

Advanced UCSD Pascal

Programming Techniques

Eliakim Willner, Datronics, Inc.
Barry Demchak, Software Construction, Inc.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Willner, Eliakim. (date)
Advanced UCSD Pascal programming techniques.

Includes index.

1. UCSD Pascal (Computer program language)
1. Demchak, Barry. II Title.
QA76.73.U25W55 1985 001.64'24 85-3451
ISBN 0-13-011610-6

Editorial production supervision: Karen Skrable Fortgang
Composed by: Scenic Computer Systems Corporation/ScenicWriter
Manufacturing buyer: Gordon Osbourne

Apple is a registered trademark of Apple Computer, Ine.
Apple Pascal is a trademark of Apple Computer, Inec.

p—SyatemT'M' is a trademark of SofTech Microsystems, Inc.
QBus is a registered trademark of Digital Equipment Computer Corp.
UCSD p—System is a trademark of the

Regents of the University of California.

UCSD Pnscal® is a registered trademark of the
Regents of the University of California.

© Copyright 19856 by Advanced Digital Products

The authors and publisher of this book have used their best efforts in preparing this
book. These efforts include the development, research, and testing of the theories and
programs to determine their effectiveness. The authors and publisher make no warranty
of any kind, expressed or implied, with regard to these programs or the documentatin
contained in this book. The authors and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any
means, without permission in writing from the publisher.

¢

Printed in the United States of America

10 9 87 65 43 21
ISBN 0-13-011k10-t 01

Prentice—Hall International, Inc., London
Prentice—Hall of Australia Pty. Limited, Sydney
Editora Prentice—Hall do Brasil, Ltda., Rio de Janeiro
Prentice—Hall Canada Inc., Toronto

Prentice—Hall Hispanoamericana, S.A., Mezico
Prentice—Hall of India Private Limited, New Delh:
Prentice—Hall of Japan, Inc., Tokyo

Prentice—Hall of Southeast Asia Pte. Ltd., Singapore
Whitehall Books Limited, Wellington, New Zealand

Dedication

To my near and extended families. EGW.

To my parents, Paul and Sally, who taught me to work hard and always
do my best. B.D.

To Roger Sumner, who wrote much of the Pascal System even as it stands
today, but who is seldom recognized.

Contents

FOorewordoviuueiiiiiiiiiietossossssssssssssssssosnnsasnns Xiii

ACknowledgementsco.vuvieievieiiiiiiiiiiiiiiieiiiienaenss XV
Chapter 1 INTRODUCTION 1
1.0 Purpose and Scope of this Bookcoevvvvieinninnnne. 1
1.1 History of UCSD Pascalcoovvviiieiiinieeenanencnnns 2
1.2 OVeTVIBW ¢t iitiiiiiinrerarerrssssnoscsssssnscsasssnses 4
1.3 Notation and Terminologyc.covevviiiiiiniiia.... 4
Chapter 2 DEVIATIONS FROM STANDARD PASCAL 6
20 CASE Statements....ooveeeeeeroreeroseaarsossoossocnss 7
2.1 GOTO Statements covveeereretesoreesssesssscoscnssonos 8
2.2 DISPOSE .« itiiiiiiiiiiiiiiiiietienionionssnsonsonsnes 9
2.3 1 9
24 FORWARD .. iiiiiiiiiiiiiieineestsessoorasonsssnnons 9
2.5 ODD,CHR and NOT ... ivviieiiienivnennnonssassasss 10
2.6 /O INtrinsiCs cvvvrerneneenenroeereoenroasesossnsoons 12
2.6.1 INPUT . iiiiiiiiiiieieinniersesnsonasesnsasnsons 12
2.6.2 RESET and REWRITEccoviviiiiiiiiniinnen, 12
2.6.3 0) 12
264 READand READLNciiviiiiiiiiiinceneennes 13
2.6.5 WRITEand WRITELNcocviiiiiiniiiinenennns 13

vi

2.7

2.8

29

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

Chapter 3

3.0
3.0.1
3.0.2
3.0.3
3.04
3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.3
3.34
3.3.5
34
34.1
3.5
3.5.1
3.5.2
3.6
3.6.1
3.7
3.71
3.7.2
3.8
3.9

Contents

Packed Variables......cooiiiiiiiiiiiiiniiiieiienen, 13
Procedural and Functional Parameters............... 14
Program Headings.........cociieveieniiiiinciiinnnens 14
T e7e o L e 14
S 3 15
Reserved Words ..oveviiieiiiieievrireenesnenconcans 1§
COMMENTS . evveeeeenroresassssesssssssccnccssessssanne 15
Type Compatibility «ooovvieieiiieniieennnecniancans 16
R 7 18
503031755 . SN 18
MAXINT £ ertrreiiiiiterersesncsnersscesciocssoneenes 19
EXTENSIONS TO STANDARD PASCAL 20
CONCUTTENCY «tvvverecessronrsncsnssotssscsscnscosones 23
) < P 24
SemaphOreS oo vvriririiiieiiriirenisieiieracanas 30
| £00755 9 01 o] 7S e 35
Time SHCING «vvvvviiiiiiniiiiiiineiicninenennss 37
Program Segmentationooeeiiiiiinainiineenss 38
Alternate Segment Management Strategies....... 42
Segmentsand Tasksccocoiiiiiinieiinnnne. 44
Separate Compilationovveveieineneniaiienennnns 44
L0557 45
Using Units..oveiniiieiiiiiniiiiniiiieniaianns 50
Unit Linkageoovveiiiiiiiiiiiiiiiiiiiiiinnee, 52
T 1 R 54
File SYStem ACCESS vovuvreerereiernrirsnenssesnsns 55
Interactive FileS ...covvivnieninnririniiiiinnnens 58
The Keyboard Fileovvvevninieiiiiiinneenennes 59
BloCK FileS .vvuienrrniiernnrnerieinneenenaciaenens 60
Random Access FileS...coovvviieiiniiniininennens 61
R3] 6T 0T T 63
String Parameters c..ooeviieeiernnernerenernnnanns 66
Dynamic Variable Management...........c.ooeunes. 68
The Version ITHeapocvvevviiiiiiiennrannnns 69
The Version IV Heapccovviieiiiiienieienann 72
Extended Precision Arithmetic........coovveineenenn. 74
Long Integer Parameters........co.oeevueeanennes 76
Extended CompariSonsooovvevnvveenesennresesennnns 77
Records and ATrays ..cceeeerieeecsnensroscnnnees 77
POINTETS et evivirrarrcneenesnecsscsnosncsssnsnns 79
Byte Array Manipulationcoevviviineneinnnnn. 79
DeVICe I/0 cuvieiriniiiiiiiiiiiiiiiieitiitercinsneens 84

Contents vil

39.1 UNITREAD and UNITWRITEcovvvvennnn. 84
39.2 UNITCLEAR, UNITBUSY and UNITWAIT 87

39.3 UNITSTATUS . iiiiiiiiiieniinirscesossnssoncnns 88

3.10 Inline Machine Codecoiiuinenreererecressacenans 89

3.11 Miscellaneous EXtensions. . ..o ivecerercescescnscenes 91

3111 (01530 11§ (-3 - SRR 92

3.11.2 Declaration Parts.....coeveeieececenreccsssnssonans 92

3.11.3 Pointer Type Conversion and Comparison 94
3114 Screen Control.ooveeeereeeeroscessacessscanacnns 94

3.11.5 ClOCK ACCESS vvvvrornronsrnronsoscssoscassssonsans 95
3.11.6 Powersof Ten ccvvvveniiirienrorncererecisrsonnses 97
3.11.7 Arctangent SynoNYmMvvvvnerieneniincninrenns 98
3.11.8 Procedure Terminationccovvevvennveierannns 98
3.11.9 I/0 Completion Statuscvvveernieensenannnns 100
3.11.10 Memory Availableooevviieverereenereenanens 102
3.11.11 Programmed Haltcoviiiivninninnnen, 103
3.11.12 Compiler Support - TREESEARCH............. 103
3.11.13 Compiler Support - IDSEARCH.................. 106
3.11.14 FOR Control Variables.....coovveeeerrenecenaces 109
Chapter 4 UCSD INTRINSICS 111

4.0 N - N 113
4.1 ATTACH c ittt iiiiiiiiiiiteteieierninenessencnnnns 114
4.2 BLOCKREAD........ e eeeeaeeeieenentetecerenenenas 114
4.3 BLOCKWRITEiiiiiiiiiiiiiiininenenneennnnns 115
4.4 CHAIN........ccvt.... e eeeeteeenenrenetaentantenanns 116
4.5 CLOSE . iiiiiiiiiniiteneeneenrentnsenssasnssonenns 117
4.6 CONCAT it iiitititeeeeentttiesecetsneecusnsananes 118
4.7 (00) (N 118,
4.8 1) 21 B0 S 1 N 118
4.9 EXCEPTION ..t iiiiiiieiitennrieeneenensanceasnnans 119
410 EXIT oitiiitiieiieiiierennersnreocneencascnsnsscnnans 119
4,11 B 2 - N 120
4.12 (€101 K0, G 4 121

413 HALT ...covvvevnen.n, et enteererretetteeeetencneanns 121

4.14 IDSEARCH . ivviivtiietetontnnrenressocessosansen 122
4.15 INSERT . eiiiiiiiiitiiiieieeneenrenensencseanannnen 122
4.16 JORESULT .eiitiiiiiiiiiieeieeienneneencseenscnnens 122
4.17 LENGTH ..viiiiiiiiiiiiittnnineeereacesessaanencns 123
418 MARK . iiiiiiiiiiiiiiiiiiereneentssceessnnscnsnnns 123

4.19 MEMAVAIL .. .oiiiiiiiiiiiiinirienncnssocseansanns 124
4.20 MEMLOCK .iviitiiiinerieenteeocersocecssansonncns 124

4.21 MEMSWARP ...ttt iiii it 125

viii

4.22
423
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
441
4.42
443
4.44
4.45
4.46
4.47
448
4.49
4.50
4.51

Chapter S

5.0
501
5.0.2
5.0.3
5.0.4
5.0.5
5.0.6
5.0.7
5.0.8
5.0.9
5.0.10

Contents

MOVELEFT . tiiiiiiiiiiiiiiiiieneieitienrnenencass 125
MOVERIGHT ...iiiiiiiiiiiiiiiieieieieneneneannnnss 126
OPENNEW L1 iitiiiinrnrnieestneiesresssaseansssones 127
OPENOLD .+t titvttnerennreresesnssssnsnssassoncnsns 127
P_MACHINEoiiiiiiiiniiiiiiieienticiencnsanns 127
241 128
PWROFTEN ..ivitieiniiiieiiinensncncisnonenoncnnns 128
REDIRECT v ivitiiiuiiiiiriensisnsesnescsoscncsencns 129
RELEASE .. 0iiiitirieriirincicsiescieciesesessonsons 129
RESET ttiritiiiiininiiiniriiieictsnsisnsecioncacnnes 130
REWRITE .. coiviiiiiiiiiiiiiiieieneiienenennenees 131
SCAN 1t ttetttireresessoerssnsesssnsnsnoassosssonss 131
SEEK ttuveiiiasesonrorsssssensssssssassensncasasans 132
SEMINIT ..ivirininiinrnsniensnsisnenesesssoneonces 133
R (€217 Y 133
R0 72 510) 133
R - N 2 134
ST R i itieinieeirsasnsnsiosssaseosssssssassencssnnes 134
0 11 1 2 13§
TREESEARCH ...oivviiiiiiiiiiiiiiiiiiiiasnnecennes 135
UNITBUSY . tiiiiiiiiiiiiiiiiiiiensncncaracencenns 136
UNITCLEAR .. iitiiiiiiiiiiiiiiieneiircnennnens 136
UNITREAD .. iiiiiiiiiiiiiiiieiiiniiiiiiieiensaennss 136
UNITSTATUS .. ioiiiiiiiiiiiiiiernenerennennenenns 137
UNITWAIT .o iiiiiiiiiiiiiiiiiiiiieiirsanennnens 138
UNITWRITE ...citiiiiiiiiiiiiiiiiiiieiinesrnneesss 138
VARAVAIL ..ottt iiiieiiiineiennannes 139
VARDISPOSE ...ciiiiiiiiiiiiiiiiiiiiirerenneannnes 139
VARNEW .. iiiiiiiiiiiiiiiiiiiiiiieinieianenenss 140
A7 7N 140
COMPILE OPTIONS 141
(001503 o V-0 AP 142

Compiled Listings «..ovvvvvieiiiraeieieienenanns 145

Include FileS ..o vvvviniiiniiieeiierencsnnsnanans 147

Using UnitS cvovvverniiineriniineenerneenasenans 148

Swapping Compiler......cooevveiirerenncannees 149

Conditional Compilationcoeevevuennennn 150

I/O ChecKS covvvvierneenronisstonesssasnonsnnsnes 151

Range Checks ..ovvveriiniiieiienninainnnecennsn. 152

GOTO Restriction cvovvveenineneieneieorenaenenss 153

Copyright Noticesovvviieiiiiiineniainnas 153

Console Display Suppressioneoeveeveneaes 154

Contents

5.0.11
5.0.12
5.0.13
5.0.14
5.0.18
5.0.16
5.0.17
5.0.18
5.1

Chapter 6

6.0
6.0.1
6.0.2
6.0.3
6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.6.1
6.6.2
6.7
6.8
6.9
6.9.1
6.9.2
6.9.3
6.9.4
6.10
6.10.1
6.10.2
6.11
6.11.1
6.11.2
6.11.3
6.12

Segment Residencyoovvienviiiiiiiiennnn,
System Programsccoviviiiieiiiiiieiiiinn
Native Code coovvrreiieeriiiriiinrecnsnencenncens
Real SIZ€ .ovvviiiiriiiiiiiiiinnenenneiinnsnenanas
Symbolic Debuggingcocvveiviieniiieniennnn.
Byte SexFlipping ...ccvvvviiiiiivieiiiinennnnnn,
ExecutableUnits.....coivveiiiiieiniiiinennnnn
"Tiny” Compiler ...ooovveviiiieniieienenencnens
Option SUMMATY «vvvvveriiriiiieiierenerieseenenes

PROGRAMMING PRACTICES

Packed Variables and Storage Allocation............
Packed ATTaysS .ccveerreiercceercaranecsonsscnns
Packed Records ...ovvvvvieeevinrnnrecseecnnnnens
Packing and Storage Allocation Rules...........

Accessing Bytes, Bits and Bit Fields.................
WOTdS coveeneennesneisessensoesssnssssssnsconcs

Unsigned Integer Manipulation
Full-word Logical Operations..........ccoevuvennnn.
Variable-sized Array Allocationc.oevvvvnnnn.
Version Il Heap Strategycovvvviiiiane.
Version IV Heap Strategyccovvvvnivnnnnnn.
Segment and External Procedures in Unit Interfaces
Structured Parameters Using Pointers...............
Technique ..o ivviiinieiiiiieiiniiiiiiiannnens
Heap Management........oovvevvveiiieienennan,
Passing "Untyped” Parameters............covivunnn.
Variant Record Buffer Overlaycovevvnvenn,

Data Prompts.ooeveiriiviieiieiieeiiienieeisscnesnns

Character Prompts....coveveiniiiiinennrnnennnns
Integer Prompts....cccovvvieieiiiinineninenenene
File Prompt .oovviviinreniieenernrcsososcossnsens
Real Prompts.....coovviiiiiiieneennieniennnenns
Device Drivers...ocveeveieiiiiiieieniinennnenennnnn,
Driver Interfacec.covvviieineieininriennnn,s
DEVICE ACCESS e ovverriuriirinrrercarasiensnenenns
Locating Execution Errors......covevvneneiiiennnen.
Using Compiled Listings ...c.vvveeenininninnnnn.
Without Using Compiled Listings..............
Further Investigationscocovivinanes,
Programming with Units...........coeieiieniatn.

X

6.12.1
6.12.2
6.13
6.13.1
6.13.2
6.14
6.15
6.15.1
6.15.2
6.15.3
6.15.4
6.15.5
6.15.6
6.15.7
6.15.8
6.15.9
6.15.10
6.15.11

Chapter 7

7.0

7.0.1
7.0.2
7.1

7.11
7.1.2
7.2

7.2.1
7.2.2
7.2.3
724
7.2.5
7.2.6
7.3

7.3.1
7.3.2
7.3.3
7.34
7.3.5
74

1.5

7.5.1
7.5.2

Contents

Unit Developmentcovivviveeennnnnss veeees 217
Using Pre-existingUnits.........ocovvuieninnen, 219
Using Native Codeoovvivviiiiiiiiiiiiiiiiennnn, 221
Automated Native Code Generation............. 221
User-Supplied Native Code ..vvvvvnriiriiainness 223
Passing Parameters Between Programs.............. 223
Coding Style and Optimizations.........eevveeneens 226
Expressionsand Array Indices.......coeevnvenns 226
Multiword ConstantsScoeevieeressesescennns 227
Packed Field References.......ooovvvniinnncances 228
Reals and Long Integers........coovvvvnvinnnen, 230
Short Forms .. .ooivviiiiiiinniiiiiinneencnncnnns 231
WITH Statementsoveveiierivreeorececcsssenns 234
String Manipulationcoovviiiiiiniinennn. 236
CASE StatementsS . coovveeereereeescecssceseneass 238
GOTO StatementS ...ovvvvvureeeneinreneesonannss 239
Procedure CallS...oveviierieiereeceseoneceennns 240
Parameters to Proceduresocvvvvvineinnnnns 241
THE UCSD P-SYSTEM FILE SYSTEM 243
File System cvoviiiiiiiiiiinieeennrionecernscnonnenns 244
General OVerviewovvveivnenrinrvocernncnnns 244
SYNtaXOVEIrVIEW cvviiviveerrseeecensonscencnns 245
Physical Units............. erreees eeeeseserieaaens 245
SyntaxOvVerviewW cvveveieneiiieeesciossecanncons 246
/O DeViCeS covvrirreeeraaresnrsocaserasascacnnns 246
Logical VOlumes ...coovuiviiiniiiiiiieniienenenenens 247
SyntaxOVerview ovivrivieiiensersrsnesnsonnes 248
Block-structured (Disk) Volumes 249
Disk Volume Usageooovvvvinieniinnennenens 249
System Volumes.............. eeene ereerensans 250
Prefixed Volumesovviveeiiniineneennnronnnns 250
Disk Directories .oovvevrevrioiasioieriosscarosess 251
Disk FileS . ooiuurieriiineseenesnrriionionsononsoncans 252
SyntaxOverview covvveiiiirvenrrosensennsannnns 252
File Attributesooivviriiienrenencennncenonens 252
File SuffiXes...oovieiiriiiernneerereerenscannnns 254
T T 1 255
File Length and File Length Specifiers........... 258
Syntax Specificationccvvvvirseriererenrorcnsnes 259
Subsidiary Volumescooiiiiiiiniernenereennnnns 260
Creating and Initializing Subsidiary Volumes.. 260
ReStIICtIONS v vvivitiiieiennarreearecosconnsconnns 261

Contents

7.6

7.6.1
7.6.2
7.6.3
7.6.4

Chapter 8

8.0
8.0.1
8.0.2
8.1
8.2
8.3
8.3.1
8.3.2
8.3.3
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.5
8.6
8.7

Appendix
Appendix
Appendix
Appendix
D41
D.2
D.3

D.4
D.5

Appendix
Appendix

o o w »

File Conventions and Applicationseeveveeneess
File Name Prompt Conventions.........c.evuee..
Input Prompts....ocvveriiiineiineieinenencnnns
Output Prompts..covveiieieneneienenienennenes
File Access from User Programs................

SYSTEM UNITS AND DATA STRUCTURES

Using SCREENOPS Data Structures and Procedures .
COMMANDIO Monitor and I/0 Redirection
The KERNELooviviiiiiiiiiiiiiiiiiiieiineenen.
System Constantscovieeriierieiirenacnacones
Accessing the System Date..........covevnennn
Using Directories from Programs...............
Segment Code Managementc.coceeuiiinnnannnss
Introduction and Overviewcoeenvnininens
Code File Structureocveveevenenrienennnens
Environment Records & Segment Information ..
AsaProgram Runs.........cooeieeieniniinannnns
File Information Blocks (FIBS)covvvunnnnnnnne.
Accessing Internal Operating System Procedures....
The Compiler/Operating System Interface

STANDARD 1/0 RESULTS
STANDARD EXECUTION ERRORS
CONDITIONS CAUSING I/0 ERRORS

STANDARD 1I/0 UNIT ATTRIBUTES

Serial Unit Attributes ..cceveeieerenisrreososesecnnnns
Serial Input Attributes.....oovviiineiireincieennnnss
Serial Output Attributes.....covevivviniineininnne.
Block-structured Unit Attributes.....coeevvneennns
I/0 Unit Specificationccovvevueiiineiienannnnnns

RESERVED WORDS
PREDECLARED IDENTIFIERS

265

267
268
269
270
2717
280
281
281
282
288
289
293
301
305
306
309
319

325
327
329

332
333
333
335
335
336

340
341

xii Contents
Appendix G IMPLEMENTATION LIMITS 343
G.1 Quantitative Limitscoviiiiniiiiiinniiieencnnnes 343
G.2 N £ O 344
G.3 Mixed Expression Evaluationcceeeevevnnennn. 344
G4 NIL Pointer Referencesovouveeneneesnreracenens 345
G.S5 Record Variant AcCCesSescvveierenerereeeecnnnns 345
G.6 FOR Statements....covvverrnrnreereiocnnenennnns vees 345
G.7 Special Symbols . ..covieiiiiiiiiiiiiiiiiiiiiiiiiien.. 345
G.8 MOD and DIV with Negative Arguments........... 345
Appendix H COMPILER SYNTAX ERRORS 346
Appendix 1 ASCH CHARACTER SET 351
Appendix J DIFFERENCES BETWEEN UCSD VERSIONS 352
J1 CONCUTTENCY ¢t vveirternrneesenresenesessceensoannns 352
J.2 30 352
1.3 Long Integers................... ereeeeeees weesrans 353
J4 Transcendental Functionsoooeveeneneennnnnn. 353
1.5 11013 1 1 353
J.6 L85 R 353
J.7 TREESEARCHiiiiiiiiiiiniiiieiieiienennnennes 353
J.8 INtrinNSICS cvvvvntenntieereeiernoaeneeeosennonaseneenss 353
J9 I/O Redirection «.oovvveieniinnienenrncaenenenennnenns 354
J.10 Pointer CompariSon «...ovvvieviieerenerneeeeennennns 354
J11 Procedure Size ...ovviiiiiiiiiieiiiiiienenneenncnnnnns 354

Bibliographyoovvveiiiiiiiiiiiiiiieiiieniiiirieieras 355

Biographyvviiiiiiiiiiiiiiiiiiiiiiiii it et iie e e 359

Indexoovvniiniiiiiiiiiineeeeiiteresenneeseesensenscncens 361

Foreword

This is a book for serious” users of the UCSD Pascal System, as most
widely distributed on many different personal computers. It is a book that
I wish had been available five years ago.

Niklaus Wirth designed Pascal to be a teaching language-one that
would be an expression of the systematic or “structured” methods of
writing better programs. Like many others, we at UCSD found Pascal to
be too good to be limited to teaching only. We saw it as a superb vehicle
for creating large, complex system programs-not just the UCSD p-System
itself, but a wide variety of large and complex application programs and
products. But to use Wirth’s Pascal for these applications in practice on a
microcomputer required subtle changes and extensionsin Wirth’s teaching
language Pascal. Thus was born the UCSD Pascal language.

One of the most important aims of the UCSD Pascal Project was to
demonstrate that it is highly practical to implement a software system
that permits large/complex application programs to run unaltered on a
wide variety of dissimilar machines. This aim led to the the UCSD Pascal
Software System, now expanded and marketed as the UCSD p-System by
Sof Tech Microsystems.

Both the language extensions and the system portability features
resulted in a practical software development system inevitably
characterized by a rich lore that must be understood for the system to be
used effectively. The application program developer who ignores this lore
risks creating programs that run factors of 10 slower than the p-System

xiii

xiv Foreword

permits, or suffers not implementing important features in his product
which indeed are very simple to accomplish.

In writing this book, Barry Demchak and Eli Willner have provided
a highly readable compendium of the essential lore needed by any serious
user of the p-System. As both a collection of suggested techniques and a
reference work, a short study of this book will often save large amounts of
time for both professional programmers and advanced students of
computer science who use the p-System.

Barry Demchak was a member of the student team which
implemented UCSD Pascal up through Versions II.1 and ILO. I
congratulate him and his coauthor for a fine addition to the literature of
the p-System.

Ken Bowles

Professor (retired) University of California, San Diego

Acknowledgements

Acknowledgements are difficult; the number of people and institutions
that have influenced us in the course of writing this book is great. It
would be impossible to enumerate all of them but several stand out.

First, we would like to acknowledge Neil Williams and Jim Condit
of Advanced Computer Design and Rich Gleaves, formerly of Advanced
Computer Design. Neil and Jim provided the environment wherein Rich
wrote the original manual set for ACD’s PDQ-3 computer. These manuals
were comprehensive and well-written enough to serve as an excellent
foundation for this book.

In addition, we must also express our enormous gratitude to Professor
Kenneth Bowles, not only for graciously accepting our invitation to write
the foreword to this book, but also for having the courage and insight that
made UCSD Pascal the success it has been over the years.

We would also like to thank our reviewers, who made valuable
comments in the later stages of this book.

I (Eliakim) would like to thank the many individuals who
contributed to my knowledge of UCSD Pascal. At the risk of sounding
like an Academy Awards winner, I would like to thank Randy Bush, Bob
Peterson, Arley Dealey, Steve Brecher, Jai Khalsa, Jon Bondy, Ted Powell,
Stephen Pickett, Derek Jones, George Schreyer, Monty Solomon, Charles
Rockwell and Martin Burger. Of course, my co-author, Barry Demchak,
figures prominently in this group.

Xv

xvi Acknowledgements

Erik Smith, of Scenic Computer Systems Corporation, is to be thanked
not only for contributing to my UCSD Pascal education but also for the
excellent job he did in the production of this book.

I became acquainted with all these individuals through USUS, the
UCSD Pascal Users’ Society. Programming a complex application without
the resource of other experienced users is like trying to single-handedly
build a castle in the desert-it’s just not worth trying. I urge all UCSD
Pascal programmers to become involved in USUS.

I began programming as a student at Brooklyn College. I would like
to thank their Computer Science faculty for providing me with a solid
background as a student, as well as for providing a fertile ground for
growth when I joined them as an adjunct faculty member.

In the same vein I thank colleagues at Datronics, Inc. and at
Kingsborough Community College (where I am currently a member of the
adjunct faculty) for providing a stimulating working environment.

I thank Mario Anello-manager par excellence-and Bill Zolnowski of
Con Ed for a number of challenging data-processing assignments, as well as
for having the perspicacity to trust their computer expert to make the right
decisions.

My thanks to my parents. Finally, my thanks to my wife,
Gittle-whose vision enables me to keep in sight the priorities that lie
beyond the immediate alligators.

I (Barry) would like to acknowledge all of my family and friends for
their support during the long and painful process of creating the
predecessors to this book. Special thanks goes to Dr. Jacqueline Byrne and
my partners, Bill Franks, Bob Kolodinsky and David Berger, who
encouraged me throughout this project and convinced me that it was
worth seeing through. I would also like to recognize and thank two
outstanding computer scientists, formerly of the University of California,
San Diego: Professor Kenneth Bowles and Dr. Richard Sites, both of whom
I admire, respect and thank for imparting parts of their attitudes and
wisdom to me.

Eliakim Willner
Barry Demchak

Chapter 1

INTRODUCTION

Contents
1.0 Purpose and Scope of this BoOKovviviiiiiiiiniiiinnnne. 1
1.1 History of UCSD Pascalvvvvieevrerennionsssnsonsccoccanes 2
1.2 L0 -3 T T 4
1.3 Notation and Terminologycoevvevrervreeneiiiennennacnnss 4

1.0 Purpose and Scope of this Book

This book is a tutorial and reference manual for the UCSD Pascal language
and operating system. It is written for programmers who have a working
knowledge of UCSD Pascal or extensive experience with Standard Pascal.
The intention of this book is to provide such advanced programmers with
practical knowledge and perspectives that will enable them to write
complex UCSD Pascal programs in the most effective and efficient ways
possible. Hence, the material presented herein contains not only
descriptions of the language, but also programming examples and
architectural discussions not available in any other text.

2 INTRODUCTION Chap. 1

The emphasis of this book is on the two most popular versions of
UCSD Pascal. The major emphasis is placed on Version IV, which is
distributed by SofTech Microsystems, Inc. and its licensees. Secondary
emphasis is placed on Version II, which is distributed by Apple Computer
Corporation as Apple Pascal 1.0 and 1.1. The features provided in Apple
Pascal are largely subsets of those found in Version IV. Differences
between the two versions are discussed where appropriate.

This book does not describe Standard Pascal nor does it present an
introduction to UCSD Pascal. It assumes a basic familiarity with both.
Information regarding Standard Pascal can be obtained from American
National Standard Pascal Computer Programming Language (IEEE,
1982). There are a variety of excellent introductory texts dealing with
UCSD Pascal, some of which are listed in the bibliography of this book.

1.1 History of UCSD Pascal

UCSD Pascal is a variant of the Pascal programming language developed
by Niklaus Wirth at ETH Zurich in the late 1970’s. UCSD Pascal was
developed by Dr. Kenneth L. Bowles and the students of the “Pascal
project” at the University of California in San Diego. In 1975, Dr. Bowles
taught the introductory computer programming class at UCSD. At the
time, he taught Algol using the campus’ Burroughs 6700 mainframe. He
chose Pascal as the successor to Algol because of Pascal’s simplicity,
elegance and suitability for teaching good programming techniques. He
hoped to create a microcomputer-based integrated teaching system, thereby
providing students with more personalized and expedientinstruction.

The first step was to obtain the Wirth P2 Pascal compiler. This
compiler translated Pascal to a pseudo code called p-code. The p-code was
meant to executeon a hypothetical machine (called the p-machine), and not
the B6700. Instead of retargeting the compiler for the B6700, Dr. Bowles
chose to write a p-machine emulator (called an interpreter) that ran on the
B6700.

In 1976 the compiler was ported to the DEC PDP-11/10
microcomputer under the RT-11 operating system. Because of the
interpretive approach taken on the B6700 the port consisted mostly of
writing a p-code interpreter for the PDP-11. The vast majority of the
compiler was ported without change.

The next step was to create a stand-alone program development
system that contained a file handler, a compiler and an operating system.
In order to write such a system in Pascal it was necessary to extend the
language in the areas of machine-level 1/0, dynamic string processing,
random access of files and a host of other areas. Version 1.0 of the UCSD

Sec. 1.1 History of UCSD Pascal 3

Pascal system was produced in 1976. At this point the UCSD Pascal
project consisted of Dr. Bowles and approximately five students.

By the summer of 1977 Version 1.3 had been produced and the Pascal
project began to distribute the system to other educational institutions and
to private parties. The Project packaged system code files, utilities,
documentation and source on two DEC eight inch diskettes for $200.00.

Not only did the UCSD Pascal system provide an excellent learning
environment, but the interpretive approach gave the promise of software
that could be transported between different processors without changing
the software or the operating environment. A p-code interpreter was
written to run on the Intel 8080 microprocessor, and the entire UCSD
Pascal system was transported to the 8080 without changing a line of
Pascal code! The 8080 version was released in 1977 and utilized the I/0
system provided by a CP/M operating system running on the host 8080.
This allowed UCSD Pascal to execute on nearly all 8080 systems with
little or no additional work.

By the summer of 1978 the UCSD Pascal system was at Version 14,
there were over 40 students on the Pascal project and the Pascal system
was being ported to the TI-9900, the Motorola 6800, the Commodore 6502
and the GA-440. A multi-processing version of the p-machine was being
developed in conjunction with Western Digital Corporation. Meanwhile,
assembly language and modular compilation facilities were added to the
system and released in Version LS.

By early 1979 Apple Computer had begun to distribute UCSD Pascal
Version I1.1 as Apple Pascal 1.0. This system was essentially identical to
UCSD’s versions 1.5 and I1.0, with the exception of some technical
adjustments to the p-machine, some bug fixes and the development of
Apple’s Intrinsic Unit scheme of modular compilation. Meanwhile,
Western Digital had produced their custom p-machine (called Version IIL0)
as a microcoded chipset called the MicroEngine. Since the interpreter was
microcoded instead of assembly-coded, the Western Digital processor
executed UCSD Pascal four to five times faster than other processors.

As a result of the success of UCSD Pascal in the commercial
marketplace the University of California ruled that the UCSD Pascal
system should be licensed to a commercial enterprise rather than call into
question the non-profit status of the entire University of California
system. In the summer of 1979 the development and marketing of the
UCSD Pascal system was transferred to Sof Tech Microsystems.

Sof Tech Microsystems sponsored the development of UCSD Pascal
Version IV. Version IV incorporated the modular programming concepts
of UCSD Pascal’s Version I1.0 and Apple Pascal’s Version 1.0. It also
incorporated the concurrency primitives of Western Digital’s Version II1.0.
Sof Tech has continued to sponsor enhancements to Version IV, which is

4 INTRODUCTION Chap. 1

currently marketed as the p-System. At this writing, Sof Tech’s current
release level is Version I'V.13. This book concentrates on Version IV.13, but
also discusses Apple Pascal where appropriate.

1.2 Overview

This book is organized into eight chapters. Introduction presents an
overview of UCSD Pascal along with information helpful in using this
book. Deviations describes the areas in which UCSD Pascal differs from
Standard Pascal. Extensions describes features available in UCSD Pascal
that are not included in Standard Pascal. UCSD Intrinsics provides
detailed descriptions of all the UCSD Pascal intrinsic routines. The
intrinsics are listed in alphabetic order for easy reference. Compile
Options describes compiler directives which affect either the compiler’s
operation or the nature of the code produced. Programming Practices
describes common programming practices in UCSD Pascal. The UCSD
Pascal File System explains the nature of files, devices and directories
and how these may be manipulated from within programs. System
Units and Data Structures describes how various operating system
functions may be invoked from within a program. The Appendices
include information on I/0 device attributes, implementation size limits,
differences between UCSD Pascal release versions and a number of helpful
tables.

1.3 Notation and Terminology

This section describes the notation and terminology used in this book to
describe UCSD Pascal.

When a new language construct is introduced for the first time, it is
important to be able to describe in a general way what a valid use of the
new construct looks like. In this book, a variant of Backus-Naur form
(BNF) is the notation used for describing the form of language constructs.
Meta-words are words which represent a class of words; they are delimited
by angular brackets (”<” and ”>”). Thus, the words “trout”, "salmon”, and
”tuna” are acceptable substitutions for the meta-word ”<fish>"; here is an
expression describing the substitution:

<fish> ::= trout | salmon | tuna

The symbol ”::=" indicates that the meta-word on the left-hand side
may be substituted with an item from the right-hand side. The vertical
bar ”I” may be read as “or”. It separates possible choices for substitution.

Sec. 1.3 Notation and Terminology 5

The example above indicates that “trout”, “salmon”, or “tuna” may be
substituted for <fish>.

An item enclosed in square brackets may be optionally substituted
into a textual expression; for instance, “microkcomputer” represents the text
strings "computer” and "microcomputer”.

An item enclosed in curly brackets may be substituted zero or more
times into a textual expression. The following expression represents
responses to jokes possessing varying degrees of humor:

<joke response> ::= §{Ha}

Ha, HaHa, HaHaHaHa — or nothing at all! - are all valid substitutions
for <joke response>.

In many instances, the notation described above is used informally to
describe the form required by a language construct. Here are some typical
examples:

START(<process statement> [,<pid> [,<stacksize> [,<priority>]]])
CONCAT(<string> §,<string>})

The syntax for Pascal’s IF statement is:
IF <Boolean expression> THEN <statement> [ELSE <statement>)

The following terms are used in the descriptions of UCSD Pascal: file
name, block, block number, unit, and unit number. File name refers
to the system’s file naming convention. File names are described in chapter
7. Block denotes the basic unit of transfer for disk files; a block is defined
as 512 bytes of data. Block is also defined in Pascal as the set of
declarations and statements comprising a program or procedure. The
context will make clear which meaning is intended. Unit refers either to a
separately compilable module or an I/0 unit (as described in Appendix D).
Unit number applies only to I/0 units.

Chapter 2

DEVIATIONS FROM STANDARD PASCAL

20
2.1
2.2
2.3
24
2.5
2.6
2.6.1
2.6.2
2.6.3
2.64
2.6.5
2.7
2.8
29
2.10
211
2.12
2.13
2.14
2.15

Contents

CASE Statements .oovvveeeeeeneeesessiesscssosessosssssnvens 7
GOTO StAtEIMENLS c oo vevreennrreseenssecssansssssssssssssssans 8
DISPOSE .t iititteeiierreeeesetsoeeansosssosscssocnsssessesnssns 9
N1 1 9
FORW ARD 1 iiiiiiiiiiieeeneeereneessnssossssssnsscsnsosnns 9
ODD,CHR and NOT ... virriiiniiesensenrnessociacsssasonss 10
T/O INtTiNSICS o vvvenreereenreesecesssssssessssnssscsssssanes 12
INPU T tttieeneirenseareeeesonscsossosssssssssassances 12
RESET and REWRITE ... iiiiiiiiiiiiiiiirrinnnncnnenes 12
1) 12
READ and READLNiiiiiiiiiieriiiensessscsonssns 13
WRITE and WRITELN ...iiiirtiiieeiiienrrccesccnenens 13
Packed VariableS .o.vvveeeerereressocssssocassssssonsnns veee 13
Procedural and Functional Parametersc.cccoeveevenenens 14
Program Headings........ccooeeiiiiiiiiiiiniiiiiiiiiinees 14
RECOTAS ¢ ittt iiiierereseeeeesesssosssccssscsssoensnnanne 14
FAlES cvvvrieniiineeeneeeeeeeennnnnecsoonassssssosasesassnnnes 15
Reserved WordsS coveeieeeeeereeeeencsccasscacsssssoccososons 15
COMMEIITS + e et tvenreeesnsnanssososessassccsosnsssascossass 15
Type Compatibility ereneteererereesans veeess 16
GBS ettt veennrneereeesassesasesssossccsnsssssansasssssssonnss 18

.DEVIATIONS FROM STANDARD PASCAL Chap. 2 7

2.16 POInters . .ovuneiiiii it i i e i e e e, 18
217 0 1 19

This section describes the areas where UCSD Pascal deviates from Standard
Pascal. Language differences are considered deviations if they meet the
following criteria:

® The differences affect compilation or execution of programs written
in Standard Pascal. These deviations affect the transportability of
Standard Pascal programs onto the UCSD Pascal system; they are
generally categorized as implementation restrictions.

® The differences subtly alter the Standard Pascal language definition.
These deviations affect the transportability of seemingly Standard
Pascal programs written in UCSD Pascal to other Pascal
implementations; they are generally categorized as “features”!

Sections 2.6.5 (WRITE), 2.9 (program headings) and 2.10 (records)
describe deviations belonging to both categories. Sections 2.0 (CASE
statements), 2.3 (NIL), 2.5 (ODD and CHR), 2.13 (comments), and 2.14
(type compatibility) describe UCSD Pascal “features”. The remaining
sections describe implementation restrictions.

NOTE: This section describes language deviations only.
Implementation-dependent limits are described in AppendixG.

2.0 CASE Statements

In Standard Pascal, the result of a CASE statement is undefined if the case
selector contains a value which is not matched by any case label listed in
the statement.

In UCSD Pascal, CASE statements are defined to have no effect in
this situation; case selection “falls through”, and execution continues with
the statement following the CASE statement.

Exampleof CASE statement:

program fallthrough;
var ch: chor;
begin
ch := 'b’;
case ch of
‘a’: writeln(’ch
'c': writeln(’ch

"O"’);
ncn');

8 DEVIATIONS FROM STANDARD PASCAL Chap. 2

end;
writeln('No errors from case...’);
end §fallthrought.

This program prints only “No errors from case..”. The value of the
case selector, ch, is not matched by a case label within the case statement, so
the case statement has no effect. Execution continues at the WRITELN
following the case statement. Had the value of ch been ’a’ or ’c’, one of the
WRITELN’s within the case would have been executed first, followed by
the final writeln.

Many implementations of Pascal provide an OTHERWISE clause to
the CASE statement. The effect of this clause is to provide an alternative
statement which is executed only when none of the case labels match the
selector.

The effect of the QTHERWISE clause may be simulated in UCSD
Pascal by enclosing the CASE statement within an IF statement:

program fallthrough;
var ch: char;
begin
ch := 'b’;
if ch in['a’, ’'c']
then case ch of
'a’: writeln(’'ch = "a"’);
'c': writeln(’ch = "¢"*);
end
else writeln('No matching label in case ...');
end §fallthrought.

Here, ”"No matching label in case..” is printed. However, if ch were
either "a’ or ’c’ ONLY the appropriate writeln within the case would be
executed. The final writeln would be ignored, since it appears in the ELSE
portion of the IF statement.

2.1 GOTO Statements

In UCSD Pascal, the scope of labels accessible to GOTO statements is
restricted to a single block; thus, out-of-block GOTO’s are not allowed.

Pre-Version IV releases of UCSD Pascal restricted the use of GOTO
statements to programs that used the $G+ compiler directive. See section
5.0.8 for details.

NOTE: A limited form of out-of-block GOTO is provided with the
EXIT intrinsic (see section 3.11.8 for details).

Example of out-of-block GOTO:

Sec. 2.1 GOTO Statements 9

program outside;
label 1;

procedure jump;
begin

goto 1;
end §jump};

begin
jump;

end foutside}.

The compiler will complain that the label 1 in the statement goto 1;
is undeclared because it is not declared within procedure jump.

2.2 DISPOSE

The standard procedure DISPOSE is not implemented in versions of UCSD
Pascal prior to Version IV. Earlier versions are limited to the UCSD
intrinsics MARK and RELLEASE for deallocation of dynamically allocated
variables (see section 3.5 for details).

2.3 NIL

Standard Pascal defines the symbol NIL as a reserved word. NIL is a
predefined identifier in UCSD Pascal. As a practical matter, the only
difference is that the compiler will indicate a syntax error if the
programmer attempts to redefine a reserved word, but since NIL is treated
as a predefined identifier it may be redeclared within the program
(although this is not advisable).

24 FORWARD

Standard Pascal defines the symbol FORWARD as a directive lacking any
meaning outside of a procedure declaration. FORWARD is a reserved word
in UCSD Pascal. Hence neither variables, types, constants nor other
structures can have the name FORWARD.

10 DEVIATIONS FROM STANDARD PASCAL Chap. 2
2.5 ODD, CHR and NOT

Standard Pascal defines the standard functions ODD, CHR and NOT to
return a result whose ordinal value is within the range of the result type.
Thus, ODD and NOT are defined to return a BOOLEAN result whose
ordinal value is in the range 0..1, and CHR is defined to return a result of
type CHAR whose ordinal value is in the range 0..255.

In UCSD Pascal, ODD and CHR perform the required type conversion,
but the data itself is not transformed in any way. The effect of these
intrinsics is to permit non-boolean and non-character data to be treated as
booleans or characters for the purpose of expression evaluation and
assignment. For example, ORDXODD(56)) returns O in Standard Pascal
since ODDX(56) returns the BOOLEAN value FALSE. But in UCSD Pascal
ORD(ODD(56)) returns 56. ODD(56) acts as the BOOLEAN FALSE when
used in a BOOLEAN context (only the low-order bit is considered) but has
an ordinal value of 56. ODD is defined in this manner to allow logical
operations on integer types (see section 6.3).

In UCSD Pascal BOOLEANSs typically occupy 16 bits, with the value
of the BOOLEAN determined by the low-order bit. Although the NOT
operator is required to complement only the low-order bit, in fact it
complements the entire 16-bit operand. For example, ORD (NOT FALSE)
returns 1 in Standard Pascal, but returns -1 in UCSD Pascal. In UCSD
Pascal FALSE is represented as a word containing 16 zero bits. NOT
FALSE causes the entire word to be complemented, yielding 16 one bits
with a two’s complement integer value of -1.

WARNING: Under these rules, variables of type BOOLEAN and
CHAR may contain values outside of their defined ordinal ranges.
BOOLEAN and CHAR comparisons do not work correctly when their
arguments possess out-of-range ordinal values, as they are implemented
with full-word comparison operators.

if odd(56) = odd(58)
then write(’This must be Standard Pascal’)
else write(’This must be UCSD Pascal’);

Since the ODD function returns a word with the same value as its
argument, and since the entire word is considered although a BOOLEAN
comparison is taking place, odd(56) will not be equal to odd(58) in UCSD
Pascal.

Array indexing using subscripts of types BOOLEAN and CHAR may
not behave as expected. For example:

var bool: boolean;
arry: array[boolean] of integer;

Sec. 2.5 ODD, CHR and NOT 11

bool:= false;
array[not bool] := @;

The array reference above functions properly in Standard Pascal but
produces an out-of-range subscript in UCSD Pascal; the full word value of
not bool is 16 ”one” bits, or -1.

Note that conditional statements in UCSD Pascal ignore all but the
low-order bit of a BOOLEAN result and thus are unaffected by this
feature. The WRITELN statement of the following example will be
executed,as expected.

if 0dd(57)
then writeIln(’'The low bit was set’');

ODD example:

program bitdiddle;
const highmask = 255;
var num: integer;
begin
num := 556;
num := ord(odd(num) and odd(highmask));

§ 0000 0010 0010 1100 (decimal 556; num)
AND 2000 0000 1111 1111 (decimal 255; highmask)
= 0000 0000 0010 1100 (decimal 44; '
new value of num)

The high byte of num has been masked off.
Num now contains the integer value 44 $

num := ord(not odd(num));

§ NOT 0000 0000 Q210 1100 (decimal 44; num)
= 1111 1111 1101 0011 (decimal —45;
new value of num)

Taking the 1’s complement yields —45 }
end §bitdiddlie}.

This program illustrates how the ORD and ODD functions may be
used to perform boolean AND and NOT operations on 16-bit integer values.
First the high byte of num is cleared, preserving the low byte, by ANDing
num Wwith highmask. The AND operation is defined only on booleans,
however. Thus, the ODD function is used on num and highmask to cause
them to be viewed as booleans while maintaining their original bit
configurations. The AND operation produces a boolean result which may
be assigned to the integer variable num by using the ORD function.

The subsequent statement again uses ODD to permit num to be treated
as a boolean, this time to permit the use of the NOT operator. NOT

12 DEVIATIONS FROM STANDARD PASCAL Chap. 2

complements each of the 16 bits of num. ORD is used to permit the result to
be assigned back to the integer num.

2.6 I/0 Intrinsics

Sections 2.6.1 through 2.6.3 describe deviations resulting from UCSD
Pascal’s file /0 environment. Sections 2.6.4 and 2.6.5 describe deviations
resulting from implementation restrictions.

2.6.1 INPUT

The predeclared file INPUT is defined as an interactive file in UCSD
Pascal. Section 3.3.2 describes interactive files.

Whether or not 170 redirection has been invoked, all data read from
the INPUT file is echoed to the console.

2.6.2 RESET and REWRITE

The standard procedures RESET and REWRITE have been altered to
provide direct access to the file system (see section 3.3.1 for details). UCSD
Pascal does not allow internal (memory resident) files. All files must be
mapped into external files. Internal files may be simulated with
temporary externalfiles.
Exampleof an internal file in Standard Pascal:
procedure local;
var internal: file of integer;
begin
rewrite(internal);

end §local};

In UCSD Pascal, EOF is set to FALSE after a file is rewritten.
Standard Pascal defines EOF to be true after rewriting a file. The reason
for this discrepancy is explainedin the following section.

2.6.3 EOF

UCSD Pascal redefines the meaning of the standard function EOF for files
that are open for writing. The standard procedure REWRITE initially sets
EOF to FALSE; EOF then serves as a physical end-of-file indicator. The
standard procedure PUT sets EOF to false after every successfully written

Sec. 2.6 1/O Intrinsics 13

record. If PUT attempts to write a record past the end of the space
allocated for the disk file (see section 7.3.5), and the file space cannot be
extended (for lack of available disk space after the file), EOF becomes true.

NOTE: Attempts to write beyond the physical end of a file result in a
system execution error unless I/0 checking is disabled. See section 5.0.6 for
details on disabling I/0 checking.

2.6.4 READ and READLN

The standard procedure READ may not be applied to files other than text
files (files of type text, interactive or file of char). READ and READLN
accept elements of packed character arrays or strings as arguments. Entire
packed character arrays and strings are also acceptable. READ and
READLN are redefined when used with interactive files (see section 3.3.2
for details).

2.6.5 WRITE and WRITELN

The standard procedure WRITE may not be applied to files other than text
files.

Standard Pascal defines an optional control parameter named
fraction length for specifying the output format of values of type
REAL. The fraction length parameter specifies the number of digits to
follow the decimal point in a fixed point representation of the value. If the
fraction length specifies more digits than can be represented as significant
digits by the underlying floating point implementation, the standard
directs the fraction to be padded out with the requisite number of- 0’s.
UCSD Pascal pads out overly long fractional parts with blank characters
in place of (nonsignificant) 70" digits.

Note that most implementations of UCSD Pascal do not permit
boolean values to be written with WRITE or WRITELN.

2.7 Packed Variables

The standard procedures PACK and UNPACK are not implemented in
UCSD Pascal. UCSD Pascal does perform packing of array and record
types preceded by the reserved word PACKED. Variables are UNPACKed
and rePACKed transparently as needed (e.g., to assign a value to a single

14 DEVIATIONS FROM STANDARD PASCAL Chap. 2

element of a packed array). However, unpacking an entire structure must
be done an element at a time. Given the following situation, for example:
type

t = record
n: integer;

s: string[9];
end;
var
a: packed array[0..10] of t;
b: array[@..10] of t;

the statement b := a; compiles correctly but will not necessarily
execute correctly for an arbitrary record t. The correct unpacking
procedure is as follows:

for i : =0 to 1@ do
b[i] := a[i];

2.8 Procedural and Functional Parameters

Procedural and functional parameters are not implemented as of Version
IV.13 of UCSD Pascal.

2.9 Program Headings

Parameter lists associated with program headings are ignored in UCSD
Pascal. The standard files INPUT and OUTPUT are predeclared and opened
to the system console by the operating system. Programs gain access to
externalfiles with the intrinsics REWRITE, RESET and CLOSE (see section
3.3.1 for details).

NOTE: The INPUT and OUTPUT files may be attached to input and
output streams other than the system console by using the 1/O redirection
options described in section 4.4.

2.10 Records

UCSD Pascal does not allow records to be declared with empty field
lists.

UCSD Pascal does not enforce variant part completeness in record
declarations. Thus, the case labels need not specify all possible values of
the tag field. For example, the following record declaration is legal even

Sec. 2.10 Records 15

though there are not case labels for all possible integers.

type
devrec = record
8: string;
case integer of
1: (b: boolean);
2: (r: real);
end;

2.11 Files

UCSD Pascal does not allow file variables to be declared as part of an array
or record. Nor does it allow dynamic allocation of file variables.

2.12 Reserved Words

A number of reserved words have been added to UCSD Pascal. As noted in
section 2.4, FORWARD is a reserved word rather than a directive. The
following identifiers are reserved words in UCSD Pascal:

external
forward
implementation
interface
process
segment
separate

unit

uses

2.13 Comments

Standard Pascal defines the symbols "(*” and "*)” as alternative symbols
for the comment delimiters ”{” and ”}” respectively. Thus, comments may
begin with ”{” and end with ”*)”, or begin with "(*” and end with ”}”.
Additionally, comments may not be nested in Standard Pascal.

UCSD Pascal treats ”(*” and "*)” as separate comment delimiters from
the pair ”{” and ”}”. Thus, comments beginning with ”{” must end with
'}’ and comments beginning with ”(*” must end with ™*)”. As a result,
comments may be nested by using one pair of delimiters to comment out
source code containing comments delimited by the alternative symbols.
The compiler does not consider a comment terminated until it finds a
delimiter matching the one that began the comment.

16 DEVIATIONS FROM STANDARD PASCAL Chap. 2

Commented sections of UCSD Pascal programs are flagged as such in
compiled listings.
Exampleof comments in UCSD Pascal:

program comments;
begin

(»

comment out following stotements ...
writeIn('I won'’t writelin’); § and it won’t! }

don’'twritein('writeln’); § syntactically incorrect }
§ but no error message, since }
§ it’s a commented—out statement }
. end of comment

)

end {comments}.

2.14 Type Compatibility

In Pascal, variables may not be used in the same expression, nor may the
value of one variable be assigned to another, unless the variables are “type
compatible”.

In Standard Pascal, the rules for type compatibility are referred to as
name compatibility. In general, variables are name-compatible if one of
the following conditions is true:

® The variables are declared with the same type identifier (e.g., var vi:
stuff; v2: stuff;l

® The variables are in the same identifier list of a single variable
declaration (e.g.,, var v1, v2: array[char] of integer;).

In UCSD Pascal, the rules for type compatibility are referred to as
structure compatibility. Variables are structure-compatible if the data
structures implementing their respective types are structurally equivalent,
regardless of whether or not their types have the same name. To be
structure-compatible:

® Simple types must share the same base type (note that subrange types
that share the same base types are compatible with their base type
and with each other).

@ Sets must have structure-compatible base types.

® Arrays must have structure-compatible base types and index types
along with identical array bounds (as of Version IV.13).

Sec. 2.14 Type Compatibility 17

® Records must have structure-compatible fields declared in the same
order.

Exampleof structure-compatible simple types:

type
length = real;
weight = real;

Exampleof structure-compatible arrays:

type
t1 = 1..10;
t2 = 1..10;

x = array [t1] of integer;
y = array [t2] of 0..52;

Exampleof structure-compatible records:

type
polar = record
radius, angle: real;
int: integer;
end;

cart = record

X: real;

y: real;

z: 0...2047;
end;

duple = record

s,t: real;
u: 10..15;
end;

NOTE: Name compatibility implies structure compatibility but the
converse is not true. Thus, UCSD Pascal programs utilizing structural type
compatibility will not compile on Standard Pascal compilers which enforce
name compatibility.

WARNING: Structural equivalence of records can lead to somewhat
strange notions of type compatibility. For instance, assume that the value
1.0 is assigned to the field x in a record of type cart. If the record is
assigned to a record of type duple, the value 1.0 is contained in the t field
of duple instead of the s field! This is a result of the compiler’s scheme
for allocating storage space for record fields (see section 6.0.2 for details).

UCSD Pascal programmers are urged to exercise caution when
utilizing structural type compatibility.

18 DEVIATIONS FROM STANDARD PASCAL Chap. 2
2.15 Sets

Standard Pascal permits sets to be defined over ranges including negative
integers. UCSD Pascal restricts sets defined over integers to positive values.
Thus, the following declaration is illegal in UCSD Pascal:

var s: set of —-10..10;

WARNING: In UCSD Pascal sets defined over ranges of positive
integers are allocated storage as if the range began at zero. For example,

var s: set of 1000..1500;

is allocated storage as if the range began at zero instead of 1000. This
causes an extra 1000 bits to be allocated for the variable s.

Standard Pascal prohibits out-of-range values from being added to
sets. UCSD Pascal permits out-of-range values to be added to sets, provided
the value is within range of the size allocated for the set.

program settest;

var
s: set of 1..3;
begin
s := [4, 5, 6];
if (4 in s)

then writeln(’This is UCSD Pascal’)
else writeln('This is Standard Pascal’);
end.

In the example above, the values 4, 5 and 6 may be added to the set s
even though it is declared as set of 1..3. In fact, any value in the range 0..15
may be added to s; values outside that range will cause an execution-time
error since s occupies one word.

2.16 Pointers

UCSD Pascal attempts to resolve pointer references immediately as they
are encountered in type declarations. Standard Pascal defers resolution of
such references until the end of the type declaration. This can cause
incompatibilities when pointer types are declared before their referents in
procedures. For example:

program who;
type x = real;

procedure within;
type y = tx;
x = integer;

Sec. 2.16 Pointers 19

begin end;

begin
end.

In Standard Pascal, y ends up a pointer to an integer, since the
declaration of y is not resolved until the entire local type declaration ends.

In UCSD Pascal, y is a pointer to a real, since the declaration of y is
resolved immediately, before the compiler is aware of the local type x.

2.17 MAXINT

In UCSD Pascal, MAXINT should not be used as the termination value of a
FOR loop. Doing so erroneously causes the loop control variable to wrap
around from MAXINT to -32768, then to -32767, and so on, cycling up to
zero, then back up to MAXINT ...

for i:= 1 to MAXINT do writeln (’Get me out of here!’);

Chapter 3

EXTENSIONS TO STANDARD PASCAL

3.0
3.0.1
3.0.1.1
3.0.1.2
3.0.1.3
3.0.14
3.0.2
3.0.2.1
3.0.2.2
3.0.3
3.0.4
3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.3
3.31
3.3.2

Contents

CONCUTTENCY v teveenerenesnreassosssessossssssssnssnscssses 23
TaSKS cvevnrienrenisneiinssrrsnesssoesnscraconasnssenanns 24
PrOCESSES « e vevevrererencnrerencoscesssnsnsoscnsnanas 26

Task Identifiers.....covvviiiiiiiiiieiniviieiinnnnn, 27

Task StaCKS covieeeerenronroneanrsnsossnscsocnssnces 28

38 5703 1" 29

T3 10 12 0) 010 - S e 30
Mutual EXCIUSION..covvitiviiiiireiieiiiennnennnens 32
Synchronization ...ooeveiinieeirinireriecensnennenns 33

6873 o7 P 35
Time SLiCIng . ovvvviiiiiiiiiiiiiiiiiiiieerteaansaannnss 37
Program Segmentationovvvevrneninieriiieneeninensennns 38
Alternate Segment Management Strategies............. 42
Segmentsand Tasks......coveenininiiiiinieiiiecenanns 44
Separate Compilation ...ovvvvviivniineiieieeieieceneeecnanns 44
L8 4T 45
Using Units c.ovvviiiiiieiiieiieniieeiieierniiencnaenns S0
UnitLinkageoovviiiiiiiiiiiiiiiieceenieinanannss 52
1 54
File SYSTtem ACCESS «vvvuvenrerterssoconssssessssosconsns 55
Interactive Files.....oooiiiiiiiiiiiiiiniiiiiininnnnenns 58

20

EXTENSIONS TO STANDARD PASCAL Chap. 3 21

3.3.3
3.34
3.3.5
34
34.1
3.5
3.5.1
3.5.2
3.6
3.6.1
3.7
3.71
3.7.2
3.8

3.9
39.1
3.9.2
3.9.3
3.10
3.11
3.11.1
3.11.2
3.11.3
3.114
3.11.5
3.11.6
3.11.7
3.11.8
3.11.9
3.11.10
3.11.11
3.11.12
3.11.13
3.11.14

The Keyboard File ...oovvviieinenneeneeneeireneernnnnns 59
BIOCK FileS o .uvvrtieneeererieorseeeeenneseeneensenannons 60
Random Access FileS....oviiveiniiiiiennnennennennnnnss 61
Strings ...ocoevvviviiiiiinen. Peereetteetttecetacrcacrtatanne 63
String Parameters........oovveiiiiiiiiiiiiiiiiiieanns .. 66
Dynamic Variable Management..........ccovvvvieiennnnens 68
The Version T Heap .o.ovvvvuiiiiieninienenenenenennnns 69
The Version IVHeap .c.ovvviiiiiieerirnnrerenenenenns 72
Extended Precision ArithmetiC.....coovvivivienrienenenennn. 74
Long Integer Parameters......ccoeoviiiiueenenrennennnns 76
Extended CompariSons ..vvevuvuereeneneneeeeenenerenesncnns 77
Records and Arrays..... beeereseeesirenasttecenenaaanes 77
o0} o 1 79
Byte Array Manipulationcovevuiiiinneneenenensnnnns 79
Device /0 o iiiiiiiiiiiiiiiie ittt ittt ererereaaans 84
UNITREAD and UNITWRITEccoivviiiiiiennnnnnn. 84
UNITCLEAR, UNITBUSY and UNITWAIT 87
UNIT ST AT US it iiiiiiiiiiiieeneieireeeneneenenenes 88
Inline Machine Code ...ovvvviiiniiinnrnninieneneneeennenns 89
Miscellaneous EXtensions. ... vveeeiinienenneienecnenonnns 91
Identifiers..covviiiiiiiiiiieniiiriiiiiiiiiieeneenennans 92
Declaration Parts....oeeivuiereeeeneeneennenneneenonnans 92
Pointer Type Conversion and Comparison.............. 94
Screen Control «.vvuiieiniiieiirereerneneeneerenensnennes 94
CloCK ACCESS o ivvvniinrnineruenenerieesenenesnesssncnens 95
Powers Of Ten ...ovvveininiieieiinniiiienenenenennnnns 97
Arctangent SYNONYM «.oveieiuireneienrnenenreraennnns 98
Procedure Termination ...ooevveeneeneenreneeneeneenenns 98
I/0 Completion Status......vueeeenrnenennrnenenennens 100
Memory Available ...coviviiiiivniirinernneenneennss 102
Programmed Halt............coiiiiiiiiiiiiiiiinnnns. 103
Compiler Support - TREESEARCH................... 103
Compiler Support -IDSEARCHccvvvvvvnvnnnn.. 106
FOR Control VariableSc.veeeenerenenenenrenannnnns 109

This chapter describes UCSD extensions to Standard Pascal. The extensions
may be divided into three classes with respect to syntax:

® Reserved Words - A handful of reserved words have been added to
support segment procedures, units, and processes. Reserved words are
listed in AppendixE.

22 EXTENSIONS TO STANDARD PASCAL Chap. 3

® Predeclared Types and Routines - These extensionsmay be used in any
UCSD Pascal program; unlike reserved word extensions, predeclared
identifiers may be redefined in the program. Two examples of
predeclared types are STRING and SEMAPHORE. Predeclared
procedures and functions are usually called intrinsics; they comprise
the majority of language extensionsin UCSD Pascal. See chapter 4 for
detailed descriptions of the UCSD intrinsics.

® Syntax Extensions - Standard Pascal syntax has been modified to
accommodate some extensions. The SCAN intrinsic requires a
parameter known as a “partial Boolean expression”. A partial Boolean
expression consists of an ”=" or ”<>" operator followed by a character
expression (e.g., = ’'s’ is a valid partial Boolean expression). The
declaration of a block file appears as a file type declaration lacking a
base type specification (e.g., type blockfile = file; isa valid type
declaration). Type declarations for strings and extended precision
integers contain subtype specifications which define the type's size
attribute (e.g., type longint = integer[20];). Variable addresses are
obtained in the PMACHINE intrinsic by preceding a variable
reference with the “up-arrow” symbol (e.g., tPERSON.NAME[1]).
Finally, many intrinsics accept optional parameters or parameter
sequences.

NOTE: Most extensions described in this chapter are recognized by the
compiler and are hence part of the UCSD Pascal base language. Another
class of extensionsis available through the use of library modules, which
may be user-written or purchased from a variety of vendors. Available
routines include those that allow program chaining, extended directory
management, screen control, and other system and user oriented functions.
A number of modules included in many recent p-System releases are
described in chapter 8.

Sections 3.0 through 3.2 describe the major extensions to Standard
Pascal: concurrency, program segmentation, and separate compilation.
Sections 3.3 through 3.6 describe other commonly used extensions: files,
strings, dynamic variable management, and precision arithmetic. Sections
3.7 through 3.10 present low-level extensions which possess minimal type-
checking and are intended primarily for systems use; these should be used
only when necessary. Section 3.11 describes the remaining extensions.

EXTENSIONS TO STANDARD PASCAL Chap. 3 23
3.0 Concurrency

Most conventional programming languages view a program as a description
of a single activity, where an “activity” is something that the processor can
accomplish by following a sequential flow of instructions, one at a time.

Many programs would benefit, though, if they were treated not as a
single sequential activity, but as a number of activities occurring
simultaneously. Consider a program written for a home control
application. Such a program might have to monitor sensors located at
various points around the house to detect unauthorized entries and at the
same time monitor room temperatures to control the home heating system.

Each of these separate monitoring activities must occur at the same
time. In a conventional language the programmer would have to simulate
this concurrency by, perhaps, coding each activity as an individual
subroutine and arranging for the computer to ”bounce” back and forth
quickly from one subroutine to the other. It is more natural, however, to
represent the activities as separate tasks within a program and to visualize
the computer as working on all tasks at once.

Concurrency is defined as the simultaneous execution of a number
of activities. Sirice most computer systems have a single processor — capable
of focusing on just one activity at a time — they simulate concurrency by
implementing “virtual machines” on the physical machine. Each of the
concurrent activities executes on its own virtual machine, leaving the
physical machine responsible for simulating concurrent execution of the
virtual machines. Activities that execute on virtual machines are
generally referred to as tasks.

Concurrency in UCSD Pascal is restricted to concurrent execution of
routines declared in a single program. A program may initiate any number
of tasks, thus allowing any number of virtual machines to operate
“simultaneously”. The tasks must finish executing before the program is
allowed to terminate.

Note that the current versions of the p-System will not allow two
programs to execute simultaneously.

On a single processor system concurrency is simulated by sharing the
processor among tasks. Processor sharing is accomplished by allowing each
task to execute until a programmer-defined event occurs and then
switching the processor to another task. The latter action is known as a
task switch. The task executing on the processor is called the current
task, while tasks waiting for processor time are called ready-to-run
tasks. When ready-to-run tasks are resumed they pick up where they had
left off prior to being “switched-out”. This is accomplished by storing
executionstates (i.e., processor register values) describing ready-to-run tasks
in a system structure known as the ready queue. Note that this scheme

24 EXTENSIONS TO STANDARD PASCAL Chap. 3

imposes the burden of task switching on the operating system rather than
on the programmer.

NOTE: The simulation of concurrent tasks occurs only as a result of p-
code-level interrupts as described in section 3.0.3. The ability to execute
tasks concurrently is severely restricted on implementations not providing
these interrupts.

It is often necessary for concurrently executing tasks to coordinate
their activities. This is the case when the tasks must share some common
data or a single system resource. For example, suppose that the security
monitoring task and the temperature monitoring task mentioned above
both send output to the terminal. If each attempted to write to the screen
at the same time an unreadable display would result. The programmer
must assure that each of these tasks secures exclusive access to the terminal
before writing to it.

Semaphores are special variables used for task synchronization.
Semaphores are used both in preventing tasks from executing until an
event occurs, and in signalling occurrences of events. Tasks waiting for an
event to occur are called suspended tasks. Execution states for suspended
tasks are stored in a semaphore’s wait queue.

This section describes concurrency in UCSD Pascal. Tasks are
described in section 3.0.1. Semaphores and applications of task
synchronization are described in section 3.0.2. Section 3.0.3 describes
interrupt handling, in which semaphores enable tasks to respond to
processor interrupts. Section 3.0.4 describes time slicing, which allows
simulation of true concurrent processing on a single processor machine.

NOTE: See section 6.10 for applications of concurrency to the
development of device drivers.

3.0.1 Tasks

A task is defined by four attributes: process, task identifier, stack size,
and priority.

The primary attribute of a task is the code it executes. This code is
described in special procedure-like constructs called processes. Processes
are described in section 3.0.1.1. Each task is assigned a unique identifying
value when it is created; this value may be retained in a task identifier
variable to distinguish the newly started task from other tasks in the
system. The task identifier mechanism is needed to distinguish between
tasks because, although the code being executed (the process) is unique,

Sec. 3.0 Concurrency 25

there may be more than one task concurrently executing the code of the
same process. (In the contextof our previous example, we may have many
sensors to monitor; the code that defines sensor-monitoring would appear
in a single process but we would create a task executing that code for each
sensor.) Task identifiers are described in section 3.0.1.2. The amount of
memory allocated for a new task is determined by the task’s stack size.
Task stacks are described in section 3.0.1.3. The last (but not least)
attribute is priority; a task’s priority value determines its ability to obtain
processor time when competing with other tasks. Task priorities are
described in section 3.0.1.4.

