDURE LoadOneTool
(tooclNumber: Integer;
minVersion: Integer);
PROCEDURE LoadTools
(toolTablePtr: Ptr):
PROCEDURE MessageCenter
(action: Integer;
messageType: Integer;
Appendices C-46

Apple IGS Toolbox Units

messageHandle:
PROCEDURE RestoreTextState

(stateHandle:
FUNCTION SaveTextState:
PROCEDURE SetDefaultTPT;
PROCEDURE SetTSPtr

(userOrSystem:

tSNum:

fptablePtr:
PROCEDURE SetWAP

(userOrSystem:

tSNum:

waptPtr:
FUNCTION TLMountVolume

(whereX:

whereY:

linel:

line2:

butl:

but2:
FUNCTION TLTextMountVolume

(linel:

line2:

butl:

but2:
PROCEDURE UnloadOneTool

(toolNumber :
FUNCTION StartUpTools

(userID:

startStopRefDesc:

startStopRef:
PROCEDURE ShutDownTools
(startStopDesc:
startStopRef:
FUNCTION MessageByName
(createltFlag:
recordPtr:

IMPLEMENTATION
END.

Appendices

MessageRecHndl) ;

Handle) ;
Handle;

Integer;
Integer;
FPTPtr) ;

Integer;
Integer;
Ptr):

Integer;
Integer;
Str255;
Str255;
Str255;

Str255): Integer;

Str255;
Str255;
Str255;

S5tr255) : Integer;

Integer);
Integer;
RefDescriptor;
Ref): Ref;

RefDescriptor;
Ref);

Boolean;
Ptr): Longint;

C-47

Apple IIGS Toolbox Units

Memory

{***************tt*t**t***i****t*******ti***i

; File: Memory.p

; Copyright Apple Computer,

; All Rights Reserved

’

Inc. 1986-89

*""l"k******i*****t******t*****t**************}

UNIT Memory;

INTERFACE
USES Types;

{error - unable to allocate block }
{error - illegal operation, empty handle }
{error - an empty handle was expected for this

illegal operation on a locked block }
attempt to purge an unpurgable block }
an invalid handle was given }

an invalid owner ID was given }
operation illegal on block with given

CONST memErr = $0201;
emptyErr = $0202;
notEmptyErr = $0203;
operation }
lockErr = $0204; {error =~
purgeErr = $0205; {error -
handleErr = $0206; {error -
idErr = 50207; {error -
attrErr = 50208; {error =
attributes }
attrNoPurge = $0000; {Handle Attribute
attrBank = $0001; {Handle Attribute
attrAddr = $0002; {Handle Attribute
attrPage = 50004; {Handle Attribute
attrNoSpec = $0008; {Handle Attribute
attrNoCross = $0010; {Handle Attribute
attrPurgel = 50100; {Handle Attribute
attrPurge2 = $0200; {Handle Attribute
attrPurge3 = $0300; {Handle Attribute
attrPurge = $0300; {Handle Attribute
attrHandle = $1000; {Handle Attribute
attrSystem = $2000; {Bandle Attribute
attrFixed = 54000; {Handle Attribute
attrLocked = $8000; {Handle Attribute
PROCEDURE MMBootInit;
FUNCTION MMStartUp: Integer;
PROCEDURE MMShutDown
(userID: Integer);
FUNCTION MMVersion: Integer;
PROCEDURE MMReset;
FUNCTION MMStatus: Boolean;
PROCEDURE BlockMove
{srcPtr: Ptr;
dstPtr: Ptr:
count: Longint) ;
PROCEDURE CheckHandle
(theHandle: Handle) ;
Appendices C-48

Bits
Bits
Bits
Bits
Bits
Bits
Bits
Bits
Bits
Bits
Bits
Bits
Bits
Bits

Not purgeable }

fixed bank }

fixed address }

page aligned }

may not use special memory}
may not cross banks }

Purge level 1 }

Purge level 2 }

Purge level 3 }

test or set both purge bits }
block of master pointers }
system handle }

not movable }

locked }

Apple IIGS Toolbox Units

PROCEDURE
PROCEDURE

PROCEDURE

FUNCTION

FUNCTION
FUNCTION

PROCEDURE

PRCCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION
FUNCTION

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION
PROCEDURE

PRCCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

CompactMem;
DisposeAll
(userID:
DisposeHandle
(theHandle:
FindHandle
(locationPtr:
FreeMem:
GetHandleSize
(theHandle:
HandToHand

Integer) ;

Handle) ;

Ptr): Handle;

Longint;

Handle) : Longint;

{sourceHandle: Handle;

destHandle:
count:
HandToPtr

(sourceHandle:

destPtr:
count :
HLock
{(theHandle:
HLockAll
(userlID:
HUnlock
{theHandle:
HUnlockAll
(userID:
MaxBlock:
NewHandle
{blockSize:
userID:
attributes:
locationPtr:
PtrToHand
{sourcePtr:
destHandle:
count:
PurgeAll
(userID:
PurgeHandle
(theHandle:
RealFreeMem:
ReallocHandle
(blockSize:
userID:
attributes:
leocationPtr:
theHandle:
RestoreHandle
{(theHandle:
SetHandleSize
(newSize:
theHandle:
SetPurge

Handle;
Longint) ;

Handle;
Pty
Longint) ;

Handle) ;
Integer);
Handle) ;

Integer);
Longint;

Longint;
Integer;
Integer;
Ptr) : Handle;

Btr:
Handle;
Longint) ;

Integer) ;

Handle) ;
Longint;

Longint;
Integer;
Integer;
Ptr;

Handle) ;

Handle) ;

Longint;
Handle) ;

(newPurgelevel:Integer;

theHandle:
SetPurgeAll

Handle) ;

(newPurgeLevel:Integer;

userID:

Appendices

Integer) ;

Apple lIGS Toolbox Units

FUNCTION TotalMem: Longint;
PROCEDURE AddToOOMQueue
(headerPtr: Ptr):
PRCCEDURE DeleteFromOOMQueue
(headerPtr: PEr);

IMPLEMENTATION
END.

Menus

(tir*itt****************k***********ti*i***i**
; File: Menus.p

; Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

7

********t*i’ii***i*******ti*i‘****iii*********)

UNIT Menus;

INTERFACE
USES Types, QuickDraw, Events, Controls, Windows;

CONST mDrawMsg = 50000; {MenuDefProcCodes — }
mChooseMsg = $0001; {MenuDefProcCodes - }
mSizeMsg = $0002; {MenuDefProcCodes -)}
mDrawTitle = $0003; {MenuDefProcCodes - }
mDrawMItem = 50004; {MenuDefProcCodes - }
mGetMItemID = $0005; {MenuDefProcCodes = }
mInvis = $0004; {MenuFlag - }
mCustom = $0010; {MenuFlag - }
mXor = 50020; {MenuFlag - }
mSelected = $0040; {MenuFlag - }
mDisabled = $0080; {MenuFlag - }
customMenu = $0010; {MenuFlagMasks - }
XxorMItemHilite = $0020; {MenuFlagMasks - }
xorTitleHilite = 50020; {MenuFlagMasks - }
underMItem = 50040; {MenuFlagMasks - }
disableltem = 50080; {MenuFlagMasks - }
disableMenu = $0080; {MenuFlagMasks - }
enableltem = SFF7F; {MenuFlagMasks - }
enableMenu = SFFTF; {MenuFlagMasks - }
noUnderMItem = SFFBF; {MenuFlagMasks - }
colorMItemHilite = SFFDF; {MenuFlagMasks - }
colorTitleHilite = SFFDF; {MenuFlagMasks - }
colorReplace = SFFDF; {MenuFlagMasks — }
standardMenu = S$FFEF; {MenuFlagMasks - }

TYRE MenuBarRecHndl = “MenuBarRecPtr;

MenuBarRecPtr = “MenuBarRec;
MenuBarRec = CtlRec;
MenuRecHndl = “MenuRecPtr;

Appendices C-50 Apple IIGS Toolbox Units

MenuRecPtr

MenuRec

PACKED RECORD
menulD:
menuWidth:
menuHeight:
menuProc:
menuFlag:
firstItem:
numOfItems:

titleWidth:
titleName:
END;
PROCEDURE MenuBootInit;
PROCEDURE MenuStartUp
(userID:
dPageAddr:
PROCEDURE MenuShutDown;
FUNCTION MenuVersion:
PROCEDURE MenuReset;
FUNCTION MenuStatus:
PROCEDURE CalcMenuSize
(newWidth:
newHeight:
menuNum:
PRCCEDURE CheckMItem
{checkedFlag:
itemNum:
FUNCTION CountMItems
(menuNum:
PROCEDURE DeleteMenu
(menuNum:
PROCEDURE DeleteMItem
(itemNum:
PROCEDURE DisableMItem
(itemNum:
PROCEDURE DisposeMenu
(menuHandle:
PROCEDURE DrawMenuBar;
PROCEDURE EnableMItem
(itemNum:
FUNCTION FixMenuBar:
PROCEDURE FlashMenuBar;
FUNCTION GetBarColors:
FUNCTION GetMenuBar:
FUNCTION GetMenuFlag
(menuNum:
FUNCTION GetMenuMgrPort:
FUNCTION GetMenuTitle
(menuNum:
FUNCTION GetMHandle
(menuNum:
FUNCTION GetMItem
(itemNum:
FUNCTION GetMItemFlag
(itemNum:
Appendices

WordProcPtr;

“MenuRec;

Integer;
Integer;
Integer;

Integer;

Byte;
Byte:;

Integer; {

Ptr;

Integer;
Integer) ;

Integer;
Boolean;
Integer;
Integer;

Integer);

Boolean;
Integer) ;

Integer) :

Integer);

Integer);

Integer);

Menu's ID number }
Width of menu }
Height of menu }

Menu's definition procedure }

Bit flags }

Width of menu's title }

Integer;

MenuRecHndl) ;

Integer);
Integer;

Longint;

MenuBarRecHndl;

Integer) :

Integer;

GrafPortPtr;

Integer) :

Integer) :

Integer) :

Integer):

Ptr;
MenuRecHndl;
StringPtr;

Integer;

C-5l

Apple lIGS Toolbox Units

FUNCTION

FUNCTION

FUNCTION
FUNCTION

FUNCTION

PROCEDURE

PROCEDURE
PROCEDURE

PROCEDURE

FUNCTION

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

FUNCTION

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

GetMItemMark
(itemNum:
GetMItemStyle
(itemNum:
GetMTitleStart:
GetMTitleWidth
(menuNum:
GetSysBar:
HiliteMenu
(hiliteFlag:
menuNum:
InitPalette;
InsertMenu
(addMenuHandle:
insertAfter:
InsertMItem
(addItemPtr:
insertAfter:
menuNum:
MenuGlobal
(menuGlobalMask:
MenuKey
{taskRecPtr:
barHandle:
MenuNewRes;
MenuRefresh
(redrawRoutinePtr:
MenuSelect
{taskRecPtr:
barHandle:
NewMenu
(menuStringPtr:
NewMenuBar
(theWindowPtr:
SetBarColors
(newBarColor:
newlnvertColor:
newQutColor:
SetMenuBar
(barHandle:
SetMenuFlag
(newValue:
menuNum:
SetMenulID
(newMenuNum:
curMenuNum:
SetMenuTitle
(newStr:
menuNum:
SetMItem
(newltemLine:
itemNum:
SetMItemBlink
(count :
SetMItemFlag
(newValue:
itemNum:

Appendices

Integer): Integer;

Integer) :
Integer;

TextStyle;
Integer): Integer;
MenuBarRecHndl;
Boolean;

Integer);
MenuRecHndl;
Integer) ;
Ptr;
Integer;
Integer) ;
Integer): Integer;
WmTaskRec;
MenuBarRecHndl) ;

VoidProcPtr);

WmTaskRec;
MenuBarRecHndl) ;

Ptr): MenuRecHndl;
WindowPtr): MenuBarRecHndl;
Integer;

Integer;

Integer);

MenuBarRecHndl) ;

Integer;
Integer);

Integer;
Integer) ;

Str255;
Integer) ;

Str255;
Integer);

Integer);

Integer;
Integer);

C-52 Apple

IGS Toolbox Units

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

FUNCTION

FUNCTION
PROCEDURE

FUNCTION

FUNCTION

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

SetMItemID
(newItemNum:
curItemNum:
SetMItemMark
(mark:
itemNum:
SetMItemName
(str:
itemNum:
SetMItemStyle
(theTextStyle:
itemNum:
SetMTitleStart
(xStart:
SetMTitleWidth
(newWidth:
menuNum:
SetSysBar
(barHandle:
PopUpMenuSelect
(selection:
currentLeft:
currentTop:
flag:
menuHandle:
GetPopUpDefProc:
DrawPopUp
(selection:
flag:
right:
bottom:
left:
top:
menuHandle:
NewMenuBar2
(refDesc:

menuBarTemplateRef :

windowPortPtr:
NewMenu?2
(refDesc:
menuTemplateRef :
InsertMItem2
(refDesc:
menuTemplateRef :
insertAfter:
menuNum:
SetMenuTitle2
(refDesc:
titleRef:
menuNum:
SetMItem2
(refDesc:
menultemTempRef :
menultemID:
SetMItemName?2
{(refDesc:
titleRef:
menultemlD:

Appendices

Inteéer;
Integer) ;

Integer;
Integer) ;

Str255;
Integer) ;

TextStyle;
Integer);

Integer) ;

Integer;
Integer) ;

MenuBarRecHndl) ;

Integer;
Integer;
Integer;
Integer;
MenuRecHndl) :
Ptr;:

Integer;

Integer;
Integer;
Integer;
Integer;
Integer;
Integer;
MenuRecHndl) ;

RefDescriptor;
Ref;
GrafPortPtr): MenuBarRecHndl;

RefDescriptor;
Ref) : MenuRecHndl;

RefDescriptor;
Ref;

Integer;
Integer) ;

RefDescriptor;
Ref;
Integer);

RefDescriptor;
Ref;
Integer) ;

RefDescriptor;

Ref;
Integer);

-5

Apple lIGS Toolbox Units

PROCEDURE HideMenuBar;
PROCEDURE ShowMenuBar;

IMPLEMENTATION

END.

MIDI

{************************i*******************

; File:

v
v
.

MIDI.p

; All Rights Reserved

Copyright Apple Computer, Inc.

kkkkkhkkkdkkhkkokdkkhdkkokkkkkkkkkhkkkx

UNIT MIDI;

INTERFACE
USES Types;

CONST

miToolNum
miDrvrFileType
miNSVer

miSTVer

miDrvrAuxType
miStartUpErr
miPacketErr
miArrayErr

miFullBufErr
miToolsErr

miOutOffErr
miNoBufErr
miDriverErr

miBadFreqErr

miClockErr
miConflictErr
miNoDevErr
miDevNotAvail
miDevSlotBusy
miDevBusy
miDevOverrun
miDevNoConnect
miDevReadErr
miDevVersion

miDevIntHndlr

Appendices

$0020;

= S00BB;

$0102;

$0203;

$0300;

= $2000;

$2001;
$2002;

$2003;
$2004;

$2005;
$2007;
$2008;

52009;

$200A;
$200B;
$200C;
$2080;
$2081;
52082;

= $2083;

$2084;
$2085;
$20886;

$2087;

1986-89

********!***}

{Midi - the tool number of the MIDI Tool Set }
{Midi - filetype of MIDI device driver }

{Midi - minimum version of Note Synthesizer
required by MIDI Tool Set }

{Midi - minimum version of Sound Tools needed by
MIDI Tool Set }

{Midi - aux type of MIDI device driver }

{Midi - MIDI Tool Set is not started }

{Midi - incorrect length for a received MIDI command }
{Midi - a designated array had an insufficient or
illegal size }

{Midi - input buffer overflow }

{Midi - the required tools were not started up or
had insufficient versions }

{Midi - MIDI output must first be enabled }

{Midi - no buffer is currently allocated }

{Midi - the designated file is not a legal MIDI
device driver }

{Midi - the MIDI clock cannot attain the requested
frequency }

{Midi - the MIDI clock value wrapped to zero }
{Midi - conflicting processes for MIDI input }
{Midi - no MIDI device driver loaded }

{Midi - the requested device is not available }
{Midi - requested slot is already in use }

{Midi - the requested device is already in use)
{Midi - device overrun by incoming MIDI data }
{Midi - no connection to MIDI }

{Midi - framing error in received MIDI data }
{Midi - ROM version is incompatible with device
driver }

{Midi - conflicting interrupt handler is installed }

C-54 Apple IIGS Toolbox Units

TYPE

PROCEDURE MidiBootInit;

miSetClock = 50000; {MidiClock - set time stamp clock)}
miStartClock = 50001; {MidiClock - start time stamp clock }
miStopClock = $0002; {MidiClock - stop time stamp clock }
miSetFreq = $0003; {MidiClock - set clock frequency }
miRawMode = $00000000; {(MidiControl - raw mode for MIDI input & output }
miSetRTVec = $50000; {MidiControl - set real-time message vector }
miPacketMode = $00000001; {MidiControl = packet mode for MIDI input and output }
miSetErrVec = $0001; {MidiControl - set real-time error vector }
miStandardMo = $00000002; {MidiControl - standard mode for MIDI input and output }
miSet InBuf = $0002; {MidiControl - set input buffer information }
miSetQutBuf = 50003; {MidiControl = set output buffer information }
miStartInput = 50004; {MidiControl - start MIDI input }
miStartOutput = 50005; {MidiControl - start MIDI output }
miStopInput = $0006; {MidiControl - stop MIDI input }
miStopOutput = $0007; {MidiControl - stop MIDI output }
miFlushInput = 50008; {MidiControl - discard contents of input buffer }
miFlushOutput = $0009; {MidiControl - discard contents of output buffer }
miFlushPacke = S000A; {MidiControl - discard next input packet }
miWaitOutput = $000B; {MidiControl - wait for output buffer to empty }
miSetInMode = $000C; {MidiControl - set input mode)
miSetOutMode = 5000D; {MidiControl - set output mode)}
miClrNotePad = 5000E; {MidiControl - clear all notes marked on in the notepad }
miSetDelay = $000F; {MidiControl - set minimum delay between output packets }
miOutputStat = $0010; {MidiControl - enable/disable output of running - status)
milgnoreSysEx = $50011; {MidiControl - ignore system exclusive input }
miSelectDrvr = 50000; {MidiDevice - display device driver selection dialog }
miLoadDrvr = $0001; {MidiDevice = load and initialize device driver }
miUnloadDrvr = $0002; {MidiDevice - shutdown MIDI device, unload driver}
miNextPktLen = $0; {MidiInfo - return length of next packet }
miInputChars = $0001; {MidiInfo - return number of characters in input buffer }
miOutputChars = 50002; {MidiInfo - return number of characters in output buffer}
miMaxInChars = $0003; {MidiInfo - return maximum number of characters in
input buffer }
miMaxOutChars = $0004; {MidiInfo - return maximum number of characters in
output buffer }
miRecordAddr = 50005; {MidiInfo - return current MidiRecordSeq address }
miPlayAddr = $0006; {MidiInfo - return current MidiPlaySeq address }
miClockValue = $0007; {MidiInfo - return current time stamp clock value}
miClockFreq = 50008; {MidiInfo - return number of clock ticks per second }
MiBufInfo =
RECORD
bufSize: Integer; { size of buffer (0 for default))
address: Ptr; { address of buffer (0 for auto-allocation) }
END;
MiDriverInfeo =
RECORD
glet. Integer; { device slot }
external: Integer; { slot internal (=0) / external (=1) }
pathname: PACKED ARRAY[1..65] OF Byte; { device driver pathname }
END;

PRCCEDURE MidiStartUp

PROCEDURE MidiShutDown;

(userlID:

directPages:

Appendices

Integer;
Integer);

C-55 Apple IGS Toolbox Units

FUNCTION MidiVersion: Integer;
PROCEDURE MidiReset; ;
FUNCTION MidiStatus: Boolean;
PROCEDURE MidiClock

{funcNum: Integer;

arg: Longint) ;
PROCEDURE MidiControl

(contrelCode: Integer);
PROCEDURE = MidiDevice

(funcNum: Integer;

driverInfo: Pix);
FUNCTION MidiInfo

(funcNum: Integer): Longint;
PROCEDURE MidiInputPoll;
FUNCTION MidiReadPacket

{arrayAddr: Btr;

arraySize: Integer) : Integer;
FUNCTION MidiWritePacket

(arrayAddr: Ptr): Integer;
IMPLEMENTATION
END.
MiscTool

{**i*********i*****i*****************ﬂ***‘l***

; File: MiscTool.p

‘

’

; Copyright Apple Computer,
; All Rights Reserved

.

Inc, 1986-89

t****i***t**i**i****t**********i**tiii***t**}

UNIT MiscTool;

INTERFACE

USES Types:

CONST badInputErr
noDevParamErr
taskInstlErr
noSigTaskErr
queueDmgdErr
taskNtFdErr
firmTaskErr
hbQueueBadErr
unCnctdDevErr
idTagNtAv1Err
pdosUnClmdIntErr
divByZeroErr
pdosVCBErr
pdosFCBErr

Appendices

$0301;
$0302;
$0303;
$0304;

= $0305;

$0306;

= $0307:
= 50308;
= 50309;
= 5030B;
= 50001;
= $50004;
= 35000A;
= S000B:;

{error -
{error -
{error -
{error -
{error -
{error -
{error -
{error -
{error -
{error -

bad input parameter }

no device for input parameter }
task already installed error }
no signature in task header }

queue

has been damaged error }

task was not found error }

firmware task was unsuccessful }

heartbeat queue damaged }

attempted to dispatch to unconnected device }
ID tag not available }

{System Fail -
{System Fail -
{System Fail -
{System Fail -

ProDOS unclaimed interrupt error }
divide by zero error }

ProDOS VCB unusable }

ProDOS FCB unusable)

Apple IIGS Toolbox Units

pdosBlkOErr = $000C; {system Fail ~ ProDOS block zero allocated illegally }

pdosIntShdwErr = $000D; {System Fail - ProDOS interrupt w/ shadowing off }
segLoaderlErr = $0015; (System Fail - segment loader error }
sPackageOErr = $0017; {System Fail - can't load a package }
packagelErr = $0018; (System Fail - can't load a package }
package2Err = 50019; {System Fail - can't load a package }
package3Err = $001A; {System Fail - can't load a package }
packagedErr = $001B; (System Fail - can't load a package }
packageSErr = $001C; {System Fail - can't load a package }
package6Err = $001D; {System Fail - can't load a package }
package7Err = S5001E; {System Fail - can't load a package }
package8Err = $0020; {System Fail - can't load a package }
package9Err = 50021; {System Fail - can't load a package }
packagelOErr = $0022; {System Fail - can't load a package }
packagellErr = $0023; {System Fail - can't load a package }
packagelZErr = 50024; {System Fail - can't locad a package }
outOfMemErr = 50025; {System Fail - out of memory error }
segLoader2Err = 50026; {System Fail - segment loader error }
fMapTrshdErr = $0027; (System Fail - file map trashed }
stkOvrFlwErr = $0028; (System Fail - stack overflow error }
psInstDiskErr = $50030; {System Fail - Please Insert Disk (file manager alert) }
memMgrlErr = $0032; {System Fail - memory manager error }
memMgr2Err = $0033; {System Fail - memory manager error)
memMgr3Err = $0034; {System Fail - memory manager error }
memMgr4Err = $0035; {System Fail - memory manager error }
memMgrSErr = $0036; {System Fail - memory manager error }
memMgr 6Err = $0037; {System Fail - memory manager error }
memMgr7Err = $0038; {System Fail - memory manager error }
memMgr8Err = $0039; {System Fail - memory manager error }
memMgr9Err = $003A; {System Fail - memory manager error }
memMgr10Err = $003B; {System Fail - memory manager error }
memMgrllErr = $003C; {System Fail - memory manager error }
memMgrl2Err = $003D; {System Fail - memory manager error }
memMgrl3Err = $003E; {System Fail - memory manager error }
memMgrl4Err = $003F; (System Fail - memory manager error }
memMgrl5Err = 50040; {System Fail - memory manager error }
memMgrl6Err = $0041; {System Fail - memory manager error }
memMgrl7Err = 50042; {System Fail - memory manager error }
memMgrl8Err = $0043; {System Fail - memory manager error }
memMgrl19Err = $0044; {System Fail - memory manager error }
memMgr20Err = $0045; {System Fail - memory manager error }
memMgr21Err = $0046; {System Fail - memory manager error }
memMgr22Err = 50047; {System Fail - memory manager error }
memMgr23Err = 50048; {System Fail - memory manager error }
memMgr24Err = 50049; {System Fail - memory manager error }
memMgr25Err = 5004A; {System Fail - memory manager error)
memMgr26Err = $004B; {System Fail - memory manager error }
memMgr2iErr = $004C; {System Fail - memory manager error }
memMgr28Err = 5004D; {System Fail - memory manager error }
memMgr29Err = S004E; {System Fail - memory manager error }
memMgr30Err = $004F; {System Fail - memory manager error }
memMgr31Err = $0050; ({System Fail - memory manager error }
memMgr32Err = $0051; {System Fail - memory manager error }
memMgr33Err = $0052; {System Fail - memory manager error }
memMgr34Err = 50053; (System Fail - memory manager error }
stupVolMntErr = $0100; {System Fail - can't mount system startup volume }
plPrntModem = $0000; {Battery Ram Parameter Ref Number - }
pllineLnth = 50001; {Battery Ram Parameter Ref Number - }

Appendices C-57 Apple IIGS Toolbox Units

plDelline = 50002; {Battery Ram Parameter Ref Number -

}
plAddLine = 50003; {Battery Ram Parameter Ref Number - }
plEcho = 50004; {(Battery Ram Parameter Ref Number - }
plBuffer = 50005; {Battery Ram Parameter Ref Number - }
plBaud = 50006; {Battery Ram Parameter Ref Number - }
plDtStpBits = 50007; {Battery Ram Parameter Ref Number - }
plParity = $0008; {Battery Ram Parameter Ref Number - }
plDCDHndShk = 50009; {Battery Ram Parameter Ref Number - }
plDSRHndShk = S000A; (Battery Ram Parameter Ref Number - }
plXnfHndShk = S$000B; {Battery Ram Parameter Ref Number - }
p2PrntModem = $000C; {Battery Ram Parameter Ref Number - }
p2LineLnth = $000D; {Battery Ram Parameter Ref Number - }
p2DelLine = SO000E; {Battery Ram Parameter Ref Number - }
p2AddLine = S000F; {Battery Ram Parameter Ref Number - }
p2Echo = $0010; {Battery Ram Parameter Ref Number - }
p2Buffer = $0011; (Battery Ram Parameter Ref Number - }
p2Baud = $0012; {Battery Ram Parameter Ref Number - }
p2DtStpBits = $0013; {Battery Ram Parameter Ref Number - }
p2Parity = $0014; {(Battery Ram Parameter Ref Number - }
p2DCDHndShk = $0015; {Battery Ram Parameter Ref Number - }
p2DSRHndShk = $0016; {Battery Ram Parameter Ref Number - }
p2XnfHndShk = 50017; {Battery Ram Parameter Ref Number - }
dspColMono = $0018; {Battery Ram Parameter Ref Number - }
dspd40o0r80 = $0019; {Battery Ram Parameter Ref Number -)}
dspTxtColor = $001A; {Battery Ram Parameter Ref Number - }
dspBckColor = $001B; {Battery Ram Parameter Ref Number - }
dspBrdColor = 5001C; {Battery Ram Parameter Ref Number - }
hrtz500r60 = $001D; {(Battery Ram Parameter Ref Number - }
userVolume = S001E; {Battery Ram Parameter Ref Number - }
bellVolume = S001F; {Battery Ram Parameter Ref Number - }
sysSpeed = $0020; {Battery Ram Parameter Ref Number - }
sltlintExt = $0021; {Battery Ram Parameter Ref Number - }
slt2intExt = $0022; {Battery Ram Parameter Ref Number - }
slt3intExt = 50023; {Battery Ram Parameter Ref Number - }
slt4intExt = $0024; {Battery Ram Parameter Ref Number - }
slt5intExt = $0025; {Battery Ram Parameter Ref Number - }
sltéintExt = $0026; {Battery Ram Parameter Ref Number -)
slt7intExt = 50027; {Battery Ram Parameter Ref Number - }
startupSlt = 50028; {Battery Ram Parameter Ref Number - }
txtDspLlang = $0029; {Battery Ram Parameter Ref Number - }
kybdLang = $002A; {Battery Ram Parameter Ref Number - }
kyBdBuffer = 5002B; {Battery Ram Parameter Ref Number - }
kyBdRepSpd = 5002C; {Battery Ram Parameter Ref Number - }
kyBdRepDel = $002D; {Battery Ram Parameter Ref Number - }
dblClkTime = S002E; {Battery Ram Parameter Ref Number - }
flashRate = $002F; {Battery Ram Parameter Ref Number - }
shftCpsLCas = $0030; {Battery Ram Parameter Ref Number - }
fstSpDelKey = $0031; {Battery Ram Parameter Ref Number - }
dualSpeed = $0032; (Battery Ram Parameter Ref Number - }
hiMouseRes = $0033; {Battery Ram Parameter Ref Number - }
dateFormat = $0034; {Battery Ram Parameter Ref Number - }
clockFormat = 50035; {Battery Ram Parameter Ref Number - }
rdMinRam = $0036; {Battery Ram Parameter Ref Number - }
rdMaxRam = $0037; {Battery Ram Parameter Ref Number - }
langCount = $0038; {Battery Ram Parameter Ref Number - }
langl = $0039; {Battery Ram Parameter Ref Number - }
lang2 = S003A; {Battery Ram Parameter Ref Number - }
lang3 = S003RB; {Battery Ram Parameter Ref Number - }

Appendices C-58 Apple IGS Toolbox Units

lang4 = $003C; {Battery Ram Parameter Ref Number -

)
lang5 = $003D; (Battery Ram Parameter Ref Number - }
langé = S003E; {Battery Ram Parameter Ref Number - }
lang? = $003F; {Battery Ram Parameter Ref Number -)}
lang8 = $0040; (Battery Ram Parameter Ref Number -)}
layoutCount = $0041; {Battery Ram Parameter Ref Number - }
layoutl = $0042; (Battery Ram Parameter Ref Number - }
layout2 = $0043; (Battery Ram Parameter Ref Number - }
layout3 = $50044; {Battery Ram Parameter Ref Number - }
layoutd = 50045; {Battery Ram Parameter Ref Number - }
layout5 = $0046; {(Battery Ram Parameter Ref Number - }
layouté = $0047; {Battery Ram Parameter Ref Number - }
layout? = $0048; {Battery Ram Parameter Ref Number = }
layout8 = $50049; {Battery Ram Parameter Ref Number - }
layout9 = $004A; {Battery Ram Parameter Ref Number - }
layoutl0 = 5004B; {Battery Ram Parameter Ref Number - }
layoutll = $004C; {Battery Ram Parameter Ref Number - }
layoutl?2 = $004D; {Battery Ram Parameter Ref Number - }
layoutl3 = S004E; {Battery Ram Parameter Ref Number - }
layoutl4 = $5004F; {Battery Ram Parameter Ref Number - }
layoutl5s = 50050; {Battery Ram Parameter Ref Number - }
layoutle = $0051; {Battery Ram Parameter Ref Number - }
aTalkNodeNo = 50080; {Battery Ram Parameter Ref Number - }
irgIntFlag = 50000; {GetAddr Param Ref No - }
irgDataReg = $0001; {GetAddr Param Ref No - }
irgSeriall = $0002; {GetAddr Param Ref No - }
irgSerial2 = $0003; {GetAddr Param Ref No - }
irgAplTlkHi = $0004; {(GetAddr Param Ref No - }
tickCnt = $0005; {GetAddr Param Ref No - }
irgVolume = 50006; {GetAddr Param Ref No - }
irgActive = $0007; (GetAddr Param Ref No - }
irgSndData = $0008; {GetAddr Param Ref No - }
brkvar = 50009; {GetAddr Param Ref No - }
evMgrData = $000A; {GetAddr Param Ref No - }
mouseSlot = $000B; {GetAddr Param Ref No - }
mouseClamps = 5000C; {GetAddr Param Ref No - }
absClamps = $000D; (GetAddr Param Ref No - }
sccIntFlag = S000E; {GetAddr Param Ref No - }
extVGCInt = 501; {Hardware Interrupt Status - Returned by
GetIRQEnable }

scanLinelnt = 502; {Hardware Interrupt Status - Returned by
GetIRQEnable }

adbDatalnt = $04; {Hardware Interrupt Status - Returned by
GetIRQEnable }

ADTBDatalnt = 504; {Hardware Interrupt Status - maintained for
compatiblity with old interfaces }

oneSecInt = $10; {Hardware Interrupt Status - Returned by
GetIRQEnable }

quartSecInt = $20; {Hardware Interrupt Status - Returned by
GetIRQEnable }

vbInt = $40; {Hardware Interrupt Status - Returned by
GetIRQEnable }

kbdInt = $80; {Hardware Interrupt Status - Returned by
GetIRQEnable }

kybdEnable = $0000; {Interrupt Ref Number - Parameter to IntSource }

kybdDisable = 50001; {Interrupt Ref Number - Parameter to IntSource }

vblEnable = 50002; {Interrupt Ref Number - Parameter to IntSource }

vblDisable = $0003; {Interrupt Ref Number - Parameter to IntSource }

Appendices C-59 Apple IGS Toolbox Units

gSecEnable = $0004; {Interrupt Ref Number - Parameter to IntSource

}
gSecDisable = $0005; {Interrupt Ref Number - Parameter to IntSocurce)}
oSecEnable = $0006; {(Interrupt Ref Number - Parameter to IntSource }
oSecDisable = $0007; {(Interrupt Ref Number - Parameter to IntSource }
adbEnable = $000A; (Interrupt Ref Number - Parameter to IntSource }
adbDisable = $000B; {Interrupt Ref Number - Parameter to IntSource }
scLnEnable = $000C; {Interrupt Ref Number - Parameter to IntSource)}
scLnDisable = $000D; {Interrupt Ref Number - Parameter to IntSource }
exVCGEnable = S000E; {Interrupt Ref Number - Parameter to IntSource }
exVCGDisable = $000F; {Interrupt Ref Number - Parameter to IntSource }
mouseOff = $0000; {Mouse Mode Value - }
transparent = $0001; {Mouse Mode Value - }
transParnt = $0001; {Mouse Mode Value - (old name) }
movelntrpt = $0003; {Mouse Mode Value - }
bttnIntrpt = $0005; {Mouse Mode Value - }
bttnOrMove = 50007; {Mouse Mode Value - }
mouseQffVvI = 5$0008; {Mouse Mode Value - }
transParntVI = $0009; {Mouse Mode Value - (old name) }
transparentVI = $0009; {Mouse Mode Value = }
movelntrptVi = 5000B; {Mouse Mode Value - }
bttnIntrptVIi = 5000D; {Mouse Mode Value - }
bttnOrMoveVI = S000F; {Mouse Mode Value - }
toolLocl = $0000; {Vector Ref Number - }
toolLoc2 = $0001; {(Vector Ref Number - }
usrTLocl = $0002; {Vector Ref Number - }
usrTLoc2 = 50003; {Vector Ref Number - }
intrptMgr = 50004; {Vector Ref Number - }
copMgr = $0005; {Vector Ref Number - }
abortMgr = 50006; {Vector Ref Number - }

_sysFailMgr = 50007; {Vector Ref Number = }
aTalkIntHnd = $0008; {Vector Ref Number - }
sccIntHnd = 50009; {Vector Ref Number - }
scLnIntHnd = 5000A; {Vector Ref Number - }
sndIntHnd = $000B; {Vector Ref Number - }
vblIntHnd = 5000C; {Vector Ref Number - }
mouseIntHnd = $000D; {Vector Ref Number - }
gSecIntHnd = S000E; {Vector Ref Number - }
kybdIntHnd = S000F; {Vector Ref Number - }
adbRBIHnd = $0010; {Vector Ref Number - }
adbSRQHnd = 50011; {Vector Ref Number - }
deskAccHnd = $0012; {Vector Ref Number - }
flshBufHnd = $0013; {Vector Ref Number - }
kybdMicHnd = 50014; {Vector Ref Number - }
oneSecHnd = $0015; {Vector Ref Number - }
extVCGHnd = 50016; {Vector Ref Number - }
otherIntHnd = $0017; {Vector Ref Number - }
crsrUpdtHnd = 50018; {Vector Ref Number - }
incBsyFlag = $50019; {Vector Ref Number - }
decBsyFlag = $001A; {Vector Ref Number - }
bellVector = $001B; {(Vector Ref Number - }
breakVector = $001C; {Vector Ref Number - }
traceVector = $001D; {Vector Ref Number - }
stepVector = S001E; {Vector Ref Number - }
ctlYVector = $0028; {Vector Ref Number -)}
proDOSVctr = 5002A; {Vector Ref Number - }
osVector = $002B; {Vector Ref Number - }
msgPtrVctr = $002C;: {(Vector Ref Number - }

Appendices C-60 Apple IIGS Toolbox Units

TYPE ClampRecHndl =
ClampRecPtr =
ClampRec =

RECORD
yMaxClamp:
yMinClamp:
xMaxClamp:
xMinClamp:

END;

FWRecHndl =
FWRecPtr =l
FWRec =
RECORD
YRegExit:
XRegExit:
aRegExit:
status:
END;

MouseRecHndl -

MouseRecPtr =

MouseRec =
PACKED RECORD
mouseMode :

~“ClampRecPtr;
“ClampRec;

Integer;
Integer;
Integer;
Integer;

“FWRecPtr;
“FWRec;

Integer;
Integer;
Integer;
Integer;

“MouseRecPtr;
“MouseRec;

Byte;

mouseStatus: Byte;

yPos:
xPos:
END;

InterruptStateRecHndl
InterruptStateRecPtr
InterruptStateRec
PACKED RECORD

irg A:

irg X:

irqg Y:

irq S:

irqg D:

irg P:

irg DB:

irg e:

irq K:

irg PC:

irqg_state:

irg_shadow:

irg mslot:
END;

PROCEDURE MTBootInit;
PROCEDURE MTStartUp;
PROCEDURE MTShutDown;
FUNCTION MTVersion:
PROCEDURE MTReset;
FUNCTION MTStatus:
PROCEDURE ClampMouse
(xMinClamp:
xMaxClamp:

Appendices

Integer;
Integer;

= “InterruptStateRecPtr;
“InterruptStateRec;

]

Integer;
Integer;
Integer;
Integer;
Integer;
Byte;
Byte;
Byte;
Byte;
Integer;
Byte;
Integer;
Byte;

Integer;
Boolean;

Integer;
Integer;

C-61

Apple IIGS Toolbox Units

yMinClamp: Integer;

yMaxClamp: Integer);
PROCEDURE ClearMouse;
PROCEDURE ClrHeartBeat;
PROCEDURE DeletelD

(idTag: Integer) ;
PROCEDURE DelHeartBeat

(taskPtr: Ptr);
FUNCTION FWEntry

{aRegValue: Integer;

xRegValue: Integer;

yRegValue: Integer;

eModeEntryPt : Integer) : FWRec;
FUNCTION GetAbsClamp: ClampRec;
FUNCTION GetAddr

(refNum: Integer): Ptr;
FUNCTION GetIRQEnable: Integer;
FUNCTION GetMouseClamp: ClampRec;
FUNCTION GetNewlID

{(idTag: Integer): Integer;
FUNCTION GetTick: Longint;
FUNCTION GetVector

(vectorRefNum: Integer): Ptr;
PROCEDURE HomeMouse;
PROCEDURE InitMouse

{mouseSlot: Integer);
PROCEDURE IntSource

(srcRefNum: Integer);
FUNCTION Munger

(destPtr: Ptr;

destLenPtr: IntPtr;

targPtr: Ptr;

targlen: Integer;

replPtr: Ptr:;

repllen: Integer;

padPtr: Ptr): Integer;

FUNCTION PackBytes
(VAR srcBuffer:Ptr;
VAR srcSize: Integer;

dstBuffer: BPLrx:

dstSize: Integer) : Integer;
PROCEDURE PosMouse

(xPos: Integer;

yPos: Integer);
PROCEDURE ReadAsciiTime

(bufferPtr: Ptr);

FUNCTION ReadBParam

(paramRefNum: Integer): Integer;
PROCEDURE ReadBRam

(bufferPtr: Ptrj;

FUNCTION ReadMouse: MouseRec;
FUNCTION ReadTimeHex: TimeRec;
FUNCTION ServeMouse: Integer;
PROCEDURE SetAbsClamp
{xMinClamp: Integer;
xMaxClamp: Integer;
yMinClamp: Integer;
yMaxClamp: Integer):

Appendices C-62

Apple

IIGS Toolbox Units

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE
PROCEDURE

SetHeartBeat
(taskPtr:
SetMouse
(mouseMode:
SetVector
(vectorRefNum:
vectorPtr:
StatusID
(idTag:
SysBeep;
SysFailMgr
(errorCode:
str:

FUNCTION UnPackBytes

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

(srcBuffer:
srcSize:

VAR dstBuffer

VAR dstSize:
WriteBParam
(theData:
paramRefNum:
WriteBRam
(bufferPtr:
WriteTimeHex
(month:
day:
curYear:
hour:
minute: .
second:
AddToQueue
(newEntryPtr:
headerPtr:
DeleteFromQueue
(entryPtr:
headerPtr:
SetInterruptState
(iStateRec:
bytesDesired:
GetInterruptState

PtE);

Integer);

Integer;
PEX);

Integer)

Integer;
Str255);

Ptr;

Integer;

itPLr;

Integer): Integer;

Integer;
Integer):;

Ptr);

Byte;
Byte;
Byte;
Byte;
Byte;
Byte) ;

Ptr;
Ptr):;

PEX;
PEE) 2

InterruptStateRec;
Integer);

(VAR iStateRec:InterruptStateRec;

bytesDesired:

Integer);

FUNCTION GetIntStateRecSize: Integer;
FUNCTION ReadMouse2:

FUNCTION GetCodeResConverter:

FUNCTION GetRomResource:

IMPLEMENTATION

END.

Appendices

MouseRec;
ProcPtr;
Ptr:

C-63

a

Apple HGS Toolbox Unifs

NoteSeq

(t**t***i******i*****************************

; File: NoteSeq.p

¢

; Copyright Apple Computer,

; All Rights Reserved

’

Inc. 1986-89

*ki‘kk***i*********************t*itﬁﬁt‘k*ﬂ**‘kt}

UNIT NoteSeqg;

INTERFACE
USES Types;

CONST pitchBend
tempo
turnNotesOff
jump
setVibratoDepth
programChange
setRegister
ifGo
incRegister
decReglister
midiNoteOff
midiNoteOn
midiPolyKey
midiCtlChange
midiProgChange
midiChnlPress
midiPitchBend
midiSelChnlMode
midiSysExclusive
midiSysCommon
midiSysRealTime
midiSetSysExl
commandMask
volumeMask
chord
vallMask
toneMask
noteMask
1Byte
durationMask
trackMask
delayMask
hByte
noRoomMidiErr
noCommandErr
noRoomErr
startedErr
noNoteErr

Appendices

$0;

$00000001;
$00000002;
$00000003;
500000004;
$00000005;
$00000006;
5$00000007;
$00000008;
$00000009;
$0000000A;
50000000B;

= $0000000C;

$0000000D;
$0000000E;

= $0000000F;

$00000010;
$00000011;
500000012;
$00000013;
500000014;
$00000015;
S0000007F;
$0000007F;
$00000080;
$00007F00;
S00007F00;
500008000;
SQOFFQ000;
SO0TFF0000;
$78000000;
$80000000;
SFF000000;
$1A00; {error
51A01; {error
$1A02; {(error
$1A03; {error
$1A04; {error

{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{Command
{ Command
{Command
{Command
= 3

e e Gy e et et St bt S Rt G b Gt e Nt S b S et bttt e e e e e

meaning depends on midi command}

}

}
}
}

- can't understand current Seqgltem }

- sequence is more than twelve levels deep }

- Note Sequencer is already started)
- can't find the note to be turned
off by the current Segltem }

C-64

Apple IGS Toolbox Units

noStartErr = 51A05; {error - Note Sequencer not started yet }

instBndsErr = 51A06;

{error - Instrument number ocut of

Instrument boundary range }
nsWrongVer = $1A07; {error - incompatible versions of
NoteSequencer and oteSynthesizer)}

TYPE LocRecHndl = “LocRecPtr;
LocRecPtr = "LocRec;
LocRec =
RECORD

curPhraseltem: Integer;

curPattItem:

curlevel:
END;

PROCEDURE SeqBootInit;
PROCEDURE SegStartUp
(dPageAddr:
mode :
updateRate:
increment:
PROCEDURE SegShutDown;
FUNCTION SeqVersion:
PROCEDURE SeqReset;
FUNCTION SegStatus:
PRCCEDURE SeqAllNotesOff;
FUNCTION ClearIncr:
FUNCTION GetLoc:
FUNCTION GetTimer:
PROCEDURE SetlIncr
{(increment:
PROCEDURE SetInstTable
(instTable:
PROCEDURE SetTrkInfo
(priority:
instIndex:
trackNum:
PROCEDURE StartiInts;
PROCEDURE StartSeq

(errHndlrRoutine:

compRoutine:
sequence:
PROCEDURE StepSegqg;
PROCEDURE StoplInts;
PROCEDURE StopSeg
{(next: Integer);
PROCEDURE StartSegRel

{errHandlerPtr:
compRoutine:
sequence:

IMPLEMENTATION
END.
Appendices

Integer;
Integer;

Integer;
Integer;
Integer;
Integer);

Integer;
Boolean;
Integer;
LocRec;

Integer;

Integer)

-

Handle) ;

Integer;
Integer;
Integer) ;

VoidProcPtr;
VoidProcPtr;

Handle) ;

ProcPtr;
ProcPtr;
Handle) ;

C-65

Apple IGS Toolbox Units

NoteSyn

(*******‘k‘k****t********************i*******i’*

; File:

’

; Copyright Apple Computer,

NoteSyn.p

; All Rights Reserved

‘

Inc.