The system assigns task attributes when a task is initiated. This
occurs via the UCSD intrinsic START, which has the following form:

START (<process call> [, <task identifier variable>
[. <stocksize expression>
[, <priority expression>]1]]):

The main parameter to START is a process call; it resembles a
procedure call, and may contain parameters passed to the task (e.g.,
START(Zip) or START(BackgroundLaughter(30))). In fact, it is useful to
visualize STARTing a process as akin to calling a procedure — but not
waiting for the procedure to terminate before continuing. Note that
starting a single process several times in a program creates a number of
tasks executing the same copy of a process’s code independently.

The remaining parameters are optional. A task identifier (second
parameter to START) must be declared as a variable of type PROCESSID.
The stack size parameter (third parameter) consists of an integer-valued
expression,and represents the number of words allocated for the task stack
space; the default stack size is 200 words. The priority parameter consists
of an integer-valued expression in the range -1..255. Values outside this
range cause an execution error to occur. The default priority is 128. These
parameters are discussed in detail in the following sections.

Tasks terminate execution when they reach the end of their process
code. In pre-Version IV.13 releases task stack spaces occupied memory
until the parent program finished execution. In Version IV.13 task stack
space is recycled automatically.

The system prevents a program from terminating until all of its tasks
have terminated.

NOTE: The description of tasks presented here is sufficient for
describing the execution of programs containing processes. From the
system’s point of view, the entire system (which consists of the operating
system kernel and the user program) is called the main task; the other
tasks (including system device drivers and user-defined processes) are
known as subsidiary tasks. From the processor’s point of view, there is no

26 EXTENSIONS TO STANDARD PASCAL Chap. 3

distinction between the main task and subsidiary tasks; they are
functionally equivalent.

3.0.1.1 Processes

Processes are declared similarly to procedures; however, the reserved
word PROCESS replaces the reserved word PROCEDURE. The syntax
description presented below is derived from the formal syntax description
for procedures in Appendix D of the Pascal User Manual and Report:

<process declaration> ::= <process heading> <block>

<process heading> ::=
PROCESS <identifier> <formal parameter part> ;

Processes must be declared in the outer (global) block of a program;
they may not be declared within a procedure or another process. START
may only be called from the main task; thus, subsidiary tasks cannot create
new tasks. Violating this restriction causes an executionerror.

WARNING: Tasks are not allocated their own heap space for their
dynamic variables. Dynamic variables are always allocated on the system
heap. For this reason, using DISPOSE to deallocate dynamic variables
within a task is recommended rather than MARK and RELEASE, as
MARK and RELEASE may inadvertently remove variables created by
other tasks. Sections of the operating system dealing with global resource
management (e.g., the file system and heap) are protected from task
contention; nevertheless, processes using these resources should do so
carefully. Section 3.0.1.3 describes other problems caused by interactions
between tasks and the system heap.

NOTE: Variable parameters passed to a process may require an
associated semaphore in order to ensure mutually exclusive access to the
actual parameter (see section 3.0.2 for more information).

Examplesof process declarations:

process Zip;
begin

end;

process BackgroundLoughter (Laughs: integer);
begin

i = 0;
j = 0;

Sec. 3.0 Concurrency 27

if Laughs > @ then
repeat
write('ha');
i = (i + 1) mod Laughs;
if i =0
then begin
writeln;
jo=j+ 1
end;
until j = 100;
end §{BackgroundLaughter};

The BackgroundLaughter process, like most processes, takes the form
of a loop. It vies for CPU time with the other processes (if any) and prints
lines containing Laughs number of ’ha’s. This laughter continues
concurrently with whatever the other processes in the program are doing
until one hundred lines of ’ha’s are printed. The BackgroundLaughter
process then terminates.

3.0.1.2 Task Identifiers

START assigns each task a unique value, distinguishing it from other
tasks. These values may be obtained by specifying a task identifier
variable as the task identifier parameter to the START intrinsic; START
assigns the value associated with the new task to the variable. Task
identifier variables must be declared with the predefined type
PROCESSID, and can be used in the same manner as pointer variables (i.e.,
the only valid operations are assignment and comparison with other task
identifier variables).

In the following example, two tasks are created with START; the
variables PID1 and PID2 are assigned values identifying the tasks. Because
these values are unique, this program writes "Truth” when executed:

Program a;
Var PID1,P1D2: processid;

process t;
begin

end;

begin

start(t, PID1);

start(t, PID2);

if PIDY <> PID2 then writeln ('Truth’);
end.

28 EXTENSIONS TO STANDARD PASCAL Chap. 3
3.0.1.3 Task Stacks

Each task is allocated an area of memory in which it can execute;
because UCSD Pascal programs execute on stack-oriented machines, the
memory area is called a stack space. A Stack space is used to store
parameters and variables, and procedure call information. When a task
exhaustsits stack space, a "stack overflow” occurs, and the system must be
restarted.

NOTE: The main task’s stack space is coincident with the system
stack, and is limited in size only by the amount of system memory
available. Stack spaces for subsidiary tasks are allocated on the system
heap by the START intrinsic; hence, they are generally small compared to
the main task’s stack space. (Note that the main task’s stack competes with
the system heap for memory, while a subsidiary task’s stack space is of
fixed size, and is used only by the process code.)

WARNING: Because task stacks are allocated on the system heap,
tasks are susceptible to destruction from careless use of MARK and
RELEASE since these cause an absolute and process-independent amount of
heap to be freed. Dynamic variables allocated before a started task should
be deallocated using DISPOSE; never RELEASE the heap below a started
task.

NOTE: Stack sizes must be sufficient for the basic needs of a process.
The minimum size depends on the version of the p-System begin used; a
typical (conservative) minimum might be approximately 32 words plus
the number of words used by local variables and parameters. A procedure
call uses a minimum of 5 words of space. Whenever possible avoid calling
segments and/or procedures with large local data spaces, as they can
quickly consume a task’s stack space. (If this is unavoidable, the DECODE
utility and compiled listings may be used to reveal the sizes of code and
data segments in order to determine the amount of stack space required by
a task (see your Architecture Guide for more specific information).)

NOTE: The stack space must be large enough to satisfy the stack
requirements of any calls to the operating system resulting from the use of
Pascal I/0 intrinsics. These requirements must be determined by trial-and-
error.

Sec. 3.0 Concurrency 29

Examplesof stack size specification:

Program a;
Var PID: processid;
I,J: integer;
process pi;
begin
end;
begin
I :=4; J :=5;
start(p1,PID); § stack space = 200 }
start(p1,PID,10); § stack space = 10 }

start(p1,PID, (I + J)»100); § stack space = 900 }
end.

NOTE: In UCSD Pascal Version III the task stack is also used to contain
the code of segment procedures called by the process. Provision for the sizes
of such segments must be made when calculating the stack size. The
DISASSEM utility may be used to determine sizes of segments.

3.0.1.4 Priority

Each task is assigned a task priority value between O and 255. A
task’s priority determines its ability to obtain the processor when other
tasks are ready to run. The processor’s task scheduling policy is simple: no
task may execute when a higher priority task is ready to run. The system
enforces this policy by ordering all tasks in the ready queue by their
priority, and by performing a task switch when the task at the head of the
ready queue has higher priority than the current task. This implies that
tasks in the ready queue at the same priority level as the currently
executing task will not run unless and until the currently executing task
becomes suspended. This can occur as a result of a WAIT in the user
program. The currently executing task can also become suspended as a
result of a WAIT in a system routine called by a program -such as when a
segment is read into memory, or during a file access.

NOTE: Situations may arise where a task “hogs” the processor,
preventing tasks of the same priority from executinguntil the original task
completes. To prevent this situation some p-System implementations
permit the processor to rotate among tasks at the same priority level
(assuming no higher priority task is ready to run).

30 EXTENSIONS TO STANDARD PASCAL Chap. 3

' NOTE: When a task is inserted into the ready queue, it is placed
behind all other tasks having priorities greater than or equal to its own.

Priorities above a certain level are reserved for the operating system.
This level is version-dependent; in Version IV.13 it is 254. The main task’s
priority (i.e., the priority of the program itself) is 128. Starting a process
with a priority greater than 128 immediately suspends the main task.
Conversely, starting a process having priority lower than 128 places the
process on the ready queue but allows the main task to continue. In this
case the started process will NEVER execute unless the program itself
becomes suspended.

Starting a task with a priority of -1 causes the task to assume the
“father” task’s priority.

NOTE: The p-System utilizes a synchronous 1/0 system. Performing
1/0 generally does not suspend an executing task.

Examplesof priority specification:

Program a;
Var PID: processid;
I: integer;

process p1l;
begin

end;

begin
I :=5;
start(p1,PID,100); § priority
start(p1,PID,100,-1); § priority
start(p1,PID,100,90); § priority
start(p1,PID,100,1+40); § priority
end.

3.0.2 Semaphores

Semaphores are variables declared with the predefined type
SEMAPHORE. Semaphores are used solely for task synchronization; they
are shared by tasks wishing to communicate with each other. Semaphores
consist of two parts: a nonnegative integer counter and a queue for storing
suspended tasks.

Generally a program associates a semaphore with a limited system
resource, one that may or may not be available depending on how many
other tasks are using it. The resource may be a physical device such as a
terminal, which cannot be used by more than a limited number of tasks at

Sec. 3.0 Concurrency 31

once. It might be a data structure such as a collection of 1/0 buffers, which
may be shared by a number of tasks but never by more tasks than there are
available buffers. The semaphore’s counter should be initialized to the
maximum number of tasks allowed access to the resource at one time.

When a task accesses the resource it must decrement the semaphore
countet, indicating that one fewer tasks are henceforth permitted access.
When a task is finished using the resource it must increment the
semaphore counter, indicating that the resource is henceforth available to
one more task. The resource is being utilized to full capacity when the
semaphore counter reaches zero. A task attempting to access a resource
whose semaphore counter is zero is placed on the semaphore’s wait queue
along with any other tasks awaiting availability of that resource. Tasks
on a wait queue are in a suspended state until the task using the resource
relinquishes it, making it available to the task at the head of the wait
queue.

NOTE: When a task is inserted into a semaphore’s wait queue, it is
placed behind all other tasks having task priorities greater than or equal to
its own.

Semaphores are never accessed directly; they are accessed with
semaphore operators. The principal semaphore operators are SEMINIT,
WAIT, and SIGNAL.

SEMINIT initializes a semaphore variable by assigning it an initial
count value and an empty wait queue.

WAIT checks the value of the semaphore count. If it is greater than
zero, the count is decremented, and the current task (i.e., the one doing the
WAIT) continues to execute. Otherwise, the current task is stopped; it is
placed in the semaphore’s wait queue, and becomes a suspended task. The
task at the head of the ready queue then becomes the current task, and
resumes its execution. Note that a task executing WAIT either continues as
the current task or is stopped and becomes a suspended task.

SIGNAL examines the semaphore’s wait queue. If it is empty, the
semaphore’s count is incremented. Otherwise, a suspended task is removed
from the head of the wait queue and placed in the ready queue; it becomes
a ready-to-run task. Note that when a task is moved from the wait queue
to the ready queue it becomes the current task, replacing the task issuing
the SIGNAL, if its priority is higher than the task issuing the SIGNAL.
Thus, a task executing SIGNAL either continues as the current task or
becomes a ready-to-run task.

Semaphores may be used in two ways, as binary semaphores and as
counting semaphores. Binary semaphores have two states, as their counts
only take on the values 0 and 1; they are used for mutual exclusion (section
3.0.2.1). Counting semaphores are so named because their count values can

32 EXTENSIONS TO STANDARD PASCAL Chap. 3

span the range of natural numbers; they are used for resource allocation
(section 3.0.2.2). Binary and counting semaphores are both declared using
the predefined type SEMAPHORE. The difference between them is in
their contextand usage.

WARNING: Semaphores must be initialized with SEMINIT before use;
otherwise, system crashes may occur. Initializing a semaphore containing
suspended tasks causes the suspended tasks to be lost by the system and
incapable of further execution. A semaphore’s count value must not exceed
32767; otherwise, the count value wraps around to a negative value,
leaving the semaphore in an undefined state.

Sections 3.0.2.1 and 3.0.2.2 present standard uses of semaphores in
concurrent systems. Section 3.0.2.1 describes mutual exclusion, which is
used to protect global variables and routines from contention between
tasks. Section 3.0.2.2 describes task synchronization, in which
semaphores are used to synchronize the executionof a group of tasks.

3.0.2.1 Mutual Exclusion

When processes share a resource (usually a variable or an I/0 device),
it is often necessary to protect the resource from being accessed by more
than one task at a time. This form of resource protection is known as
mutual exclusion. Mutual exclusion is insured by placing all code which
accesses the resource within a contiguous area of the program, called a
“critical section”.

Critical sections are implemented (using a binary semaphore) by
preceding the critical code with a call to WAIT and terminating the
critical code with a call to SIGNAL. The binary semaphore is initialized to
1, indicating that the critical section is initially open. When a task executes
a critical section (by passing the WAIT), the semaphore count is guaranteed
to be zero, ensuring that other tasks may not enter the critical section until
it becomes available (when the executing task signals the sesmaphore).

Exampleof mutually exclusiveuse of a console screen:

Program example;
Var Console: semaphore;

procedure ConWrite(OutlAm : integer; OutMsg: string);
begin
wait(Console); § start critical section }
§ all access to console happens here }
writein(’I aom *, OutlAm,
' and my message is ', OutMsg);
signal(Console); § end critical section }

end;

Sec. 3.0 Concurrency 33

process MsgWriter(WholAm: integer; MyMsg: string);
begin
repeat
ConWrite(WholAm, MyMsg)
until false;
end;

begin
seminit(Console,1);
start(MsgWriter(1, ‘Shakespeare’));
start(MsgWriter(2, ‘'monkey’));
start(MsgWriter(3, 'typewriter’'));

end $example}.

This program contains three tasks, each of which executes the code of
process MsgWri ter. Each task has different values for the variables WholAm
and MyMsg; each task attempts to continuously output the values of their
variables to the console. Since only one task can use the console at a time,
the writeln statement is isolated in procedure ConWrite, whose body is
made a critical section. The tasks call on ConWrite whenever they need to
read from or write to the console. The WAIT assures that the task
currently executing ConWrite will not proceed with the writeln until a
previous task completes its use of the console and executes the SIGNAL.

3.0.2.2 Synchronization

Semaphores may be used to synchronize the execution of a group of
processes so that each process’s execution depends on the actions of another
process. Processes used in this fashion are known as cooperating
processes. Cooperating processes are implemented by assigning a private
semaphore to each process. A process considers its own private semaphore
to represent an event which must occur before it can resume execution;
therefore, the process waits on its private “event” semaphore. Processes
wishing to indicate the occurrence of an event do so by signalling the
corresponding private semaphore, thus activating the suspended process
which owns the private semaphore.

Cooperating processes and private semaphores are illustrated in the
example below, which demonstrates buffered data transmission
(concurrency speeds up this activity by allowing simultaneous filling and
sending of different data buffers). The resources in need of management
are the N data buffers shared by the processes FillBufs and SendBufs.
FillBufs finds an empty buffer and fills it with data. SendBufs finds a
full buffer and dispatches it. The private semaphores are BufAvail and

34 EXTENSIONS TO STANDARD PASCAL Chap. 3

Buffull. BufAvail indicates to FillBufs that a buffer has been sent and
is available for filling; its initial value indicates that all buffers are
initially available for filling. BufFull indicates to SendBufs that a buffer
is full and available for transmission; its initial value reflects the lack of
full buffers at the outset. The FillBufs task and the SendBufs task can
each operate at their own individual pace; the semaphores assure that no
attempt will be made to fill a buffer when none is available or to empty a
buffer when none are full.

The variable die is used to terminate the two processes, and thus the
program. Die is initially set to FALSE. FilIBufs begins execution. As
FillBufs fills buffers, SendBufs can begin to empty them. Presumably,
some event will take place as either FillBufs or SendBufs executes to
trigger the end of the filling/sending sequence. When the main task
regains control of the processor it will detect that event in the IF statement
and set die to TRUE. FillIBufs and Sendbufs will each execute one more
time as they regain control of the processor. Each task will then terminate
upon encountering the until die = true clause and the program will
conclude.

program Buffers;
const N = § number of available buffers };

var BufFull, BufAvail: semaphore;
die: boolean;

process FillBufs;

begin
repeat
wait(BufAvail);
§ ... Select an empty buffer and fill it ... }
signal (BufFull);
until die;
end;

process SendBufs;

begin
repeat
wait(BufFull);
§ ... Select a full buffer and send it ... }
signal (BufAvail);
until die;
end;
begin
die := false;

seminit(Buffull,Q);
seminit(BufAvail,N);
start(FillBufs);
start(SendBufs);
if $and when we tire of playing with buffers}
then die := true;
end §Buffers}.

Sec. 3.0 Concurrency 35
3.0.3 Interrupts

The UCSD intrinsic ATTACH allows processes to be used as interrupt-
driven device drivers. ATTACH assigns a logical (not physical) interrupt
vector, or “event”, to a semaphore; from then on, the semaphore is
automatically signalled whenever the system receives an interrupt
through the indicated interrupt vector.

It is important to avoid confusing events with hardware- generated
interrupts. A hardware-generated interrupt is handled by the processor,
typically by transferring control to an assembler code routine whose
address is located at a hard-wired location. Since hardware- generated
interrupts vary from machine to machine, they are not easily accessible
from within the p-System in a machine-independent fashion.

In contrast, events are machine independent. Version IV of the
p-System defines 64 events, numbered from O through 63, which can be
attached to a semaphore from within a program. Events O through 31 are
reserved for system use; the rest are for user use (but check your system
documentation, since some implementations use a number of these values
as well).

The association of an event with a "real” occurrence — as reflected by
a hardware generated interrupt — happens within the p-code interpreter.
Most p-System’s are supplied with at least some of the events implemented.
However if a user has a special device which must be associated with an
unused event number, part of the interpreter I/0 system will generally
have to be rewritten. Consult your Installation Guide. Here are some
predefined (but possibly unimplemented) Version IV system events:

@ — 16: Asynchronous 1/0 events (reserved)
17: Soft break key
18: Execution error occurred
19: Keyboard character available
20: Nil pointer reference occurred
21: Clock

Version 1V of the p-System allows for de-attaching a semaphore from
an event by attaching it to another event or by attaching it to NIL. Other
implementations do not provide a method for de-attaching semaphores; the
system must be rebooted after running a user program containing attached
semaphores if the devices causing interrupts cannot be disabled.

Version [V.13 of the p-System automatically de-attaches all events
from program semaphores at program termination. It re-attaches events
used by the operating system to the operating system’s semaphores.

WARNING: Attaching an event to a semaphore causes that event to be
de-attached from any semaphore it may previously have been attached to.
It is impossible to re-attach the event to the original semaphore. Thus, in

36 EXTENSIONS TO STANDARD PASCAL Chap. 3

pre-IV.13 releases, if a user program attaches to an event the operating
system had been attached to, it will be impossible to restore the event to the
operating system. A system crash is the likely result. The Version IV
p-System currently uses event 19 if the print spooler is enabled.

WARNING: Attaching to event 19 when the print spooler is enabled
preempts the operating system’s ability to read characters using the READ,
READLN and GET intrinsics. Programs that attach to event 19 must read
keyboard characters with the UNITREAD intrinsic described in section
4.44,

WARNING: ATTACH treats semaphore arguments as permanent
variables; therefore, semaphores attached to interrupt vectors should be
declared in the outer block of either the main program or the appropriate
device process. The processor knows only of the memory address of an
interrupt vector’s attached semaphore, and continues to signal this address
after every interrupt. It has no way of determining whether it is actually
signalling a semaphore variable or merely damaging some unsuspecting
code or data which happens to reside in memory previously occupied by an
attached semaphore variable. Indiscreet use of ATTACH may adversely
affect the system.

WARNING: Semaphores that have not been SEMINIT’ed should never
be attached to an event; system crashes may occur.

NOTE: Simulation of concurrent processing exists only to the extent
that interrupt-driven task switching occurs. Since task switching occurs
in response to interrupts, the more frequently an interrupt occurs the
better the simulation of concurrent tasks.

NOTE: Machines based on the Western Digital MicroEngine have a p-
machine as their real processor. Thus, events are actually hardware
interrupts and they do not adhere to the standard event numbers described
above.

An exampleof interrupt processing may be found in section 6.10.

Sec. 3.0 Concurrency 37

3.0.4 Time Slicing

Time slicing refers to the allocation of processor time to each task in the
ready queue. As mentioned previously, tasks on the ready queue with the
same priority as the current task will not be allocated processor time until
the current task becomes suspended. However, certain implementations
allow tasks of equal priority to rotate their turn at the processor. On these
machines, time slicing is a side-effect of interactions between a system
clock handler process and the task scheduling mechanism.

If a system clock is present it interrupts the processor 60 times per
second. A clock handler process normally has higher priority than other
tasks and continually waits for clock interrupts. When the processor
receives a clock interrupt, a task switch occurs that activates the clock
handler process, causing the current task to be inserted in the ready queue
behind other tasks of equal priority. When the clock handler suspends
itself, the processor selects the task at the head of the ready queue as the
current task. Thus, the processor circulates between tasks of equal
priority.

In the absence of a clock driver, task circulation is performed only as
a result of a task blockage. A task blockage can occur at the executionof a
WAIT intrinsic in the user program or as a result of certain system calls.

The following example demonstrates time slicing; when executed, the
program prints final counts that are approximately equal, indicating that
the tasks receive similar amounts of processor time.

program RaceCondition;

const limit = 1000;
MyClockEvent = 21; {may vary}

var carl, car2, car3: integer;
CheckeredFlag: boolean;
ClockPID, PID: processid;

process c¢lock;
var event: semaphore;
begin
seminit(event,0);
attach(event ,MyClockEvent);
repeat
wait(event);
until CheckeredFlag;
end;

process racer(var counter: integer);
begin
counter := 0;
repeat
counter := counter + 1;
if not CheckeredFlag then
CheckeredFlag := counter >= limit;

38 EXTENSIONS TO STANDARD PASCAL Chap. 3

until CheckeredFlag;
write(counter:6);
end;

begin
CheckeredFlag := false;

start(clock,ClockPID,500,250);

start(racer(car1),PID,500);

start(racer(car2),PID,500);

start(racer(car3),PID,500);
end.

This program contains three tasks executing the code of process racer.
Note that each task has its own variable for keeping track of the number of
times it executes the repeat loop. The global variable CheckeredFlag is set
to true when one of the task’s counters first reaches the limit (1000). This
terminates the repeat loop in each task, and each task writes its final
counter value.

The clock task is invoked whenever the clock generates an interrupt.
Its high priority immediately grants it the processor, forcing a task switch.
This causes the racer tasks to share the processor evenly.

NOTE: When a task is performing an I/O operation (e.g., waiting on
input) all tasks are blocked and may not resume execution until the 1/O
operation completes. This "frozen” state may be avoided during input by
polling the I/0 device with the UNITSTATUS intrinsic to assure that the
device is ready before initiating the I/0 operation. See section 4.45 for
UNITSTATUS details.

NOTE: Event processing may not occur during execution of assembly
language routines or routines translated to native code by the Native Code
Generator. Events signaled during this period are latched and then
processed when p-code execution resumes.

3.1 Program Segmentation

Program segmentation refers to the division of program code by the
programmer into disk-resident code segments. A code segment is memory-
resident while it is executed; the system swaps it into and out of memory
as necessary. Memory occupied by a code segment is freed for other uses
when the segment is released, ensuring efficient use of memory; thus,
segmented programs can avoid the memory constraints normally imposed
on large programs.

Sec. 3.1 Program Segmentation 39

Program segmentation in UCSD Pascal is achieved on a procedural
basis through the use of segments. A procedure, function, or process is
specified to reside in a separate code segment by preceding its declaration
with the UCSD Pascal reserved word SEGMENT. The code segment
contains the segment’s code along with the code belonging to its
(nonsegmented) local procedures. All code segments resulting from a single
compilation reside in a single code file, which behaves identically to a
similar file where segmentation was not employed. The only difference is
that the routines of the segmented program might not be simultaneously
resident in memory.

Although an in-depth discussion of the p-System memory
management scheme is out of place here, a few general words regarding
memory management and attendant version dependencies are in order.

Resident in low memory is an area called the heap, whose primary
purpose is to contain system and program dynamic variables. The heap
grows toward high memory.

The allocation of the rest of memory is highly version dependent. In
pre-Version IV releases (including Apple Pascal), the rest of memory was
occupied by a single entity called the stack. The stack began at the top of
useable memory and grew downward. It contained two things: executable
code segments and procedure activation records.

The first time a segment was called, it was loaded from disk onto the
stack. Besides the p-code of the segment itself, the original procedure
invocation also caused an activation record to have been built on the stack.
This contained information linking the invocation of the segment
procedure to the calling routine, as well as the procedure’s local variables.
As long as the segment procedure remained active, subsequent calls used
the same copy of the code but each invocation caused a new activation
record to be built on the stack. When the procedure returned to its caller
the activation record was freed, but the p-code segment itself remained on
the stack until there were no more active calls.

The stack and heap grew in opposite directions; when they met a
(usually fatal) condition resulted, called “’stack overflow”.

Treatment of the stack changed radically with the release of Version
IV of the p-System. In Version IV, the stack contains procedure activation
records but not executablecode. A new entity called the code pool contains
all code segments. The code pool may occupy the space in memory between
the stack and the heap, or existin a different memory space, depending on
available memory. When it becomes necessary to bring a segment into
memory from disk, the system attempts to find room for it in the code
pool. If there is no contiguous area in the code pool large enough to contain
the segment, the system moves the other segments around (and possibly
out) in an attempt to squeeze the new segment in. It may even remove

40 EXTENSIONS TO STANDARD PASCAL Chap. 3

segments that have active invocations. Previous implementations locked a
segment into its original memory location for the duration of its residence.

The code pool construct provides a convenient means of supporting
hardware that can address greater than 64k bytes of memory. The Version
IV p-machine uses 16 bit addresses and thus can directly access no more
than 64kb. However, since the code pool is now distinct from the stack
and heap, the p-machine can access it in a different 64kb “bank”,
effectively providing support for 128kb — half for the stack and heap and
half for the code pool. A code pool contained inside the stack/heap space is
called an internal code pool; it competes with the stack and heap for
memory. Code pools located in alternate banks are called external code
pools. Note that presently the implementation details for extended memory
are highly hardware dependent.

The Version IV implementation affords better memory utilization at
a cost of speed. At unpredictable times, a program may slow down as the
system attempts to find memory space for a segment. However, this
overhead is reduced somewhat because the system maintains activity
statistics and uses them to keep the most frequently called segments in
memory. Memory is better utilized with this scheme because the system
need only maintain the currently executing segment in memory. It may
cache inactive segments depending on available memory.

The MEMLOCK and MEMSWAP intrinsics were introduced w1th
Version IV to give the programmer a measure of control over when
segments are removed from memory. See the nextsection for details.

Programs should be segmented with an eye towards minimizing the
frequency with which segments must be loaded from disk. A good
strategy is to keep the most frequently executed code in memory, and to
provide the system with the greatest flexibility in choosing which
segments to discard, if there is no room for all. A good candidate for
segmentation is initialization code, which is usually executed only once at
the beginning of a program.

Segments must be independent of each other in order to reap the
benefits of segmentation. For example, envision a large piece of code
requiring division into two segments (named A and B) in order to conserve
memory. Version IV requires that both the calling and called segments be
in memory at the time of the call. If the logic of the program is such that
the only caller of B is A, segmentation is fruitless-both code segments must
be memory-resident while B is called. A proper division results in
mutually independent segments which are called sequentially. Program
segmentation is most effective when it influences the design of large
programs (as opposed to “tuning” existing programs).

Sec. 3.1 Program Segmentation 41

NOTE: Within the main program or any segment declaration, the code
comprising local segments must appear before code belonging to the
enclosing segment or program. As can be seen in the example, this does not
prevent unsegmented procedures from containing local segments, but does
affect the order in which local procedures are declared. As with
unsegmented procedures, segments may be declared forward to resolve
interprocedural references. Forward declaration of segmented and
unsegmented procedures may occur in any order.

NOTE: A Version IV p-System program may contain between 1 and
255 code segments. Version II programs are limited to 7 segments, although
various schemes have been developed to extend this limitation. Other
implementations may have other wupper limits; consult your
documentation. See also section 3.2 on the unit construct.

WARNING: In general, the maximum size of a segment is 64kb.
However, certain Version IV implementations have further restrictions on
the maximum size of a segment. In particular, current PDP/LSI-11
implementations with an externalcode pool restrict the size of a segment to
16kb. The compiler does not assure that the maximumsize of a segment is
not exceeded. Attempts to execute a code file which uses an overly large
segment may result in spurious “Segment Not Found” messages.

WARNING: When a program calls a disk-resident segment, the disk
volume containing the program’s code file (and thus its code segments)
must be online and mounted in the same drive as when the program was
started; otherwise, an error message may appear or the system may crash.

Exampleof segment declarations:
program main;

procedure pt; forward;
segment function p2: integer; forward;

—segment procedure p3;
—-procedure p3p1l;

|-segment function p3pipi:boolean;
| begin
|
I

—end 5p3p1p1§:

begin

—end ip3p1};

42 EXTENSIONS TO STANDARD PASCAL Chap. 3

begin
|-end §p3};

—segment function p2 §: integeri;
begin
pl; §This use of pl necessitates
its forward declaration}

—end;
~procedure p1; §not a segment procedure;

must appear after p3 and p2}
begin

—end;
begin
end {main}.

This example program contains four segments: main, p2, p3 and
p3pip1. Note that the code in a main program always occupies its own
segment, though this is not explicitly declared in the program. A segment
procedure may be nested to a maximum depth of 7, and will behave as a
“normal” procedure except for its memory residence characteristics, as
noted previously. Procedure p1 is not a segment procedure; it is part of the
segment main. It must therefore appear after segment procedures p2 and p3.
However, it is used by p2 and must therefore be declared forward.

In this example p2 happens also to be declared forward. Note the
syntax — the word ”segment” must appear both in the forward declaration
and in the beginning of the procedure itself.

3.1.1 Alternate Segment Management Strategies

A segment is normally guaranteed memory-residence only while it is
executing. The UCSD intrinsics MEMLOCK and MEMSWAP provide for
more sophisticated segment management strategies. These intrinsics allow
runtime control over the loading and unloading of segments.

MEMLOCK accepts a string value parameter containing a list of
segments to be “locked” into memory until explicitly “unlocked”.
MEMSWAP accepts a similar string parameter containing a list of segments
to be “unlocked”, and removed from the code pool when necessary. The
segment list may contain segment and unit identifiers (section 3.2) declared
in the program and its used units, or in the operating system. Identifiers
are separated by commas; spaces and invalid identifiers in the segment list

Sec. 3.1 Program Segmentation 43

are ignored. The form for a MEMIL.OCK or a MEMSWAP call is:

<memlock—cal I> ::= MEMLOCK(<segment—I|ist>)
<memswap~cal |> ::= MEMSWAP(<segment—|ist>)

<segment—list> ::= <segment—name>
§ . <segment—name>} | <empty>

The MEMLOCK intrinsic causes each code segment in the segment list
to be read into memory and locked into the system code pool. Subsequent
calls to such segments use the MEMLOCKed copy of the code rather than
loading it from disk. MEMLOCKing an already MEMLOCKed segment
MEMLOCKSs it further. Matching calls to MEMSWAP are necessary to
render the segrment swappable.

NOTE: All MEMLOCKed user segments are made swappable at
program termination.

WARNING: Attempts to MEMLOCK a segment whose identifier is
shared by more than one segment has unpredictable results. Segments
with identical names may come into being as a result of separate
compilations. But they may also come into being in the same compilation,
as follows:

program foon;
segment procedure twit;
segment procedure greep;
begin
end;
begin §twit}
end;

segment procedure greep;
begin
end;

begin

end.

Pascal syntax is not violated since the first occurrence of segment
procedure greep is nested within twit while the second is global.

WARNING: Indiscreet use of MEMLOCK may render the heap
incapable of containing large buffers on a system containing an internal
code pool.

Example of MEMLOCK and MEMSW AP use:

program mems;

segment procedure segi;

44 EXTENSIONS TO STANDARD PASCAL Chap. 3

begin
<... segment code ...>
end;

segment procedure seg2;

begin
<... segment code ...>
memswap(’segl’);
§Will release segl when seg2 is invoked}
end;
begin
memiock('segl, seg2’); §Both segments are l|loaded}
seg2; §Segl is now released...}
memswap(’seg2’); §... and so is seg2}

end §main}.

See section 5.0.11 for alternate strategies for Apple Pascal.

3.1.2 Segments and Tasks

In Version III of the p-System a few restrictions are imposed on the use of
segments in conjunction with concurrent tasks. These restrictions are due
to architectural limitations of that version.

Processes may be declared as segments; however, they operate
somewhat differently. If the process code executed by a task is declared as
a segment, the code segment containing the process is read onto the task’s
stack, and remains there until the task terminates execution.
Unfortunately, when the main program terminates, the system is unable
to shut down segmented tasks in an orderly fashion, and so must be
rebooted; therefore, in Version III segment processes should only be used in
dedicated (i.e., nonterminating) programs.

3.2 Separate Compilation

Separate compilation (also known as “external compilation” or “modular
programming”) allows programs to be created from individually compiled
modules. Some advantages resulting from separate compilation are:

e New modules can be written, compiled, and combined with existing
modules to create new programs. The new modules themselves might
later be used in other programs. Thus, a growing library of
precompiled software tools may become available for use in general
sof tware development.

Sec. 3.2 Separate Compilation 45

® Large programs constructed from separate modules are easily
modified; changes are isolated to individual modules, allowing fast
and reliable program maintenance. Programs may be designed by
teams of programmers, with each member of the team able to code,
compile and test his module separately.

® Programs can be developed that are larger than could otherwise be
compiled in one piece on the system.

Separately compiled modules are built in UCSD Pascal using the
UNIT construct. Unit declaration is described in section 3.2.1. Section 3.2.2
explainshow units are referenced by host programs. Section 3.2.3 provides
information on unit linkage.

NOTE: This section provides a program-level description of units.
Section 6.12 describes the philosophy and pragmatics of unit construction
and usage.

3.2.1 Units

Units are collections of uses-, constant-, type-, variable-, procedure-,
function-, and process- declarations grouped to address a specific class of
related problems. These objects may be referenced by either a program or
other units. Programs and units which use other units are called hosts.
Units consist of four parts: an interface section, an implementation
section, an initialization section and a termination section. Objects
declared in a unit’s interface section are public; they are accessible to both
the unit and the host which uses the unit. Objects declared in the
implementation section are private. They are accessible only within the
unit. The initialization section is a code sequence that usually initializes
unit variables and is automatically executed once at program invocation
time. The termination section is a code sequence that is automatically
executed once at program termination time and usually performs any
“shut-down” operations required. It is executed after the termination code
of the host which uses the unit.

An exampleof a unit declaration appears on the next page. Note that
the interface section may contain procedure and function headings, but
routine bodies are not allowed. Procedure and function headings in the
interface section are similar to forward declarations; when the
corresponding routines are defined in the implementation section, the
parameter list is omitted.

unit mnemones;
interface

46 EXTENSIONS TO STANDARD PASCAL Chap. 3

type mnemone = (truth, beauty, wisdom, knowledge, etc);

procedure relapse;
§ forget all items learned }

procedure learn (newentry: mnemone);
§ learn a new item }

function recall (look: mnemone): boolean;
§ has item been learned? }

implementation

type entryptr = tlistentry;
listentry = record
data: mnemone;
next: entryptr;
end;
var listhead: entryptr;

procedure relapse;
begin listhead := nil end;

procedure learn;
var entry: tlistentry;
begin
new (entry);
with entryt do
begin data := newentry; next := listhead; end;
listhead := entry;
end;

function recall;
var entry: tlistentry;
begin
recall := false; entry := listhead;
while entry <> nil do
if entryt.data <> look then
entry := entryt.next

else recall := true;
end;
begin
listhead := nil; finitialization section}
ok ok
relapse; ftermination sectioni

end {mnemonest.

A major purpose of a unit is to allow a program to perform high-level
operations on abstract information. The program is not necessarily aware
of the data structures used to represent the information. It knows which
operations are defined on the information, but does not need to know how
those operations were implemented.

Sec. 3.2 Separate Compilation 47

Unit mnemones allows a program to emulate (in a tongue-in-cheek
fashion) a person’s struggle to acquire knowledge. Areas of wisdom which
may be dealt with are given in type mnemone in the interface section; a
program using this unit may declare entities of this type.

The areas of wisdom may be learned individually and forgotten
collectively; the program may also seek to remember whether or not an
item has been learned (and not forgotten). The procedures learn and
relapse, and the function recal i, are declared in the interface section and
are therefore available for a program to use.

It is apparent from the implementation section that a linked list is
used to represent the items learned, but a program using this unit does not
have to be aware of this. In fact, the record which defines elements of the
list (type 1istentry) is not accessible to a program using mnemones, nor can
the program directly access the linked list itself; the variable |isthead, as
well as all variables local to the routines in the implementation section,
may be manipulated only by those routines.

When execution of a program using mnemones begins, the variable
listhead is initialized to NIL in the unit’s initialization section. Before the
program concludes all the heap space allocated by the unit is deallocated in
the unit’s termination section. (Deallocation of heap variables immediately
prior to program termination is redundant because the p-System
automatically RELEASEs all heap variables after program termination.
Nevertheless, it is a good programming practice).

NOTE: The method of deallocation used in the relapse procedure is
wasteful in that it does not provide for the reallocation of deallocated
memory. See section 3.5 for further details.

The syntax for unit definition is shown below (it is loosely based on
the Pascal syntaxin AppendixD of the User Manual and Report).

<compilation unit> ::= <program> | <library>

<program> ::= <program heading>;
<inline unit part>
<uses part>

<block>.
<library> ::= <unit definition>
f:<unit definition>}.
<inline unit part> 1i= {<unit definition>;}
<uses part> ::= [USES <unit id—part>

§.<unit id—part>}

<unit id-part> (= <unit identifier>[<identifier>
f.<identifier>}]

48 EXTENSIONS TO STANDARD PASCAL Chap. 3

<unit identifier> ::m Lidentifier>

<unit definition> ::= UNIT <unit identifier>;
<interface part>
(Required in IV.1) [<implementation part>]

(1V and Apple) [BEGIN
(1V and Apple) [<initialization section>)
(1V only) [we»;
(1V only) [<termination section>]]]
(I1V and Apple) END

<interface part> ::= INTERFACE

<declarations>
<procedure/function headings>

<implementation part> ::= IMPLEMENTATION
<declarations>
<procedure and function bodies>

<declarations> ;1= <uses part>
<constant definition part>
<type definition part>
<variable declaration part>

The ***; statement should be used only to separate initialization and
termination sections. It should not be contained in any statement or
procedure body. The compiler does not enforce this rule, but violating it
can lead to bizarre results.

Labels may not be declared globally in units, nor may GOTO
statements occur in either the unit initialization section or termination
section; if they do occur, the results are unpredictable. EXIT(PROGRAM) is
the only legal means to arbitrarily transfer control in the initialization or
termination sections of a unit. In the initialization section
EXIT(PROGRAM) causes control to pass directly to the termination section
of that unit. In the termination section it causes control to pass to the next
termination section, if any. If there are no pending termination sections
the program is ended. EXIT with a unit identifier is not permitted.
Segment declarations are allowed in the implementation section only; they
follow the conventions described in section 2.4 for forward declarations
and procedure body declarations.

NOTE: The compiler may emit initialization and termination code
even if these sections are not declared by the programmer. The presence of
file declarations in either the interface or implementation sections causes
the generation of hidden code that initializes and closes these variables.
Additionally, the use of the EXIT intrinsic anywhere in the
implementation section causes the generation of hidden initialization code.

Sec. 3.2 Separate Compilation 49

NOTE: The presence of initialization and termination sections directly
influence the amount of time required to initiate and terminate the
execution of a host program. Units containing such code must be read into
memory and executed before and after the host program executes. The
proliferation of initialization and termination code can therefore lead to
significant delays in program startup and shutdown.

NOTE: The ***; statement is not available in pre-Version IV releases.
The initialization section BEGIN is available only in Version IV and Apple
releases. Version IV.1 requires an implementation section.

NOTE: The INTERFACE textof a unit is stored in the unit’s code file
and therefore occupies disk space. After a host using the unit is compiled,
however, the INTERFACE text is no longer required. The Library utility
may be used to remove the INTERFACE text from production code files.
Consult your system documentation for details.

A unit may consist solely of an interface section (and possibly an
initialization and/or termination section); this is known as a data unit. A
data unit consists of only uses, constant, type and variable declarations
which are accessible to a host program. The responsibility of providing
operations on the data is left to the host program or another unit. Example
of a data unit:

unit ComplexData;
interface
type complex = record
realpart, imaginary : real;
end;
var one, i : complex;
begin finitialization section}
one.realpart := 1; one.imaginary :=
i.realpart := 0; i.imaginary := 1;
end. §ComplexData}

0;

WARNING: Intuitively, the initialization code of any unit used by a
host should be executed before the initialization code of any host. In most
versions of UCSD Pascal this order is not guaranteed and should not be
relied upon. Hence, unit initialization code should not rely on the values of
variables initialized by the initialization code of other units.

The compiler accepts the following combinations of units and
programs during a single compilation:

® A program.

50 EXTENSIONS TO STANDARD PASCAL Chap. 3

® A unit (as in the previous example).
® A group of units.

® A program containing one or more inline units.

NOTE: If a file containing separate programs and/or units is submitted
to the compiler, only the first program or unit in the file will be compiled.

NOTE: An interface section may be contained in an include file if the
keyword INTERFACE is also contained in the include file. However,
interface sections may not contain include file directives.

3.2.2 Using Units

A unit may be used in a host by naming it in a USES statement. In
programs, the USES statement must appear after the program heading. In
units, the USES statement must appear at the beginning of either the
interface section or the implementation section. Objects declared in the
interface section of a used unit become globally declared objects within the
host. Objects imported by using a unit in the implementation section
remain private to the host unit.

WARNING: Although the compiler issues no error message if a
program USES a unit of the same name, executing the compiled program
will cause an immediate stack overflow! For example:

program DontDoThis;
uses DontDoThis;
begin

end.

Version IV.1 of the p-System introduced a feature called selective
USES. This feature permits the host to specify the identifiers to be
imported from a used unit. At compile time, symbol table space 1is
allocated to represent only the specified identifiers and their component
types. Since this usually represents a subset of the identifiers provided in
the unit’s interface section, a compile-time space savings results.

Selective USES is employed by following the USES <unit identifier>
with a list of identifiers enclosed in parentheses. The identifiers may be
any constant, type, variable, procedure, function or process present in the
unit’s interface section. Only those identifiers named will be exported
from the unit; the programmer must assure that identifiers from which

Sec. 3.2 Separate Compilation 51

the selected identifiers are derived are also selected (e.g., If one type
definition is derived from another type or constant, the parent type or
constant must be included if the derived type is to be included).

Code segments for units are normally resident in memory only when
needed (similar to segment procedures), unless operated upon by the
MEMLOCK intrinsic (see section 3.1).

NOTE: In situations where a used unit uses other units in its interface
section, the program must name the nested units in its USES statement
before naming the unit which uses them. For example,if unit A uses unit B
in its interface section, then a host program using unit A must contain the
USES statement uses B,A;.

WARNING: Because identifiers imported from used units have global
scope within the host, naming conflicts may arise between globally
declared program identifiers and identifiers imported from used units. A
convention commonly used to avoid conflict is to prefix all identifiers
exported from a unit with a unique character sequence (e.g., SC_Home,
where the prefix SC indicates that the procedure came from the screen
control unit).

NOTE: One copy of a unit’s public and private variables exists for all
USES of a unit by a program and its used units. This presents a potential
problem when, for example, unit A uses units B and C and unit B itself also
uses unit C. The variables of unit ¢ may undergo manipulation by both
unit A and unit B- with neither A nor B aware of the other’s interference.

- In the following example, the program uses the mnemones unit
declared in a previous example; identifiers imported from the unit are
underlined for emphasis. Note that the initialization section of the unit is
executed before the program is executed.

program UnitDemo;

uses mnemones;

type charset = set of char;
var finished: boolean;

function GetCommand(valid: charset): char;
var ch: char
begin

repeat

read(keyboard,ch);

until ch in valid;

GetCommand := ch;

writeln(ch);
end;

52 EXTENSIONS TO STANDARD PASCAL Chap. 3

function GetCaotegory(command: string): mnemone;
begin
write(command,
*: T(ruth B(eauty W(isdom K(nowledge E(tc’);
case GetCommand(['T’,’B’,'W’,’'K’,'E’]) of
'T': GetCategory := truth;

'B’': GetCategory := beauty;
'W’': GetCategory := wisdom;
*K': GetCategory := knowledge;
'E’: GetCategory := etc;
end;
end;

begin §UnitDemo}
finished := false;
repeat
write(
'Education: L(earn R(ecall F(orget G(raduate’);
case GetCommand(['L',’'R’,’F’,'G’]) of
'L': learn(GetCategory(’'Learn’));
'R*: if recall(GetCategory('Recall’)) then
writeln(’Remembered’)
else
writeln(’'Forgotten’);
'F': relapse;
'G’: finished := true;
end;
until finished;
end.

This program exemplifies not only the use of units, but also typical
UCSD Pascal programming style. The body of the program is little more
than a case statement, selecting one of the options L(earn, R(ecall, F(orget or
G(raduate. Responsibility for presenting a prompt and returning with a
mnemone value always belongs to the single procedure GetCategory.
Validation of user input is always handled by the procedure GetCommand.

3.2.3 Unit Linkage

Linkage to units is performed both at compile time and at runtime. At
compile time, the compiler imports the identifiers contained in a used unit’s
interface section. At runtime, the operating system loads code segments of
used units and resolves unit references. Linkage information is maintained
with unit code, which is found either in the code file resulting from
compilation of the unit or in a library containing the code of the unit. A
library is merely a number of code files which have been combined into a
single file using the system library utility. The p-Systemallows a default
library called SYSTEM.LIBRARY which may contain whichever units the

Sec. 3.2 Separate Compilation 53

user wishes to place there. The user may also define any number of
additional library files; see the discussion of USERLIB.TEXT, below.

In order to import the interface section of a unit used by a host, the
compiler must first locate the unit. The host may directly specify the
name of a file containing the unit’s code with the $U compiler option (see
section 5.0.3). This file is searched first for the units used. If a unit is not
there, or if $U is not specified, the compiler searches the current code file
(for in-line units), then SYSTEM.LIBRARY on the system volume. If the
search is unsuccessful, a compiler syntaxerror is emitted.

If a unit is modified, it should be recompiled and reinstalled into the
library search path. If only the implementation section is changed, hosts
using the unit need not be recompiled. If a unit’s interface section is
modified, all hosts using the unit must be recompiled with the new
version.

WARNING: Executinga program that USES units whose INTERFACE
sections have been modified since the program’s compilation can produce
unexpected or fatal results. This occurs because the positions of unit
variables and procedures relative to the beginning of the unit are
determined during the compilation of a host that uses that unit. Executing
a host that calls a unit whose variable or procedures have been reorganized
in the INTERFACE section causes the host to access incorrect variables or
procedures. Note that because variable offsets and procedure numbers are
assigned in the order they are encountered by the compiler, adding
variables and procedures to the end of the variable and procedure
declarations (instead of the middle) does not invalidate references in the
host, and therefore does not mandate recompilation of the host.

In order to executea program using units, the operating system must
locate each unit used by the program and its used units. This search is
performed in the following manner: First, the code file itself, then the
default library, then, in sequence, the files enumerated in USERLIB.TEXT.
If a unit is not found, the system emits an error message and aborts the
executionof the program.

In Version IV of the p-System, the user libraries are specified, in a text
file called USERLIB.TEXT. This file contains a list of all the files the
system should search in the quest for used units, in the desired search
order.

NOTE: The Version IV redirection feature permits the runtime re-
specification of the name of the user library textfile. Therefore, any text
file can replace USERLIB.TEXT as the list of files to be searched for used
units. Consult the Version IV Users Manual for further details.

54 EXTENSIONS TO STANDARD PASCAL Chap. 3

NOTE: Units are compiled into code segments in a manner similar to
programs; the unit occupies one segment and each segment procedure or
function occupies a segment. Programs and units may directly access up to
255 units and segments.

In Version II and Apple Pascal, UNITs were implemented somewhat
differently from the Version IV implementation. The ***; statement and
the termination sections were not available. In Version II, the initialization
sections were not available either. '

In Version II and Apple Pascal UNITs were compilable separately
from their hosts, but had to be explicitly linked to the host using the
system Linker utility.

Apple Pascal releases include a facility called the INTRINSIC UNIT.
INTRINSIC UNITs are placed in the system library using the Library
utility and do not require explicit linking; they are linked to the host
dynamically at runtime in a manner similar to the Version IV
implementation. Each INTRINSIC UNIT is treated as a segment, however
there is a limitation of sixteenintrinsic units per system.

Further, each such INTRINSIC UNIT has a specific segment number
associated with it; it has to fit into that specific ’slot” of the host program
during execution. These numbers must be determined by the programmer
when the INTRINSIC UNIT is compiled. This scheme causes difficulties
when a host must use a number of INTRINSIC UNITs compiled with the
same segment number.

3.3 Files

UCSD Pascal provides a number of extensions for file handling. The
extensionsinclude:

® Direct access to the file system from programs.
® Interactive file /0 on the system terminal.

® Random-access disk files.

e Block-oriented files for systems programming.

A number of extensionsare also provided to allow access directly to a
device, without regard to its structure. These are discussed in section 3.9.

Section 3.3.1 introduces the UCSD intrinsic CLOSE and describes
extensions made to the standard procedures RESET and REWRITE.
Together, these intrinsics allow programs to access the file system. Section
3.3.2 describes the predeclared file type INTERACTIVE; when applied to
interactive files, the standard procedures READ and RESET are redefined

Sec. 3.3 Files 55

to accommodate interactive 1/0. Section 3.3.3 describes the predeclared file
KEYBOARD, which reads characters from the standard input without
echoing them to the standard output. Section 3.3.4 describes block files.
Block files are accessed with the UCSD intrinsics BLOCKREAD and
BLOCKWRITE which read and write data in integral numbers of blocks.
Block files allow efficient manipulation of large, arbitrarily structured
files. Section 3.3.5 introduces the UCSD intrinsic SEEK, which is used to
randomly access the contents of disk files.

3.3.1 File System Access

UCSD Pascal provides direct access to the file system, allowing programs to
manipulate disk files and perform file operations on I/0O devices. It is
useful to make a distinction between file variables and external files — a
file variable is a logical entity declared in a program, while an external file
is either a physical disk file or I/O device. File system access is
accomplished by connecting a program’s file variable with an external file.
A file is open if it has been connected, and closed if it either has not yet
been connected or has been connected and subsequently disconnected. File
I/0 operations may be performed only on open files.

The file system is accessed with the intrinsics RESET, REWRITE, and
CLOSE. RESET and REWRITE connect files, while CLOSE disconnects
files.

REWRITE creates new files. Its form is:

<rewrite—call> ::= REWRITE(<fileid>[,<filenome>])

where <fileid> is a file variable identifier and <filename> is a string
constant or variable containing a file name. REWRITE creates a new
external file with the given file name and prepares the file variable for
subsequent file operations.

NOTE: As mentioned in the file system specification, files on a disk
volume must have distinct file names; an existing file is automatically
deleted if another file with the same name is entered in the disk directory.
A disk file created by REWRITE is assigned temporary status; it becomes a
permanent file (and an old file with the same name on the same volume is
deleted) only if it is closed and locked (see below for details). Thus,
programs which generate temporary files need not worry about
inadvertently deleting permanent disk files.

RESET opens existing files for subsequent file operations, and resets
the file to its beginning position. RESET may be applied to already open
files, in which case the file is reset to its beginning position. The form for

56 EXTENSIONS TO STANDARD PASCAL Chap. 3

RESET is:
<reset—call> ::= RESET(<fileid>[,<filename>])

where <fileid> is a file variable identifier and <filename> is a string
containing a file name. Calling RESET with the second parameter present
opens an existing external file named by <filename> and prepares the file
variable for subsequent file operations. If the file named by <filename> is
not present a runtime error results (unless I/0O checking is suppressed; see
section 5.0.6 for details). Note that RESET with a single parameter (i.e., the
file identifier) works as defined in Standard Pascal.

WARNING: As in Standard Pascal, performing a RESET causes an
automatic call to GET. When the file identifier is connected to a serial
device, the program hangs until the GET is satisfied by incoming data. See
section 3.3.2 for more details.

NOTE: Applying the RESET intrinsic to a blocked file does not
perform an implicit GET. See section 3.3.4 for details.

CLOSE disconnects files. The form for CLOSE is:
<close—call> ::= CLOSE(<fileid>[,<option>])

<option> ::= NORMAL | LOCK | PURGE | CRUNCH

The options determine the final state of a file. NORMAL (which is
the default option) preserves pre-existing files which were RESET, but
deletes files newly created by REWRITE. LOCK preserves files as
permanent disk files. Locking a newly created file may delete an existing
permanent file if they share the same name and reside on the same volume.
PURGE deletes the file associated with <fileid> from the directory. Both
temporary files (opened with REWRITE) and permanent files (opened
with RESET) are deleted when the PURGE option is utilized. CRUNCH is
equivalent to LOCK, but causes the file to be truncated at its current
position.

NOTE: An implicit CLOSE(<file>, NORMAL) is performed on files
which are not explicitly closed before the procedure in which they are
declared terminates.

NOTE: The UCSD intrinsics OPENOLD and OPENNEW are
synonymous with RESET and REWRITE respectively, and were used in
pre-Version IV releases of UCSD Pascal.

Sec. 3.3 Files b7

Chapter 4 contains detailed descriptions of the intrinsics mentioned in
this section. = Chapter 7 describes the file system and file naming
conventions.

Examplesof file system access using RESET, REWRITE, and CLOSE:

program FileDemo;
var infile,outfile: text;

st: string; §{Limits line size to 80 chars}
begin

§ open up the disk file named "master.text" }
reset(infile, 'master.text’);

§ copy to a disk file named "copy?l.text" }
rewrite(outfile, ' copyt.text’);
while not eof(infile) do begin
readin(infile,st);
writeln(outfile,st);
end;
close(outfile,lock);

§ rewind master file for second pass }
reset(infile);

§ copy to o disk file nomed "copy2.text" }
rewrite(outfile, ' copy2.text’);
while not eof(infile) do begin
readin{infile,st);
writeln(outfile,st);
end;
close(outfile, lock);

{ close down master file }
close(infile,normal);
end.

Infileand outfile are logical files of type text. This is a predeclared
type which is equivalent to file of char. RESET is used to associate infile
with the existingfile master.text. REWRITE associates outfile first with
copy1.text, then with copy2. text. Since the LOCK option is used, each of
these files is added to the volume directory upon executionof the respective
CLOSE statement. (Files may be copied more efficiently using the
BLOCKREAD and BLOCKWRITE intrinsics, discussed in section 3.3.4.)

Note that files with a suffix of .TEXT have a special significance in
the p-System; they possess a header record with information necessary in
order to work with the file using any of the p-System editors. This is
transparent, however, when doing normal READ or WRITE operations
from or to the file.

58 EXTENSIONS TO STANDARD PASCAL Chap. 3
3.3.2 Interactive Files

UCSD Pascal provides the predeclared file type INTERACTIVE in order to
facilitate the use of the system terminal as an input file. Interactive files
are structurally equivalent to textfiles; the only difference between them
is the manner in which the standard procedures RESET, READ, and
READLN are defined to act.

To explain the need for interactive files, it is first necessary to
examine the definitions of textfile operations in Standard Pascal. Let ch be
a character variable, and f a file of type TEXT; the following rules then
hold for RESET and READ:

® RESET(f) is defined to perform an implicit GET(f)
@ READ(f,ch) is equivalent to ch := f~; GET(f)

where GET advances the file pointer f+ to the nextcharacter in the file.
Using these standard definitions, the following program attempts to
create a simple console prompt by writing a prompt message to the console
screen and accepting a response from the console keyboard:
program prompter;
var infile,outfile: text;
ans: char;
begin
reset(infile,’console:"’);
rewrite(outfile,'console:’);

write(outfile,’Are you sure this will work (y/n) ?');
read(infile,ans);

if answer = 'y
then writeln ('yes’)
else writeln ('no ');

end.

Unfortunately, this program doesn’t work as expected; RESET
performs an implicit GET, so the program will appear to “hang” until a
character is typed on the console. Ajfter a character is typed, the prompt
appears; however, READ will assign the contents of the file buffer to the
variable ans before executing another GET. Thus it will use the character
previously typed to satisfy the RESET operation. It will then pause to
GET another character into the buffer variable, but this character will be
ignored since the program contains no further READ. A ’yes’ or 'no’ will
appear on the screen following input of the second character, but it will
reflect the value of the first character! The program is obviously ill-suited
for interactive use.

With an interactive file i, the following rules hold for RESET and
READ:

Sec. 3.3 Files 59

® RESET() does not perform an implicit GET()
® READ(ch) is equivalent to GET(i); ch =i"

The program shown above executes more reasonably if infile is
declared with type INTERACTIVE. The program does not hang when the
input file is opened, and the prompt response is not read until after the
prompt message is displayed. Only one character needs be input; it will be
assigned to the variable ans, and will be the basis for the ’yes’ or 'no’ that
appears on the screen.

The definition of interactive files affects the manner in which the
standard functions EOLN and EOF are used. The following code fragments
are functionally equivalent (f is a file of type text, i is a file of type
interactive, and ch is a character variable).

while not eoin(f) do while not eoln(i) do
read(f,ch); read(i,ch);
read(f,ch); $EOLN marker}

Both loops read characters from the file until the end of a line is reached, as
signaled by the EOLN marker in the window variable. But with file f, the
window variable f+ will always contain the next character for ch. Thus,
an additional read is necessary to flush the end-of-line marker. With file
i, itand chcontain the same character after each READ; thus, ch contains
the end-of-line marker when EOLN() evaluates to true.

3.3.3 The Keyboard File

UCSD Pascal contains the predeclared file KEYBOARD for reading
characters directly from the terminal keyboard. @KEYBOARD is an
interactive file, and is the non-echoing equivalent to the predeclared file
INPUT. For example,given ch as a character variable, the statements:

read(keyboard,ch);
write(output,ch);

are equivalent to read(input,ch), assuming no redirection of output. The
KEYBOARD file is useful when it is desired to verify a character before
echoing it, or when it is necessary to echo a character other than the one

typed.

NOTE: EOF(KEYBOARD) becomes true only after typing <null> The
console end-of -file command is read as a normal character.

NOTE: The KEYBOARD file and INPUT file are distinct files with
distinct states. While a READ from INPUT determines the EOLN and EOF

60 EXTENSIONS TO STANDARD PASCAL Chap. 3

function values, it does not affect the EOLN(KEYBOARD) and
EOF(KEYBOARD) values, and vice-versa.

3.3.4 Block Files

Block files allow low-level access to the file system; they are intended for
system programming. Block files are declared with the predeclared type
FILE and may be accessed only with the BLOCKREAD and BLOCKWRITE
intrinsics. These are integer-valued functions. They accept as parameters a
block file identifier, a buffer, a number of blocks and (optionally) a
starting block number, and return the number of blocks actually
transferred. (A block is 512 bytes long.) The optional starting block
number parameter allows disk files to be randomly accessed by block
number; in its absence, successive block I/0 operations access consecutive
blocks. A disk file is viewed as a group of contiguous blocks; the first
block is block 0.

NOTE: The RESET intrinsic does not perform an implicit GET when
applied to block files.

WARNING: No range checking is performed on the size of the buffer
variable. Therefore, it is possible to read data beyond the end of a buffer
by specifying a greater block count than the buffer can hold.

Example of block I/0 using explicit I/O checks and implicit starting
block:

NOTE: The function IORESULT is discussed in section 4.16. It returns
an integer indicating the completion status of an input or output operation.
The system normally aborts a program with a runtime error when an I/0
operation completes abnormally. The $I compile option, discussed in
section 5.0.6, allows the program to continue after an abnormal I/O
completion; the program may then examine the value of JORESULT to
determine the appropriate response.

program FileCopy1;
const blksexpected = 1;
var infile,outfile: file;
buf: packed array [1..512] of char;
fno type checking with block I1/0; }
junk, blksread: integer;
ffile may contain data of any typet
endofile: boolean;
begin

Sec. 3.3 Files 61

endofile := false;
reset(infile,’source.data’);
rewrite(outfile, 'dest.data’);
while not endofile do
begin
§$1— Turn off system I/0 checking}
blksread := blockread(infile,buf,blksexpected);
if ioresult <> @ then writein('disk read error’);
endofile := biksread <> blksexpected;
if not endofile then
begin
junk := blockwrite(outfile,buf,1);
if ioresult <> @ then writeln("disk write error’);
end;
§$1+ Restore system 1/0 checking to previous state}
end;
close(infile);
close(outfile,lock);
end.

Example of block I/0 using implicit I/O checks and explicit starting
block:

program FileCopy2;
const N = 5;
§process N blocks at a time}
var infile,outfile: file;
buf: packed array [1..N,1..512] of char;
§provides N x 512 bytes}
blknum, blksread: integer;
begin
reset(infile, source.data’);
rewrite(outfile, 'dest.data’);
bliknum := 0;
repeat
blksread := blockread(infile,buf,N,blknum);
if blockwrite(outfile,buf,blksread,blknum) <> @
then;
blknum := blknum + N;
until blksread < N;
close(infile);
close(outfile,lock);
end.

3.3.5 Random Access Files

UCSD Pascal provides the SEEK intrinsic for random record access in a
structured disk file. SEEK accepts two parameters: a file identifier, and an
integer indicating the record to be accessed. SEEK moves the file window
so that a subsequent GET or PUT operation accesses the specified record.
The first record in a file is record O.

62 EXTENSIONS TO STANDARD PASCAL Chap. 3

NOTE: In Standard Pascal, an open file is either read or written
exclusively. Random access files in UCSD Pascal are opened with
REWRITE for new files and RESET for pre-existingfiles, but in either case
they can be both read (using GET) and written (using PUT).

NOTE: The standard procedure EOF can be used to check if the
specified record number exceeds the number of records in the file. Calling
SEEK itself always sets EOF to false, but a subsequent GET operation
reveals the presence or absence of a record in the file window. If GET
causes EOF to become true, the file window is past the end of the file, and
the buffer variable is undefined.

WARNING: SEEK disregards the end of a file when setting a new file
position. After seeking to a record position past the end of a file, PUT
should be called only if the file window immediately follows the last
record in the file; otherwise, the file state becomes undefined and adjacent
files may be destroyed. It is wise for a program to explicitly track the
current last record in a randomly accessed file.

NOTE: UCSD Pascal disk files occupy integral 512-byte blocks. In the
case of structured files the operating system automatically maintains (in
the volume directory) the ending position of the last logical record in the
last block of a file. However, this information is not maintained for files
created using UNIT or BLOCK 170. Since the SEEK intrinsic uses this
information, SEEK cannot be applied to UNITWRITE-created files or
BLOCKWRITE-created files.

Exampleof SEEK:

program DataBase;

var f: file of string;
recnum: integer;

begin

reset(f,’'string.datao’);
repeat
write('Enter record number (-1 terminates) : *);

readin(recnum);
if recnum < @ then exit(program);
seek(f, recnum);

get(f);
if eof(f) then writeln(’ No such record’)
else
begin
writeln(® Current value is: ’,ft);
seek(f,recnum); § reseek record for update }

write(’ Enter new value: ');
readIin(ft);

Sec. 3.3 Files 63

put(f);
end;
until false;
close(f,lock);
end §{DataBase};

This program allows on-line updating of selected records in the file
string.data. Note that no checking need be done on the value entered for
record number; SEEK is immediately invoked with that value, followed
by GET. If the value supplied is greater than the largest current record
number, GET will set eof (f) to true and the program will not attempt to
display or modify the (non-existent) record. If a valid record number is
supplied, the record is displayed. Before the record can be updated, SEEK
must again be invoked with the same record number since the previous
GET has advanced the file window to the record beyond the one to be
updated.

3.4 Strings

UCSD Pascal contains the predeclared data type STRING. Variables
and constants of type STRING contain character sequences. The length of a
character sequence stored in a string variable may vary during the
executionof a program. A number of operations are provided for strings:

® The file operators READ, READLN, WRITE and WRITELN accept
string arguments.

® The intrinsics CONCAT, COPY, DELETE, INSERT, LENGTH and POS
(discussed in chapter 4) perform common string operations.

® Individual characters in a string variable may be accessed similarly to
an array of characters.

® All comparison operators (e.g., <>) accept string arguments.

Although the length of the character sequence stored in a string
variable may vary during the executionof a program, the actual amount of
memory occupied is static. String types are declared with a static length
attribute. The default static length is 80 characters. Static length
attributes are explicitly assigned by following the predeclared identifier
STRING with an unsigned integer constant (denoting the static length)
enclosed in square brackets ([). The maximum length attribute is 255
characters. ‘

The dynamic length of a string is stored in an “extra” byte preceding
the rest of the string. This byte is normally transparent to the
programmer.

64 EXTENSIONS TO STANDARD PASCAL Chap. 3

The dynamic length of a string may not exceed its static length. An
attempt to assign a large string of characters to a smaller string variable
will result in an execution error (ie., ” String Overflow ”). There is no
automatic truncation in UCSD Pascal.

Examplesof string type declarations:

type normal = string; fdefault static length}
volname = string[7]; §static length = 7 chars}

bigstring = string[255]; §static length = 255 chars}

NOTE: Static length attributes allow users to minimize the amount of
space allocated to strings (disk space with respect to files containing
strings; memory space With respect to string variables). Strings are type-
compatible regardless of their static length attribute.

NOTE: String variables are always allocated an even number of bytes,
including a hidden length byte. Thus, STRING[10] and STRING[11] both
occupy 12 bytes.

Exampleof string assignment:

s1 := 'this is a string constant’;
82 := si;

NOTE: String constants may not exceed 80 characters.

Individual characters within a string may be referenced by indexing
into the string variable (e.g, s1[5]- note that string variables are
equivalent to a PACKED ARRAY OF CHAR in this respect). Valid string
indices range from 1 to the current dynamic length of the string; indices
outside of this range cause an executionerror (i.e., "Invalid Index”)to occur.

Exampleof an invalid string index:

s1 := "1234°;
s1[5]) := '5";

NOTE: If the length of a string is O (i, its value is ”), any string
indexingcauses an execution error.

NOTE: In p-System Version IV.1 and later releases the $R compiler
option will suppress range error checks on string subscripts. Suppression of
this error was not possible in pre-Version IV.1 releases.

Sec. 3.4 Strings 65

NOTE: The dynamic length of a string may be set explicitly by
disabling index range checking and storing the desired length into the
length byte:

var
s: string[80];
NewlLen: integer;
begin
NewLen := 12; for whatever}
§$R—}
s[@] := chr(NewLen);
fchr function must be used to
convert length to o single byte}

§SR1}

The relational operators =, <>, <, <=, >, >= yield a boolean result when
applied to string operands. Comparisons are performed lexicographically
(e.g., word order in a dictionary). Note that trailing spaces are significant.
AppendixI displays the character order.

Examplesof string comparison:

if 'write’ < 'writeln’
then writeln(’'strings compares work’);

if s1 = 82 then writeln('string vars equal’);

if 'language’ = 'language ' {note trailing blank}
then writeln('This would be PL/I’)
else writeln(’'But this is UCSD Pascal!l’);

When a value for a string variable is read using READ or READLN,
all characters up to an end-of-line character (carriage return) are assigned
to the string variable. When a string is entered from the console it must be
terminated by a carriage return, whether or not the input was performed
with READ or READLN. By definition, READLN swallows the carriage
return. READ, however, leaves the carriage return as the window
variable; it is picked up by the next read operation. As a result, it is
suggested that strings be read from the console only with READLN.
Additionally, attempting to read two strings with one READLN call will
fail because the end-of-line that terminates the first string input is not
flushed until the end of the READLN. Hence the second string will receive
an empty input.