1986-89

hkhkhkkhkhkhhhkhdkhkhkhkhhkhhkhkhkhkhkhdkhkhkdhhhkdhx ********}

UNIT NoteSyn;

INTERFACE
USES Types;

CONST nsAlreadylInit = $1901; {error — Note Syn already initialized }
nsSndNetInit = $1902; {error - Sound Tools not initialized)}
nsNotAvail = §1921; {error - generator not available }
nsBadGenNum = $51922; {error - bad generator number }
nsNotInit = $1923; {error - Note Syn not initialized }
nsGenAlreadyOn = $1924; {error - generator already on }
soundWrongVer = $1925; {error - incompatible versions of Sound and NoteSyn}

TYPE EnvelopeHndl = “EnvelopePtr;

EnvelopePtr = “Envelope;
Envelope =
PACKED RECORD
st1BkPt: Byte;
stlIncrement: Integer;
st 2BkPt: Byte;
st2Increment: Integer;
st3BkPt: Byte;
st3Increment: Integer;
st4BkPt: Byte;
st4Increment: Integer;
stSBkPt: Byte;
stS5Increment: Integer;
st 6BkPt: Byte;
sté6Increment: Integer;
st 7BkPt : Byte;
st7Increment: Integer;
st 8BkPL: Byte;
stBIncrement: Integer;
END;
WaveFormHndl = "WaveFormPtr;
WaveFormPtr = “WaveForm;
WaveForm =
PACKED RECORD
wfTopKey: Byte;
wfWaveAddress: Byte:
wfWaveSize: Byte;
wfDocMode: Byte;
wfRelPitch: Integer;
END;
Appendices C-66 Apple IIGS Toolbox Units

@

InstrumentHndl
InstrumentPtr
Instrument
PACKED RECORD
theEnvelope:

releaseSegment:
priorityIncrement:
pitchBendRange:

vibratoDepth:
vibratoSpeed:
inSpare:
aWaveCount :
bWaveCount :
aWaveList:
bWaveList:
END;

PROCEDURE NSBootInit;
PROCEDURE NSStartUp
(updateRate:

userUpdateRtnPtr:

PROCEDURE NSShutDown;

FUNCTION NSVersion:

PROCEDURE NSReset;

FUNCTION NSStatus:

PROCEDURE AllNotesOff;

FUNCTION AllocGen
(requestPriority:

PROCEDURE DeallocGen
(genNumber :

PROCEDURE NoteOff

(genNumber :
semitone:

PROCEDURE NoteOn
{genNumber:
semitone:
volume:
InstrumentPtr:

PROCEDURE NSSetUpdateRate
{(updateRate:

FUNCTION NSSetUserUpdateRtn
(updateRtn:

IMPLEMENTATION

END.

Appendices

@

“InstrumentPtr;
“Instrument;

[

Envelope;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
Byte;
ARRAY [1..1] OF WaveForm;
ARRAY [1..1] OF WaveForm;

Integer;
Ptr);

Integer;

Boolean;

Integer): Integer;
Integer) ;

Integer;
Integer):

Integer;
Integer;
Integer;
Ptx]:

Integer);

VoidProcPtr): VoidProcPtr;

C-67

Apple lIGS Toolbox Units

Print

(i'k**

; File: Print.p

’

; Copyright Apple Computer, Inc.
; All Rights Reserved

’

1986-89

****1:*****************i***ititti***********f)

UNIT Print;

INTERFACE

USES Types,

CONST

TYPE

QuickDraw, Events,

Controls, Windows, Dialogs;

pntrConFailed = $1308; {error - connection to the printer failed }
memFullErr = SFF80; {errors - }
ioAbort = SFFES5; {errors - }
prAbort = $0080; {errors - }
missingDriver = $1301; {errors - specified driver not in system/drivers }
portNotOn = $1302; {errors - specified port not selected in ctl panel }
noPrintRecord = $1303; {errors - no print record was given }
badLaserPrep = $1304; {errors - laser prep in laser writer incompatible }
badLPFile = $1305; {errors - laser prep in system/drivers
incompatible }
papConnNotOpen = $1306; {errors - cannot connect to laser writer }
papReadWriteErr = $1307; {errors — apple talk PAPRead or PAPWrite error }
startUpAlreadyMade = $132; {errors - low level startup already made }
invalidCtlval = $1322; {errors - invalid control value had been spec'd }
reset = $50001; {LLDControl - Printer control value - reset printer }
formFeed = 50002; {LLDControl - Printer control value - form feed }
lineFeed = 50003; {LLDControl - Printer contrel value - line feed }
bothDrivers = $0; {whichDriver - input to PMLoadDriver and PMUnloadDriver }
printerDriver = 50001; {whichDriver - input to PMLoadDriver and PMUnloadDriver }
portDriver = $0002; {whichDriver - input to PMLoadDriver and PMUnloadDriver }
prPortrait = $0000; § %3
prlandscape = $0001; L
prlmageWriter = 50001; { =}
prImageWriterLQ = $0002; =1
prlaserWriter = $0003; { -
prEpson = 50004; b= ¥
prBlackWhite = $0001; { -1
prColor = 50002; {: =3
bDraftLoop = 50000; { -
bSpoolLoop = 50080; £ =~}
PrPrinterSpecRec =
RECORD
prPrinterType: Integer;
prCharacteristics: Integer;
END;
PrInfoRecHndl = "“PrInfoRecPtr;
PrInfoRecPtr = "“PriInfoRec;

Appendices

C-68 Apple IIGS Toolbox Units

PriInfoRec -

RECORD
iDev: Integer; { reserved for internal use }
iVRes: Integer; { vertical resolutiocn of printer }
iHRes: Integer; { horizontal resoluticn of printer }
rPage: Rect; { defining page rectangle }
END;
PrJobRecPtr = "“PrJobRec;
PrJobRec =
PACKED RECORD
iFstPage: Integer; { first page to print }
iLstPage: Integer; { last page to print }
iCopies: Integer; { number of copies)
bdDocLoop: Byte; { printing method }
fFromUser: Byte; { used internally }
pldleProc: WordProcPtr; { background procedure)
pFileName: Ptr; { spool file name }
iFileVol: Integer; { spool file volume reference number }
bFileVers: Byte; { spool file version number }
bJobX: Byte; { used internally)}
END;
PrStyleRecHndl = "PrStyleRecPtr;
PrStyleRecPtr = "PrStyleRec;
PrStyleRec =
RECORD
wDev : Integer; { output quality information }
interna: ARRAY [1..3]) OF Integer; { for internal use }
feed: Integer; { paper feed type }
paperType: Integer; { paper type }
crWidth: Integer; { carriage Width for image writer or
vertical sizing for lazer writer }
reduction: Integer; { % reduction, laser writer only }
internB: Integer; { for internal use)
END;
PrRecHndl = “PrRecPtr;
PrRecPtr = "PrRec;
PrRec =
RECORD
prVersion: Integer; { print manager version }
prinfo: PrinfoRec; { printer infomation subrecord }
rPaper: Rect; { Defining paper rectangle }
prstl: PrStyleRec; { style subrecord }
prinfoPT: PACKED ARRAY ([1..14] OF Byte; {reserved for internal use}
prXInfo: PACKED ARRAY [1..24] OF Byte; ({reserved for internal use}
prJdob: PrJobRec; { job subrecord }
printX: PACKED ARRAY [1..38] OF Byte; {reserved for future use}
iReserved: Integer; { reserved for internal use)}
END;
PrStatusRecHndl = "PrStatusRecPtr;
PrStatusRecPtr = “PrStatusRec;
PrStatusRec a
RECORD
iTotPages: Integer; { number of pages in spool file }
iCurPage: Integer; { page being printed }

Appendices C-69 Apple IIGS Toolbox Units

iTotCopies:
iCurCopy:
iTotBands:
iCurBand:
fPgDirty:
fImaging:
hPrint:
pPrPort:
hPic:
END;
PROCEDURE PMBootInit;
PROCEDURE PMStartUp
(userID:
dPageAddr:
PROCEDURE PMShutDown;
FUNCTION PMVersion:
PROCEDURE PMReset;
FUNCTION PMStatus:
PROCEDURE LLDBitMap
(bitMapPtr:
rectPtr:
userID:
PROCEDURE LLDControl
(printerControlValue:
PROCEDURE LLDShutDown
(userID:
PROCEDURE LLDStartUp
(dPageAddr:
userID:
PROCEDURE LLDText
(textPtr:
textLength:
userID:
PROCEDURE PMLoadDriver
(whichDriver:
PROCEDURE PMUnloadDriver
{whichDriver:

FUNCTION PrChoosePrinter:

FUNCTION PrChooser:

PROCEDURE PrCloseDoc
(printGrafPortPtr:

PROCEDURE PrClosePage
(printGrafPortPtr:

PROCEDURE PrDefault
(printRecordHandle:

FUNCTION PrDriverVer:

FUNCTION PrError:

FUNCTION PrJobDialog
(printRecordHandle:

FUNCTION PrOpenDoc
(printRecordHandle:
printGrafPortPtr:

PROCEDURE PrOpenPage
{printGrafPortPtr:
pageFramePtr:

Appendices

Integer;
Integer;
Integer;
Integer;
Integer;
Integer;
PrRecHndl;
GrafPortPtr;

Longint;

Integer;
Integer) ;

Integer;
Boolean;
Ptr;

Rect;
Integer);

L

Integer)

Integer)

Integer;
Integer);

Ptr;
Integer;
Integer)

~

Integer)

LN

N

Integer)
Boolean;
Boolean;
GrafPortPtr);
GrafPortPtr);
PrRecHndl) ;
Integer;
Integer;

PrRecHndl) :

PrRecHndl;
GrafPortPtr) :

GrafPortPtr;
rectPtr);

C-70

{ number of copies requested }

{ copy being printed }

{ reserved for internal use }

{ reserved for internal use }

{ TRUE if started printing page }
{ reserved for internal use }

{ handle of print record }

{

pointer to grafport being use for

printing }
{ reserved for internal use }

Boolean;

GrafPortPtr;

Apple IGS Tecolbox Units

PROCEDURE PrPicFile
{printRecordHandle:
printGrafPortPtr:
statusRecPtr:

PROCEDURE PrPixelMap
(srcLocPtr:
srcRectPtr:
colorFlag:

FUNCTION PrPortVer: Integer;

PROCEDURE PrSetError
{errorNumber:

FUNCTION PrStlDialog
(printRecordHandle:

FUNCTION PrValidate
(printRecordHandle:

PROCEDURE PrSetDocName
(DocNamePtr:

FUNCTION PrGetDocName:

FUNCTION PrGetPgOrientation
(prRecordHandle:

FUNCTION PrGetPrinterSpecs:

PROCEDURE PrGetZoneName
(VAR ZoneNamePtr:

PROCEDURE PrGetPrinterDvrName
(VAR DvrNamePtr:

PROCEDURE PrGetPortDvrName
(VAR DvrNamePtr:

PROCEDURE PrGetUserName
(VAR UserNamePtr:

PROCEDURE PrGetNetworkName
(VAR NetworkNamePtr:

IMPLEMENTATION
END.

QDAux

PrRecHndl;
GrafPortPtr;
PrStatusRecPtr);
LocInfoPtr;

Rect;

Integer);

Integer);
PrRecHndl) : Boolean;

PrRecHndl) : Boolean;

StringPtr);
StringPtr;

PrRecHndl) : Integer;
PrPrinterSpecRec;

Str255);
Str255);
Str255) ;
Str255);

Str255) ;

{*********t*l'********************************

; File: QDAux.p

’

; Copyright Apple Computer, Inc. 1986-89

; All Rights Reserved

’

***************i**********t***********t*****}

UNIT QDAux;

INTERFACE
USES Types;

CONST frameVerb 2
picNop =
drawCharVerb =

Appendices

$00;
500;
500;

C-71

{PicInfo - PRIVATE - for reference only }
{PicInfo - PRIVATE - for reference only)
{PicInfo - PRIVATE - for reference only)

Apple IIGS Toolbox Units

paintVerb = 501; {PicInfo - PRIVATE - for reference only

}
picClipRgn = 501; "{PicInfo - PRIVATE - for reference only }
drawTextVerb = $01; {PicInfo - PRIVATE - for reference only }
eraseVerb = 502; {PicInfo - PRIVATE - for reference only }
picBkPat = $02; {PicInfo - PRIVATE - for reference only }
drawCStrVerb = $02; {PicInfo - PRIVATE - for reference only }
invertVerb = 503; {PicInfo - PRIVATE - for reference only }
picTxFont = 503; {PicInfo - PRIVATE - for reference only }
fillVerb = 504; {PicInfo - PRIVATE - for reference cnly }
picTxFace = $04; {PicInfo - PRIVATE - for reference only }
picTxMode = 505; {PicInfo - PRIVATE - for reference only }
picSpExtra = $06; {PicInfo - PRIVATE - for reference only }
picPnSize = $07; {PicInfo - PRIVATE - for reference only }
picPnMode = 508; {PicInfo - PRIVATE - for reference only)
picPnPat = $09; {PicInfo - PRIVATE - for reference only }
picThePat = SO0A; {PicInfo - PRIVATE - for reference only }
picOvsSize = SO0B; {PicInfo — PRIVATE - for reference only }
picOrigin = 50C; {PicInfo — PRIVATE - for reference only }
picTxSize = $0D; {PicInfo - PRIVATE - for reference only }
picFPGColor = S0E; {PicInfo - PRIVATE - for reference only)}
picBGColor = SOF: {PicInfo — PRIVATE - for reference only }
picTxRatio = $10; {PicInfo - PRIVATE - for reference only }
picVersion = $11; {PicInfo - PRIVATE - for reference only }
lineNoun = $20; {PicInfo - PRIVATE - for reference only }
picLine = $20; {PicInfo - PRIVATE - for reference only }
picLineFrom = §21; {PicInfo - PRIVATE - for reference only }
picShortl = $22; {PicInfo - PRIVATE - for reference only }
picShortLFrom = $23; {PicInfo - PRIVATE - for reference only }
picLongText = $28; {PicInfo - PRIVATE - for reference only }
picDHText = $29; {PicInfo - PRIVATE - for reference only }
picDVText = $2A; {PicInfo - PRIVATE - for reference only }
picDVDHText = $2B; {PicInfo - PRIVATE - for reference only }
rectNoun = $30; {PicInfo - PRIVATE - for reference only }
rRectNoun = $40; {PicInfo - PRIVATE - for reference only }
ovalNoun = 550; {PicInfo - PRIVATE - for reference only }
arcNoun = $60; {PicInfo - PRIVATE - for reference only }
polyNoun = $70; {PicInfo - PRIVATE - for reference only }
rgnNoun = $80; {PicInfo - PRIVATE - for reference only }
mapNoun = 590; {PicInfo - PRIVATE - for reference only)}
picBitsRect = $90; {PicInfo — PRIVATE - for reference only }
picBitsRgn = $91; {PicInfo - PRIVATE - for reference only }
picPBitsRect = $98; {PicInfo - PRIVATE - for reference only }
picPBitsRgn = $99; {PicInfo - PRIVATE - for reference only }
picShortComment = SAQ; {PicInfo - PRIVATE - for reference only }
picLongComment = SAl;: {PicInfo - PRIVATE - for reference only }
picEnd = SFF; {PicInfo - PRIVATE - for reference only }
resMode640PMask = 500; {SeedFill/CalcMask - }
resMode640DMask = $01; {SeedFill/CalcMask - }
resMode320Mask = 502; {SeedFill/CalcMask - }
destModeCopyMask = 50000; {SeedFill/CalcMask - }
destModelLeaveMask = §1000; {SeedFill/CalcMask - }
destModeOnesMask = $2000; {SeedFill/CalcMask - }
destModeZerosMask = 53000; {SeedFill/CalcMask - }
destModeError = 51212; {Exrtor - }

TYPE QDIconRecordHndl = “QDIconRecordPtr;
QDIconRecordPtr = ~QDIconRecord;
QODIconRecord =

Appendices C-72 Apple IIGS Toolbox Units

RECORD

iconType:
iconSize:
iconHeight:
iconWidth:
iconImage:
iconMask:

Integer;
Integer;
Integer;
Integer;
PACKED ARRAY [1..1] OF Byte;
PACKED ARRAY [1..1] OF Byte;

END;
PicHndl = “PicPtr;
PicPtr = “Picture;
Picture =
RECORD
picSCB: Integer;
picFrame: Rect; { Followed by picture opcodes }
END;

PROCEDURE QDAuxBootInit;
PROCEDURE QDAuxStartUp;
PROCEDURE QDAuxShutDown;

FUNCTION QDAuxVersion:
PROCEDURE QDAuxReset;
FUNCTION OQDAuxStatus:

PROCEDURE CopyPixels
(srcLocPtr:
destLocPtr:
srcRect:
destRect:
xferMode:
makeRgn:

PROCEDURE DrawlIcon
(iconPtr:
displayMode:
xPos:
yPos:

PROCEDURE SpecialRect
(rectPtr:
frameColor:
fillColor:

PRCCEDURE WaitCursor;

PROCEDURE SeedFill
(srcLocInfoPtr:
srcRect:
dstLocInfoPtr:
dstRect:
seedH:
seedV:
resMode:
__patternPtr:
leakTblPtr:

PROCEDURE CalcMask
(srcLocInfoPtr:
srcRect:
dstLocInfoPtr:
dstRect:
resMcde:

. patternPtr:
leakTblPtr:

Appendices

Integer;

Boolean;

LocInfo;
LoecInfo;
Rect;

Rect ;
Integer;
RgnHandle) ;

QDIconRecord;
Integer;
Integer;
Integer)

~

Rect;
Integer;
Integer);

LocInfo;
Rect;
LocInfo;
Rect;
Integer;
Integer;
Integer;
PatternPtr;
Ptxiiz

LocInfo;
Rect;
LocInfo;
Rect ;
Integer;
PatternPtr;
Por)s:

C-73 Apple

HGS Toolbox Units

PROCEDURE PicComment

{kind: Integer;
dataSize: Integer;
dataHandle: Handle) ;

PROCEDURE ClosePicture;
PROCEDURE DrawPicture

(picHandle: PicHndl;

destRect: Rect) ;
PROCEDURE KillPicture

{(picHandle: PicHndl) ;
FUNCTION OpenPicture

(picFrame: Rect): PicHndl;
IMPLEMENTATION
END.
QuickDraw

{****i***t*tt***t*****i****i********i********

; File: QuickDraw.p

e

; Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

ti*i*t***************************t****}
UNIT Quickdraw;

INTERFACE
USES Types;

CONST alreadylInitialized = 50401; {error - Quickdraw already initialized)}
cannotReset = 50402; {error - never used }
notInitialized = $0403; {error - Quickdraw not initialized }
screenReserved = $50410; {error - screen reserved }
badRect = $0411; {error - bad rectangle }
notEqualChunkiness = 50420; {error — Chunkiness is not equal)}
rgnAlreadyOpen = 50430; {error - region is already open }
rgnNotOpen = 50431; {error - region is not open }
rgnScanOverflow = 50432; {error - region scan overflow }
rgnFull = $0433; {error - region is full }
polyAlreadyCpen = 50440; {error - poly is already open }
polyNotOpen = 50441; {error - poly is not open }
polyTooBig = $0442; {error - poly is too big }
badTableNum = $0450; {error - bad table number }
badColorNum = 50451; {error - bad color number }
badScanLine = $0452; {error - bad scan line }
notImplemented = S04FF; {error - not implemented }
tsNumber = 504; { - '
_colorTable = $S0F; {AnSCBByte - Mask for SCB color table }
scbReserved = $510; {AnSCBByte - Mask for SCB reserved bit }
scbFill = $20; {AnSCBByte - Mask for SCB fill bit }

Appendices C-74 Apple lIGS Toolbox Units

scbinterrupt = 540; {AnSCBByte - Mask for SCB interrupt bit }

scbColorMode = $80; {AnSCBByte - Mask for SCB color mode bit }
table320 = $32; {ColorData - (val=size) }

table640 = $§32; {ColorData - (val=size) }

blueMask = S000F; {ColorValue - Mask for Blue nibble }
greenMask = $S00F0; {ColorValue - Mask for green nibble }
redMask = S50F00; {ColorValue - Mask for red nibble }
widMaxSize = $0001; {FontFlags - }

zeroSize = 50002; {FontFlags - }

maskSize = $08; {GrafPort - Mask Size (val=size) }
locSize = 510; {GrafPort - Loc Size (val=size) }
patsize = $20; {GrafPort - Pattern Size (val=size) }
pnStateSize = $32; {GrafPort - Pen State Size (Val=size) }
portSize = SAA; {GrafPort - Size of GrafPort }

black = $000; {MasterColors - These work in 320 and 640 mode }
blue = S500F; {MasterColors - These work in 320 and 640 mode }
darkGreen320 = $080; {MasterColors - These work in 320 mode }
green320 = $0EO0; {MasterColors - These work in 320 mocde }
green640 = $O0F0; {MasterColors = These work in 640 mode }
lightBlue320 = S$4DF; {MasterColors - These work in 320 mode }
purple320 = $72C; {MasterColors - These work in 320 mode }
darkGray320 = §771; {MasterColors - These work in 320 mode)
periwinkleBlue320 = S$78F; {MasterColors - These work in 320 mode)
brown320 = 5841; {MasterColors - These work in 320 mode }
lightGray320 = $S0cCccC; {MasterColors - These work in 320 mode }
red320 = $0D00; {MasterColors - These work in 320 mode }
lilac320 = SODAF; {MasterColors - These work in 320 mode }
red640 = S50F00; {MasterColors - These work in 640 mode }
orange320 = SO0F70; {MasterColors - These work in 320 mode)}
flesh320 = SOFA9; {MasterColors - These work in 320 mode }
yellow = S0FFO0; {MasterColors - These work in 320 and 640 mode }
white = SOFFF; {MasterColors - These work in 320 and 640 mode)}
modeCopy = $0000; {PenModeDATA - }

modeOR = 350001; {PenModeDATA - }

modeXOR = 50002; {PenModeDATA - }

modeBIC = 50003; {PenModeDATA - }

modeForeCopy = 50004; {PenModeDATA - }

modeForeOR = $0005; {PenModeDATA - }

modeForeXOR = 50006; {PenModeDATA - }

modeForeBIC = $0007; {PenModeDATA -)}

modeNOT = 58000; {PenModeDATA - }

notCopy = $8000; {PenModeDATA - }

notOR = $8001; {PenModeDATA - }

notXOR = $8002; {PenModeDATA - }

notBIC = $58003; {PenModeDATA - }

notForeCOPY = $8004; {PenModeDATA -)

notForeOR = 5$8005; {PenModeDATA -)}

notForeXOR = $8006; {PenModeDATA - }

notForeBIC = $8007; {PenModeDATA - }

mode320 = $0000; {QDStartup - Argument to QDStartup)
mode640 = 50080; {OQDstartup - Argument to QDStartup }
plainMask = $0000; {TextStyle - Mask for plain text bit)
boldMask = $50001; {TextStyle - Mask for bold bit }
italicMask = $0002; {TextStyle - Mask for italic bit }
underlineMask = $0004; {TextStyle - Mask for underline bit }
outlineMask = 50008; {TextStyle - Mask for outline bit }
shadowMask = $0010; {TextStyle - Mask for shadow bit }