Character strings longer than the static length of a string variable are
truncated by READLN before being assigned to the string variable.

UCSD Pascal provides the following intrinsics for string
manipulation: CONCAT, COPY, DELETE, INSERT, LENGTH and POS.
CONCAT accepts two or more strings as arguments and returns a single
string containing the concatenation of the string arguments. COPY extracts

66 EXTENSIONS TO STANDARD PASCAL Chap. 3

a character sequence (a “substring”) from a string and returns the sequence
as a string. INSERT stuffs a string value into another string. DELETE
removes characters from a string. LENGTH returns an integer containing
the dynamic length of a string. POS returns an integer denoting the
starting position of a character pattern within a string.
Exampleof string intrinsics:
program strings;

var s1, s2, s83: string;
int: integer;

begin
s1 := 'The quick brown system’;
82 := ’jumped over the lazy document’;

writein(length(s1),’ ’',length('Q'));

int := pos('brown’,si);
writein(int,’ *',pos(s1,s2));

83 := concat(s1,’ ’,s2);
writeln(s3);

writeln(copy(s1,1,4),copy(s2,pos(’document’,s2),8));

writeln(s1):

83 := 'quick brown’;
delete(s1,pos(s3,s81), length(s3));
writein(s1);

insert(’ is a moving torget’,s1,succ(length(s1)));
writeln(si1);
end §strings}.

»» Program output =»»

22 1

1 0@

The quick brown system jumped over the lazy document
The document

The quick brown system

The system

The system is a moving target

3.4.1 String Parameters

Strings may be passed as value or variable parameters; however, the
compatibility of strings having different static lengths can cause some
subtle problems.

First, note that string types possessing a length attribute specification
are considered structured types, and thus may not appear in the formal

Sec. 3.4 Strings 67

parameter list of a procedure or function; according to Standard Pascal,
only type identifiers may appear here.
Exampleof strings as formal parameters:

type bigstring = string[132];
procedure trans(parami: string; param2: bigstring);

Strings passed as value parameters (rather than as VAR parameters)
are copied into local data areas by the called procedure. The code for this
task is produced automatically by the compiler; it is executed when the
procedure is first entered. If the actual parameter’s dynamic length exceeds
the formal parameter’s static length, the execution error ”String too long”
occurs when the string copy is attempted.

Exampleof an executionerror during string copying:

program example;
type shortstring = string[4];

procedure crash(param: shortstring);
begin

{ string—copying code causes error here }
end;

begin
crash(’oversized actual parameter’);
end fexample}.

WARNING: Strings passed as variable (VAR) parameters can cause
serious problems as a result of a lapse in UCSD Pascal type-checking.
Formal parameter references within a procedure become indirect references
to the actual string parameter. Within the procedure, however, the formal
parameter’s static length attribute overrides the actual string’s static
length. If the formal parameter’s dynamic length exceeds the actual
string’s static length, the formal parameter may be assigned values that
overrun the string’s data space without causing an execution error. This
results in either a system crash or damage to the contents of an adjacent
variable.

Exampleof integrity violation from poor type checking:

program features;

type bigstring = string[250];

var smallstring: string[10];
victim: string;

fwill be corrupted because it follows smallstring}

procedure whackstring(var param: bigstring);

68 EXTENSIONS TO STANDARD PASCAL Chap. 3

begin
param := ’'this string is larger than ten characters’;
end; § tcharacters from here
on will overwrite victim!i
begin
victim := 'this string will be overwritten’;
writein('before: *',victim);
whackstring(smallistring);
writeln('after: ',victim);

end §features}.

In the program above, the string victim immediately follows the
string smallstring in memory. Smallstring has a static length of 10
characters. If more than 10 characters are entered into smallstring the
excesscharacters will extend beyond smal Istring, overwriting victim.

Normally, runtime range checking prevents more than 10 characters
from being assigned to smalistring. In the illustration above, however,
smallstring is passed as a parameter to procedure whackstring, where the
formal parameter corresponding to it (param) has a static length of 250
characters. Since param is a VAR parameter, any modifications made to it
within procedure whockstring actually affect smallstring itself.
However, the runtime system only enforces the static length of param -
250 characters. It does not enforce the static length of the actual
parameter, smal Istring. Thus, the assignment of a value longer than 10
characters to param causes no runtime error. But it does cause memory
locations following smallstring to become corrupted. Victim will be
overwritten by the excesscharacters of the string assigned to param.

3.5 Dynamic Variable Management

UCSD Pascal provides two sets of intrinsics for dynamic variable
allocation and deallocation: the UCSD Version II intrinsics and the
additional intrinsics provided by UCSD Version IV. The Version II
intrinsics have the advantage that they are common to all versions of
UCSD Pascal. However, the Version IV intrinsics allow the deallocation of
single dynamic variables and provide support for variable-sized buffer
allocation. The Version II intrinsics are NEW, MARK and RELEASE
(section 3.5.1). The intrinsics introduced in Version IV include VARNEW,
DISPOSE, VARDISPOSE and VARAVAIL (section 3.5.2).

Sec. 3.5 Dynamic Variable Management 69

3.5.1 The Version II Heap

All dynamic variable allocation is performed in an area of memory known
as the heap. The heap starts in low memory and grows towards high
memory (where low memory begins at location 0 and high memory > low
memory). The system stack, which contains procedure code, local variables
and parameters, starts in high memory and grows towards low memory.
The NEW intrinsic is used for the allocation of a single dynamically
allocated variable. Successive calls to NEW allocate variables in successive
ascending memory locations, thus advancing the heap towards the stack. If
the heap and stack collide, a stack overflow error occurs.

As in Standard Pascal, NEW accepts any number of arguments. The
first argument is required; it is a pointer to the type of variable being
allocated, and is returned containing the address of the allocated item. The
remainder of the arguments are optional. They are used when the variable
being allocated is a variant record with variants of different sizes. NEW
normally allocates as much space as is necessary to contain the largest
variant. However, if NEW is given the tag field names for nested variants
as the second through last arguments it will allocate only the amount of
space necessary to contain the variant specified.

WARNING: The p-System does not perform a runtime check to assure
that assignments to variant records utilize valid variants. Thus, a
carelessly written program may supply a value to a dynamically allocated
variant record that is larger than the amount of space allocated to the
record. A system crash or corruption of surrounding variables may result.

program ZapMemory;
type
itemp = titem;
item = record
case i: integer of
1: (smallvariant: integer);
2: (largevariant: string);

end;
var
killer: itemp;
begin

new(killer,1); f§corresponds to smallvariant}
killert.largevariant := 'Goodbye, Mr. Bits’;
end.

In program ZapMemory, TYPE item has two variants, an integer (2
bytes long) and a string (82 bytes long). The NEW allocates a record of a
size to accommodate the smaller variant. The assignment statement,
however, assigns a value much larger than 2 bytes to the record! Thus,
surrounding heap locations will be corrupted.

70 EXTENSIONS TO STANDARD PASCAL Chap. 3

The MARK and RELEASE intrinsics are used for the deallocation of
dynamically allocated variables. MARK and RELEASE accept pointer
variables of any type as arguments. Given a pointer variable p, MARK(p)
opens a new heap for dynamically allocated variables. The heap is
identified by the value assigned to p by MARK. Subsequent calls to NEW
allocate dynamic variables only in the new heap. RELEASE(p) deallocates
all dynamic variables in the heap designated by p.

Essentially, MARK causes the system to note a heap location by
saving the current value of its internal top-of-heap pointer in the variable
p. The top-of-heap pointer advances as NEW is used to allocate additional
dynamic variables, but RELEASE causes the system to set its internal top-
of-heap pointer back to the value saved in p, freeing all variables allocated
since execution of the corresponding MARK.

NOTE: New heaps are allocated within the current heap; thus, heaps
are nested. Deallocating a given heap results in the deallocation of all
subsequently opened heaps.

WARNING: Careless use of MARK and RELEASE can lead to
“dangling references” (i.e., pointer variables pointing to deallocated
dynamic variables). Use of dangling references can cause unpredictable
results, including system crashes.

NOTE: In pre-Version IV releases, MARK and RELEASE do not check
the validity of their arguments. The programmer must assure that
pointers passed to MARK are used for no purpose other than an argument
to a subsequent call to RELEASE. Pointers passed to RELEASE must be
initialized by a previous call to MARK.

Exampleof MARK and RELEASE:

program dynamic;
type citizenptr = tcitizen;
citizen = record
name: string;
number: integer;
neighbor: citizenptr;
end;
var mrklist, listhead: citizenptr;

procedure add(cloname: string; ID: integer);
var cloneunit: citizenptr;
begin
new(cloneunit);
with cloneunitt do
begin
name := cloname;

Sec. 3.5 Dynamic Variable Management 71

number := ID;
neighbor := listhead;

end;
listhead := cloneunit;
end f{add};
begin
mark(mrklist); fallocate spoace for list}
listhead := nil;
add(’Clone, Norman Q. ' ,2763);
add('Dumptruck, T. ' ,2764);
add(’Maton, Otto F. S. ' ,2765);
add(’Kaboozee, Kitzle N. ' ,2766);

listhead := nil;
release(mrklist); fdeallocate entire list}
end fdynamic}.

This program builds, then destroys, a linked list of records of type
citizen. The pointer variable |isthead is used to maintain the current
beginning of the list, and changes as records are added to the list by
procedure add. Before odd is invoked in the main program, the top-of-heap
is recorded in the pointer variable |ist, via a call to MARK. A number of
records are added to the list. Prior to program termination, a call to
RELEASE with pointer 1ist restores the top-of-heap to its original value,
thus destroying the linked list.

Although the pointer mrk1ist is declared as type citizenptr in this
illustration, it could just as well have been declared as a pointer to any
type (e.g, tinteger). This is because mrklist is not used to point to data
but serves merely to mark a location on the heap.

Note that the variable Iisthead is explicitly set to NIL, even though
the entire linked list it points to has been RELEASEd. RELEASE merely
sets back the top-of-heap pointer. It does not change values on the heap,
nor does it modify pointers to the RELEASEd heap locations. In fact, were
listhead not set to NIL, the program would still be able to access the
linked list. Of course, any additional variables allocated on the heap
would overwrite the linked list. Programmers should assure that they do
not attempt to illegally use the heap in this manner. However, to avoid
situations leading to such misuse a program may explicitly set to NIL any
pointers to RELEASEd heap locations.

NOTE: Releasing the heap at the end of a program is unnecessary since
the operating system also deallocates all dynamic variables when a
program completes execution.

72 EXTENSIONS TO STANDARD PASCAL Chap. 3
3.5.2 The Version IV Heap

The Version IV heap implementation provides all Version II heap
intrinsics. It also includes the DISPOSE, VARNEW, VARDISPOSE and
VARAVAIL intrinsics.

Dissimilarities between the Version IL.O heap and the Version IV heap
occur as a result of the DISPOSE intrinsic. This intrinsic is used for the
deallocation of a single dynamically allocated variable. The memory space
occupied by the deallocated variable is recycled by subsequent calls to
NEW, assuming the space occurs in the current heap and it is large enough
to accommodate the new variable. Note that successive calls to NEW are
not guaranteed to allocate variables adjacently in memory, as is the case
with the Version I1.0 heap.

The VARNEW and VARDISPOSE intrinsics are used for the
allocation and deallocation of variable-sized buffers. They accept two
parameters: a pointer variable of any type and an unsigned integer
representing the number of words to be allocated. (Unsigned integers are
discussed in section 6.2.) The VARNEW function attempts to allocate a
buffer of the requested number of words. If there is sufficient memory
for such a buffer, the pointer is returned pointing to the buffer and the
requested word count is returned as the f unction value; otherwise the
function value is zero. The VARDISPOSE procedure deallocates a buffer of
the specified size at the specified pointer location.

The VARAVAIL function accepts a string value containing a list of
segments and returns the size of the largest available memory space,
assuming all specified segments are memory-resident. The segment list is
of the same form as that used by the MEMLOCK intrinsic described in
section 3.1.

NOTE: Pointer variables passed to the RELEASE, DISPOSE and
VARDISPOSE intrinsics are returned containing the value NIL.

NOTE: Pointer values passed to RELEASE must be the result of a prior
MARK; otherwise, an "Invalid Heap Operation” error occurs.

NOTE: Calls to DISPOSE or VARDISPOSE must be made with the
same size structure as was used with the corresponding NEW or VARNEW
call; otherwise, a system crash may occur. In the event a variant of a
record was allocated, the program is responsible for assuring that the same
variant is DISPOSEd.

Sec. 3.5 Dynamic Variable Management 73

NOTE: Calling NEW or VARNEW to allocate a one-word structure
actually allocates two words; corresponding calls to DISPOSE and
VARDISPOSE deallocate two words. Calls to MARK allocate six words in
addition to a new heap; calls to RELEASE deallocate that space.

Exampleof extended memory management usage:

program extended;
type buffer =
record
case integer of
2: (twoblocks : array [@..511] of integer);
4: (fourblocks : array [0..1023] of integer);
end;

procedure method1(size: integer);
var bufptr: tbuffer;
begin
if size = 2 then
new (bufptr, 2)
else
new (bufptr, 4);
fuse buffer for something}
if size = 2 then
dispose (bufptr, 2)
else
dispcse (bufptr, 4);
end;

procedure method2(size: integer);
var bufptr: tbuffer;
begin
if varnew (bufptr, size*256) <> @ then
begin
fuse buffer for something}
vardispose (bufptr, size»256);
end;
end;

begin
method1(2);
method2(4);

end f{extended}.

Two methods are illustrated in this program for allocating and
deallocating a variable sized buffer. Procedure method1 utilizes the
standard Pascal NEW and DISPOSE procedures. The size in blocks of the
desired buffer is passed as a parameter to method1. Method1 then makes use
of the fact that TYPE buffer was deliberately declared as a variant record
with integer tags 1 and 2. If size has value 2 then the variant with tag 2
of buffer is allocated. This variant is two blocks long. If size has value 4
then the four block variant of buffer is allocated.

74 EXTENSIONS TO STANDARD PASCAL Chap. 3

The problem with the approach of method1 is that if there are more
than two desired variations in buffer size, the additional variations would
require corresponding variants in type buffer. Procedure method2,
however, uses the UCSD intrinsicc VARNEW and VARDISPOSE to
allocate and deallocate the buffer. These permit exact specification of the
number of words desired; this value is independent of the size of any
variant. Thus, the desired size in blocks passed to method2 is multiplied by
256 to yield the size in words, and that number of words is VARNEWd
directly. Procedure method2 does not require that TYPE buffer be a
variant record. It will nevertheless permit allocation of a buffer of any
size.

See sections 3.11.9 and 6.4 for further discussion of variable buffer
allocation.

3.6 Extended Precision Arithmetic

UCSD Pascal provides a data type known as the “long integer” for
extended precision arithmetic. ~Long integers are used like standard
integers, but may contain values greater than maxint.

Long integer types are defined by appending a length attribute to the
predeclared type INTEGER. Length attributes are similar to those used in
string types: an unsigned integer constant delimited by square brackets
([and]). The maximum length attribute is 36.

Length attributes are used to minimize the amount of space allocated
1o long integers (disk space with respect to files containing long integers;
memory space with respect to long integer variables). Long integers are
type compatible regardless of their length attribute.

The interpretation of long integer length attributes is hardware
dependent. On many machines, the length attribute is taken to mean the
maximum number of digits expected. Implementations for other processors
interpret the length attribute as a specification of the number of bytes to be
used. This often implies that values with considerably more than that
number of decimal digits can be represented. Thus, the length attribute
should be regarded as the least possible number of digits which may be
contained in the long integer.

Examplesof long integer type definitions:

type shortint = integer[3];
longint = integer[36]; § max size }

Depending on their value, constants defined as integers become either
integer or long integer constants. Constants in the range -32767..32767
default to integer constants; constants outside this range are treated as long
integer constants.

Sec. 3.6 Extended Precision Arithmetic 75

Under pre-Version IV UCSD Pascal systems, programs with long
integer constants compiled on one processor may not run properly on a
different processor. Recompilation may be required.

Caution should be exercised when creating data files using long
integers which may be ported to a different machine. The internal
representation of a long integer varies from machine to machine.

Examplesof integer constants:

const Rydberg = 10973731; § long integer }
Hoffman = @; § integer t

In general, long integers may be used anywhere it is syntactically
correct to use REAL types. For instance, long integers and integers may be
mixed in arithmetic expressions; integers are implicitly converted to long
integers in mixed expressions. Integers may be assigned to long integers;
however, long integers must be explicitly converted to integers (with the
standard function TRUNC, described below.) Note that direct conversion
between long integers and reals is not provided.

WARNING: See Appendix G for some problems arising from the use of
mixed expressions.

The arithmetic operators +, -, * and DIV yield a long integer result
when applied to long integer operands. (Note that MOD is not defined.)
The relational operators =, <>, <, <=, > and >= yield a boolean result when
applied to long integer operands.

Unlike integers, long integers enforce overflow checking; when a
long integer variable is assigned a value larger than it can contain, the
execution error "Integer Overflow” occurs.

WARNING: Intermediate expression results should not exceed the
maximum permitted number of long integer digits (36) - integer overflow
may not be detected. '

Exampleof a program using long integers:

program example;
fgenerates L.LOTS of powers of two}
var long: integer[36];

begin
long := 1;
repeat
writelin(long);
long := long * 2;
until long > 20000000;
end.

All file I/0 operators (including READ and WRITE) accept long
integer arguments.

76 EXTENSIONS TO STANDARD PASCAL Chap. 3

WARNING: On some pre-Version IV UCSD Pascal systems backspace
does not work when reading a long integer from the console.

The standard function TRUNC is extended to accept long integers as
arguments (as with reals, an execution error occurs if the argument is
outside the appropriate range). The UCSD intrinsic STR converts long
integers to strings. Given a long integer L and a string S, STR(L,S) assigns
to S a character string representation of the value in L (complete with
minus sign, if required).

Exampleof STR:

program money;

type bucks = integer[30];
var CashFlow: bucks;

procedure PrintDough(amount: bucks);
var dollars: string;

begin
str(amount, dollars);
insert(’.’, dollars, pred(length(doliars)));

writeln('$’,dollars);
end §PrintDoughi;

begin
CashFlow := 2323972233;
PrintDough(CashFlow);
PrintDough(199);

end §money}.

ssProgram outputs»

$23239722.33
$1.99

Long integers are often used to represent large monetary values.
These values may be stored and manipulated as integral numbers of
pennies. They are converted to dollars-and-cents values by inserting a
decimal point prior to printing. This program demonstrates a simple
procedure to accomplish the insertion. PrintDough accepts a long integer
parameter, and converts it to a string using the STR intrinsic. The INSERT
intrinsic is then used to edit in a decimal point in front of the second digit
from the end of the string.

3.6.1 Long Integer Parameters
Long integers may be passed as value and variable parameters; however,

the compatibility of types with different length attributes may cause some
subtle problems.

Sec. 3.6 Extended Precision Arithmetic 77

First, note that long integer types are considered structured types, and
thus may not appear in the formal parameter list of a procedure or
function; according to standard Pascal, only type identifiers may appear
here.

Exampleof long integers as formal parameters:

type longint = integer[32];
procedure trans(param1, param2: longint);

When long integers are passed as variable parameters, long integer
types with different length attributes lose their type compatibility. The
formal and actual parameter types must possess identical length attributes.

Long integers passed as value parameters are adjusted by the calling
routine to the size declared in the called routine’s formal parameter list.
The code for this task is produced automatically by the compiler; it is
executed by the calling procedure. If the value of the actual parameter is
too large to fit in the formal parameter, the execution error “Integer
overflow” occurs when the long integer is adjusted.

Exampleof an executionerror during parameter adjust:

program example;
type shortint = integer[4];

procedure crash(param: shortint);
begin
§ ...}

end;

begin
crash(3294875938475) ;
§ adjust code causes error here;
{ this value is too large for integer[4] }
end fexample}.

3.7 Extended Comparisons

UCSD Pascal extends the relational operators to accept pointer, array and
record types as operands.

3.7.1 Records and Arrays

The relational operators = and <> yield a boolean result when applied to
array and record operands. Operands must be type compatible (see section
2.14). Operators compare entire structured variables. Structures are equal
if and only if the fields comprising the structures are equal.

78 EXTENSIONS TO STANDARD PASCAL Chap. 3

WARNING: Structured comparisons are implemented on a word-to-
word basis, from the beginning of the structure until the end. Field
boundaries are not considered. Therefore, it is useless to compare structured
variables which fail to completely utilize their allocated data space.
Relational operators should not be used in the following cases:

® Records containing string types.
® Many packed arrays and records.

Data Space for strings is allocated statically, and string values expand
and contract in their fixed data area at runtime. The area between the end
of a string value and the end of its data space is undefined, but is
considered significant in a structured comparison. Thus, comparison of
records containing strings does not work correctly.

The UCSD Pascal compiler’s packing algorithm may leave unused bit
fields in the words comprising the data space allocated for packed records
and arrays. Because the unused bit f ields contain undefined values,
comparison of packed records and arrays may not work correctly. The
exceptions to this restriction are byte arrays (e.g., PACKED ARRAY OF
CHAR) and packed variables which (by chance or design) completely
utilize their allocated data space. See section 6.0 for a description of the
packing algorithm.

Note also that two structures which may appear identical in structure
may not be. This is because fields may or not be allocated in the order in
which they are declared. See section 6.0 for details.

Exampleof record and array comparison:

program compare;
var a,b: record
i,j: integer;
r: real;
end;
p.q: record
str: string[5];
r: real;
end;
x,y: array[@..150] of integer;
count: integer;
begin
for count := @ to 150 do
begin x[count] := 4; y[count] := 4 end;
if (x =y) then writeIn(’'x and y ARE the same)
else writeln('x and y are different’);

with a do begin i := 4; j :=6; r := 3.14159 end;
with b do begin i := 4; j :=6; r := 2.71828 end;
if (0 = b) then writeln(’a and b are the same ")

eise writeln(’a and b ARE different’);

Sec. 3.7 Extended Comparisons 79

with p do begin str := 'notd’; r := 3.14159 end;

with q do begin str := 'not8’; r := 3.14159 end;

if (p=4q) then writeln('p and q are the same ")
eise writeln(’p and q ARE?! different’);

end fcompare}.

The program will report that x and y are the same, and that a and b
are different, as they are. These structures do not contain strings, and
there is no "empty” space between fields. However, the program will also
report that p and q are different (?), even though the fields within them
were set to identical values. The reason is that the field str is allocated
space for five characters, but only four are assigned. The fifth character
was never initialized, and would (very likely) contain different values in
p and q . Nevertheless, these bytes would be considered in the comparison
and p and q would be reported as different.

3.7.2 Pointers

The relational operators =, <>, <, <=, > and >= yield a boolean result when
applied to pointer operands. These operators are implemented as unsigned
integer comparisons.

3.8 Byte Array Manipulation

UCSD Pascal provides the intrinsics MOVELEFT, MOVERIGHT, SCAN,
FILLCHAR and SIZEOF for efficient manipulation of large arrays of data.
MOVELEFT and MOVERIGHT perform mass movement of data within
arrays. FILLCHAR initializes arrays. SCAN searches an array for the
presence (or absence of) a byte value. These intrinsics are intended for use
with byte (e.g., character) arrays; however, the lack of type checking on
their parameters allows them to be used as general purpose data
manipulators (with the understanding that the price of freedom is
responsibility). These intrinsics are byte-oriented: address parameters are
resolved to byte addresses and parameters specify byte counts (see detailed
explanation of parameters further on in this section). Many of the
intrinsics have parameters which require byte values; these are characters,
or integers in the range 0..255.

WARNING: Count values are treated as signed integers. Negative
count values in MOVELEFT, MOVERIGHT and FILLCHAR calls are
treated as as zero byte counts, not as unsigned integers. Operations on
structures larger than 32767 bytes must be split into two parts.

80 EXTENSIONS TO STANDARD PASCAL Chap. 3

SIZEOF is a (compile-time) function which accepts either a variable
or type identifier as an argument and returns an integer value indicating
the number of bytes allocated for the data type denoted by the identifier.
SIZEOF shifts the burden of determining the size of a data type onto the
compiler, thus making it safer and easier to use the byte array intrinsics.

A compile-time function has its effect only during compilation. It
does not generate code. The compiler evaluates the SIZEOF function by
referencing the compiler symbol table and replaces SIZEOF with the
appropriate integer value. Thus, SIZEOF may be used freely in a program
without fear of incurring runtime overhead.

SIZEOF may be used only on entire arrays, not on individual array
elements. Further, the compiler does not permit SIZEOF to be applied to
structures within structures unless a WITH is used. See the following
program:

program measure;

type a = record
z: integer;

b: record
x: string;
y: real;
end;
end;

d = packed array[0..1] of char;
e = integer;
var aa: q;
dd: d;
begin
writeln(sizeof(a)); § <— these three all compilet}
writein(sizeof(aa));
writeln(sizeof(e));

§ writeln(sizeof(aa.b)); <— this one does not compile ..}
with aa do writeln(sizeof(b)); § <— .. while this one
compiles! }

§ writeln(sizeof(d[@])); <— does not compile}
end.

NOTE: If a record contains variant fields, SIZEOF uses the largest
variant when determining the size of the record.

WARNING: SIZEOF ignores pointer de-references. For example:
SIZEOF(pt)
returns the size of the pointer variable p rather than the size of the object

to which p points; in this case, it is necessary to pass SIZEOF the identifier
denoting p’s base type.

Sec. 3.8 Byte Array Manipulation 81

FILLCHAR accepts a starting address, integer byte count and byte
value. Beginning with the starting address, it initializes <byte count> bytes
to the indicated byte value. Regardless of the type of the variable whose
starting address is supplied, FILLCHAR treats the destination as an array
of bytes.

MOVELEFT and MOVERIGHT perform mass movement of data;
both accept a source address, destination address and integer byte count.
The source and destination addresses are normally array elements. The
bytes between the source address and the address calculated by <source
address> + <byte count> - 1 comprise the source array. The bytes between
the destination address and the address calculated by <dest address> + <byte
count> - 1 comprise the destination array.

MOVELEFT and MOVERIGHT move data from the source array to
the destination array one byte at a time. MOVELEFT starts at the lower-
addressed end of both arrays and copies bytes traveling toward higher
addresses. It is recommended for use when the source and destination
arrays overlap, and the source array is lower in memory than the
destination array. By starting at the lower-addressed locations,
MOVELEFT prevents the first bytes moved from overwriting other source
bytes — those in the overlapping area. Such an overwrite would be
disastrous since the source bytes in the overlapping area haven’t yet been
moved to their destinations. MOVERIGHT starts at the higher-addressed
end of both arrays and copies bytes traveling toward lower addresses. It is
recommended for use when the source and destination arrays overlap, and
the source array is higher in memory than the destination array. By
starting at the higher-addressed locations, MOVERIGHT prevents the first
bytes moved from overwriting other source bytes — those in the
overlapping area. Such an overwrite would be disastrous since the source
bytes in the overlapping area haven’t yet been moved to their destinations.

NOTE: Movement of data blocks between nonoverlapping arrays is
usually performed with MOVELEFT, as it represents a more natural style
of moving data. Certain combinations of MOVELEFT and MOVERIGHT
with overlapping source and destination addresses produce complex results;
their use is not recommended without some forethought (see example
below).

WARNING: Array indices are treated as signed integers. Use of an
index whose value is less than the declared lower bound of the the source
or destination array may yield unexpected or fatal results.

Exampleof byte array manipulators:

82 EXTENSIONS TO STANDARD PASCAL Chap. 3

program blockmove;
var sourcel, source2: packed array[®..511] of char;
dest: packed array[@..1023] of char;
int: integer;
begin
fillchar(sourcel, sizeof(sourcel), 0);
§fill sourcel bytes with 0000 0000}
fillchar(source2, sizeof(source2), 1);
§fill source2 bytes with 0000 0001}
moveleft(sourcet[@0], dest[0], 512);
§fill 1st half of dest with sourcel}
moveright(source2[@], dest[512], 512);
§fill 2nd half of dest with source2}
moveleft(dest[512], int, 2);
fget 1st two occurrences of 0000 0001
of dest, into int $
writeln(int);
fvalue of int is 0000 0001 2000 0001
so 257 will be printed }
end.

No overlapping of source and destination arrays occurs in this
example. The array destis filled with sourceland source2, and intis filled
with two bytes from dest. Note that no type checking occurs in the
movement of the two bytes from a packed array of char to an integer.
However, it is the programmer’s responsibility to assure that no more than
two bytes are moved, since an integer is two bytes long.

Exampleof shady use of MOVELEFT and MOVERIGHT:

program boggle;

var bytes: packed array [1..30] of char;

begin
bytes := 'this is the text in this array’;
writeln (’123456789012345678901234567890');
writeln(bytes);
moveright(bytes[10],bytes[1],10);
writeln(bytes);
moveleft(bytes[1],bytes[3],10);
writein(bytes);
moveleft(bytes[23],bytes[2],8);
writein(bytes);

end.

*» Program Output ==

123456789012345678901234567890
this is the text in this array
he text ine text in this array
hehehehehehetext in this array
his arrayehetext in this array

It is left as an exercise for the reader to trace through executionof this
program!

Sec. 3.8 Byte Array Manipulation 83

WARNING: When using FILLCHAR, MOVELEFT or MOVERIGHT
with dynamically allocated buffers, be sure to specify the buffer, not the
pointer to the buffer, as the parameter. Thus, the following fragment is
incorrect:

var
buffer: packed array[@..511] of char;
b: tbuffer;

begin

fillchar(b,512,55);

The buffer will not be filled here. Instead, the 512 bytes beginning at
the pointer to the buffer will be overwritten, with disastrous results. The
correct use of FILLCHAR in this situation would be

fillchar(bt,512,55);

SCAN is a function which accepts an integer scan length, a partial
boolean expression and the starting address of what will be treated as an
array of bytes. It is used to determine the first byte value in a byte array
that matches (or, alternatively, does not match) a specified target value.

A partial boolean expression has the following form:

<partial boolean expression> ::= <relop> <target>
<re|op> s e Nt I n<>n
<target> ::= <character variable> | <character constant>

In plain English, partial boolean expressions are an = or < followed
by the target character variable or constant; they appear as half of a
boolean expression. The missing left operand is defined to be each byte in
the byte array in succession, beginning at the specified starting address.
SCAN examines each byte until either it finds a byte value satisfying the
partial expression or the scan length is exceeded. SCAN returns an integer
value indicating the number of bytes examined.

The scan length may be positive or negative. If the scan length is
negative, SCAN proceeds backwards (i.e., towards lower addresses) from
the starting address; otherwise, SCAN proceeds forward through memory.
SCAN returns the zero-based offset from the starting address to the first
occurrence of the target string. This value is negative when scanning
backwards and positive when scanning forwards. If the scan terminates
without finding the target string, the scan length is returned as the value
of the function.

Exampleof SCAN:

program SCANdemo;

var farkle: string;

begin
farkle := ', ., .. the pterac is a member of the USCD family';
writein(scan(-26, = *:’, farkle[30])); fwrites —26}

84 EXTENSIONS TO STANDARD PASCAL Chap. 3

writein(scan(100, <>'.’, farkle[1])); {writes S ¢
writeln(scan(15 , = ' *, farkle[1])); {writes 8 $
end.

3.9 Devicel/O

UCSD Pascal provides the intrinsics UNITREAD, UNITWRITE,
UNITCLEAR, UNITSTATUS, UNITBUSY and UNITWAIT for accessing
1/O devices. These intrinsics comprise the I/0 level known as “Unit 1/0”;
this is the lowest level of I/O available to the system and must be used
with care. Unit I/O is the p-System’s fastest means of performing I/O.
Further, the programmer may specify control parameters when using Unit
1/O which are not available with standard I/0O mechanisms. UNITREAD
and UNITWRITE are described in section 3.9.1. UNITCLEAR, UNITBUSY
and UNITWALIT are described in section 3.9.2. UNITSTATUS is described
in section 3.9.3.

The primary argument to the Unit I/0 intrinsics is the unit number,
specifying an I/0 device. Unit numbers and device assignments are system,
and occasionally, installation dependent. Consult your System Installation
Guide.

NOTE: The Version IV I/O redirection feature does not affect 1/0
operations performed using the Unit I/O intrinsics.

NOTE: The compiler does not generate I/O checks (section 5.0.6) after
calls to Unit I/0 intrinsics; I/0O checks must be explicitly performed by
examining the I/O completion status after every operation. (1/0
completion status is examined with the TIORESULT intrinsic —see section
3.11.9 for details.)

NOTE: The system routines implementing Unit I/O are protected from
task contention.

3.9.1 UNITREAD and UNITWRITE

The UNITREAD and UNITWRITE intrinsics (in most cases) transfer data
between memory and an I/O device. They accept a unit number, I/0
" buffer, byte count, and two optional parameters: a block number and a
control word. The I/O buffer is specified by either an indexed or an
unindexed variable name (e.g., Arr[Index]or Arr.) It is the source (for a

Sec. 3.9 Device I/O 85

UNITWRITE) or the destination (for a UNITREAD) memory location
from/to which the I/0 will take place. The byte count is an unsigned
integer in the range 0.65535, indicating the number of bytes to be
transferred. The block number is a signed integer used in I/0 involving
block-structured devices; it indicates the starting block involved in the 1/0.
(A block contains 512 bytes.) The default value for the block number is
zero, which indicates the first block on the unit. The control word
specifies special processing options, such as special 1/0 or special character
expansion; its default value is zero. The syntax for UNITREAD and
UNITWRITE is described in sections 4.44 and 4.47. Their semantics are
device dependent and are described in Appendix D.

WARNING: The most common results of incorrect use of UNITREAD
and UNITWRITE are damaged disk files and/or directories, and program
crashes caused by overrunning data buffers on read operations. No range
checking is performed on accesses to the I/O buffer.

WARNING: Most UCSD Pascal implementations require that the 1/0
buffer start on a word boundary when performing disk operations. It is
recommended that, to insure program portability, an 1/O buffer start on a
word boundary in all situations. Special care must be taken when using a
byte array (e.g., a packed array of char) as an I/O source or destination.

NOTE: Array indices are treated as signed integers. Use of an index
whose value is less than the I/0 buffer’s declared lower bound may yield
unexpected or fatal results.

Unpacked variables of type CHAR occupy a full word. On some
processors (e.g., the PDP/LSI-11, Z80, 8088), the character value is stored in
the low-order byte. On others (e.g., the 68000 and TI-9900) it is stored in
the high-order byte. A UNITREAD for one byte into a variable of type
CHAR always fills the low-order byte. Thus, Unit I/O on character
variables may not work as expected on some machines. In general, a safe
procedure is to always use packed arrays of char with Unit I/0.

Further problems may arise, however, when using a UNITREAD for
one byte into a CHAR variable, since the UNITREAD operation does not
affect the high-order byte of the variable. The character will be displayed
properly if written to the screen, but it will not compare properly to other
characters since the entire word is considered in a character comparison. A
CHAR variable used with a one-byte UNITREAD call should be initialized
to any character value prior to the UNITREAD call. This sets the high-
order byte of the variable to zero; the variable may then be correctly
compared to other characters.

86 EXTENSIONS TO STANDARD PASCAL Chap. 3

NOTE: Unit I/O intrinsics are used in a few cases for system actions
unrelated to device I/0. For example,some implementations permit setting
and monitoring the system clock via unit I/0; unit I/O may also be used to
access memory above 64kb or to define various hardware characteristics.
Consult your system documentation for details.

Exampleof UNITREAD and UNITWRITE:

program UnitIODemo;

var buff: packed array[@..2047] of char;
ch: char;

procedure putline(msg: string);

var cr: packed array[@..0] of char;

begin
if length(msg) > @ then

unitwrite(2,msg[1], length(msg));

cr[@] := chr(13);
unitwrite(2,cr,1);

end {putconsole};

procedure getkey(var key: char);
begin
key := ' ’;
unitread(2,key,1);
{does not work on 68000°'s and TI-9900°s}
end fgetkey};

begin
putline(’»*+ Screen Garbage Generator »*s');
putline(’’);
putiine(’ G(arbage E(xit *);
repeat
getkey(ch);

until ch in ['g’,’G’,’e’,’E'];
if ch in ['e’,’E’] then exit(program);
unitread(4,buff,2048,2);
if ioresult <> 0 then
begin
putline(’'>>> 1/0 error detected’);
exit(program);
end;
unitwrite(1,buff,2048);
putline('That''s all, folks..."’);
end.

All keyboard input and screen output in this program are done using
Unit I/0. The procedure putline uses UNITWRITE to direct a message
string to the system terminal device, which is usually device #1 or #2.
Unlike WRITELN, no carriage return is appended when UNITWRITE is
used, so it is necessary to send a separate CHR(13) to the screen (13 is the
ASCII code for carriage return).

Sec. 3.9 Device 1/O 87

Procedure getkeyuses UNITREAD to accept a single character input
from the system terminal device. Note that the variable key is initialized
to some value before the UNITREAD is performed. This enables the
REPEAT/UNTIL loop in the main program to properly compare key to the
character values specified in the set of the UNTIL clause. Note that a
UNITREAD from unit #2 is non-echoing.

The main program attempts to UNITREAD 2048 bytes from block 2
of unit #4 (usually diskette drive 0) into the 2048 bytes of the array buff.
If unit #4 is online and the read is successful, the bytes are written to the
screen. Since no I/O checking is performed on Unit I/0Q calls, the
programmer must always explicitly check IORESULT when using Unit 10;
in this case, if the value of IORESULT is non-zero (indicating an I/O error)
the program is designed to terminate with an error message.

3.9.2 UNITCLEAR, UNITBUSY and UNITWAIT

UNITCLEAR, UNITBUSY and UNITWAIT accept a unit number as a
parameter. Their syntax is described in sections 4.43, 4.42 and 4.46. Their
semantics are device dependent and are described in AppendixD.

The UNITCLEAR procedure resets and/or initializes I/O devices. In
the case of serial input devices it usually clears the type-ahead buffer. The
value of IORESULT after a UNITCLEAR call is often used to test the
existenceof the device; it should be zero if the device is present.

'The UNITBUSY function is used to poll the status of an I/0 device. It
returns TRUE if the device has not completed a pending 1/0; otherwise it
returns FALSE. When it is used on a serial input device, it returns TRUE
if no character has been received; otherwise it returns FALSE. UNITBUSY
is not implemented on most UCSD Pascal systems; it always returns
FALSE on such systems.

The UNITSTATUS procedure returns more complete information
than UNITBUSY (see section 3.9.3).

The UNITWAIT procedure causes the current task to suspend activity
until the specified unit has completed any 1/0 operation in progress. The
task does not, however, relinquish control of the processor. UNITWAIT is
not implemented on most UCSD Pascal systems; it has no effect when
executed on such systems.

Exampleof UNITCLEAR and UNITBUSY:

program serialdemo;

var buff: packed array[®..0] of char;

begin
unitclear(2); fclear keyboard type—ahead}
unitread(2,buff,1,,1);
while unitbusy(2) do

88 EXTENSIONS TO STANDARD PASCAL Chap. 3

writein('please type a character:’);
writeln ('character received: ', buff);
end.

On systems which implement UNITBUSY (i.e., the PDP/LSI-1 1) the
executionof the UNITREAD call will cause UNITBUSY(2) to return TRUE
until a character is typed. Thus, the WHILE loop continuously produces
the message 'please type a character’. When a key is struck, a character is
read into buf fand UNITBUSY(2) becomes FALSE. The WHILE loop ends
and the character is verified with the ’character received’ message.
Specifying asynchronous mode for the UNITREAD via the fifth parameter
allows the program to continue to execute (and encounter the UNITBUSY
test) as the UNITREAD proceeds.

3.9.3 UNITSTATUS

The UNITSTATUS procedure accepts a unit number, a status record and an
integer as parameters. It returns status information on the specified device.
The format of the status record depends on the device being polled; the
status record may be of any type, but should occupy at least 30 words. The
integer parameter should be zero for output status information and one for
input status information.

UNITSTATUS is not available for all implementations. Where it is
available the format of the status record may vary. Consult your system
documentation for details.

The format of a status record for a serial device is:

SerialStatus = record
CharsQueued : integer;
Filler : array [1..29] of integer;
end; §SerialStatus}

CharsQueued gives the number of characters currently available for
input or output, as specified. The Filler words are either system-specific
or reserved for future expansion.

The format of a status record for a block-structured device is:

BlockedStotus = record

Unused : integer;
BytesSector : integer;
SectorsTrack : integer;
TracksDisk : integer;
Filler : array [1..26] of integer;

end; §BlockedStatus}

BytesSector gives the number of bytes per sector on the device as of
the last time it was accessed. SectorsTrackcontains the number of sectors
per track. TracksDiskcontains the number of tracks per disk. The

Sec. 3.9 Device I/O 89
Fillerwords are either system-specific or reserved for future expansion.

NOTE: For some implementations, the value of IORESULT returned
by the UNITSTATUS intrinsic reflects the presence of device handlers for
the device polled, rather than device readiness. Consult your system
documentation for specifics.

3.10 Inline Machine Code

UCSD Pascal provides the P_MACHINE intrinsic for generating in-line
machine code within Pascal programs. In-line machine code is used for
programming low level operations which cannot be expressed efficiently
(if at all) in the Pascal language.

WARNING: P_MACHINE is the lowest level intrinsic in UCSD
Pascal. Its use requires familiarity with the p-machine instruction set (see
your Architecture Guide for details) and extreme care in specifying code
sequences. Incorrect use of the P_ MACHINE intrinsic may lead to bizarre
and untraceable effects including data destruction and system crashes.

The P_MACHINE intrinsic permits the programmer to set up the
stack to any desired configuration and then operate on it directly via p-
code.

The P_MACHINE intrinsic accepts a series of any number of
arguments. Multiple arguments are separated by commas. An argument is
either an expression,an address reference or code.

An expression or address argument causes the compiler to generate
code which, during execution, places the value of the expression or address
onto the stack. A code argument causes the compiler to place a p-code
instruction directly into the stream of compiler-emitted p-code
instructions.

An expression is any valid Pascal expression enclosed in parentheses.
The compiler generates code to evaluate the expression and leave the result
on the stack.

An address reference is any valid Pascal variable reference preceded
by the character *. The compiler generates code to leave the address of the
specified variable on the stack.

A code argument consists of a constant value or constant identifier
denoting an integer between 0 and 255. The compiler emits a single byte in
the code with the specified value. Values outside of this range (e.g., signed
constants) have only their least significant byte emitted. Code arguments
are used for emitting p-code instructions and instruction operands.

90 } EXTENSIONS TO STANDARD PASCAL Chap. 3

A typical usage of P_MACHINE would be to first specify expressions
and addresses to set up the stack, then specify code(s) for one or more
instructions and operands to operate on the stack.

Exampleof P__MACHINE:

program PcodeDemo;

const STRL = 244;

type complex = record re,im: real end;
vector = array [0..10] of complex;

var speed: tvector;

x: real;
begin
new(speed);
x = 3.14159;
pmachine(tspeedt[7].re, (x), STRL, 4);
writein('result is: ', speedt[7].re);

end §PcodeDemot}.

The STRL instruction stores a real value on the stack into a specified
memory location. The real value is on the top of the stack; the destination
address immediately precedes the real on the stack.

In this program, the first argument to the P__MACHINE intrinsic is
an address, as denoted by the leading ~. Code is generated which places the
address of speedt[7].re on the stack. The nextargument is an expression
as denoted by the enclosing parenthesis. Code is generated which will push
the value of x onto the stack. This will be the state of the stack at the time
the STRL instruction is executed, since the instruction itself follows as the
next argument to the P_MACHINE intrinsic. It is expressed as the
previously defined constant identifier STRL. The op-code value 244 is
therefore placed directly into the p-code.

This code follows the p-code that accomplishs the x := assignment
statement. The equivalent Pascal code would be speedt[7].re := x;.

Some typical P__MACHINE operations:

const STO = 196; § store indirect t
IXA = 215; § index array {
SINDO = 120; § load indirect ¢
BNOT = 159; § boolean negation }
LEUSW = 180; § unsigned <= ¢
GEUSW = 181; § unsigned >= $
var i,j,index: integer;

b: boolean;

p: tinteger;

pb: tboolean;

a: array[@..0] of integer;

§ It is necessary to reference the absolute
address FC24 as an integer }

P_MACHINE (*p, (-988), STO);

§ pt will reference memory address

Sec. 3.10 Inline Machine Code 91

FC24 hex (= -988 decimal) }

§ It is necessary to reference the word "index" bytes
into array o as an integer }

P_MACHINE (tp, ta, (index), IXA, 1, STO);

§ pt will reference a[index] }

§ It is necessary to treat o boolean as an integer }
P_MACHINE (tp, (pb), STO);
§ p := pb; — an otherwise forbidden operation }

§ It is necessary to treat an address as an integer }
P_MACHINE (ti, (p), STO);
$§ i := p; — on otherwise forbidden operation

(but could legally be expressed in Pascal as

i := ord(p);). Reversing i and p in the

P_MACHINE above will allow the integer to

be placed back into the pointer }

§ An illustration of indirect loading }
P_MACHINE (ti, (p), SIND®, STO);
§ i := pt; —a perfectly legal way of

doing the same thing }

Iltustration }
MACHINE (b, (i), (j), LEUSW, STO);
b := i <= j; (unsigned) — legal }

Illustration }
MACHINE { tb, (i), (j). GEUSW, BNOT, STO);
b := i < j; (unsigned) — legal }

¢
P_
{
¢
P_
!

3.11 Miscellaneous Extensions

This section describes miscellaneous extensions to standard Pascal. Sections
3.11.1 and 3.11.2 describe alterations of the syntax rules for identifiers and
declaration parts respectively. Section 3.11.3 describes extension of the
standard function ORD to perform pointer to integer type conversion.

The remaining extensions are the following UCSD intrinsics:
GOTOXY for console cursor positioning (section 3.11.4), TIME for reading
the system clock (section 3.11.5), PWROFTEN for real powers of ten
(section 3.11.6), ATAN as an alternative name for the standard function
ARCTAN (section 3.11.7), EXIT for terminating procedures or programs
(section 3.11.8), IORESULT for checking the system 1/0 completion status
(section 3.11.9), MEMAVALIL for checking the amount of unused memory
(section 3.11.10), HALT for invoking the system monitor (section 3.11.11),
and the compiler intrinsics TREESEARCH and IDSEARCH (section 3.11.12
and 3.11.13). Section 3.11.14 discusses a FOR control variable anomaly.

92 EXTENSIONS TO STANDARD PASCAL Chap. 3

3.11.1 Identifiers

Identifiers in UCSD Pascal may contain the underscore character ”_"
Occurrences of ”_” embedded within identifiers are ignored by the
compiler; thus, the identifiers ”procnum” and ”proc__num” are equivalent.
Identifiers are case-insensitive.

NOTE: Identifiers are significant to 8 characters, excluding underscore
characters.

WARNING: Although they contribute to program readability, long
variable names should be used carefully in UCSD Pascal, as it is
disconcertingly easy for two “different” long variable names to map into
the same identifier because of the eight-character rule. Identifier aliases
can cause mysterious compiler syntaxerrors and/or elusive program bugs.

The following identifiers are equivalent in UCSD Pascal:

identifier

i_dent_i_fi_er

Identifier

IDENTIFI

I_dent_I_fier
identifier_of_sparse_matrix_

3.11.2 Declaration Parts

Suites of related programs often must share a common group of label,
constant, type, variable and procedure declarations. In UCSD Pascal, this
can be done by placing the source code defining the group in a separate
include file (section 5.0.2), and having each program in the suite include
the declarations into its declaration part. (Another way is to put the
declarations in a UNIT; see section 3.2 for details).

Standard Pascal restricts the ordering of declarations in a declaration
part so that labels are declared before constants, constants are declared
before types, and so on. Because of these restrictions an include file
containing a set of related declarations would not compile successfully
when included in a host program’s declaration part, as the declaration order
would be violated (e.g., given an include file containing label, constant,
type and variable declarations, what is the proper location within the host
program’s uses, constant, type and variable declarations for the include file
directive?). Thus, UCSD Pascal relaxesthe restrictions on declaration order
for include files appearing in declaration parts.

Sec. 3.11 Miscellaneous Extensions 93

In particular, it is permissible to place the include file anywhere in
the host program prior to the first procedure body. In fact, it is even
permissible to arrange the const, type and var declarations in the include
file itself in any order. (The procedure bodies of the include file must
follow any declarations.) Of course, a declaration referencing another
identifier will cause a compiler error if the other identifier is not declared
first. Note that the usual Pascal declaration sequences are enforced for
declarations appearing in the program file.

NOTE: Files containing label, constant, type, or variable declarations
may not be included after a procedure body; however, they may be
included after forward declarations.

Exampleof included declarations:
#»% The include file (named INC1.TEXT):

const
H = 'Hi, guys! This is Eddy, your shipboard computer!’;
type car = record
make: string;
license: integer;
end;
var c, a: car;

procedure rice(r: car);

begin
a :=¢;
writein(H);
end;

»#» The host program:

program margorp;
const N = &;
var i,j,k: integer;

$§$1 INC1.TEXT — If the text of the include file
were physically present instead of included, this
program would bomb miserably during compile.
The declarations would be out of order! }

procedure useless;

begin :

§ Just to show that the include file
precedes the procedure bodies }

end;
begin
with ¢ do
begin make := 'Edsel’; license := 10101 end;

writeln(H);

94 EXTENSIONS TO STANDARD PASCAL Chap. 3

for i := 1 to N do
begin writeln(’and again...’); rice(c) end;
end §margorp}.

3.11.3 Pointer Type Conversion and Comparison

In UCSD Pascal, the standard procedure ORD is extended to accept pointer
types. This extension should only be used in machine-specific tasks
requiring pointer-to-integer type conversion. See section 3.10 for
information on integer-to-pointer conversions. See sections 6.7 and 6.8 for
examplesof such type conversions.

In UCSD Pascal, comparisons of pointers using the <, <=, > and >=
operators are allowed in addition to the = and <> operators allowed in
Standard Pascal. These operators are evaluated as 16-bit unsigned
comparisons are meant for use in systems programs performing mem-
Ory management.

NOTE: Pointer values on most machines may be considered scalar
values (unsigned 16-bit) in the range 0..65535, which correspond to
memory addresses. When considered as integers (signed 16-bit) as returned
by ORD(<pointertype>) they are in the range -32768..32767. See section 6.2
for more information. '

3.11.4 Screen Control

The UCSD intrinsic GOTOXY provides terminal-independent X-Y
coordinate cursor positioning. GOTOXY may be used in conjunction with
READ, READLN, WRITE and WRITELN to create formatted screen
displays and prompt lines.

GOTOXY is a terminal-dependent procedure, and thus must be
written and bound into the operating system by the user. Consult your
System Installation Guide for details. Once the binding process is complete,
however, GOTOXY may be used as any other intrinsic.

NOTE: A common error when using GOTOXY is to assume that the
first parameter refers to row number and the second to column number. In
reality, the first parameter is the column number (i.e.the x coordinate on
the screen) while the second is the row number (y coordinate on the
screen). The valid range for these values is defined in the GOTOXY
procedure itself, and in SYSTEM.MISCINFO, a file of system attributes
which is also set up when the p-System is installed. For a typical 24 x 80

Sec. 3.11 Miscellaneous Extensions 95

character screen, the first parameter will range in value from O to 79; the
second from O to 23.

Exampleof GOTOXY:

program SControl;
type horz = 0..79;
vert = 0..23;

procedure putline(x: horz; y: vert; line:string);
var len: integer;
begin

gotoxy(x,y);

write(line);

gotoxy(x,y+1);

for len := 1 to length(line) do write(’'=');
end;

begin
putline(37, 2,’North’);
putline(76,12, ' East’);
putline(37,21, 'South’);
putiine(® ,12,'West’);
end §SControl}.

.

This program uses procedure putline to write each of the four
directions at the appropriate point on the screen. Putline goes to the
specified set of coordinates and writes the direction. It then goes to the line
below the direction (y+1) and underlines it.

3.11.5 Clock Access

The UCSD intrinsic TIME provides access to the system clock. The clock is
defined as a 32-bit unsigned integer incremented every 60th of a second (a
“tick”). The clock value is returned in a pair of integers passed to TIME as
variable parameters, where the first integer receives the high-order 16 bits
of the 32-bit integer, and the second integer receives the low-order 16 bits.
Note that the integers themselves contain unsigned values (see section 6.2).

TIME is normally used to time intervals. It does not return the value
of a real-time clock.

Exampleof TIME:

program timer;

const
twoto16th = 65536.0;
beep = 7;
hellfreezesover = false;
var
hightl, lowl,

96 EXTENSIONS TO STANDARD PASCAL Chap. 3

high2, low2,

kititime : integer;
presentime,

prevtime, interval : real;

function realtime (hi : integer; lo : integer) : real;
var r : real;
begin
r = oy
ifr<eo.0
then r := r + twoto16th;
r := (hi » twoto16th) + r;
realtime := r;
end;

begin
writeln (*Infinite Interval Timer’);
write ('What is your interval? (input a real) ');
readin (intervail);
interval := interval » 60.0; §{ seconds —> ticks }

§ Is line—time clock on? }
time (hight, lowl);
for killtime := 1 to 1000 do {nothing};
time (high2, low2);
if (hight = high2) and (lowl = low2)
then begin
writeln (
'Can’’'t time intervals without a clock. Turn it on!');
while (low2 = lowl) do time (high2, low2);
end;

{ Time intervals forever
prevtime := realtime (high2, low2);

repeat
repeat
time (high1, lowl);
presentime := realtime (highl, lowl);
unti! (presentime — prevtime) > interval;
prevtime := presentime;

write (chr(beep));
until hellfreezesover;
end.

Program timer causes the terminal to beep at the user at the end of
every interval of a specified number of seconds. The user is prompted for
the interval, which is multiplied by 60 to convert it from seconds to ticks.
The program then assures that the clock is functioning. It samples the
TIME, kills a bit of time, and samples the time again. If the values
returned by TIME are the same in both samples, the clock is assumed to be
off. A message is produced, and the program loops until a different value
is returned by TIME (i.e., until the clock is turned on).

Sec. 3.11 Miscellaneous Extensions 97

Since it is difficult to work with a 32-bit integer stored in two parts,
the program uses procedure realtime to convert the number returned by
TIME into a single real value. First, the low-order integer is examined. If
it is greater than or equal to zero it is assigned directly to the real r. But if
it is less than zero (as a two’s complement value) it must first be converted
to an unsigned 16-bit integer. This is accomplished by adding it to 2 to the
16th power, or 65536. The high-order integer is then scaled upwards to its
true value as the leftmost 16 bits of a 32-bit number by shifting it to the
left 16 times. This is accomplished by multiplying it by 2 to the 16th. The
resulting product is added to the real containing the low-order component,
and the conversion to a single real value is complete.

The interval timing then begins. The inner loop continues to repeat
until the time between the previous beep and the present is the specified
interval. Another beep is produced, the time of the previous beep is
updated, and the process continues.

NOTE: The TIME intrinsic normally returns O under p-System
implementations which do not permit access to a system clock.

3.11.6 Powers of Ten

The UCSD intrinsic PWROFTEN (short for "power of ten”) accepts an
integer argument and returns a real result equal to ten raised to the power
of the argument.

The maximum size of the integer argument depends on the
representation of reals utilized by a particular interpreter. Consult your
documentation for details.

NOTE: Arguments less than O and arguments that are too large cause

”

the executionerror “Floating point error”.
Exampleof PWROFTEN:

program powers;
var i: integer;
begin
repeat
write('enter arg: ');
readIn(i);
writeln('arg is *,i,’ result is ’,pwroften(i));
until i = @;
end §{powers},

98 EXTENSIONS TO STANDARD PASCAL Chap. 3
3.11.7 Arctangent Synonym

Standard Pascal defines ARCTAN as the standard function for the
arctangent function. In UCSD Pascal, both ARCTAN and ATAN denote
the arctangent function.

3.11.8 Procedure Termination

The UCSD intrinsic EXIT accepts a procedure, function or program
identifier as an argument. It causes execution to continue at the end of the
block named by the identifier. The simplest case of EXIT occurs when the
identifier denotes the current procedure; EXIT jumps to the end of the
current procedure. If the EXIT argument specifies a routine at an outer
level, all routines on the call chain between the current routine and the
specified routine are also terminated. @ The entire program may be
terminated by calling EXIT with either the program identifier or the
reserved word PROGRAM.

NOTE: If EXIT specifies a recursively invoked procedure, only the
most recent invocation is terminated. A workaround is possible in cases
where it is desired to terminate all invocations of the recursive procedure:
enclose the recursive procedure in a dummy procedure which does nothing
but invoke the recursive procedure. To EXIT the recursive procedure,
simply EXIT the enclosing dummy procedure.

program TestRecurs;
procedure DumRecurs;

procedure Recurs;
begin §Recursi

if ftime to get out}
then EXIT(DumRecurs)
else Recurs;
end §Recurs};
begin jDumRecurs}
Recurs;
end §DumRecurs};
begin §TestRecurs}
DumRecurs;

end.

Sec. 3.11 Miscellaneous Extensions . 09

NOTE: A process may not EXIT out of its block. Attempts to do so
result in the termination of the process.

NOTE: EXIT(PROGRAM) is the only legal form of the EXIT statement in
the initialization or termination sections of a unit. In the initialization
section it causes control to pass directly to the termination section of that
unit. In the termination section it ends the program, unless termination
code from other units is pending. EXIT with a unit identifier is
meaningless.

NOTE: GOTO statements naming a label outside of the current block
(called “out-of-block” GOTOs) are not implemented in UCSD Pascal. The
EXIT intrinsic is used to provide an alternative (albeit limited) form of
out-of-block GOTO.

NOTE: A CLOSE(<file>, NORMAL) is performed on all files local to a
procedure terminated by a call to EXIT.

WARNING: When EXIT is used to terminate a function, the function
value must have been assigned beforehand; otherwise, the function returns
an undefined value.

Exampleof EXIT:

program exitdemo;
var num: integer;

procedure readNotural(var int: integer);
var ch: c¢har;

procedure bliowout(errmsg: string);
var c¢h: char;
begin
writeln;
writeln('>>>Error: ’',errmsg);
write(’ type <space> to continue, "!" to escape’);
repeat read(keyboard,ch) until ¢ch in [* *,'t'];
writein(ch);
if ch="1" then exit(program)
else exit (readNatural);
end {blowout};

begin
int := Q;
repeat
read(ch);
if not (ch in ['0°..°9",” *]) then
blowout(’Input format');

100 EXTENSIONS TO STANDARD PASCAL Chap. 3

if ch="'" then exit(readNatural);
if (int > moxint div 10) or ((int = maxint div 10)
and (ord(ch) — ord(’'@’') > maxint mod 10)) then
blowout(’'Integer too large’);
int := int = 10 + ord(ch) — ord(’0’);
until false;
end §readNatural};

begin
repeat
write(’ enter nonnegative number (17 terminates): ');
readNaturat (num);
writeln(' number entered is: ',num);
until num = 17;
end fexitdemo}.

The program calls procedure ReadNatural to read a string of digit
characters and convert them to an integer. If ReadNotural encounters an
illegal character or a value about to become out of range it calls on
procedure blowout to issue an error message, and give the user the
opportunity to read more natural numbers or quit. If the user opts to quit,
an EXIT(PROGRAM) is issued. If the user wishes to continue an
EXIT(ReadNatural) is issued. This has the effect of returning control to the
writeln statement in the main program.

Of note here is the technique used to convert the characters to an
integer. An integer variable is initialized to zero. As the characters are
input and validated they are converted from their ASCII representations to
numerical values in the range 0.9 by subtracting ORD(0) from them.
They are added to the integer, which is scaled upwards (shifted to the left
one place) by multiplying it by 10.

Before the latest character input is added to the integer, however, the
integer is checked to assure that the upcoming increase in its value will not
cause it to exceed MAXINT. Of course, once the character is added to the
integer, it will no longer be possible to detect the overflow; the value of
the integer will appear to be negative. (The p-System does not check for
integer overflow.)

3.11.9 1/0 Completion Status

The UCSD intrinsic IORESULT returns an integer result containing the
current value of the system 1I/0 completion status. The status is updated
after every I/0 operation (including file operations). Calling IORESULT is
usually unnecessary, as the compiler automatically generates I/0O checks
after all 1I/0 operations with the exception of Unit I/O operations. If,
however, I/0 checks are suppressed (using the $I- compile option - see
section 5.0.6), the value returned by IORESULT should be explicitly

Sec. 3.11 Miscellaneous Extensions 101

checked after each 1/0 operation to prevent 1/0 errors from causing
program errors.

IORESULT is used in programs which substitute their own error
checking and recovery for the system’s error handling facilities. If a
program does its own error checking only in one particular section, 1/0
checking must be explicitly restored afterwards using the $I+ or $I”
compiler options.

NOTE: Appendix A lists the standard 1I/0 result values and their
definitions. AppendixC lists conditions causing bad 1/0 results.

NOTE: The low-level Unit 1/0 intrinsics (section 3.9) always require
explicit I/O checks. The compiler does not generate I/0 checks after
occurrences of these intrinsics.

WARNING: Because the 1/0 completion status word is reset after
every I/0 operation, care must be taken to preserve I/0 result values
between their detection and subsequent 1/0 operations. In the following
example, the bad 1/0 result generated by the reset is inadvertently
obliterated by the ensuing string write before it reaches the console:

{$1-4
program inoperative;
var f: file;

begin
reset(f,’nonexistent.file.text’);
writeln('I/O result after file open is ’',ioresult);

end {inoperative}.

The program will erroneously report that the I/O result after
attempting to open the nonexistent file is O! It is really reporting that the
170 result of the writeln of the message string itself is 0. The programmer
should have set an integer variable to the value of IORESULT immediately
after the reset, then written the value of that variable along with the
message.

Exampleof IORESULT:

program lOdemo;
var num: integer;

procedure getnum(prompt: string; var int: integer);
begin
§$1-3 § suppress 1/0 checks }
repeat
write(prompt);
readin(int);
until ioresult = @;

102 EXTENSIONS TO STANDARD PASCAL Chap. 3

§$1+}
end fgetnum};
begin
repeat
getnum(’Enter number (-1 terminates): ’,num);
writeln(® number returned is: ',num);

until num = -1;
end §I0demot}.

This program demonstrates how one can repeatedly prompt the user
to input a proper value, rather than causing a runtime error when an
improper value is supplied. The loop reading the integer will continue
until the value of IORESULT is O, indicating a valid integer value was
input.

Section 6.9.3 contains another exampleusing IORESULT.

3.11.10 Memory Available

The UCSD intrinsic MEMAVAIL returns the number of unused words in
memory as an unsigned integer.

NOTE: Values returned by MEMAVAIL should be treated as 16-bit
values in the range 0.65535; values in the range 32768.65535 are
ordinarily considered negative numbers in the signed 16-bit representation
used for integer types and operators. See section 6.2 for more information.

NOTE: Values returned by MEMAVALIL are best used on Version II
systems, where they represent the number of words between the system
stack and current heap. When using Version IV the VARAVAIL intrinsic
produces more useful results. See section 3.5 for further information. (On
Version IV systems, MEMAVAIL returns the number of words between
the stack and the heap, exclusive of any memory allocated to an internal
code pool.)

Exampleof MEMAVAIL:

program memDisplay;
begin

writeln(' Integer memavail value = ' ,memavail);
end §memDispliay}.

Section 6.4 contains other examples.
WARNING: When using Version IV of the p-System MEMAVAIL

and VARAVAIL should be employed with extreme caution in
multiprocessing programs and programs that use DISPOSE. In

Sec. 3.11 Miscellaneous Extensions 103

multiprocessing programs these intrinsics return the space between the
process stack and the bottom of the process stack —a useless value for heap
allocation calculations. Programs that use DISPOSE create “holes” of
unused space in the heap; these intrinsics return a value that is the sum of
the size of the largest such “hole” and the available stack size. Again, this
value is useless for heap allocation calculations.

3.11.11 Programmed Halt

The UCSD intrinsic HALT causes the program to halt execution with the
runtime error message "Programmed HALT”. If the p-System Debugger
had been activated it gains control and the programmer may use its
facilities. Otherwise, typing <space> will re-initialize the system while
typing <esc> will cause the program to resume execution at the instruction
following the HALT.

Exampleof HALT:

program succinct;
begin

halt;
end §succinct}.

3.11.12 Compiler Support - TREESEARCH

The compiler uses the UCSD intrinsics IDSEARCH and TREESEARCH for
scanning identifiers and maintaining symbol trees respectively.
IDSEARCH is a specialized intrinsic suited for use only in the construction
of compilers. It is discussed in section 4.14 and in the next section.
However, TREESEARCH performs a more generalized task, which will be
described here.

These intrinsics perform high-level functions and would ordinarily
not be implemented at the interpreter level. However, both intrinsics are
processor-intensive, so providing them at the interpreter level — which
permits them to operate at machine-language speeds — allows the compiler
to operate much more quickly than it would otherwise. Of course, the
same is true for any other program making use of these intrinsics.

TREESEARCH manages binary trees ordered by the contents of an 8-
character field. A node in the tree must be structured as follows (field
names may vary):

type nodeptr = tnode;

node = record
name: packed array [1..8] of char;

104 EXTENSIONS TO STANDARD PASCAL Chap. 3

right_link: nodeptr;
left_Ilink: nodeptr;

i user—defined record fields }
en&.inode};

TREESEARCH accepts a tree root pointer, node pointer and an 8-
character packed array as arguments. It returns an integer as a function
result, and also assigns a value to the node pointer parameter. If a node in
the tree matches the array argument, TREESEARCH returns the value O as
a function result; the node pointer is set to the node. If no node in the tree
matches the array argument, TREESEARCH returns either 1 or -1 and the
node pointer is set to the last node searched. 1 indicates that the array
argument is greater than the value of the last node and should be inserted
on its right link; -1 indicates that the argument is less than the last node
and should be inserted on its left link.

The programmer must assure, when building the tree, that the
pointers of the leaf nodes are initialized to NIL.

NOTE: Trees should be constructed for the TREESEARCH intrinsic so
that visiting the nodes in lexicographical order with respect to name field
requires either right (post-order) traversals or left (pre-order) traversals of
the tree. The particular traversal may vary in the various UCSD Pascal
implementations.

Exampleof TREESEARCH:

program tree_demo;
type alpha = packed array [1..8] of char;
nodeptr = tnode;
node = record
name: alpha;
Ilink, rlink: nodeptr;
value: integer;

end §nodet;
var root: nodeptr;
cmd: char;

procedure get_name(var name: alpha);
var s: string;
cnt: integer;
begin
readin(s);
name := ' *s
for cnt := 1 to length(s) do
if cnt <= 8 then name[cnt] := s[ent];
end fget_name};

procedure find_node;
var entry: nodeptr;

Sec. 3.11 Miscellaneous Extensions

search: alpha;
begin
write(’' Enter name: ');
get_name(search);
if treesearch(root,entry,search) <> @ then
writein(’ Entry not found’)
else with entryt do
writeln(’ Name: °',name,’ Value: ',value);
end §{find_node};

procedure print_nodes(tree: nodeptr);
begin fprint nodes in ascending lexigraphic order}
if treet.rlink <> nil then
print_nodes(treet.rlink);
with treet do
writein(* Name: ’',name,’ Value: ’',value);
if treet.llink < nil then
print_nodes(treet.llink);
end f{print_nodes};

procedure add_node;
var new_node, entry: nodeptr;

result, new_val: integer;
new_name: alpha;
begin

write(’' Enter name: ');
get_name(new_name);
result := treeseorch(root,entry,new_nome);
if result = @ then
writein(® Entry already exists’)
else
begin
new(new_node);
with new_nodet do
begin
write(' Enter value: ');
readin(vaiue);
name := new_name;
Ilink := nil; rlink := nil;
if result = 1 then
entryt.rlink := new_node
else
entryt.llink := new_node
end;
end felse};
end fadd_node};

begin
new(root);
with roott do

begin
name := ' '; value := 0;
Ilink := nil; rlink := nil;
end; -
repeat

write(’A(dd node F(ind node P(rint node Q(uit’);

105

106 EXTENSIONS TO STANDARD PASCAL Chap. 3

read(keyboard,cmd); writeln(cmd);
case cmd of

'a’: add_node;

*f$': find_node;

p': print_node(root);
end;
until cmd = ’q’;
end §tree_demo}.