Appendices C-75 Apple lIGS Toolbox Units

TYPE TextStyle = Integer:

ColorValue = Integer;
AnSCBByte = Byte;
PatternPtr = ~Pattern;
Pattern = PACKED ARRAY [1..32] OF Byte;
Mask = PACKED ARRAY [1..8] OF Byte;
CursorHndl = ~“CursorPtr;
CursorPtr = ~Cursor;
Cursor =
RECORD
cursorHeight: Integer; { size in bytes }
cursorWidth: Integer; { enclosing rectangle }
cursorData: ARRAY [1..1, 1..1] OF Integer:
cursorMask: ARRAY [1..1, 1..1] OF Integer;
cursorHotSpot: Point;
END;

I

RgnHandle = ~“RgnPtr;

RgnPtr = “Region;
Region =
RECORD
rgnSize: Integer; { size in bytes }
rgnBBox: Rect; { enclosing rectangle }
END;
BufDimRecHndl = ~BufDimRecPtr;
BufDimRecPtr = ~BufDimRec;
BufDimRec =
RECORD
maxWidth: Integer;
textBufHeight: Integer;
textBufferWords: Integer;
fontWidth: Integer;
END;
FontHndl = “FontPtr;
FontPtr = "Font;
Font =
RECORD
offseToMF: Integer; { fully defined front of the Font record. }
family: Integer;
style: TextStyle;
size: Integer;
version: Integer;
fbrExtent: Integer;
END;
FontGlobalsRecHndl = “FontGlobalsRecPtr;
FontGlebalsRecPtr = "FontGlobalsRecord;
FontGlobalsRecord =
RECORD
fgFontID: Integer; { currently 12 bytes long, but may be expanded }
fgStyle: TextStyle;
fgSize: Integer;
fgVersion: Integer;
fgWidMax: Integer;
fgFBRExtent: Integer;
END;

Appendices C-76 Apple IGS Toolbox Units

Font IDHnd1l = “FontIDPtr;
FontIDPtr = “FontID;
FontID =
PACKED RECORD
famNum: Integer;
fontStyle: Byte;
fontSize: Byte;
END;
FontInfoRecHndl = “FontInfoRecPtr;
FontInfoRecPtr = "FontInfoRecord;
FontInfoRecord =
RECORD
ascent: Integer;
descent: Integer;
widMax: Integer;
leading: Integer;
END;
LocInfoHndl = “LocInfoPtr;
LocInfoPtr = “LocInfo;
LocInfo =
RECORD
portsScCB: Integer;
ptrToPixImage: Ptr;
width: Integer;
boundsRect ; Rect;
END;
QDProcsHndl = "QDProcsPtr;
QDProcsPtr = ~QDProcs;
QDProcs -
RECORD
stdText: VoidProcPtr;
stdLine: VoidProcPtr;
stdRect: VoidProcPtr;
stdRRect : VoidProcPtr;
stdOval: VoidProcPtr;
stdArc: VoidProcPtr;
stdPoly: VoidProcPtr;
stdRgn: VoidProcPtr;
stdPixels: VoidProcPtr;
stdComment : VoidProcPtr;
stdTxMeas: VoidProcPtr;
stdTxBnds: VoidProcPtr;
stdGetPic: VoidProcPtr;
stdPutPic: VoidProcPtr;
END;
GrafPortHndl = “GrafPortPtr;
GrafPortPtr = “GrafPort;
GrafPort =
RECORD
portinfo: LocInfo;
portRect: Rect;
clipRgn: RgnHandle;
visRgn: RgnHandle;
bkPat: Pattern;
pnloc: Point;

Appendices

{ SCBByte in low byte }

{ ImageRef }
{ Width }
{ BoundsRect }

PortRect }
Clip Rgn. Pointer }
Vis. Rgn. Pointer }

BackGround Pattern)}
Pen Location)}

L T

C-77

Apple lIGS Toolbox Units

pnSize: Point; Pen Size }

{
pnMode: Integer; { Pen Mode }
pnPat: Pattern; { Pen Pattern }
pnMask: Mask; { Pen Mask }
pnVis: Integer; { Pen Visable }
fontHandle: FontHndl;
FontID: FontID; { Font ID }
fontFlags: Integer; { FontFlags }
txSize: Integer; { Text Size)}
txFace: TextStyle; { Text Face }
txMode: Integer; { Text Mode }
spExtra: Fixed; { Fixed Point Value)}
chExtra: Fixed; { Fixed Point Value }
fgColor: Integer; { ForeGround Color }
bgColor: Integer; { BackGround Color }
picSave: Handle; { PicSave }
rgnSave: Handle; { RgnSave }
peolySave: Handle; { PolySave }
grafProcs: QDProcsPtr;
arcRot: Integer; { ArcRot 1}
userField: Longint; { UserField }
sysField: Longint; { SysField }
END;
PaintParamHndl = ~PaintParamPtr;
PaintParamPtr = "PaintParam;
PaintParam =
RECORD
ptrToSourcelLocInfo: LocInfoPtr;
ptrToDestLocInfo: LocInfoPtr;
ptrToSourceRect: RectPtr;
ptrToDestPoint: PointPtr;
mode: Integer;
maskHandle: Handle; { clip region)}
END;
PenStateHndl = “PenStatePtr;
PenStatePtr = “PenState;
PenState =
RECORD
psPnSize: Point;
psPnMode: Integer;
psPnPat: Pattern;
psPnMask: Mask;
END;
RomFontRecHndl = "RomFontRecPtr;
RomFontRecPtr = “RomFontRec;
RomFontRec =
RECORD
rfFamNum: Integer;
rfFamStyle: Integer;
rfSize: Integer;
rfFontHandle: FontHndl;
rfNamePtr: Per;
rfFBRExtent: Integer;
END;

Appendices C-78 Apple IIGS Toolbox Units

ColorTableHndl
ColorTablePtr
ColorTable
RECORD
entries:
END;

PROCEDURE QDBootInit;
PROCEDURE QDStartUp

= "ColorTablePtr;
= "ColorTable;

ARRAY [1..16] OF Integer;

(dPageAddr: Integer;

masterSCB: Integer;

maxWidth: Integer;

userID: Integer);
PROCEDURE QDShutDown;
FUNCTION ODVersion: Integer;
PROCEDURE QDReset;
FUNCTION QDStatus: Boolean;
PROCEDURE AddPt

(VAR srcPtPtr: Point;

VAR destPtPtr: Point);
PRCCEDURE CharBounds

{theChar: CHAR;

VAR resultPtr: Rect) ;
FUNCTION CharWidth

(theChar: CHAR): Integer;
PROCEDURE ClearScreen

({colorWord: Integer) ;
PROCEDURE ClipRect

(RectPtr: Rect) ;
PROCEDURE ClosePoly;
PROCEDURE ClosePort

(portPtr: GrafPortPtr);
PROCEDURE CloseRgn

(aRgnHandle: RgnHandle) ;
PROCEDURE CopyRgn

(srcRgnHandle: RgnHandle;

destRgnHandle: RgnHandle) ;
PRCCEDURE CStringBounds

(cStringPtr: PLY:

VAR resultRect: Rect) ;
FUNCTION CStringWidth

{(cStringPtr: Ptr): Integer;
PROCEDURE DiffRgn

(rgnlHandle: RgnHandle;

rgn2Handle: RgnHandle;

diffRgnHandle: RgnHandle) ;
PROCEDURE DisposeRgn

(aRgnHandle: RgnHandle) ;
PROCEDURE DrawChar

(theChar: CHAR) ;
PROCEDURE DrawCString

{cStrPtr: cStringPtr) ;
PROCEDURE DrawString

(str: Str255) ;)
PRCCEDURE DrawText

(textPtr: Ptr;

textLength: Integer);

FUNCTION NotEmptyRect

Appendices

C-79

Apple

1GS Toolbox Units

(RectPtr:
FUNCTION EmptyRgn
(aRgnHandle:
FUNCTION EqualPt
(VAR pointlPtr:
VAR point2Ptr:
FUNCTION EqualRect
(rectlPtr:
rect2Ptr:
FUNCTION EqualRgn
{rgnlHandle:
rgn2Handle:
PROCEDURE EraseArc
(RectPtr:
startAngle:
arcAngle:
PROCEDURE EraseOval
(RectPtr:
PROCEDURE ErasePoly
{polyHandle:
PRCCEDURE EraseRect
(RectPtr:
PROCEDURE EraseRgn
(aRgnHandle:
PROCEDURE EraseRRect
(RectPtr:
ovalWidth:
ovalHeight:
PRCCEDURE FillArc
(RectPtr:
startAngle:
arcAngle:
PatternPtr:
PROCEDURE FillOwval
(RectPtr:
PatternPtr:
PROCEDURE FillPoly
(pelyHandle:
PatternPtr:
PROCEDURE FillRect
({RectPtr:
PatternPtr:
PROCEDURE FillRgn
(aRgnHandle:
PatternPtr:
PROCEDURE FillRRect
(RectPtr:
ovalWidth:
ovalHeight:
PatternPtr:
PROCEDURE ForceBufDims
(maxWidth:
maxFontHeight:
maxFBRExtent :
PROCEDURE FrameArc
{RectPtr:
startAngle:
arcAngle:

Appendices

Rect) : Boolean;
RgnHandle) : Boolean;

Point;
Point): Boolean;

Rect;
Rect) : Boolean;

RgnHandle;
RgnHandle) : Boolean;

Rect;
Integer;
Integer);

Rect) ;
Handle) ;
Rect) ;
RgnHandle) ;

Rect;
Integer;
Integer) ;

Rect;
Integer;
Integer;
Pattern);

Rect;
Pattern);

Handle;
Pattern);

Rect;
Pattern);

RgnHandle;
Pattern):

Rect;
Integer;
Integer;
Pattern);

Integer;
Integer;
Integer);

Rect;
Integer;
Integer);

C-80 Apple IGS Toolbox Units

PROCEDURE FrameOval
(RectPtr:
FramePoly
(polyHandle:
FrameRect
(RectPtr:
FrameRgn
(aRgnHandle:
FrameRRect
(RectPtr:
ovalWidth:
ovalHeight:
FUNCTION GetAddress
(tablelD:
FUNCTION GetArcRot:
FUNCTION GetBackCoclor:
PROCEDURE GetBackPat
(VAR PatternPtr:
FUNCTION GetCharExtra:
PROCEDURE GetClip
(aRgnHandle:
FUNCTION GetClipHandle:
FUNCTION GetColorEntry
(tableNumber:
entryNumber:
PROCEDURE GetColorTable
{tableNumber:
VAR destTablePtr:
FUNCTION GetCursorAdr:
FUNCTION GetFGSize:
FUNCTION GetFont:
FUNCTION GetFontFlags:
PROCEDURE GetFontGlobals
(VAR fgRecPtr:
FUNCTION GetFontID:
PROCEDURE GetFontInfo

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

(VAR FontInfoRecPtr:

FUNCTION GetFontLore

(VAR recordPtr:

recordsSize:
FUNCTION GetForeColor:
FUNCTION GetGrafProcs:
FUNCTION GetMasterSCB:
PROCEDURE GetPen

(VAR PointPtr:
PROCEDURE GetPenMask

(VAR maskPtr:
FUNCTION GetPenMode:
PROCEDURE GetPenPat

(VAR PatternPtr:
PROCEDURE GetPenSize

(VAR PointPtr:
PROCEDURE GetPenState

(VAR __ penStatePtr:

FUNCTION GetPicSave:

FUNCTION GetPixel
(h:
v:

Longint;

Appendices

Rect) ;

Handle) ;

Rect) ;

RgnHandle) ;

Rect;
Integer;
Integer);

Integer) : Ptr;
Integer;
Integer;

Pattern);
Fixed;

RgnHandle) ;
RgnHandle;

Integer;

Integer): Integer;

Integer;

ColorTable) ;
CursorPtr;

Integer;
FontHndl;
Integer;

FontGlobalsRecord) ;
FontID;

FontInfoRecord);
FontGlobalsRecord;

Integer): Integer;
Integer;

QODProcsPtr;

Integer;

Point);

Mask) ;

Integer;

Pattern);

Point);

PenState) ;

Integer;

Integer): Integer;

C-81 Apple

IGS Toolbox Units

FUNCTION GetPolySave:

FUNCTION GetPort:

PRCOCEDURE GetPortLoc
(VAR LocInfoPtr:

PROCEDURE GetPortRect
(VAR _ rectPtr:

FUNCTION GetRgnSave:

PROCEDURE GetROMFont
(VAR recordPtr:

FUNCTION GetSCB
{scanLine:

FUNCTION GetSpaceExtra:

FUNCTION GetStandardSCB:

FUNCTION GetSysField:

FUNCTION GetSysFont:

FUNCTION GetTextFace:

FUNCTION GetTextMode:

FUNCTION GetTextSize:

FUNCTION GetUserField:

FUNCTION GetVisHandle:

PROCEDURE GetVisRgn
{aRgnHandle:

PROCEDURE GlobalToLocal
(VAR PointPtr:

PROCEDURE GrafOff;

PROCEDURE GrafOn;

PROCEDURE HideCursor;

PROCEDURE HidePen;

PROCEDURE InflateTextBuffer
(newWidth:
newHeight:

PRCCEDURE InitColorTable
(VAR tablePtr:

PROCEDURE InitCursor;

PROCEDURE InitPort
(portPtr:

PROCEDURE InsetRect
(VAR __rectPtr:
deltaH:
deltaV:

PROCEDURE InsetRgn
{aRgnHandle:
dH:
av:

PROCEDURE InvertArc
(RectPtr:
startAngle:
arcAngle:

PROCEDURE InvertOval
(RectPtr:

PROCEDURE InvertPoly
(polyHandle:

PROCEDURE InvertRect

* {RectPtr:

PROCEDURE InvertRgn

{aRgnHandle:

Appendices

Longint;
GrafPortPtr;

LocInfo);

Rect) ;
Longint;

RomFontRec) ;

Integer) :
Fixed;
Integer;
Longint;
FontHndl;
TextStyle;
Integer;
Integer;
Longint;
RgnHandle;

Integer;

RgnHandle) ;

Point);

Integer;
Integer);

ColorTable) ;

GrafPortPtr);
Rect ;
Integer;
Integer);
RgnHandle;
Integer;
Integer) ;
Rect;
Integer;
Integer);
Rect) ;
Handle) ;

Rect) ;

RgnHandle) ;

C-82

Apple IIGS Toolbox Units

PROCEDURE InvertRRect
(RectPtr:
ovalWidth:
ovalHeight:

PROCEDURE KillPoly
(pelyHandle:

PROCEDURE Line
(dH:

dv:

PROCEDURE LineTo
(h:

v

PROCEDURE LocalToGlobal
(VAR PointPtr:

PROCEDURE MapPoly
{polyHandle:
srcRectPtr:
destRectPtr:

PROCEDURE MapPt
(VAR PointPtr:
srcRectPtr:
destRectPtr:

PROCEDURE MapRect
(VAR RectPtr:
srcRectPtr:
destRectPtr:

PROCEDURE MapRgn
{aRgnHandle:
srcRectPtr:
destdRectPtr:

PROCEDURE Move
{dH:
av:

PROCEDURE MovePortTo
(h:

v

PROCEDURE MoveTo
(h:

v:

FUNCTION NewRgn: RgnHandle;

PROCEDURE ObscureCursor;

PROCEDURE OffsetPoly
(polyHandle:
dH:
av:

PROCEDURE OffsetRect
(VAR _ rectPtr:
deltah:
deltaV:

PROCEDURE OffsetRgn
(aRgnHandle:
dH:

dv:

FUNCTION OpenPoly: Handle;

PROCEDURE OpenPort
{portktr:

PROCEDURE OpenRgn;

Appendices

Rect;
Integer;
Integer) ;

Handle) ;

Integer;
Integer);

Integer;
Integer);

Point);

Handle;
Rect;
Rect) ;

Point;
Rect;
Rect) ;

Rect;
Rect;
Rect) ;

RgnHandle;
Rect;
Rect) ;

Integer;
Integer) ;

Integer;
Integer);

Integer;
Integer);

Handle;
Integer;
Integer);

Rect;
Integer;
Integer) ;

RgnHandle;

Integer;
Integer);

GrafPortPtr);

C-83 Apple lIGS Toolbox Units

PROCEDURE PaintArc
(RectPtr:
startAngle:
arcAngle:

PROCEDURE PaintOval
(RectPtr:

PROCEDURE PaintPixels

(__paintParamPtr:

PROCEDURE PaintPoly
(polyHandle:
PROCEDURE PaintRect
(RectPtr:
PROCEDURE PaintRgn
(aRgnHandle:
PROCEDURE PaintRRect
(RectPtr:
ovalWidth:
ovalHeight:
PROCEDURE PenNormal;
PROCEDURE PPToPort
(srcLocPtr:
srcRectPtr:
destX:
destY:
transferMode:
PROCEDURE Pt2Rect
(VAR pointlPtr:
VAR point2Ptr:
VAR _ rectPtr:
FUNCTION PtInRect
(VAR PointPtr:
RectPtr:
FUNCTION PtInRgn
(VAR PointPtr:
aRgnHandle:
FUNCTION Random: Integer;
FUNCTION RectInRgn
(RectPtr:
aRgnHandle:
PROCEDURE RectRgn
(aRgnHandle:
RectPtr:
PROCEDURE RestoreBufDims
(sizeInfoPtr:
PROCEDURE SaveBufDims

(VAR sizeInfoPtr:

PROCEDURE ScalePt
(VAR PointPtr:
srcRectPtr:
destRectPtr:
PROCEDURE ScrollRect
(RectPtr:
dH:
dv:
aRgnHandle:

Appendices

Rect;
Integer;
Integer);

Rect) ;

PaintParam);

Handle) ;

Rect) ;

RgnHandle) ;

Rect;
Integer;
Integer):;

LocInfoPtr;
Rect;
Integer;
Integer;
Integer);

Point;
Point;
Rect) ;

Point;
Rect) : Boolean;

Point;
RgnHandle) : Boolean;

Rect;
RgnHandle) : Boolean;

RgnHandle;
Rect) ;

BufDimRecPtr) ;

BufDimRec) ;

Point;
Rect ;
Rect) ;

Rect;
Integer;
Integer;
RgnHandle) ;

Apple

IIGS Toolbox Units

FUNCTION SectRect

(rectlPtr: Rect;

rect2Ptr: Rect;

VAR intersectRectPtr: Rect) :
PROCEDURE SectRgn

(rgnlHandle: RgnHandle;

rgn2Handle: RgnHandle;

destRgnHandle: RgnHandle) ;
PROCEDURE SetAl1SCRBs

(newSCB: Integer);
PROCEDURE SetArcRot;
PROCEDURE SetBackColor

(backColor: Integer);
PROCEDURE SetBackPat

(PatternPtr: Pattern);
PROCEDURE SetBufDims

{maxWidth: Integer;

maxFontHeight : Integer;

maxFBRExtent : Integer);
PROCEDURE SetCharExtra

(charExtra: Fixed):
PROCEDURE SetClip

(aRgnHandle: RgnHandle) ;
PROCEDURE SetClipHandle

(aRgnHandle: RgnHandle) ;
PROCEDURE SetColorEntry

(tableNumber: Integer;

entryNumber : Integer;

newColor: ColorValue) ;
PROCEDURE SetColorTable

(tableNumber :
PROCEDURE SetCursor

(theCursorPtr: Cursor) ;
PROCEDURE SetEmptyRgn

(aRgnHandle: RgnHandle) ;
PROCEDURE SetFont

(newFontHandle: FontHndl) ;
PROCEDURE SetFontFlags

(fontFlags: Integer) ;
PROCEDURE SetFontID

(VAR _ fontID: FontID);
PROCEDURE SetForeColor

(foreColor: Integer) ;
PROCEDURE SetGrafProcs

(grafProcsPtr: QDProcsPtr) ;
PROCEDURE SetIntUse

(uselnt: Integer) ;
PROCEDURE SetMasterSCB

(masterSCB: Integer) ;
PROCEDURE SetOrigin

(h: Integer;

v Integer);
PROCEDURE SetPenMask
- (maskPtr: Mask) ;
PROCEDURE SetPenMode

(penMode : Integer) ;
PROCEDURE SetPenPat

(PatternPtr: Pattern);
Appendices C-85

Integer; srcTablePtr: ColorTable) ;

Apple IGS Toolbox Units

PROCEDURE SetPenSize

(penWidth: Integer;

penHeight: Integer) ;
PROCEDURE SetPenState

(VAR _ penStatePtr: PenState);
PROCEDURE SetPicSave

(picSaveValue: Longint) ;
PROCEDURE SetPolySave

(polySaveValue: Longint) ;
PROCEDURE SetPort

(portPtr: GrafPortPtr);
PROCEDURE SetPortLoc

(__locInfoPtr: LocInfo);
PROCEDURE SetPortRect

(RectPtr: Rect) ;
PROCEDURE SetPortSize

(portWidth: Integer;

portHeight: Integer);
PROCEDURE SetPt

(VAR srcPtPtr: Point;

h: Integer;

Vi Integer);
PROCEDURE SetRandSeed

(randomSeed: Longint) ;
PROCEDURE SetRect

(VAR aRectPtr: Rect;

left: Integer;

top: Integer;

right: Integer;

bottom: Integer);
PROCEDURE SetRectRgn

(aRgnHandle: RgnHandle;

left: Integer;

top: Integer;

right: Integer;

bottom: Integer) ;
PROCEDURE SetRgnSave

(rgnSaveValue: Longint) ;
PROCEDURE SetSCB

(scanLine: Integer;

newSCB: Integer) ;
PROCEDURE SetSolidBackPat

(colorNum: Integer);
PROCEDURE SetSolidPenPat

(colorNum: Integer);
PROCEDURE SetSpaceExtra

(spaceExtra: Fixed);
PROCEDURE SetStdProcs

(stdProcRecPtr: QDProcsPtr) ;
PROCEDURE SetSysField

(sysFieldValue: Longint) ;
PROCEDURE SetSysFont

({fontHandle: FontHndl) ;
PRCCEDURE SetTextFace

(textFace: TextStyle) ;
PROCEDURE SetTextMode

{textMode: Integer);

Appendices C-86 Apple lIGS Toolbox Units

PROCEDURE SetTextSize

(textSize:
PROCEDURE SetUserField

(userFieldValue:
PROCEDURE SetVisHandle

{aRgnHandle:
PROCEDURE SetVisRgn

{aRgnHandle:
PROCEDURE ShowCursor;
PROCEDURE ShowPen;
PROCEDURE SolidPattern

(colorNum:

VAR PatternPtr:
PROCEDURE StringBounds

(str:

VAR resultPtr:
FUNCTION StringWidth

(str: Str255):
PROCEDURE SubPt

(VAR srcPtPtr:

VAR destPtPtr:
PROCEDURE TextBounds

(textPtr:

textLength:

VAR resultPtr:
FUNCTION TextWidth

(textPtr:

textLength:
PROCEDURE UnionRect

(rect1Ptr:

rect2Ptr:

VAR unionRectPtr:

PRCCEDURE UnionRgn

(rgnlHandle:
rgn2Handle:
unionRgnHandle:

PROCEDURE XorRgn

(rgnlHandle:
rgn2Handle:
xorRgnHandle:

IMPLEMENTATION
END.
Appendices

Integer) ;

Longint) ;

RgnHandle) ;

RgnHandle) ;

Integer;
Pattern);

5tr255;
Rect) ;

Integer;

Point;
Point).;

BEtE;
Integer;
Rect) ;

BEr:
Integer) :

Rect;
Rect;
Rect) ;

Integer;

RgnHandle;
RgnHandle;

RgnHandle)

~

RgnHandle;
RgnHandle;
RgnHandle) ;

C-87

Apple lIGS Toolbox Units

Resources

(t**‘k*************************i*****ii*i*t***

; File: Resources.p

; Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

*****ti***t****i****t******************f‘****}

UNIT Resources;

INTERFACE
USES Types, Memory, GSOS;

CONST resLogCut = $0; {ResourceConverter - }

resLogIn = §1; {ResourceConverter - }

resLogApp = $0; {ResourceConverter - }

resLogSys = $2; {ResourceConverter - }

resForkUsed = S$1E01; {Error - Resource fork not empty }

resBadFormat = S$1E02; {Error - Format of resource fork unknown }

resForkEmpty = $1E03; {Error - Resource fork is empty]}

resNoCurFile = S1E04; {Error - there are no current open resource
files }

resDupID = $1E05; {Error - ID is already used)}

resNotFound = $1E06; {Error - resource was not found }

resFileNotFound = S1E07; {Error — resource file not found }

resBadApplID = $1E08; {Error - User ID not found, please call
ResourceStartup }

resNoUniquelD = $1E09; {Exrror - a unigue ID was not found }

resBadAttr = S1EOA; {Error - reseved bits in attributes word
are not zero }

resHashGone = S1EOB; {Error - the hash count table is no longer
valid }

resIndexRange = S1EOD; {Error - index is out of range }

resNoCurApp = S1EOE; {Error - no current application, please
call ResourceStartup }

resChanged = $0020; {Resources - }

resPreLoad = 50040; {Resources - }

resProtected = 50080; {Resources - }

resAbsLoad = $0400; {Resources - }

resConverter = S0800; {Resources - }

resMemAttr = $C3F1l; {Resources - }

systemMap = 50001; {Resources - }

mapChanged = 50002; {Resources - }

romMap = $0004; {Resources - }

resNameOffset = $10000; {Resources - type holding names }

resNameVersion = $0001; {Resources - }

rIcon = $8001; {(Resources - resource type holding names }

rPicture = 58002; {Resources - resource type holding names }

rControlList = $B003; {Resources - resource type holding names }

rControlTemplate = $8004; {Resources - resource type hclding names }

rWindow = $8005; {Resources - resource type holding names }

rString = $8006; {Resources - resource type holding names }

Appendices C-88 Apple IIGS Toolbox Units

rStringList = $8007; {Resources - resource type holding names

}
rMenuBar = $8008; (Resources - resource type holding names }
rMenu = $8009; {Resources - resource type holding names }
rMenultem = $800A; {Resources - resource type holding names)
rTextFor LETextBox?2 = $800B; {Resources - resource type holding names }
rCtlDefProc = $800C; {Resources - resource type holding names }
rCtlColorTbl = $800D; {Resources - resource type holding names }
rWindParaml = $BOOE; {Resources - resource type holding names }
rWindParam2 = $BOOF; {Resources - resource type holding names }
rWindColor = $8010; {Resources - resource type holding names)}
rResName = $8014; {Resources - resource type holding names)

TYPE
ResID = Longint;
ResType = Integer;
ResAttr = Integer;
ResHeaderRec =
RECORD
rFileVersion: Longint; { Format version of resource fork }
rFileToMap: Longint; { Offset from start to resource map record }
rFileMapSize: Longint; { Number of bytes map occupies in file }
rFileMemo: PACKED ARRAY [1..128] OF Byte;
{ Reserved space for application }
rFileRecSize: Longint; { Size of ResHeaderRec Record }
END;
FreeBlockRec =
RECORD
blkOffset: Longint;
blkSize: Longint;
END;

ResMapHandle = "ResMapPtr;

ResMapPtr = “ResMap;
ResMap =
RECORD

mapNext : ResMapHandle; { Handle to next resource map }
mapFlag: Integer; { Bit Flags }
mapOffset: Longint; { Map's file position }
mapSize: Longint; { Number of bytes map occupies in file }
mapToIndex: Integer;
mapFileNum: Integer;
mapID: Integer;
mapIndexSize: Longint;

mapIndexUsed: Longint;

mapFreeListSize: Integer;

mapFreeListUsed: Integer;

mapFreeList: ARRAY [1..1] OF FreeBlockRec; { n bytes (array of free
block records) }

END;
ResRefRecPtr = “ResRefRec;
ResRefRec =
RECORD
ResType: ResType;
ResID: ResID;
resOffset: Longint;
ResAttr: ResAttr;

Appendices C-89 Apple IIGS Toolbox Units

resSize: Longint;
resHandle: Handle;
END;
ResourceSpec =
RECCRD
resourceType: ResType;
resourcelD: ResID;
END;
ResNameEntryPtr = "ResNameEntry;
ResNameEntry -
RECORD
namedResID: ResID;
resName: 8Lr255;
END;

ResNameRecordHandle
ResNameRecordPtr
ResNameRecord
RECORD
version:
nameCount :

I

~“ResNameRecordPtr;
~ResNameRecord;

Integer;
Longint;

resNameEntries: ARRAY [1..1] OF ResNameEntry;
END;
PROCEDURE ResourceBootInit;
PROCEDURE ResourceStartup
(userID: Integer) ;
PROCEDURE ResourceShutdown;
FUNCTION ResourceVersion: Integer;
PROCEDURE ResourceReset;
FUNCTION ResocurceStatus: Boolean;
PROCEDURE AddResource
(resourcelandle: Handle;
resourceAttr: Integer;
resourceType: Integer;
resourcelD: Longint) ;
PROCEDURE CloseResourceFile(fileID: Integer);
FUNCTION CountResources
(resourceType: Integer): Longint;
FUNCTION CountTypes: Integer;
PROCEDURE CreateResocurceFile
(auxType: Longint;
fileType: Integer;
fileAccess: Integer;
fileName: GSString255Ptr) ;
PROCEDURE DetachResource
{rescurceType: Integer;
resourcelD: Longint) ;
FUNCTION GetCurResourceApp: Integer;
FUNCTION GetCurResourceFile: Integer;
FUNCTION GetIndResource
(resourceType: ResType;
resourcelndex: Longint) : ReslID;
FUNCTION GetIndType: Integer;
FUNCTION GetMapHandle
(£ilelID: Integer): ResMapHandle;
Appendices C90 Apple

IGS Toolbox Units

FUNCTION GetOpenFileRefNum

(£ilelID: Integer): Integer;
FUNCTION GetResourcelAttr
(resourceType: ResType;
resourcelD: ResID): ResAttr;
FUNCTION GetResourceSize
(resourceType: Integer;
currentID: Longint): Longint;
FUNCTION HomeResourceFile
(rescurceType: Integer;
resourcelD: Longint) : Integer;
FUNCTION LoadAbsResource
(loadAddress: Longint;
maxSize Longint;
resourceType: Integer;
resourcelD: Longint): Handle;
FUNCTION LoadResource
(resourceType: Integer;
resourcelD: Longint): Handle;
PROCEDURE MarkResourceChange
(__changeFlag: Boolean;
resourceType: Integer;
resourcelD: Longint) ;
PROCEDURE MatchResourceHandle
(foundRec: Longint;
resourceHandle: Handle) ;
FUNCTION OpenResourceFile
{openAccess: Integer;
resourceMapPtr: ResMapPtr;
fileName: GSString255Ptr) : Integer;
PROCEDURE ReleaseResource
(purgeLevel: Integer;
resourceType: Integer;
resourcelD: Longint);
PROCEDURE RemoveResource
(resourceType: Integer;
resourcelD: Longint) ;
PROCEDURE ResourceConverter
(converterProc: ProcPtr;
resourceType: ResType;
leogFlags: Integer);
PROCEDURE SetCurResourceApp
(userID: Integer) ;
PROCEDURE SetCurResourceFile
(fileID: Integer);
PROCEDURE SetResourceAttr
(resourceAttr: Integer;
resourceType: Integer;
currentID: Longint) ;
FUNCTION SetResourceFileDepth
(searchDepth: Integer): Integer;
PROCEDURE SetResourcelD
{newID: ResID;
resourceType: ResType;
currentID: ResID);
FUNCTION SetResourcelLoad
(readFlag: Integer): Integer;

Appendices C-91 Apple lIGS Toolbox Units

“

FUNCTION UniqueResourcelID

(IDrange:
resourceType:
PROCEDURE UpdateResourceFile
(filelID:
PROCEDURE WriteResource
{resourceType:
resourcelD:
IMPLEMENTATION
END.

Appendices

Integer;
Integer): Longint;

Integer);

Integer;
Longint) ;

C92

Apple IGS Toolbox Units

SANE

{***t**tt!i**************&*******it**********

; File: SANE.p

; Copyright Apple Computer, Inc. 1988
: All Rights Reserved

************i*******t***t**********tt******i}

UNIT SANE;

INTERFACE
CONST DecStrLen = 255;
SigDhigLen = 28; { 20 for 68K; 28 in 6502 SANE }

(____...__..._ - B TS —

* Exceptions,

Invalid =1;
Underflow = 2;
Overflow = 4
DivByZero = 8;
Inexact = 16;

[-_.__ —_—— -

* IEEE default environment constant.

e - —mmee }

IEEEDefaultEnv = 0z

{==————————- - -

* Style constants for DecForm records.

________ - o }

FloatDecimal =
FixedDecimal

O

s Ns

[______ - e e i . e S ey . . S

* Types for handling decimal representations.

TYPE DecStr = String[DecStrLen];
CStrPtr = *CHAR;
Decimal e
RECORD
sgn: integer; { 0 for positive, 1 for negative }
exp: integer;
sig: String[SigDigLen]
END;
DecForm =

Appendices C-93 Apple IIGS Toolbox Units

RECORD
style: integer; { FloatDecimal, FixedDecimal }
digits: integer;
END;
[_ ____________
* Ordering relations.
P T P Op—)
(GreaterThan, LessThan, EqualTo, Unordered);

I

RelCp

NumClass = (SNaN, QNaN, Infinite, ZeroNum, NormalNum, DenormalNum) ;

Exception = integer;
RoundDir = (ToNearest, Upward, Downward, TowardZero);
RoundPre = (ExtPrecision, DblPrecision, RealPrecision);
Environment = integer;
(* e —
* The functions and procedures of the SANE library %,
* — *)

[_..- SRp—— i s s e . e e i A S S i S

* Conversions between numeric binary types.

FUNCTION Num2integer (x: Extended): integer;
FUNCTION Num2LongInt (x: Extended): LongInt;
FUNCTION Num2Real(x: Extended): real;
FUNCTION Num2Double(x: Extended): DOUBLE;
FUNCTION Num2Extended(x: Extended): Extended;
FUNCTION Num2Comp(x: Extended): comp;

(- - e e ———————

* Conversions between binary and decimal.
e B b eins s o e }

PROCEDURE num2dec(f: DecForm; x: Extended; VAR d: Decimal); C;
{ d <—— x according to format f }

FUNCTION dec2num(d: Decimal): Extended; C;
{ Dec2Num <=~ d }

PROCEDURE Num2Str(f: DecForm; x: Extended; VAR s: DecStr);
{ s <—— x according to format f }

FUNCTION Str2Num(s: DecStr): Extended;
{ Str2Num <-- s }

Appendices C-94 Apple IIGS Toolbox Units

PROCEDURE Str2Dec(s: DecStr; VAR Index: integer; VAR d: Decimal; VAR ValidPrefix: integer) ;
{ On input Index is starting index into s, on output Index is

one greater than index of last character of longest numeric

substring;

d <-- Decimal rep of longest numeric substring;

ValidPrefix <-- "s, beginning at Index, contains valid numeric

String or valid prefix of some numeric String" }

PROCEDURE CStr2Dec(s: CStrPtr; VAR Index: integer; VAR d:Decimal; VAR ValidPrefix: integer) ;
{ Str2Dec for character buffers or C strings instead of Pascal

strings: the first argument is the the address of a character

buffer and ValidPrefix <-- "scanning ended with a null byte" }

PROCEDURE dec2str(f: DecForm; d: Decimal; VAR s: DecStr) ;
{ s <== d according to format f }

_______________________________ i T }

FUNCTION remainder(x, y: Extended; VAR quo: integer): Extended; C;
{ Remainder <~- x rem y; quo <-— low-order seven bits of integer
quotient x/y so that -127 < quo < 127 }

FUNCTION rint(x: Extended): Extended; e:
{ round to integral value }

FUNCTION scalb(n: integer; x: Extended): Extended; C;
{ secale binary; Scalb <-- x * 2*p }

FUNCTION 1logb(x: Extended): Extended; C;
{ Logb <-- unbiased exponent of x }

FUNCTION copysign(x, y: Extended): Extended;
{ CopySign <-- y with sign of x }

FUNCTION NextReal(x, y: real): real;
FUNCTION nextdouble(x, y: DOUBLE): DOUBLE; [4

FUNCTION nextExtended(x, Y: Extended) : Extended; C;
{ return next representable value from x toward y }

FUNCTION log2(x: Extended): Extended; C;
{ base-2 log }

FUNCTION Lnl(x: Extended) : Extended;
{ In(1l+x) }

FUNCTION exp2(x: Extended): Extended; C:
{ base-2 exponential }

FUNCTION expl(x: Extended): Extended; C:
{ exp(x) - 1 }

Appendices C-95 Apple lIGS Toolbox Units

FUNCTION XpwrI(x: Extended; i: integer): Extended;
{ Xpwrl <-- x~i }

FUNCTION XpwrY(x, y: Extended): Extended;
{ XpwrY <-- x"y 1}

FUNCTION compound(r, n: Extended): Extended; C;
{ Compound <-- (1l+r)“n }

FUNCTION annuity(r, n: Extended): Extended; C;
{ Annuity <-- (1 - (1+r)"(-n)) / r }

FUNCTION tan(x: Extended): Extended; C:
{ tangent }

FUNCTION randomx (VAR x: Extended): Extended; C;
{ returns next random number and updates argument;
X integral, 1 <= x <= (2731)-2 }

[_____ e i i i s S i e e s e e s S i -l i i G S S
* Inquiry routines.

FUNCTION ClassReal(x: real): NumClass;
FUNCTION classdouble(x: DOUBLE) : NumClass; C;
FUNCTION classcomp(x: comp): NumClass; C;

FUNCTION classExtended(x: Extended): NumClass; C;
{ return class of x }

FUNCTION SignNum(x: Extended): integer; C;
{ 0 if sign bit clear, 1 if sign bit set }

{_ i s e e s o s

* NaN function.

FUNCTION nan(i: integer): Extended; C;
{ returns NaN with code i }

PRCCEDURE SetException(e: Exception; b: BOOLEAN) ;
{ set e flags if b is true, clear e flags otherwise; may cause halt }

FUNCTION TestException(e: Exception): BOOLEAN;
{ return true if any e flag is set, return false otherwise }

PROCEDURE SetHalt (e: Exception; b: BOOLEAN) ;
{ set e halt enables if b is true, clear e halt enables otherwise }

FUNCTION TestHalt (e: Exception): BOOLEAN; C;
{ return true if any e halt is enabled, return false otherwise }

Appendices C-96 Apple IIGS Toolbox Units

PROCEDURE SetRound(r: RoundDir);
{ set rounding direction to r }

FUNCTION GetRound: RoundDir;
{ return rounding direction }

PROCEDURE setprecision(p: RoundPre); C;
{ set rounding precision to p }

FUNCTION getprecision: RoundPre; C;
{ return rounding precision }

PROCEDURE setenvironment (e: Environment); C;
{ set environment to e }

PROCEDURE getenvironment (VAR e: Environment); C:
{ e <-- environment }

PROCEDURE ProcEntry(VAR e: Environment);
{ e <—— environment; environment <-- IEEE default env }

PROCEDURE ProcExit (e: Environment);
{ temp <-- exceptions; environment <-- e;

signal exceptions in temp }

FUNCTION gethaltvVector: LongInt; C;
{ return halt vector }

PROCEDURE sethaltvector(v: LongInt); C;
{ halt vector <-- v }

(== R

* Comparison routine.

--- - }

FUNCTION relation(x, y: Extended): RelOp; C;
{ return Relation such that "x Relation y" is true }

PROCEDURE SANEBootInit;

PROCEDURE SANEStartUp(dPageAddr:integer);
PROCEDURE SANEShutDown;

FUNCTION SANEVersion: integer;

PROCEDURE SANEReset;

FUNCTION SANEStatus: integer;

IMPLEMENTATION

END.

Appendices C-97 Apple IIGS Toolbox Units

Scheduler

(*****************************i*****i********

; File: Scheduler.p

Copyright Apple Computer, Inc. 1986-89
All Rights Reserved

T T

*************t****i***i**********tit*i’****t}

UNIT Scheduler;

INTERFACE

USES Types;

PROCEDURE SchBootInit;
PROCEDURE SchStartUp;
PROCEDURE SchShutDown;
FUNCTION SchVersion: Integer;
PROCEDURE SchReset;
FUNCTION SchStatus: Boolean;
FUNCTION SchAddTask
(taskPtr: VoidProcPtr): Boolean;
PROCEDURE SchFlush;

IMPLEMENTATION
END.

Scrap

I*****i‘***************i*iti**iiii************

File: Scrap.p

LT T

; Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

.

*:k'!kii&*****t******************t***t*ttt*****}

UNIT Scrap;

INTERFACE
USES Types:;

CONST badScrapType = $51610; {error - No scrap of this type. }
textScrap = 50000; {scrapType - } ;
picScrap = 50001; {scrapType - }

PROCEDURE ScrapBootInit;

Appendices C-98 Apple IGS Toolbox Units

PROCEDURE ScrapStartUp;
PROCEDURE ScrapShutDown;

FUNCTION ScrapVersion: Integer;
PROCEDURE ScrapReset;
FUNCTION ScrapStatus: Boolean;
PROCEDURE GetScrap

{(destHandle: Handle;

scrapType: Integer);
FUNCTION GetScrapCount: Integer;
FUNCTION GetScrapHandle

(scrapType: Integer) : Handle;
FUNCTION GetScrapPath: Berxe
FUNCTION GetScrapSize

{scrapType: Integer) : Longint;
FUNCTION GetScrapState: Integer;

PROCEDURE LoadScrap;
PROCEDURE PutScrap

(numBytes: Longint;

scrapType: Integer;

sycPtr: Ptr);
PROCEDURE SetScrapPath

(path: S5tr255):

PROCEDURE UnloadScrap;
PROCEDURE ZeroScrap;

IMPLEMENTATICN
END.

B R e
Sound

{*****i********t*‘kﬁi*****it*i****************
; File: Sound.p

Copyright Apple Computer, Inc. 1986-89
All Rights Reserved

LR TR

i*tt*******t************‘k*ti********t*i‘*****}

UNIT Sound;

INTERFACE
USES Types:

CONST noDOCFndErr = $0810; {error - no DOC chip found }
docAddrRngErr = $0811; {error - DOC address range error }
noSApplInitErr = $0812; {error - no SAppInit call made }
invalGenNumErr = $0813; {error - invalid generator number }
synthModeErr = $0814; {error - synthesizer mode error }
genBusyErr = $0815; {error - generator busy error }
mstrIRQNotAssgnErr = $0817; {error - master IRQ not assigned }
sndAlreadyStrtErr = $50818; {error - sound tools already started }
unclaimedSndIntErr = S$08FF; {error - sound tools already started }
f fSynthMode = $0001; {channelGenMode - Free form synthesizer mocde }

Appendices C-99 Apple lIGS Toolbox Unifs

noteSynthMode = $0002; {channelGenMode - Note synthesizer mode. }

genOoff = $0001; {genMask - param to FFStopSound }
genloff = $0002; {genMask - param to FFStopSound }
gen2off = $0004; {genMask - param to FFStopSound }
gen3off = 50008; {genMask - param to FFStopSound }
gendoff = $0010; {genMask - param to FFStopSound }
gen5off = $0020; {genMask - param to FFStopSound }
gen6off = 50040; {genMask - param to FFStopSound }
genToff = $0080; {genMask - param to FFStopSound }
genBoff = $0100; {genMask - param to FFStopSound }
gen9off = $0200; {genMask - param to FFStopSound }
genlOoff = 50400; {genMask - param to FFStopSound)}
genlloff = 50800; {genMask - param to FFStopSound }
genl2off = $1000; {genMask - param to FFStopSound }
genl3off = $2000; {genMask - param to FFStopSound }
genldoff = $4000; {genMask - param to FFStopSound }
genAvail = $0000; {genStatus - Generator available status)}
ffSynth = $0100; {genStatus - Free Form Synthesizer status }
noteSynth = $0200; {genStatus - Note Synthesizer status }
lastBlock = $8000; {genStatus - Last block of wave }
smReadRegister = $00; ({Jump Table Offset - Read Register routine }
smWriteRegister = 504; ({Jump Table Offset = Write Register routine }
smReadRam = 508; {Jump Table Offset - Read Ram routine }
smWriteRam = $0C; {Jump Table Offset - Write Ram routine)}
smReadNext = $10; {Jump Table Offset - Read Next routine }
smWriteNext = $14; {Jump Table Offset - Write Next routine)}
smOscTable = $18; ({Jump Table Offset - Pointer to Oscillator table)}
smGenTable = $1C; ({Jump Table Offset - Pointer to generator table)}
smGecbAddrTable = $20; {Jump Table Offset - Pointer to GCB address table}
smDisablelnc = $24; (Jump Table Offset - Disable Increment routine }
TYPE
SoundPBHndl = "“SoundPBPtr;
SoundPBPtr = “~SoundParamBlock;
SoundParamBlock =
RECORD
waveStart: PEr; { starting address of wave }
waveSize: Integer; { waveform size in pages }
freqOffset: Integer; { ? formula to be provided }
docBuffer: Integer; { DOC buffer start address, low byte = 0 }
bufferSize: Integer; { DOC buffer start address, low byte = 0 }
nextWavePtr: SoundPBPtr; { Pointer to start of next wave's parameter
block)
volSetting: Integer; { DOC volume setting. High byte = 0 }
END;
DocRegParamBlkPtr = "“DocRegParamBlk;
DocRegParamBlk =
PACKED RECORD
oscGenType: Integer;
freqLowl: Byte;
freqHighl: Byte;
voll: Byte;
tablePtrl: Byte;
controll: Byte;
tableSizel: Byte;
fregLow2: Byte:;
fregHigh2: Byte;

Appendices C-100 Apple IGS Toolbox Units

volZ: Byte;

tablePtr2: Byte;
control2: Byte;
tableSize2: Byte;
END;
PROCEDURE SoundBootInit;
PROCEDURE SoundStartUp
(dPageAddr :
PROCEDURE SoundShutDown;
FUNCTION SoundVersion:
PROCEDURE SoundReset;
FUNCTION SoundToolStatus:
FUNCTION FFGeneratorStatus
(genNumber :
FUNCTION FFSoundDoneStatus
(genNumber:
FUNCTION FFSoundStatus:
PROCEDURE FFStartSound
(genNumFFSynth:
pBlockPtr:
PROCEDURE FFStopSound
(genMask:
FUNCTION GetSoundVolume
(genNumber :
FUNCTION GetTableAddress:
PROCEDURE ReadRamBlock
(destPtr:
docStart:
byteCount :
PROCEDURE SetSoundMIRQV
(sMasterIRQ:
PROCEDURE SetSoundVolume
(volume:
genNumber ;
FUNCTION SetUserSoundIRQV
(userIRQVector:
PROCEDURE WriteRamBlock
(srcPtr:
docStart:
byteCount:
PROCEDURE FFSetUpSound
(channelGen:
paramBlockPtr:
PROCEDURE FFStartPlaying
(genWord:
PROCEDURE SetDOCReg
(pBlockPtr:
PROCEDURE ReadDOCReg
(VAR pBlockPtr:
IMPLEMENTATION
END.

Appendices

Integer);
Integer;
Boolean;
Integer): Integer;

Integer) : Boolean;
Integer;

Integer;
SoundPBPtr) ;

Integer) ;

Integer) : Integer;
Ptr;

Ptr:
Integer;
Integer) ;

Longint);

Integer;
Integer);

Longint) : Ptr;
Ptr;
Integer;

Integer);

Integer;
SoundPBPtr) ;

Integer) ;
DocRegParamBlk) ;

DocRegParamBlk) ;

C-101

Apple IGS Toolbox Units

StdFile

{******i*****t****t********************i*i*tt

; File: StdFile.p

e

; Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

f
**************t*ti*********t***t*l"k*i****i‘**}

UNIT stdFile;

INTERFACE
USES Types;

CONST noDisplay = $0000; {filterProc result - file not to be displayed }
noSelect = $0001; {filterProc result - file displayed, but not
selectable }
displaySelect = $0002; {filterProc result - file displayed and
selectable}
sfMatchFileType = $8000; { =}
sfMatchAuxType = 54000; { =}
sfDisplayGrey = $2000; { =)
TYPE SFReplyRecPtr = “SFReplyRec;
SFReplyRec =
RECORD
good: Boolean;
fileType: Integer;
auxFileType: Integer;
filename: String[15];
fullPathname: String(l128];
END;
SFReplyRec2Hndl = "“SFReplyRec2Ptr;
SFReplyRec2Ptr = ~SFReplyRec2;
SFReplyRec2 =
RECORD
good: Boolean;
fileType: Integer;
auxType: Longint;
nameDesc: RefDescriptor;
nameRef: Ref;
pathDesc: RefDescriptor;
pathRef: Ref;
END;
multiReplyRecord =
RECORD
good: Integer;
namesHandle: Handle;
END;

Appendices C-102 Apple IGS Toolbox Units

SFTypelistHandle
SFTypelListPtr
SFTypeList
PACKED RECORD
numEntries:

fileTypeEntries:

END;

TypeSelector2 =
RECORD
flags:
fileType:
auxType:
END;

SFTypelList2Ptr

~“SFTypeListPtr;
~“SFTypeList/

i

Byte;
PACKED ARRAY [1..5] OF Byte;

Integer;
Integer;
Longint;

~SFTypelist2;

SFTypeList2 =
RECORD
numEntries:
fileTypeEntries:
END;

PROCEDURE SFBootInit;
PROCEDURE SFStartUp
(userID:
dPageAddr:
PROCEDURE SFShutDown;
FUNCTION SFVersion:
PROCEDURE SFReset;
FUNCTION SFStatus:
PROCEDURE SFAllCaps
(allCapsFlag:
PROCEDURE SFGetFile
(whereX:
whereY:
prompt :
filterProcPtr:
typeListPtr:
VAR replyPtr:
PROCEDURE SFGetFile?2
(whereX:
whereY:
promptDesc:
promptRef:
filterProcPtr:
typeListPtr:
VAR replyPtr:
PROCEDURE SFMultiGet?2
(whereX:
whereY:
promptDesc:
promptRef:
filterProcPtr:
typeListPtr:
VAR replyPtr:

Appendices

Integer;
ARRAY [1..5] OF TypeSelector2;

Integer;
Integer)

e

Integer;

Boolean;

Boolean)

Integer;
Integer;
Str255;
WordProcPtr;
SFTypeListPtr;
SFReplyRec) ;

Integer;
Integer;
RefDescriptor;
Ref;
WordProcPtr;
SFTypeList2Ptr;
SFReplyRec2) ;

Integer;
Integer;
RefDescriptor;
Ref;
WordProcPtr;
SFTypeList2Ptr;
SFReplyRec?2) ;

C-103

Apple IIGS Toolbox Units

PRCCEDURE SFPGetFile
(whereX:
whereY:
prompt :
filterProcPtr:
typeListPtr:
dialogTempPtr:
dialogHookPtr:
VAR replyPtr:
PROCEDURE SFPGetFile2
(whereX:
whereY:
itemDrawPtr:
promptDesc:
promptRef:
filterProcPtr:
typeListPtr:
dialogTempPtr:
dialogHookPtr:
VAR replyPtr:
PROCEDURE SFPMultiGet2
(whereX:
whereY:
itemDrawPtr:
promptDesc:
promptRef:
filterProcPtr:
typeListPtr:
dialogTempPtr:
dialogHookPtr:
VAR replyPtr:
PROCEDURE SFPPutFile
(whereX:
whereY:
prompt :
origName:
maxLen:
dialogTempPtr:
dialogHookPtr:
replyPtr:
PROCEDURE SFPPutFile2
(whereX:
whereY:
itemDrawPtr:
promptDesc:
promptRef:
origNameDesc:
origNameRef :
dialogTempPtr:
dialogHookPtr:
VAR replyPtr:
PROCEDURE SFPutFile
(whereX:
whereY:
prompt :
origName:
maxLen:
VAR replyPtr:

Appendices

Integer;’
Integer;
Str255;
WordProcPtr;
SFTypeListPtr;
DialogTemplate;
VoidProcPtr;
SFReplyRecPtr) ;

Integer;
Integer;
ProcPtr;
RefDescriptor;
Ref;
WordProcPtr;
SFTypeList2Ptr;
DialogTemplate;
VoidProcPtr;
SFReplyRec2);

Integer;
Integer;
ProcPtr;
RefDescriptor;
Ref;
WordProcPtr;
SFTypeList2Ptr;
DialogTemplate;
VoidProcPtr;
SFReplyRec2) ;

Integer;
Integer;
Str255;

Str255;
Integer;
DialogTemplate;
VoidProcPtr;
SFReplyRecPtr) ;

Integer;
Integer;
ProcPtr;
RefDescriptor;
Ref;
RefDescriptor;
Ref;
DialogTemplate;
VoidProcPtr;
SFReplyRec2);

Integer;
Integer;
8tr255;
5tr255;
Integer;
SFReplyRec) ;

C-104

Apple lIGS Toolbox Units

PROCEDURE SFPutFile2

(whereX:
whereY:
promptDesc:
promptRef:
origNameDesc:
origNameRef:
VAR replyPtr:

Integer;
Integer;
RefDescriptor;
Ref;
RefDescriptor;
Ref;
SFReplyRec2) ;

FUNCTION SFShowInvisible

(invisibleState: Boolean) : Boolean ;
PROCEDURE SFReScan

(filterProcPtr: ProcPtr;

typeListPtr: SFTypeList2Ptr);
IMPLEMENTATION
END.

=
TextEdit

(*****************************t****f******t**

{ File: TextEdit.p

.

; Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

#*t******w*****tt**********t********i***t**i]

UNIT TextEdit;

INTERFACE

USEs Types, QuickDraw, Fonts, GSOS, Resources, Controls;

CONST teAlreadyStarted = $2201; {error: ~}
teNotStarted = $2202; {error -}
telnvalidHandle = $52203; {error - }
telnvalidVerb = $2204; {error - }
telnvalidFlag = $2205; {error -)
telnvalidPCount = $2206; {error - }
telnvalidRect = $2207; {error = }
teBufferOverflow = $2208; {error - }
telnvalidLine = $2209; f =3
telnvalidCall = $220A; =1}
NullVerb = §0; {TE ==3
PStringVerb = 50001; {TE <=}
CStringVerb = 50002; {TE ==}
ClInputVerb = $0003; {TE =}
ClOutputVerb = 50004; {TE <3}
HandleVerb = $0005; {1E =1}
PointerVerb = 50006; {TE -}
NewPStringVerb = 50007; {TE -}
fEquallineSpacing = $8000; {TE -}
fShowInvisibles = $4000; {TE -}
telnvalidDescriptor = $2204; { =}
teInvalidParameter = 5220B;: { -}

Appendices C-105 Apple lIGS Toolbox Units

telnvalidTextBox2 = $220C;

{ }
teEquallineSpacing = $8000; { =)
teShowlnvisibles = $4000; { =43
teJustLeft = $0; {: =3
teJustRight = $1; { =13
tedJustCenter = $2; g
teJustFull = $3; €= ¥
teNoTabs = 50; {2 §
teColumnTabs = $1; , BB |
teAbsoluteTabs = $2; { “:3
teleftTab = $0; f = 3
teCenterTab = $1; f =3
teRightTab = $2; et
teDecimalTab = $3; {. = }
telnvis = $4000; £ =%
teCtlColorIsPtr = $0000; { -}
teCtlColorIsHandle = $0004; {3
teCtlColorIsResource = S0008; { -
teCtlsStyleIsPtr = 50000; S
teCtlStyleIsHandle = $0001; , Sl
teCtlstyleIsResource = $0002; { -~ 3
teNotControl = $80000000; { =%
teSingleFormat = $40000000; { = }
teSingleStyle = $20000000; { =}
teNoWordWrap = $10000000; { =}
teNoScroll = 508000000; { =3
teReadOnly = 504000000; { -}
teSmartCutPaste = $02000000; { - ¥
teTabSwitch = 501000000; o=
teDrawBounds = $00800000; { =}
teColorHilite = $00400000; =}
teRefIsPtr = $0000; { =3
teRefIsHandle = $0001; { -1}
teReflsResource = $0002; £ = 3
teRefIsNewHandle = $0003; { = ¥
teDatalsPString = 50000; b
teDataIsCString = $0001; o= }
teDatalsClInput = $0002; { - }
teDatalIsClOutput = $0003;
teDataIsTextBox2 = $0004; =3
teDatalsTextBlock = $0005; § il
teTextIsPtr = $0000; §i = 3
teTextIsHandle = 50008; ¢ =}
teTextIsResource = 50010; § =1
teTextIsNewHandle = $0018; e}
tePartialLines = $8000; ¢ =%
teDontDraw = 54000; { =3
teUseFont = $0020; { -1}
teUseSize = $0010; { = ¥
teUseForeColor = 50008; { =}
teUseBackColor = 50004; { -1}
teUseUserData = $50002; { = ¥
teUseAttributes = $0001; { -1}
teReplaceFont = $0040; .= F
teReplaceSize = 50020; T
teReplaceForeColor = $0010; g =i)
teReplaceBackColor = 50008; g =¥
teReplaceUserField = $0004; R

Appendices C-106 Apple IIGS Toolbox Units

@

teReplaceAttributes = $0002; £8e)
teSwitchAttributes = 50001; ="
teEraseRect = $0001; Ty
teBraseBuffer = $0002; ¥
teRectChanged = $0003; { -1
TYPE TEColorTablePtr = "“TEColorTable;
TECeclorTable =
RECORD
contentColor: Integer;
outlineColor: Integer;
pageBoundaryColor: Integer;
hiliteForeColor: Integer;
hiliteBackColor: Integer;
vertColorDescriptor: Integer;
vertColorRef: Longint;
horzColorDescriptor: Integer;
horzColorRef: Longint;
growColorDescriptor: Integer;
growColorRef: Longint;
END;
TEBlockEntry =
RECORD
text: Handle;
length: Handle;
flags: Integer;
END;
TEBlocksHndl = “TEBlocksPtr;
TEBlocksPtr = "“TEBlocksRecord;
TEBlocksRecord =
RECORD
start: Longint;
index: Integer;
blocks: ARRAY [1..1] OF TEBlockEntry;
END;
TEHandle = “TERecordPtr;
TERecordPtr = "“TERecord;
TERecord =
PACKED RECORD
ctlNext: CtlRecHndl;
ct1Owner: WindowPtr;
ctlRect: Rect;
ctlFlag: Byte;
ctlHilite: Byte;
ctlValue: Integer;
ctiProc: ProcPtr;
ctlAction: ProcPtr;
ctlData: Longint;
ctlRefCon: Longint;
ctlColorRef: TEColorTablePtr;
textLength: ' Longint;
blockList: TEBlocksHndl;
filterProc: ProcPtr;
reservedl: Longint;

Appendices C-107 Apple IGS Toolbox Units

ctlID: Longint;

ct1MoreFlags: Integer;
ctlVersion: Integer;
theChar: Integer;
theModifiers: Integer;
extendFlag: Integer;
moveByWord: Integer;
inputPtr: BPtr;
inputLength: Longint;
theRect: Rect;
END;
TETabItem =
RECORD
tabKind: Integer;
tabData: Integer;
END;
TERuler =
RECORD
leftMargin: Integer;
leftIndent: Integer;
rightMargin: Integer;
just: Integer;
extralS: Integer;
flags: Integer;
userData: Integer;
tabType: Integer;
tabs: ARRAY [1..1] OF TETabltem;
tabTerminator: Integer;
END;
TEStyle =
RECORD
teFont: FontID;
foreColor: Integer;
backColor: Integer;
reserved: Longint;
END;

TEStyleGroupHndl = "TEStyleGroupPtr;

TEStyleGroupPtr = ~TEStyleGroup;
TEStyleGroup -
RECORD
count : Integer;
styles: ARRAY [1..1] OF TEStyle;
END;
TEStyleItem =
RECORD
length: Longint;
offset: Longint;
END;
TEFormat Hndl = ~“TEFormatPtr;
TEFormatPtr = “TEFormat;
TEFormat -
RECORD

Appendices C-108 Apple IIGS Toolbox Units

@

version: Integer;

rulerListLength: Longint;

theRulerList: ARRAY [1..1] OF TERuler;
styleListLength: Longint;
theStyleList: ARRAY [1..1] OF TEStyle;
numberOfStyles: Longint;
theStyles: ARRAY [1..1] OF TEStyleltem;
END;
TETextRef =
RECORD
CASE Integer OF
$0000: (textIsPStringPtr: StringPtr);
50001: (textIsCStringPtr: CStringPtr);
$0002: (textIsClInputPtr: GSString255Ptr) ;
$0003: (textIsClOutputPtr: ResultBuf255Ptr) ;
$0004: (textIsTB2Ptr: Ptr):
$0005: (textIsRawPtr: Ptx) ;
$0008: (textIsPStringHandle: String255Hndl) ;
$0009: (textIsCStringHandle: CStringHndl) ;
$SO000A: (textIsClInputHandle: GSString255Hndl) ;
$000B: (textIsClOutputHandle: ResultBuf255Hndl);
$000C: (textIsTB2Handle: Handle) ;
$000D: (textIsRawHandle: Handle) ;
$0010: (textIsPStringResource: ResID);
$0011: (textIsCStringResource: ResID):;
$0012: (textIsClInputResource: ResID);
50013: (textIsClOutputResource: ResID) ;
$0014: (textIsTB2Resource: ResID) ;
$0015: (textIsRawResource: ResID);
50018: (textIsPStringNewH: String255Hnd1Ptr) ;
$0019: (textIsCStringNewH: CStringHndlPtr);
$001A: (textIsClInputNewH: GSString255Hnd1Ptr) ;
$001B: (textIsClOutputNewH: ResultBuf255HndlPtr) ;
$001cC: (CextIsTB2NewH: HandlePtr) ;
$001D: (textIsRawNewH: HandlePtr) ;
END;
TEStyleRef =
RECORD
CASE Integer OF
$0000: (styleIsPtr: TEFormatPtr) ;
$0001: (styleIsHandle: TEFormatHndl) ;
$0002: (stylelsResource: ResID) ;
$0003: (styleIsNewH: “TEFormatHndl) ;
END;
TEParamBlockHndl = “TEParamBlockPtr;
TEParamBlockPtr = “TEParamBlock;
TEParamBlock =
RECORD
pCount : Integer;
controllID: Longint;
boundsRect : Rect;
procRef: Longint;
Appendices C-109 Apple IIGS Toolbox Units

flags:
moreflags:
refCon:
textFlags:
indentRect :
vertBar:
vertScroll:
horzBar:
horzScroll:
styleRef :

textDescriptor:

textRef:
textLength:
maxChars:
maxLines:
maxHeight:
pageHeight:
headerHeight:
footerHeight:
pageBoundary:
colorRef:
drawMode :
filterProcPtr:

END;

TEInfoRec -
RECORD

charCount:
lineCount:
formatMemory:
totalMemory:
styleCount:
rulerCount:

END;

TEHooks =
RECORD

charFilter:
wordWrap:
wordBreak:
drawText :
eraseText:

END;

PROCEDURE TEBocotInit;
PROCEDURE TEStartup
(userId:
directPage:
PROCEDURE TEShutdown;
FUNCTION TEVersion:
PROCEDURE TEReset;
FUNCTION TEStatus:
PROCEDURE TEActivate

(teH:

PROCEDURE TEClear

(teH:

Appendices

Integer;
Integer;
Longint;
Longint;
Rect;
CtlRecHndl;
Integer;
CtlRecHndl;
Integer;
TEStyleRef;
Integer;
TETextRef;
Longint;
Longint;
Longint;
Integer;
Integer;
Integer;
Integer;
Integer;
Longint;
Integer;
ProcPtr;

Longint;
Longint;
Longint;
Longint;
Longint;
Longint;

ProcPtr;
ProcPtr;
ProcPtr;
ProcPtr;
ProcPtr;

Integer;
Integer);

Integer;
Integer;
TEHandle) ;

TEHandle) ;

C-110

Apple lIGS Toolbox Units

PROCEDURE TEClick
(VAR theEventPtr:
teH:

PRCCEDURE TECut
(teH:

PROCEDURE TECopy
(teH:

PROCEDURE TEDeactivate
(teH:

FUNCTION TEGetDefProc:

PROCEDURE TEGetHooks
(VAR hooks:
count :
teH:

PROCEDURE TEGetSelection
(VAR selStart:
VAR selEnd:
teH:

FUNCTION TEGetSelectionStyle
(VAR commonStyle:
styleHandle:
teH:

FUNCTION TEGetText
(bufferDesc:
bufferRef:
bufferLength:
styleDesc:
styleRef:
teH:

PROCEDURE TEGetTextInfo
(VAR infoRec:
pCount:
teH:

PROCEDURE TEIdle
(teH:

PROCEDURE TEInsert
(textDesc:
textRef:
textLength:
styleDesc:
styleRef:
teH:

PROCEDURE TEInsertPageBreak
{teH:

PROCEDURE TEKey
(theEventPtr:
teH:

PROCEDURE TEKill
(teH:

FUNCTION TENew
(theParms:

FUNCTION TEPaintText
(thePort:
start:
destRect:
paintFlags:
teH:

Appendices

EventRecord;
TEHandle) ;

TEHandle) ;
TEHandle) ;

TEHandle) ;
ProcPtr;

TEHooks;
Integer;
TEHandle) ;

Longint;
Longint;
TEHandle) ;

TEStyle;
TEStyleGroupHndl;
TEHandle) : Integer;

Integer;

TETextRef;

Longint;

Integer;
TEStyleRef;
TEHandle) : Longint;

TEInfoRec;
Integer;
TEHandle) ;

TEHandle) ;

Integer;
TETextRef;
Longint;
Integer;
TEStyleRef;
TEHandle) ;

TEHandle) ;

EventRecord;
TEHandle) ;

TEHandle) ;
TEParamBlock) : TEHandle;

GrafPortPtr;
Longint;

Rect;

Integer;

TEHandle) : Longint;

C-111 Apple

IGS Toolbox Units

PROCEDURE TEPaste

(tel:

PROCEDURE TEReplace
(textDesc:
textRef:
textLength:
styleDesc:
styleRef:

teH:

PROCEDURE TESetHooks
(hooks:
count:

teH:

PROCEDURE TESetSelection
(selStart:
selEnd:

teH:

PROCEDURE TESetText
(textDesc:
textRef:
textLength:
styleDesc:
styleRef:

teH:

PROCEDURE TEStyleChange
(flags:
newStyle:

teH:

PROCEDURE TEUpdate

(teH:

IMPLEMENTATION

END.