This program uses TREESEARCH to build, search and print a binary
tree. Procedure add_node uses TREESEARCH to determine if the name to
be added is already in the tree. If not, a new node is allocated and its
pointers are set to NIL. The node pointer variable parameter supplied by
TREESEARCH indicates the father node of the new one. The integer value
returned by TREESEARCH determines whether the new node is to be a
left son or a right son. Procedure f ind_node uses TREESEARCH to find the
desired node. Procedure print_nodes recursively performs a post-order
traversal of the entire tree, printing the information in each node. The
main program initializes the root node and prompts the user to choose one
of the provided functions.

3.11.13 Compiler Support - IDSEARCH

The IDSEARCH intrinsic is a special-purpose procedure designed to speed
up the the search for valid Pascal identifiers in a Pascal source program. It
was designed for use in the UCSD Pascal compiler, but it can be useful in
any program that accepts Pascal source textas input, such as cross-reference
generators, pre-processors and the like.

IDSEARCH accepts two parameters, INX and BUFFER. BUFFER is
normally a packed array[0..1023] of char, presumed to contain part of a
Pascal source program. INX is an index into BUFFER; it must be preset to
point to the first character of a Pascal identifier —an upper or lower case
letter. IDSEARCH identifies the identifier found, the category of the
identifier (e.g., an operator, a user-defined identifier, etc.), and, if the
identifier is an operator, which operator it is. INX is left pointing to the last
character in the identifier.

IDSEARCH is a “dirty” procedure. Notice that both parameters to
IDSEARCH are input parameters; neither provides for the return of the
information which IDSEARCH produces. This information is placed in the
variables which are declared immediately following the declaration of the
actual parameter corresponding to INX. IDSEARCH uses the address of INX
(INx is a variable parameter so its address is known to IDSEARCH) to
determine where to store these values. It is the programmer’s
responsibility to declare the output parameters so that they are of the
appropriate type and in the appropriate position relative to the INX

Sec. 3.11 Miscellaneous Extensions 107

parameter.
The following variables must be of the type and in the sequence
shown:
var

index: integer;
fthe actual parameter corresponding to INX}

sym : symbol;

fwill contain the category of the identifer found}
op : operator;

§if identifier is an operator, which one; else NOP}
id : alpha;

fwhich identifier was found; first 8 characters}

Type alpha is a packed array[1.8] of char. Types symbol and
operator are enumerated types which define the categories of keywords
and valid operators, respectively. These are illustrated in the program
below.

Type symbol defines categories of keywords; however, this type
enumerates other symbols besides keywords since it is used by the UCSD
Pascal compiler to recognize all valid Pascal symbols. The entire type must
therefore be declared as shown; it should be understood, however, that
IDSEARCH only returns values in sym that correspond to keywords. These
are shown below in capital letters.

WARNING: As the Pascal language changes, so will the values
enumerated in the symbol type. The version of symbol given below
functions in Versions II through IV of the p-System. There were a number
of new values added to symbo! after Version II; these were added at the end
of the enumeration, however, so the declaration below still works for
Version II Pascal programs.

Exampleof IDSEARCH:

program match;
type
symbol =
(IDENT.commo,coIon.semicolon,Iparen,rporen,DOsy,TOsy,
DOWNTOsy , ENDsy ,UNTILsy,OF sy, THENsy,ELSEsy,becomes, Ibrack,
rbrack,arrow,period,BEGINsy, IFsy,CASEsy,REPEATsy ,WHILEsy,
FORsy ,WITHsy ,GOTOsy, LABELsy,CONSTsy, TYPEsy,VARsy ,PROCsy,
FUNCsy ,PROGsy , FORWARDsy, intconst,realconst,stringconst,
NOTsy ,MULOP,ADDOP,RELOP,SETsy ,PACKEDsy ,ARRAYsy ,RECORDsy,
FILEsy,OTHERsy, longconst,USESsy ,UNITsy, INTERsy, IMPLEsy,
EXTERNLsy, SEPARATsy,qstar ,PROCESsy);

§ IDENT is used for user—defined identifiers. PROGsy is
used for SEGMENT as well as PROGRAM. MULOP designates
DIV, AND and MOD }

108 EXTENSIONS TO STANDARD PASCAL Chap. 3

operator = (MUL,RDIV,ANDOP,IDIV, IMOD,PLUS,MINUS,OROP,
LTOP, LEOP,GEOP,GTOP,NEOP, EQOP, INOP ,NOOP) ;

alpha = packed array[1..8] of char;

var
index: integer; §{the order of these four}
sym : symbol; f§parameters is criticalt
op : operator;
id : alpha;
bal,

blks : integer;

src : string;

suf : string[5];

fyle : file;

buf : packed array[@..1023] of char;

function MoveWhenInBuffer(lim: integer): boolean;
var
upper: integer;
begin
upper := (lim » 512) - 1;
§ don't go higher than 511 if one block }
§$R-3 { or higher than 1023 if two blocks read }
repeot
index := succ(index);
until ((buf[index] in ['A*..’Z", 'a’..'2']) or
(index >= upper));
§$R+}

if index >= upper
then MoveWhenInBuffer := FALSE
else MoveWhenInBuffer := TRUE;
end;

begin
bal := 9;
suf := °' -
write(’Your source file: '); readin(src);
reset(fyle, src);
if tength(src) > 5
then suf := copy(src, length(src)-4, 5);
if suf = * TEXT' or suf = ' text’
then blks := blockread(fyle, buf, 2, 2)
§skip 2-block text file header}
else blks := blockread(fyle, buf, 2);

while (blks > @) do begin
index := ©;
while MoveWhenInBuffer(blks) do begin
idsearch(index, buf);
if sym = REPEATsy
then bal := succ(bal)
else if sym = UNTILsy
then bal := pred(bal);
end;

Sec. 3.11 Miscellaneous Extensions 109

blks := blockread(fyle, buf, 2);
end;

if bal =0

then writeln(

"Congratulations, your REPEAT’’'s and UNTIL'’s match!’)
else if bal < @

then writeln(
'Oops, you have ',—bal,’ more UNTIL’’s than REPEAT®’*s!’)
else

writeln(
'Oops, you have ’',bal,’ more REPEAT'’s than UNTIL *s!’)

end.

This program determines if a specified Pascal source program has
matching sets or REPEAT/UNTIL. Two blocks at a time are read into buf;
the index is advanced by function MoveWhenInBuffer to the next character
eligible to be the beginning of an identifier. MoveWhenInBuffer returns
FALSE when it advances beyond the end of the current buffer, and the
program continues to read from the source program until the end of the
file. (The system editors and operating system cooperate to assure that no
identifiers cross the two-block boundary.)

When MovelInBuffer returns TRUE the IDSEARCH procedure is
invoked and the variable sym is examined. If it indicates a REPEAT was
found, the variable bal is incremented by one (bal was initialized to zero).
If sym indicates an UNTIL was found, bal is decremented by one. When
the entire source file has been traversed, the value of bal indicates the
balance of REPEAT’s to UNTIL’s in the source program.

Note that this program is not very clever regarding REPEAT’s and
UNTIL’s embedded in comments!

3.11.14 FOR Control Variables

In Standard Pascal the control variable of a FOR loop must be declared
locally in the procedure containing the FOR statement. This restriction has
been lifted in UCSD Pascal. The control variable may be any free-
standing integer or scalar variable (i.e., not part of a structured variable) at
any scope level visible at the FOR statement. For example:

program lax;
var
index: integer;

procedure UseVar;
begin
for index := @ to 5 do
writeIn("Only allowed in UCSD Pascal’);
end;

110 EXTENSIONS TO STANDARD PASCAL Chap. 3

begin
UseVar;
end.

Additionally, Standard Pascal prohibits the modification of the
control variable within a FOR loop. UCSD Pascal does not flag this as an
error, although this practice is not recommended.

Chapter 4

UCSD INTRINSICS

Contents
4.0 7 N0 - N A 113
4.1 AT T ACH .. ittt i et eeteeeernennsnennnnnn, 114
4,2 BLOCKREAD .ttt iteee et eeeeeeeeneneaennnnn, 114
43 BLOCKW RITE .. iiiiiiiiiiiiitiieeteeenennnenensnennnnns 115
4.4 CHAIN i i i e e e ettt e e, 116
4.5 L B) 117
4.6 L0167 Y L 118
4.7 L0) o 118
4.8 D) 21 B 2 1 S 118
49 25, () 21 34 N (0) [119
4.10 0, 4 | 119
4.11 |) B) = . N 120
4.12 (€10 110). @ G 121
4,13 5 17N B A 121
4.14 1D 72N {0 > I 122
4,15 | AN 21 2 122
4.16 1(0) 23 231 61 B L 122
417 1 58 21\ (€ 4) = S 123
4,18 1Y N 2 123
4.19 MEMAYV AL . iiiiiiiiiiiiiieeneeneeserasnsnensnnnnn, 124
420 MEMLOCK . iiitiiiiiitiieiiientteeensenanenensnsnnnns 124

111

112 ' UCSD INTRINSICS Chap. 4

421 MEMSWAPevniitnieneineenneenconerneeierieernnnns 125
422 MOVELEFT ...vvititeieeteenneeneraeanerneenaernasens 125
423 MOVERIGHT ...\evvevnevnerneeneenenneineinernenrennnns 126
424 OPENNEW .. .vevvernersnennenneeneennerneinesneernsons 127
425 OPENOLD ... vveevnernennesneeneneenneansenernnesnns veel 127
4.26 P_MACHINEovuivnrrennenneeneeieineineenaesnennnns 127
4217 POS .o veevternernernereeanseneeneeieraetietaenaaaanes 128
428 PWROFTEN ...uevnvvnerneeneeenenneeinernnnineesessnns 128
429 REDIRECT ...vvnvvnernernenneeneenennenneinnraesnnsnnns 129
4.30 RELEASE . evvvtertnensesunerneenseseesnernesnnesnnses 129
4.31 RESET . eevnevnevneruesuesnsssneeneensenssnssnesnessnnes 130
4.32 REWRITE ...evnvnerrnneneenneeneeneanneneanemnessnases 131
4.33 SCAN ...cvvennens PSP PPRRTR 131
4.34 SEEK . evnevnevnenssnesssenneeneensensennssneeressannns 132
4.35 SEMINIT . evveeveerneenaasneenneenneensesneennessnasnns 133
4.36 SIGNAL ..vvveernernernernnsnreneenetnseneanssneniesnns 133
4.37 SIZEOF «evevnevressesnssnssenneeneenesnsenernnsraasans 133
4.38 START . vnevueevneenernernesnernennennernoeneeaaenersnnns 134
4.39 STR - evereeunsrnernesnesnesneeseensenesaneaestarneenns 134
4.40 TIME « v nevneeunernernesnssnseneeeneenenneennsanesnassnsnes 135
441 TREESEARCH ...\ uevuevnveennenneennnranrenerinasanses 135
4.42 UNITBUSY . .tevvvvnernenenennennsenneinernesnnernesens 136
443 UNITCLEAR ... vvtvtneineinenneenetnennenneenernesnanes 136
4.44 UNITREADivneetnsineenenneeeneriesnrinenreasanes 136
4.45 UNITSTATUS vt evneeenrnenennenneenernranernnsaesens 137
4.46 UNITWAIT .. eeevveeteenineennesneenesnneanernernnesaases 138
4.47 UNITWRITE ...0evneeninnenneinnnn, e 138
4.48 VARAVAIL .. .etivneiineinerieennennenneenenenensnnees 139
4.49 VARDISPOSE ...t evvneeerneeineeneenienneinerneriensnnns 139
4.50 VARNEW ...vvtiterinernanerenerneennenernernernessanens 140
4.51 WAIT «eveeteeineenetereene e eeneeaeeansaneaneenesenns 140

This chapter contains descriptions of all UCSD Pascal intrinsics, listed in
alphabetic order. Most descriptions contain a reference to a related section
in chapter 3, which describes the intrinsics in terms of the features they
implement (and also presents programming examples). A number of
intrinsics are described fully in this chapter. These include limited-use
intrinsics such as IDSEARCH, and the intrinsics which make use of an
operating system unit, such as CHAIN. Users unfamiliar with the UCSD
Pascal intrinsics should peruse chapter 3 before reading this chapter.

UCSD INTRINSICS Chap. 4 113

With two exceptions, the identifiers chosen to denote UCSD Pascal
intrinsics are distinct from those of the procedures defined in Standard
Pascal. RESET and REWRITE are sufficiently altered to warrant inclusion
in this section as UCSD Pascal intrinsics.

To illustrate the parameters accepted by each intrinsic, its function or
procedure “heading” is provided. This heading resembles the way the
intrinsic might actually have been declared when originally written.

NOTE: In order to completely specify the UCSD Pascal intrinsics, this
section embellishes Pascal syntax with the metasymbols defined in section
1.3 and two special "type” identifiers. Metasymbols are used to indicate
optional parameters ([<opt-param>]) and sequences of one or more
parameters ({<param-seq>}). The special "type” identifiers indicate relaxed
type checking on the corresponding parameter(s). The “type” UNIV
denotes a universal type; formal parameters described as being of "type”
UNIV accept actual parameters of any type. The ”type” FILEID is
compatible with all file types. These “type” identifiers are used for
descriptive purposes only. They are not a part of the UCSD Pascal
language.

NOTE: Most extensions described in this chapter are considered as a
part of the UCSD Pascal base language as it existsin Version IV. Another
class of extensionsis available through the use of library modules. Units
that allow extended file and directory management, screen control and
other system-oriented functions are included or available as options with
Version IV of the p-System. Some of these are described in chapter 8. Units
are also available from a variety of vendors; they extend the language in a
manner suited for a variety of application areas.

40 ATAN

Syntax:

function atan(X: real): real;

ATAN is equivalent to the standard procedure ARCTAN. See section 3.11.7
for more information.

114 UCSD INTRINSICS Chap. 4
4.1 ATTACH

Syntax:

procedure attach(var SEM : semaphore;
VECTOR : integer);

ATTACH associates the semaphore variable SEM with the event (p-machine
interrupt vector) specified by VECTOR; the p-machine signals SEM whenever
the specified event occurs.

Events and their event numbers are defined in the I/O system.
Certain event values are standard over most Version IV releases; others are
system-dependent. Consult your Architecture Guide for details.

Only one semaphore may be attached to an event at a time; attaching
a new semaphore to an event implicitly de-attaches the old semaphore. A
semaphore may be de-attached from an event without attaching another
semaphore by attaching NIL.

See section 3.0.2 for more information.

4.2 BLOCKREAD

Syntax:
function blockread(
var F : file;
var BUFF :ouniv;
BLOCKS : integer

[; RELBLOCK : integer]) : integer;

BLOCKREAD attempts to read the number of blocks specified by BLOCKS
from the file F into the variable BUFF. It returns the number of blocks
actually read. If the number of blocks returned is less than the number of
blocks requested, BLOCKREAD encountered either the end of the file or an
1/0 error while reading the data.

1/0 checks are automatically generated for BLOCKREAD calls. If I/0
checks are suppressed (with the $I- compiler option) IORESULT should be
used to check the completion status after BLOCKREAD calls.

The optional parameter RELBLOCK applies only when reading from
block-structured (disk) files. When specified, it indicates the block in the
file where BLOCKREAD starts reading. The starting block is relative to
the beginning of the disk file, with block O being the first block in the file.

In the absence of a RELBLOCK parameter, blocks are read from the file
consecutively. The first BLOCKREAD after F is opened reads from
block O.

RELBLOCK is ignored when reading from serial devices.

Sec. 4.2 BLOCKREAD 115

On many machines, disk I/0 may only occur to/from word-aligned
memory addresses. Users must ensure that BUFF specifies a word-aligned
address as the starting address of the buffer. This is most important when
the starting buffer address is an indexed address in a packed array of char,
since each element of the array occupies a single byte.

Users are responsible for not overrunning the buffer specified by BUFF
since no range checking is provided when performing BLOCKREAD.

See section 3.3.4 for more information.

4.3 BLOCKWRITE

Syntax:
function blockwrite(
var F : file;
var BUFF Pouniv;
BLOCKS : integer

[: RELBLOCK : integer]) : integer;

BLOCKWRITE attempts to write the number of blocks specified by BLOCKS
from the variable BUFF to the file F. It returns the number of blocks
actually written. If the number of blocks returned is less than the number
of blocks requested, BLOCKWRITE encountered an 1I/0 error while
writing the data.

1/0 checks are automatically generated for BLOCKWRITE calls. If
I/O checks are suppressed, IORESULT should be used to check the
completion status after BLOCK WRITE calls. Writing beyond the end of a
file automatically extends the file if possible; otherwise, an 1/0 error is
returned.

The optional parameter RELBLOCK applies only when writing to block-
structured (disk) files. When specified, it indicates the block in the file
where BLOCKWRITE starts writing. The starting block is relative to the
front of the disk file, with block O being the first block in the file.

In the absence of a RELBLOCK parameter, blocks are written to the file
consecutively. The tirst BLOCKWRITE after F is opened writes to block O.

RELBLOCK is ignored when writing to serial devices.

On many machines, disk I/O may only occur to/from word-aligned
memory addresses. Users must ensure that BUFF specifies a word-aligned
address as the starting address of the buffer. This is most important when
the starting buffer address is an indexed address in a packed array of char,
since each element of the array occupies a single byte.

Users are responsible for not overrunning the buffer specified by BUFF
since no range checking is provided when performing BLOCKWRITE. See
section 3.3.4 for more information.

116 UCSD INTRINSICS Chap. 4
4.4 CHAIN

Syntax:

procedure chain (execution_options: string);

CHAIN adds an entry to the system’s program execution queue. When a
program terminates, the system examines this queue to see if it contains an
entry. If it does the entry is processed as if it were a keyboard response to
the X(ecute Command: prompt (ie., a program and/or redirection options
are executed.)

In Version IV, execution options include those that change the prefix
volume, change the name of the library text file, and redirect system or
program input or output. Consult your Users’ Manual for details on these
execution options.

Regardless of where a CHAIN call appears in a program, it does not
take effect until the program calling it completes execution. If there are a
number of calls to CHAIN in a program (or in a program CHAIN’ed to) the
chain requests are processed in the order queued.

CHAIN is a standard intrinsic in Version IV. It is available in a
number of other implementations as well. In Version IV, programs that
use the CHAIN intrinsic must also use the operating system COMMANDIO
unit. The unit must be available as a separate file during compilation (for
its interface section) and during execution, as a library file or embedded in
the operating system. COMMANDIO.CODE is supplied as a standard part
of the Version IV distribution.

program chtst;

uses commandio;
var myoptions,

mydisk : string;
begin
mydisk := *#5:°; { or any volume name }

myoptions :m
concat (' *system.filer. PI="K', mydisk, 'LYQ" '),
chain(myoptions);
writeln(*After this program terminates it will K(runch ',
mydisk, ‘.');
end.

This program queues a request to execute the Filer with input that
will invoke the Filer K(runch command. The first execution option is
«system. filer. (The leading asterisk directs the operating system to search
the boot volume for system. filer; the trailing period prevents the system
from attaching a .CODE suffix to the file name before searching for the
program.) The PI execution option redirects program input from the
keyboard to a file or —as in this example- a literal string enclosed in quotes
(PI stands for Program Input). The string (kmydisk,YQ) is the textof what

Sec. 4.4 CHAIN 117

a user would type when using the Filer to invoke the K(runch command.
A comma is included in the string where the user would ordinarily type a
carriage return.

WARNING: In Version IV systems prior to Version I'V.13 the CHAIN
intrinsic causes the system to temporarily lose the memory space formerly
occupied by the program global variables of the calling program. This may
result in a stack overflow.

See section 6.14 for further discussion of the CHAIN intrinsic.

4.5 CLOSE

Syntax:
procedure close(var F : fileid [; OPTION]);

CLOSE sets the file state of the file variable F to "closed”. OPTIONs include
LOCK, NORMAL, PURGE and CRUNCH; these determine the final state of the
associated external file. (All options except PURGE are ignored when the
externalfile is not a disk file.)

NORMAL preserves modifications to files opened with RESET; however,
if the file was extended, the extension is deleted. If the file was modified,
the file date attribute is assigned the current system date. Temporary files
created with REWRITE are deleted. NORMAL is the default option.

LOCK preserves files opened with RESET. If the file was extended, the
extension is saved. If the file was modified, the file date attribute is
assigned the current system date. Temporary files created with REWRITE
become permanent files. Note that if the temporary file’s name matches an
existing file’s name, the existing file is deleted when the temporary file
becomes permanent.

PURGE deletes the specified disk file. If the external file is an entire
volume, the volume is taken off line. This is a meaningless operation for
- disk volumes, which are automatically remounted by the system.
However, deleted serial volumes cannot be opened for subsequent 1/0
operations until the system is reinitialized.

CRUNCH is equivalent to LOCK except that the file is truncated by
designating the file window position as the end of the file. (The position
of the file window is determined by the last file operation.) All data
between the file window and the original end of the file is deleted.

When a structured file is closed, the contents of the file window
become undefined. Closing a non-open file causes an I/O error. At
procedure termination, a NORMAL close is performed on all open files
declared in that procedure.

118 UCSD INTRINSICS Chap. 4

See section 3.3.1 for more information.

4.6 CONCAT

Syntax:

function concat(S : string
§: S : string}) : string;

CONCAT returns a string containing the concatentation of the string
values of its arguments. Note that CONCAT accepts one or more string
parameters.

NOTE: The length of the string result is not allowed to exceed the
maximumstring size of 255 characters.

NOTE: The INSERT intrinsic (discussed in section 4.15) can be used to
accomplish the same effect as CONCAT and is often more efficient.

See section 3.4 for more information on CONCAT.

4.7 COPY
Syntax:
function copy(SOURCE : string;
INDEX : integer;
SIZE : integer) : string;

COPY returns a string containing SIZE characters copied from SOURCE,
starting at the INDEX’th character position in SOURCE.

NOTE: COPY returns an empty string if there are less than SIZE
characters available from the INDEX’th to the last character in SOURCE.

See section 3.4 for more information.

4.8 DELETE

Syntax:

procedure delete(var S : string;
INDEX : integer;
SIZE : integer);

Sec. 48 DELETE 119

DELETE removes SIZE characters from the string in S, starting at the
INDEX th character position in S.

NOTE: DELETE leaves S unaltered if there are less than SIZE
characters available from the INDEX ’th to the last character in S.

See section 3.4 for more information.

4.9 EXCEPTION

Syntax:

procedure exception(ChainNoMore: boolean);

As mentioned in section 4.4, Version IV of the p-System permits
redirection of system and user input and output. The EXCEPTION
intrinsic returns the system to its original pre-redirection state. It cancels
redirection specified at the outer operating system level (with the X(ecute
command) and redirection specified from within a program (via CHAIN or
REDIRECT).

If the chainnomore boolean is true, the system’s execution option queue
(filled by the CHAIN intrinsic) is cleared. If the parameter is FALSE the
pending CHAINs are unaffected. The primary use of EXCEPTION is to
cancel a pre-programmed sequence of inputs and/or program calls because
of some exceptional condition.

NOTE: All runtime errors cause the equivalent of a call to
EXCEPTION with parameter TRUE.

EXCEPTION is a standard intrinsic in Version IV. It is available in a
number of other implementations as well. In Version IV, programs that
use the EXCEPTION intrinsic must also use the operating system
COMMANDIO unit. The unit must be available as a separate file during
compilation (for its interface section) and during execution,as a library file
or embedded in the operating system. COMMANDIO.CODE is supplied as a
standard part of the Version I'V distribution.

4.10 EXIT

Syntax:

procedure exit(<routine>);

EXIT causes program execution to continue at the end of the block
associated with <routine>. Acceptable arguments are procedure or function

120 UCSD INTRINSICS Chap. 4

identifiers, program names, or the reserved word PROGRAM. If EXIT
specifies a recursively invoked routine, only the most recent invocation is
terminated.

NOTE: EXIT(PROGRAM) is the only legal form of the EXIT intrinsic in
the initialization or termination sections of a unit. In the initialization
section it causes control to pass directly to the termination section of that
unit and no further units are initialized, nor is the program executed. In
the termination section it aborts execution of the termination section and
passes control to the termination section of any unterminated unit. EXIT
with a unit identifier is not permitted.

NOTE: Exiting an uncalled procedure results in an execution error
("Exitfrom uncalled procedure™).

WARNING: When EXIT is used to terminate a function, the function
result must have been assigned beforehand; otherwise, the function returns
an undefined value when exited.

See section 3.11.8 for more information.

4.11 FILLCHAR

Syntax:
procedure fillchar(var BUFFER : univ;
COUNT : integer;
CH : character);

FILLCHAR initializes COUNT bytes in memory with the value in CH. The
starting address is specified by BUFFER.

NOTE: The SIZEOF intrinsic may be used as the COUNT argument to

FILLCHAR; this is useful when an entire data structure must be filled
with CH.

NOTE: Negative values in COUNT are treated as zero byte counts; hence,
large unsigned values may not work as expected.

WARNING: FILLCHAR offers no range or type checking.

Sec. 4.11 FILLCHAR 121

WARNING: Array indices are treated as signed integers. In the
specification of the starting buffer address, use of an array index whose
value is less than the buffer’s declared lower bound may yield unexpected
or fatal results.

See section 3.8 for more information.

4.12 GOTOXY

Syntax:

procedure gotoxy(X : integer;
Y : integer);

GOTOXY moves the cursor to the position specified by its arguments. X
determines the horizontal displacement, while Y determines the vertical
displacement; the upper left corner of the screen is defined to be (0,0). If
parameter values exceed the maximum values defined for the system
terminal they may be truncated to the maximum values.

NOTE: In many programming systems, direct cursor addressing is
accomplished by providing a line number followed by a column number.
The GOTOXY procedure expects the column number first, followed by the
line number.

NOTE: GOTOXY is a terminal-dependent procedure; it usually
requires redefinition when a new terminal is incorporated into the system.
See your Installation Guide for details on redefining GOTOXY.

See section 3.11.4 for more information.

4.13 HALT

Syntax:

procedure halt;

HALT suspends the program execution and prints an execution error
message indicating that HALT was encountered.

NOTE: Programs may be terminated in a more normal fashion with
the EXIT intrinsicc. HALT is intended to be used with the system
Debugger.

122 UCSD INTRINSICS Chap. 4

See section 3.11.11 for more information.

4.14 IDSEARCH

Syntax:

procedure idsearch(var INX ¢ integer;
var BUFFER : univ);

The IDSEARCH intrinsic is a special-purpose procedure designed to speed
up the the search for valid Pascal identifiers in a Pascal source program. It
was designed for use in the UCSD Pascal compiler, but it can be useful in
any program that accepts Pascal source textas input, such as cross-reference
generators, pre-processors and the like.

A detailed example using IDSEARCH appears in section 3.11.13.

4,15 INSERT
Syntax:
procedure insert(SUBSTRING : string;
var S : string;

INDEX : integer);
INSERT stuffs the string in SUBSTRING into the string contained in S at the
INDEX ’th character position in S.

NOTE: When INDEX is one more than the length of S the effect of
INSERT is to concatenate SUBSTRING to the end of S. If INDEX is any greater
than this value, INSERT leaves S unaltered.

See section 3.4 for more information.

4.16 IORESULT

Syntax:

function ioresult : integer;

IORESULT returns an integer value indicating the result of the last I/O
operation performed by the current task (section 3.0).

NOTE: 1/0 results are updated after every 1/0 operation; therefore, an
I/0 result value must be saved in a variable if subsequent 1/0 operations
occur before it can be manipulated.

Sec. 416 IORESULT 123

NOTE: A table of standard I/O error numbers and their corresponding
messages is contained in Appendix A. Conditions causing bad I/0 results are
listed in AppendixC.

See section 3.11.9 for more information.

4.17 LENGTH

Syntax:
function length(S : string) : integer;

LENGTH returns the dynamic length of the string contained in s.
See section 3.4 for more information.

4.183 MARK

Syntax:

procedure mark(var MARKP : tinteger);

MARK opens a ”sub”heap for dynamically allocated variables.
Subsequent calls to NEW allocate dynamic variables only in the new heap.
The heap is identified by the value assigned to MARKP. The RELEASE
intrinsic is used to deallocate all dynamic variables in a heap opened by
MARK.

NOTE: New heaps are allocated within the current heap; thus, heaps
are nested. Deallocating a given heap results in the deallocation of all
subsequently opened heaps.

MARK causes the system to record the address of the current top-of-
heap in MARKP. When RELEASE is invoked with the same pointer variable,
the top-of-heap is set back to that location.

WARNING: Pointers passed to MARK must only be used as arguments
to subsequent calls to RELEASE. Careless use of MARK and RELEASE
leads to “dangling references” (i.e., pointers to deallocated dynamic
variables, which may or may not be overwritten by subsequent system
actions).

See section 3.5 for more information.

124 UCSD INTRINSICS Chap. 4
419 MEMAVAIL

Syntax:

function memavail : integer;

MEMAVAIL returns the number of unused words in memory. The integer
result contains an unsigned value; if large, it may be misinterpreted as a
negative value unless specifically treated as an unsigned integer result (see
section 6.2).

NOTE: The MEMAVAIL intrinsic (section 3.5.1) returns the number
of words between the system stack and heap. It should be used on Version
I systems. The VARAVAIL intrinsic (section 3.5.2) is a more useful
intrinsic for sizing memory in Version IV. In Version IV, MEMAVAIL
returns the number of words between the stack and the heap exclusive of
any internal codepool (which may “float” in the area between the stack
and the heap). This is not a true reflection of available memory space
under Version IV because there may be unneeded segments that are in
memory or required segments that are not in memory. MEMAVAIL does
not consider space occupied by unneeded segments as available space. The
MEMAVAIL and VARAVAIL intrinsics return equivalent values on
implementations using an external code pool.

See section 3.11.10 for more information.

4.20 MEMLOCK

Syntax:
procedure memiock(SEGLIST : string);

MEMLOCK locks into memory the code of each segment named in the
SEGLIST. Non-resident segments named in SEGLIST are read into memory
and locked. A MEMLOCKed segment remains in memory until it is named
in a call to MEMSWARP (section 4.21) and the operating system needs the
space it occupies.

The SEGLIST consists of a list of segment names separated by commas;
spaces are ignored. It may contain any segment name declared either in the
program and the units it uses, or in the operating system. Unrecognized
segment names are ignored.

WARNING: On systems using an internal code pool, indiscreet calls to
MEMLOCK may render the heap incapable of providing large continuous
blocks of memory.

Sec. 4.20 MEMLOCK 125

See section 3.2 for more information.

421 MEMSWAP

Syntax:
procedure memswap(SEGLIST : string);

MEMSWAP causes the code of each MEMLOCKed segment (see section
4.20) named in the SEGLIST to be flagged as unloadable. The SEGLIST
consists of a list of segment names separated by commas; spaces are ignored.
It may contain any segment name declared either in the program and its
used units, or in the operating system. Unrecognized segment names are
ignored.

NOTE: MEMSWAP operates only on MEMLOCKed segments. A
MEMLOCKed code segment is not unloaded until a MEMSWAP call has
been performed for each MEMLOCK call naming that segment, the
segment is not executing and the memory space it occupies is required by
the operating system.

See section 3.2 for more information.

4.22 MOVELEFT

Syntax:
procedure movelieft(var SOURCE :ouniv;
DESTINATION : univ;
COUNT : integer);

MOVELEFT moves COUNT bytes of data from the buffer addressed by
SOURCE to the buffer addressed by DESTINATION. The data is moved one byte
at a time, starting with the bytes addressed by SOURCE and DESTINATION,
and moving successively higher-addressed bytes until COUNT bytes have
been moved.

WARNING: Negative values in COUNT are treated as zero byte counts;
hence, large unsigned values may not work as expected.

WARNING: MOVELEFT does not perform type or range checking on
its parameters.

126 UCSD INTRINSICS Chap. 4

WARNING: Array indices are treated as signed integers. In the
specification of the starting buffer address, use of an array index whose
value is less than the buffer’s declared lower bound may yield unexpected
or fatal results.

WARNING: MOVELEFT should not be used to move transfer data
between strings and packed arrays of char. A string is actually one byte
longer than its declared size; the leading byte of a string contains the length
of the string.

See section 3.8 for more information.

4.23 MOVERIGHT

Syntax:
procedure moveright(var SOURCE :ouniv;
DESTINATION : univ;
COUNT : integer);

MOVERIGHT moves COUNT bytes of data from the buffer addressed by
SOURCE to the buffer addressed by DESTINATION. The data is moved one byte
at a time, starting with the bytes addressed by the expressions (SOURCE +
COUNT - 1) and (DESTINATION + COUNT - 1), and moving successively
lower-addressed bytes until COUNT bytes have been moved.

WARNING: Negative values in COUNT are treated as zero byte counts;
hence, large unsigned values may not work as expected.

WARNING: MOVERIGHT does not perform type or range checking on
its parameters.

WARNING: Array indices are treated as signed integers on most
p-System implementations. In the specification of the starting buffer
address, use of an array index whose value is less than the buffer’s declared
lower bound may yield unexpected or fatal results.

WARNING: MOVERIGHT should not be used to move transfer data
between strings and packed arrays of char. A string is actually one byte
longer than its declared size; the leading byte of a string contains the length
of the string.

Sec. 4.23 MOVERIGHT 127

See section 3.8 for more information.

4.24 OPENNEW

Syntax:

procedure opennew(var F : fileid;
FILENAME : string);

OPENNEW is equivalent to the REWRITE intrinsic. Section 4.32 describes
REWRITE.

NOTE: OPENNEW is not recognized in Version IV of the p-System.

4.25 OPENOLD

Syntax:

procedure openold(var F : fileid
[: FILENAME : string]);

OPENOLD is equivalent to the RESET intrinsic. Section 4.31 describes
RESET.

NOTE: OPENOLD is not recognized in Version IV of the p-System.

4.26 P_MACHINE

Syntax:
procedure pmachine(<item> §,<item>});

PMACHINE generates in-line machine code corresponding to the items
specified in the parameter list. See your Internal Architecture Guide for a
description of the p-machine instruction set.

<item> ::= <code> |
<expression> |
<address—reference>

<code> ::= A constant value or constant identifier
denoting an integer between © and 255;
PMACHINE emits a single byte with the
specified value. Values outside this
range have only their least significant
byte emitted. Code bytes represent

128 UCSD INTRINSICS Chap. 4

either p—code instructions or instruction
operands.

<expression> ::= (<Pascal expression>)

<Pascal expression> ::=
An expression (e.g., the right—hand
side of an assignment statement).
PMACHINE generates code which
evaluates the expression, leaving
the result on the stack.

<aoddress—reference> ::= 1t<variable reference>

<variable reference> ::=
A referenced variable (e.g., the
left—hand side of an assignment
statement). PMACHINE generates
code which evaluates the variable
reference, leaving the address on
the stack.

See section 3.10 for more information.

4.27 POS

Syntax:

function pos(SUBSTRING : string;
S : string) : integer;

POS searches S for an occurrence of SUBSTRING. It returns an index
indicating the start of the matched substring. If S contains multiple
occurrences of SUBSTRING, POS locates the first occurrence. If S contains no
occurrences of SUBSTRING, POS returns O.

See section 3.4 for more information.

4.28 PWROFTEN

Syntax:
function pwroften(EXPONENT : integer) : real;

PWROFTEN returns the floating point representation of ten raised to the
EXPONENTth power. The maximum value of EXPONENT is system dependent;
consult your documentation. Negative arguments to PWROFTEN and
arguments greater than the maximum exponent cause an execution error
(Floating point error ”).

Sec. 428 PWROFTEN 129

See section 3.11.6 for more information.

4.29 REDIRECT

Syntax:
function redirect (EXECUTION_OPTIONS: string): boolean;

REDIRECT causes I/O redirection to take place as specified in the
EXECUTION_OPTIONS string. If the redirection is successfully accomplished,
REDIRECT returns TRUE; otherwise, it returns FALSE. The
EXECUTION_OPTIONS string may contain prefix, library, input and output
options, but not a program name. (The CHAIN intrinsic may be used to
initiate execution of another program.)

Consult your System Users’ Manual for specific execution options.
An exampleusing a number of execution options can be found in section 4.4
of this text. :

WARNING: If REDIRECT returns FALSE, the state of 1/0 redirection
is undefined and programs may not function as intended. The system can
be returned to its original state of redirection using the EXCEPTION
intrinsic (see section 4.9).

WARNING: The REDIRECT intrinsic causes the system to
temporarily lose space in memory. Memory formerly occupied by heap
variables prior to a REDIRECT may not be available after the REDIRECT.
This may result in a stack overflow.

REDIRECT is a standard intrinsic in Version IV of the p-System. It is
available in a number of other implementations as well. REDIRECT uses
the operating system COMMANDIO unit. The unit must be available as a
separate file during compilation (for its interface section) and as a library
file during execution. COMMANDIO.CODE is supplied as a standard part
of the Version IV distribution.

4.30 RELEASE

Syntax:
procedure release(var MARKP : tinteger);
RELEASE deallocates all dynamic variables in the heap associated with

MARKP. It takes the value of the MARKP pointer, which indicates a prior top-
of-heap, and makes it the current top-of-heap.

130 UCSD INTRINSICS Chap. 4

NOTE: New heaps are allocated within the current heap; thus, heaps
are nested. Deallocating a given heap results in the deallocation of all
subsequently opened heaps.

NOTE: RELEASEing the current heap does not affect the memory
occupied by code segments.

WARNING: Pointers passed to RELEASE must be initialized by a
previous call to the MARK intrinsic. Careless use of MARK and RELEASE
leads to “dangling references” (i.e. pointers to deallocated dynamic
variables, which may or may not be overwritten by subsequent system
actions).

WARNING: RELEASE deallocates dynamic variables allocated by
user programs. It does not deallocate variables allocated by the system
through calls to the CHAIN and REDIRECT intrinsics.

WARNING: RELEASE also deallocates task stacks allocated by calls to
the START intrinsic after a call to the MARK intrinsic. This may cause a
system crash.

See section 3.5 for more information.

4.31 RESET

Syntax:

procedure reset(var F : fileid
[; FILENAME : string]);

RESET opens the existing external file named in FILENAME for reading
and/or writing, and prepares the file variable F for subsequent operations
on the external file. If F does not denote an interactive file, RESET
performs an implicit GET. This is consistent with the standard procedure
RESET in Standard Pascal.

RESET generates an I/0 error in the following cases:

e File variable F is already open.
® FILENAME specifies a nonexistentexternalfile.

RESET without the file name parameter rewinds the file window to
the beginning of the (open) file.

Sec. 4.31 RESET 131

External files opened with RESET may be closed with the CLOSE
intrinsic.
See section 3.3 for more information.

4.32 REWRITE

Syntax:

procedure rewrite(var F : fileid;
FILENAME : string);

REWRITE creates a temporary external file named FILENAME, and prepares
the file variable F for subsequent operations on the external file.

REWRITE is used to open new files for writing.

REWRITE generates an I/0 error in the following cases:

® The file variable F is already open.
@ Insufficient room on disk to create the file.

External files opened with REWRITE may be saved (and optionally
made permanent) with the CLOSE intrinsic.
See section 3.3 for more information.

4.33 SCAN

Syntax:

function scan(COUNT : integer;
<particl expression>;
var BUFF : univ) : integer;

Starting at the address specified by the variable BUFF, SCAN examines
successive bytes in memory until one of the following conditions becomes
true:

® The current byte contains a value which satisfies the partial
expression.

® COUNT bytes have been examined without finding a value that
satisfies the partial expression.

Partial expressions are incomplete “equal-to” or “not-equal-to”
Boolean expressions with a character expression as the right-hand operand
(e.g.="). The left-hand operand is missing from a partial expression; it is
defined to be the current byte being examined by SCAN. A partial
expression is satisfied when it evaluates to true. The partial expression is

132 UCSD INTRINSICS Chap. 4

evaluated for each byte examined by SCAN; if it becomes true, SCAN
returns immediately.

<partial expression> ::= = | <> <character expression>
<character expression> ::= character variable or constant

SCAN returns the number of bytes examined. If the byte pointed to
by the starting address contains a value satisfying the partial expression,
SCAN returns 0. If the value in COUNT is negative, SCAN scans
backwards (towards lower addresses) from its starting address searching
for the target byte, and returns a negative number (in the range COUNT..0)
whose magnitude indicates the number of bytes examined.

WARNING: Negative values in COUNT cause backwards scanning;
hence, large unsigned values may not work as expected.

WARNING: Array indices are treated as signed integers. In the
specification of the starting buffer address, use of an array index whose
value is less than the buffer’s declared lower bound may yield unexpected
results.

See section 3.8 for more information.

4.34 SEEK

Syntax:

procedure seek(var F : fileid;
RECNUM : integer);

SEEK moves the file window in F so that a subsequent GET or PUT
accesses the RECNUMth record in the file. F must be a structured disk file
(i.e., any Pascal file except text). The first record in a file is record 0. The
standard procedure EOF is used to detect seeks off the end of the file.
Though SEEK itself always sets EOF to false, a subsequent GET sets EOF
to true if the new file position is at (or past) the end of the file.

WARNING: The result of SEEK is undefined if the file position is
moved more than one record past the final record in the file. If SEEK
moves to the first empty record past the end of the file, a subsequent PUT
extendsthe file in a normal fashion; however, if records are written at file
positions more than one record past the end of the file, the file itself
becomes undefined (resulting in subsequent program errors). Furthermore,
other data files may be overwritten. Note that EOF alone is insufficient to

Sec. 4.34 SEEK 133
distinguish these cases; the programmer must keep track of the current last
record in the file explicitly.

See section 3.3.5 for more information.

4.35 SEMINIT

Syntax:

procedure seminit(var SEM : semaphore;
COUNT : integer);

SEMINIT initializes SEM with the value COUNT.

WARNING: Calling SIGNAL or WAIT with an uninitialized
semaphore variable may crash the system. Calling SEMINIT with a
semaphore holding suspended tasks causes the system to lose the tasks.

See section 3.0.1 for more information.

4.36 SIGNAL

Syntax:

procedure signal(var SEM : semaphore);

If no tasks are waiting on SEM, SIGNAL increments the semaphore’s count;
otherwise, SIGNAL selects the highest priority waiting task and inserts it
in the ready queue.

See section 3.0.1 for more information.

4.37 SIZEOF

Syntax:

function sizeof(<identifier>) : integer;

SIZEOF returns the number of bytes of memory allocated for the data
object denoted by <identifier>. <identifier> may be either a variable or type
identifier. SIZEOF is used in conjunction with the intrinsics MOVELEFT,
MOVERIGHT and FILLCHAR.

NOTE: SIZEOF is evaluated by the compiler; it replaces each call with
a constant containing the result. Thus, SIZEOF cannot return the size of
runtime variable references.

134 UCSD INTRINSICS Chap. 4

NOTE: If a record contains variant fields, SIZEOF uses the longest
variant when determining its size.

NOTE: SIZEOF does not work with individual array elements or with
explicitly qualified fields of records. (It does work with fields of records
when qualified using WITH.)

See section 3.8 for more information.

4.38 START
Syntax:
procedure start(<process call>
[; var PID : processid
[: STACKSIZE : integer
[; PRIORITY : integer]]]):
START initiates tasks.

The main parameter to START is a process call; it resembles a
procedure call, and may contain parameters passed to the task.

The remaining parameters define various task attributes. PID is
assigned a value which uniquely identifies the new task. STACKSIZE
indicates the number of words of memory to be allocated for a stack space;
if absent, START uses 200 as a default stack size. PRIORITY indicates the
task priority to be assigned the new task; the higher the number, the higher
the priority assigned to that process. if the priority is not in the range
0..255, an execution error occurs. The default priority is 128.

See section 3.0 for more information.

4.39 STR

Syntax:

procedure str(L : integer[36];
var S : string);

STR converts the value in L into a string in S; it is used to format long
integer values for output. If the value in L is negative, the first character
placed in S is a minus sign (-).

See section 3.6 for more information.

Sec. 4.40 STER 135
440 TIME

Syntax:

procedure time(var HIWORD : integer;
var LOWORD : integer);

TIME returns the current value of the system clock in the integer pair
HIWORD and LOWORD. The system clock is an unsigned 32-bit integer
incremented every 60th of a second. HIWORD contains the most significant
word.

NOTE: HIWORD and LOWORD contain unsigned values; they may be
treated as negative numbers by some integer operations unless specifically
treated as unsigned integers (see section 6.2).

NOTE: TIME returns the time relative to the time of the system
bootstrap, not the true time of day. If a machine does not support a clock
(or the clock is turned of f) TIME generally returns zero in both HIWORD and
LOWORD.

See section 3.11.5 for more information.

4.41 TREESEARCH

Syntax:

type alpha = packed array [1..8] of char;
nodeptr = tnode;
node = record
name: alpha;
right_link: nodeptr;
left_iink: nodeptr;
{ any user—defined record fields }
end §{node};

function treesearch(ROOT : nodeptr;
var NODE : nodeptr;
NAME : alpha) : integer;

TREESEARCH manages binary trees ordered by the contents of an §-
character field. TREESEARCH searches the tree rooted at ROOT for a record
whose name field matches NAME. On return, NODE contains a pointer to the
last record examined, and the function result indicates the result of the
search.

If a record in the tree matches the array argument, TREESEARCH
returns O as a function result and NODE points to the matching record. If no

136 UCSD INTRINSICS Chap. 4

record in the tree matches the array argument, TREESEARCH returns
either 1 or -1 and NODE is set to the last node searched. 1 indicates that NAME
is greater than the name in the record pointed at by NopE (and would be
inserted on its right 1ink); -1 indicates that the argument is less than NODE
(and would be inserted on its left link).

NOTE: The TREESEARCH intrinsic constructs trees so that either
right (post-order) traversals or left (pre-order) traversals Visit the records
in lexicographical order of their name fields. The particular ordering used
is implementation dependent.

See section 3.11.12 for more information.

4.42 UNITBUSY

Syntax:
function unitbusy(UNITNUM : integer) : boolean;

UNITBUSY indicates whether the specified device is waiting for an I/O
operation to finish.

UNITBUSY is not available in most p-System implementations.

See section 3.9 and Appendix D for more information.

4.43 UNITCLEAR

Syntax:
procedure unitclear (UNITNUM : integer);

UNITCLEAR cancels any 1/0 operations occurring on the specified device,
and resets the unit to its initial (i.e., power-up) state.
See section 3.9 and Appendix D for more information.

4.44 UNITREAD

Syntax:
procedure unitread(UNITNUM : integer;
var BUFF :ouniv;
COUNT : integer

[; BLOCKNUM : integer
[; CONTROL : integer]]):

Sec. 4.44 UNITREAD 137

UNITREAD reads COUNT bytes from the device UNITNUM into the variable
BUFF. BLOCKNUM is applicable only when reading from block-structured
units; it specifies the starting block of the transfer. (Block numbers start at
0.) CONTROL is treated as a bit array; certain bits in the control word are
defined to select various I/0 options (depending on the unit specified —see
AppendixD for details).

The BLOCKNUM parameter is ignored when UNITNUM specifies a serial
unit. Though it is not specified in the syntax definition above, UNTTREAD
accepts a CONTROL parameter in the absence of a BLOCKNUM parameter. The
form is:

UNITREAD(<unit>.<buffer>.<length>..<control>)

NOTE: On most implementations, BUFF is constrained to start on a
word address when the specified unit is block-structured. Reading into an
odd byte address causes an 1/0 error (illegal buffer address).

WARNING: UNITREAD performs no type or range checks on its
parameters.

WARNING: Array indices are treated as signed integers. In the
specification of the starting buffer address, use of an array index whose
value is less than the buffer’s declared lower bound may yield unexpected
or fatal results.

See section 3.9 and Appendix D for more information.

4.45 UNITSTATUS

Syntax:

procedure unitstatus(UNITNUM : integer;
var STATREC :ouniv;
DIRECTION : integer);

UNITSTATUS returns the status of the device UNITNUM in the STATREC
record. The format of the STATREC record depends on the type of device
being polled and on the particular p-System Version/hardware
environment. It is normally a serial device record or a block-structured
device record. The record should occupy at least 30 words to allow for
future expansion.

The DIRECTION parameter should be passed as zero or one. For devices
that perform both input and output, zero specifies the status information

138 UCSD INTRINSICS Chap. 4

referring to output and one specifies the status information referring to
input.

The DIRECT ION parameter is not used under all implementations or for
all devices.

See section 3.9 and Appendix D for more information.

4.46 UNITWAIT

Syntax:

procedure unitwait(UNITNUM : integer);
UNITWALIT waits for the device specified by UNITNUM to finish its current
170 operation.
NOTE: UNITWAIT is not available in most p-System
implementations.

See section 3.9 and Appendix D for more information.

4.47 UNITWRITE

Syntax:
procedure unitwrite(UNITNUM : integer;
var BUFF :ouniv;
COUNT : integer
[; BLOCKNUM : integer
[; CONTROL : integer]]):

UNITWRITE writes COUNT bytes to the device UNITNUM from the variable
BUFF. BLOCKNUM is applicable only when writing to block-structured
units; it specifies the starting block for the transfer. (Block numbers start
at 0.) CONTROL is treated as a bit array; certain bits in the control word are
defined to select various I/0 options (depending on the unit specified —see
Appendix D for details).

The BLOCKNUM parameter is ignored when UNITNUM specifies a serial
unit. Though it is not specified in the syntax definition above,
UNITWRITE accepts « CONTROL parameter in the absence of a BLOCKNUM
parameter. The form is:

UNITWRITE(<unit>,<buffer>,<length>, ,<control>)

Sec. 4.47 UNITWRITE 139

NOTE: On most implementations, BUFF is constrained to start on a
word address when the specified unit is block-structured. Writing from
an odd byte address causes an 1/0 error (illegal buffer address).

WARNING: UNITWRITE performs no type or range checks on its
parameters.

WARNING: Array indices are treated as signed integers. In the
specification of the starting buffer address, use of an array index whose
value is less than the buffer’s declared lower bound may yield unexpected
or fatal results.

See section 3.9 and AppendixD for more information.

4.48 VARAVAIL

Syntax:

function varavail (SEGLIST : string) : integer;

The VARAVALIL function returns the size, in words, of the free space in
memory assuraing that all segments named in the SEGLIST are resident.
The SEGLIST consists of a list of segment names separated by commas;
spaces are ignored. It may contain any segment name declared either in the
program and the units it uses, or in the operating system. Unrecognized
seginent names are ignored.

VARAVAIL returns the same value as MEMAVAIL on systems with
an external code pool.

See section 3.5 for more information.

4.49 VARDISPOSE

Syntax:

procedure vardispose(var P : tuniv;
WORDCOUNT : integer);

The VARDISPOSE procedure deallocates the WORDCOUNT-sized data
structure referenced by pointer P. WORDCOUNT is an unsigned integer
parameter. P is returned containing NIL.

WARNING: Deallocating a data structure of a different size than was
originally allocated could lead to a system crash.

- 140 UCSD INTRINSICS Chap. 4

NOTE: Attempts to deallocate one word actually deallocate two
words.

See sections 3.5 and 4.50 for more information.

450 VARNEW

Syntax:

function varnew(var P : tuniv;
WORDCOUNT : integer) : integer;

The VARNEW function attempts to allocate a data structure of WORDCOUNT
words on the heap and return P as a pointer to the data structure. P has
been declared as a pointer to the type of the data structure being allocated.
If there is enough contiguous free memory for the buffer, the allocation
takes place and the value of VARNEW is returned equal to WORDCOUNT;
otherwise, VARNEW is returned zero.

The SIZEOF intrinsic may be applied to the data structure being
allocated to determine the value of WORDCOUNT. The system does not check
to assure that there is a correspondence between the size of the data
structure pointed to by P and the value of WORDCOUNT.

NOTE: Attempts to allocate one word actually allocate two words.

See section 3.5 for more information.

4.51 WAIT

Syntax:

procedure wait(var SEM : semaphore);

If the semaphore count of SEM is greater than zero, it is decremented, and
the current task continues to execute. Otherwise, the current task is
suspended, and waits for a SIGNAL on SEM.

See section 3.0.1 for more information.

Chapter §

COMPILE OPTIONS

Contents
50 10 o5 10D 1T S P 142
5.0.1 Compiled Listings ..ooovvuiiiinnnerernneeennnnnerennnes 145
5.0.2 Include Files.....covviiiiiiiiiiiiinniiiiniiiinennnnnns 147
5.0.3 Using Units . ooeiiiiiiiiiiiiiiiiiiiiie i, 148
504 Swapping Compiler ...ovviiveieinirieeniineennennennns 149
5.0.5 Conditional Compilationc.covvieernernnrennrnnnns 150
5.0.6 | 0 1 1.7 <. P 151
5.0.7 Range Checksvvviiiiiiiniinneiniinininennnnnnnns. 152
5.0.8 GOTO Restrictionvvvvivvnneiinenieeniiininennnnns. 153
5.0.9 Copyright Notices ..oovvviiiiinnniiiniinerriineeennnn.. 153
5.0.10 Console Display Suppressiono.eeeverveevunenenn. 154
5.0.11 Segment Residencyoovvvvuiiiniiiiinnneineinnnnnnn, 154
5.0.12 System Programscoovviiiiierinnniennnnineennnnn. 155
5.0.12.1 System Programs Before Version IV 156
5.0.12.2 System Programs Under Version IV 159
5.0.13 Native Code e teeeerasutecetsetarratornets 159
5.0.14 Real Size...ccovvvuiiiiiiiiiiiii ittt e 160
5.0.18 Symbolic Debuggingc.oovvviiiiiiiiiiinnnnnn.. 161
5.0.16 Byte Sex FLpPIng «.oovvvvniiiiiiiiiiiiniiiiiinnnnnnn, 161
5.0.17 ExecutableUnits.......oovviiiiiiiniiniiiininnnnnnnn. 162
5.0.18 TTiny” Compiler cooovveniiiiiiiii i 165

141

142 COMPILE OPTIONS Chap. b

5.1 Option SUMMATY ¢ v vvvneeerrneareesesinniteenseesesnaacane 165

This chapter describes the compile options in UCSD Pascal. Compile
options affect both compiler operation and the execution characteristics of
code produced by the compiler. Compile options are controlled by
directives embedded in the textof source programs. They are processed by
the compiler as they are encountered in the program. Section 5.0 describes
the use of compile options, and provides a detailed description of each
compile option. Section 5.1 summarizes the compile options.

5.0 Options

Compile options appear as directives in a source program. These directives
are called pseudo-comments. A pseudo-comment is a comment (as defined
in UCSD Pascal) which contains a ”$” character immediately following
the left-hand comment delimiter. Following the ”$” is a list of one or more
compile options; multiple options are delimited by commas. Each compile
option consists of a single alphabetic character (upper or lower case)
denoting a specific option, possibly followed by an argument.

An option which may accept ”+”, ”-” or ”"” as arguments is known as
a switch option. Compile options which accept alpha-numeric arguments
are known as string options. These arguments may be integers, lists of
UCSD Pascal identifiers, file names or simply textstrings. String options
are terminated by the right-hand comment delimiter. Note that a single
pseudo-comment cannot contain more than one string option, as the comma
which normally separates multiple options (and all that follow it until
the end of the comment) would be considered part of the original string

option.

NOTE: String arguments may not contain the character ™*” when the
right-hand comment delimiter is "*)”, and may not contain the character
»}” when the right-hand delimiter is ”}”.

WARNING: Generally, invalid compile options are ignored by the
compiler; the pseudo-comment is treated as a normal comment. One
exception to this is when a string option contains an argument violating the
restriction described in the NOTE above. In that case the string argument is
erroneously truncated. If the illegal character is the first character in the
string, and the option character happens to be used for both string and

Sec. 5.0 Options 143

switch options, the string option is incorrectly treated as a switch option
—beware!

Examplesof compile options:

1$1+}

(*$1 yeenly.text »)
§$L+,U-,S+}
(*$L+,U- »)

(+$B Condldent~ «)
{$Pi

Exampleof string option incorrectly treated as switch option:
(*$1sdysfunc.text =)

All switch options accept the ”+” and ”-” switches as arguments. The
"+” switch enables the option (on) while the ”-” switch disables the option
(off). Values for the D, I, N and R options (and the L option under Version
IV.13) may be stacked up to 15 levels deep. Thus, when a directive is set
(e.g., R- or I+), the new value is pushed onto the top of its stack. An
option’s current value is the value on the top of its stack. The """ switch
pops the option’s stack, causing the option to be restored to its prior value.
Stacked options are useful when a short section of code requires the
assertion of an option value, but the option value of the enclosing program
is unknown or subject to change. A directive pair of the form; {$I-} ... {$1"}
asserts the desired compile option value without af fecting the option value
in the enclosing program.

Attempts to stack an option to a depth greater than 15 cause the
values on the bottom of the stack to be lost.

Exampleof stacked compile option values:

program stack;
var i: integer;
begin
repeat
{$1-}
readin(i);
{811}
until ioresuit = 9;
writeln ("value is: *,i);
end §{stack}.

Syntaxfor compile options:
<pseudo—comment> ::= <L-delim>$<options><R—delim>

<L-delim> ::= UCSD Pascal comment delimiter: "§" or "(s"
<R-delim> ::= UCSD Pascal comment delimiter: "}" or Ya)

<options> ::= <string-option> | <option—list>

144 COMPILE OPTIONS Chap. 5

<option—list> ::= <switch—option—1list>[,<string—option>]
<switch—option—list> ::= <switch—option>§,<switch—option>}

<switch—option> ::= <switch—directive><switch> |
<button-directive>

<string-option> ::= <string-directive><string> |
<idlist—directived<idlist> |
<cond-directive><flag>[<switch>]

<string> ::= any sequence of characters other than
"s" or "}" (see previous NOTE)

<idlist> ::= <identifier>§,<identifier>}

<flag> ::= A compile flag identifier which follows the
same rules as a UCSD Pascal identifier.

<switch> ::= "+ | "=t | g
<switch-directive> ::= I | L | @ | R | s | v |
6 | N | D | F] Vv | H|T
<button-directive> ::= P | R2 | R4
<string-directive> ::= ¢ | I | L | T
<idlist—directive>» ::= R
<cond-directive> ::= B | D | E
Switch directive Compile option

1/0 checking (section 5.0.6)
Listing (section 5.0.1)

Console display (section 5.0.10)
Range checking (section 5.0.7)
String parameter range checking
(section 5.0.7)

Swapping compiler (section 5.0.4)
User lex level (section 5.0.12)
GOTO (section 5.0.8)

Native code generation

(section 5.0.13)

Symbolic debugging (section 5.0.15)
Byte sex flipping (section 5.0.16)
Executable units (section 5.0.17)
"Tiny" compiler (section 5.0.18)
Nonresident unit (section 5.0.11)

Z-4I™M0O ZOCW <DOIr=—

Sec. 5.0 Options

Button directive

R2

R4

String directive

-“rmr—=—0

Id List directive

Compile option

Page eject during listing
(section 5.0.1)

Generate code for two-word reals
(section 5.0.14)

Generate code for four—word reals
(section 5.0.14)

Compile option

Copyright notice (section 5.0.9)
Include file (section 5.0.2)
Compiled listing (section 5.0.1)
Listing titie (section 5.0.1)

Compile option

Conditional directive

Resident segment (section 5.9.11)

Compile option

Beginning of section

(section 5.0.5)

Identifier declaration
(section 5.0.5)

End of section (section 5.0.5)

5.0.1 Compiled Listings

145

Compiled listings serve two purposes in UCSD Pascal. First, they provide a
complete listing of the program source in a single text file. This is useful
when the program source itself resides in a number of textfiles which are
included during compilation. Second (and more important), they serve as a
debugging tool; a compiled listing contains information used to locate the
Pascal source statement responsible for causing an execution error (see

section 6.11 for details).

Exampleof a compiled listing:

Pascal Compiler IV.13 c6t—4 12/ 1/84 Page

1 0 0:d
2 2 1:d
3 2 1:d

1
1
1

§8L look.text}
progrom example;
var i,j,k: integer;

146 COMPILE OPTIONS Chap. 5

4 2 1:d 4 s1,82: string;

5 2 1:d 86 r: real;

6 2 1:d 90

7 2 1:d 90 segment procedure stuff;
8 3 1:d 1 var 11,12: integer;

9 3 1:d 3

10 3 1:d 3 procedure local;

11 3 2:0 ® begin

12 3 2:1] writeln('in stuff’);

13 3 2:1 20 exit(program);

14 3 1:0 @ end;

15 3 1:0 0

16 3 1:0 ® begin

17 3 1:1 0 if i = 45 then local;
18 3 1:0 ® end §{stuff};

19 3 1:0 (%]

20 2 1:d 1 segment function max(a,b:integer)
21 2 1:d 3 tinteger;
22 5 1:0 © begin
23 5 1:1 (%] if a <b then max := b
24 5 1:1 5 else max := a;
25 5 1:0 © end {moxi;
26 5 1:0 0
27 2 1:0 @ begin
28 2 1:1 0 i := 45;

29 2 1:1 4 r := 4 4E1;
30 2 1:1 10 if max(i,trunc(r)) =i
31 2 1:1 18 then i := 45;
32 2 1:1 25 stuff;
33 2 :0 ®© end fexample}.

End of Compilation.

The first column displays the line number (in the listing) of the current
source line. The second column displays the segment number of the code
segment containing the code corresponding to the source line.

The third column displays two numbers separated by a colon. The
left-hand number displays the procedure number of the procedure which
contains the code corresponding to the source line. The right-hand number
displays the current nesting level of the source statement. The nesting
level is determined by the number of unterminated BEGIN/END pairs
enclosing the source statement. Note that the nesting level is replaced by
the letter ”d” when the corresponding source line contains declarations
rather than statements.

The fourth column displays the code offset of the corresponding
source statement, or the data offset of the corresponding declarations
(indicated by the presence of a “d” in the previous column). Code offsets
are byte offsets from the beginning of the current procedure. Data offsets
are word offsets into the data space of the enclosing block. In both cases,
the value displayed represents the offset of the beginning of the code or
data item which will be generated by the compiler for the current line.

Sec. 5.0 Options 147

Compiled listings are generated when the List option is enabled. The
List option is controlled by the pseudo-comment directive ”L”, which is
used as both a switch option and a string option.

The default setting of the List option is off. ”L+” enables the List
option, and produces a compiled listing written to the disk file
*SYSTEM.LST.TEXT. The compiled listing may be written to a different
file name by using ”L” as a string option. This enables the List option and
specifies a user-defined list file name.

Portions of a program may be listed by selectively enabling ("L+")
and disabling (”L-") the List option.

List files are saved whether or not the compiler f lags syntaxerrors. If
€rrors occur, error messages are embedded in the list file.

NOTE: ”L” may be used only once as a string option during the course
of a compilation.

Page breaks may be placed in a compiled listing by using the Page
option. “P” emits a single page break.

Version IV of the p-System permits user-specified titles to be listed,
instead of the default title shown in the example above. The *T” string
option may be used at any time in a program to change the current title to
the one specified by the string.

Exampleof listing directives:

§$T I want this title printed }
§SL mylist.text }

§SL+}

§$L-4

§$P}

5.0.2 Include Files

The include file facility allows the source comprising a large program to be
distributed among a number of relatively small and easy-to-manage text
files. The compiler accepts only one source file as an input file. However,
the input file may contain an include directive for each include file
required. When the compiler finds an include directive, it includes the
contents of the specified text file as program source. When the end of the
include file is reached, the compiler returns to the source following the
original include directive.
Include directives may appear anywhere in a source file.

NOTE: Include files may be nested up to ten deep. Certain restrictions
on the use of include files arise when compiling units (see section 3.2 for

148 COMPILE OPTIONS Chap. 5

details).

Include files are specified by the pseudo-comment directive ”T” used
as a string option. The string contains an include file name, which does not
require a file suffix. If the file cannot be opened as specified, the compiler
appends ”.TEXT” to the file name and attempts to reopen it. If this also
fails a syntaxerror occurs.

WARNING: If an error occurs during a compilation, the compiler
optionally permits the user to return to the system Editor to correct the
problem. The compiler marks the location in the source program where
the error occurred, and the Editor jumps to that location upon being
invoked. If the error occurs in an included file, the user must be sure to
specify the name of that file to the Editor, notthe name of the host file. If
the host file is the system work file, the Editor automatically attempts to
use it; the user must prevent the Editor from reading the host (some
versions of the Editor permit the user to defeat the def ault) or save the host
so that it is no longer the system work file.

When using the include directive, the compiler must read in volume
directories to locate the specified files. This takes up memory space that
would otherwise be utilized by the compilation process itself. On pre-
Version IV releases of the p-System (including Apple Pascal) it is possible
to establish a 4-block file called SYSTEM.SWAPDISK on the system
volume. This permits the compiler to swap some of its work space to disk
while the directory is read in, and return it to memory when the included
file has been located and the directory is no longer needed.

Exampleof include directive:

§$1 foon.text}
§$1 3.2:globals }

See section 3.11.2 for an exampleof include files.

5.0.3 Using Units

When a program uses a UNIT the compiler compiles the UNIT’s interface
section into the host program. The interface section is stored in the code
file containing the unit. The compiler looks for the UNIT (if it is not in
the same file as the host) in the system library unless directed to look in
another library with the "U” string option. The string contains the name
of the code file containing the desired unit, including any volume name or
file suffix (such as ”.CODE™). The specified code file remains the active
library through the end of the compilation or until it is overwritten by
another $U directive. A $U directive must appear before the USES

Sec. 5.0 Options 149

statement for that unit.

Note that even if a library text file (such as USERLIB.TEXT) names
the desired libraries the compiler still requires a ”U” directive in order to
locate the UNIT.

Exampleof unit directive:

§$U MYLIB.CODE} IOPROCS;
uses §{$U main:kaboz.code} kaboozee;

See section 3.2 for further information on using UNITs.

5.0.4 Swapping Compiler

In pre-Version IV releases (including Apple Pascal) the compiler may
assume an alternate mode of operation for compiling large programs. In
these versions, the compiler normally operates as a single memory-resident
segment. This mode is used to compile programs that do not tax the
system’s compile-time memory resources. The swapping option transforms
the compiler into two separate disk-resident segments (one for handling
statements and the other for handling declarations). This provides extra
memory space for the compilation of large programs.

Swapping mode saves about four thousand words of memory during
compilation, but halves the compile speed when the compiler code file
resides on a diskette.

The swapping option is ignored on Version IV releases of the
p-System; the compiler automatically swaps as necessary.

The swapping option is controlled by the pseudo-comment directive
”S” used as a switch option. The default setting of the swapping option is
off. ”S+” enables swapping.

NOTE: "S++” may be used to cause the compiler to do even more
swapping. Use of this option provides approximately 1500 additional
words of memory.

NOTE: Swapping option directives must appear before the program or
unit heading. Unlike other options, swapping cannot be selectively turned
on and off during compilation.

Exampleof swapping directive:
{$5+}

150 COMPILE OPTIONS Chap. 5
5.0.5 Conditional Compilation

Conditional compilation allows the selective inclusion of sections of source
text during compilation. Conditional compilation is controlled by the “B”,
"D” and ”E” pseudo-comment directives and the boolean values associated
with compile-time identifiers known as compile flags.

Compile flags are declared by using the Declare option before the
program or unit heading. The pseudo-comment directive ”D” is followed
by a unique flag name which must conform to the same syntaxas a UCSD
Pascal identifier (see section 3.11.1). The initial value of the flag is set by a
trailing "+” (indicating TRUE) or ”-” (indicating FALSE). In the absence
of a trailing ”+” or ”-”, the flag value defaults to TRUE. Compile flag
values may be redefined within the program. Attempts to redefine flags
not declared before the beginning of the program or unit generate a syntax
error.