Appendices

B

TEHandle) ;

Integer;
TETextRef;
Longint;
Integer;
TEStyleRef;
TEHandle) ;

TEHooks;
Integer;
TEHandle) ;

Longint;
Longint;
TEHandle) ;

Integer;
TETextRef;
Longint;
Integer;
TEStyleRef;
TEHandle) ;

Integer;
TEStyle;
TEHandle) ;

TEHandle) ;

C-112

Apple IIGS Toolbox Units

TEXTTOOL

{i**t*****i*i******************t*i***********

;i File: TextTool.p

;

; Copyright Apple Computer, Inc. 1986-89
;7 All Rights Reserved

i

******i******i************************t*t***}

UNIT TextTool;

INTERFACE
USES Types;

CONST
badDevType
badDevNum
badMode
unDefHW
lostDev
lostFile
badTitle
noRoom
noDevice
noFile
dupFile
notClosed
notOpen
badFormat
ringBuffOFlo
writeProtected
devErr
input
output
errorOutput
basicType
pascalType
ramBased
noEcho

echo

TYPE
DeviceRecHndl
DeviceRecPtr
DeviceRec

TxtMaskRecHndl =

TxtMaskRecPtr

Appendices

= $0C01;

$0coz;
$0C03;
$0C04;

= $0C05;
= 50C06;

50C07;
$0C08;
$0C09;
$0COA;
$0COB;
sococ;
$0COD;
SOCOE;
$0COF;
$0C10;
$0C40;
$0000;
$0001;

= $0002;
= $0000;

50001;

]

= $0002;
= $0000;
= 50001;

{error -
{error -
{error -
{error -
{error -
{error -
{error -
{error -

not implemented }

Illegal device number. }

Bad mode: illegal operation.)}

Undefined hardware error)

Lost device: Device no longer on line }
File no longer in diskette directory }
Illegal Filename }

Insufficient space on specified diskette }

{error - Volume not online }

{error -
{error -
{error -
{error -
{error -
{error -
{error - }
{error -
{deviceNum - }
{deviceNum = }
{deviceNum - }
{deviceType -
{deviceType -
{deviceType -
{echoFlag - }
{echoFlag - }

“DeviceRecPtr;
“DeviceRec;
RECORD

ptrOrSlot : Longint;

}

}

}

File not in specifiled directory }
Filename already exists }

Attempt to open an open file }
Attempt to close closed file }
error reading real or integer)}
Chars arriving too fast }

Read or Write failed }

{ slot number or Jjump table ptr)

deviceType : Integer; { type of input device }

END;

“TxtMaskRecPtr;

= “TxtMaskRec;

C-13

Apple lIGS Toolbox Units

TxtMaskRec

END;

PROCEDURE TextBootInit;
PROCEDURE TextStartUp:
PROCEDURE TextShutDown;

RECORD

orMask : Integeéer;
andMask : Integer;

FUNCTION TextVersion : Integer;
PROCEDURE TextReset;
FUNCTION TextStatus : Boolean ;
PROCEDURE CtlTextDev

{deviceNum: Integer;

controlCode: Integer);
PROCEDURE ErrWriteBlock

(textPtr: Ptx;

offset: Integer;

count: Integer);
PRCCEDURE ErrWriteChar

(theChar: Integer);
PROCEDURE ErrWriteCString

{cStrPtr: CStringPtr);
PROCEDURE ErrWriteLine

(str: Str255) ;
PROCEDURE ErrWriteString

(str: Str255);
FUNCTION GetErrGlobals: TxtMaskRec;
FUNCTION GetErrorDevice: DeviceRec;
FUNCTION GetInGlobals: TxtMaskRec;
FUNCTION GetInputDevice: DeviceRec;
FUNCTION GetOutGlobals: TxtMaskRec;
FUNCTION GetOutputDevice: DeviceRec;
PROCEDURE InitTextDev

(deviceNum: Integer);
FUNCTION ReadChar

(echoFlag: Integer): Integer;
FUNCTION ReadLine

(bufferPtr: Prr;

maxCount : Integer;

eolChar: Integer;

echoFlag: Integer) : Integer;
PROCEDURE SetErrGlobals

{(andMask: Integer;

orMask: Integer):;
PROCEDURE SetErrorDevice

(deviceType: Integer;

ptrOrSlot: Longint) ;
PROCEDURE SetInGlobals

(andMask: Integer;

orMask: Integer);
PROCEDURE SetInputDevice

{(deviceType: Integer;

ptrOrSlot: Longint);
PROCEDURE SetOutGlobals

{(andMask: Integer;

orMask: Integer);

Appendices

C-114

Apple IIGS Toolbox Units

PROCEDURE SetOutputDevice
(deviceType: Integer;

ptrOrSlot: Longint) ;
PROCEDURE StatusTextDev
(deviceNum: Integer;

requestCode: Integer) ;
PROCEDURE TextReadBlock
(bufferPtr: PELy

offset: Integer;

blockSize: Integer;

echoFlag: Integer);
PROCEDURE TextWriteBlock

(textPtr: PEL?

offset: Integer;

count: Integer);
PROCEDURE WriteChar

(theChar: Integer) ;
PROCEDURE WriteCString

(cStrPtr: CStringPtr);
PROCEDURE WriteLine

{str: 5tr255);
PROCEDURE WriteString

(str: S5tr25%8);
IMPLEMENTATION
END.

_—
TYPES

{**********t******#****i*i*i**w*****i********
File: Types.p

r
13
.
’

Copyright Apple Computer, Inc. 1986-89
; All Rights Reserved

‘
*************ii***i***************t*********}

UNIT Types:

INTERFACE
CONST
{$IFC UNDEFINED noError } { - }
noError = 50000; {$SETC noError := 0}
{SENDC}

refIsPointer = $0000; {RefDescriptor - }
refIsHandle = 50001; {RefDescriptor - }
refIsResource = 50002; {RefDescriptor - }
refIsNewHandle = $0003; {RefDescriptor - }
TYPE Byte ='Q,.255;

Fixed = Longint;

Frac = Longint;

Appendices C-115 Apple lIGS Toolbox Units

ExtendedPtr = “~Extended;

SignedByte = -128..127;
PackedByte = PACKED ARRAY [1..1] of SignedByte;
PLr = “PackedByte;
PointerPtr = “Ptr;
Handle = “Ptr;
HandlePtr = “Handle;
CsStringPtr = Ptr;
CStringHndl = “CStringPtr;
CStringHndlPtr = “~CStringHndl;
ProcPtr = PLr;
VoidProcPtr = ProcPtr;
WordProcPtr = ProcPrr;
LongProcPtr = ProcPtr;
IntPtr = “Integer;
PPIPtT = Ptr ;
String255 = STRING[255];
String255Ptr = *String255;
String255Hndl = ~String255Ptr;
String255HndlPtr = "~String255Hndl;
Str2s5 = String255;
stringPtr = String255Ptr;
StringHandle = ~StringPtr;
String32 = STRING[32]:
String32Ptr = “~String32;
String32Handle = “~String32Ptr;
Str32 = String32;
PointPtr = “~Point;
Point = RECORD
v : Integer;
h : Integer;
END;
RectHndl = ~“RectPtr;
RectPtr = "“Rect;
Rect = RECORD
CASE INTEGER OF
1:
{(top: Integer;
left: Integer;
bottom: Integer;
right: Integer);
23
(topLeft: Point;
botRight: Point);
3¢ {
vl : Integer;
hl : Integer;
v2 : Integer;
h2 : Integer):
END;
TimeRecHndl = ~“TimeRecPtr;
TimeRecPtr = *TimeRec;

Appendices C-116 Apple IIGS Toolbox Units

TimeRec = PACKED RECORD

second: Byte;
minute: Byte;
hour: Byte;
year: Byte;
day: Byte;
month: Byte;
extra: Byte;
weekDay: Byte;
END;

RefDescriptor = Integer;

Ref = RECORD
CASE Integer OF

refisPointer: { refIsPointer : Ptr };
reflsHandle: (refIsHandle : Handle);
reflsResource: (refIsResource : Longint);
refIsNewHandle: (refIsNewHandle : Handle };
END;
VAR
{SPUSH}
{$J+})
_ownerid : Integer;
_toolErr : Integer;
{$J-}
{SPOP}

{these calls are only here temporarilty }

FUNCTION BAND4(longl, long2: LongInt): LongInt;
FUNCTION BOR4 (longl, long2: LongInt): LongInt;
FUNCTION BXOR4(longl, long2: LongInt): LonglInt;
FUNCTION BNOT4(longl: LongInt): LonglInt;

FUNCTION BSL4 (longl: LongInt; count: INTEGER) : LongInt;
FUNCTION BSR4 (longl: LongInt; count: INTEGER): LongInt;
FUNCTION BRotL4(longl: LongInt; count: INTEGER): LongInt;
FUNCTION BRotR4(longl: LongInt; count: INTEGER) : LongInt;

FUNCTION BTst4(longl: LonglInt; pos: INTEGER): BOOLEAN;
PROCEDURE BClrd4 (VAR longl: LongInt; pos: INTEGER);
PROCEDURE BSetd (VAR longl: LongInt; pos: INTEGER);

IMPLEMENTATION
END.

Appendices C-117 Apple lIGS Toolbox Units

WINDOWS

{**

; File: Windows.p

.

; Copyright Apple Computer,

; All Rights Reserved

Inc.

1986-89

*i********t*i**********tt*****i*********i**t]

UNIT Windows;

INTERFACE

USES Types,QuickDraw,Events,Controls;

CONST

paramLenErr
allocateErr
taskMaskErr

wNoConstraint

wHAxisOnly
wVAxisOnly
FromDesk
ToDesk
GetDesktop
SetDesktop
GetDeskPat
SetDeskPat

GetVisDesktop
BackGroundRgn

toBottom
topMost
bottomMost
tmMenuKey
tmUpdate
tmFindW
tmMenuSel
tmOpenNDA
tmSysClick
tmDragW
tmContent
tmClose
tmZoom
tmGrow
tmScroll
tmSpecial
tmCRedraw
tmInactive
tmInfo
wNoHit
inNull
inKey
inButtDwn

Appendices

=

I

It

$OEO01;
S0EQ2;
$O0EOQ3;

{error
{error
{error

EventRecord }

50000;
$0001;
50002;
$00;

{Axis parameter - No constraint on movement. }
{Axis parameter - Horizontal axis only. }
{Axis parameter - Vertical axis only. }
{Desktop Command -

Subtract region from desktop }
Add region to desktop }

Get Handle of Desktop region }
Set Handle of Desktop region }

- first word of parameter list is the wrong size }
- unable to allocate window record }
- bits 12-15 are not clear in WmTaskMask field of

Address of pattern or drawing routine }

{Desktop command - Change Address of pattern or drawing

{Desktop command - Get destop region less visible windows.
{Desktop command - For drawing directly on desktop. }
{SendBehind wvalue - To send window to bottom.

{SendBehind value - To make window top. }

retained for
retained for
retained for back

= $1; ({Desktop Command -
= $2; ({Desktop Command -
= $3; {Desktop Command -
= 5%4; ({Desktop command -
= §5;
routine }
= $6;
= §7;
= SFFFFFFFE;
= SFFFFFFFF;
= 50000;
50001; {Task Mask - }
$0002; {Task Mask - }
50004; {Task Mask - }
$0008; {Task Mask - |}
$0010; {(Task Mask - }
$0020; {Task Mask - }
50040; (Task Mask - }
50080; (Task Mask - }
$0100; {Task Mask - }
$0200; {(Task Mask - }
$0400; {Task Mask - }
= $0800; {Task Mask - }
$1000; {Task Mask - }
$2000; {Task Mask - }
$4000; {Task Mask - }
$8000; {Task Mask - }
$50000; {(TaskMaster codes
$0000; {TaskMaster cocdes
$0003; {TaskMaster codes
$0001; {(TaskMaster codes

retained for

C-118

{SendBehind value - To make window bottom. }

back
back

compatibility.
compatibility }
compatibility }

back compatibility }

Apple IGS Toolbox Units

}

inUpdate
wInDesk
wInMenuBar
wClickCalled
wInContent
wInDrag
wIinGrow
winGoAway
wInZoom
wIinInfo
winSpecial
winDeskItem
wInFrame
wlnactMenu
wClosedNDA
wCalledSysEdit
wInSysWindow
wDraw

wHit
wCalcRgns
wNew
wDispose
fHilited
fZoomed
fAllocated
fCtlTie
finfo

fVis
fQContent
fMove

fZoom

fFlex

fGrow
fBScroll
fRScroll
fAlert
fClose
fTitle
windSize
wmTaskRecSize
wTrackZoom
wHitFrame
wlnControl

TYPE
WmTaskRec

WmTaskRecPtr
WindColorHndl
WindColorPtr
WindColor

Appendices

$0006;
$0010;
$0011;
$0012;
50013;
$0014;
$0015;

= $0016;

$0017;
50018;
$0019;
$001A;
$1B;
$1C;

{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster
{TaskMaster

codes

codes'’

codes
codes
codes
codes
codes
codes
codes
codes
codes
codes

{TaskMaster codes -
{TaskMaster codes -

retained for back compatibility)}
On Desktop }
On system menu bar)

- system click called }

In
In
In
In
In
In

content region }

drag region }

grow region, active window only }
go-away region, active window only)}
zoom region,
information bar)

Item ID selected was 250 - 255 }
Item ID selected was 1 - 249 }

active window only }

in Frame, but not on anything else }
"selection™ of inactive menu item }
$001D; (TaskMaster codes - desk accessory closed)

$001E; {TaskMaster codes - inactive menu item selected }
$8000; {TaskMaster codes - hi bit set for system windows }

command. }

{VarCode - Draw window frame command. }
Hit test command. }
Compute regions command. }
Initialization command. }

is highlighted. }

is zoomed.

}

record was allocated. }
state tied to controls. }
has an information bar. }

is visible.

is movable,

is zoomable.

has
has
has

has
has

}

}
}

grow box. }
horizontal scroll bar. }
vertical scroll bar. }

a close box. }
a title bar. }
Size of WindRec. }

{WmTaskRec - Size of WmTaskRec. }

= 500;

= $01; {VarCode -

= $02; {VarCode -

= $03; {VarCode -

= $04; {VarCode - Dispose
= $0001; (WFrame - Window
= $0002; {WFrame - Window
= $0004; {WFrame - Window
= $0008; {WFrame - Window
= $0010; {WFrame - Window
= $0020; {(WFrame - Window
= 50040; {WFrame -

= $0080; {WFrame - Window
= $0100; {WFrame - Window
= $0200; {WFrame -

= $0400; {WFrame - Window
= $0800; {WFrame - Window
= $1000; {WFrame - Window
= $2000; {(WFrame -

= $4000; {(WFrame - Window
= $8000; {WFrame - Window
= $145; {(WindRec -

= $0046;

= S001F; { -)

= $0020; { - }

= $0021; { - }

EventRecord ;

EventRecordPtr ;

“WindColorPtr;

“WindColor;

RECORD
frameColor: Integer; {
titleColor: Integer; {
tBarColor: Integer; {
growColor: Integer; {
infoColor: Integer; {
END;

C-119

Color of window frame. }
Color of title and bar. }
Color/pattern of title bar. }
Coler of grow box. }

Color of information bar.)

Apple lIGS Toolbox Units

WindRecPtr = “WindRec;
WindRec= RECORD
port: GrafPort; { Window's port }
wDefProc: ProcPtr;
wRefCon: Longint;
wContDraw: ProcPtr;
wReserved: Longint; { Space for future expansion)}
wStrucRgn: RgnHandle; { Region of frame plus content. }
wContRgn: RgnHandle; { Content region. }
wUpdateRgn: RgnHandle; { Update region. }
wControls: CtlRecHndl; { Window's control list. }
wFrameCtrls: CtlRecHndl; { Window frame's control list. }
wFrame: Integer;
END;
WindowChainPtr = “WindowChain;
WindowChain = RECORD
wNext : WindowChainPtr;
theWindow: WindRec;
END;

ParamListHndl = “ParamListPtr;

ParamListPtr = “ParamList;

ParamList = RECORD
paramLength: Integer; { Parameter to NewWindow. }
wFrameBits: Integer; { Parameter to NewWindow. }
wTlitle: Ptr; { Parameter to NewWindow. }
wRefCon: Longint; { Parameter to NewWindow. }
wZoom: Rect ; { Parameter to NewWindow. }
wColor: WindColorPtr; { Parameter to NewWindow. }
wYOrigin: Integer; { Parameter to NewWindow. }
wXOrigin: Integer; { Parameter to NewWindow. }
wDataH: Integer; { Parameter to NewWindow. }
wDataW: Integer; { Parameter to NewWindow. }
wMaxH: Integer; { Parameter to NewWindow. }
wMaxW: Integer; { Parameter to NewWindow. }
wScrollVer: Integer; { Parameter to NewWindow. }
wScrollHor: Integer; { Parameter to NewWindow.)}
wPageVer: Integer; { Parameter to NewWindow.)}
wPageHor: Integer; { Parameter to NewWindow. }
wIinfoRefCon: Longint; { Parameter to NewWindow.)}
wInfoHeight: Integer; { height of information bar }
wFrameDefProc: LongProcPtr; { Parameter to NewWindow. }
winfoDefProc: VoidProcPtr; { Parameter to NewWindow. }
wContDefProc: VoidProcPtr; { Parameter to NewWindow. }
wPosition: Rect; { Parameter to NewWindow. }
wPlane: WindowPtr; { Parameter to NewWindow. }
wStorage: WindowChainPtr; { Parameter to NewWindow. }
END;

DeskMessageRecordPtr = “DeskMessageRecord;

DeskMessageRecord =
RECORD
reserved : Longint;
messageType Integer;
drawType Integer;
END;

Appendices C-120 Apple lIGS Toolbox Units

FUNCTION AlertWindow
(alertFlags:
subStrPtr:
alertStrPtr:
PROCEDURE DrawInfoBar
(theWindowPtr:
PROCEDURE EndFrameDrawing;

FUNCTION GetWindowMgrGlobals:

PROCEDURE ResizeWindow
(hiddenFlag:
. rectPtr:
theWindowPtr:

PROCEDURE StartFrameDrawing

{ windowPtr:
PROCEDURE WindBootInit;
PROCEDURE WindStartUp

(userlID:
PROCEDURE WindShutDown;
FUNCTION WindVersion:
PROCEDURE WindReset;
FUNCTION WindStatus:
PROCEDURE BeginUpdate

(theWindowPtr:
PROCEDURE BringToFront

{ theWindowPtr:
FUNCTION CheckUpdate

(theEventPtr:
PROCEDURE CloseWindow

(theWindowPtr:
FUNCTION Desktop

(deskTopOP:

dtParam:
PROCEDURE DragWindow

(grid:

startX:

startY:

grace:

boundsRectPtr:

theWindowPtr:
PROCEDURE EndInfoDrawing;
PROCEDURE EndUpdate

(theWindowPtr:
FUNCTION FindWindow

(VAR theWindowPtr:

pointX:

pointY:
FUNCTION FrontWindow:
FUNCTION GetContentDraw

(theWindowPtr:
FUNCTION GetContentOrigin

(theWindowPtr:
FUNCTION GetContentRgn

(theWindowPtr:
FUNCTION GetDataSize

(theWindowPtr:
FUNCTION GetDefProc

(theWindowPtr:

Appendices

Integer;

Ptr;

Ptr) : Integer:;
WindowPtr) ;
Longint;
Integer;

Rect;

WindowPtr) ;

Longint) ;

Integer);

Integer;

Boolean;

WindowPtr) ;

WindowPtr) ;
EventRecordPtr): Boolean;
WindowPtr) ;

Integer;
Longint): Ptr;

Integer;

Integer;

Integer;

Integer;

RectPtr;

WindowPtr) ;
WindowPtr) ;

WindowPtr;

Integer;

Integer): Integer;
WindowPtr;

WindowPtr) : VoidProcPtr;
WindowPtr) : Point;
WindowPtr) : RgnHandle;

WindowPtr): Longint;

WindowPtr) : LongProcPtr;

C-121 Apple lIGS Toolbox Units

FUNCTION GetFirstWindow:
PROCEDURE GetFrameColor

(VAR colorPtr:

theWindowPtr:
FUNCTION GetInfoDraw

(theWindowPtr:
FUNCTION GetInfoRefCon
theWindowPtr:
FUNCTION GetMaxGrow

(theWindowPtr:
FUNCTION GetNextWindow
theWindowPtr:
FUNCTICON GetPage
theWindowPtr:
PROCEDURE GetRectInfo

(VAR infoRectPtr:

theWindowPtr:
FUNCTICON GetScroll

(theWindowPtr:
FUNCTION GetStructRgn

(theWindowPtr:
FUNCTION GetSysWFlag

(theWindowPtr:
FUNCTION GetUpdateRgn

(theWindowPtr:
FUNCTION GetWControls

(theWindowPtr:
FUNCTION GetWFrame

(theWindowPtr:
FUNCTION GetWKind

{ theWindowPtr:
FUNCTION GetWMgrPort:
FUNCTION GetWRefCon

(theWindowPtr:
FUNCTION GetWTitle

(theWindowPtr:
FUNCTION GetZoomRect

(theWindowPtr:

-

-

-

Appendices

WindowPtr;
windCoiorPtr;
WindowPtr) ;
WindowPtr) : VoidProcPtr;
WindowPtr) : Longint;
WindowPtr) : Longint;
WindowPtrx) : WindowPtr;
WindowPtr) : Longint;
Rect;
WindowPtr) ;
WindowPtr) : Longint;
WindowPtr) : RgnHandle;
WindowPtr): Boolean;
WindowPtr) : RgnHandle;
WindowPtr) : CtlRecHndl;
WindowPtr) : Integer;
WindowPtr) : Integer;
WindowPtr;
WindowPtr) : Longint;
WindowPtr): Ptr;
WindowPtr) : RectPtr;
C-122

Apple lIGS Toolbox Units

FUNCTION GrowWindow
(minWidth:
minHeight:
startX:
startyY:
theWindowPtr:

PROCEDURE HideWindow
(theWindowPtr:

PROCEDURE HiliteWindow
(fHiliteFlag:
theWindowPtr:

PROCEDURE InvalRect
{ badRectPtr:

PROCEDURE InvalRgn
(badRgnHandle:

PROCEDURE MoveWindow
(newX:
newyY:
theWindowPtr:

FUNCTION NewWindow
(theParamListPtr:

FUNCTION PinRect
(theXPt:
theYPt:
theRectPtr:

PROCEDURE RefreshDesktop
{ redrawRect:

PROCEDURE SelectWindow
(theWindowPtr:

PROCEDURE SendBehind
(behindWindowPtr:
theWindowPtr:

PROCEDURE SetContentDraw
(contentDrawPtr:
theWindowPtr:

PROCEDURE SetContentOrigin
(xOrigin:
yOrigin:
theWindowPtr:

PRCCEDURE SetContentOrigin2
(scrollFlag:
xOrigin:
yOrigin:
theWindowPtr:

PROCEDURE SetDataSize
(dataWidth:
dataHeight:
theWindowPtr:

PROCEDURE SetDefProc
(wDefProcPtr:
theWindowPtr:

PROCEDURE SetFrameColor
(newColorPtr:
theWindowPtr:

PRCCEDURE SetInfoDraw
{(infoRecCon:
theWindowPtr:

Appendices

Integer;
Integer;
Integer;
Integer;
WindowPtr) : Longint;

WindowPtr) ;

Boolean;
WindowPtr) ;

Rect) ;

RgnHandle) ;

Integer;

Integer;

WindowPtr) ;
ParamList) : WindowPtr;
Integer;

Integer;

Rect) : Point;
RectPtr);

WindowPtr) ;

WindowPtr;
WindowPtr) ;

VoidProcPtr;
WindowPtr) ;

Integer;
Integer;
WindowPtr) ;

Integer;
Integer;
Integer;
WindowPtr) ;

Integer;
Integer;

WindowPtr) ;

LongProcPtr;
WindowPtr) ;

WindColorPtr;
WindowPtr) ;

VoidProcPtr;
WindowPtr) ;

C-123

Apple lIGS Toolbox Units

PROCEDURE SetInfoRefCon
{infoRefCon:
theWindowPtr:

PROCEDURE SetMaxGrow
(maxWidth:
maxHeight:

theWindowPtr:

PROCEDURE SetOriginMask
(originMask:
theWindowPtr:

PROCEDURE SetPage
(hPage:
vPage:

theWindowPtr:

PROCEDURE SetScroll
(hScroll:

vScroll:
theWindowPtr:

PROCEDURE SetSysWindow
(theWindowPtr:

PROCCEDURE SetWFrame
(wFrame:

theWindowPtr:

FUNCTION SetWindowIcons
{newFontHandle:

PROCEDURE SetWRefCon
{(wRefCon:

theWindowPtr:

PROCEDURE SetWTitle
(title:

theWindowPtr:

PROCEDURE SetZoomRect
(wZoomSizePtr:

theWindowPtr:

PROCEDURE ShowHide
{showFlag:

theWindowPtr:

PROCEDURE ShowWindow
(theWindowPtr:

PROCEDURE SizeWindow
(newWidth:

newHeight:
theWindowPtr:

PROCEDURE StartDrawing
(theWindowPtr:

PRCCEDURE StartInfoDrawing
(VAR infoRectPtr:

theWindowPtr:

FUNCTION TaskMaster
(taskMask:

taskRecPtr:

FUNCTION TrackGoAway
(startX:

startY:
theWindowPtr:

Appendices

Longint;
WindowPtr) ;

Integer;
Integer;
WindowPtr) ;

Integer;
WindowPtr) ;

Integer;
Integer;
WindowPtr) ;
Integer;
Integer;
WindowPtr) ;

WindowPtr) ;

Integer;
WindowPtr) ;

FontHndl) : FontHndl;

Longint;
WindowPtr) ;

Str255;
WindowPtr) ;

Rect;
WindowPtr) ;

Boolean;
WindowPtrx) ;

WindowPtr) ;
Integer;
Integer;
WindowPtr) ;

WindowPtr) ;

Rect;
WindowPtr) ;

Integer;
WmTaskRec): Integer;
Integer;

Integer;

WindowPtr): Boolean;

C-124

Apple IGS Toolbox Units

FUNCTION TrackZoom
(startX:
startY:

Integer;
Integer;

theWindowPtr: WindowPtr) : Boolean;

PROCEDURE ValidRect
{goodRectPtr:
PROCEDURE ValidRgn

(goodRgnHandle:

FUNCTION WindDragRect

(actionProcPtr:
dragPatternPtr:

startX:
startY:
dragRectPtr:
limitRectPtr:
slopRectPtr:
dragFlag:
PROCEDURE WindNewRes;
FUNCTION WindowGlobal

{(WindowGlobalMask:

PROCEDURE ZoomWindow

Rect) ;
RgnHandle) ;

VoidProcPtr;
Pattern;

Integer;

Integer;

Rect;

Rect;

Rect;

Integer): Longint;

Integer): Integer;

(theWindowPtr: WindowPtr) ;

FUNCTION TaskMasterDA

(eventMask:

taskRecPtr:
FUNCTION CompileText

(subType:

subStringsPtr:

srcStringPtr:
srcSize:
FUNCTION NewWindow2
(titlePtr:
refCon:

contentDrawPtr:

defProcPtr:

paramTableDesc:
paramTableRef:

resourceType:
FUNCTICN ErrorWindow
(subType:
subStringPtr:
errNum:

IMPLEMENTATION
END.