Examplesof compile flag declaration and value assignment:

§$D debugi — Declare flag "debug" with value TRUE
§$D Z80+} — Declare flag "Z80" with value TRUE
§$D list—} — Declare flag "list" with value FALSE
§$D debugt} — Set flag "debug" to its prior value

Source code is selectively included in a compilation by using the Begin
and End options. These are analogous to BEGIN and END in Pascal. When
the compiler scans a ”"B” pseudo-comment directive which contains a valid
compile flag, the value of the flag expression determines whether the
source text between the ”B” directive and its corresponding “"E” directive is
to be compiled. If the flag expression evaluates to FALSE, the compiler
skips over source text until it encounters an "E” directive containing the
flag identifier. If the flag expression evaluates to TRUE the source textis
included in the compilation.

If the compile flag in the “B” directive is followed by a »-” gwitch,
the flag expression is equal to the logical negation of the flag identifier
value.

NOTE: The "~ switch is ignored if it appears in the flag expression of
the "B” directive. All switches are ignored in the "E” directive, but are
useful for documentation purposes.

WARNING: Unit interface textis stored in a library without regard
for the values of embedded flag expressions. Thus, conditional compilation
directives can be found in imported interface text. All such flags should be
defined before the beginning of a host that uses the unit. For added
security, it is recommended that the value of the flag be redefined in the

Sec. 5.0 Options 151

interface text so as to avoid any inconsistency between the unit’s actual
interface and the interface perceived by the host.

Exampleof conditional compilation:

§$D debug-} {Declare flag "debug" with value FALSE}
program demo;
begin
§$8 debug} §{The following statement is not compiled}
writeln (*there is a bug’);
§$E debug}

{$D debug+} §Set debug to TRUE}

{$B debug} {The following statement is compiled}
writeln ('now there really is a bug’);
§$E debug}

§$D debugt} {Restore debug to FALSE}
end fdemo}.

5.0.6 1/0 Checks

The compiler normally emits I/0 checks after every file I/0 operation.
These checks cause an execution error if the I/0 result (see section 3.11.9)
reveals that an I/O error occurred during the operation.

I/0O checks are emitted when the I/O Check option is enabled. The
I/0 Check option is controlled by the pseudo-comment directive ”I” used as
a switch option.

The default setting of the /0 Check option is on. ”I-” disables the
option and suppresses the generation of 1/0 check code. 1/0 checking may
be restricted to portions of a program by selectively enabling (”I+”) and
disabling (”I-”") the I/O Check option.

NOTE: Programs compiled with the I/0 Check option disabled require
that the 1/0 result be checked explicitly. Failure to provide these checks
leaves a program susceptible to unexpected actions of both a human and
mechanical nature.

Exampleof 1/0 check directives:

§$I+}
§$1-3
$$113

See section 3.11.9 for more information. An example using I/0 check
directives appears in section 6.9.

152 COMPILE OPTIONS Chap. 5
5.0.7 Range Checks

The compiler normally emits range checks before every indexed array
reference or subrange assignment. These checks cause an execution error if
an array is indexed outside of its declared bounds, or if a subrange variable
is assigned a value outside of its declared range.

Range checks are emitted when the Range Check option is enabled.
The Range Check option is controlled by the pseudo-comment directive "R”
used as a switch option.

The default setting of the Range Check option is on. “R-” disables the
option, and suppresses the generation of range check code. Range checking
may be restricted to portions of a program by selectively enabling C’R+")
and disabling ("R-") the Range Check option.

NOTE: Programs compiled with the Range Check option disabled are
smaller and faster than their cautious counterparts. However, they must
be correct at the outset, for undetected range errors can propagate various
and sundry species of nasty and elusive bugs. Proofs of program
correctness are left to the user.

NOTE: p-System releases prior to Version IV.13 did not permit
disabling the Range Check option in the case of bad indexes into string
variables. The following code will generate a range error in a pre-I1V.13
environment but not in a IV.13 or later environment.

var
s: string;
begin
§$R-}
s := "hi’;
write(s[3]); fdynamic length is 2; program can bomb heret

§$R1}

NOTE: The Range Check option only affects the generation of the
execution error “Value range error” in the cases mentioned above. The 1/0
Check option affects the generation of executionerrors due to 1/0 faults. In
Version IV.1 and later releases of the p-System these error conditions may
be trapped using the system ERRORHANDLER unit.

NOTE: In Version III implementations, if the second argument to the
MOD operator is negative a nonsuppressable value range execution error
occurs.

Sec. 5.0 Options 153

NOTE: Apple Pascal provides range checking that assures that the
maximum length of a formal VAR string parameter equals or exceeds the
maximum length of the corresponding actual parameter (see section 3.4.1
for a discussion of this issue). This range check is toggled using the "V”
switch option, which has a default value of ”V-” (no range check).

Exampleof range check directives:

§$R+}
§$R-}
§$R1}

An example using range check directives appears in section 6.4.2.

5.0.8 GOTO Restriction

Pre-Version IV releases of the p-System include the ”G” switch option to
enable or prevent the programmer from using the GOTO statement. The
default value is "G-"; GOTOs are not allowed. The intent is to discourage
student programmers from indiscriminately using the GOTO instead of the
preferred structured constructs.

Version IV ignores the "G” option. GOTOs are always permitted.

5.0.9 Copyright Notices

Copyright notices (or other textual information) may be embedded in a
program’s code file with the Copyright option. The notice is placed in
block O of the code file (see your System Architecture Guide for details).
The Copyright option is controlled by the pseudo-comment directive
”C” used as a string option. The string may contain up to 77 characters.
Copyright notices may be embedded in an already-compiled code file
using the Library utility.

NOTE: Copyright directives must appear before the program or unit
heading.
Exampleof copyright directive:
§$C copyright (c) 1982 by SurfDreck MondoSystems, Inc.}

154 COMPILE OPTIONS Chap. 5
5.0.10 Console Display Suppression

The compiler normally displays a running account of its progress on the
console screen. Enabling the Quiet option suppresses the console display,
resulting in faster compilations (due to the time saved by not writing to
the console).

The console display is suppressed when the Quiet option is enabled.
The Quiet option is controlled by the pseudo-comment directive "Q” used
as a switch option.

The default setting of the Quiet option is off. ”Q+” enables the option
and suppresses the console display. The display may be restricted to
portions of a compilation by selectively enabling ("Q+”) and disabling
(”Q-") the Quiet option.

NOTE: A field may be set in the SYSTEM.MISCINFO file to indicate
that a system has a slow terminal. In that case the default for the ”Q”
compile option would be ”Q-” rather than "Q+”. See your Installation
Guide for instructions on configuring SYSTEM.MISCINFO.

Exampleof quiet compile directives:

§9Q+3
§$Q-4

5.0.11 Segment Residency

In Version IV of the p-System UNITs are treated as segments which may
be dynamically loaded and unloaded from memory by the operating
system.

In pre-Version IV releases, however, segment procedure code is
normally resident only during its execution but unit code is resident
throughout the program’s execution. In Apple Pascal, the default behavior
for segment residency may be altered by using the Noload and Resident
compile options.

The Noload option allows used units to be swapped as if they were
segment procedures. It is controlled by the pseudo-comment directive "N”
used as a switch option. The directive appears at the beginning of a host
program. “N+” permits unit code to be swapped out of memory when
inactive. N-”, the default value, forces unit code to be resident as long as
the host program is active.

The Resident option allows segments and/or swappable units to be
memory-resident throughout the execution of a given procedure. Segment
residency is controlled by the pseudo-comment directive "R” used as a

Sec. 5.0 Options 155

string option. The directive appears immediately after the first BEGIN
(and before the first statement) of the desired procedure and contains a list
of segments and swappable units to be made memory-resident. Segment
and unit identifiers are separated by commas, and spaces are ignored.

NOTE: A Resident option applied to a segment or unit that is already
memory-resident has no effect.

NOTE: Misplaced Noload and Resident options are ignored.

NOTE: The MEMLOCK and MEMSWAP intrinsics may be used to
control segment residency in Version IV. See section 3.1.1 for details.

Exampleof segment residency directives:

program favoritethings;
uses raindrops, roses, sashes;
§EN+} fall segments are swappable}

segment procedure snowf|akes;
begin
end §{snowflakes};

procedure music; §snowflakes and raindrops remaint
begin § resident throughout call to music}
{$R snowflakes, raindrops}
snowf lakes;
end f{music};

begin
music;
end {favoritethings}.

5.0.12 System Programs

The p-System itself is written in UCSD Pascal. This not only includes the
various utilities available under the p-System, but also the operating
system, SYSTEM.PASCAL. Access to certain facilities, such as system
variables, which are normally accessible only to systems programs is
occasionally required by application programs. The User Program compile
option allows the programmer to inform the compiler whether or not these
additional facilities need be provided.

It should be pointed out that programs compiled as system-level
programs behave in a markedly different manner from user-level
programs. The programmer should become thoroughly familiar with all

156 COMPILE OPTIONS Chap. 5

the ramifications of specifying the System level before attempting to
utilize it.

Programs are normally compiled to execute at the level defined for
user programs. The User Program option may change the level to that of
the operating system.

A program is compiled at the system level when the User Program
option is disabled. The User Program option is controlled by the pseudo-
comment directive “U” used as a switch option. The default setting of the
User Program option is on. "U-" disables the option and also sets the
following options: ”G+”, "R-" and "1-".

NOTE: The User Program option directive must appear before the
program heading. Unlike other options, User Program may not be
selectively enabled and disabled during compilation.

There are drastic Version-dependent differences in the treatment of
programs compiled at the System level. We will discuss first how these
are treated under pre-Version IV releases of the p-System, then how these
are treated under the current Version IV release. '

5.0.12.1 System Programs Before Version IV

In UCSD Pascal, blocks of code may be nested within other blocks of
code. Programs or units contain segments, segments may contain additional
procedures, some of which may themselves be segments, and so on. For
example, GETCMD is a segment nested within the UCSD Pascal operating
system. The term ”lexical level” is used to indicate the depth within
which one block of code in the UCSD Pascal system is nested within
another.

The operating system itself is at the »outer” lexical level, since it is
the block of code containing all the others. This outer lexical level is
assigned a level number of -1. As the depth of nesting increases, the lexical
level increases by one. GETCMD, which is a segment in the operating
system, is at lexical level 0. A procedure within GETCMD would be at
lexical level 1; a procedure within that procedure would be at lexical level
2, and so on.

A user program is considered to be nested within the operating system
at lexical level 0. The operating system, when compiled, has fixed ”’slots”
for the various segments within it which are at lexical level 0. GETCMD
occupies one such slot. A number of such slots are left empty; these are
reserved for segments and units of the current user program.

The compiler normally compiles programs to execute at the lexical
level defined for user programs, level O. The program itself occupies slot 1

Sec. 5.0 Options 1567

in the operating system. Any segments it uses occupy slots 7 through 15
(10 through 15 on early releases of Version II).

When the "U” switch option is used to inform the compiler that a
program is to be compiled at the System lexical level, the compiler treats
the program as a “pseudo-operating system”. However, the program itself
must not contain any code.This is because the program is not the operating
system, merely a user program compiled at the System level. If there were
code in the program, it would be at lexical level -1. Instead, the program
should have a “dummy” outer lexical level; the body of the program
should consist of an empty BEGIN/END pair:

begin
end.

The actual program should be included as a segment procedure
following the declarations. This segment procedure will be compiled at
lexical level O, since it is nested directly within the pseudo operating
system, and will occupy slot 1 since it is the first segment encountered by
the compiler. (Were there code in the main program itself, it would
occupy slot 0.)

The segment procedure for the actual program may contain as many
functions and procedures as are required (up to the limit of the p-System
implementation, of course). If additional segment procedures are required,
they should be contained within the “main” one, subject to the sequence
requirement described below.

User program segments beyond the main segment normally occupy
slots beginning at slot 7 in the operating system. The compiler
automatically generates slot numbers beginning at 7 for these additional
segments if the program is at the User lexical level, but will generate
consecutive slot numbers beginning at 2 if the program is at the System
lexical level. Therefore, to assure that the segments within the System
level program occupy the same slots they would normally occupy within
the real operating system, the system-level program must contain a
number of dummy segment procedures to fill the intervening slots. Since
the “main” segment is in slot 1, five dummy segments are required before
beginning the real segments. They should take the f ollowing form:

segment procedure dumsliot2;
begin
end.

This will force the necessary (non-dummy) segment procedures to
occupy slots beginning at slot 7.

There are a number of additional considerations when compiling
programs at the System lexical level. Under most implementations, the
level O segment procedure (the one containing all the code of the program)

158 COMPILE OPTIONS Chap. 5

must have two dummy parameters, both integers. Forward declared
procedures may be unresolved. As mentioned previously, the $R-, $I- and
$G+ compiler options are automatically set when $U- is set.

The most important consideration, however, is that programs
compiled at the system level may access system variables and procedures
normally outside the scope of user programs. The system global variables
include those that define terminal characteristics, default and prefixed
volumes, system date and many other type, variable and forward
declarations.

The variables declared in the System level program at the outermost
level are caused by the compiler to overlay the area in memory where the
system globals are stored. Of course, the declarations must correspond
exactly to the declarations of the actual system globals. The usual method
of assuring that this is the case is to Include (section 5.0.2) a file containing
the global declarations in the exact form in which they appear within the
operating system. (Many systems come with a file called GLOBALS.TEXT;
the globals for most p-System implementations are available from the
library of the UCSD Pascal Users’ Society.)

WARNING: Attempts to execute system-level programs on systems
utilizing different globals than were used to compile the program result in
mysterious and fatal system crashes.

NOTE: Code files generated for system level programs contain an extra
block due to the emission of a dummy segment for the pseudo-operating
system level. This block is automatically removed when the Library
program (described in the System User’s Manual) is used to create a copy of
the code file.

Exampleof pre-Version IV user-level directive use:

§$U-4
program fakeOS;
§$1 GLOBALS.TEXT}
$ These are the declarations corresponding to the
operating system global variables ¢

segment procedure userprogram(dummyl, dummy2: integer);
var progglobal: integer; § or whatever

segment procedure dumsliot2; begin end;
segment procedure dumslot3; begin end;
segment procedure dumsliot4; begin end;
segment procedure dumslotS; begin end;
segment procedure dumslot6; begin end;

segment procedure progseg;
begin

Sec. 5.0 Options 159

fthe code goes here}
end {progseg};

procedure progproc;
begin

{the code goes here}
end §{progproc};

begin
{the code goes here}
end fuserprogram};

begin §should contain NO code}
end {fakeOS$}.

5.0.12.2 System Programs Under Version IV

Under Version IV the ”U-” compile option should never be used,
except by operating system-level programs.

A program compiled as a system-level program will appear identical
to an ordinary program. There are no lexical level or operating system slot
considerations. Variables do not overlay the system globals.

The 1/0 check and range check compiler options must be set explicitly
within the user program (there is no GOTO compiler option in Version IV).
Certain names reserved by the system, such as the the names of the
operating system segments, may be used in a program compiled with the
”U-" option.

Programs that must make use of the the system globals may do so
cleanly, by using a UNIT provided with Version IV for that purpose. The
KERNEL unit of the operating system contains these globals; its interface
section is available in the library KERNEL.CODE. Programs may use this
unit in the ordinary manner (see section 5.0.3).

System units and data structures are discussed in further detail in
chapter 8.

5.0.13 Native Code

Version IV.1 of the p-System introduced the capability to translate selected
procedures of a Pascal program from p-code to the native machine code of
the host processor. This provides an increase in speed at the cost of larger
code size.

The translation is accomplished after the program is compiled by
submitting the code file to a utility called the Native Code Generator
(NCG). The compiler flags the procedures which are to be translated by

160 ' COMPILE OPTIONS Chap. 5

the NCG into native code; the NCG produces a faster (but larger) code file
which will run only on the single processor for which the NCG was
designed. There is a version of the NCG for many major processors.

The native code option is controlled by the pseudo-comment directive
»N” used as a switch option. The default setting of the native code option
is off (N-). Native code generation may be enabled by placing the native
code directive N+ before the first BEGIN of a procedure. It may be disabled
after the last end of the procedure. Native code generation may only be
performed on entire procedures or collections of procedures.

NOTE: The p-code file produced by the compiler from program source
containing the "N+” option is executable as-is on any processor. It is
slightly larger than the equivalent file without the "N+” option, since the
compiler must generate additional p-code for use by the NCG.

Exampleof native code generation:

program lotsawork;
procedure loopy;

var i: integer;
§ N+
begin
for i:= 1 to 32000 do
begin
fmany detailed thingsi
end;
end;
{$N1
end.

Native code is discussed in further detail in section 6.13.

5.0.14 Real Size

Pre-Version IV releases of the p-System uses two words to store real values
in code files. The representation is not always portable between p-System
implementations. A goal of the Version IV release was to move toward a
standard, four-word representation of real values.

However, the Version IV release still supports two-word reals. The
compiler generates code to handle either two- or four-word reals based on
the real size compiler options. This option must be specified at the
beginning of a program and cannot be changed within the program.

The R2 button directive specifies that the compiler should generate
code for two-word reals; the R4 button directive is used for four-word
reals.

Sec. 5.0 Options 161

The default value depends on the interpreter in use and can be
determined by examining the title line appearing on a compiler listing or
the compiler heading on the console. The digit of the compiler version
number following the dash (-) should be either a 2 or a 4, and specifies
whether two- or four-word reals is the default. For example, the
following title indicates a default to two-word reals:

Pascal Compiler IV.13 c6t-2

NOTE: Although the compiler generates a code file using whatever
real size is specified, the resulting code file will not execute unless the
corresponding two-or four-word REALOPS unit is installed in the
operating system, and the interpreter is configured with the corresponding
real size. See your Installation Guide for details. Attempts to execute a
program which uses real values on a mismatched interpreter or operating
system results in executionerror 17 ("Incompatible real number size”).

5.0.15 Symbolic Debugging

Symbolic debugging, introduced in Version IV, allows the programmer to
stop execution of a program at selected points and determine status
information using variable identifiers before resuming execution. For
example, a programmer may wish to determine the value of a variable
using its declared name at various points during the programs execution.

The compiler does not normally include identifier names in a code
file. Since it must do so to make symbolic debugging possible, the ”D”
switch option may be included to bracket those portions of a program for
which the compiler must include identifiers.

The D+ option is used to cause the compiler to begin including
identifier names; the D- option is used to tell the compiler to stop including
them.

Use of the D+ option may significantly increase the size of the code
file.

Further detail regarding use of the Debugger utility may be found in
the System Users’ Manual.

5.0.16 Byte Sex Flipping

The format of a word within memory may differ from one processor to
another. On some machines, the low-order byte of a word may occupy an
even address, while the high order-byte occupies the following odd address.

162 COMPILE OPTIONS Chap. 5

On other machines, the high-order byte occupies the even address, while
the low-order byte occupies the following odd address.

This distinction is referred to as “bytesex”. In pre-Version IV releases
of the p-System, the compiler generates code corresponding to the byte sex
of the host machine. This code cannot executeon a machine of the opposite
byte sex.

The ”F” switch option is provided in these versions to enable
compilation of code which would run on a machine of whichever byte sex
was selected. F+ enables code generation for a machine where the high-
order byte falls on the even address. F- enables code generation for a
machine where the low-order byte falls on the even address. The default
is the byte sex of the host machine.

The byte sex compiler option must appear at the beginning of a
program and cannot be changed within a program.

The byte sexoption is unnecessary in Version I'V because although the
compiler generates code of the host’s byte sex, the operating system allows
code of either byte sex to execute. If the code file is not of the native byte
sex, the system automatically converts the code as it is executed.

5.0.17 Executable Units

P-System code files may contain programs, units or both. Programs are
designed to stand alone while units are designed to be used by programs or
other units. However, the internal structure of programs and units is very
similar. In fact, the only internal difference between a unit code file and a
program code file is a flag set to indicate which is which. See section 8.4.2
for details of code file format.

Both types of code files have a primary segment. In a program code
file, the primary segment contains the outer level code of the program. In
a unit code file the primary segment contains the unit’s initialization and
termination code.

It is sometimes convenient to permit a code file to serve both as a unit,
useable by other programs, and as a program which can be executed by
itself. This is accomplished by using the unit syntax, but compiling with
the H+ switch option. A code file produced in this manner may be used as
an ordinary unit. It may also be used as a program by executing it in the
usual manner.

Use of host units is particularly convenient when a used unit must
utilize procedures of the host program. Normally, this is not permitted
since the identifiers of the host program are not known to the unit. If the
host is compiled as a unit with the host unit option, however, it may be
used by the same unit it is using! That is, the two units will use each other

Sec. 5.0 Options 163

via a circular USES, with one unit acting as the main program. This is
perfectly legal and often quite convenient.

When a unit compiled with the host unit option is used as a program,
execution begins with the initialization code. The initialization code may
freely call upon the functions and procedures within the unit, including
those that appear in the INTERFACE section and those that do not. Note
that a unit compiled with the host unit option may not contain
termination code.

The host unit compiler option must appear at the beginning of the
unit and cannot be changed. The default value is H-, which causes the unit
to be compiled as an ordinary unit.

{$H+}
unit ProgUnit;
interface
procedure pi(s: string);
implementation
uses §$U UNITUNIT.CODE} UnitUnit;
var
locstring: string;
procedure p1l;
begin
writeln(s);
end;

begin {initialization section/program body}

writeln(
'Hello there from initialization section of ProgUnit’);
locstring := 'Off we go to p2, in UnitUnit"';

p2(locstring);
§NOTE: no termination section allowed with $H+3}
end.

unit UnitUnit;
interface
procedure p2(s: string);
implementation
uses §$U PROGUNIT.CODE} ProgUnit;
var
locstring: string;
procedure p2;

var
82: string;
begin
writeln(s);
§2 :=
'And now back to p1 in ProgUnit from p2 in UnitUnit!’;
p1(s2);
end;

end.

164 COMPILE OPTIONS Chap. b

In this example Progunit is the unit serving as a "program”; it is
compiled with the H+ switch option and contains initialization code that is
executed when ProgUnit is run. ProgUnit writes an identifying message,
then passes a string to procedure p2 in UnitUnit.

UnitUnit is an ordinary unit, compiled without the H+ option. It can
only be used in conjunction with a host. Procedure p2 in UnitUnit writes
the string passed to it by ProgUnit. Then, p2 sets up its own string and calls
on procedure p1 in ProgUnit to write that string out. Thus, ProgUnit uses
UnitUnit and UnitUnit uses ProgUnit.

The tricky part of this illustration is compiling the two units. Each
unit must contain a USES indicating the usage of the other unit. The
question is which unit to compile first; if ProguUnit is compiled first the
compiler will generate an error message since it will not be able to find
UNITUNIT.CODE. If unitunit is compiled first the compiler will not be
able to locate PROGUNIT.CODE.

One solution to this dilemma is to prepare a version of one of the
units — ProgUnit, for example - with the interface section intact but with
all references to Uni tUnit removed, as illustrated:

unit ProgUnit;
interface

procedure pi(s: string);

implementation

procedure p1;

begin

end;

end.

This “phony” ProguUnit is compiled to a code file called
PROGUNIT.CODE. Then UnitUnit is compiled in the usual manner. The
compiler finds and includes the interface section of the "phony” Progunit,
which is identical to the interface of the true ProgUnit. Then the true
Progunit is compiled to the code file PROGUNIT.CODE. The compile
procedes without error since UNITUNIT.CODE already exists. The new
PROGUNIT.CODE replaces the earlier "phony” version.

ProgUnit may now be executed. The output is:

Hello there from initialization section of ProgUnit
Off we go to p2, in UnitUnit
And now back to p1 in ProgUnit from p2 in UnitUnit!

Sec. 5.0 Options 1656
5.0.18 "Tiny” Compiler

The Version II Pascal compiler contains a number of devices to reduce the
amount of space required by the compiler during its execution. The less
space consumed by the compiler, the larger the program that can be
compiled.

One of these devices is the ”T” compiler switch directive. The effect
of T+ is to effectively remove a number of predefined procedures from
UCSD Pascal, thereby reducing the compiler’s memory requirements. Of
course, the T+ directive may only be used in programs that do not use any
of these predefined procedures.

The procedures removed by T+ are READLN, PRED, SUCC, SQR,
UNITREAD, INSERT, DELETE, COPY, POS, SEEK, GET, PUT, PAGE, STR
and GOTOXY. The choice of procedures to remove is governed by the
needs of the various Version II systems programs that cannot compile
without T+. In particular, the Version II Pascal compiler itself cannot
compile on many machines without the T+ directive.

5.1 Option Summary

B Starts o conditional compiiation
section based on the following flag
expression.

c The following string is embedded in
the code file as a copyright notice.

D "D+" enables symbolic debugging.
"D-" disables symbolic debugging.
Default value: "D-"

D Declares/defines a conditional
compilation flag and sets its value.
Default value: TRUE

E Terminates a conditional compilation
section based on the following flag.

F "F+'" generates code for even byte sex.
"F-" generates code for odd byte sex.
Default value: processor—dependent

G* "G+" enables use of GOTO.
"G-" disables GOTO.
Default value: "G-"

H "H+" enables use of a unit as a standalone
program.

166

R2

R4

COMPILE OPTIONS

"H-" permits the unit to be used only as a
normal unit.
Default value: "H-"

"I+" generates 1/0 checks after file 1/0
operations.

"]-" suppresses checks.

Default value: "I+"

The following string contains the
nome of a text file to be "included"
into the source.

"L+" enables listing.
"L-" suppresses listing.
Default value: "L-"

The following string contains the
name of the compiled listing file.

"N+" flags procedures for native code
generation.

“"N-" disables native code generation.
Default value: "N-"

"N+" causes UNIT code to be resident only
when active.

"N-" causes UNIT code to be resident as long
as host program

executes.

"P" emits a page break in listing.

"Q+" enables the console display.
"Q-" suppresses the display.
Default value: "Q4+"

"R+" generates range checks on array
indices and subrange variables.

"R~" suppresses checks.

Default value: "R+"

The following segment/unit list is to
be made resident throughout the
current procedure.

Generate code for two—word reals.
Default value for R2 or R4:
interpreter—dependent

Generate code for four—word reals.
Default value for R2 or R4:
interpreter—dependent

"S+" specifies swapping compiler.
"S++" specifies more swapping.

Chap. b

Sec. 5.1 Option Summary 167

"S-" specifies no swapping.
Default value: "S-"

T» "T+" specifies "tiny" compiler.
"T-" specifies normal compiler.
Default value: "T-"

T List the following titlie on every succeeding
page of the compiier |listing.

U "U+" specifies a user-—-level program.
"U-" specifies a system level program
and "“G+,I-,R-".

Default value: "U+"

Va* "V+" specifies to perform a range check to
assure that the maximum length of a VAR string
parameter meets or exceeds the maximum length
of the corresponding actual parameter.

"V=" specifies not to perform such checking.
Default value: "v-"

NOTE: An asterisk (*) indicates options that are ignored or not
available under Version IV.

Chapter 6

PROGRAMMING PRACTICES

6.0
6.0.1
6.0.2
6.0.3
6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.6.1
6.6.2
6.7
6.8
6.9
6.9.1

Contents

Packed Variables and Storage Allocationeovvvuens 170
Packed ATTaYS ccvveerrererenrrscencsacessosssssoncacss 171
Packed RECOTAS t.vvvvivininrirnenenrososecesscencnenes 173
Packing and Storage Allocation Rules................. 174
Accessing Bytes, Bits and Bit Fields........coooeiviiinie 178
TVOTAS « e veevreerenrsnenasssssocsosncsssssssssoscsscnnss 178
Bit Fields cuveeenreerncenetensensiorosnsnsassssosaseses 179
3 P P s 180
Unsigned Integer Manipulation.......ccoovveeieieinnnnee. 182
Full-word Logical Operations........ocveveeeiiennriinenns 186
Variable-sized Array AllOCationc.coevvevvnenencecases 186
Version Il Heap Strategy «..coeveernriiorcesecroncecnss 187
Version IV Heap Strategy ccooeveveereececcnronecnanss 189
Segment and External Procedures in Unit Interfaces....... 191
Structured Parameters Using Pointers.......coovveenennnes 192
TEChNIQUE o vvvvrerneniereennsstosastsrecescartonnnns 193
Heap Managementoeeueeeresteoscensenssessernnes 195
Passing "Untyped” Parametersccevvvevnnininnnnnn 196
Variant Record BufferOverlaycooiiveeveiiicnnnnes 201
Data PrOMPLS . oveonererernenrierrenressssssesssssecsnsases 203
Character Prompts c..vverereeererierenersessntcsoenes 204

168

PROGRAMMING PRACTICES Chap. 6 169

6.9.2 Integer Promptsooovvvvvvvnnnnninnininniennnnnnnnss 204
6.9.3 File Prompt ...ovvvniiiiiiineiiiiieeeeeennnnnnnnnns, 205
6.9.4 Real Prompts .ooovvivuuniiiiniiiiiiiieeennennnnnnnns, 206
6.10 DeVice DIIVErS oot iiiieieriiieennnnnnnnnnns 210
6.10.1 Driver Interfaceooovviiiiiiiiiiinnnnnnnnnnnn... 211
6.10.2 Device ACCESS .vvvviiiiiiinriiiiiiiiiiiieeeeeeenenann, 212
6.11 Locating EXeCUtion Errors ovvverunenneieriennnnnneennnnnns 215
6.11.1 Using Compiled LiStingsovveeiivieenrennrennnns.. 215
6.11.2 Without Using Compiled Listings..................... 216
6.11.3 Further Investigations...............vvvvvenrnnnnn.. 217
6.12 Programming with Units............oooovvvivnnnnnnen.. .. 217
6.12.1 Unit Development .vuuueeeeruinerinnnerennnnnneennnn., 217
6.12.2 Using Pre-existingUnitsoovvviivinnninnnnnnnn.. 219
6.13 Using Native Codeoovevniiiiiiiiiiiiiiieennnnnnnnn.n, 221
6.13.1 Automated Native Code Generation 221
6.13.2 User-Supplied Native Code ...oovevvvnunnnnnnrenrnnnnn. 223
6.14 Passing Parameters Between Programs.................... 223
6.15 Coding Style and Optimizationsovveeeenneerennnnns.. 226
6.15.1 Expressionsand Array IndiceSovuveeennneevnnnnn. 226
6.15.2 Multiword Constants..........oovvvivinnnnnnnnnnnnns.. 227
6.15.3 Packed Field References..........oovvvuununnnnnnnnns.. 228
6.15.4 Reals and Long Integers..........covvvvunvennennnnnn.. 230
6.15.5 ShOrt FOrmsooiviiiiiiiiiiiiiiiiiiiiieereneennnn, 231
6.15.6 WITH Statementscoovviiiiiiieeerenrnnennnnnnnns 234
6.15.7 String Manipulationcoevviiiiiiinrennnnnnnnn... 236
6.15.8 CASE Statements.......cooevvnuinnnnineneneneennnnn. 238
6.15.9 GOTO Statementsuuuuruieiereeeerreeeernnnnnnns. 239
6.15.10 Procedure Calls.......covviiiiiiiiiiinnnnnnnnnnnn... 240
6.15.11 Parameters to Procedures..........oovvuuuuunnnnnnn.. .. 241

This chapter describes common UCSD Pascal programming practices. Note
that most of these practices are implementation dependent — they should
not be used in programs intended for use outside of the UCSD Pascal
system.

Section 6.0 describes packed variable allocation (knowledge of which
aids the design of compact data structures). Section 6.1 explains how to
access arbitrary words, bit fields and bits in memory. Section 6.2 explains
how to perform unsigned integer arithmetic and comparisons. Section 6.3
explains how to perform logical operations on word quantities (e.g.,
integers). Section 6.4 shows how the UCSD Pascal heap implementation
can be exploited to create dynamic arrays. Section 6.5 discusses a current

170 PROGRAMMING PRACTICES Chap. 6

limitation regarding segment procedures, and suggests a means of working
around that limitation.

Section 6.6 demonstrates a technique for allowing a function to take
on and to return a value of a structured type. Section 6.7 details a means
of passing a parameter to a subroutine without requiring that the
subroutine know the type of the parameter being passed. Section 6.8
explains how to perform I/O between byte streams and buffers, and
overlay one or more record structures onto the buffer. Section 6.9 describes
the implementation of data prompts in a manner suitable for an
interactive environment. Section 6.10 explainshow to write asynchronous
device drivers in UCSD Pascal. Section 6.11 describes methods for locating
execution errors in Pascal programs. Section 6.12 describes how, why and
when to use separate compilation units. Section 6.13 describes the benefits
and pitfalls of using native code generation. Section 6.14 describes a means
of transmitting data between CHAIN’ed programs. Finally, section 6.15
discusses programming styles for UCSD Pascal that lead to efficient,
optimized code.

6.0 Packed Variables and Storage Allocation

This section describes the implementation of packed variables in UCSD
Pascal and the algorithms used by the compiler to allocate storage for
packed and unpacked data items.

There are two reasons a high-level language programmer may wish
to consider these low level issues. The first reason is to construct data
structures consuming minimal amounts of space. The second reason is to
map data originating from a “foreign” source to an appropriate Pascal data
structure. For example,a programmer may wish to read inf ormation from
a CP/M disk into a UCSD Pascal record, or accept data following a
communications protocol from a remote port.

Normal programming procedure is to first describe the data structure
in Pascal in a form convenient for use within a program. The data
structure will then determine the binary representation. However, in
situations where the file or record structure are unrecognized by the
p-System the situation is reversed. The programmer is forced to construct a
Pascal record whose binary representation corresponds to the already
existing external data.

Record and array data are stored in a packed representation when
their type declaration is preceded by the reserved word PACKED. Packing
is not performed on files and sets. (Note that since sets are represented as
bit strings in UCSD Pascal, with one bit for each value in the set’s base
type, specifying a set as packed is unnecessary and thus ignored. A file is

Sec. 6.0 Packed Variables and Storage Allocation 171

stored as a “back-to-back” sequence of records, each corresponding to the
internal representation of the file’s base type. Thus, packing files is also
redundant.)

Individual data items (items that are not elements of arrays or
records) are not affected by packing; they occupy the same amount of
storage whether packed or not.

Variables that have been declared as PACKED may be used as
ordinary variables. The compiler automatically generates code to perform
unpacking (and repacking) of a variable as it is accessed. Thus, the
Standard Pascal procedures PACK and UNPACK are unnecessary and
unavailable in UCSD Pascal. The exception is that packed fields may not
be passed as VAR parameters. The programmer must assign the field to an
unpacked variable, pass that as the VAR parameter, then assign the
returned value back to the packed field.

A good candidate for packed format is data that occupies large
amounts of space, but which is accessed relatively infrequently. A
decision to use packed data should be influenced by two distinct tradeoffs:
speed versus space, and code space versus data space. The speed-versus-
space tradeoff is the space saved by compressing the data representation
versus the slower access time (caused by packing and unpacking data
during every variable reference). The code-versus-data tradeoff is the
increase in program size (caused by extra code for packing and unpacking
data at every variable reference) versus the space saved by compressing the
data representation. Note that the latter tradeoff is static; the extra code
space is the sum of the code generated for each of the variable references
contained in a program, and will not change from one execution of the
program to the next. The former tradeoff is dynamic; it depends on how
many variable references are executed by a program, and may change from
one executionof the program to another.

Sections 6.0.1 and 6.0.2 present examplesof packed arrays and records
respectively. Section 6.0.3 presents the packing rules and restrictions for
UCSD Pascal.

NOTE: The SIZEOF intrinsic is useful for determining the size of a
packed type. See section 4.37 for details.

6.0.1 Packed Arrays

UCSD Pascal performs packing of arrays if the array type definition is
preceded by the reserved word PACKED. Consider the following type
definitions:

172 PROGRAMMING PRACTICES Chap. 6

type
large = array[@..9] of char;
small = packed array[@..8] of char;

Character variables are normally allocated a full word, but can fit in
a single byte. A variable of type large is allocated ten words of data space
and each character element is allocated a full word for storage. A variable
of type small is allocated five words of data space. Two character
elements are packed into each word and each element is allocated a single
byte for storage.

Examplesof packed arrays:

type
one = packed array [0..7] of ©..3;

two = packed array [@..2] of @..31;
zip = packed array [@..2] of set of ©..8;

Variables of type one fit in one word. Each element occupies two
bits, since all values in the range 0.3 can be expressed in two bits. Hence
the eight elements fit into a single word. Variables of type two are also one
word long. Each element is five bits long, and three of them fit in a word
(with the high order bit unused). Variables of type zip require three
words, one for each element of the array. The UCSD Pascal packing
algorithm does not pack consecutive array elements into a single word
unless the elements are each no more than eight bits long and fit entirely
within a word (see section 6.0.3). Since the base type of zip is nine bits
long, each element is allocated a full word (9 bits for the set, 7 bits unused).

The following type definitions are not equivalent in UCSD Pascal:

type

a = packed array[0..5] of array[@..7] of char;
b = array[@..5] of packed array[@..7] of char;

Type definitions containing nested arrays are packed only if the last
occurrence of the reserved word ARRAY is preceded by PACKED. In the
example above, packing is performed on variables of type b, but not on
variables of type a. To ensure packing of types containing mixes of arrays
and records, precede all occurrences of ARRAY and RECORD with
PACKED.

NOTE: String constants are type-compatible only with packed
character arrays; they are incompatible with unpacked character arrays.

Sec. 8.0 Packed Variables and Storage Allocation 173

6.0.2 Packed Records

UCSD Pascal performs packing of records if the record type definition is
preceded by the reserved word PACKED. Consider the following type
definitions:
type large = record
a,b,c,d: char;
end;
small = packed record
o,b,c,d: char;
end;

Character variables are normally allocated a full word, but can fit in
a single byte. A variable of type Iarge is allocated four words of data
space and each character field is allocated a full word for storage. A
variable of type smal| is allocated two words of data space. Each field is
allocated a single byte for storage, so two character fields are packed into
each word.

Examplesof packed records:

type

one = packed record
f1,f2,f3,1f4: 0..3;

byte: ©..255;
end;
two = packed record
f1,f2,f3: 0..31;
end;
zip = packed record

f1,f2,f3: set of 9..8;
end;

Variables of type one fit in one word. Each f field is two bits long
and the four fields fit into a single byte. The byte field occupies the other
byte in the word. Variables of type two are one word long. Each field is
five bits long, and three of them fit in a word (with one bit unused).
Variables of type zip require three words. Packing is not performed
because the fields are larger than 8 bits; as with arrays, the UCSD Pascal
packing algorithm does not pack separate record fields into a single word
unless the fields are each no more than eight bits long and fit entirely
within the word (see section 6.0.3). So each field in zip is allocated a full
word (9 bits for the set, 7 bits unused).

The following type definitions are not equivalent in UCSD Pascal:

type
a = packed record
i: integer;
r: packed record

ri,r2: char;
end;

174 PROGRAMMING PRACTICES Chap. 6

end;
b = packed record
i: integer;
r: record
ri,r2: char;
end;
end;

Type definitions containing nested records are packed only if the
innermost occurrence of the reserved word RECORD is preceded by
PACKED. In the exampleabove, packing is performed on variables of type
o, and the fields r1 and r2 will occupy the same word. But packing will
not be performed on variables of type b. The fields r1 and r2 will occupy
separate words. To ensure packing of types containing mixesof records and
arrays, precede all occurrences of ARRAY and RECORD with PACKED.

NOTE: When a record contains a variant part, it is allocated enough
space to contain the largest variant (unless dynamically allocated with
NEW(<pointer>,<variant list>)).

6.0.3 Packing and Storage Allocation Rules

This section describes the rules for the allocation of storage and packing of
variables in UCSD Pascal. These include constraints imposed on variable
packing and optimizations performed within those constraints.

The following table displays packed and unpacked sizes for some
common types:

Type Unpacked Packed
integer word word
boolean word 1 bit
char word 8 bits
real 2 or 4 words 2 or 4 words
subrange a..b word log base 2 (b — a) bits
set ©..n : n<16 word n bits
long integer implementation dependent
enumerated,
n elements word log base 2 (n + 1) bits
NOTE: Subranges are packable only if their range values are

nonnegative. If either bound is negative, they are not packed.

With the exception of sets that occupy less than a word, structured
fields (i.e., nested records or arrays within records or multiword sets
within records) must begin on word boundaries, and are thus non-

Sec. 6.0 Packed Variables and Storage Allocation 175

packable.

The primary constraint limiting packing within records and arrays is
that fields in packed variables cannot be packed across word boundaries.
Therefore, records benefit from packing only if they contain a number of
scalar, subrange or set fields, each of which can be stored in 8 bits or less,
and these fields are stored consecutively. Consecutively declared fields
needing more than 8 bits apiece cannot be packed because of the
aforementioned restriction that variables within records cannot be packed
across word boundaries. Fields needing more than 8 bits are allocated one
or more words for storage, and are accessed as unpacked fields. Fields are
generally allocated storage space in the order in which they are declared in
a record. Thus, rearranging the fields in a record sometimes results in a
smaller record, as fields can be packed only if they are declared adjacently
to other packable fields (see the first example below).

NOTE: Isolated records and arrays occupy an integral number of
words (an even number of bytes). Records whose components do not add
up to an integral number of words are padded to the next word boundary.

NOTE: When a packable field is forced to occupy a full word because
of adjacent word-aligned fields, it is accessed as an unpacked field.

NOTE: Packed records may contain both packed and unpacked fields —
packing is determined by the sizes and declaration order of the record’s
fields.

Exampleof rearranging record fields:

type foon = packed record

b1: boolean; §1 word }
i1: integer; §1 word }
b2: boolean; §1 word }
ri: real; §2 words}
b3: boolean; $1 word §
end; ftotal = 6 words}

newfoon = packed record
b1,b2,b3: boolean; §1 word }

i1: integer; $§1 word }
ri: real; 2 words}
end; ftotal = 4 words}

In foon, i1 and r1 are constrained to word boundaries because they
occupy integral numbers of words (1 and 2 words respectively). The
boolean fields are non-packable because of their adjacence to word-aligned
fields. In newfoon, the adjacency of the boolean fields allows them to be
packed into a single word (note that there is space in the word for up to 13

176 PROGRAMMING PRACTICES Chap. 6

more (packed) boolean fields).

The word boundary restriction can often be defeated using variant
records. Suppose, for example, it is necessary to read a “foreign”
(ie.originating on a non-UCSD system) record consisting of three
consecutive characters occupying one byte each, followed immediately by a
single byte containing two hexadecimal digits. How may one declare a
UCSD Pascal record to correspond to this data item?

The first impulse might be to declare the record as follows:

type

recordi= packed record
three_chars: packed array[1..3] of char;

hex : packed record
hex1: ©0..15;
hex2: ©..15;
end;
end;

Unfortunately, this declaration is inadequate. Three_chars is the
first field in record1, which begins on a word boundary. Three_chars is
only 3 bytes long, however, so it does not end on a word boundary. The
sub-record hex must begin on the next word boundary, leaving a one-byte
“hole” between three_chars and hex. Hex itself occupies one byte, for a
cumulative total of 5 bytes, but since records must occupy an integral
number of words, the size of recordi will be 6 bytes. Recordl will
therefore not correspond to the “foreign” data structure.

A better alternative might be as follows:

record2= packed record
case integer of
1: (three_chars: packed array[1..3] of char);
2: (junk: packed record
injunki: integer;
injunk2: char;

hex1 : 0..15;
hex2 : 0..15;
end);

end;

Here, three_chars appears as the first variant of record2, and
occupies three bytes. In this instance, instead of following three_chars
with the declarations for the two hex digits, a second variant called junk is
constructed. The first two fields, injunk1 and injunk2, correspond to the
three bytes in the first variant. The sole purpose of these fields is to
overlay three_chars but the overlay is broken into two separate fields so
as not to violate the word boundary restriction. Injunk1 occupies one
word. Injunk2 occupies only one byte, though, so both hex1 and hex2 (each
requiring 4 bits) may be squeezed by the compiler into the byte

Sec. 6.0 Packed Variables and Storage Allocation 177

immediately following injunk2. There are no "holes” in record2; its total
size is 4 bytes. Record2 corresponds precisely to the ”f oreign” data item.

NOTE: Fields in a packed record are normally allocated in the order of
their appearance in the record declaration. The exception is a list of
variables, separated by commas, which share the same type declaration.
These variables are allocated in the reverse order of their appearance in the
list. This scheme is called reverse field allocation.

Exampleof reverse field allocation in records:

type nibble = @..15;
widgetWord = packed record
switch: ©0..1;
control: ©..7;
b1,b2,b3,b4: boolean:
device: nibble;
unused: nibble;
end;

WidgetWord is allocated in the following fashion: switch is in bit O (the
least significant bit), control occupies bits 1-3, b4 is in bit 4, b3 in bit 5, b2
in bit 6, b1 in bit 7, device occupies bits 8-11, and unused occupies bits
12-15.

NOTE: An optimization to speed data access is applied by the compiler
to packed records which contain up to 8 bits immediately before a word-
aligned field. If this quantity is not already word-aligned, it is ad justed to
occupy the entire byte preceding the word-aligned field which follows it,
and is accessed as an 8-bit field.

Exampleof byte-alignment optimization:

type twimp = packed record
bl: boolean; {starts on bit 0}
ch: char; {starts on bit 1, with no gap}
end;

newtwimp = packed record

b1: boolean; fstarts on bit 0}
ch: char;

§starts on bit 8, the byte preceding i}
i: integer;

{starts on next word boundary}
end; .

See section 6.1.2 (bit fields) for more information on variable packing.

178 PROGRAMMING PRACTICES Chap. 6
6.1 Accessing Bytes, Bits and Bit Fields

This section presents methods enabling UCSD Pascal programs to access
arbitrary words, bit fields and bits in memory. Very few programs
require direct access to memory; it is generally restricted to system
programs (see section 6.10 for an example).

NOTE: The methods outlined in this section are effective only for
access to the stack and heap space. These methods are not effective for
accessing the code pool or other memory areas.

NOTE: Memory access can also be accomplished with in-line machine
code (see section 3.10). However, the methods presented here are less error-
prone and do not require knowledge of the p-machine instruction set.

The following examples utilize the Standard Pascal feature known as
a record variant. It is used here to provide a controlled form of type
conversion, which in turn allows exploitation of the machine
representations of various Pascal types for gaining direct access to the
machine.

WARNING: The examples presented here are highly nonportable
because of different system memory configurations and/or machine
architectures (see your Architecture Guide for details).

6.1.1 Words

Exampleof arbitrary word access:

program c1;
type address = integer;
var dest: integer;

function peek(location: address): byte;
§ return value at specified address ¢
type trick = record case boolean of
true: (addr: address);
false: (intptr: tinteger);
end;
var access: trick;
begin
access.addr := location;
peek := access.intptrt;
end §{peeki;

begin

Sec. 6.1 Accessing Bytes, Bits and Bit Fields 179

write('Which word do you wish to examine? ');
readin(dest);
writein(’'The word at memory address °,
dest, ’ has the value ', peek(dest));
end §ci}.

In UCSD Pascal, pointers are maintained internally as one-word
unsigned integers. It is possible, therefore, to treat an arbitrary memory
location as a variable of any type by defining a pointer to that type and
assigning to the pointer the address of the arbitrary memory location.

As in the example above, this may be done using a variant record.
Variant records allow a variable to be accessed as any number of types. In
the exampleabove, trick is accessed first as an integer, then as a pointer. It
is first assigned an integer value ~the address of the memory location to be
“peeked”. Nextit is used as a pointer in order to load the desired word.

Note that the variant record may be used to perform operations on
data that are not normally allowed by the compiler. For example, it is
possible to perform arithmetic on a pointer by assigning the result of an
arithmetic expression to the integer variant.

One drawback of this method is the necessity of specifying large (ie.,
> 8000 hex)addresses as negative integer values. For example, the word at
address FFFF hex is returned by calling peek(-1). (A hexadecimal
calculator such as the TI Programmer or HP 16C is useful in these
situations.) A second drawback is the specification of address 8000 hex. It
cannot be represented as an integer constant because its decimal value is
-32768, which is treated by the compiler as a long integer constant. 8000
hex can be specified by the integer expression 32767 + 1 (remember: no
integer overflow checks in UCSD Pascal).

6.1.2 Bit Fields

Bit fields are fields which occupy less than a byte. These are accessed in a

similar fashion to bytes; by using packed records. The pointer variant is set

to point to a one-word packed record, which is declared so that the desired

bit fields are accessible. See section 6.0 for details on record packing.
Exampleof arbitrary bit field access:

program c2;

type oddress = integer;
byte = 0..255;
nibble = 0..15;

procedure doio(deviceNum: nibble; command: integer);
{ synchronous device driver }

const deviceAddr = -16833; §337077 octal}

180 PROGRAMMING PRACTICES Chap. 6

type deviceWord = packed record

switch: ©..1; §1 bit 3
control: 0..7; §3 bits}
device: nibbie; §4 bits}
unused: byte;

end;

trick = record case boolean of
true: (oddr: address);
false: (wordptr: tdeviceWord);
end;

var access: trick
begin
access.addr := deviceAddr;
with access.wordptrt do
begin
switch := 1;
device := deviceNum;
control := command;
repeat until switch = 0;
end;
end {doio};

begin
end §c2}.

In this example, the record variant overlays an integer and a pointer
to a packed record (both the integer and the pointer are word quantities).
The integer variant is used to assign a memory address into the pointer.
The pointer variant is used to access the fields of the record.

Bit field allocation in a packed record starts from the least significant
bit of a word. Defining bit O as the least significant bit of a word and bit
15 as the most significant, the record declared in the previous example is
allocated in the following fashion: switch is in bit O, control occupies bits
1-3, device occupies bits 4-7, and unused occupies bits 8-15.

6.1.3 Bits

Bits are accessed in a similar fashion to bit fields but sets are used instead of
packed records. The pointer variant is defined to point to a one-word set
and set operations are used to test and set individual bits in the word.

To understand the following example it is important to be aware of
the internal representation of a set. A set variable with a base type of 0.15
is represented as a word, with one bit corresponding to each value of the
range. Bit O of the set variable corresponds to the first value of the base
type. Successive base type values correspond to succesive bits of the set

Sec. 6.1 Accessing Bytes, Bits and Bit Fields 181

variable. When a particular value is present in the set, the bit
corresponding to the value is 1. When the base type value is not present in
the set, the corresponding bit is O.

Exampleof arbitrary bit access:

unit bitter;
interface
type address = integer;
bits =0..15;

procedure SetBit (addr: address; bit: bits);
procedure ClearBit (addr: aoddress; bit: bits);
function BitlsSet (addr: address; bit: bits): boolean;
procedure FlipBit (addr: oddress; bit: bits);

implementation

type bitstring = set of bits;
trick = record case boolean of
true: (addr: address);
faise: (bitsPtr: tbitstring);
end;

var access: trick;

procedure SetBit {(addr: address; bit: bits)};
begin

access.addr := addr;

access.bitsPtrt := access.bitsPtrt + [bit];
end §{SetBit};

procedure ClearBit §{(oddr: oddress; bit: bits)};

begin
access.addr := addr;
access.bitsPtrt := access.bitsPtrt — [bit];

end §{ClearBit};

function BitIsSet {(addr: address; bit: bits): boolean};
begin

access.addr := addr;

bitset := bit in access.bitsPtrt;
end §{BitlsSet};

procedure FlipBit {(addr: address; bit: bits)};
begin
access.addr := addr;
if BitlsSet(addr, bit)
then occess.bitsPtrt
else cccess.bitsPtrt
end §FlipBit};

access.bitsPtrt — [bit]
access.bitsPtrt + [bit];

end §{bitter}.

In this example, the record variant overlays an integer and a pointer
to a set. The integer variant is used in each subroutine to assign the

182 PROGRAMMING PRACTICES Chap. 6

parameter addr to the pointer value. The pointer variant is used to access
the set.

The parameter bit is used to designate which bit (0..15) is to be
modified or examined. If bit is added to the set (set union) the bit
corresponding to it (one of the bits 0-15 in the set) will be made 1. If bit is
removed from the set (set difference) the bit corresponding to it will be
made 0. The IN operation may be used to determine if the specific bit is
currently in the set.

6.2 Unsigned Integer Manipulation

It is occasionally necessary to treat the contents of an integer variable as an
unsigned (ie., always positive) value. Integer operators expect signed
values as arguments; thus, they must be used carefully when dealing with
unsigned integers.

Integer variables are defined to contain values in the range
-32768..32767, while unsigned integers are defined to contain values in the
range 0..65535. Both representations are equivalent in the range 0..32767
but unsigned values in the range 32768.65535 are treated by integer
operations as signed values in the corresponding range -32768..-1.

Integer arithmetic operators are +, -, * DIV and MOD. Only +, - and *
may be used with unsigned integers (as a consequence of their lack of
overflow checking). DIV and MOD do not work correctly with large
unsigned integers.

Integer comparison operators are =, <>, <, <=, > and >=. Only = and <>
should be used with unsigned integers. The remaining operators do not
work correctly with large unsigned integers. Unsigned comparison
operators — as well as unsigned arithmetic operators — may be programmed
by the user, as the following unit demonstrates.

Exampleof unsigned integer operations:

unit unsigned;
interface

function utess(a,b: integer): boolean;
function uGtr(a,b: integer): boolean;
function uLessOrEq(a,b: integer): boolean;
function uGtrOrEq(a,b: integer): boolean;
function uEq(a,b: integer): boolean;
function uNotEq(a,b: integer): boolean;

function uDiv(into, by: integer): integer;
function uMod(into, by: integer): integer;
function uPlus(a,b: integer): integer;
function uMinus(a,b: integer): integer;

Sec. 6.2 Unsigned Integer Manipulation 183

function uMult(a,b: integer): integer;

function uStr2Int(s: string): integer;
procedure ulnt2Str(int: integer; var s: string);
function uInt2Real(int: integer): real;

implementation

function ulLess {(a,b: integer): boolean};
begin
if (a > @) and (b < @) then
uless := true
else if (a < ©) and (b >= @) then
uLess := false
else
uless := a < b;
end fulLess};

function uGtr §{(a,b: integer): boolean};
begin
if (a >=0) and (b < @) then
uGtr := false
eise if (a < @) and (b >= @) then
uGtr := true
else
uGtr := a > b;
end §uGtr};

function ulLessOrEq §(a,b: integer): boolean};
begin

uLessOrEq := not uGtr(a,b);
end {uLessOrEq};

function uGtrOrEq §(a,b: integer): boolean};
begin

uGtrOrEq := not ulLess(a,b);
end §uGtrOrEq};

function uEq §{(a,b: integer): booleani;
begin

uEq := a = b;
end §uEq};

function uNotEq §(a,b: integer): boolean};
begin

uNotEq := a <> b;
end §uNotEq};

function uDiv {(into, by: integer): integer};
var i, Origlnto: integer;
SeenPos : boolean;
begin
if uGtr(by, into)
then uDiv := 0
else if into > @
then uDiv := into DIV by

184

PROGRAMMING PRACTICES

else begin
i = @; Origlnto := into; SeenPos := false;
repeat
into := into — by:
=10+ 1,
if not SeenPos
then SeenPos := into > 0;
until ((into = @) or ((into < @) and (SeenPos)));
if into =@
then uDiv := |
else uDiv := i - 1;
end;
end §uDiv};

function uMod §(into, by: integer): integer};
begin

uMod := into — (uDiv(into,by) * by):
end §fuModi};

function uPlus §(a,b: integer): integert;
begin

uPlus := a + b;
end §uPlusi;

function uMinus §(a,b: integer): integeri;
begin

uMinus := a — b;
end §uMinust;

function uMult §(a,b: integer): integer};
begin

uMult := a = b;
end fuMult};

function uStr2Int §(s: string): integer};
var int, i: integer;
begin
int := 0;
for i:= 1 to length(s) do begin
int := (int » 10) + (ord(s[i]) — ord(’@'));
end;
uStr2Int := int;
end §uStr2Inti;

procedure ulnt2Str §(int: integer; var s: string)t;

var ones, tens : integer;
str1, str2 : string;
begin
if int <©
then begin

int := int + 32767 + 1;

tens := int DIV 10 + 3276;

ones := int MOD 10 + 8;
str((tens + ones DIV 10), str1);
str((ones MOD 10), str2);
s := concat(strl, str2);

Chap. 6

Sec. 6.2 Unsigned Integer Manipulation 185

end
else begin
str(int, str1);
s = str1;
end;
end fulnt2Str};

function ulnt2Rea! §(int: integer): real};
begin
if int<o
then ulnt2Real := 65536.0 + int
else ulnt2Real := int;
end fulnt2Real};

end funsigned}.

This unit provides all comparison and arithmetic operators necessary
for working with unsigned integers, as well as routines to convert
unsigned integers to and from strings, and a function to convert an
unsigned integer to a real.

NOTE: In Versions IlII and IV of the p-System, boolean comparisons
generate unsigned comparison operators. Thus, the comparison functions
can be programmed much more simply, as this exampledemonstrates:

function ulLess §(a,b: integer): boolean};
begin

uLess := ord(a) < ord(b);
end fuless};

Functions are provided even for operations that are identical to those
for signed integers, in order to present a unified interface to the user. The
code itself is relatively straightforward; uLess and uGtr are determined on
the basis of sign, with negative numbers being larger than positive
numbers. The other comparison operators are either identical to those for
signed integers or built on the basis of uLess and uGtr.

Since signed integer divide does not work properly on unsigned
integers, function uDiv simulates divide by repeated subtraction. Care
must be taken to terminate the subtraction loop when into has fallen
below zero; since negative values represent unsigned positive numbers, the
variable SeenPos is used to determine when the loop has gone past all the
signed positive values and has cycled back to the unsigned values. uMod is
implemented using uDiv; this simple formula is adequate when only
positive values are considered.

Input of unsigned integers can be accomplished using READ or
READLN into an ordinary integer variable. Output can be performed by
converting an unsigned integer to a string using procedure ulnt2Str, then
writing the value in the usual way. Procedure ulnt2Str breaks the

186 PROGRAMMING PRACTICES Chap. 6

unsigned integer into two separate signed integer values, then converts
these values to strings and concatenates them.

The function uStr2Int can be used to convert a string value to an
unsigned integer variable. The function ulnt2Real is useful when mixed
unsigned integer and real calculations must be performed.

NOTE: Although for organizational purposes it is valuable to maintain
the unsigned operators as interface procedures, calls to routines in units are
very expensive relative to the operations performed within them. It is
recommended that, in practice, simpler operations be coded inline.

WARNING: Consistent with the lack of integer overflow checks in
UCSD Pascal, this unit does not perform overflow checks on unsigned
integers.

Unsigned integer values are returned by the MEMAVAIL, VARNEW
and TIME intrinsics. Section 6.1 describes how unsigned integers may be
used as pointers.

6.3 Full-word Logical Operations

UCSD Pascal allows logical operations on word quantities (e.g., integers,
characters and pointers). The standard functions ORD, ODD and CHR are
defined as type transfer functions in UCSD Pascal. They do not modify
the ordinal value of their arguments (see section 2.5). The boolean
operators AND, OR and NOT are full-word operators. They do not mask
off the high order bits of their result.

Exampleof full-word logical operations:

program logical;
var I: integer;
begin
I := 556;
I := ord(odd(I) and odd (255));
§ The high byte of I has been masked off }
§ 1 now contains the integer value 44
end §{logicalt.

6.4 Variable-sized Array Allocation

A “dynamic” or “conformant” array is an array whose bounds can be
determined at runtime rather than at compilation time, as is ordinarily the
case. The advantage of dynamic arrays is that the programmer may utilize

Sec. 6.4 Variable—sized Array Allocation 187

only the memory necessary for a buffer, rather than declaring an array of
the maximum possible size that may be required.

Although UCSD Pascal does not explicitly include the capability of
declaring a dynamic array, the same effect may be produced using the
system’s dynamic variable allocation mechanisms.

The programmer first determines the increment by which the array
may grow. In the examplesthat follow, this increment is a 512 byte block.
The dynamic array will be an integral number of such blocks. A type
declaration for an array of the desired type is included, of the precise size
to occupy one such increment. Our examplescontain a type declaration for
an array of integers to occupy the block.

A variable-sized array is created in the heap by determining the
dynamic bounds, sizing available memory, and coercing the system heap
intrinsics to (a) allocate a memory space of the desired number of
increments in the form of a dynamic array variable, given the size
constraints, and (b) generate a pointer to that variable. The array is
accessed as any dynamic variable (by de-referencing a pointer). Memory
may be accessed beyond the declared size of the dynamic array variable
(which was declared as containing only one increment) by indexing into
the array with compile-time range checks suppressed (section 5.0.7). A
program must maintain its own range checks by keeping track of the size
of the allocated memory space and not indexing beyond its upper bound.

NOTE: The FILLCHAR, MOVELEFT and MOVERIGHT intrinsics are
useful in manipulating variable-sized arrays. However, the byte count
arguments to these intrinsics must be in the range 0.32767. Calls
containing negative byte counts perform no action.

WARNING: Array indices are normally treated as signed integers.
Indexing array elements greater than 32767 yields unexpected and often
unfortunate results.

Buffer allocation strategies differ according to p-System version,
since dynamic memory allocation is handled diff erently in Versions II and
IV. Strategies are presented here for dynamic arrays using either the
Version II heap intrinsics or the Version IV heap intrinsics.

6.4.1 Version II Heap Strategy
The Version II heap centers around the heap pointer. Dynamic variables

are created by calls to the NEW intrinsic, which assigns the current value
of the heap pointer to the associated pointer variable, and then moves the

188 PROGRAMMING PRACTICES Chap. 6

heap pointer up by the number of words allocated for the variable. The
heap grows from lower addresses to higher addresses. As a result,
consecutively NEWed dynamic variables are allocated contiguously in
memory.

Programs may take advantage of this implementation feature to
create variable-length arrays. A variable-length array is constructed by
creating a series of fixed-size variables at runtime, and then treating them
as a single, large array.

The UCSD Version 1I filer and editor use this method to create large
arrays for manipulating file information. Their arrays are allocated in
integral numbers of blocks. In order to create as large an array as possible,
these programs use the MEMAVAIL intrinsic to determine the maximum
buffer size allowed by the host system’s configuration. MEMAVAIL
returns the number of unused words in system memory; construction of a
variable-length array consists of repeatedly NEWing one-block arrays
until MEMAVAIL returns a value less than or equal to the program’s
memory threshold.

A memory threshold is defined as the minimum amount of memory
required to executea program (independent of the variable-length buffer).
This includes space for variables and code segments used by the program in
the course of its execution. The memory threshold for a given program is
determined by making a rough estimate of the maximum space consumed
by the program, and then tuning the estimate (usually through trial and
error) to a minimum. A conservative minimum threshold for any
program is 500 words (for system overhead) plus the program’s
requirements. If the program’s memory threshold is estimated incorrectly
and is smaller than necessary, the program will abort with a stack
overflow error.

WARNING: On multitasking Version III implementations, this
method of buffer allocation must be treated as a critical section (section
3.0) when tasks contend for heap space. The Version I'V method (next
section) is more secure in a multitasking environment.

Example of the Version II and Version III variable-sized buffer
strategy:

program makeAbuffer;
const
threshold = 1000; §or whatever guess—timate}
maxbl ks = 60;
type
block = array [@..255] of integer;
bufptr = tblock;
var
buffer, bufblock: bufptr;

Sec. 6.4 Variable—sized Array Allocation 189

bufbliks, index: integer;

begin
bufblks := 1;
new(buffer);
repeat

new(bufblock);
bufblks := bufblks + 1;
until (bufblks >= maxblks) or
((memavail > @) and (memavail <= thresholid));

§ Note that bufblks » 256 < 32767 }
§ Array bounds = @..(bufblks » 256 — 1) }

fillchar(buffert,bufblks » 512,0);

{$R-}
iédex = 756;
buffert[index] := 4; §or whatever}

end §makeAbuffer}.

Type block is declared as an array[0..255] of integer, which occupies
exactly 512 bytes. The variables buffer and bufblock are pointers to type
block. A NEW is performed on buffer, allocating storage for one block, or
256 array elements. The address of this pointer is saved in buffer. NEWs
are repeatedly performed on bufblock (buffer cannot be used because the
pointer to the original block allocated, which is the base of the array, must
be preserved). New blocks are allocated until moxblocks, or the limit of
available memory, is reached.

At this point, the integer variable bufblocks, which was incremented
whenever a new block was allocated, reflects the total number of blocks
allocated. Since each block contains 256 elements, there are a total of
bufblocks s 256 array elements, beginning at the location pointed to by
bufblock and continuing in consecutive memory locations.

The FILLCHAR intrinsic illustrates how one may quickly and easily
initialize the entire array to zero. No range checking is done with
FILL.CHAR, but since the array will be indexed with values greater than
the declared upper bound of 255, range checking must be turned off using
the compiler R- option.

6.4.2 Version IV Heap Strategy

When using the Version IV heap, successive NEWs are not guaranteed to
allocate dynamic variables adjacently in memory. The VARNEW
function is available for variable-sized buffer allocation. It accepts a
buffer size request (in words) and allocates a buffer of that size. See
section 3.5 for details.

190 PROGRAMMING PRACTICES Chap. 6

The size of the largest possible memory buffer may be determined
using the VARAVAIL function. It accepts a list of segments that might be
memory-resident during the life of the variable-sized buffer. VARAVAIL
returns the size of the largest memory space available, subject to the
residency of all of the enumerated segments. The VARNEW intrinsic may
be called to allocate a buffer of that size.

NOTE: Although the VARNEW intrinsic is protected from task
contention, combination of the VARAVAIL and VARNEW functions may
yield unexpected results in a multitasking environment. A "window in
time” exists between a call to VARAVAIL and a call to VARNEW during
which the memory reported by VARAVAIL may be allocated to another
task. In this case, the call to VARNEW fails (VARNEW returns 0) and
another call to VARAVAIL is required before the VARNEW may be
retried.

Exampleof the IV.0 variable-sized buffer strategy:

program makeAbuffer;

const
threshold = 100@; {or whatever}
maxbl ks = 60;

type
block = array [@..255] of integer;
bufptr = tblock;

var
buffer: bufptr;
trash, bufsize, index: integer;
begin
bufsize := varavail(’makeAbuffer,fileops,pascalio’) —

threshold;
if (bufsize < @) or (bufsize > moxblks*256) then
bufsize := maxbiks*256
else
bufsize := bufsize — bufsize mod 256;
trash := varnew(buffer, bufsize);

§ array bounds = @..(bufsize — 1) }
fillchar(buffert,bufsize*2,0);
§$R-1

iédex 1= 467,
buffert[index] := 4;

end §makeAbuffer}.

Under Version 1V, the available memory space is determined using
the VARAVAIL intrinsic. The segments specified should include the
program itself, any additional segments (including unit segments) it will
be using during the life of the to-be-allocated buffer, and any resident
operating system segments. VARAVAIL returns the available memory

Sec. 6.4 Variable—sized Array Allocation 191

space in words. The program then scales this value down to the maximum
buffer size desired, and to an integral number of blocks.

VARNEW is employed to allocate the entire dynamic array at once.
The array is pointed to by the variable buffer. (In a multitasking
environment, the variable trash should be checked to assure a non-zero
value, as per the NOTE above.) As in the previous example, FILLCHAR is
used to initialize the array (but this time bufsize, a word measure, must be
doubled to reflect a byte count). The array is indexed as before, with range
checking turned off.

VARDISPOSE may be used to deallocate the dynamic array.

6.5 Segment and External Procedures in Unit Interfaces

An implementation restriction in UCSD Pascal prohibits the inclusion of
segment procedure headings in unit interface sections. This limits the
routines accessible directly by the host to non-segmented procedures. Since
it is quite natural to segment a unit according to routines as called by the
host, a work-around must be employed; this is to simply establish
“dummy” non-segmented procedures which do nothing but call the
segment procedures that do all the work. The segment procedures
themselves reside in the implementation section and are inaccessible to the
host, but the "dummy” procedures may be in the interface section.

unit bigprocs;

interface

procedure calproci(myX: integer; var myY: integer);
function calproc2(myA: real): boolean;

implementation
segment procedure proci(x: integer; var y: integer);
begin

end;

segment function proc2(a: real): boolean;
begin

proc2 :=
end;

procedure calproct;
begin

proci(myX, myY);
end;

function calproc2;
begin

calproc2 := proc2(myA);
end;

192 PROGRAMMING PRACTICES Chap. 6

end.

Note that the parameters of the dummy and the segment procedures
should correspond exactlyin number and type.

External procedure headings may also not appear in unit interface
sections. Thus, the following construction is illegal:

unit BadOne;
interface
procedure AssemCode(i: integer); external;

It is possible, however, to place the procedure heading in the interface
section without flagging it as external. The procedure can then be flagged
as external in the implementation section. The following example
illustrates how this is accomplished:

unit GoodOne;
interface

procedure AssemCode(i: integer);
implementation

procedure AssemCode; external;
end.

6.6 Structured Parameters Using Pointers

One of the areas in which Pascal shines is in its provision of user-defined
data types. With this feature a programmer may define the data structure
best suited to the application at hand, and write functions and procedures
to operate on variables of the defined type. The UCSD Pascal Unit
extension makes this a particularly handy feature, since the newly defined
types and the subroutines which operate upon them can be written once
and used by many application programs. Using Units, the Pascal language
may be effectively extended;moreover the implementation of the extension
is hidden from the programmer, whose only access to the unit is via the
interface section.

Unfortunately, this scheme has a glaring Achilles’ heel: A Pascal
function may only return a scalar or pointer type. A Pascal function may
not return a structured type. Consider the case of a unit written to handle
dates. The basic data structure of such a unit might resemble the
following:

type
DoteForm = record
Month: 1..12;
Day : 1..31;

Year : 1700..2500;
end;

Sec. 6.6 Structured Parameters Using Pointers 193

A convenient subroutine to have available might be FutureDate,
which would accept a date and an integer as parameters, and return the
date that is a number of days from a given date. The most straightforward
way to write FutureDate would be as a function. To use FutureDate the
programmer would simply write something like

NewDate := FutureDate(Todoy, 120);

Where NewDate and Today are of type DateForm. However, since Pascal does
not permit functions to return structured types, FutureDate may not be
written in this manner.

One may write FutureDate as a procedure, invoking it as

FutureDate(NewDate, Today, 120);

where the formal parameter corresponding to NewDate is a VAR parameter
used to return the appropriate value. The problem here is that it is often
desirable to use the value returned by FutureDate as an intermediate value;
it is cumbersome to force it to be assigned to a variable.

For example, if our unit includes a routine called Pri ntDate, which
formats a DateForm value for output, and the programmer desires to print
the date 120 days from today, it is inconvenient to have to write

FutureDate(NewDate, Today, 120);
PrintDate(NewDate);

It is far more convenient to be able to simply write
PrintDate(FutureDate(Today, 120));

saving both a statement and a variable. Of course, this again presumes the
ability to return a structured type from a function.

6.6.1 Technique

An oft-used solution to this dilemma is to declare DateForm as previously
described, but to also declare

type DateType = tDateForm;

All date variables would be declared as being of type DateType and
would in reality be pointers. The unit would manage storage allocation;
the application would not have to be aware of this representation. A
primary advantage of this approach is that a function can return a pointer.
Thus, it is permissible to write

PrintDate(FutureDate(Today, 120));

194 PROGRAMMING PRACTICES Chap. 6

since FutureDate returns a pointer to a date variable, and PrintDate expects
a pointer as argument.

The date unit would contain a central procedure — called NewDate, let
us say — whose job would be to allocate new DateForm variables, assign
values to the date fields, and pass the pointers to these DateForm variables
to all functions in the unit which must return a value of type DateType.
These functions would calculate the values to return; they would call
NewDate, supplying it with the values and receiving from it a pointer to
a variable of type DateForm to which those values have been assigned.

type
Mtype = 1..12;
Dtype = 1..31;
Ytype = 1700..2500;
function NewDate(M: Mtype; D: Dtype; Y: Ytype): DateType;
var datepointer: DateType;
begin
new(datepointer);
datepointert.Month :=
datepointert.Day =
datepointert.Year :=
NewDate := datepointe
end §{NewDatel;

function FutureDate(
now: DateType; days: integer): DateType;
var
FutureMonth: 1..12;
FutureDay : 1..31;
FutureYear : 1700..2500;
begin
FutureMonth := o
FutureDay =L
FutureYear := ...,
FutureDate :=
NewDate(FutureMonth, FutureDay, FutureYear);

end §FutureDate};

This approach is workable, and provides the programmer a neat
interface to the data if sufficient routines are provided to allow the
programmer to “forget” that pointers are being utilized. For example the
very simple function

function GimmeMonth(dt: DateType): Month;
begin

GimmeMonth := dtt.Month;
end {GimmeMonth};

provides a painless way of extracting the Month component of a DateType
without forcing the application programmer to be aware of the pointer
implementation.

Sec. 6.6 Structured Parameters Using Pointers) 195
6.6.2 Heap Management

The problem here is that programs making heavy use of the Date unit as
discussed so far will die quite quickly of stack/heap overflow. NewDate
may churn out quite a number of DateForms but none of these are ever
disposed of.

When the Date unit functions return pointers for assignment to
DateType variables, the pointers must survive. But many times these
functions return pointers to DateForms which are only used to contain
intermediate results. The function call to FutureDate

PrintDate(FutureDote(Today, 120));

allocates space on the heap for a variable of type DateForm. The variable is
used by PrintDate, but is then ignored, and is in fact inaccessible. Yet it
continues to occupy heap space.

One solution to this problem was proposed by M.B. Feldman (Byte,
Nov. ’81). He suggests adding a boolean field called 1sTemporary to (what
in our example is) DateForm. The function NewDate, from where all
allocated variables emanate, always sets IsTemporary to TRUE. A new
procedure is added to the DateAssign unit. This procedure is used
whenever it is desired to assign a value of type DateType to a bona-fide
variable. First, DateAssign performs the assignment: One of the
parameters to DateAssign is a VAR parameter of type DateType, the other
is a value parameter of type DateType. The VAR parameter is assigned the
value of the value parameter. DateAssign first DISPOSEs of the previous
value in the VAR parameter, since it will be getting a new value. It uses
NewDate t0 gain heap space for the new value of the var parameter. The
value parameter is assigned to the var parameter, and the assignment part
of DateAssign’s job is done — but then DateAssign sets the new dynamic
variable’s 1sTemporary field to FALSE.

In this manner, a function call such as

PrintDote(FutureDate(Today, 120));

leaves the value returned by FutureDate flagged as IsTemporary = TRUE,
since it is being used by the PrintDate routine, not being DateAssign ’ed to
a DateType variable. But the result of the procedure call

DateAssign(Tomorrow, FutureDate(Today, 120));

is to cause the value returned by FutureDate (and assigned to the DateType
variable Tomorrow) to be flagged as IsTemporary = FALSE.

How do the variables flagged as temporary actually get deleted?
Feldman suggests that each routine that accepts a value of type DateType
as parameter check IsTemporary, and DISPOSE of that variable if the
value is TRUE. For example, FutureDate checks the IsTemporary field of

196 PROGRAMMING PRACTICES Chap. 6

its first parameter, and PrintDate checks the IsTemporary field of its single
parameter. They DISPOSE of their parameters if 1sTemporary is TRUE.

In the first of the cases above, the actual parameter to FutureDate
comes from a DateType variable, so no DISPOSal takes place. The actual
parameter Todoy has had its value assigned to it via DateAssign, so its
IsTemporary field is FALSE. The actual parameter to PrintDate, however,
is returned by the function FutureDate. It has never been assigned to a
variable, so IsTemporary remains TRUE. It will be DISPOSEd of by
PrintDate, as it should be since it serves no purpose after PrintDate
returns.

Unfortunately, this approach also presents problems. Look again at
the example above, where PrintDote is passed the returned value of
FutureDate. Suppose that PrintDote itself found reason to call on another
Date unit routine, Routine X, passing to it FutureDate’s returned value as a
parameter. Routine X performs its function. Then it faithfully cleans up
the garbage by examining the IsTemporary field of its parameter -
FutureDate’s returned value as passed on to it by PrintDate. It finds the
value to be TRUE and DISPOSEs of the value!

When Routine X returns control to PrintDate, PrintDate finds itself
without a parameter. Of course, PrintDate may still need that value, but
there was no way for Routine X to know that!

The (inelegant) solution is for PrintDate to note the current value of
IsTemporary, then set it to FALSE prior to calling Routine X. Routine X
leaves the parameter as is. After Routine X returns, PrintDate has to
restore the previous value of IsTemporary. Obviously, this method is
fraught with danger.

Yet another problem with passing pointers rather than data as
parameters is that every parameter becomes a VAR parameter. The pointer
itself is local to the procedure, but the data being pointed to is the same
data the calling routine uses — and any changes to Months, Days Or Years
will be global.

Nevertheless, if sufficient caution is exercised, a scheme such as the
one outlined can yield excellentresults.

6.7 Passing "Untyped” Parameters

Although Pascal’s rigorous enforcement of the typing rules makes for more
reliable programs and helps to prevent errors, there are times when it is
necessary to defeat those rules. Earlier sections discussed how one may use
the ORD and CHR functions to perform type conversions; overlaying
techinques have been described, and will be further described in section 6.8.

Sec. 6.7 Passing "Untyped" Parameters o 197

The focus of this section -is on the restriction that the type of the
actual parameter passed to a routine must match the type of the routine’s

formal parameter. Often, particularly in systems programming
applications, it is desirable to write a routine which may be passed a
parameter of any type.

Consider a Screen Generator utility, which typically consists of two
sections. The first section allows the programmer to define a screen layout,
complete with input item positions and characteristics. These layouts are
then stored in a file. The second utility section would be linked to an
application wherein it would recall the screen, prompt the user to enter the
data, and validate the data as it is entered.

How would one write the routine in the second section which would
be called by the application to return a value from the screen? Assume the
application programmer wants a value for the data item ITEM1. The
application knows the type of 1TEM1. The utility routine knows, from the
screen file, the characteristics of ITEM1. But this information is available
only at runtime. When the routine is being written, how should the
formal parameter corresponding to ITEM1 be declared?

The application programmer would like to be able to write
GetItem(ITEM1). (GetItem is the name of the screen generator utility
routine which returns values entered onto the screen.) But each time
Getltem is called, it is expected to return a value of a different type. The
INTEGER type may be appropriate for 1TEM1, but the CHAR type may be
appropriate for 1TEM2. The application programmer expects to be able to
Wwrite GetItem(ITEM2), however. Obviously, GetScreen’s formal parameter
cannot be declared as both an INTEGER and a CHAR.

A solution to this problem is to have the application program pass to
GetItem the addresses of ITEMt1 or 1TEM2, rather than the ITEMs themselves.
Now, a Pascal VAR parameter can be used to pass an address rather than a
value, but type checking is enforced for VAR parameters.

Instead, the application discovers the address of the parameter in
integer form, and passes this integer to GetItem. In this way GetItem
always receives an integer, regardless of the original type of the ITEM.

For this solution to be practical, the application must be able to easily
discover the address of any variable, regardless of type, and treat it as an
integer. Also, GetItem must have a convenient means of accessing an
“untyped” variable given its address.

To solve the first problem the application might be made to allocate
each ITEM dynamically, and use a variant record to overlay the pointer
with an integer. This would work, but would impose too great a burden
on the application programmer. It is preferable to allow the application to
declare the ITEMs as ordinary variables.

198 PROGRAMMING PRACTICES Chap. 6

Instead, the application will be supplied with a function called ADDR
which accepts a variable of any type as parameter, and returns the address
of that variable. Such a function is standard in many languages but is not
difficult to implement under the p-System. It is impossible to write such a
function in Pascal, since Pascal requires that the parameter to a function be
of one specific type.

The p-System does permit assembler language routines to accept VAR
parameters without types. One can therefore write the ADDR function in
assembler language, permitting it to accept an untyped parameter. The
parameter is made a VAR parameter so its address—which is what we
want—is passed to the assembler language function. It is then a simple
matter to return that address as the function value.

Here is what the ADDR function looks like, coded in Z80 assembler
language. The code would look essentially the same for almost any other
processor, since the instructions do nothing more than move words onto
and off of the stack.

.func addr,1

;This function returns the address
;of its single VAR paraometer.

’

pop HL ;pop return address and save it

pop BC ;pop address of the parameter and save it
pop DE ;pop "junk word"

push BC ;push address of parameter on top of stack
jmp (HL) ;branch back to calling routine

.end

The calling convention for assembler language functions under the
p-System is as follows. First, the interpreter pushes one word of "junk”
onto the system stack. Then the addresses of the VAR parameters are
pushed onto the stack (there is only one such parameter in this example)
and finally, the return address is pushed onto the stack.

After the function returns, the interpreter expectsto find these values
removed from the stack. It expectsto find the function’s returned value on
top of the stack.

The address of the VAR parameter must be extracted, so the return
address is popped and saved (to enable a return from the routine), the
address of the parameter is popped — this is the value which must be
returned — and the ”junk” is popped, thereby clearing the function’s stack.

The address of the parameter is now placed on the top of the stack
and the routine returns.

The ADDR function may be assembled and placed in the system library.
The application must declare it as an external routine:

function ADDR (VAR anyname §: Untyped}): integer; EXTERNAL;

Sec. 6.7 Passing "Untyped" Parameters 199

Any valid identifier may be used as the parameter name in the
function declaration; this identifier need never be referenced. Note that no
type is specified for an untyped parameter to an assembler language
routine. ,

The application uses the ADDR function to discover the addresses of the
ITEMs in which GetItem returns screen entries, as illustrated below.

program application;
USES ScreenUtil;

var
ITEM1: packed array[1..10] of char; f§or whatever}

function ADDR (VAR anyname §: Untypeq}): integer; EXTERNAL;
begin

GetItem(ADDR(ITEM1));
ené.iapplication}.

It has been shown how the application program may pass an untyped
parameter to the GetItem routine. But as mentioned earlier, a convenient
means for GetItem to access the ITEM once it has the address is required.

First, how does GetItem know the the type of an ITEM? Typically,
these values are stored in the file associated with the screen. Or possibly
the function GetItem explicitly passes the type as a second parameter. The
application would declare

type

MyTypes = (MPackedArray, MInteger, MReal);

(or such a declaration would be imported from ScreenUtil) and would
invoke

GetItem(ADDR(ITEM1), MPackedArray);

for example.

GetItem would declare a type corresponding to each type assumable
by an ITEM. GetItem would also declare a pointer to each such type in a
variant record, so that the pointer may be overlaid with an integer. When
invoked, GetItem would select the appropriate type (as determined by the
screen file or second parameter) and assign the integer-form address to the
pointer to that type. The pointer would then actually point to the variable
in the application (1TEM) whose address had been passed to GetItem.

The data entered from the screen could then be accepted and
validated, and merely assigned to the pointed-to location. The item would
instantly be “transported” to ITEM.

200 PROGRAMMING PRACTICES Chap. 6

Below is an outline of what GetItem might look like.

Procedure GetItem(ItemAddr: integer;
ItemType: MyTypes
fan enumeration of possible types});
type
APackedArray: packed array[1..10] of char;
MPkdPntr = record
§Would be used for screen items of APackedArray typet
case integer of
1: (IntegerGuise: integer);
2: (PointerGuise: tAPackedArray);
end;
MIntPntr = record
§Would be used for screen items of integer type}
case integer of
1: (IntegerGuise): integer);
2: (PointerGuise): tinteger
end;
§And so on. One such record for each possible type
assumable by a screen entry item.}
var
PkdITEM: MPkdPntr;
IntITEM: MIntPntr;

begin

if ItemType = MPockedArray
then begin
PkdITEM.IntegerGuise := ItemType;
read(PkdITEM.PointerGuiset);
§This would place the entry directly into the ITEM}
§Now validate the entry};

end
else if ItemType = MInteger
then begin

IntITEM.IntegerGuise := ItemType;
read(IntITEM.PointerGuiset);
§This would place the entry directly into the ITEM}
§Now validate the entryi;
end
else
f§and so on, for each of the possible
types for screen entries}

end §GetItem};

The only messiness involved is the overlaying of pointers to each
valid screen type with integers. That happens only in the ScreenUtil,
however, and is hidden from the application programmer.

NOTE: The linker must be invoked to link the ADDR assembler
language function to the application.

Sec. 6.7 Passing "Untyped" Parameters 201

NOTE: The PMACHINE intrinsic presents another (more opaque) way
for an application to discover the address of a variable. See section 4.26.

6.8 Variant Record Buffer Overlay

The previous section described how an "untyped” parameter might be
passed to a routine. It is often necessary, however, to go beyond treating an
isolated data item as untyped. Consider a utility to sort a file. Different
files have records with differing structures; and even for one particular
file it may be desirable to key a sort on different fields on different
occasions. At the time the utility is written, therefore, no commitment can
be made as to the size of the records or to the number, position, size or type
of the key fields.

Essentially, the sort utility reads in buffers-full of the file and treats
the buffer as one large “untyped” datum. All the utility can know, as it
fills its buffers, is that it has a sizable array of bytes. Particular
information about the file format or the sort fields must be passed to the
utility upon each invocation. The utility must use this information to
break the buffer down into individual records, and break the records down
into individual fields. The fields must then be distinguished by type so
that the appropriate operations may be performed on them (the sort, for
example, has to determine whether to perform an integer or a character
comparison on a key field).

One possible approach to this sort of situation is described in this
section.

Let the utility define an “abstract array” type as a packed array[0..0]
of 0.255. This is an array of bytes with only a single element. Define a
pointer to this type as a variant record, so that it may be treated either as a
pointer or as an integer (see section 6.8). The “abstract array” is used to
manipulate the buffer. The variant record pointer/integer enables the
“abstract array” to overlay whatever memory locations contain the file
buffer to be manipulated.

Use the VARAVAIL intrinsic to size memory (section 3.5) and use
the VARNEW intrinsic to allocate an area of words of the largest available
size and provide a pointer to the area. Convert the pointer to an integer
address using the ORD function. Assign this address to the pointer/integer
to the “abstract array”. The individual bytes in the “abstract array” can
now be accessed using an index. Since the array is declared with bounds
[0..0] (necessary since it is not possible to know the actual size when
writing the program) it must be accessed with range checking disabled.

Use the BLOCK I/0 intrinsics (see section 3.3.4) to fill this buffer
area. Record-directed 1/0 (GET and PUT) cannot be used since the utility

202 PROGRAMMING PRACTICES Chap. 6

was written without knowledge of a particular file’s record format.

The buffer may be traversed record-by-record by starting at the
beginning of the buffer (abstract_array[@]) and adding the record length
to the index of the current record to determine the index of the next record.
The record length must be available to the utility; it may be passed as a
parameter to it, or stored externally on a special information file pertaining
to the file being manipulated.

Extreme caution must be exercised as the end of the buffer is
approached. Since range-checking is disabled, the utility has the
responsibility of assuring that it does not overshoot the end of the buffer.
Further, since records may span blocks, it is likely that the record at the
end of the buffer is only a partial record. In this case the utility must
move the partial record to the beginning of the buffer using MOVELEFT,
and BLOCKREAD another buffer-full from the file, beginning the byte
after the end of the partial record. This process continues until the entire
file has been traversed.

NOTE: Assure that reads always occur onto word-aligned addresses.

It is necessary, as the utility processes each record, to focus on and
manipulate individual fields. The utility must be informed of the type
and size of each such field, and its displacement within the record. Armed
with this information the utility may “map” the fields to their
appropriate types.

This can best be accomplished by defining yet another variant record
type in the utility, which is referred to as a “many faces” type. The record
has a variant for each type the utility might need to manipulate in a
record. For example, if the utility can be expected to encounter fields of
type integer, real or string, the "many faces” record has three variants, one
for each type.

A pointer to many faces” is then declared — but, as usual, the pointer
is overlaid with an integer so that "many faces” can be placed at any
desired memory location.

Now, when the utility decides to focus on a particular field, it merely
adds the displacement of that field within the record to the index into
“abstract array” which points to the beginning of the record. The sum is
the index into “abstract array” of the field itself. This value yields an
address which can be assigned to the pointer to "many faces”. “Many
faces” now overlays the desired field; the utility need only refer to the
variant corresponding to the type of the field, and the field may be
manipulated as any data item of that type.

Of course, such machinations are inelegant, and are to be avoided
whenever possible. But for many general-purpose utilities, which must
manipulate files of any type, they are unavoidable.

Sec. 6.9 Variant Record Buffer Overlay 203
6.9 Data Prompts

This section describes the implementation of interactive data prompts.
UCSD Pascal provides some support for interactive data prompts; one
example of this is the acceptance of backspace characters when reading
integers and strings from the console. But UCSD Pascal does not have the
ability to respond to invalid user input, such as illegal characters in an
integer or illegal file names in a file specification, without aborting the
program. The system responds to invalid data and file names with an
execution error. Therefore, responsibility for detecting and respondmg to
invalid input falls to the program itself. This can be accomplished in a
variety of ways. One way is to suppress I/0O checks and use the
IORESULT intrinsic to implement user-proof error recovery. Since
IORESULT is also set as a result of bad input to the terminal, one can re-
prompt the user for a valid entry until IORESULT returns zero. Since
IORESULT is set as a result of attempting to access a non-existent file, one
can re-prompt the user for a valid file name until IORESULT returns zero.

Another approach to validating input data is to perform character
input exclusively,and attempt to convert the characters to the appropriate
data type as they are entered. This method provides greater flexibility in
that different kinds of errors can be met with tailored error messages, and
invalid data can be trapped as soon as the first illegal character is typed,
rather than upon completion of the entire entry. The entry need not be
restarted, but may be resumed from the point of the error. Of course, this
approach requires additional care to implement and additional time and
space during execution.

The following four sections present robust implementations for
single character prompts, integer prompts, file prompts and real prompts.
The single character prompt provides a simple exampleof how data may be
validated as it is entered. The integer and file prompts exemplify the use
of JORESULT to detect bad input. The real prompt is a more complex
demonstration of data being validated as it is entered.

The file prompt uses the file system conventions described in chapter
7.

NOTE: Though not demonstrated in this section, the GOTOXY
intrinsic is useful for constructing interactive screen displays. See section
3.11.4 for details.

NOTE: There are a number of commercially available UNITs which
perform “bullet-proof” data prompting for various data types.

204 PROGRAMMING PRACTICES Chap. 6

NOTE: The UNITCLEAR intrinsic may be used to flush the keyboard
type-ahead buffer before issuing a critical data prompt. This ensures that
the prompt receives an explicit response from the user (rather than soaking
up whatever characters happen to be queued for input). Examplesof this
feature can be found in the filer K(runch and R(emove commands.

6.9.1 Character Prompts

Exampleof character prompt:

program p1;
var ch: char;
done: boolean;

begin
done := false;
repeat
write('Do you wish to continue? (Y/N) ');
repeat

read(keyboard,ch);
until ch in ['n’,'N’,'y’,'Y"'];
writeln(ch);
done := ch in ['y’,’'Y'];
until done;
end §p1i.

This example demonstrates secure input checking. The prompt
indicates acceptable responses to the question. The non-echoing keyboard
file is used to filter out invalid responses before they can reach the screen;
only when a valid response is received is the input written to the console.
Note that the prompt accepts both lower- and upper—case characters as valid
responses.

6.9.2 Integer Prompts

Exampleof integer prompt:

program p2;
var int: integer;
done: boolean;

begin
done := false;
repeat
§$1-4
repeat
write(’'Type a number (@ exits) : ');
readin(int);
until ioresult = 0;

§$11}

Sec. 8.9 Data Frompts 205

writeln(’ You typed: ',int);
done := (int = 0Q);
until done;
end §{p2}.

This example demonstrates explicit, user-defined error recovery using the
system IORESULT value. If I/0 checks were enabled, READLN would
cause an execution error, terminating the program whenever the input did
not match the format defined for an integer (e.g, input containing
alphabetic characters). In this example, the input prompt merely repeats
itself if an invalid integer is entered.

6.9.3 File Prompt

Exampleof file prompts:

program p3;

var infile,outfile: file;
filename, inname: string[30];
result: integer;

procedure addSuffix(var fname: string;
suffix: string);
begin
if fname[length(fname)] = *.*' then
delete(fname, length(fname),1)
else
fname := concat(fname,suffix);
end faddSuffix};

begin
repeat
write(input file (<cr> to escape): *);
readin(filename);
inname := filename;
if length(filename) = @ then exit(program);
addSuffix(filename, *'.TEXT');
{$1-4
reset(infile,filename);
result := ioresult;
§$113
if result <> @ then
writeln(’ Cannot open ',filename);
until result = 0;
repeat
write(output file (<cr> for same): ');
readin(filename);
if length(filename) = @ then
filenaome := innome;
addSuffix(filename, '.CODE’);
§$1-3

rewrite(outfile,filename);

206 PROGRAMMING PRACTICES Chap. 6

result := joresult;
§$113
if result <> @ then
writeln(’ Cannot open ',filename);
until result = Q;
end §{p3%.

This example again demonstrates explicit, user-defined error recovery
using IORESULT. If I/0 checks were enabled, RESET and REWRITE
would cause an execution error whenever an invalid file name was
entered, but in this example the prompts reappear after responding with an
error message. Note the use of file name suffixes. This conforms to the file
system’s naming conventions for file name prompts (as described in
chapter 7). The user is expected not to enter the suffix, which will be
automatically appended to the file name by the addSuffix routine. Also
note the presence of a standard escape response for the input prompt
(typing a carriage return escapes the prompt), and a short-circuit on the
output prompt (typing a carriage return uses the input file title in the
output file name).

6.9.4 Real Prompts

Exampleof real prompt:

program p4;
var
r: real;

function RealRdIn: real;

type

charset = set of char;
var

ch: char;

base, exponent: real;
CharsWritten: integer;
DoOver: boolean;

procedure backspace(count: integer);

var
i: integer;
begin
for i := 1 to count do write(chr(8));
for i := 1 to count do write(’ ');
for i := 1 to count do write(chr(8));
end;

procedure bell;
begin

write(chr(7));
end;

Sec. 6.9 Data Prompts

function GetChAndQuit(valid: charset): boolean;

begin
repeat
read(keyboard,ch);
if eoln(keyboard)
then begin
GetChAndQuit := true;
exit(GetChAndQuit);
end;
if not (ch in valid)
then bell;

until (ch in valid);
GetChAndQuit := false;
end;

function Ch2Digit(ch: char): integer;
begin

Ch2Digit := ord(ch) — ord(’Q’);
end;

function GetNumber(valid: charset; var Del: boolean):

real ;
var
KillSign, Minus, GotDec, GettingBlanks: boolean;
NumOfPlaces: integer;
returns: real;
begin
NumOfPlaces := 0;
returns := 0.0;
Del := faise;
Minus := false;
KillSign := false;
GotDec := false;
GettingBlanks := true;
repeat
if GetChAndQuit(valid)
then begin
if Minus
then returns := —~returns;
if ¢chr(13) in valid
fwhich indicotes that there will be no exponent}
then begin
RealRdLn := returns;
exit(RealRdLn);
end
else begin
GetNumber := returns;
exit(GetNumber);
end;
end;
if ch = chr(8)
then begin

Del := true;
exit(GetNumber);
end;

207

208 PROGRAMMING PRACTICES

case ch of
’0','1.,’2.,'3','4','5’,’6.,’7’,'8‘,'9':
begin
if not GotDec
then returns :=
returns = 10.0 + Ch2Digit(ch)
else begin
NumOfPlaces :=
succ(NumOfPlaces);
returns := returns +
(1.0 / pwroften(NumOfPlaces))
« Ch2Digit(ch);
end;
KiliSign := true;
GettingBlanks := false;

write(ch);
CharsWritten := succ(CharsWritten);
end;
P! : begin
GettingBlanks := false;
if KillSign
then bel!

else begin
Minus := true;
KillSign := true;

write(ch);
CharsWritten := succ(CharsWritten);
end;
end;
'+ : begin
GettingBlanks := false;
if KillSign
then bell

else begin
KillSign := true;
write(ch);
CharsWritten :=
succ(CharsWritten);
end;
end;
begin
GettingBlanks := false;
KillSign := true;
if GotDec
then bell
else begin
GotDec := true;
write(ch);
CharsWritten :=

succ(CharsWritten);
end;
end;
if not GettingBlanks
then bell
else begin
write(ch);

Chap.

Sec. 6.9 Data Prompts 209

CharsWritten :=
succ(CharsWritten);
end;
'E*, 'e’: begin
write(ch);
CharsWritten := succ(CharsWritten);
if Minus
then GetNumber := —returns
else GetNumber := returns;
end;
end jcase};
until ch in ['E’,’e"’]
for uniess we exited previously upon a <CR>};
end §{GetNumber};

begin §RealRdLn}
CharsWritten := Q;
repeat
repeat
base :=
GetNumber (
[r0'..’9" "=, "+ ,*.","E’,’e","” ',chr(8),chr(13)], DoOver);
if DoCver
then begin
backspace(CharsWritten);
CharsWritten := 0;
end;
until not DoOver;
exponent :=
CetNumber([’'©’'..’9",'=*,’+',chr(8)], DoOver);
if DoOver
then begin
backspace(CharsWritten);
CharsWritten := @;
end;
until not DoOver;
if exponent > 0.0
then RealRdLn := base * pwroften(round(exponent))
else RealRdLn := base / pwroften(round(—exponent));
end §RealRdLn};

begin §p4}
repeat
write('Input your value: ');
r := RealRdLn;
writeln; writeln(r);
until r = 0.0;
end §p4t.

This example illustrates how input data may be validated on a
character-by-character basis, allowing only permissible characters to be
entered and permitting the user to continue an entry after an error has
been made.

210 PROGRAMMING PRACTICES Chap. 6

The RealRdLn function contained in program p4 permits the user to
enter a real value in any reasonable format. Leading blanks are permitted,
and a decimal point is not required for integral values. It is not required
that a digit be on both sides of the decimal point. Signs are optional, as is
the E for scientific notation. This is a much more liberal format than is
accepted when using READ to directly input real values.

The heart of RealRdLn is the function GetNumber, which is used to
accept both the mantissa and the exponent (if any) of the real value.
GetNumber accepts a set parameter containing valid entry characters for the
value desired. These differ for the mantissa and the exponent;for example,
a decimal point is not permitted in the exponent. GetNumber returns the
quantity entered as a real value.

GetNumber terminates when a carriage return, backspace or (for the
mantissa) the letter E is encountered. A carriage return is used to signal
termination of input. If the mantissa is being entered when the carriage
return is encountered then no exponentis processed and RealRdLn exits. If
the exponent is being entered when the carriage return is encountered,
GetNumber exitsso that RealRdLn can merge the exponent with the mantissa.

If a backspace is encountered, GetNumber returns with the VAR
parameter Del set to true. The characters entered to that point are
forgotten and erased from the screen. There is no facility for single-
character backspace. (It is left as an exercise for the reader. Have fun!)

GetNumber validates each character as it is entered, and will only
accept characters contained in the permissible set. It will also assure that
permissible characters are encountered in the appropriate sequence. Thus,
the only blanks allowed are leading blanks, only one decimal point is
permitted, and only in the mantissa, and only one sign (per mantissa and
exponent)and only one E are accepted.

An invalid character is not echoed; it generates a beep. It is a simple
matter to modify RealRdLn to display an explicit error message in addition
to the beep.

RealRdLn perforins no range checking since real size is p-System
implementation-dependent.

6.10 Device Drivers

A device driver is a set of one or more routines which provide an interface
between a program and a peripheral device. The program initiates a device
operation by calling the device driver with parameters describing the
desired operation. The device driver performs the actions necessary to
perform the device operation, and notifies the program of the device status.

Sec. 6.10 Device Drivers 211

Under the p-System, device drivers are normally written in the
machine language of the host machine and made part of the interpreter. If,
however, a non-standard device is attached to the system, it may be
preferable to write the device driver as a Pascal UNIT, to be USEd by
programs accessing the device.

This section describes how to write drivers for Q-bus ((tm) Digital
Equipment Corporation) compatible 1/0 devices. However, the concepts
are generally applicable.

Section 6.10.1 describes the interface between programs and device
drivers. Section 6.10.2 explainshow to access devices in UCSD Pascal.

6.10.1 Driver Interface

A driver typically consists of a set of functions or procedures declared in a

program or unit. I/0 driver parameters usually include a device identifier,

a source or destination address, and a data transfer length. Depending on

the driver, any one of these parameters may be implicit in the driver’s

definition and may not need to be supplied by the calling routine.
Examplesof driver interfaces:

TapeRead (1{device number}, buffer, 512fbyte count});
LPWrite (buffer, SizeOf(buffer)ibyte count});
TapeRewind (2{device number});

The source or destination address is normally an area of memory
corresponding to a variable declared in the program. Parameter type
checking may prevent general use of a driver for reading or writing data
of varying types, since the parameter must be declared as being of one
particular type. It is often necessary, therefore, to defeat the compiler’s
type checking constraints when writing device drivers.

One method of overriding type-checking constraints is the use of
variant records, as discussed in sections 6.7 and 6.8. This allows the source
or destination parameter to accept arguments having different types. The
following example assumes that the programmer wishes to read data from
a device into two different types of variables. The driver parameter is
declared with a type allowing both kinds of variables.

Exampleof multitype parameter:

type VariantStructure =
record
case integer of
@ : (FirstStructure : Typet);
1 : (SecondStructure : Type2);
end fof VariantStructure};

procedure Driver (Var Buffer : VariantStructure);

212 PROGRAMMING PRACTICES Chap. 6

The variant part may be extended in the following manner to
accommodate byte-oriented drivers:
Exampleof byte-oriented address parameter:

type ByteArray = packed array [0..0] of ©..255;
VariantStructure = record
case integer of
@ : (FirstStructure : Typel);
1 : (SecondStructure : Type2);
2 : (Memorylmage : ByteArray);
end §of VariantStructure};

The driver may access any byte in the buffer by indexing through the
MemoryImage variant. Note that range checks (see section 5.0.7) must be
suppressed in order to access arbitrary bytes without causing an execution
error. The program must assure that the index does not extend beyond the
end of the structure.

6.10.2 Device Access

On many processor architectures, devices are accessed through their device
registers. The driver views these registers as the contents of specific
memory addresses. The computer is configured so that an access to those
locations is mapped to the device’s interface hardware, rather than to main
memory. Accessing these memory addresses causes a device register to be
accessed.

The device registers generally consist of a number of bytes for each
device. Some of these bytes are reserved for status information regarding
the device. Other bytes are buffers which serve as conduits into or out of
the device. Data is transmitted through these buffers.

The precise memory locations which serve as device registers vary
from one configuration to another. Configuring a device for a specific set
of locations is usually accomplished with jumpers or switches on the
device controller.

Device status information is obtained by reading from a device status
register. Writing to a device register issues device commands.

Device register access is accomplished in UCSD Pascal by assigning the
memory address of the device register to a pointer variable. This can be
accomplished by overlaying the pointer variable with an integer, as
described in section 6.8. The device register is then accessed through the
pointer. Since most devices have several device registers located in
contiguous addresses, the pointer is usually declared to point to a
multiword record describing the device registers. The record fields are
declared so that they coincide with the various bit fields in the device
registers (see sections 6.0 and 6.1 for details).

Sec. 6.10 Device Drivers 213

NOTE: The process of storing into a packed record field involves
reading the entire word containing the record field, updating the record
field, and then writing the modified word back to the record. It is not
possible to read or modify selected bits of a packed record without
affecting an entire word. Since writing to a device register implies the
issuance of a device command, the programmer must beware of side effects
caused by reading and/or writing of packed fields adjacent to the field
being modified.

The following example presents a simple device driver for the
DLV-11 (a bidirectional serial line whose device registers in this example
start at 1FF70 hex). A pointer is initialized with the address of the device
register block. The program reads characters from the receiver and echoes
them to the transmitter.

Exampleof simple DL.V11 device driver:

program DLV11Demo;
const DLViiAddress = —144; §FF70 hex}
type
DLV11Rec =
record
RCsr : packed record §receiver statusi
Unused : ©..31; funused bits}
IntEnab: boolean; finterrupt enable}
Ready : boolean; fchar received}
end §of RCsri};
RBuf : char; §input data}
XCsr : packed record f§xmitter status}
Unused : ©..31; funused bits}
IntEnab: boolean; §interrupt enable}
Ready : boolean; §xmitter empty}
end fof XCsri};
XBuf : char; foutput datai}
end §of DLV11Rec};
var DLV11 : record
case integer of
@ : (Ptr : tDLV11Rec);
1 : (Value : integer);
end §of DLV11};

begin
DLV11.Value := DLV11Address;
with DLV11.Ptrt do
begin
RCsr.IntEnab := False;
XCsr.IntEnab := False;
repeat
repeat fwait for a char to arrive}
until RCsr.Ready;

repeat fwait for xmitter to become available}
until XCsr.Ready;

214 PROGRAMMING PRACTICES Chap. 6

XBuf := RBuf; §send character received}
until false;
end;
end.

Note that changing a device’s status by modifying a device register
field is accomplished with a simple assignment statement. Thus, to disable
interrupts for the sender and receiver it is only necessary to set their
IntEnab fields to false. Similarly, reading the data from the receiver
requires nothing more than saving the value of RBuf; in this case in XBuf,
which causes the value to be sent to the transmitter.

Specific operational details of 1/0 devices can be found in the
hardware documentation provided by the device’s manufacturer. This
information contains device register descriptions and operational
assumptions.

Some devices are capable of performing direct memory access (DMA)
operations. These devices provide a device register which contains the
memory address of the nextbuffer element on which an 1/0 operation is to
take place. The device driver must determine the starting buffer address
and supply it to the device before a DMA operation is initiated. The
address may be obtained with the PMACHINE intrinsic (see section 3.10
for details), which returns the address in a temporary variable.
Alternatively, the ADDR function described in section 6.7 may be used.

Certain processors (such as the Intel 8088) do not normally have
memory-mapped 1/0. Instead, 1/0 is performed by reading or writing a
data byte to a given port, the number of which is determined by the
device’s hardware controller. Since the p-System makes no provision for
access to I/0 ports from programs, user-supplied drivers must access ports
through assembly language routines. A read-port routine for the 8088
might look like:

.relfunc pread,!
; function pread(port: integer): integer;

result .equ 8

port .equ 6
mov bp, sp ; get stack addressing
mov dx, (bp+port) ; get port number
in al,dx ; get data
xor ah,ah
mov (bp+result),ax
retl 2
.end

NOTE: Device drivers may require protection (i.e., semaphores) from

task contention.

Sec. 6.11 Device Drivers 215
6.11 Locating Execution Errors

This section describes how to locate the source of an execution error in a
UCSD Pascal program. When the operating system detects an execution
error, it halts the program and displays an error message on the screen. At
this point, the user may exercise one of two options: aborting the program
which caused the error by typing <space>, or continuing execution by
typing <escape>.

If a <space> is typed the system is reinitialized. Depending on the
nature of the error, the program may or may not be restartable with the
U(ser Restart main menu option. In either case, data and unclosed files
from the failed executionare lost.

If <escape> is typed the program resumes execution from the point
immediately following the error. Depending on the nature of the error,
the program may or may not function correctly from that point.

NOTE: The <escape> option does not work correctly on a number of
pre-Version IV p-System implementations.

The error message should be noted before either <space> or <escape> is
typed since the error textmay be erased. The error message includes a brief
description of the cause of the error, as well as a field resembling the
following:

Seg PROSE P #90, O #1091 <space> continues

This field specifies the error location in terms of the code file
structure. The ”Seg” value indicates the name of the current code segment.
The P, or "Proc” value indicates the current procedure within the segment.
The O, or ”Offset” value indicates the procedure-relative byte offset of the
instruction which caused the error.

6.11.1 Using Compiled Listings

A compiled listing displays the segment number, procedure number and
code offset of each line in the program (see section 5.0.1 for details
regarding compiled listings). Finding the source of an execution error
consists of hunting in the listing for the named segment and for the Pascal
statement whose procedure and offset numbers as listed match those of the
error message. Note that while the procedure numbers can be matched
exactly, the code offset displayed in the error message usually falls
between the code offsets displayed in the listing, since each Pascal
statement typically generates more than one p-code instruction. The error

216 PROGRAMMING PRACTICES Chap. 6

location can be narrowed down to the line whose listed offset is the closest
value less than or equal to the error offset.

NOTE: In some situations, the execution error displays segment or
offset numbers which do not appear in a compiled listing of the program.
An execution error in an unrecognized segment may indicate a system
problem or an invalid access of a library segment. Use the Library utility
to confirm the presence of the offending segment in the operating system
and call your p-System vendor for assistance.

NOTE: If an execution error is traced to a used unit, a compiled listing
of the unit must be obtained before the error can be traced any further.
When strings or long integers are passed as parameters, execution errors can
occur in the vicinity of the associated procedure call. See sections 3.4 and
3.6 for more information.

Having located the suspected source line, the execution error message
should be sufficient to determine the cause of the error. “Value range
error” indicates that the program tried to assign a value outside of the
declared bounds of an array or subrange variable. “Integer overflow” is
only generated by long integer operations; it cannot result from integer
operations (as no overflow checks are performed on integers). “Divide by
zero” is detectable in integer, long integer and real division. User 1/0 errors
are generated either by an invalid input or by a file system error.

NOTE: Some p-System implementations use a different format for
certain execution errors which do not supply ”Proc” or ”Offset” values.

6.11.2 Without Using Compiled Listings

It is possible to trace executionerrors to the procedure level without the use
of compiled listings; all that is required is knowledge of the program’s
overall structure (ie., declaration order of procedures) and an
understanding of the compiler’s rules for assigning procedure numbers in a
compiled program.

Procedures in a program or segment are assigned procedure numbers
in the order in which their headings appear, starting at procedure number
one. (Note that forward declarations count as headings.) Procedure
number one in a segment or program is the outermost block of the segment
or program. In both cases, the first local procedure declaration is assigned
procedure number two, the next three, and so on. Note that procedure
numbers are assigned independent of the lexical nesting of procedures

Sec. 6.11 Locating Execution Errors 217

within a segment.
These procedure assignment rules may be partially verified by
examining the compiled listing printed in section 5.0.1.

6.11.3 Further Investigations

Locating the source of an execution error is often only the first step in
finding program errors; it is often necessary to begin printing debug
information (by inserting WRITELN statements into the incorrect
program) in order to investigate values of suspected variables prior to the
execution error. The conditional compilation facilities available in later
versions of the compiler are useful here; the programmer does not have to
edit the debug statements out of the listing when the program is fully
debugged.

The symbolic debugger, where available, is also a useful tool for
debugging purposes. However, some knowledge of the architecture of the
p-machine is required. Consult your Users’ Manual for information
regarding this utility.

6.12 Programming with Units

This section demonstrates the value of the UCSD Pascal UNIT in the
economical and reliable production of applications software. The major
benefits of unit usage are derived from their ability to act as a foundation
for the development of increasingly complex facilities, their ability to be
separately and independently compiled, and their ability to contain both
global and private code and data.

The following two sections demonstrate unit usage by showing how
to develop a unit and how to take advantage of pre-existing units. Unit
syntaxand semantics are discussed in section 3.2.

6.12.1 Unit Development

Program development using units is faster and more reliable than
traditional methods. Large sections of code normally included in a
program may be separated into units where they are available simply by
reference rather than by in-line compilation. Facilities provided by such
units are also available to any other programs requiring them. This
approach saves time during program compilation and allows a unit to be
tested and maintained independently of the program. Since a single copy

218 PROGRAMMING PRACTICES Chap. 6

of a unit is shared among all client programs, bug fixes and performance
optimizations applied to a unit are automatically available to all client
programs. Provided the interface of a unit is not changed, the unit
implementation may be modified or enhanced without the need to
recompile client programs.

The first step in the development of a unit is the specification of its
interface section. When possible, it is prudent to structure interface
variables and procedures to provide generalized functionality rather than
facilities specific to an individual program. Only those procedures and
data structures which must be directly accessed by the host should be
included in the interface section.

Once the unit interface has been specified, it is wise to consider how
each component of the interface is to be tested. This results in a greater
understanding of all details of the interface functions, and provides a
foundation for the construction of test and validation suites.

Implementation of the unit is performed by coding the interface
functions and writing initialization and termination code for the unit’s
global variables (initialization code within a unit is a feature of Version IV
and Apple Pascal; termination code within a unit is a feature of Version IV
Pascal). Note that pre-existing units may provide functions valuable in
implementing the unit (see following section) since units may use other
units.

A unit may be designed to address a suite of related but separate
functions. It should be kept in mind when coding such a unit that not
every function will be utilized by every host. Separate functions should
be localized to separate segments in order to minimize the total job memory
requirements.

If the p-System environment supports selective USES (Version IV.1
and later), thought should be given to which data structures in the
interface section are needed by which segments. This information should
be provided in the documentation for the unit so that a host may select
only those data structures required for the segments of the unit it will be
using. Otherwise, the entire unit interface section will become global to
the host, and compile-time memory will be wasted.

Once the unit has been compiled, it may be installed in the library
system and tested. Testing and validation suites should be developed to
exercise each component of the unit interface. These suites may be used
during initial unit debugging and as a debugging aid during unit
maintenance. Note that the unit may be programmed and maintained as an
in-line unit of the validation suite program. This arrangement facilitates
the validation of the unit after updates since the validation suite is always
recompiled with the unit.

Sec. 6.12 Programming with Units 219

NOTE: It is often expedient to install the unit in a user library (see
your Users’ Manual) rather than in the system library, until debugging is
complete. This obviates the necessity of constantly reconstructing the
system library.

6.12.2 Using Pre-existing Units

A variety of units have been developed by a number of vendors for use
with the p-System, including units which perform complex system,
programming and applications functions. They afford access to routines
that might be impossible for most programmers to write (i.e., routines that
require intimate knowledge of the system architecture) or routines that
might be merely inconvenient to rewrite each time they are required.
Many p-System vendors include some of the more popular units as
standard parts of their distribution; for example,the standard Version IV.1
distribution includes units to perform Filer functions from within a
program and a unit to control the display of error messages from an
application. Many hardware vendors include units to address specific
features of their equipment. For example,a machine that supports an [EEE
instrument port might include a unit to access that port.

The example below demonstrates the use of the WILD and DIRINFO
units which are included in the standard release of Version IV. The
DIRINFO unit permits programs to access the system date, and access and
modify file names and dates, as well as access directories and perform
additional file management functions. The WILD unit permits wildcard
specification of file names; it is used by the DIRINFO unit. More complete
information regarding these units may be found in the Version IV Users’
Manual.

Although programs may directly read directories and perform the
aforementioned functions without the use of units, DIRINFO, WILD and
similar units provide a tested and standardized interface to the file system.

Program DateFiles uses DIRINFO to obtain the date from the root
volume. It permits the user to select any textfile or list of textfiles as
specified by a wildcard and re-date them to the root volume date. The
DIRINFO unit is used to find all matching textfiles. DateFiles then asks
the user to verify the date change for each file. If verification is obtained
the date of the file is changed, again using DIRINFO. If verification is not
obtained or if DIRINFO has problems locating the file the date is left
unchanged.

Note that the majority of the code serves to link the complex
functions of the units together.

220 PROGRAMMING PRACTICES Chap. 6

program DctefFiles;
uses Wild, Dirlnfo;

const
Esc = 27;

var Lines,
OutUnit : integer;
S : string;

VolDate : DDateRec;

procedure GetFileNome (var Name: string);
begin
writeln;
write ('File to re-date (you may use wildcards)? *);
{This is the stondard name—specification algorithm}
readin (Name); writeln;
if length (Name) <> @ then
if Name[length (Name)] = ’.* then
delete (Name, length (Name), 1)
else
Nome := concat (Name, ’.Text');
end §GetFileName};

procedure GetVolDate (var TheDate : DDateRec);
var List : DListP;
Heap : tinteger;
begin
mark (Heap);
if (DDirList ('#:', [DVol], List, False) = DOkay)
and (List <> Nil)
then TheDate := Listt.DDaote
else writeln('Cannot find root volume!’);
release (Heap);
end {GetVolDate};

procedure UpdtFiles (Name: string);
var List : DListP;

Ch : char;
Heap : tinteger;
begin

mark (Heap);

if DDirList (Naome, [DText], List, False) = DOkay then
while List <> Nil Do

begin
Name :=
concat(Listt.DVolume, ’:°*, Listt.DTitle);
repeat
write ('Change date of ’, Name, '? *');
read (Ch);
if not eoln then writeln;
until Ch in ['Y’, 'y’, 'N', 'n’, * *, Chr (Esc)];

if Ch in ['Y’, *y’] then
if DChangeDate(Name, VolDate, [DText]) = DOkay

then writein(® Date of ', Name, ' changed.’)
else writeln('* Error — Date of ’,
Name, ’ unchanged.’);

if Ch = Chr (Esc) then List := Nil

Sec. 6.12 Programming with Units 221

else List := Listt.DNextEntry;
end fof while}
else writeln ('No files found’);
release (Heap);
end {UpdtFilest;

begin
GetVolDate (VolDate);
repeat
GetFileName (S);
if length (S) <> @ then
UpdtFiles (S);
until length (S) = @;
end {DateFiles}.

6.13 Using Native Code

6.13.1 Automated Native Code Generation

Compilers that operate under the p-System generate p-code, a pseudo-code
which must be interpreted as it is executed. The p-code is interpreted by
the Interpreter, a program which is written in the machine language of the
host processor. This interpretation process provides the benefit of
portability; the entire p-System operating system and any software
written for it can be moved to a different processor merely by
implementing an Interpreter for that processor.

The benefit of p-code, therefore, is software portability. An
additional benefit is object code compactness. Programs in p-code form are
generally smaller than the equivalent program in native machine
language. The cost of these benefits is speed. P-code programs generally
execute more slowly than their machine language counterparts due to the
overhead imposed by the interpreter.

For most applications the practical difference in speed between p-code
and native code is negligible. On microcomputers, applications tend to be
I/0 intensive; much of the time an application is waiting on user input
from the keyboard. However, applications that are processor-intensive
may run at intolerably slow speeds when in p-code form. Applications
that perform heavy numerical analysis fall into this category.
Additionally, sections of code that include device drivers often need the
speed available only from native machine language.

Version IV p-System’s are available with a utility called a Native
Code Generator (NCG), which converts selected portions of an already-
compiled program from p-code to the native machine language of the host

222 PROGRAMMING PRACTICES Chap. 6

processor. The Native Code Generator is currently available for most of the
popular processors which support the p-System.

Programs processed by the NCG generally run faster than the
equivalent program in p-code form. However, these code files are slightly
larger than their p-code equivalents, and are no longer portable to machines
using different processors.

Sections of code which are to be translated to native code must be
flagged in the source program using the N+ and N- compiler directives (see
section 5.0.13). These directives typically bracket the BEGIN/END of a
process or procedure (or a number of processes or procedures), since native
code generation is accomplished on a procedure-by-procedure basis.

The Pascal compiler generates an executable p-code file; the flagged
sections, however, contain information the NCG can use to perform its
conversion.

The NCG is a boon to software developers since they can flag those
sections of code that might benefit from conversion and distribute their
sof tware in p-code form. The user can execute the program as-is; on faster
processors the conversion to native code may not be necessary. Converting
to native code is an option left to the user — the user with access to an NCG
for the appropriate processor may decide to use it or may decide to leave the
program in p-code form. Portability need not be sacrificed until the
product is in the hands of the end user.

Not all p-code is translatable to native code. Certain p-code sequences
rely on interpreter-resident runtime support subroutines; these would
translate to excessively large amounts of native code and are thus left
intact. For example, the procedure and function calling sequences are very
complex and are therefore not translated to native code. Thus, the major
effect of native code generation on some sequences of code may be increased
code size, with no substantial speed increase. Native code generation is best
applied to variable accesses, computational loops, array indexing and other
fundamental operations.

The interpreter scans for the soft <break> key and p-machine
interrupts between execution of p-code instructions. During execution of a
native code sequence the soft <break> key has no effect; a user’s attempt to
abort a program using <break> will fail during a native code sequence.
However, one may force the interpreter to intervene during (what would
be) a long section of native code by including calls to a dummy procedure.
Procedure calls cannot be translated to native code so the interpreter is
forced into play, and can detect a <break>.

NOTE: Version IV of the p-System also includes a utility called
REALCONV. This utility converts real constants imbedded in a code file
into their native machine language representation. Segments containing

Sec. 6.13 Using Native Code 223

real constants will load and execute faster after being run through
REALCONV. The REALCONV utility renders a code file non-
transportable to a machine using a different real format.

6.13.2 User-Supplied Native Code

The UCSD p-System is available with assemblers for most major
processors. Thus, native machine language routines may be used in
conjunction with Pascal programs.

Details regarding effective use of the assemblers are beyond the scope
of this book. Consult the appropriate assembler manual for this
information. In this section a number of helpful hints and pitfalls to avoid
when using the assemblers are briefly described.

Untyped parameters may be passed to assembler language routines.
See section 6.7 for an example.

String constants should not be passed to assembler language routines.
These are passed in a form that may be impossible to decode in the routine.

Assembler language routines delimited with PROC and .FUNC
headings occupy stack and heap space and cannot be moved or swapped.
Routines with .RELPROC and .RELFUNC headings are in the codepool and
can be swapped.

Routines delimited with .RELPROC should not allocate data areas
using the .WORD, .BYTE or .BLOCK directives if the data in these areas
must be preserved across calls to the routine. Since these routines may be
swapped, the data is not preserved. Global data areas should be allocated
using the .PUBLIC or .PRIVATE directives. Alternatively, the .WORD,
BYTE or .BLOCK directives may be used but the segment containing the
routine must be MEMLOCKed to prevent swapping. Note that code
segments residing in the code pool may be moved in memory by the
operating system at any time. Pointers into such segments may be
maintained across calls to the segment only if the segment contains .PROC
or .FUNC routines and is therefore statically allocated in the stack/heap.

6.14 Passing Parameters Between Programs

The CHAIN intrinsic (see section 4.4) is a useful means of transferring
control between one program and another. This ability is particularly
useful when a system has a number of diverse applications integrated
under the "umbrella” of a single master menu - the menu can CHAIN to
any application, and each application can CHAIN back to the menu when
finished.

224 PROGRAMMING PRACTICES Chap. 6

A truly integrated software system not only permits the user to
move from one application to another but also permits data to be
transferred between the applications. For example, the results of a
spreadsheet analysis might be transferred to a database for storage.

The CHAIN intrinsic does not provide for the general transmission of
data from one program to another. The most straightforward means of
accomplishing such a transfer is to write the data to an external file in the
CHAINing program and to cause the CHAINed-to program to pick up the
data from the file.

In situations where a significant volume of data must be transferred,
using an external file may be the only practical solution. In many
situations, however, only a few data items must be transferred; using an
external file is a slow and cumbersome method of accomplishing the
transfer under those circumstances.

A more practical scheme would be for the CHAINing program to
deposit the data items in a set of specific memory locations and for the
CHAINed-to program to pick up the data from those locations.

Such a scheme can be implemented as follows: A Data Unit (a Unit
consisting of an INTERFACE section with data items) is written with a
single data item - an array of as many bytes as is required to contain the
data items to be transmitted from one program to another. This Unit is
incorporated into the operating system (SYSTEM.PASCAL) using the
Library utility.

Data segments in the operating system are allocated during the boot
process. They endure through the transition between one program and
another. Thus, a CHAINing program can USE the Data Unit and deposit
the data it wished to transmit to the CHAINed-to program. The CHAINed-
to program can USE the data unit and pick up the data.

The same Data Unit can be used for any number of CHAINing
programs, even if they each transmit different kinds of data. The Data
Unit should be established with an array of bytes large enough to
accommodate the largest amount of data that might be transmitted. The
CHAINing program can utilize the MOVELEFT intrinsic to copy the data
to the Unit. The CHAINed-to program can utilize the MOVELEFT
intrinsic to copy the data into an appropriately declared record.

A Data Unit:

unit common;
fcompile this unit and install it in SYSTEM.PASCAL}
interface
type

byte = ©..255;
var

SharedData: packed array[@..99] of byte;

§maximum of 10Q bytes to be passed}

implementation

Sec. 6.14 Passing Parameters Between Programs 225

end.

A CHAINing program:

program ComingFrom;
uses commandio, §assumed to be in SYSTEM.LIBRARY}
§$U COMMON.CODE} common;
var
mydata: record
item1: integer;
itemi: packed array[@..1] of char;
for whatever}
end;
begin
fbody of program...}
moveleft{mydata, SharedData, 4 §{size of mydata});
chain(’GoingTo’);
end.

A CHAINed-to program:

program GoingTo;
uses §$U COMMON.CODE} common;
var
mydata: record
iteml: integer;
item1: packed array[0..1] of char;
for whatever}

end;
begin
moveleft{SharedData, mydata, 4 §{size of mydata});
§... rest of program}
end.
NOTE: The scheme described in this section is analogous in its effect to

the SETCVAL and GETCV AL intrinsics of Apple Pascal.

NOTE: Often, a suite of Pascal programs uses one or more common
units. These units may be swapped out of memory as CHAINs occur from
one program to another in the suite. Execution time will increase because
of the need to reload these segments when the CHAINed-to program
requires them. Installing the common units into SYSTEM.PASCAL may
speed the execution of such program suites.

226 PROGRAMMING PRACTICES Chap. 6
6.15 Coding Style and Optimizations

As with any compiler, the UCSD Pascal compiler produces more efficient
code for some constructs than for others. This section describes the
constructs for which the compiler produces smaller, more efficient code
files. Use of these constructs may save as much as 30% of the overall code
file size and executiontime. Note that many of these constructs require the
declaration of extra variables, which may reduce the amount of data space
available. Care is advised when evaluating such tradeoffs.

6.15.1 Expressions and Array Indices

The UCSD Pascal compiler performs very little expression optimization.
The compiler does not preevaluate expressions containing constants, nor
does it reduce the complexity of array references. Therefore, programmers
are advised to perform these optimizations themselves instead of depending
on the compiler to perform them. The following program fragment is an
exampleof three such situations:

var foon : integer;

vreep: array [100..115] of integer;
gnarl: array [0..5] of

record
fone : array [0..49] of integer;
ftwo : integer;
end;
begin
<...>

foon := 3 = (foon + 5) — 10;

foon := vreep[foon + 4];
foon := gnarl[3]. ftwo;
<...>

end;

The code generated by the UCSD Pascal compiler for the first
expression includes one variable load, three constant loads and three integer
operations. The programmer may algebraically reduce the expressionto 3 *
foon + 5, saving one constant load and one integer operation, or 30 of the
code.

The second expression involves an array with a 100-based index. The
code generated by the compiler begins by loading the base address of the
vreep array. It then calculates the array index foon + 4 and subtracts 100
(the index base). Finally, it uses the result as an index off the array’s base
address to load the desired value. An optimizing compiler would have
calculated the array index and indexed off of 100-less-than the array’s base,
saving the explicit subtraction of 100. A programmer may simulate this

Sec. 6.15 Coding Style and Optimizations 227

optimization by declaring all arrays with indices based at zero. (The UCSD
Pascal compiler does not generate the needless subtraction of zero when
array indices are based at zero.)

The third expression involves a constant indexinto an array of records
and a load of the 51st word of that record. As in the second expression, the
base address of the gnarl array is loaded. Next, the offset of the fourth
record is calculated and added into the array base. Finally, the resulting
record base is indexed to the 51st word, which is loaded and subsequently
stored into foon. The p-System compiler generates special p-codes which
combine the index and load operations when loading variables declared in
the first eight words of a record. Hence, the second index operation could
have been eliminated by rearranging the record to contain the ftwo field
first. Unfortunately, nothing can be done to eliminate the first constant
index. (Note that the compiler also generates a special index-and-store p-code
for stores into variables declared as the first word of a record. Thus, the
suggested rearrangement is doubly advantageous.)

The compiler generates range checking code for an array index (to
make sure the calculated index is in the range of the declared index), any
assignment to a variable declared as an enumerated type or any assignment
to a variable declared as a subrange of a base type. Range checking may be
eliminated at compile time using the Range Check compiler option (see
section 5.0.7 for details). Elimination of range checks may reduce the size
of a code file by up to 10, with a corresponding reduction in execution time.

6.15.2 Multiword Constants

In Version IV, code files contain a special section for multiword constants.
The constant pool contains real constants, text literals and large set
constants. There is a one-to-one correspondence between multiword
constants in the source code and constants in the constant pool. Duplicate
constants are neither detected nor eliminated. Hence, code space may be
saved by assigning multiword constants to variables once, then using the
variables thereafter.

This can produce particularly dramatic savings in the case of text
literals, as the following exampleillustrates:

var
s: string[18];
begin
fwrong wayt}

writeln('Please enter your name: D F
writeln('Please enter your address: ')
writein('Please enter your telephone number: ');

228 - PROGRAMMING PRACTICES Chap. 6

§right wayt

s = 'Please enter your ’;
writein(s, 'name: °);
writeln(s, ' 'address: ');
writeln(s,'telephone number: ');

When positioning textinformation on a screen, do not pad textliterals
with blanks to cause them to appear at particular column locations.
Instead, use the SC__GOTOXY procedure from SCREENOPS (see section
8.1; pre-Version IV users should use the GOTOXY procedure; see section
4.12) to position the cursor, then write the string without the blanks, as
below:

fwrong wayi}
writein(’ Welcome to the XYZ System’);

§right way}
sc_gotoxy(21,row); writeln('Welcome to the XYX System’);

Sets declared in the range 0..15 are represented in the code stream as
individual p-codes. Sets declared in the range 0.4 are represented by a
single byte. Sets declared in the range 0..7 are represented by two bytes and
sets declared in the range 0..15 are represented by three bytes. Larger sets
are represented as integral numbers of words in the constant pool, which
require additional five-byte p-codes to access them. Bit for bit, it is more
efficient to declare small sets instead of large sets when possible.

Set constants that contain a mixture of literal subranges and
expressions are constructed at runtime, requiring relatively large amounts
of code and executiontime. For example:

sset := ['a’..'2’, '0’'..°9']);
tset := ['a’..'2z’, chr(13), '0'..'9’'];

The sset is contained in an eight-word set constant contained in the
constant pool. The tset is constructed at runtime from the eight-word set
constant ['a’..'z’'], the calculated set value [chr(13)] and the four-word
set constant ['@’..'9']. When set constants containing expressionsare used
frequently, it is faster to assign the constant to a set variable and use the set
variable instead.

6.15.3 Packed Field References

Declaring an array or record variable as a packed structure results in
memory savings that vary according to the components of the variable.
(The packing algorithms used in UCSD Pascal are described in section 6.0.)
However, these savings are earned at the cost of larger code files and

Sec. 6.15 Coding Style and Optimizations 229

slower execution.

The compiler emits special p-codes for operations on packed
structures. These p-codes construct and consume transient, multiword
packedfield descriptors. Manipulation of these descriptors require between
two and three times the code and execution time necessary to manipulate
unpacked field descriptors. For example:

(*$R-—»)

Program PCompare;
Const Bell = 7; (* Audible tone »)

Var 1 : Integer;
Arr : Array [©..©] Of Record
Fld2,
Fidl : ©..15;
End;
PArr: Array [0..@0] Of Packed Record
Fld2,
Fidlt : ©..15;
End;
Begin

Arr[@].Fid1 := @;
PArr[@].Fid1 := ©;
Write (*Starting baseline test on <return>’);
Readin;
For I := @ To 30000 Do
(» nothing, this is the baseline test =);
Writeln (Chr (Bell), 'Stop timing’);
Write ('Starting unpacked test on <return>’);
Readin;
For 1 := @ To 30000 Do
Arr[@].FId1 := Arr[@].Fid1;
Writeln (Chr (Bell), *Stop timing*);
Write ('Starting packed test on <return>');
Readlin;
For I := @ To 30000 Do
PArr[@].Fid1 := PArr[@].Fld1;
Writeln {(Chr (Bell), 'Stop timing’);
End.

In the example above, the compiler generates 12 bytes of code for the
unpacked array assignment and 16 bytes for the packed array assignment.
On the IBM PC, the baseline loop executesin 9.1 seconds, the unpacked loop
executes in 21.2 seconds, and the packed loop executesin 25.6 seconds. In
this example, the packed array assignment required 1.3 times as much code
as the unpacked version and took 1.4 times as long to execute.

230 PROGRAMMING PRACTICES Chap. 6
6.15.4 Reals and Long Integers

Many applications require more precision than is provided by UCSD
Pascal’s 16-bit integers. Depending on the application, programmers may
choose either real numbers or long integers to represent large values.
Unfortunately, there is significant overhead involved in using either
approach. In the case of real numbers, the p-code interpreter must be
configured to provide real number operators and the operating system
must contain real number I/0 routines. In the case of long integers, the
system library must contain the long integer library module. In either
case, this code may add up to several thousand bytes, depending on the
hardware facilities available. In addition, loading the real number 1/0
routines into memory may add seconds to the time required to start a
program using reals; the long integer routines require a comparatively
large amount of time to execute.

Certain applications requiring extended precision arithmetic may
benefit from the use of explicitly programmed double integers. Double
integer values are represented by two integers: one for the most significant
part and another for the least significant part. User programs may
manipulate these values in-line. By choosing an appropriate value for the
maximum value of the least significant part, the precision of a double
integer is maximized and the code necessary to manipulate it is minimized.
For example:

Program Double;
Const Cutoff = Maxint;
Var LCount1, HCount1,
LCount2, HCount2,
Inner, Outer : Integer;
Begin
LCount1 := @; HCountl := 0; (» Set first value to @ »)
LCount2 := @®; HCount2 := @; (» Set second value to @ *)
For OQuter := @ To 32000 Do
For Inner := 0 To 32000 Do

Begin
LCount1 := LCountl + 1;
If LCountt = Cutoff Then
Begin
HCount1 := HCount1 + 1;
LCount1 := 0;
End;
If Inner = Outer Then
Begin

LCount2 := LCount2 + 1;
If LCount2 = Cutoff Then

Begin
HCount2 := HCount2 + 1;
L.Count2 := @;

End;

End;

Sec. 6.15 Coding Style and Optimizations 231

End;
If (HCount1 > HCount2) Or
((HCount1 = HCount2) And (LCount1 > LCount2)) Then
Writeln (*Count 1 is greater, by far’)
Else
Writeln ('This isn’’'t supposed to happen’);
End.

In the example above, a double integer consists of a least significant
part (with values between 0 and MAXINT-1) and a most significant part.
The double integer has the value of the most significant part times
MAXINT plus the least significant part. It is incremented by incrementing
the least significant part. @ When the least significant part reaches
MAXINT, the most significant part is incremented and the least significant
part is reset to zero.

Although this method is somewhat inconvenient, the speed is
comparable to using long integers. The double integers in this example
have a range of approximately 0.2"30. (Greater capacity may be obtained
using the unsigned integer techniques presented in section 6.2.) Unlike real
numbers, no accuracy is lost due to rounding errors. Finally, double
integers do not require the large support modules required by long integers
and reals.

NOTE: Real constants embedded in p-System code files are represented
in a machine-independent canonical form. Whenever a segment
containing these canonical forms is loaded into memory, the operating
system automatically converts all such real constants to the format
appropriate for the interpreter and hardware being used. This process may
take several seconds for segments containing a lot of real constants. This
overhead may be reduced by assigning frequently used constants to
variables and using the variables instead. The overhead may be eliminated
entirely by using the REALCONYV standard utility to convert all canonical
reals in a segment to the native representation for a given machine.
However, the price of this optimization is portability; the codefile that
results is specific to those native floating point routines and cannot be
executed on hardware that uses a different floating point format.

6.15.5 Short Forms

All versions of UCSD Pascal p-machines have p-codes that allow shorter
and faster access to variables declared toward the beginning of a variable
declaration section. Such p-codes are called short forms. Certain short
forms apply to variable loads while others apply to variable stores.