Appendices

Integer;
Ptr): Integer;

Integer;

PEL;

Ptr;

Integer) : Handle;

StringPtr;

Longint;

ProcPtr;

ProcPtr;
RefDescriptor;

Ref;

Integer): WindowPtr;

Integer;

Ptr;
Integer): Integer;

C-126

Apple lIGS Toolbox Units

et me T
o

Appendix D

Inside Complete Pascal

Complete Pascal Memory Model

The environment in which an Apple IIGS application runs may be divided into 4 basic
components: the Application Code, the Application Globals, the Runtime Stack, and the
Application Heap. All of these components of an application coexist in the Apple IIGS's RAM
memory. Memory in the Apple IIGS is partitioned into 64K byte banks which are managed by
the Apple IIGS Memory Manager. A standard Apple IIGS comes with 4 banks of 64K byte RAM
memory numbered $00, $01, $E0, and $E1. RAM expansion cards can be added to the Apple IIGS
beginning at bank $02 and may extend to bank $7F, other bank numbers are reserved or not
available.

For a thorough introduction to the architecture to the Apple IIGS see Apple Computer's Technical
Introduction to the Apple IIGS.

The Application Code

An Apple IIGS application may consist of one or more code segments. Small programs are
usually made up of only a single code segment, but larger programs are divided into several
code segments because the Apple IIGS limits the size of an individual code segment to 64K bytes.
The reason for the size restriction is that a code segment must not cross the boundries of a
bank of memory.

Complete Pascal generates a separate code module for each Pascal procedure and function
declared in a program. Each of these code modules is associated with a load segment name
which is used to organize separate code segments together by the linker. The default segment
name is main. When an application has grown large enough to require more than one code
segment, the ($CSeg segname } directive is used to change the segment name assigned to
subsequent code modules. The compiler can be restored to use the default code segment name by
specifying ($CSeg main).

The Application Globals

Complete Pascal allocates storage for global variables in data segments. By default, the data
segments are given the load segment name "~global". The Linker uses the load segment
names associated with each data segment to group them together into load segments. Programs
are usually made up of only a single data segment, but programs which require a large amount
of global storage are divided into several data segments because the Apple IIGS limits the size
of an individual data segment to 64K bytes. The reason for the size restriction is that a data
segment must not cross the boundries of a bank of memory.

Appendices D-1 Inside Complete Pascal

When an application requires a large amount of global storage, it should use the (§DSeg
segname] directive to instruct the compiler to allocate subsequent global variable declarations
into a new data segment. The compiler can be restored to the default data segment by
specifying {(§DSeg ~global].

During the execution of program initialization code generated by Complete Pascal, the 65816
Data Bank Register is set to point to the bank of memory which contains the global variables
declared in the ~global data segment. Because of this, references to global variables in the
~global data segment can use the Absolute Addressing Mode. Global variables in all other data
segments are addressed using the less efficient Absolute Long Addressing Mode.

The Runtime Stack

The runtime stack is a special block of memory that the application uses to maintain the return
addresses of procedures and functions, and to store parameters and local variables. During the
execution of application initialization code, a block of memory is allocated in bank $00 of the
Apple IIGS. The block is allocated in bank $00 because this is the only bank of memory in
which the 65816 Stack Register is able to operate.

By default, Complete Pascal allocates a stack containing 8096 bytes (8K) for an application. If
an application requires additional or less stack space, then you should specify the ($StackSize
numbytes] directive in order to change the amount of space allocated for the stack.

The {$StackSize numbytes]} directive must appear before the reserved word PROGRAM for it
to have any affect. For example, the following code fragment would cause a 10K stack to be
allocated.

{$StackSize 10240 }
PROGRAM MyApp;

Desk Accessories do not have initialization code which allocates and initializes a runtime
stack since they run within the environment of other applications. Thus, when writing an
application be sure to leave a reasonable amount of stack space for use by desk accessories, and
of course when writing a desk accessory, be sure to use as little stack space as possible
(Remember the default, and typical, runtime stack is only 8K bytes).

< Warning: Neither the Apple IIGS nor Complete Pascal has any way to detect the amount
of stack space actually used by an application. If insufficient space has been reserved for
the runtime stack, then execution of the application will destroy the contents of memory.

The Application Heap

The application heap is the memory still available after the application's code, global data, and
runtime stack have been allocated. This memory is available to an application via the Memory
Manager routines defined in the Memory.p.o unit provided with Complete Pascal. Memory may
also be allocated and deallocated in the application heap using Complete Pascal's New and
Dispose procedures.

Nearly every application will allocate at least one memory block in bank $00 for initializing
the Apple IIGS tools used in the application. Many of the Apple IIGS toolsets require one or more

Appendices D-2 Inside Complete Pascal

pages allocated in bank $00 to function. These pages are sometimes called zero pages.

Data Representation

This section shows how each of the Pascal data types is represented in memory. Note that the
65816 stores bytes of word size data in memory backwards from its representation in the
accumlator. That is, the least significant bits are in low memory while the most significant
bits are in high memory. Consider the following Pascal declaration:

type trick = packed record
case integer of
0: (int: integer);
1: (highbyte: 0..255;
lowbyte: 0..255);
end;

This record type does not give the results one might expect. On the 65816, referencing highbyte
would actually return the low order byte of the integer int, and not the high order byte. The
following paragraphs should clarify the storage layout of the Pascal data types.

Integer A signed two's complement integer in the range -32,768 to 32,767 requiring 2
bytes of storage. Bit 15 is the sign bit.

7 015 8
S (Note: S denotes the sign bit)

LonglInt A signed two's complement integer in the range -2,147,483,648 to 2,147,483,647
requiring 4 bytes of storage. Bit 31 is the sign bit.

0{15 8123 16|31 24
Boolean An enumerated type of (False, True) requiring one byte of storage, where the
boolean value is in bit 0. One byte of storage is used inside of a packed array
or record.
7 015 8
Char An enumerated type of the ASCII character set having 256 values. The

character value requires two bytes of storage where the value is in the lower
order byte (bits 7-0). One byte of storage is used inside of a packed array or
record.

7 015 8

Enumeration An unsigned byte or word size integer. If the enumeration type consists
of 128 or fewer enumeration constants, then the a value of the type occupies a

Appendices D-3 Inside Complete Pascal

Subrange

Single

Double

Real /
Extended

79 78

single byte of storage if used inside of a packed array or record., otherwise, it
occupies a word of storage.

7 0 <= 128 enumerations

7 015 8 > 128 enumerations

A signed byte, word, or longword. If the range is within -128..127 a word is
used in unpacked structures or simple variables, but inside of packed arrays
and records a byte is used to represent the subrange. If the range is within -
32768..32767 a word is used, otherwise a longword is used to represent the
subrange.

7 0 -128..127

-32768..32767

7 (V] 1 51 8123 16 |31 24

all others

A 32-bit real number represented in IEEE standard single precision format
implemented as the SANE Single type.

31 30
S | Exponent

23 22 0
Signifcand

A 64-bit real number represented in IEEE standard double precision format
implemented as the SANE Double type.

63 62
S Exponent

6261 0
Signifcand

An 80-bit real number represented in IEEE standard extended format.
Both are implemented as the SANE Extended type.

64 63 0

S

Exponent

Signifcand

String(n]

byte 1 2 3

An n+1 byte size Pascal String consisting of a byte containing the current
string length (not counting the length byte itself) followed by bytes containing
ASCII characters.

n+1

length

Appendices

D-4 Inside Complete Pascal

Pointers A 24-bit physical memory address occupying 4 bytes of storage. Only 3 bytes
are needed to store the 24-bit address value so bits 31-24 are always zero. The
nil pointer is represented as the 32-bit value zero,

7 o5 823 16|31 24

Sets A sequence of bytes up to a maximum of 32 bytes or 256 bits representing the
powerset of the base-type. The number of bytes used is the minimum number
required to represent the powerset. An ordinal value of the base-type is
represented by a single bit whose bit number is the ordinal value. If an
ordinal value is a member of a set then its bit is set to 1, otherwise, it is set to 0.
If the ordinal values of the base-type are in the range 0..15, then two bytes are
used to represent the set. If the ordinal values of the base-type are in the range
0..31, then four bytes are used to represent the set, etc.

Files A 22 byte data structure used internally by the Complete Pascal runtime
routines. In addition to the file variable itself, an open file associated with an
external disk file has a access buffer allocated in the application heap for use
by GS/0S; additionally, a textfile has a 256 byte line buffer.

Arrays / Components of unpacked arrays and records are allocated contiguously as

Records defined above. Arrays are stored in row order. That is, the last index varies
fastest. Record components are allocated as they textually appear in their
declaration.

The implementation of Complete Pascal performs data packing to byte
boundries only, no bit packing is available. A data type is represented as a
byte in a packed structure if and only if the number of bits required to store all
values of the type is less than or exactly eight bits. For example, the standard
type Char or Boolean require less than or equal to 8 bits to represent all of their
values, therefore in a packed structure Char and Boolean are allocated a byte
of storage, but otherwise require a word of storage.

= e b e A e I R S T S
Calling Conventions

This section outlines the Complete Pascal compiler conventions for calling procedures and
functions, parameter passing, and function result values.

Calling a Subprogram

Complete Pascal uses a stack-based parameter passing convention for calling subprograms.
Before calling a procedure or function, the parameters are pushed onto the stack in the same
order as their declaration. If a function is being called, the storage for the function result is
allocated on the stack before pushing any parameters. After the call has completed, control is
returned to the calling environment with parameters (if any) removed from the stack, but the
function result value (if a function) is left on top of the stack. The calling environment must

remove the function result value after it has used it.

Appendices D-5 Inside Complete Pascal

Following is skeleton code for a procedure call.

1lda PPPP ; Push first parameter
pha

lda PPPP ; Push last parameter

pha

jsl >Aproc ; Call the procedure

; Parameters removed from stack

The following is skeleton code for a function call.

pha ; Reserve space for result value
lda PPPP ; Push first parameter

pha

lda pppp ; Push last parameter

pha

jsl >Afunc ; Call the function

; Parameters removed from stack
pla ; Remove function result from stack
; and place in accumulator

Subprograms are always called in full 65816 native mode (ie. 16-bit accumulator and index
registers). Therefore, if the processor is not in full native mode before the call, it is forced to
full native mode before the call is made. For example, assume that the accumulator is in 8-bit
mode and the index registers are in 16-bit mode, then the following code is generated.

; Accumlator currently in 8-bit mode
rep #$20 ; Change accumlator to 16-bit mode
LONGA ON

jsl >ASubprog

If the subprogram being called is declared at a level other than the global level (not in the
program or unit block), then a static link is pushed on the stack after all the parameters have
been pushed. The static link serves as a mechanism to address local variables in nested
stackframes. Because of this static link, the address of a nested subrogram should never be
passed to an Apple IIGS Toolbox routine as a definition procedure since this is not the calling
convention the Toolbox expects.

Variable Parameters

Actual variable parameters (var parameters) are always passed by reference to the formal
parameter, that is, as a pointer that points to the storage occupied by the actual parameter. The
pointer is passed as a 32-bit (4-byte) value. The high order word is pushed first followed by the
low order word. ;

Consider the following example for a passing the global variable GlobVar as a variable
parameter using the absolue addressing mode.

Appendices D-6 Inside Complete Pascal

pea GlobVar|-16 ; Push high order word first
pea GlobVar ; Push low order word second

Value Parameters

Actual value parameters are passed with their value on the stack or by reference depending on
the size of the value. If the size of the value parameter occupies 4 bytes or less, then its value is
passed on the stack and is the formal paramter. If the size of the value parameter occupies more
than 4 bytes, then a 32-bit pointer to the value is passed on the stack. The called procedure or
function then copies the value into local storage for the formal parameter so that changing the
value of the formal parameter does not affect the value of the actual parameter.

Static Parameters

Actual static parameters are passed on the stack exactly like actual value parameters. The
difference between static and value parameters is that if the size of the actual parameter is
greater than 4 bytes, the called procedure or function DOES NOT copy the value into local
storage for the formal parameter. Thus, it is illegal to give the formal static parameter a new
value since it would change the value of the actual parameter.

Static parameters have been introduced in Complete Pascal to conserve the amount of space used
by the runtime stack for storing formal parameters as well as improve the execution speed of
programs since no unnecessary copying is performed.

“ Note: Complete Pascal does not check that a new value is never assigned into a static
parameter. It is the responsibility of the programmer to ensure that static parameters are
used correctly.

Function Results

Storage for function results is reseved on the stack by the calling subprogram before any
parameters are pushed onto the stack. If the function result is of type Integer, Longint, Char,
Boolean, or any subrange, enumerated or pointer type, or the real type Single, 2 or 4 bytes of
storage are allocated. If the result type requires only 1 byte of storage, 2 bytes are allocated and
the low memory address byte contains the value.

If the result type is of type Double, Comp, Extended, or any array, string, or record type, then the
calling subprogram allocates temporary space within its stackframe for the result value, and
pushes a 4 byte pointer to the temporary storage. The calling subprogram removes the pointer
from the stack when the function returns, and the temporary storage is deallocated when no
references to the value exist.

Entry/Exit Code

Each Pascal procedure and function begins and ends with standard entry and exit code which
creates and removes its activation.

Appendices D-7 Inside Complete Pascal

The standard entry code is as follows:

phd ; Save previous frame pointer
tsc

sec

sbec #xx

tcd ; Establish new frame pointer
clc

adc #yy

tcs ; Allocate local storage

First, the direct page register from the previous activation is saved. The direct page register is
used as a frame pointer for an activation. The saved frame pointer is called the dynamic link,
and is required to restore the state of the previous activation.

After saving the previous frame pointer, xx bytes are subtracted from the current stack pointer
to establish the frame pointer for this activation. xx is computed so that the first word of
storage in the stack activation (ie. the function result or first parameter) is at direct page offset
254. Choosing this offset allows all parameters and as many local variables as possible to be
addressed using the very efficient direct page addressing mode.

Once the frame pointer for the activation is established, yy bytes are added to that value to
allocate the storage needed for local variables, value parameters copied local, and compiler
temporaries.

Note that no registers are saved, and it is assumed that the processor is in full native mode.
The standard exit code is as follows:

tdc

clc

adc #xx

tcs Deallocate local storage

pld ; Restore previous frame pointer

~

lda 2,58

sta mm, S

lda 1,5 ; Move the return address down over
sta mm-1,5 ; the parameters

tsc

clc

adc #mm~2 ; Deallocate the parameters

tcs

rtl

Local storage is first removed by adding the value xx to the frame pointer. Then the frame
pointer from the previous activation is restored with the pld instruction. Then the parameters
are "removed" from the stack by moving the return address down overtop of the first
parameter(s) and then positioning the stack pointer to the new location of the return address.
And finally, the RTL is executed to return to the calling subprogram (typically in the Apple
IIGS ROM).

Note that if a procedure or function does not have any parameters then its exit code is the
following:

Appendices D-8 Inside Complete Pascal

tdc

cle

adc #xx

tcs ; Deallocate local storage

pld ; Restore previous frame pointer
rtl

Appendices D-9 Inside Complete Pascal

Appendices D-10 Inside Complete Pascal

Appendlix E

Complete Pascal versus TML Pascal

Complete Pascal implements many new features and makes several changes to the original
TML Pascal product for the Apple IIGS. In this appendix we review the significant differences
between these two products in order that users of the original version of TML Pascal can more
quickly adapt to Complete Pascal.

The following sections are organized based on the chapters in this manual. Each section
addresses the signifanct changes in Complete Pascal as they are mentioned in this book.

Chapter 1 - Getting Started

Perhaps the most imporant and significant change in Complete Pascal is that it is specifically
designed for System Software version 5.0 and GS/OS. Complete Pascal, and programs created
with Complete Pascal, cannot run on any version of ProDOS/16 or versions of GS/OS earlier
than version 5.0.

This restriction is primarily because of the heavy use of the Resouce Manager by Complete
Pascal which, of course, is not available in versions of the Apple IIGS System Software earlier
than 5.0.

%
Chapter 2 - Using the Desktop Environment

The Complete Pascal editor n~w allows for an unlimited number windows open on the desktop.
In addition, windows can use any font and font size for the text and each window may have a
different tab setting. In addition, the editor now supports the Undo command.

The editing environment also supports a second window type for editing resource files.

Chapter 3 - Creating Programs

The file naming conventions have changed for Complete Pascal. Pascal source code files
should end with the suffix “.p” instead of “.pas”. This allows for two additional characters in
the filename of source code files. The filename conventions for compiled unit symbol files has
changed as well. Instead of the “.usym” suffix, the compiler appends a “.0” to the source code
file name resulting in a suffix of “.p.0”. These new conventions must be followed when using
Units in order that the compiler can locate compiled symbol files on the disk.

The Resources... menu item in the Compile menu has been added to specify which resources
should be compiled into a final application.

Appendices E-1 Complete Pascal versus TML Pascal

Chapter 4 — Creating Resources

Resources are a completely new feature to Complete Pascal. Programs written with TML
Pascal should be converted where possible to take advantage of the new resources cababilities of
System Software version 5.0.

Chapter 7 - Textbook Graphics Applications

TML Pascal implemented the “Plain Vanilla” application type. This has been replaced by the
“Textbook Graphics” application. Previously, a program could place the parameters Input and
QOutput in the program header to invoke the Plain Vanilla environment. For example:

Program Test (Input,Output);

Plain vanilla turned on the grahics screen in 640 mode and created a large window with the
title “TML Pascal”. This allowed for easy programming of simple graphics.

Complete Pascal has changed this feature by adding the predefined procedure titled “Graphics”.
The procedure has a parameter allowing the program to specify either 320 or 640 mode graphics,
and instead of creating a window on the screen, the program can now use the entire graphics
screen.

Chapter 8 — Desktop Applications

Desktop applications should now use resources to create menus, windows, dialogs, ete.
Resources are created using the TML Resouce Editor. Resources are then added to the compiled
program by selecting a resource file with the Resources... menu item in the Compile menu.

Chapter 9 - New Desk Accessories (NDAs)

The source code for a New Desk Accessory should now be written as a Unit rather than a
program. Desk accessories do not have a main program, thus it is not necessary to use the
program structure.

Chapter 10 - Classic Desk Accessories (CDAs)

The source code for a Classic Desk Accessory should now be written as a Unit rather than a
program. Desk accessories do not have a main program, thus it is not necessary to use the
program structure.

Appendices 2 Complete Pascal versus TML Pascal

Chapter 11 - Tokens

Complete Pascal now defines three real number constants to facilitate the writing of numerical
applications. The compiler defines Inf (Infinity), Nan (Not A Number) and PI.

Chapter 19 - Input and Output

Complete Pascal now implements the Open procedure for opening a file for random read/write
access.

Complete Pascal now supports GS/OS. Thus, filenames may use any legal ProD0OS/16 or GS/OS
pathname reference. In addition, any legal predefined or generated GS/OS device name may
also be used for I/0. In particular, the device name used to access the printer is now ‘
“PRINTER” and not “PRINTER:" Note that the device name “PRINTER” is case sensitive
and must be spelled with upper case letters.

—
——— —————————

Chapter 20 - Standard Procedures and Functions

The procedure Graphics is new to Complete Pascal.

The following standard procedures and functions have been renamed with Complete Pascal in
order to conform with naming standards adopted by Apple Computer.

IML Pascalpame Complete Pascal name

BitAnd BAND

BitOr BOR

BitXor BXOR

BitNot BNOT

BitSL BSL

BitSR BSR

BitRotl BROTL

BitRotr BROTR

HiWord HiWrd (IntMath.p has HiWord)
LoWord LoWrd (IntMath.p has LoWord)

Finally, the predefined global variable which returns the error code from Toolbox procedure and
function calls has been renamed “_ToolErr”. The name “ToolErrorNum” is still supported, but
the new name should be used when new code is written to conform to the new naming

standards.

Appendices

E-3 Complete Pascal versus TML Pascal

Appendix B — Compiler Directives

The following three compiler directives have been renamed.

$DeskAcc has been renamed $NDA
$P has been renamed $U
$XrefVar has been renamed $J

The following compiler directives have been added since TML Pascal v1.0. However they were
available in TML Pascal v1.50

$CDA
$DefProc

Appendix C - Toolbox Interfaces

The Apple 1IGS Toolbox interfaces have gone through substantial changes. Seveéral new
interfaces have been added to support System Software version 5.0 and all previous interfaces
have been changed to conform to the new standards adopted by Apple Computer.

Complete Pascal has chosen to use the new standard interfaces created by Apple Computer in
order that Complete Pascal programmers may take advantage of the documentation, technical
notes, examples and many other technical resources created by Apple Computer which will use
Apple’s new interfaces. TML Pascal programs will require some degree of change to use the
new interfaces, but will enjoy the benifit of standardization.

_——————————
Appendix D - Inside TML Pascal
The Boolean type, enumeration types and small integer subranges are now represented using a

word (2 bytes) of memory rather than just one byte of memory. However, when these types
appear in a packed record or array they are represented as using one byte of memory.

Appendices E-4 Complete Pascal versus TML Pascal