232 PROGRAMMING PRACTICES Chap. 6

The compiler generates short form p-codes using rules which depend
on the scope of the variable being accessed. A variable’s scope depends on
its relationship to the code that accesses it. Variables declared in the
procedure for which the code was generated are referred to as local
variables. Variables declared at the program (or unit) level are referred to
as global variables. Variables declared in any parent procedures (except
the program itself) are referred to as intermediate variables, and
variables declared in used units are referred to as external variables.

The table below indicates the variables for which the version IV
compiler generates shorter and faster p-codes. The actual p-code emitted
depends on a variable’s offset from the beginning of the variable
declaration section in which it appears. The offset of the first variable in a
declaration is one; subsequent variables are assigned higher offsets. The
lower a variable’s offset, the shorter and faster the p-codes that access it.
Section 5.0.1 describes how compiled listings may be used to determine the
offset of a variable.

Variables beginning within the offsets specified in the table are
accessed using p-codes of the specified length. Programs that declare their
most frequently accessed variables at the beginning of their variable
declarations are shorter and execute faster than their less careful
counterparts by as much as 10. Note that accesses to local and global
variables are the fastest types of accesses. Programs that access
intermediate and external variables pay a premium in both execution time
and in code space. '

Variable Loads
1-byte 2-bytes J3-bytes

Local of fsets 1-16 17-127 128+
*Intermediate offsets 1-127 128+
Global offsets 1-16 17-127 128+
External offsets 1-127 128+

*One byte more is allocated for accesses to variables declared
in the parent of a procedure’s grandparent procedure or the
procedures that contain it.

Variable Stores
1-byte 2-bytes J3-bytes 4-bytes

Local offsets 1-8 9-127 128+
Intermediate offsets 1-127 128+
Global offsets 1-127 128+
External of fsets 1—-127 128+

Note that these rules apply to the Version IV p-machine only. Pre-
Version IV implementations have similar rules, except that all
intermediate loads require between three and four bytes and the 1-byte

Sec. 6.15 Coding Style and Optimizations 233

local store operator is not available. An example illustrating the rules for
Version IV is shown below:

Program Baklava;

Var Global1, (» Offset 3 =)
Global2, (» Offset 2 »)
Globail3 : Integer; (» Offset 1 =)
GArray : Array [©..500] Of Integer; (= Offset 4 »)
GString : String; (» Offset 501 »)

Procedure Parenti;
Var IntStr1 : String; (» Offset 1 »)
IntIntt : Integer; (» Offset 42 «»)
Procedure Parent2;
Var IntInt2 : Integer; (» Offset 1 »)
IntStr2 : String; (» Offset 2 »)
Procedure Local;
Var Locall : Integer; (» Offset 1 =)
LString: String; (* Offset 2 »)
Local2 : Integer; (» Offset 44 x)
LArray : Array [0..5] Of Integer; (» Offset 46 »)

Begin
(» From here, Locall is local, all Intxxx’s are
intermediate, and all Gxxxx's are globals. *)
End;

Begin
(» From here, all Intxxx2's are local, all Intxxx1i's
are intermediate, and all Gxxxx's are globals. *)
End;

Begin
(+ From here, all Intxxx1's are local, and all
Gxxxx's are globals. =)
End;

Begin
(*» From here, all Gxxxx’'s are globals. *)
End.

From procedure Local, the variable Local1 is a local variable located
within offsets 1 through 8. Thus, both loads and stores involving Local1
use 1-byte p-codes and are hence very fast. Accesses from the Local
procedure to the IntStr1 and IntInt1 variables use 2- and 3-byte p-codes
respectively. Any access to the GArray variable uses a I-byte p-code, even if
a subsequent array index results in access beyond the 16th word. Note that
the declaration order in the Loca! procedure is suboptimal; had the Local?2
variable been declared before LString, accesses to Local2 would have used
Foyte p-codes instead of 2-byte pcodes. Note also that the compiler assigns
offsets to Global1, Giobal2 and Global3 in the reverse order of their
declaration. This phenomenum is called reverse field allocation and

234 PROGRAMMING PRACTICES Chap. 6

occurs whenever variables are declared of the same type by separating
them with commas.

6.15.6 WITH Statements

The WITH statement is used to establish a temporary addressing
environment within a procedure. A WITH statement allows the use of
record field names without specifying the record name each time. As a
side effect of this statement, the compiler calculates the base address of the
record and stores it in a temporary. Subsequent access to the record’s fields
are performed by code that indexesoff the address in the temporary instead
of recalculating the record’s base address and indexing. Using the
temporary address as the record base saves the complex calculations
normally required to access these fields. Programs that use the WITH
statement are generally shorter, faster and easier to understand. For
example:

Program WithDemo;
Type TheRec = Record

Fieldt,
Field2 : Integer;
Internal : Record
Field3,
Field4 : Integer;
End;
End;

Var Beasty : Array [0..5@, ©..20, @..2] Of TheRec;
Beauty : tTheRec;
Tempty : TheRec;

Field2,
I, J : Integer;
Begin
Beasty[I » J, J *» 2, I » 2].Fieldl := 0O;
Beasty[I » J, J » 2, 1 » 2].Internal.Field3 := 99;
With Beasty[I = J, J = 2, 1 s 2], Internal Do
Begin
Fieldl := 0;
Fieldd := 99;
End;

Beautyt.Fieldl := 199;
With Beautyt Do
Begin
Fieldl := 199;
Tempty.Internal := Internal;
Tempty.Fieldl := Fieldl;
End;
End.

In the example above, the Beosty array is a complex array of records
which themselves contain records. Indexingto a particular array element

Sec. 6.15 Coding Style and Optimizations 235

involves the execution of a long sequence of code which consumes a lot of
execution time. In the source code, the array indexing is so arduous as to
obscure the meaning of the code. The first WITH statement evaluates the
base address of the desired record. It also calculates the base address of the
Internal record (using the the record base just evaluated). Subsequent
record accesses use these base addresses instead of recalculating them. The
resulting source code is much clearer and compiles into smaller, faster
p-code.

The compiler may suppress the evaluation of a WITH record’s base
address if it is more economical to evaluate the base address as the record’s
fields are accessed. This may be the case when using a simple pointer in the
WITH statement. Allocating a temporary to contain the base address and
then indexing off the temporary yields no advantage over indexing off of
the original pointer directly. Whether or not the compiler generates code to
calculate the base address at the beginning of the WITH statement or
calculates it inline, the WITH statement still establishes a local addressing
environment within which only the field name is required to access a
record’s field. The WITH statement involving the Beauty pointer variable
uses the value in Beauty as the base address of the object record instead of
evaluating Beauty+t, assigning the result to a temporary and then indexing
off the value in the temporary.

Note that the WITH statement involving the Beauty pointer variable
contains assignments to Tempty.Internal and Tempty.Fieldl. Since
corresponding fields of Beautyt and Tempty have the same names, fields
from Tempty must be fully qualified when used within this WITH
statement; otherwise, the identically named fields in Beautyt would be
assumed. This causes the compiler to calculate the base address of Tempty
twice within the WITH Beautyt statement. In this situation it would have
been more efficient to have used WITH Tempty, rather than WITH Beauty*:

With Tempty Do

Begin
Beautyt.Fieldl := 199;
Internal := Beaqutyt.Internal;

Field1 := Beautyt.Field1;
End;

The WITH statement above is equivalent in effect to the original, yet
it generates more efficient code. This time, although the references to the
fields of Beauty+t are still done directly off the pointer rather than off a
temporary —as in the original code —the references to the fields of Tempty
are done off a temporary —~whereas in the original code the base address had
to be recalculated for each reference.

WARNING: Since a WITH statement establishes a local addressing
environment, ambiguity may arise between a field name declared within

236 PROGRAMMING PRACTICES Chap. 6

the record and identifiers accessible outside of the WITH. In the example
above, it is anyone’s guess whether the global variable Field2 or the record
field Fietd2 would have been affected had there been an assignment to
Field2 in the first WITH statement. Bugs arising from such ambiguities
are particularly difficult to locate.

WARNING: Values used in the calculation of a record’s base address at
the beginning of a WITH statement (such as array indices and pointer
values) may be changed by code within the WITH statement without
affecting the base address used throughout the WITH statement. However,
should the compiler in some future release choose to evaluate the record’s
base address on each field access, this practice may yield code that produces
unexpected or undesirable results. It is best not to change the values used to
establish the local addressing environment until after the code contained
within the WITH statement has executed. The following example
illustrates what to avoid:

program avoid;
var
point: tarry;
arry: array[1..10] of record
thingl: integer;

thing2: char;
end;
begin
new(point);
with pointt.arry[inx] do
begin

thingl := 10;
inx := newvalue; §Don't do this ...}

new(point);
§f... or this, as the 12 and the N’ may end up ...}
thing2 := 'N’;
§... in different arry elements or different arry’s!}
end;
end.

6.15.7 String Manipulation

In general, the string intrinsics provide efficient operations on string
variables. However, certain string intrinsics are grossly inefficient in
certain circumstances. In these cases, use of more obscure methods results
in smaller and faster code files.

The most inefficient string intrinsic is the CONCAT function. This
function accepts a variable number of string values and returns the

Sec. 6.15 Coding Style and Optimizations 237

concatenation of all of the arguments (see section 4.6 for details). In order
to implement this function, the compiler allocates a string temporary and
initializes it to the empty string. Next,it calls the operating system string
concatenation routine for each argument, accumulating the final function
result in the string temporary. Therefore, the cost of a call to the CONCAT
function is the allocation of a large string temporary and an operating
system call for each string argument.

The INSERT intrinsic offers an efficient alternative to the CONCAT
function. The INSERT intrinsic accepts a source string, a destination string
and an index into the destination string as parameters (see section 4.15 for
details). The CONCAT intrinsic may be simulated by inserting the first
string argument into the second string argument. For example:

Program WinWin;
Var S1, 82, S3, Dest : String;
Begin
<...>
Dest := Concat (S1, S2, S3);
<...>
Dest := SJ;
Insert (S2, Dest, 1);
Insert (S1, Dest, 1);
End.

In the example above, the CONCAT function results in the allocation
of a string temporary, which is automatically initialized to the null string.
A total of three calls to the operating system concatentation routine are
made, in addition to the final assignment into the Dest variable. In the
second half of the program, the CONCAT function is simulated using a
string assignment and two calls to the operating system string insertion
routine. The savings realized using this approach include a string
temporary (41 words of local data space), the initialization of the string
temporary and one call to the operating system.

Another inefficient string operation is the use of the string DELETE
intrinsic to truncate a string variable. The DELETE intrinsic accepts a
string variable, an indexinto the string and a character count as parameters
(see section 4.8 for details). A call to the DELETE intrinsic involves the
processing of the three parameters and a call to the operating system string
deletion routine. A more efficient approach is to directly reduce the
magnitude of the string’s length byte. For example:

Program Expedient;
Var S : String;
Begin
<...>
Delete (S, Length (S) — 1, 2);
<...>
(«$R—»)
s{e] := Chr (Ord (S[Q]) - 2);

238 PROGRAMMING PRACTICES Chap. 6

(s$R1x)
End.

The exampleabove demonstrates two methods of deleting the last two
characters of a string. In the first instance, three parameters are processed
and a call is made to the operating system string deletion routine. In the
second instance, the string’s length byte (which occupies the zero’th byte of
the string) is decremented directly. Note that the length byte is accessed as
a character variable, as if it were an element of the string. The CHR and
ORD functions are used to allow arithmetic operations on the length byte.
Additionally, range checking must be suppressed for the duration of the
operation since access to the zero’'th element of a string variable otherwise
results in an execution error. The code generated for this approach is
smaller and faster than for the approach using the DELETE intrinsic and
does not require an operating system call.

6.15.8 CASE Statements

CASE statements are normally used when more than two possible actions
may be performed based on the value of a scalar variable (otherwise an IF
statement is used). CASE statements are implemented as a jump table; the
compiler allocates one jump table entry for each value between the lowest
value and highest value in the CASE statement. For example:

Program Bellicose;
Var 1 : Integer;
Begin
<...>
Case 1 Of
-1000: Writein (’Value is very small’);
@: Writeln ('Value, what value?’);
1000: Writeln ('Value is very large’);
End;
<...>
If 1 = -1000 Then
Writeln ('Value is very small’)

Else If I = © Then
Writeln ('Value, what value?’)
Else If I = 1000 Then

Writeln ('Value is very large’);
End.

In the example above, the lowest value in the CASE statement is
-1000 and the highest value is 1000. Therefore, the compiler allocates a
jump table containing 2001 words! The CASE statement may be simulated
using the network of cascaded IF statements in the second half of the
example. The compiler generates approximately three words for each IF
statement (exclusive of the WRITELN call). In this example, the compiler

Sec. 6.15 Coding Style and Optimizations 239

generates approximately 100 times the amount of code for the CASE
statement as for the IF statement network. Although the IF statement
network executesmore slowly than the equivalent CASE statement, in this
case it is most cost effective to use the IF statements. In general, it is most
cost effective to use a CASE statement when individual actions are
provided for at least one third of the values between the lowest value and
the highest value in the CASE statement.

6.15.9 GOTQO Statements

One of the design goals of modern block-structured languages is to provide
flow of control constructs that eliminate the need for the GOTO statement.
Careless use of GOTOs may render a program unintelligible and error
prone. However, Pascal does not provide constructs sufficient to eliminate
GOTO usage entirely. Therefore, the GOTO statement lives on.

Since there is such a stigma associated with the use of the GOTO
statement, programmers go to great lengths —sometimes inordinate lengths
-to eliminate their usage. For example:

Program Boondoggle;

Procedure ExitDemo;
Begin
<...>
If SomeCondition Then
Exit (ExitDemo);

<...>
End;
Procedure GotoDemo;
Label 1;
Begin
<...>
If SameCondition Then
Goto 1;
<...>
1:
End;
Begin
L...>
End.

In the example above, the ExitDemo procedure may be terminated by
an Exitstatement. The GotoDemo procedure performs the same action as the
ExitDemo procedure, but uses the GOTO statement. The compiler generates
approximately five bytes fewer for the GotoDemo procedure, and the GOTO
statement executes far faster than the EXIT intrinsic. In this case, use of

240 PROGRAMMING PRACTICES Chap. 6

the GOTO statement is very defensible because its use results in more
efficient code without loss of clarity or reliability.

6.15.10 Procedure Calls

In Version IV, certain types of procedure calls are faster than others and
and certain types require less code. Analogous to the variable load and
store operators described in section 6.15.5, the Pascal compiler emits
procedure call operators that may call local, intermediate, global or external
procedures. Some types of procedure calls have short forms. These short
forms require fewer bytes of code, but executeonly marginally faster than
their more generalized forms.

The compiler generates procedure call p-codes based on the lexical
level of the destination procedure relative to the caller. Local procedure
call operators are generated for calls to procedures declared within the
calling procedure. Global procedure call operators are generated for calls
to procedures declared at the outer level of the program or unit containing
the caller. Intermediate procedure call operators are generated for all
other procedure calls to procedures within the segment containing the
caller. External procedure call operators are generated for all calls to
other segments (including used units). Since segment procedures may be
declared either local, intermediate or global within a program or unit,
external versions of the local, intermediate and global procedure call
operators may also be generated. The external global procedure call
operator is generated for all calls to used units.

The table below specifies the number of bytes emitted for each type
of procedure call (exclusiveof any parameter preparation):

Type of Call Length
Local 2 bytes
Intermediate 3 bytes
Global 2 bytes
External Local 3 bytes
External Intermediate 4 bytes
External Global 3 bytes

Short forms of the external global procedure call operator are
generated for calls to procedures in the first seven used units. In addition,
short forms of the intermediate procedure call operator are generated for
calls to a procedure’s parent or grandparent procedure. Short forms require
one byte fewer than the general form described in the table.

Sec. 6.15 Coding Style and Optimizations 241

An exampleillustrating these rules is shown below:

Program Baklava;
Procedure Parent1;
Segment Procedure Parent2;

Procedure Inner;
Begin
(» From here, Parent2 is external intermediate, Inner
is intermediate, and Parent1 is external global. »)
End;

Begin
(* From here, Inner is local, Parent2 is intermediate,
and Parent1 is external global. =)

End;
Begin
(» From here, Parent2 is external local, and Parent1 is
global. =)
End;
Begin

(* From here, all procedures are either global or
external global. »)
End.

Note that in all versions of UCSD Pascal, external procedure calls are
very slow relative to nonexternal procedure calls. When the segment
containing the called procedure is not resident in memory, even the time
necessary to execute the external call is small relative to the time required
to load the missing segment from disk. However, when the required
segment is already resident in memory, repeated calls to the segment have a
detrimental effect on the time required to execute an application. Since
calls to used units are implemented using external procedure calls, inter-
unit calls are therefore discouraged (although execution within a unit
procedes at the normal rate). The appropriate tradeoff between modular
(unit-oriented) application construction and application speed must be
determined on a case-by-case basis.

6.15.11 Parameters to Procedures

The Pascal language is constructed to encourage the passing of parameters
between procedures. However, passing certain types of parameters by
value require extraordinary amounts of time and space.

Strings, long integers, arrays and records are the most serious cases.
Memory space for copies of such values is allocated within the dataspace of

242 PROGRAMMING PRACTICES Chap. 6

the called procedure; a parameter’s value is automatically copied into its
temporary memory as the called procedure begins execution. The larger the
value parameter, the more temporary space is allocated and the more time
is spent copying the parameter into this space. Some value parameters may
be so large that there isn’t enough space to allocate temporary memory.
This overhead may be circumvented by passing the value parameter as a
variable parameter. In this case, a pointer to the parameter is passed to the
called procedure and no temporary memory is allocated. Note, however,
that it is the responsibility of the called procedure not to modify the
parameter (as it safely could if it was a value parameter) since such
modifications are made to the actual parameter. For example:

Program YouPick;
Type Oink = Array [©..14999] Of Integer;
Var Pig : Oink;

Procedure Fat (Death : Oink);
Begin

<...>
End;

Procedure Skinny (Var Careful : Oink);
Begin

<...>
End;

Begin
Fat (Pig);
Skinny (Pig);
End.

In the example above, the Fat procedure accepts a 15000-word value
parameter. A call to the Fat procedure results in the allocation of a
temporary to contain a copy of this parameter. On many machines, there is
not enough memory to allocate such a temporary, so such a call results in a
fatal stack overfiow error. A call to the Skinny procedure causes a pointer
to the Pig array to be passed as the parameter. No temporary is allocated
and it is the programmer’s responsibility to assure that accesses to the
Careful variable are read only.

In Version IV, passing a string constant as a value parameter is very
slow relative to passing a string variable. This is because the code
generated by the compiler in order to pass a string constant includes the
L.PR p-code, one of the slower operators in the Version IV p-machine. The
code generated in order to pass a string variable does not include this
operator. Therefore, passing string variables is much faster than passing
string constants. Program execution time may be reduced by assigning
string constants to string variables at program initialization time, then
passing the string variables during program runtime.

Chapter 7

THE UCSD P-SYSTEM FILE SYSTEM

7.0
7.0.1
7.0.2
7.1
7.1.1
7.1.2
7.1.2.1
7.1.2.2
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.6.1
7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2

Contents

File System «vvuiniiiiiiiin it iiieieieneeneesenssncanns 244
General OVerViEW «.oveieeniveiirnreeeneneeneesensonnss 244
N201%:0.4 0074 4 1o 245
Physical UnitS . ..ovvuiiiuenenenineniieniirnrnrneeenennnnns 245
N2 1% D L0753 T4 1) 246
/O DEVICES c i evetiieitniiieirivierenenerensosencnnnns 246
Serial Devices ..vverinne i iiiiiiirnieiineinnnens 247
Block-structured Devices ...vveevivieniennnnnnnn. 247

Logical VOIumeSovviuiviiiiiiniiiiiiiieeninennnannnn. 247
SYNIAX OVEIVIEW tittniinnnerarnenennenennennonennans 248
Block-structured (Disk) Volumesc.cvuvvvneenn... 249
Disk Volume Usageccvviiiiinniiieniinnnenn.. 249
System VolumesSovvevnvineieieneneneneennnnnnns 250
Prefixed VolumeS ..o.ovvuineeninnniiinieenrenennnnnns 250
DiSK DiTeCtOries cveveenreenennenrrnreeeeneeseenneensans 251
Duplicate Directories oo euenenenenenenenennenrnenn. 251

DiSK Files . oivitinienerniiiin e iienierinenrensesonsenans 252
SYNtaX OVeIVIEW ¢ itviiiiiinneirenennenesoensannnns 252
File Attributes...oovveriininiiiiieiinieneneeneenennss 252
File Type coveiiiiiiiiiiiii ittt iienenennnens 2583

Data Files oivureneiieniiiieineiieeeeeeoenscansnnss 254

243

244

7.3.2.3
7.3.2.4
7.3.2.5
7.3.3
7.3.4
7.3.4.1
7.3.4.2
7.3.4.3
7.3.4.4
7.3.5
7.4
1.5
7.5.1
7.5.2
7.6
7.6.1
7.6.2
7.6.3
7.6.4

THE UCSD P-SYSTEM FILE SYSTEM Chap. 7

System Restrictions Imposed by File Types....... 254

File Date .oovvvvrivaeerrencneocnosroenesecoscncanss 254

Size and Location Attributes......cocvvvevninenns 254

File SUFfiXeS..eueeteririesrsnsaciesesesosesressansones 254
File TitleS covvvernuriarensonssnceecenssoconssscancassns 255
System File Titles eoveereieineieniiienacennssacenss 258

Other Reserved TitleS...covveereerreriienriecacens 257

User File TitleS .evvvvrriireeiiiieeirenreasanconsns 257

Titles with Non-block-structured Volumes....... 257

File Length and File Length Specifiers................ 258
Syntax Specificationooveeivieiiiiiiiiieeieiiiiiiiaienes 259
Subsidiary VOIUMES .. vovveveirvrenreeirieneoeasoscsoscsans 260
Creating and Initializing Sub31d1ary Volumes......... 260
RESTIICTIONS vt vverererersronsssoosnncsnscnssssesasasnnes 261
File Conventions and Applications.....covveevieiecnecenes 262
File Name Prompt Conventionscoevveevecccnss 262
INPUL PrOmMPtS covivneuvnerninrrrreneeneisnorscoseannes 262
011870108 3 (o3 111 o1 - S 263
File Access from User Programsc.cociiiininnne 264

7.0 File System

7.0.1 General Overview

In the most abstract sense, a file is merely a sequence of data. A file system
existsin order to adapt this abstract definition of a file to the requirements
and constraints of a given hardware and software environment. The file
system described herein has the following outstanding characteristics:

e Files may be accessed from Pascal programs with standard Pascal file
operators.

e Files possess types (“extensions”) to aid the user in identifying the
contents of files and to increase system reliability by preventing
invalid operations on files.

@ The file system implements high level concepts such as removable
disk volumes and device-independent file 1/0.

Sec. 7.0 File System 245

® The disk file implementation is both time and space-efficient on
relatively low-performance floppy disk drives, yet takes advantage
of the additional speed and capacity of high-performance hard disk
drives.

The following sections comprise a complete user-oriented
specification of the file system. Section 7.0 presents an overview of file
name syntax. Sections 7.1 through 7.4 describe the syntax and semantics of
the file system hierarchy, starting with the lowest levels of device I/O and
culminating in file attributes. Section 7.5 disucsses subsidiary volumes.
Section 7.6 describes some system-wide conventions that apply to the file
system.

References to file naming conventions and file system terminology
throughout this book refer either implicitly or explicitly to the
information presented in this section.

NOTE: In order to present a consistent file system description, this
section defines a number of terms intended to describe parts of the file
system. New terms are underlined and followed by either an immediate
definition or a reference to a defining section. Subsequent occurrences of
the defined term are not underlined.

7.0.2 Syntax Overview

<file designator>

<file id> >
| t *
| — <volume id> —| |

A valid file designator (informally referred to as file name)
consists of a volume identifier and a file identifier. Volume identifiers
and file identifiers are described in the following sections. The complete
syntax for a file designator is presented in section 7.4.

7.1 Physical Units

Physical units correspond to I/0 devices. They are addressed by pre-
assigned physical unit numbers. 1/0 devices are defined to be either serial
devices or block-structured devices (described in section 7.1.2.2). A
serial unit is a physical unit assigned to a serial device such as a printer or
terminal. A block-structured unit is a physical unit assigned to a block-
structured device such as a disk unit.

246 THE UCSD P-SYSTEM FILE SYSTEM Chap. 7

The assignment of physical units to unit numbers is, to a great extent,
implementation dependent. These assignments are typically implemented
in the interpreter and are not user-modifiable. Exceptions to this rule
include subsidiary volumes (described in section 7.5) and user-defined
serial devices. Consult the Users’ Manual for configuration details.

All configurations contain certain essential physical units. In
addition, many configurations include specialized units, such as one which
maps extended memory into a virtual disk (often known as a “ramdisk”)
or one which accesses the system clock. The table below shows physical
unit number assignments typical for most implementations.

Unit Number device description unit attribute

1 screen and keyboard serial

with echo
2 screen and keyboard serial

without echo
4 disk drive @ block-structured
5 disk drive 1 block—structured
6 printer serial
7 remote port input serial
8 remote port output serial
9 - 12 disks 2 - 5 block—-structured
13 first subsidiary vol block—structured
nn rest of " " block-structured
nn + 1 user—defined serial serial

7.1.1 Syntax Overview

Any physical unit may be used as a file. A file name corresponding to a
physical unit may be constructed as follows:

<unit number>

#<number> ———————>

The metasymbol <number> may be any valid physical unit number.

7.1.2 1/0 Devices

I/0 devices assumed to be connected to the system include disks, terminals,
printers and remote ports. An I/0 device has one of two states: online or
offline. A device is online if it acknowledges status requests from the
system and is available for I/O operations.

Sec. 7.1 Physical Units 247
7.1.2.1 Serial Devices

A serial device either produces or consumes a byte-oriented sequence
of data. Serial devices used with the system normally include terminals,
printers and remote ports. The device drivers controlling a serial device
assume that data transferred between the program and the device consists
of human-readable data known as text files. In this context certain
characters are treated as device control directives rather than as data.
Alternate modes of serial 1/0 are available which make no assumptions
about the data being transmitted. See sections 4.44 and 4.47 for details.

7.1.2.2 Block-structured Devices

A block-structured device is organized into a fixed numberof 512-
byte storage areas known as __blocks__. Blocks are randomly accessible by
block number, starting with block 0. These devices are usually
implemented as fixed or removable disks.

NOTE: High-capacity hard disks are often partitioned so that they
appear to the p-System as a number of separate disk devices.

7.2 Logical Volumes

Logical volumes correspond to physical units; they are addressed by their
assigned volume name. A serial volume is a logical volume assigned to a
serial unit. A block-structured volume is a logical volume assigned to a
block-structured unit. Serial volume name assignments are permanent and
may not be changed by the user; serial volumes are functionally
equivalent to their assigned serial units. Volume name assignments to
block-structured units are dynamic and controlled by the user; a block-
structured volume is addressable if and only if it resides on an online
block-structured unit. Block-structured volumes are described in section
7.2.2.

All serial volumes may be used as files. Block-structured volumes
should never be addressed as files except when using the file handler to
create, examineand copy entire block-structured volumes.

Volume Name Assigned Phys. Unit volume attribute
CONSOLE: 1 serial
SYSTERM: 2 serial

<vol name> 4 block—structured

248 THE UCSD P-SYSTEM FILE SYSTEM Chap. 7

<vol name> 5 block—structured
PRINTER: 6 serial
REMIN: 7 serial
REMOUT : 8 serial
<vol nomes> 9 - 12 block--structured
<subsidiary vols> 13 - nn block—-structured
<user—def serial> nn + 1 serial
NOTE: The volume number of the first subsidiary volume is user-

configurable. See the Installation Guide for details.

NOTE: Volume names may be changed not only on removable-media
block-structured devices, but also on fixed-media block-structured devices.
Thus, the association of a volume name to a unit number for a Winchester
disk may appear permanent as far as the user is concerned, since the disk
will never be removed from the drive, but the system does allow the
volume name to be dynamically changed.

7.2.1 Syntax Overview

<volume id>

<unit number>: >
1
<volume name>: ——|

+ — I
v *

K9

The volume identifier may either be the system volume (section
7.2.4), a unit number, or a volume name. File designators containing either
99,99

empty volume identifiers or ™" specify the prefixed volume, which is
described in section 7.2.5.

Examples:

CONSOLE:
SYSe01:

#4:

L

Sec. 7.2 Logical Volumes 249
7.2.2 Block-structured (Disk) Volumes

Block-structured volumes (informally referred to as disk volumes)
correspond to mass storage devices. The typical case is a floppy disk. A
disk volume contains a collection of disk files (described in section 7.3).
Information describing the files is centralized in a reserved area of the disk
known as the disk directory (described in section 7.2.6). A disk directory
also contains the volume name which identifies the disk volume. A disk
volume is online if it resides on an online disk unit; it may be addressed by
its volume name or by specifying the physical unit containing the disk
volume, e.g., a disk volume named "SYSTEM” on unit 4 can be addressed
either as "SYSTEM:” or #4:”.

NOTE: The disk volume associated with a floppy disk drive can be
changed by inserting a new floppy disk in the drive. However, this may
be a dangerous operation if there are open files on the volume.

NOTE: The volume name of an existing volume may be changed using
the Filer C(hange command.

Details concerning the implementation of disk directories and disk
files may be found in section 8.3.3.

7.2.3 Disk Volume Usage

Because disk volumes may be referenced by volume name, problems may
arise when two disk volumes sharing the same volume name are online at
the same time. This situation should be avoided whenever possible. When
it is unavoidable, (e.g., a program makes an identical copy of a floppy
diskette, including the directory) all file designators should avoid using
volume names as volume identifiers. Instead, the physical unit numbers
should be used to unambiguously specify files on online volumes.

When opening files on a disk volume the system searches all online
block-structured units for the specified volume name. Because a floppy-
based disk volume may not always be mounted in a particular floppy
drive, disk volume names (instead of physical unit numbers) should
always be used in conjunction with a file identifier specifying a disk file
on the volume. Use of a physical unit to specify a volume would constrain
the file system to search only the specified physical unit. The only
exceptions occur when using the file handler to create, examine and copy
entire disk volumes. Using a disk volume name as a file exposes the

250 THE UCSD P—SYSTEM FILE SYSTEM Chap. 7

volume’s disk directory to accidental overwriting by file write operations,
thus threatening access to the volume’s disk files.

WARNING: Removable volumes should never be switched when files
are open on the volume. The operating system will not detect the switch
and a write may destroy information on the switched volume.

7.2.4 System Volumes

The system volume, sometimes known as the root volume, is the disk
volume from which the system was bootstrapped. It contains the
operating system and usually the code files for the rest of the system parts.
The system volume may be specified independently of its assigned volume
name by using the volume identifiers ”*” or ™*:”.

Normally, the root volume is unchanged from the time the system is
bootstrapped until it is shut down. However, some manufacturers provide
utilities which change the root volume from the bootstrap diskette to a
volume on another block-structured device. When this occurs, necessary
system files must be copied onto the new root volume. This procedure
would be followed when a fast but volatile block structured device, such
as a ramdisk, is available. The user would bootstrap the system from a
diskette, then use the utilities to copy system files to the ramdisk and make
it the root device. In such cases system response is greatly improved over
the response obtained by using the diskette as the root volume.

7.2.5 Prefixed Volumes

The prefixed volume is used in conjunction with disk file designators.
Normally, a disk file designator includes a volume identifier to indicate the
volume on which the disk file resides in addition to the disk file identifier
itself. Disk file designators lacking a volume identifier are assumed to
reside on the prefixed volume. Thus, file naming can be simplified by
specifying the most frequently accessed disk volume as the prefixed
volume. The entire prefixed volume can be addressed with the file
designator .”.

The default prefixed volume is the system volume. Another volume
may be specified as the prefix volume in one of three ways: changing the
system data structure which maintains the current prefix from within a
program (not recommended), using the prefix redirection option, either
when invoking a program or from within a program using the REDIRECT
intrinsic (Version IV only; see section 4.29) or interactively, using the file

Sec. 7.2 Logical Volumes 251

handler P(refix command or redirection at X(ecute. If the volume
identifier specified for new prefix volume matches the name of an online
disk volume, the volume becomes the prefixed volume. The volume
identifier can also specify an offline disk volume; when that volume
comes online, it becomes the prefixed volume. If the volume identifier
specifies a physical disk unit (as opposed to a volume name), whichever
disk volume is mounted in the specified unit becomes the prefixed volume.

7.2.6 Disk Directories

Disk directories are stored on a disk volume along with disk files.
Directories contain the volume name and up to 77 directory entries (but see
section 7.5 on subsidiary volumes). A directory entry contains the name,
location and attributes of a disk file on the volume. The file names in a
directory must be unique in order to specify a file unambiguously; an
existing file is automatically deleted if another file with the same name is
entered in the directory. Disk file names are described in section 7.4. See
section 8.3.3 for more detailed information on directory structure and
contents.

NOTE: When the file system attempts to add a file to a volume
containing a full directory, it prints the error message:

No room on vol

This is somewhat misleading, as the same message is used to indicate a lack
of disk space.

7.2.6.1 Duplicate Directories

A disk volume may be marked so that the system maintains two disk
directories on the volume. The second directory is called a duplicate
directory and exists as a copy of the main directory. If unforeseen
circumstances cause the destruction of the main directory, it can be restored
using the information in the backup directory. The costs of duplicate
directory usage are minimal: a slight increase in overhead due to the
necessity of updating an extra disk directory during file manipulation and
an extra four blocks on the disk to contain the duplicate directory. The
insurance provided generally outweighs any losses in performance or
space. A duplicate directory can be placed on a disk when it is initialized,
using the file handler Z(ero command. The utility program Markdupdir
may be used to create a duplicate directory on a volume at any time. The

252 THE UCSD P—SYSTEM FILE SYSTEM Chap. 7

Copydupdir and Recover utilities may be used to restore corrupted main
directories (see your Users’ Manual for details regarding these utilities).

7.3 Disk Files

Disk files are stored in an integral number of contiguous blocks on a disk
and contain either programs or data. Each disk file has a number of file
attributes, which provide useful information about the structure and
history of a disk file. They are described in section 7.3.2. File names are
the most important attribute of a disk file; they uniquely identify a disk
file within a directory. File names are described in sections 7.3.3 and 7.3.4.
File length directives control the amount of disk space allocated to a disk
file. They are described in section 7.3.5.

7.3.1 Syntax Overview

<file id>
<title> >
| + | t
|- <suffix> =] |- [*] ~|

-
- [1 —I

File titles distinguish the files in a directory. They are described in
section 7.3.4. File suffixes allow the system and user to determine the
contents of a disk file; they are closely related to file types. File suffixes
are described in section 7.3.3. The syntactic items delimited by square
brackets are length specifiers. Length specifiers serve as directives to the
file system to determine the amount of disk space to allocate to a newly
created disk file. They are described in section 7.3.5.

7.3.2 File Attributes

Disk file attributes are used by the system to manipulate the file and by
the user to determine the contents and history of the file. From the user’s
point of view, the prominent file attributes are file type and file date.
File types are described the following sections. File dates are described in
section 7.3.2.4. The remaining file attributes visible to the user are file
length, starting block and bytes-in-last-block. These are described in
section 7.3.2.5.

Sec. 7.3 Disk Files 253
7.3.2.1 File Type

All disk files have an attribute called the file type. File types enable
both system and user to determine the contents of a disk file, regardless of
its file name. Text file and code file are file types used by the system.
Files of these types are described in section 7.3.3. Files containing
subsidiary volumes are described in section 7.5. Files not containing textor
code or subsidiary volumes are assigned the type data file. These are
described in section 7.3.3. System restrictions imposed by file types are also
described in section 7.3.3.

When a file is created, the system assigns a file type corresponding to
the suffix. Subsequent file name changes do not affect the assigned file
type.

The two file types described in this section are used to identify files
containing specific internal structures. The structures are required (and
assumed to be present and correct) by the system parts that operate on
typed files. The internal structure of text files is described in section 8.0.
Code files are discussed in detail in section 8.4.2.

Text files are usually created and maintained by the editor, although
they can also be created by user programs. Text files contain human-
readable text that represents either program source files, program data or
written documents suitable for word processing. Serial devices used to
display data for human scrutiny (e.g., consoles and printers) recognize text
file conventions on output, thus text files written to serial units or
volumes appear as they do in the editor.

NOTE: Text files have a specific structure; not every file containing
textis a valid textfile, readable by the editor or by a program via READLN.

Code files are created by the compilers and assemblers, and are
manipulated by the operating system and system utilities. Code files
contain a mixture of p-code (possibly some native code) and execution
information used by the interpreter and operating system.

Attempts to edit a code file with the editor or display a code file on
the printer or console will fail; the system misinterprets the code file
format as text file information and spews forth a melange of audio/visual
garbage for your entertainment (and possibly chagrin, since the garbage
may contain values that destroy your terminal parameters). Code files are
best examined and modified with the Patch and Decode utility programs.
See your system documentation.

254 THE UCSD P-SYSTEM FILE SYSTEM Chap. 7
7.3.2.2 DataFiles

Data files are created by programs and may have any internal
representation. Except for being constrained to lie within an integral
number of disk blocks, data files have no defined internal structure
whatsoever. They match the Pascal language’s definition of a file as a
sequence of arbitrarily structured items.

7.3.2.3 System Restrictions Imposed by File Types

The editor does not accept files other than textfiles for editing. It uses
the current suffix of a disk file name to guess its file type. This method of
checking is sufficient for all practical purposes, however, it can be
subverted by changing the suffix of an existing file name with the file
handler.

7.3.2.4 File Date

The current system date is assigned to a file when it is created or
modified (where "modified” is defined as the replacement of an old file by
a new file of the same name or an update-and-LOCK of an existing file).

7.3.2.5 Size and Location Attributes

The length field indicates the number of blocks allocated to a disk
file. The starting block field indicates the absolute block number of the
first block of the disk file (block O is the first absolute disk block). The
bytes-in-last-block field indicates the number of bytes in the last block of
the file. This field is always set to 512 for textand code files, because they
are created with block-oriented file operators; only data files have
interesting values in this field. For data files, the system uses the bytes-in-
last-block information to determine the end-of-file condition.

7.3.3 File Suffixes

File suffixesare separated from file titles by a period. File suffixes treated
specially by the system are shown in the following table. A file created
with one of these suffixes is assigned the corresponding file type.
Otherwise, the file is designated a data file.

Sec. 7.3 Disk Files 2565

Suffix File Type System Uses

.TEXT text file text file identifier
.CODE code file code file identifier
.SVOL subsidiary volume

.BACK text file editor backup text file
.BAD data file damaged area of disk
.GRAF vestigial file type; no longer applicable
.INFO "

.FOTO "

BACK files are backups of textfiles created by the advanced versions
of the system editor. They share text file characteristics. .BAD files are
created by the file handler X(amine command, and indicate a permanently
disabled area of a disk. They are distinguished in that they are not moved
when a volume is condensed and so will not be written over with good
data.

7.3.4 File Titles

File titles uniquely identify disk files within a directory. The system
reserves some titles for its own use. These are called system titles. All
other valid file titles are user titles.

7.3.4.1 System File Titles

System files contain code and data used for system operation. They
are identified by the file title "SYSTEM.<system part name>". The actual
system files vary from implementation to implementation. Some of the
more common system files with less than obvious functions are discussed
below.

Most files with a code file type, except for the operating system
(SYSTEM.PASCAL), are executable code files and can be invoked from the
system prompt with the X(ecute command (if they are programs) or USED
from within a program (if they are UNITs). System code files without a
.CODE suffix (e.g., SYSTEM.FILER) may be invoked with the X(ecute
command by following their names with a period ».” (e.g.,
SYSTEM.FILER.).

NOTE: Most versions of the p-System perform certain preliminary
setup operations when the compilers or assemblers are invoked from the
main system promptline. Thus, the compilers and assemblers will not
work properly when X(ecuted.

256 THE UCSD P-SYSTEM FILE SYSTEM Chap. 7

SYSTEMMISCINFO contains information specific to a particular
machine/terminal environment. It may be examined and modified with
the Setup utility. Users may add their own routines to the
SYSTEM.LIBRARY using the Library utility. These routines may then be
used by any Pascal program.

SYSTEM.MENU (applicable only in Version IV) is the program
which, when present, is automatically executed by the system at system
bootstrap time. It effectively replaces the system prompt line.

SYSTEM.STARTUP is a user-defined program which, when present,
is automatically executed by the system following the bootstrap, before
displaying the welcome message or system prompt. It is used for turnkey
applications programs which do not require other parts of the system. The
difference between SYSTEM.STARTUP and SYSTEM.MMENU is that
SYSTEM.STARTUP is executed only when the system is initialized.
SYSTEM.MENU is executed whenever the main promptline would appear.

While bootstrapping, the system searches for the interpreter and
several system files on the system volume. These include
SYSTEM.SPOOLER, SYSTEMMISCINFO, SYSTEM.PASCAL,
SYSTEMMMENU, SYSTEM.STARTUP and the work files. To locate the
other system components, the system searches the system volume and then
all other online disk units (ordered by increasing unit numbers) for a disk
volume containing the system titles.

SYSTEM.SYNTAX is used by the compiler to generate error messages
when a syntax error is discovered. If SYSTEM.SYNTAX is not present,
only an error number will be made available.

Work files (SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE) exist to
speed up interactive program development. The editor automatically reads
in a the work textfile, if it existsand the compiler automatically attempts
to compile the work text file. The system R(un command automatically
looks for the latest work code file to execute.

SYSTEM.SWAPDISK is used by the compiler on pre-Version IV
implementations of the p-System (including Apple Pascal) to save memory
during the compilation of large programs. If the following conditions
hold:

® A 4-block file named SYSTEM.SWAPDISK resides on the same
volume as SYSTEM.COMPILER.

® An ”include” file directive is being processed, therefore, a disk
directory must be read in order to open the "include” file.

® There is insufficient memory to read the directory, but the program’s
symbol table occupies more than 4k bytes.

then the operating system swaps a section of the symbol table out to the

Sec. 7.3 Disk Files 257

file SYSTEM.SW APDISK, reads the directory into the resulting section of
memory, opens the “include” file, and swaps the symbol table back into
memory. The compiler will not automatically establish a
SYSTEM.SWAPDISK; if it is needed but not present the compile will be
aborted.

The program listing file optionally produced by the compilers and
assemblers is named SYSTEM.LST.TEXT if no other name is specified.

The spool file, SYSTEM.SPOOLER, contains the names of files queued
for printing when the spooler is active. Print spooling is available with
Version IV.1 of the p-System.

The p-code interpreter, which must be available on all systems, is
usually known as SYSTEM.INTERP or SYSTEM.<processor name> (e.g.,
SYSTEM.PDP-11). It appears in the directory as a datafile, and is written
in the machine language of the host processor.

7.3.4.2 Other Reserved Titles

The file names <processor name>OPCODES, <processor
name>ERRORS and USERLIB.TEXT are reserved for system use, in
addition to the system file titles enumerated in the previous section. The
OPCODES and ERRORS files are used by the Assemblers for opcodes and
error messages, respectively. USERLIB.TEXT contains a list of user library
file names. It is discussed in section 3.2.

7.3.4.3 User File Titles

User files may have any valid file title other than the reserved
system file titles.

7.3.4.4 'Titles with Non-block-structured Volumes

The file system allows the use of serial volume identifiers in
conjunction with non-empty file titles (i.e., Console:.Text) even though
serial volumes have no directories. In this case, the file title is ignored.
This convention allows a system program to append a standard file suffix
to a file prompt response without first having to determine whether or not
the suffix is appropriate.

258 THE UCSD P—SYSTEM FILE SYSTEM Chap. 7
7.3.5 File Length and File Length Specifiers

When a disk file is created and made available for subsequent I/O
operations, the file system must determine three things: whether the
volume specified has an available directory entry for the new file, how
much disk space to allocate for the new file, and whether the required disk
space is available on the disk. When the I/0 operations are complete, the
system releases any disk space that was allocated to, but not used by the
file. However, while the file is available for I/0, the system reserves all of
its allocated disk space for growing room.

Files created without a length specifier are allocated the largest free
space on the volume in order to minimize the possibility of growing files
running out of disk space. This causes problems when a program attempts
to create a number of new files on a disk volume having only one free
space available. Although the number of blocks in the free space might
easily contain all of the completed files, the first file created is allocated all
of the available disk space, thus preventing the creation of other files.

File length specifiers change the file system’s disk space allocation
strategy in order to avoid problems such as the one described above. The
value of the length specifier is treated as an estimate of the eventual
maximum size (in blocks) of the file. The file system then allocates the
specified amount of disk space for the file in the first free space large
enough to contain it. For example, the file length specifier *{10]” allocates
10 blocks of disk space in the first 10-block chunk of free disk space.

The file length specifier "[¥]” is useful when creating multiple files
on a single disk; it allocates either half of the largest space on the disk or
the second largest space, whichever is largest.

The file length specifiers "[0]” and "] are equivalent to a null length
specifier. They allocate the largest space available.

If a growing file reaches the end of its initially allocated space, one of
two things occurs. If the disk space immediately following the allocated
space is already occupied by an existing file, the file system reports a
system error. Otherwise, the space is part of a free space and the file’s
allocated disk size is extended to occupy the entire free space.

Length specifiers may appear in any file designator; however, they
are ignored in any file operation other than file creation.

Free spaces are created on disk volumes as a consequence of normal
disk file creation and destruction. Disk free space is managed with the file
handler K(runch command.

Sec. 7.4 Disk Files 259

7.4 Syntax Specification

<file designator>

<file id> >
| * *
|— <volume id> —| |
<volume id>
#<number>: >
?
—— <volume name>: ——|
I
— o« —| |
v 1
:—
<file id>
<title> >
| t t
|- <suffix> —| |- [*] -]
|
- [m] -}
- [] —I

All spaces and control characters are ignored and all lower case
alphabetic characters are mapped into their upper case equivalents. The
following characters should not be used in a file designator: ”$”, =", »?”
and ”,”. These characters are treated specially by the file handler’s file
name prompts.

The volume identifier may specif'y a physical unit by its unit number
("#<number>:"), a logical volume by its volume name (”<vol name>"), the
system volume ("%, ”*¥”), or the prefixed volume (null,). The volume
name may contain any printable characters except ”#” and :”, and has a
maximum length of seven characters.

The file identifier consists of a title followed by an optional suffix
and terminated by an optional length specifier. The title and suffix may
contain any printable characters except "[”; their combined maximum
length is fifteen characters. A disk file’s directory entry consists of the
concatenation of title and suffix. This entry must be matched exactly by a
file designator’s title and suffixin order to locate the disk file.

The file length specifier is delimited by square brackets. The symbol
“m” shown as one of the length specifier options denotes a positive integer.

Examplesof valid file designators are:

*SYSTEM.WRK . CODE[*]

FOON. TEXT
SYSTEM.COMPILER

FLOPPY : SCRUB. BUB. FOTO[10]

260 THE UCSD P—-SYSTEM FILE SYSTEM Chap. 7

*

*:

#12:
PRINTER:
DATA

7.5 Subsidiary Volumes

The p-System provides for a maximum of 77 files on a blocked volume.
The p-System was originally implemented on machines with relatively
low-capacity diskette drives as the sole means of secondary storage; it was
rarely possible to store more than 77 files on a volume. However, this
limitation is fairly extreme by modern standards. The 77 file limit would
leave the volume with a large amount of unused (and unusable) space.

Version IV of the p-System introduced subsidiary volumes as a work-
around to the maximum number of files per volume limitation. A
subsidiary volume is a file on a block-oriented device which itself contains
a directory and files. A subsidiary volume is both a file and a volume: it
appears in the directory of the volume containing it (the principal volume)
as a data file. However, it is can also be recognized by the file system as a
volume in its own right.

7.5.1 Creating and Initializing Subsidiary Volumes

A subsidiary volume is distinguished from other files by its extension,
which is SVOL. A subsidiary volume is established using the file handler
utility’s M(ake command, specif ying a file name ending in .SVOL. The file
handler recognizes this extension; it establishes the subsidiary volume and
initializes its directory. The user is asked if a duplicate directory is desired
and is prompted for volume name.

It is recommended that the user specify a size, in blocks, when
M(aking a subsidiary volume. Otherwise, the system assigns it the largest
contiguous block of space on the specified volume, as when M(aking any
file.

The maximum number of subsidiary volumes that may be online at
one time is specified in SYSTEM.MISCINFO. If that number has not been
reached at the time a subsidiary volume is established, the subsidiary
volume is brought online (mounted) as soon as it comes into existence.
When the system is bootstrapped, the online principal volumes are
searched for subsidiary volumes; these are mounted as they are
encountered, until the specified maximum is reached.

Sec. 7.5 Subsidiary Volumes 261

Offline subsidiary volumes are present on their principal volumes as
files, but are not accessible as volumes. They may be mounted with the
file handler’s O(nline command. This command permits the user to
dismount (take offline) currently online volumes (to allow for mounting
other subsidiary volumes), to dismount all subsidiary volumes and to
mount a specified subsidiary volume.

Subsidiary volumes may be discarded entirely using the Filer’s
R(emove command; the appropriate .SVOL files are purged from the
volume directory and the subsidiary volume (with all the files it contains)
is lost.

Subsidiary volumes may be mounted or dismounted from within a
program using the DIRINFO unit, included in the Version IV.1 distribution.

7.5.2 Restrictions

Subsidiary volumes may not contain other subsidiary volumes. The
system checks to assure that a volume is not a subsidiary volume before
establishing a subsidiary volume within it.

The file handler’s O(ffline command is picky about how subsidiary
volume names are specified. When performing a M(ount, the .SVOL
extension is required, though it is impossible to mount a file with any other
extension. A volume name (ending with a colon ™) is not permitted when
performing a mount. When performing a D(ismount, however, a volume
name is required. A file name is not permitted, even a file name ending
with .SVOL.

Note that in the file handler the M(ount and M(ake commands share
the same one-letter invocation. To mount, the user must first have
invoked the O{ffline command. However, it is easy to attempt to mount
without first invoking O(ffline, and type the name of the subsidiary
volume intended for mounting. The system interprets this as a M(ake
command and attempts to establish a new subsidiary volume with the
same name, destroying the old one! The user is urged to use the mount
command with caution; if the system asks to remove the “old” subsidiary
volume name, answer N(o!

If a principal volume containing an online subsidiary volume is taken
offline and replaced with a different principal volume, the system is still
under the impression that the subsidiary volume is online. Unit I/0 to the
subsidiary volume will destroy part of the new principal volume.

There is a distinction between the volume name and the file name of
a subsidiary volume. When a subsidiary volume is established, its volume
name (as written in its directory) is the same as its file name (ending in
SVOL) on the principal volume. However, either name may be changed

262 THE UCSD P-SYSTEM FILE SYSTEM Chap. 7

using the appropriate file handler commands. Thus, a directory listing of
the principal volume and the file handler V(olumes command may show
different names for what may be the same subsidiary volume.

This is a potentially hazardous situation. Consider the following
scenario: The user changes either the file name or volume name of an
online subsidiary volume so that they no longer match. The user issues the
file handler’s R(emove command, wishing to permanently destroy the
subsidiary volume. If the volume name were identical to the file name,
the subsidiary volume would no longer be online; a sensible idea, since it no
longer exists. However, with a different volume name, the system retains
the subsidiary volume online. It permits the user to perform 1/0 to the
subsidiary volume, thus destroying any new information stored in the
space formerly occupied by the subsidiary volume.

It is recommended that subsidiary volume file and volume names
never be made different.

7.6 File Conventions and Applications

This section describes some system-wide conventions for file name
prompts. Programs developed by users should take advantage of these
conventions in order to be consistent with the rest of the system.

7.6.1 File Name Prompt Conventions

File name prompts accept file names for one of two purposes: locating an
existing file to use as an input file, or creating a new file to use as an
output file. These operations are implemented with the UCSD Pascal file
operators. See section 6.9 for details and examples.

7.6.2 Input Prompts

File prompts for input files appearing in the system are one of two kinds:
type checking prompts and general prompts.

Type checking prompts enforce a weak form of file type checking by
expecting only the volume identifier and file title for input. The suffix
corresponding to the type of file expected (e.g., text file, in the editor) is
appended by the system and the input file with the resulting file
designator is opened. If no file with the appropriate suffix is found it is
assumed that no file exists of the expected type. The operation is aborted.
To handle situations where the desired file is of the appropriate type but

Sec. 7.6 File Conventions and Applications 263

does not have the corresponding suffix, type checking prompts provide a
conventionalized “out™ if the last character in the input is a period, a
suffix is not appended (but the period is removed). For example, the
X(ecute command expects a code file, and normally appends a suffix of
CODE to the specified file name. If a user supplies a file name of
SYSTEM.EDITOR to the X(ecute command, the system looks for a file
called SYSTEM.EDITOR.CODE, and aborts the X(ecute if no such file is
found. However, the file name "SYSTEM.EDITOR.” (Note the trailing »)
is accepted as a valid input file name identifying the file
”SYSTEM.EDITOR”. The period is stripped from the file name, but no
attempt is made to append a .CODE suffix.

General prompts are more forgiving than type checking prompts.
They accept any input as a valid file designator and proceed to open the
file, taking the designator as stated. Only if the file system indicates that
the file was not opened successfully will the proper suffix be appended to
the input. The operation is retried with the appended suffix. A variation
of general prompts is used by the compiler’s ”include” file mechanism
(described in section 5.0.2).

7.6.3 Output Prompts

There are two types of output prompts appearing in the system,
corresponding roughly to the type checking and general input prompts.
The former variety is more reliable, and recommended.

Corresponding to the type checking prompt, the more reliable output
prompts expectonly the desired file title, concatenate the correct file suffix
and create the output file. Examplesof such prompts include the compiler
code file prompt and the editor’s output file prompt.

NOTE: These prompts do not check if a suffix is already supplied by
the user, they merely append the appropriate suffix. Thus, if the user
types "MY.CODE” in response to the compiler’s code file prompt a file is
created called "MY.CODE.CODE”. This is a valid code file name, but is
probably not the result expected by the user!

Corresponding to the general input prompt, an output prompt may
accept any file specification and create the file with the name as literally
stated. These prompts have a nasty habit of creating data files (instead of
files with the expected type), because users accustomed to the former type
of output prompt naively type only a file title as the output file name. An
exampleof this sort of output file prompt can be found in most versions of
the Library utility. The output file created by the Library utility is
always a code file, but the utility does not automatically append a .CODE

264 THE UCSD P-SYSTEM FILE SYSTEM Chap. 7

suffix to the user-supplied file specification. If a .CODE suffix is not
explicitly supplied by the user, the Library utility will create a non-
executabledata file.

7.6.4 File Access from User Programs

All file system features and all file prompt conventions described in the
previous sections are implemented with the same Pascal language features
available to the user. No tricks are involved. This implies that user
programs can take full advantage of the file system and prompt
conventions for their own prompts.

Chapter 8

SYSTEM UNITS AND DATA STRUCTURES

Contents
8.0 TextFile Format............ bereesaenieiehereat et riaeneas 267
8.0.1 File Structurecoeeiiiiiiiieiieieiiiieiiinciecacnss 268
8.0.2 Headerooovviiiiiiiiieiiiiiiiiiiiiiiiiiiineciennes 269
8.1 Using SCREENOPS Data Structures and Procedures....... 270
8.2 COMMANDIO Monitor and 170 Redirection 277
8.3 The KERNEL ...covviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnenes 280
8.3.1 System Constants ..ouoveeieririvererieceecnesnennns 281
8.3.2 Accessing the System Date..........cooovviiniiine... 281
8.3.3 Using Directories from Programs...........c.cevvuenen. 282
8.3.3.1 Reading and Modifying Directories............... 283
8.3.3.2 Duplicate DirectorieS ...oovvvviivnreecrocssconses 288
8.4 Segment Code Managementocvvviviiiiiniinencennns 288
8.4.1 Introduction and OVeIVIEWcovuviiiiiiinenenenenns 289
8.4.2 Code File Structure ..oovveeeviirrnernnenereneenencnens 293
8.4.2.1 Segment DIictionary ...o.vevvvreniiiieieieincnenen. 294
8.4.2.2 Segment Format..........coovviiviiiiiiieinnnenen 297
8.4.2.3 Segment Reference Listoooiviiiiiiiinnanen, 300
8.4.3 Environment Records & Segment Information........ 301
8.4.4 AsaProgram Runs........covvviiiiiiiiiiiiiiiiiiniae, 305
8.5 File Information Blocks (FIBS)voevvivnnnseennneasnns 306
8.6 Accessing Internal Operating System Procedures.......... 309

265

266 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

8.7 The Compiler/Operating System Interface 319

In the best of all possible worlds, a Pascal programmer would never need to
be concerned with internal operating system data structures or with low-
level system implementation details. Unfortunately, neither the p-System,
nor any other operating system, provides its users with the best of all
possible worlds.

At times, it is necessary for an application to peek into hidden parts
of the system to discover information that is otherwise not available. It
may be necessary to discover terminal or hardware attributes that differ
from installation to installation, for example. This information is
contained in an operating system data structure. Or, an application may
need to manipulate a disk directory in an unusual manner and so not be
conveniently able to use the standard system interface to this structure.

The trend, happily, is to make these low-level constructs available in
a convenient and controlled manner through the use of special-purpose
units. Thus, later versions of the p-System come with units for screen
control, directory access and a variety of other functions. Programs using
these units benefit from tested and “standardized” code; the risk of possibly
crashing the operating system is greatly minimized.

But situations will inevitably arise which will require low-level
access not provided by canned units. And earlier p-System versions often
provide the programmer with no recourse other than explicitly accessing
system data structures.

A complete explication of the p-System operating system is beyond
the scope of this book; in any case, a complete understanding of the
operating system is rarely if ever necessary. This chapter discusses those
operating system details a programmer will most likely need to know.

Section 8.0 describes the internal format of text files. Section 8.1
details SCREENOPS, a unit provided with Version IV of the p-System for
performing screen I/0 in a terminal-independent fashion. Section 8.2
mentions data structures and procedures contained in the COMMANDIO
unit beyond those discussed in previous sections (see sections 4.4, 4.9 and
4.29). In section 8.3 the KERNEL, which contains most of the operating
system data structures, is analyzed in detail. Section 8.4 discusses the
structure of code files and their management by the operating system. The
internal representation of files is the subject of section 8.5. Section 8.6
details how the programmer may access internal operating system
procedures. Finally, section 8.7 covers the interface between the operating
system and the various language translators it supports.

SYSTEM UNITS AND DATA STRUCTURES Chap. 8 267

A word of caution: low-level implementation details are notoriously
version dependent and are subject to change without notice (a good reason
to use the provided units whenever possible). Code that works under one
p-System version may require modification before it works on a later
version, or it may not work at all.

8.0 Text File Format

Ordinary p-System data files have no format beyond that imposed upon
them by the data structures describing their records. They consist entirely
of the data explicitly written to them, with no "filler” bytes and no
extraneousrecords.

P-System text files, on the other hand, have a unique and specific
format. They contain additional information besides the text itself,
including control and filler characters. And they begin with a two-block
“header” record that describes characteristics of a particular textfile.

Ordinarily, these text file features are transparent to the p-System
programmer and user. A filer transfer to the console or printer appears as
plain text. An edit session displays only text. A read or write from or to a
text file from within a Pascal program need not take into account the
additional non-textual material within the file.

The various parts of the operating system cooperate to hide the
extraneoustextfile information from the textfile user.

There are situations, however, when it is desirable to be aware of a
text file’s internal structure. For when a program places data into a text
file using BLOCKWRITE or UNITWRITE the system no longer handles the
details of the file’s internal structure automatically. The operating system
does not intervene when these intrinsics are employed, and the file
contains precisely what is written to it.

Unfortunately, subsequent attempts to access that file as a text file
are likely to fail, since the system will expect to find the specific text file
format. Therefore, programs writing text files with BLOCKWRITE or
UNITWRITE have the responsibility of explicitly handling the text file’s
internal structure.

Typically, this situation will arise when a program must write to the
text file as quickly as possible, so that it may return to a task that requires
its urgent attention. As an example,consider a terminal emulator program
which is receiving text from a remote source and logging it to a text file.
The program will accumulate a buffer-full of text, then dispatch the text
to the log file. The faster this operation takes place, the less likely that text
arriving through the remote port will be lost.

268 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

Section 8.0.1 discusses the internal structure of a text file. Section
8.0.2 discusses the textfile header, a two-block record which appears at the
beginning of every textfile.

8.0.1 File Structure

A textfile is composed of units called ”pages”, each of which is two blocks
(1024 bytes) long. The first page is the header, which will be discussed in
the next section. Succeeding pages contain the text itself in the form of
ASCII characters.

All text files contain header records and a minimum of one page of
text. Therefore no textfile is smaller than four p-System blocks in length.
As the text file increases in size, pages are added to accommodate the
additional text. Therefore a textfile must always have an even number of
blocks.

Text file records are lines of text terminated by the ASCII carriage
return character (a byte containing decimal 13). A page must always
contain an integral number of lines; no line may be broken over more than
one page. (Note that there is no restriction applying to lines crossing block
boundaries.) Since pages are always uniform in size, there will often be
bytes remaining following the final carriage return of a page. These bytes
are filled with nulls (bytes containing zero). Thus, valid text file pages
always end with a carriage return, possibly followed by nulls.

NOTE: A number of communications packages in common use under
the p-System violate the restriction against lines crossing page boundaries.

NOTE: Much of the software that works with text files takes an
occurrence of a null byte as a signal that there is no more text present on
that page. Therefore care should be taken not to create a text file
containing a null embedded within the text. The remainder of the text
following the null may be ignored.

Many strings of consecutive blank characters occur in text files. In
text containing typically indented Pascal programs these strings of blanks
tend to occur most frequently at beginnings of lines. To conserve space in
textfiles the p-System editors employ a blank compression sequence. This
sequence reduces strings of blanks occurring at the beginning of a line to
two bytes.

When the ASCII DLE character (decimal 16) occurs as the first
character of a line the byte following it indicates the number of leading
blanks contained on that line. This value is 32 more than the actual

Sec. 8.0 Text File Format 269

number of leading blanks; the offset of 32 brings the leading blank count
into the range of displayable ASCII characters. Valid textfiles have DLE
compression sequences only at the beginning of a line, never in the middle
of a line.

NOTE: In current p-System releases certain system utilities generate
text files with DLE sequences embedded in the middle of lines (the
Assembler is an exampleof such a utility).

Blanks occurring at the end of a line (prior to the return character
which terminates the line) are valid characters and are not compressed.
However, certain editor functions strip these trailing blanks.

NOTE: The p-System editors can often be used on textfiles that violate
the restrictions against lines crossing page boundaries and DLE sequences
appearing in the middle of lines. Often, the updated file is forced by the
editor to a proper textfile format.

When the tab key is used in an edit session a string of blanks is
inserted into the file. The screen-oriented editors never insert the tab
character itself (a byte containing decimal 9). Tab characters within text
files are not supported by the p-System editors and make a textfile almost
impossible to edit.

8.0.2 Header

Headers are two-block records that precede the textof valid textfiles. The
information in the header is used by the system editors and generally
stripped and ignored by the rest of the system.

Most of the 1024 bytes in the header remain unused by the current
editors and are filled with nulls. The first word of the header is usually
filled with a non-null value by the editor when a text file is initially
edited. Some versions of the editor use this field to indicate editor version.
The remainder of the header contains environment information, such as
marker names and positions, tabstops and auto-indent and filling modes.
Default values for these fields are assigned by the editor and may be
changed by the user with the editor’s S(et E(nvironment command.

NOTE: The header record format is not uniform between the various
editors currently in use under the p-System. Thus the environment
information of a file created under one version of the editor may be lost
when the file is edited under a different version of the editor.

270 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

NOTE: Header records of many editor releases are not portable to
machines of the opposite byte sex. Thus, when editing a text file on a
machine of opposite byte sexfrom the one upon which the file was created,
environment information can be lost.

At times, files containing text may be imported to the p-System
environment without header records. These files cannot be handled as-is
by the editors since the first two blocks of their text will be taken as a
header record. One can often edit such a file by appending two blocks
containing nulls to its beginning. Difficulties may remain if the body of
the file violates the restrictions mentioned in the previous section.

It is tempting for authors of word-processing software to use the
header fields unused by the editor for their own data. For example,a text
formatter may embed formatting instructions in the header of a text file
the first time it is processed so that the information need not be re-entered
by the user when the file is again printed at a later date.

Unfortunately, this trick will not work with all versions of the
editor. While some versions leave the "unused” header fields intact, other
versions reset the unused fields to nulls when the edited file is written.
Thus, the only safe procedure in such a situation is to use a separate file for
the application’s data.

8.1 Using SCREENOPS Data Structures and Procedures

Portability is the p-System’s reason for being. The issue of portability
must be addressed not only on the level of a machine’s instruction set and
I/0 subsystem but also on the level of handling the terminal’s editing and
cursor control functions.

The system itself, and applications that run under it, must often
perform such functions as clearing a line or the entire screen, moving the
cursor to a specific set of screen coordinates, or repositioning it relative to
its current location.

Most terminals employ control or escape sequences of one or more
characters which are taken not as displayable characters but as editing or
cursor movement instructions. Unfortunately, these sequences differ from
terminal to terminal. Therefore applications including these sequences
explicitly are limited to functioning with the terminal for which they
were written.

When the p-System is initially configured for a particular system a
utility called SETUP is run which enables the user to specify the sequences
peculiar to the terminal in use. SETUP creates a file which contains these
terminal parameters (among other things). This file, when given the name
SYSTEM.MISCINFOQ, is read into memory each time the system is booted.

Sec. 8.1 Using SCREENOPS Data Structures and Procedures 271

When the system needs to perform a terminal-specific function (such as
clearing the screen and homing the cursor) it refers to the MISCINFO
information to determine precisely what to send to the screen to cause the
desired action to take place. Thus, the code itself is independent of the
terminal being used.

It is possible (and sometimes necessary) for application programs to
refer to the memory locations containing the MISCINFO information. As
was discussed at the beginning of this chapter, however, such low-level
access to system data structures is risky. There is the danger that the data
itself become modified, thereby corrupting the system. There is the
further danger that the data structure change in a later system release,
rendering the program performing low-level access obsolete.

The SCREENOPS unit supplied with Version IV of the p-System
(subset implementations for other p-System versions are available in the
USUS Library) provides a high-level interface to terminal control
functions. The programmer may refer to a set of standard procedures and
functions to accomplish basic cursor movement and screen editing.

SCREENOPS also contains additional amenities in the form of
procedures which ease some of the mundane chores common in programs
performing screen 1/0. These include screening keyboard input for a
specified set of valid characters, generating prompt lines similar to the ones
used by the operating system itself and other useful functions.
SCREENOPS provides the ability to discover miscellaneous MISCINFO
information such as general terminal characteristics.

NOTE: The p-System documentation refers to a "text port”, which is a
rectangular subsection of the screen. The SCREENOPS procedures are
defined to operate on text ports. However, current versions of the p-System
do not support other than full screen operations.

It is recommended that the reader have available a listing of the
interface section of the SCREENOPS unit while reading the remainder of
this section. 'This can be obtained using the DECODE utility, or by
compiling the example which follows.

The behavior of many of the routines in SCREENOPS is evident from
their nomenclature. The Sc_Clr_Cur_Line, Sc_Clr_Line, Sc_Clr_Screen,
Sc_Erase_to_EOL and Sc_Eras_EOS procedures all cause the reaction on the
screen described by their names. (Note the common convention of
beginning the names of all interface section entities with the same
character sequence; ’Sc” in this case. This convention makes “imported”
entities easier to identify in a host program).

Similarly, the Sc_Left, Sc_Right, Sc_Up, Sc_Down and Sc_Home
procedures all cause the cursor to move in the prescribed manner.

272 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

When the p-System is initially configured a GOTOXY procedure is
written and linked to the operating system. This permits the user to
customize direct cursor addressing for the terminal in use. SCREENOPS
contains a procedure called Sc_Goto_XY which the programmer may use to
move the cursor to a desired set of screen coordinates in a portable manner.
Sc_Goto_XY uses the customized GOTOXY procedure bound into the
operating system.

The system is capable of tracking the current cursor location if the
programmer does not UNITWRITE to the screen and if direct cursor
addressing is always accomplished using Sc_Goto_xy (if the programmer
explicitly writes a terminal-dependent direct cursor addressing sequence to
the screen the system will have an erroneous view of the current cursor
location.)

The current cursor coordinates can be determined using the Sc_Find_X
and Sc_Find_Y functions.

Sc_GetC_Ch is a procedure which continually reads and rejects
characters from the (non-echoing) keyboard until a desired character is
entered. The second parameter to this procedure is the set of desired
characters. The first parameter is a VAR parameter of type char which
Sc_GetC_Ch fills with the accepted character. Lower case characters are
automatically converted to upper case before Sc_GetC_Ch attempts to
match them to the set.

This procedure would typically be used after a prompt line or a menu
is presented to the user, where the acceptable response is a single character
to select the appropriate menu item. Sc_GetC_Ch can be used to easily
“filter” out illegal responses. The returned character would then be used as
the selector in a case statement containing a case label for each of the
elements in the desired set. (See the use of Sc_Prompt in the example below.
Sc_GetC_Ch provides a subset of the functionality of Sc_Prompt.)

Sc_Space_Wait (called Space_Wait, without the ”Sc”, in some
implementations) writes the legend "Type <space> to continue” to the
terminal. It then reads and rejects characters from the (non-echoing)
keyboard until either a <space> or an <escape> character is entered. This
function returns TRUE if an <escape> was typed and FALSE if a <space>
was typed.

Typically, Sc_Space_Wait appears as the conditional of an IF
statement when an error or other exceptional condition is noted. The user
would be presented with one or more lines of error message, and
Sc_Space_Wait would allow the user to read the message before the screen
was erased. Since <escape> is frequently used to abort a program entirely,
the IF statement might read

If Sc_Space_Wait(TRUE)
then exit(program)

Sec. 8.1 Using SCREENOPS Data Structures and Procedures 273

else
{provide for a retry or chain to another program, etc}.

Sc_Space_Wait has a single boolean parameter. If TRUE, a
UNITCLEAR is issued to the keyboard before the legend appears. This has
the effect of clearing the keyboard buffer in case the user had typed ahead
without anticipating an error message. If the parameter is FALSE the
keyboard buffer is not cleared. Its contents will be taken as input by
Sc_Space_Wai t.

Sc_Prompt is an elaborate function that enables the programmer to
easily use a prompt line in the precise style of the system prompts. The
first parameter to Sc_Prompt is a string containing the prompt line, which
may be up to 255 characters long. As much of the prompt as will fit on a
single line is displayed; Sc_Prompt allows the user to cycle through the rest
of the prompt, in line-sized segments, by typing ”?”. When the entire
prompt has been displayed ”?” returns the user to the original line.

If a colon (:) appears in the string, characters to its left will appear at
the beginning of every segment of the prompt (this is standard operating
system usage). If a set of brackets appears at the end of the string it will
appear at the end of every prompt segment. (The brackets would typically
be used to contain a program version number.)

The programmer may specify the character used to define the points
where the string is broken into the prompt segments; the comma (,) is
normally used. As Sc_Prompt cycles through the segments it automatically
generates a ”’?” character at the end of all but the last prompt segment.

Sc_Prompt not only displays the prompt line, it can also read the
keyboard, rejecting all but the correct responses. In this respect it functions
identically to Sc_GetCh, described above. A boolean is used to indicate
whether or not Sc_Prompt will be used for this additional function.

The programmer has the option of positioning the prompt at any
point on the screen. Once a prompt segment has been written the
programmer has the option of positioning the cursor at any screen location
or allowing Sc_Prompt to leave the cursor immediately following the
prompt segment.

See the example below for the precise sequence of Sc_Prompt
parameters.

Sc_Check_Char is a function which examines the last character read
from the terminal and returns TRUE if that character was a <backspace>
or character. This function would normally be used in a loop Which
reads in characters to a string one at a time.

This function has three VAR parameters. The first is of type
Sc_Window, which is a PACKED ARRAY[0.0] OF CHAR. The variable
passed as this parameter might be declared as a variant record, where one
variant is the PACKED ARRAYI[0..0] and the other variant is the string

274 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

whose value is being read. The packed array is a device whereby
Sc_Check_Char can access the entire string as an array without knowing its
size (without range checking).

The second parameter is an index to the position in the string
containing the character just read. The third parameter is an integer
indicating the number of characters remaining to be read in the string.

The programmer would initialize the string to blanks, the index to
one, and the count of characters remaining to the size of the string. In a
REPEAT loop, the indexed character of the string would be read.
Sc_Check_Char would then be invoked as the condition of an IF statement.
If the character read were not a <backspace> or Sc_Check_Char would
increment the index, decrement the count of remaining characters and
return FALSE. The UNTIL clause would end the loop when this count
reached zero.

But if the character read were a <backspace> or the index would
be set back (by one for a <backspace> and to the beginning of the string for
a), the count of remaining characters would be increased (by one for a
<backspace> and to the size of the string for a), and Sc_Check_Char
would return TRUE. The THEN clause of the IF statement would be
executed; this would probably be a statement to reset the position of the
removed character to a blank.

Note that Sc_Check_Char itself neither reads into nor modifies the
contents of the string. However, the screen is properly handled and need
not be manipulated by the programmer; <backspace> removes the last
character typed from the screen and removes the entire entry.

Sc_Map_CRT_Command is perhaps the handiest function in SCREENOPS.
This function scans the character passed to it to identify which key
command it is. The possible key commands include backspace, escape, ETX
and the arrow Kkeys, among others (see type Sc_Key_Command in the
SCREENOPS interface section). Note that any of these might be prefixed.
Without this function the programmer wishing to write a portable
program would have to examine the MISCINFO information to determine
whether or not each key was prefixed, and have code in the program to
check for the appropriate prefix(as well as code to handle no prefix).

Sc_Map_CRT_Command does all this automatically. If the character
passed to Sc_Map_CRT_Command matches a key command as it stands, with
no prefix, the function returns that key command (an element of
Sc_Key_Command). If not, the function assumes that the character passed to
it is a prefix. It reads another character from the keyboard, and attempts to
match that prefix-character combination to a key command. If a match is
found, that key command is returned. If not, the value Sc_Not_Legal is
returned.

Sec. 8.1 Using SCREENOPS Data Structures and Procedures 275

Typically, Sc_Map_CRT_Command would be preceded immediately by a
READ(KEYBOARD,CH) ;

and followed by a case statement with case labels for each Sc_Key_Command
element expected by the program at that point.

Function Sc_Screen_Has is a boolean function which enables the
programmer to discover whether or not the terminal in use has a particular
screen function. Function Sc_Has_Key is a similar function which enable
the programmes to determine if the keyboard can produce a specified key
command.

Sc_Use_Info utilizes a data structure of Sc_Info_Type to pass
information back and forth between a program and SCREENOPS. This
structure contains fields corresponding to many pieces of MISCINFO
information including the screen height and width, scrolling abilities and
speed characteristics. The first parameter to Sc_Use_Info specifies the
direction of the information transfer. The second parameter to the
procedure is the structure itself. Changes to screen characteristics
accomplished through Sc_Use_Info are local to the program making them.

Exampleof SCREENOPS usage:

program scdemo;
§$L PRINTER:}
uses {$U SCREENOPS.CODE} screenops;
var
s1, 82: string;
big: sc_long_string;
ch: char;
name: packed record
cose integer of
1:(pnome: string[15]);
§String for Sc_Prompt input }
2:(nname: packed array[@..0] of char);
§Dummy overlay for Sc_Prompt}
end;
MyScreen: sc_info_type;
high, wide, index, remaining: @..255;
x, y: integer;

procedure DoArrows;

const

Hel IFreezesOver = false;
var

GetOut: boolean;

ch: char;

direction: sc_key_command;
begin

sc_goto_xy(90,0);
sc_clr_cur_line;
write('Arrows: Arrow keys move, <esc> escapes’);

GetOut := false;

276 SYSTEM UNITS AND DATA STRUCTURES

sc_goto_xy(x,y):
repeat
read(keyboard, ch);
direction := sc_map_crt_command(ch);
case direction of
sc_up_key : if y > @ then sc_up;
sc_down_key : if y < high then sc_down;
sc_left_key : if x > © then sc_left;
sc_right_key: if x <« wide then sc_right;
sc_escape_key: GetOut := true;
end;
x := sc_find_x;
fpreserve new x and y values for possible
further manipulationt
y := sc_find_y;
if GetOut
then exit(DoArrows);
until HellFreezesOver;
end;

begin
sc_use_info(sc_get, MyScreen);
fdetermine screen dimensions}
high := MyScreen.misc_info.height;
wide := MyScreen.misc_info.width;

sc_clr_screen;
write('Hi! What is your name? ');
index := 1;
remaining := 15;
name.pnome := °’ '
§if uninitialized will remain at length 0!}
repeat
read(name.pname[index]);
if sc_check_char(name.nname, index, remaining)

then fillchar(name.pname[index], remaining, ' ');
fblank out deleted character(s) }
if eoln

then index := index — 2;

fremove spurious EOLN characters from string}
until (remaining = @) or eoln;
name.nname[@] := chr(index);
§diddle the length byte to reflect true length}

writeln;
writeln('Welcome to some nonsense, ',name.pname,’!’);
writeln(’'Let me know when you'’'re ready to begin.');
if sc_space_wait(true)
fuser hit escape key (can you blame him?)}
then exit(program);
s1 =
"Fun: A(rrow keys, M(iddle of screen, Top L(eft, Top ’;

1 4

s2 := 'R(ight, Bottom leF(t, Bottom RigH(t, Q(uit [@©.00]"’

big := concat(s1,s2);
x = —1;
§force cursor to end of prompt, first

Chap. 8

Sec. 8.1 Using SCREENOPS Data Structures and Procedures 277

time Sc_Prompt is invoked}

y := 0;
repeat
ch := sc_prompt(big, §prompt line}
xX,y,
{coords of cursor following display of prompt segment}
0,0,

fcoords of each prompt segment beginning}
['AO’DM)”LD’.RD.DF’.’H"IQ.]’
facceptable input chars
false,
fwe do want o retur;ed character}
§break prompt into segments at a P |
case ch of
'A’: DoArrows;
'M’: begin
x := wide div 2;
y := high div 2;
sc_goto_xy(x,y);
end;
*L': sc_goto_xy(0,0);
'R’: sc_goto_xy(wide,0);
'F': sc_goto_xy(@,high);
'H': sc_goto_xy(wide,high);
end;
x := sc_find_x;
{preserve new x and y values for possible
further manipulation}
y = sc_find_y;
until ch = 'Q’;
end.

8.2 COMMANDIO Monitor and 170 Redirection

The system unit COMMANDIO contains a number of documented
subroutines, which we have already seen. These are CHAIN (section 4.4),
EXCEPTION (section 4.9) and REDIRECT (section 4.29).

COMMANDIO also contains a number of additional variables and
procedures which relate to I/0 redirection and use of the monitor. Note
that COMMANDIO routines are not available in pre-Version IV p-Systems.

The following boolean variables are available to a program which
USEs the COMMANDIO unit: HaveChain, InRedirect, OutRedirect,
MonitorOpen and InMonitor.

HaveChain is TRUE when a chain is pending - that is, if control will
be passed to another program after the current program completes
execution rather than the system promptline being displayed. HaveChain is
FALSE otherwise. If a program must take different courses of action
depending on whether it will return control to the user or to another

278 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

program it can use HaveChain as the basis for the decision. Typically, this
situation can arise when the conditional CHAIN appeared earlier in the
program. HaveChain Wwill determine whether the CHAIN was actually
executed or not. An example using HaveChain appears at the end of this
section.

InRedirect is TRUE when input has been redirected away from the
standard input device (normally the console). It is FALSE otherwise. This
variable would be examined by a program if it needed to know the source
of its input. For example,a program might employ screen control if user
input were to come from the console CRT. The program would avoid
setting up a screen, however, if user input were redirected to a
teletypewriter.

OutRedirect is TRUE when output has been redirected away from
the standard output device (normally the console). It is FALSE otherwise.
A different format might be used for a report redirected to the printer,
instead of to the console. A program can determine whether the output
had been redirected by examining OutRedirect.

MonitorOpen is TRUE if a monitor file is currently open, FALSE
otherwise. Recall that Version IV of the p-System permits a "recording” to
be made of a work session; those keystrokes recorded can be “replayed”
without being rekeyed at a later date. The keystrokes are recorded in a
monitor file, which may be opened using the M(onitor command at the
main system promptline or the startmonitor procedure explained in this
section. MonitorOpen can be examined by a program to determine whether
or not such a recording file has in fact been opened.

InMonitor is TRUE if the monitor file is currently active. The
recording process may be temporarily suspended - though the monitor file
be left open - using the M(onitor command at the main system promptline.
Thus, selected keystrokes can be left out of the monitor file. Recording can
be resumed into the file at any time with the M(onitor command. When
monitoring is suspended InMonitor is FALSE.

The procedure StartMonitor performs the equivalent of the M(onitor
command of the main system promptline. The user is prompted for a name
for the monitor file, which is then opened.

NOTE: InMoni tor remains FALSE even after StartMonitor is executed.
If it is desired not only to open a monitor file but also permit recording
within it, the program must explicitlyset InMonitor := true after the call
to StartMonitor.

The procedure StopMonitor closes the monitor file. No further
recording will be done to the monitor file.

Sec. 8.2 COMMANDIO Monitor and I/O Redirection 279

NOTE: StopMoni tor does not affect the value of InMonitor. Even if a
previously open monitor file is closed with StopMonitor, InMonitor will
remain TRUE. The user must explicitly set InMonitor := false after the
call to StopMoni tor else the system is in danger of crashing.

StopMoni tor has a single boolean parameter. If its value is TRUE the
monitor file will be closed and retained. If its value is FALSE the monitor
file will be closed and discarded.

The following program uses HaveChain to enable a rudimentary
program call facility. “Program call” means the capability for a program
to call another program at some point, for control to be immediately
tranferred to the called program, and for execution of the calling program
to resume at the point after the call instruction once the called program
completes.

The entire program Cal IDemo is divided between the THEN and ELSE
halves of an IF statement. The part of the program that precedes the call,
and the call itself, are in the THEN half. The part of the program that is to
be executed after the call completes appears in the ELSE half. The
condition of the IF statement is the truth of HaveChain. If HaveChain is
FALSE then we have not yet executed any chain instructions. This
indicates that we are beginning the program, not returning to it after a
call. Therefore if HaveChain is FALSE we execute the THEN half of the IF
statement, including the call to the called program in the form of a chain,
and two chains back to Cal IDemo!

Since the [F statement is satisfied the program completes. Recall that
consecutive chains are stacked and executed in a first-in, first-out fashion.
So control will be passed to CalledDemo— the called program. Note that
CalledDemo need not be aware of its role as a called program. It is an
ordinary program.

When Cal | edDemo concludes, the next (stacked) chain to Cal IDemo is
executed. But there is still one more chain to Cal IDemo pending since it had
been chained-to twice. Therefore HaveChain is TRUE and the ELSE half of
the IF statement is executed. Exception is called upon to cancel the
remaining call to CaliDemo, which was present only to keep HaveChain
TRUE. The remainder of the program is executed.

program Cal IDemo;
uses §{$U COMMANDIO.CODE} commandio;

begin
if not havechain
then begin
§This is the section of code executed
before "call" of CalledDemo}
writeln('We are in calling program, before "call".');

chain(’CalledDemo’); §The actua!l "call"}
chain(’'CaliDemo’); §Gets us back to this program}
chain(’'CallDemo’); §Assures that we end up

280 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

in "after" sectiont

end §by forcing havechain to true}
else begin

exception(true);

fturns off chaining to avoid infinite regress}

§This is the section of code executed after

"call" of CalledDemo}

writeln('We are in calling program, after "call".’);
end;

end.

program Cal ledDemo;
begin

writeIln(’ We are in "called" program!’);
end.

Output:

We are in calling program, before "call".
We are in "called”" program!
We are in calling program, after "call".

8.3 The KERNEL

Much of the global information maintained by the operating system is
accessible to user programs as well. Section 5.12 described how this
information is made available to a program under various versions of the
p-System. In this section a version IV or later p-System is assumed; thus,
the global data structures, constants, variables and routines are made
available by USEing KERNEL.CODE from within the host user program.

The global information changes from one version of the p-System to
another, often to a considerable degree. Nevertheless, a good part of what is
said here is applicable to earlier versions of the p-System as well as to
Version IV. A pre-Version IV program can gain access to the system
globals either with the {$U-} compiler directive (section 5.12) or by
explicitly declaring the required items. This is particularly true with
regard to accessing volume directories, as described in section 8.3.3.

The system global variables normally reside in low memory. When
KERNEL is used, however (or {$U-} in pre-Version IV p-Systems), the
programmer may access these items by name.

Therefore, programmers intending to use the system globals from
within user programs are strongly urged to acquire a listing of the globals
for their version of the system before proceeding. Listings of the globals
for some p-System versions can be obtained from the USUS Library. A
listing of the globals for the p-System version in use by the programmer

Sec. 8.3 The KERNEL : 281

can be had by using the DECODE utility to obtain the interface section of
KERNEL.CODE or by requesting a compiler listing of a program USEing
KERNEL.CODE.

Section 8.3.1 discusses some of the constants available in the system
globals. Section 8.3.2 describes how the global variable containing the
system date may be accessed. In Section 8.3.3 a method for accessing disk
directories from within user programs is presented. This method is
independent of p-System version.

8.3.1 System Constants

The system constants fall into three categories: those that describe fixed
limits of the current version of the OS (such as maximum number of files
permissible in a disk directory or number of characters in a file name),
those that define values for error codes (such as unknown system error or
segment fault) and those that define commonly used values (such as the
ASCII codes for EOL or DLE).

The system constants are documented briefly in comments included
in the listing of the globals. We will discuss them as they arise in the
following sections.

8.3.2 Accessing the System Date

The first example of accessing a system global will be to check the system
date. As discussed in section 8.3.2, the latest date set is stored in the
directory of the system disk. At the next boot that value is read in and
stored in a global variable called THEDATE which is of type DATEREC. The
system date may be set using the Filer D(ate command. This updates both
the global variable THEDATE and the date on the system volume.

The global type DATEREC appears as follows:

DATEREC = PACKED RECORD

MONTH: 0..12;

(»@ IMPLIES DATE NOT MEANINGFUL=*)
DAY: 9. .31;

(*DAY OF MONTH=)
YEAR: ©..100;

(*»100 IS TEMP DISK FLAG#)
END (+DATEREC#) ;

This program illustrates how the globals are accessed under p-System
Version IV.1. The file KERNEL.CODE (here assumed to reside on the
default volume) is USEd and the identifiers appearing therein may
immediately be accessed. THEDATE is checked for validity and edited for

282 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

display.

The program could easily be modified so that it not only displayed
the date but also permitted its modification since the global variables may
be changed at will. It might then be used as a SYSTEM.STARTUP to
enforce daily date changes. For a guide to modifying the date as stored on
the system volume see section 8.3.3.

program DatePlay;
uses §{$U KERNEL.CODE} kernel!;

const
century = *19°’;
var
ch: char;
begin
write(’Current date is ');
with THEDATE do begin
if (month = @) or (day = @) or (year = 100)
then write(’'not meaningfull’)
else begin
case month of
write('January ')
: write('February °’
: write(’March *);
: write("April *');
: write("May ');
: write('June *');
: write("July ');
: write(’August ’);
: write('September ’);
19: write(’October ')
11: write(’November °*
12: write(’'December °’
end;
write(day, ',’');
writein(’ *, century, year:2);
end $else};
end §with};
end.

):

©CONOONDE UGN

);
)

8.3.3 Using Directories from Programs

The UCSD file system provides sufficient support to render it unnecessary
for an application to explicitly manipulate disk volumes and their
directories under normal circumstances. But there are occasions when it is
helpful to be able to perform such manipulations. It may be helpful to
condense a volume from within an application, for example (by moving
the files together so that all free space is at the end of the volume).

Sec. 8.3 The KERNEL 283

Later versions of the p-System include standard units which
facilitate this sort of thing. These should certainly be used whenever
possible. There will probably be times, though, that the programmer may
wish to perform these manipulations explicitly. This will certainly be
true of those who use pre-Version IV implementations of the p-System.

Before continuing with this section see chapter 7 for a discussion of
the UCSD file system; in particular see section 7.2.6 for a discussion of disk
directories.

8.3.3.1 Reading and Modifying Directories

In current p-System implementations a p-System directory is limited
to containing 77 entries. This value is defined by the global constant
MAXDIR. Each directory entry contains information about a file residing on
that volume and is described by the global structure DIRENTRY. The entire
directory is an array of 78 DIRENTRYs. The first element of this array,
which is customarily indexed as the O’th element, contains information
about the disk volume itself. Thus, DIRENTRY is a variant record with one
variant for the volume information and another for file information.

The structure of the directory has changed little from one version of
the p-System to another. Directories are normally compatible across all
p-System versions.

A disk directory is stored beginning at (zero-based) block 2 of the
volume. This value is recorded in the global constant DIRBLK. Unit I/O
may be utilized to read the volume directory by absolute block number,
but this requires that the volume number be known to the program. For
many applications this is not the case; the volume name is known but the
volume may be mounted on any drive. Therefore
BLOCKREAD/BLOCKWRITE are used to access the disk directory.

These intrinsics require an untyped file as their first operand.
However, an untyped file may be RESET with a volume name (rather
than the usual file name) as in

reset (diskFii, VOL);

where diskFit is declared as type FILE and vOL is a string containing the
volume name. Thus, any part of the disk may be accessed by absolute
block number using the block I/0 intrinsics on diskFil, including the area
containing the directory.

The directory will be BLOCKREAD into an array of DIRENTRYs. But
BLOCKREAD will only read an integral number of blocks. The usual
array of 78 DIRENTRYs contains 2028 bytes (SIZEOF (DIRENTRY) is equal to
26; 26 x 78 = 2028). Reading three blocks for the directory takes in 3 x512

284 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

= 1536 bytes, which is too few; part of the directory will be ignored.
Reading four blocks yields 4 x 5§12 = 2048 bytes, which will take in the
entire directory but will also read in the 20 bytes beyond the directory.
The problem is that if the array of DIRENTRYs contains the usual 78
elements, memory beyond the array will be trashed since BLOCKREAD
does no bounds-checking.

The solution is to declare an array of 79 DIRENTRYs, with the last
entry there for no other reason than to allow enough room for a
BLOCKREAD of 4 complete blocks (79 x 26 = 2054; more than enough for
the 2048 bytes in 4 blocks). The first of the 79 DIRENTRYs will contain
volume information. The following 77 may contain information about
the files on the volume. The last of the 79 entries will contain garbage; it
is the programmer’s responsibility to assure that this element is never
accessed.

The program which follows demonstrates how one can read and/or
write a directory from within a program. The heart of the program is the
routine UseDirInfo which reads the directory and either returns or replaces
(depending on the function specified in the fun parameter) values for the
file specified. In this illustration the values manipulated are file size and
last byte; these can easily be changed to any or all of the file characteristics
stored in the directory.

program DirDemo;
const
MAXDIR = 77;
(*MAX NUMBER OF ENTRIES IN A DIRECTORY=)
VIDLENG = 7;
(*NUMBER OF CHARS IN A VOLUME ID + 1s)
vidlengPlus1 = 8;
(*room for colon between VID and TID»)
TIDLENG = 15;
(*NUMBER OF CHARS IN TITLE ID»)
FBLKSIZE = 512;
(*STANDARD DISK BLOCK LENGTH=)
DIRBLK = 2;
(+DISK ADDR OF DIRECTORY=#)

type
DATEREC = PACKED RECORD

MONTH: ©..12;

(»@ IMPLIES DATE NOT MEANINGFUL=)
DAY: @..31;

(*DAY OF MONTH=*)
YEAR: ©..100;

(*»100 IS TEMP DISK FLAG*)

END (*DATEREC») ;

VID = STRING[VIDLENG];

DIRRANGE = @. .MAXDIR;

Sec. 83 The KERNEL 285

TID = STRING[TIDLENG];

FILEKIND = (UNTYPEDFILE,XDSKFILE,CODEFILE,TEXTFILE,
INFOFILE,DATAFILE,GRAFFILE,FOTOFILE);

DIRENTRY = RECORD
DFIRSTBLK: INTEGER;
(*FIRST PHYSICAL DISK ADDR=*)
DLASTBLK: INTEGER;
(*POINTS AT BLOCK FOLLOWING=*)
CASE DFKIND: FILEKIND OF
UNTYPEDFILE:
(*ONLY IN DIR[@]...VOLUME INFOs)
(DVID: VID;
(*NAME OF DISK VOLUME®)
DEOVBLK: INTEGER;
(*LASTBLK OF VOLUME=)
DNUMFILES: DIRRANGE;
(*NUM FILES IN DIRs)
DLOADTIME: INTEGER);
(*TIME OF LAST ACCESS»)
XDSKFILE,CODEFILE, TEXTFILE, INFOFILE,
DATAFILE,GRAFFILE,FOTOFILE:
(DTID: TID;
(+TITLE OF FILE=)
DLASTBYTE: 1..FBLKSIZE;
(*NUM BYTES IN LAST BLOCK=*)
DACCESS: DATEREC);
(*LAST MODIFICATION DATE*)
END (*DIRENTRY=»*) ;

1

Bl kRange = 1..FBLKSIZE;

vidstring = string[vidlengPlus1];

DirFunct = (GetInfo, PutInfo);

dir = array [0..78] of DIRENTRY;
var

SrcLB, SrcSiz, bomb: integer;

MyVol: VIDSTRING;

MyFil: TID;

procedure MakeUpper(var s: string);
var

i: integer;
begin

for i := 1 to length(s) do

if s[i] in ['a’..’2"]
then s[i] := chr(ord(s[i]) — ord(’a’) + ord(’A’));

end;

procedure UseDirInfo (fun : DirFunct;
VOL : VIDSTRING;

FIL : TID;
var LB : BlkRange;
var SIZ : integer;

var code: integer);

286 SYSTEM UNITS AND DATA STRUCTURES

var

directory : dir;

diskFil : File;

int : integer;

index : 0..78;

found : boolean;
procedure scram (CodeVal : integer);
begin

code := CodeVal;
exit (UseDirInfo);
end;

begin
code := 0O;
reset (diskFil, VOL);
int := blockread (diskFil, directory, 4, DIRBLK);
close (diskFil);
if ((ioresult <> @) or (int <> 4))
then scram(1);
if directory[@].dnumfiles > @

then begin
index := 1;
found := false;
repeat

if directory[index].dtid = FIL
then found := true;
index := succ (index);
until (found or (index = 78));
if not found
then scram(2);
end;
index := pred (index);
with directory[index] do begin
if fun = GetlInfo
then begin
LB := dlastbyte;
SIZ := dlastbik — dfirstblk;
end
else begin
dlastbyte := LB;
reset (DiskFil, VOL);
int :=
blockwrite(DiskFil, directory, 4, DIRBLK);
close (diskFil);
if ioresult <> 0
then scram(3);
end;
end;

end {UseDirlnfo};

begin
writeln(
'Directory Access Demo — Finds last byte and size of a file’

)i

Chap.

Sec. 8.3 The KERNEL 287

writeln;
write('Nome of file: *); readin(MyFil);
write('Volume: '); readin{MyVol);
MakeUpper(MyFil);
MakeUpper(MyVol);
UseDirIlnfo(GetInfo, MyVol, MyFil, SrcLB, SrcSiz, bomb);
case bomb of
@: writeln(*The last byte is ', SrclLB,
* and the size is ', SrcSiz);
1: writeln('Error reading directory!’);
2: writeln('File not found!’);
end;
writein(sizeof (DIRENTRY));
writeln(sizeof (DIR));
end.

Note that the program above explicitly declares those KERNEL
structures it needs. Thus it does not have to use KERNEL.CODE and is
version-independent.

DIRENTRY begins with two integers, DFIRSTBLK and DLASTBLK, which
point to the first block of the directory item and the block immediately
following the directory item, respectively. The total size of the file is
equal to DLASTBLK — DFIRSTBLK. The record continues with two variants.

The first variant applies to the volume itself and appears in only one
DIRENTRY, the first (usually addressed as the O’th element of the array of
DIRENTRYs). It contains the DVID, the volume ID (normally not needed by
the program since the volume ID was used to obtain the directory in the
first place). It also contains the last block number of the volume and
DNUMFILES, the number of files on the volume. The latter value is
important since, if information about a particular file is desired, the
program will have to search for it through the array of 77 DIRENTRYs.
DNUMFILES must be used as the index of the last array element to be checked.
All DIRENTRYs past the one indexed by DNUMFILES will contain garbage. The
last two elements of the first variant are two integers representing the
time of last access and DLASTBOOT which, on a system disk, is the latest date
set. It is DLASTBOOT (as well as the global variable THEDATE) which is
changed by the filer D(ate command.

The second variant of DIRENTRY applies to the directory entries of each
of the files on the volume. There are DNUMFILES of these, where DNUMFILES
is less than or equal to 77. Each entry contains the following variables:

DTID, a string with the file name (including the ”.” and extension if
present). This entry is normally used as the key when searching for a
particular file.

DLASTBYTE, an integer representing the number of bytes in the last
block of the file. This value is important when it is desired to
BLOCKREAD a file into a buffer, then remove individual records from the
buffer. A file always contains an integral number of blocks, but the last

288 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

block will usually contain garbage beyond the last record. DLASTBYTE
indicates the last byte in that block which contains meaningful
information. Thus, when removing records from the buffer, DLASTBYTE
will be used to determine the end boundary of the last record in the file.
(DLASTBYTE will always have the value 512 for textand code files since the
editor and compiler fill the entire last block of the file.)

DACCESS, which is of type DATEREC, and indicates the last modification
date of the file. The system updates DACCESS automatically based on the
value of THEDATE.

8.3.3.2 Duplicate Directories

As discussed in section 7.2.6.1, it is possible for a p-System disk
volume to have two copies of its directory. In this manner it is possible to
restore a disk volume with a corrupt directory using a utility which
recreates the directory from the duplicate copy. The duplicate directory,
when present, immediately follows the standard directory.

When a disk volume is initialized the user is queried as to whether a
duplicate directory is desired. If a duplicate directory is present the system
automatically updates the duplicate when it updates the standard
directory.

Programs which explicitly modify disk directories should update the
duplicate directory at the same time, if present, to preserve the duplicate’s
value as a backup.

The duplicate directory may be read and modified in the same fashion
as the standard directory. It has an identical structure. But how does one
determine if a disk volume has a duplicate directory?

Whether a disk volume has a duplicate directory can be ascertained
by examining the DLASTBLK entry for the O’th element in the array of
DIRENTRYs. On disk volumes with no duplicate directory the value will be
6. When a disk volume has a duplicate directory the value will be 10. In
the latter case the disk volume has a duplicate directory. It should be
updated along with the standard directory.

8.4 Segment Code Management

This section discusses how the operating system manages and executes code
files. The structure of code files, as well as the algorithms used by the
p-System to read code files from disk into memory for execution, are
covered in some detail.

Sec. 8.4 Segment Code Management 289

The internal structure of code files and code file management are
normally transparent to both the user and the programmer. Most of the
time there is no reason for either to be aware of what transpires when a
program is executed. It is discussed here for two reasons: First, there
probably will be rare occasions when information on this subject is
helpful in the development of an application. Second, it is assumed that
the reader, like the authors, has a full measure of curiosity regarding such
a frequently used tool as an operating system.

As the p-System has evolved it has become progressively more
sophisticated. Although what happens when a program is executed appears
superficially the same from the earliest releases of the p-System (Version
1.3) to the current Sof Tech release (Version IV.12), the structure of the code
file and the methods used to manage it are very different. It is likely that
future, more capable releases will be different still.

The various p-System suppliers used different releases of the
p-System as their starting point and extended their products in different
directions. Thus, SofTech’s IV.12 is different from Apple Computer’s
latest release, which is different from the latest Western Digital release,
and so on.

The focus will be on how Version IV of the p-System maintains and
executes code files. Be forewarned that for different versions of the
p-System details of this discussion will probably not be applicable, and
newer releases of Version IV p-System may render details of this
discussion obsolete.

To avoid obscuring explanations with too much material, less
common situations such as how native code or assembly language
procedures relate to the code management scheme are not discussed.

It is recommended that this section be read (regardless of p-System
version) for an appreciation of the “large picture”. Once this is obtained,
the reader may refer to the Internal Architecture Guide (or equivalent
manual) supplied as part of the p-System documentation.

8.4.1 Introduction and Overview

Here is a simplistic picture of the process of preparing and executing a
program: The programmer writes the program as a single text file. The
program is compiled into a single code file. The code file is loaded into
memory and executed.

There are two basic reasons why this simplistic approach is
unrealistic. First, a program compiled to a single chunk of code will often
be too large to fit into the memory of a typical microcomputer. Second,
requiring that a program existas a single large whole is wasteful. Entirely

290 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

different programs often have a large body of common code. Many
functions (such as screen handling, file management, etc.) are present in
virtually all programs. If programs were maintained as single whole
entities much of the auxiliary storage would be taken up by duplicated
code.

The alternative approach to code management taken by the p-System
is to permit units of code smaller than an entire program. These units are
called segments. Under the p-System, a segment is a code “atom”; its
components can be examined but not physically separated.

Program code is composed of one or more segments. It is not necessary
for all the segments of a program to be resident in memory at the same
time. The operating system automatically loads segments as needed and
removes them from memory to make space for additional segments. Thus,
the total size of a program can be larger than total available memory. The
only constraint is that memory must be large enough to contain calling and
called segments simultaneously. (A calling segment is one that calls a
subroutine in a different segment.)

Code segments are created by the compiler. Each succesful run of the
compiler creates a code file containing at least one segment. When the
compiler produces a program with only one segment, this segment contains
the code of the program itself (often referred to as the “outer level”) as
well as the code of all functions and subroutines within the program.

The programmer may, however, cause the compiler to place any
function or procedure in a separate segment simply by preceding the
reserved word PROCEDURE or FUNCTION with the reserved word
SEGMENT. In that case the compiler will produce a code file with one
segment for the program and its non-segmented functions and procedures,
and a separate segment for each function and procedure preceded by the
word SEGMENT. (Segmented functions and procedures may occur at any
level. A segmented function or procedure may itself contain segmented or
unsegmented functions or procedures.) The “outer level” segment is called
the primary or principal segment and has a special significance, as will
be seen later.

Although the compiler can be instructed to break up the procedures
of a program into separate segments as it compiles, it is not necessary for all
the segments of a program to be created during the same compilation or to
be resident in the same code file. It is possible to gather together a group of
functions with a common purpose and compile them into a single code file
(for example,a group of screen-handling routines). These routines, called a
“unit”, can then be used by any application which requires them.

Thus, the code file using the unit (called the host”) is physically
separate from the unit and may be created independently of it. When the
host is executed the operating system finds the unit, and its segments are

Sec. 84 Segment Code Management 291

treated as if they were segments belonging to the host. The host may
freely call routines in the unit (those established as public when the unit
was written) and the operating system swaps the unit segments as needed,
along with the host’s segments.

Of course, the notion of the unit not only saves space, it makes the job
of the programmer much easier since the programmer (hopefully) writes
as much code as possible in the form of reusable units.

There are, then, two kinds of code files: programs and units. Each has
segments of cocle and both local and global data (see sections 3.1 and 3.2 for
a discussion of the mechanics of using units). Structurally, programs and
units are close to identical. The primary difference between them is that
programs are designed to start things off-their “master” (primary)
segments run first. Units are designed to have their segments called upon
by hosts. (A unit can be a host to another unit. See also section 5.0.17 for a
means of creating a unit that, like a program, can contain an initially
running segment.)

This scheme imposes a bookkeeping burden on the operating system,
since, before execution can begin, pieces of the program must be located in
various different code files. Therefore each code file contains embedded
information to facilitate the association of the various segments required
by a program. And the operating system maintains data structures
enabling it to track these segments.

The term: compilation unit designates program source suitable for
submission to the compiler. In Pascal, a compilation unit is generally a
program or a unit. As mentioned, each can contain one or more segments.

The compiler, when translating a compilation unit, distinguishes
between segments by assigning each segment a segment number. These
numbers are assigned to segments contained within the compilation unit
itself and to segments “used” from other compilation units. When a
procedure from a different segment is called, the compiler generates code
containing the segment number of the segment containing the called
procedure.

Segment numbers are not permanently associated with segments.
They are applicable only within a compilation unit. Thus, if program
PROG1 uses a segment SOMESEG from unit UNIT2, SOMESEG may be assigned a
segment number of 6, for example when PROG1 is compiled. But if a
different program, PROG2, uses SOMESEG, that segment may very well be
assigned an entirely different segment number when PROG2 is compiled.
Segments do have permanent identification in the form of an eight-
character segment name.

Segment information is maintained in two places within a code file.
For segments local to a compilation unit, segment information is contained
in the Segment Dictionary. This contains the segment number, segment

292 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

name, and many other pieces of information needed by the operating
system when it constructs the environment of a program prior to its
execution. The Segment Dictionary is discussed in section 8.4.2.1.

The compiler does not have the Segment Dictionary information
available for segments "used” from other compilation units. This
information is available in the code file containing the used segment,
which has its own Segment Dictionary. However, the operating system
must have this information when the program is being prepared for
execution. Therefore the compiler constructs a list of all "foreign”
segments with their names and segment numbers. The names come from
the USES statement which must appear in any Pascal compilation unit
that uses segments from other compilation units. The numbers, as
mentioned, are assigned by the compiler.

This list of “foreign” segments is called the Segment Reference
List, and is stored in the code file of any compilation unit using foreign
segments. The Segment Reference List is discussed in section 8.4.2.3.

Prior to the execution of a program the operating system traverses the
Segment Reference List and searches for the segments named therein in
SYSTEM.LIBRARY (or other code files contained in USERLIB.TEXT).
Once the segment is discovered all the information required by the
operating system is available in the Segment Dictionary of the used
segment’s code file.

The process of locating the segments of a program prior to its
execution is referred to as the construction of the program’s environment.
The time that this takes place is called associate time.

The operating system uses two important data structures when
constructing a program’s environment. These are the Segment
Information Block (SIB) and the Environment Record (E__REC).

The operating system constructs a SIB for each segment - foreign or
local — that may be used by the currently executing program. The SIB
contains two kinds of information. First, the SIB contains information
regarding the size of the segment and its location on disk. Remember that
not all segments of the currently executing program need be resident at
once. Segments are dynamically swapped into and out of memory as space
dictates. Therefore the operating system must always know where to find
each segment on disk. The operating system fills the SIB fields for a
segment’s size and disk location from the Segment Dictionary of the code
file containing the segment.

Each SIB also contains information about a segment’s current memory
location (if it is resident) and activity. The operating system uses this
information to determine which segments may be swapped out of memory
when space is required, and which segments may be removed from
memory entirely. SIBs are discussed in section 8.4.3.

Sec. 8.4 Segment Code Management 293

A segment may reference other segments and it may itself by
referenced. To distinguish between these two roles in the discussion that
follows a segment will be described as a either a “referencer” or a
“referencee”.

Recall that the compiler assigns local segment numbers to all
referencees. These referencees are located, and SIBs for them are
constructed, by the operating system at associate time using the Segment
Dictionary (for referencees in the same code file) or the Segment Reference
List (for foreign referencees). But calls to referencee segments during
execution are by number alone. There must be a means of relating a
referencee’s local number to its SIB during execution, so that the segment
can be located in memory or loaded from disk if it is not resident.
Therefore the operating system maintains an Environment Record for each
referencer segment - foreign or local — that may be used by the currently
executing program (since all segments are potential referencers -any
segment may call another —this means that every segment has an E_ REC).

Each referencer’s E__REC contains (among other things) a pointer to
the referencer’s SIB and an array of pointers to the E__RECS of all the
referencee segments (foreign and local) called by the referencer. When,
during the execution of the code of one segment, a reference is made to
another segment, the called (referencee) segment’s number is used as an
index into the current (referencer) segment’s array of pointers. The
E_REC, and thereby the SIB, of the called segment can then be located.
Note that since the same set of segment numbers is used throughout an
entire compilation unit, all the local segments of a compilation unit will
have identical arrays of pointers to E__RECs. E_ RECs are also discussed
in section 8.4.3.

8.4.2 Code File Structure

Although a code file is a file like any other as far as the file system is
concerned, it does have a more complex structure than most other files. A
code file may contain the following distinct entitiess A Segment
Dictionary, a Segment Reference List, INTERFACE text and one or more
code segments.

As its name implies, the Segment Dictionary contains detailed
information about the segments within a code file. There may be up to
256 segments in a code file, and the size of the Segment Dictionary depends
on how many segments there actually are. The Segment Dictionary is not
stored contiguously but is broken into block-sized chunks (remember that a
block is 512 bytes). |

204 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

Each block contains information for up to 16 segments. The first
block of a code file always contains the first block of the Segment
Dictionary. If there are more than 16 segments in the code file, additional
blocks are allocated to the Segment Dictionary, but these may appear
anywhere within the code file. The blocks in the Segment Dictionary take
the form of a linked list, as will be discussed in more detail in the next
section.

The Segment Reference List is an array of records, one for every
“foreign” segment referenced in this compilation unit. Each record
contains a “foreign” segment’s name, and the number by which it is
referenced in this code file. The Segment Reference List is stored
immediately following the code of the file’s principal segment. It need not
begin on a block boundary.

In order for a program to use the data and procedures of a separately
compiled unit, the programmer of the unit must establish an INTERFACE
section wherein the "public” (i.., available to USEing hosts) entities are
declared. When the host is compiled the compiler “edits” the unit’s
INTERFACE section into the text of the host and the entities in the
INTERFACE section are available in the host as if they were declared as
global within the host itself.

The INTERFACE section of a unit is stored within the unit’s codefile.
It is stored in the form of text (following most of the conventions for
p-System text files; see section 8.0). The INTERFACE section takes up an
integral number of blocks but it need not occupy an even number of blocks
as is the case with an ordinary textfile. It may appear anywhere within a
code file; its location is pinpointed in the Segment Dictionary.

Of course, code files also contain segments of code! These segments
may appear anywhere within the code file. They must begin on a block
boundary but may be of any size. Their locations and sizes are specified in
the Segment Dictionary. Code segments themselves have a fairly complex
structure which is discussed in section 8.4.2.2.

Note that the requirement that segments begin on block boundaries,
together with the fact that they may be any number of words long,
implies that there may be unused “filler” within a code file.

8.4.2.1 Segment Dictionary

WARNING: It is not the intent of this section to present an exhaustive
description of the Segment Dictionary data structure. The reader interested
in such a description is referred to the Internal Architecture Guide or
equivalent document. Our purpose here is to describe the Segment

Sec. 8.4 Segment Code Management 295

Dictionary in relatively general terms and thereby facilitate
comprehension of the IAG’s detailed discussion.

The Segment Dictionary is the source of most of the information
retained internally by the system for a segment during the execution of a
program. As mentioned previously the Segment Dictionary occupies the
first block of a code file and as many additional blocks as are necessary to
describe all the segments of the file. Each block describes up to 16
segments. The information in each block is arranged in the form of six
arrays, with the information for a particular segment in corresponding
positions in each of the arrays.

The first array gives the block number, relative to the beginning of
the code file, of the beginning of the segment. It also contains the size of
the segment in words. Principal Segments contain a Segment Reference
List; however the size of the Segment Reference List is not included as part
of the size of the segment.

The next array contains the name of the segment. The following
array contains the segment type — it specifies whether the segment is a
primary segment, and if so, whether it is a program or unit. It specifies if
the segment is a native code segment. Also in the same array is an
indication as to whether the segment needs to be linked. Generally, only
Assembler routines and procedures which use EXTERNAL routines need to
be linked. Finally, this array specifies whether the segment is relocatable —
that is, can the segment be moved by the system once it is loaded into
memory, or must it be locked into the position it originally occupied.

The array which follows contains the block number within the code
file of the INTERFACE text for the segment. This information is
applicable only to the principal segment of a unit.

The fifth array contains three pieces of information: the local
segment number (as assigned by the compiler), an indication as to whether
there is processor-specific code in the segment and the p-System version
under which the segment was compiled.

The last array contains different information for principal segments
and for subsidiary segments. For principal segments this array specifies
the size of the global data for the code file, the size of the Segment
Reference List (in words), the highest local segment number used in the
code file (which therefore includes “foreign” segments, since they are also
assigned local segment numbers) and the size of the INTERFACE text (the
block number of the INTERFACE textwas supplied in a previous array).

For subsidiary segments the last array specifies the name of that code
file’s principal segment.

Aside from the six arrays each block of the Segment Dictionary also
contains a pointer to the next block of the Segment Dictionary (its block
number within the code file), a copyright notice and a single word

296 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

containing the value 1, as an indication of byte-sex.

The issue of byte sexdeserves further explanationat this point.

On most mini and microcomputers the word (two bytes) is the basic
unit of storage — although these machines are byte-addressable, most data
occupies an integral number of words. Under the p-System too, most data
items occupy an integral number of words.

A word has a Most Significant Byte and a Least Significant Byte. The
MSB is considered to be the byte containing the “high-order” portion of the
data. On some machines the MSB is the one with the lower address of the
two bytes in a word. For example, if a word occupies bytes O and 1 the
MSB would occupy byte O on these machines. The Motorola 68000 is an
exampleof such a machine.

But on other computers the LSB is stored in the lower address. If a
word occupies bytes 0 and 1, byte O would contain the LSB. The DEC
PDP-11 series is an exampleof this sort of computer.

This distinction is known as byte-sex. Although p-code is interpreted
and therefore transportable between machines, code files moved to a
processor with a different byte-sex must be “byte-flipped” before they will
execute properly. The high-order and low-order bytes of each word of code
must be switched.

This raises the question, how does the interpreter know which type
of machine the code originated on? How does it know whether or not to
"byte-flip” the code before attempting to executeit?

To enable the interpreter to know whether a code file is of the “local”
byte sex or the opposite, a specific word is selected within a code file and
the value 1 is stored therein during compilation.

The interpreter examines this word before attempting to execute the
code file. If the file is being executed on a machine of the same byte sex as
the one upon which it was compiled, the word will contain a 1 and no
“byte-flipping” is necessary. If the code is executed on a machine with the
opposite byte sex, however, the value of the word will appear to be 256
rather than 1! This is because the two bytes of the word will appear
reversed to the interpreter; rather than seeing 0000 0000 0000 0001 the
interpreter will see 0000 0001 0000 0000, or 256. In that case the
interpreter will know that the code file originated on a computer of the
opposite byte sex and will flip each word of code before attempting to
executeit.

Sec. 8.4 Segment Code Management 297
8.4.2.2 Segment Format

A p-System segment, as mentioned previously, is a code "atom”. We
can examine its various parts, and will do so in this section. However, the
system does not manipulate code smaller than a segment. Thus, loading of
code from disk to memory, unloading of code from memory and movement
of code in memory to make room for additional code all take place upon
integral segments.

Naturally, the essential ingredient of a segment is executable object
code. This executable code is divided into procedures, corresponding to the
high-level language procedures that spawned them. In addition to its code,
each procedure contains information needed by the system when the
procedure is executed. The segment contains a dictionary that enables each
procedure within that segment to be easily located. This is called the
Procedure Dictionary. A segment may contain up to 255 procedures and
thus there are up to 255 entries in the Procedure Dictionary.

In addition to procedure-specific information a segment also contains
general information pertinent to the segment as a whole.

One entity that segments may posess is a Relocation List. The
Relocation List may be used when a segment contains native code in one or
more of its procedures. When native code procedures are present it is
possible that address references may be in terms of absolute memory
locations. This implies that the code will run only when loaded into
specific and precise memory areas. However, the operating system
demands the right to determine where to place a segment in memory at the
time the program is run. Therefore a method must be provided to enable
the operating system to convert the absolute memory references in the code
to correspond to the area where the program will actually be placed.

The Relocation List is the mechanism provided by the p-System to
permit the adjustment of absolute memory references. A detailed
description of the Relocation List is beyond the scope of this discussion.
Briefly, it contains pointers to those objects that require relocation (i.e.,
modification of absolute memory references) together with a specification
of the type of relocation necessary. Memory references in p-code are
relative rather than absolute so no relocation information is necessary.

A segment begins with a pointer to the Procedure Dictionary,
followed by a pointer to the Relocation List. The Relocation List is the
very last thing in the segment since it is not always needed during
execution and may be discarded. The Procedure Dictionary immediately
precedes the Relocation List.

The Procedure Dictionary begins at a high address and procedes
downwards to lower locations. It begins (at the high address) with a count
of the number of procedures in the segment. There are <count> number of

298 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

words beyond in the Procedure Dictionary. Each is a pointer, relative to
the beginning of the segment, to the code for a procedure.

In a high-level language procedures are called by name. But the
compiler generates code that references procedures by procedure number.
During executiona procedure call is accomplished by locating the procedure
via the Procedure Dictionary. The procedure number in the range 0-255 is
simply the index into the Procedure Dictionary.

The pointers to the Procedure Dictionary and Relocation List are
followed by the name of the segment. (Segment numbers, remember, are
local to the compilation unit and may change as segments are used by
different hosts. Thus, segment numbers are not stored as part of the
segment itself but rather in the compilation unit’s Segment Reference List.
Segment names are fixed;they do not vary from one host to another. Thus,
they may be recorded within the segment itself.)

Each segment then contains a word with value 1 to indicate byte sex.
The issue of byte sexis discussed in the previous section.

The nextword in the segment is a pointer to the segment’s Constant
Pool. Constants are simply values embedded within code. Under Version
IV of the p-System single-word constants are placed in the procedure code
itself. But all constants larger than one word within a segment are
grouped together into a common area called the Constant Pool. The
Constant Pool is located directly before the Procedure Dictionary. (When a
code file has no multi-word constants the value of the pointer to the
Constant Pool is zero.)

When the compiler encounters a reference to a constant it generates
code that accesses the constant in terms of its distance into the Constant
Pool. Thus, constants are located during execution by finding the start of
the Constant Pool via its pointer, then selecting the desired constant based
on its of fset into the pool as it appears in the code.

Constants that have real values are distinguished from other
constants under the p-System. Real values are represented, and real
arithmetic performed, in a processor-dependent fashion. The compiler,
which must generate code that will run on any processor, cannot therefore
generate real constants in their final form. Instead, the compiler represents
real constants in a special, machine-independent form. Real constants must
be converted to the internal representation of the processor in use before
execution.

Real constants are therefore stored in a separate sub-pool within the
Constant Pool. This sub-pool may be anywhere within the constant pool.
The Constant Pool begins with a pointer to the real sub-pool. The pointer
is relative to the beginning of the Constant Pool itself and has a value of
zero when there are no real constants. Thus, when a segment is loaded, the
system can locate the real constants and convert them to the current

Sec. 8.4 Segment Code Management 299
processor’s specific representation.

NOTE: The process of converting real constants to processor-specific
form when a segment is loaded can be a time-consuming operation.
Therefore a utility (REALCONV) is provided to convert real constants and
store them in place in converted form within the Constant Pool.
Effectively, the real sub-pool is merged with the main Constant Pool and
the sub-pool pointer is set to zero to indicate to the system that no
conversion need be performed at runtime. Code files converted in this
manner are no longer portable to machines with different processors,
however.

The pointer to the Constant Pool is followed by a word indicating size
of real values for this segment. Version IV of the p-System provides
support for two- and four-word real values. The compiler is shipped to
generate one of these by default (usually four-word reals). The alternate
size can be generated using the {$R4} or {$R2} compiler directives (section
5.0.14).

Following two unused words each segment contains the object code
for each of its procedures.

The object code for each procedure begins with a word called
DATASIZE. When a procedure is called, its local variable are allocated
space on the stack (which is freed upon exit from the procedure). The
number of words to be allocated for a procedure is indicated by its
DATASIZE.

DATASIZE is a positive value for procedures beginning with p-code.
To flag procedures beginning with native code, the DATASIZE value is
one’s-complemented (bits are changed to their opposite values). For outer
level routines in principal segments DATASIZE is zero for reasons
explainedin the following paragraphs.

The outer level of a program or unit in a principal segment may also
have "local” variables, but since it is at the outer level these are really
global and accessible to the entire program. As such, they are allocated and
available during the entire life of the program.

There are separate instructions in p-code for accessing global and for
accessing local variables. The ”local” variables of the outer level routine in
a principal segment may be viewed as either local or global when within
that segment. But the compiler always generates code treating the
variables as global under such circumstances. Now, if the DATASIZE for
the outer level routine were some positive value, stack space for local
variables would be allocated when that procedure was entered. That space
would never be used, however, since outer level variables are accessed as
global and stored as global on the stack. (Recall that one of the entries in
the Segment Dictionary for outer segments specified amount of stack space

300 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

for global variables.) The wasted space would survive the entire life of
the program since it was allocated for the outer level routine, which is
exited only when the program terminates.

Therefore the DATASIZE value for an outer level routine in a
principal segment is zero.

Following the DATASIZE word at the start of a segment is the
EXITIC word.. This is a pointer, relative to the beginning of the segment,
to the code to be executed upon exit from the routine. EXITIC is followed
by the object code itself.

Procedures, with their accompanying DATASIZE and EXITIC values,
follow each other without break in the segment.

8.4.2.3 Segment Reference List

The compiler generates references to both local and foreign segments
in terms of segment number. When the operating system constructs the
environment of a program prior to its execution, information regarding the
local segments is available in the code file’s own Segment Dictionary. The
segment number can be located therein and the necessary information for
that segment can then be obtained.

However, no information is available in the host code file for foreign
segments. Therefore, to locate these segments prior to the execution of a
program a Segment Reference List is maintained for each program or unit
using foreign segments.

The Segment Reference List contains the names and the segment
numbers of all the foreign segments used by the current compilation unit.
If there are no foreign segments there is no Segment Reference List. When
present it is located immediately following the principal segment, after its
Relocation List. The Segment Reference List is never needed once all the
segments of a program are located, and its position at the end of the
segment makes it easy to discard once the system is done with it. It also
makes it easy to locate. The Segment Dictionary can be used to find the
beginning of the principal segment; the length of the principal segment
(also to be found in the Segment Dictionary) can be used as an offset to the
Segment Reference List.

The Segment Reference List takes the form of an array with one
element for each foreign segment. The elements take the form of records,
with a field for segment name, a field for segment number and some filler.
The total number of elements in the array is given in the Segment
Dictionary.

When the operating system constructs the executionenvironment of a
program it traverses the Segment Reference List element by element,

Sec. 8.4 Segment Code Management 301

attempting to find each segment. It searches the system library file and
then the code files named in the user library directory file (by default,
USERLIB.TEXT), checking the Segment Dictionaries of each of these files
in turn until it finds a match for each segment named in the Segment
Reference List. Once a segment is located a SIB and E__REC are constructed
for it (if these clo not already exist;see section 8.4.4).

NOTE: The search for segment information using the Segment
Reference List can take a long time, especially for programs that use
segments from many units. This is because the operating system must
reread from disk the Segment Directory of SYSTEM.LIBRARY and all the
code files named in USERLIB.TEXT for each segment named in the host’s
Segment Reference List until the segment is found. For programs sold as
complete entities the Librarian utility can be used to bind all the necessary
segments together into a single code file. For development purposes,
however, this is inadequate. Tying the segments together into a single code
file makes for a large code file. When the segments are general-purpose
and used by many applications (one of the goals of the segment scheme)
they will have to be duplicated in each application which uses them,
wasting large amounts of disk space. Versions of the p-System distributed
as this is written include a utility called QUICKSTART which, in effect,
causes the Segment Dictionary information of foreign segments to be
included in the host’s code file. Thus, the code file remains essentially the
same size, the "used” segments remain separate and only one copy need be
retained, but the time needed to build the environment of a program is
significantly reduced.

NOTE: If there are multiple segments with the same name in different
code files searched, the first encountered is the one used. If a segment
named in the Segment Reference List is not found an error message is
displayed and the program is not run.

8.4.3 Environment Records & Segment Information

Much of the information maintained regarding segments in the Segment
Dictionary is necessary not only when the environment for a program is
constructed but also throughout the entire life of the program - from the
moment it begins execution until it finally completes. This is true not only
for the segments in the host compilation unit but for all segments,
regardless of unit of origin.

302 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

The p-System’s dynamic memory management scheme causes
segments to be swapped into memory as needed, and out of memory to
accommodate additional segments. Thus the disk address, for example,of a
segment (recorded in its code file Segment Dictionary) must also be resident
in memory and available to the operating system as long as the segment
may still be needed.

The operating system therefore must maintain data structures for
each segment a currently executing program may use. These data
structures must record the Segment Dictionary information pertinent to
that segment.

Other information must be recorded internally regarding segments of
currently executing programs. The operating system must keep track of
each segment’s activity relative to the other segments so that it can
intelligently determine which segments to swap out when additional
memory space is needed. The operating system must Keep track of a
segment’s current memory location. This value may change as the program
runs; a procedure call into a segment requires, obviously, that the current
address of the code be available.

This sort of segment information is' maintained in a data structure
called a Segment Information Block, or SIB. There is one SIB for each and
every segment that may be used by a currently executing program. The
SIB is allocated on the heap when the environment of a program is
constructed. Its values come from the Segment Dictionary of the code file
containing the segment. The SIBs remain on the heap until the program
completes execution even though individual segments may be swapped out
of memory for part of that time.

Each SIB begins with a pointer to its segment’s current memory
location. The value of this pointer is NIL (an integer with machine-
dependent value) for a non-memory-resident segment. The pointer is
loaded with the initial address of the segment at the time the segment is
brought into memory. It is updated by the operating system whenever the
segment is moved.

NOTE: Many p-System implementations maintain separate logical
memory spaces for code and for data, thus utilizing more than 64kb of
memory. Under such implementations the pointer to a segment’s memory
location is not absolute but must be further resolved using the
SYSTEM.MISCINFO code pool resolution field.

Following the pointer to the segment’s memory base are three fields
that help the operating system determine the relative usage of the segment.
These include a count of the number of yet-to-be-completed calls to
procedures in the segment from procedures outside it, an “activity” counter
(value determined by a formula beyond the range of this discussion) and a

Sec. 8.4 Segment Code Management 303

count of the number of E__RECs pointing to the SIB. In effect, this value
indicates how many other segments may use this one; when the value is
zero (typically at the end of the program) the segment and its SIB are no
longer required; the SIB may be removed from the heap. E__RECs and
their pointers will be further discussed shortly.

Each SIB has a flag (in the form of an integer) which indicates its
segment’s relocatability status. A segment may be position locked; that is,
it must always occupy its original memory locations. It may be be
actually swappable or it may only be potentially swappable. A
potentially swappable segment is one which has explicitly been memory-
locked by a program using the MEMLOCK intrinsic. The MEMSWAP
intrinsic can be used to render the segment actually swappable again (see
sections 4.20 and 4.21). .

Each SIB also contains the following information which is derived
from the Segment Dictionary: Segment name, size, disk address and
volume information (for the drive and volume containing the segment).

SIBs of principal segments contain the size of the global data for that
compilation unit. As we shall see, the global data itself is pointed-to from
within the E__REC.

The SIBs for all active segments are organized in the form of a
doubly-linked list. One end of the linked list is pointed to by the KERNEL
variable CODEPOOL.POOLHEAD, the other end by CODEPOOL.PERMSIB. Using
either of these as its starting point, the system (or any program) can
traverse all the SIBs since each SIB has a pointer to its predecessor and
SUCCessOT.

Recall that the compiler generates references to other segments used
by a compilation unit in terms of local segment numbers. These segment
numbers are used both for local and foreign segments. Now, imagine a
memory-resident segment in the process of execution. A call to a procedure
in another segment is encountered in the form of a segment number. The
calling segment must locate the called segment for the transfer of control
to take place.

The called segment may be in memory or it may be on disk (either
having never been loaded or having been swapped out). It is certain,
though, that the called segment has a SIB which is in memory since all the
segments or a currently executing program must have SIBs. The SIB of the
called segment will determine whether the called segment is memory
resident or not; it will have the memory location of the called segment if it
is resident and its disk address if it is not.

The calling segment, then, needs to locate the SIB of the called
segment using the called segment’s number.

Remember, though, that segment numbers are not absolute; they may
change from one compilation unit to another. The called segment may be

304 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

known as segment 6 to this particular calling segment. But it may be
known as segment 18 to a calling segment from a different compilation
unit than our calling segment. Yet both calling segments will need to
locate the same SIB!

Therefore the association or “mapping” from segment number to the
SIB of the called segment must be accomplished individually for each
calling segment.

When the environment of a program is constructed prior to its
execution each segment is given not only a SIB but also an E_REC. The
major purpose of the E_ REC is to facilitate the mapping between local
segment numbers and the SIBs of the actual segments being called.

Every segment’s E_ REC contains, first of all, a pointer to that
segment’s own SIB. It then contains an array of pointers to the SIBs of all
the segments it may call. The array is indexed using local segment
numbers. Thus, when the environment of a program is constructed, each
segment’s E_ REC has its array of pointers (called an E__VECT, by the
way) set to the SIBs of the segments it may call; the array is ordered by
local segment number.

Note that all the segments in the same compilation unit have the
identical array of pointers. The local segment numbers are the same for all
the segments in a compilation unit, so when two segments from the same
compilation unit call segment 6, for example, they must be referring to the
same called segment. But if a segment from a different compilation unit
refers to segment 6 it might very well be an entirely different segment.
Since this calling segment comes from a different compilation unit its local
segment numbers will be entirely different. It will have a different array
of pointers.

E__RECs contain some additional information as well. They contain
a count of the number of local segments this segment can access; in effect
this is an upper bound for the aforementioned array of pointers. They
contain a pointer to the global data of the principal segment of the
compilation unit containing this segment. E__RECs of principal segments
contain a count of the number of other compilation units for this program
that are using this compilation unit.

Finally, E__RECs of principal segments are tied together in the form
of a linked list, so each such segment has a pointer to the next E_REC in
the list. The beginning of this list is pointed to by the KERNEL variable
UNITLIST.

Sec. 84 Segment Code Management 305
8.4.4 AsaProgram Runs

Memory under the p-System is shared by a number of entities. Since the P
machine is emulated on most hardware, part of memory is occupied by the
interpreter. The remaining memory is shared by the stack, the heap and
the codepool.

The stack is used for program and procedure variables. These are
allocated as procedures are entered and freed as procedures terminate. The
stack is also used to maintain bookkeeping information regarding
procedure invocation (activation records). Generally, the stack begins at
high memory and grows downwards toward low memory.

The heap is used for dynamically allocated variables. A program or
the system may use one of the available intrinsics (such as NEW, for
example)to claim space on the heap. This space is explicitly released by the
program when it is no longer required.

The p-System uses the heap for its program management records, such
as the SIBs and E__RECs discussed in the previous section. The system also
maintains disk directories on the heap.

Most code is contained in the codepool. But native machine language
routines that are position-dependent are located on the heap. (As we shall
see, the codepool is moved around in memory.)

The heap generally begins in low memory and grows upwards.

The stack and heap, then, grow towards each other. But there is
normally a large free space between the stack and the heap. This space is
used for executable code in the form of segments, as discussed in the
previous sectior. The memory-resident code between the stack and the
heap is referred to as the codepool. As a program executes there is constant
contention for memory space between the stack, the heap and the codepool.

Those p-System implementations which use extended memory
(memory beyond 64kb) do so by partitioning memory into separate areas
for code and data. Thus, the stack and heap occupy a partition to
themselves, and the codepool occupies a partition to itself. The p-System
cannot currently visualize extended memory as a single contiguous area
since addresses are maintained as 16 bit values. Addressability is thus
limited to 64kb. Partitioning allows the p-System to have two banks of
64kb for a maximum total of 128kb.

When there are separate code and data spaces there is no contention
between the stack/heap and codepool. Programs may utilize larger
amounts of data, and more code segments may be loaded before swapping
occurs.

The codepool always occupies a contiguous area of memory. There is
never a gap between segments.

306 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

The operating system maintains the allowable bounds of the codepool.
These lie between the top of the heap and the “top” of the stack (when the
stack is present in the same memory partition; remember that the stack
grows downwards). Both the stack and the heap are allowed to grow until
they reach the current boundaries of the codepool. When the stack or heap
attempts to grow beyond the boundaries of the codepool a stack or heap
fault occurs. The system will attempt to shove the entire codepool in the
opposite direction to make room for the stack or heap. If there is no room
to move the codepool (it is already adjacent to the boundary at the other
end) the system attempts to remove segments from the codepool. The
remaining segments are then moved together and the system again
attempts to move the codepool to accommodate the stack or heap. If the
system ultimately fails to find sufficient room it crashes with a stack
overflow.

When a segment not currently resident in the codepool is called, an
attempt is made to read the segment into memory at either end of the
codepool without moving the remainder of the codepool. If this is not
possible the operating system attempts to shove the entire codepool toward
either the stack or heap to provide room for the new segment at the
opposite end. If this maneuver fails to provide adequate room for the new
segment then currently resident segments are swapped out, the remaining
segments are moved together and the system again attempts to move the
codepool to accommodate the new segment. As before, if the system
ultimately fails to find sufficient room it crashes with a stack overflow.

8.5 File Information Blocks (FIBs)

Pascal’s file mechanism provides a machine and operating system-
independent means of accessing I/0 devices. However, operating systems
differ greatly in how they implement I/0. Declaring and using a file in a
Pascal program, therefore, causes compilers to generate code that varies
widely from one operating system to another.

The p-System uses a data structure called a File Information Block (or
FIB) to retain information about a program’s files. The FIB declaration
appears in the operating system’s KERNEL unit; it is printed in the Internal
Architecture Guide. Each file declared in a program has an associated FIB.

The FIB contains an item called fwindow, Which is a pointer to the
file’s window (the memory location used as destination for a GET or source
for a PUT). In addition, the FIB contains the size in bytes of the records in
the file, the volume containing the file, a copy of the file’s directory entry,
various flags that indicate the file’s current state, a flag that reflects
whether or not the file has been modified and other information.

Sec. 8.5 File Information Blocks (FIBs) 307

When the Pascal compiler encounters a file declaration it allocates
space for a FIB on the stack, just as it allocates space for a data item of any
type. The compiler allocates space for the file’s window variable
immediately following the FIB on the stack. In effect then, a Pascal file is
nothing more than a FIB and a window wvariable; references to a file are
references to the FIB and window variable allocated by the compiler for
that file.

Pascal programs normally refer to files using intrinsics such as
RESET, REWRITE, CLOSE, etc. When the compiler encounters these
intrinsics in a program it generates calls to operating system routines that
access the FIB and perform the necessary 1/0. It is normally unnecessary
for a program to explicitly access a FIB.

There are occasions, however, when the ability to explicitly access a
FIB can lead to a more efficient program. As an exampleof such a situation
consider a master file update program. Programs of this genre read records
from a current file, perform update operations on various fields in the
record and write the updated record out to a new file. The flow of such a
program typically is to read a record, copy it to the window variable of the
output file, update the record, write it to the output file and continue the
process for all the input records.

Note that the input and output files each have their own FIBs and
their own window variables. That makes it necessary to copy each input
record to the output file’s window variable before updating and writing it.

If it were possible to have the input file and output file share the
same window wvariable, however, the copy operation could be eliminated.
The flow would then be to read a record, update it in place and write it
immediately to the output file. The time savings could be considerable,
especially for large files or files containing large records.

Pascal normally requires each file to have its own window variable.
This window variable is allocated on the stack along with the FIB when
the file declaration is encountered; its memory address is placed in the FIB,
in the fwindow field.

If we allowed our master file update program to access the FIBs of
the input and output files, though, it could force both files to share the
same window simply by assigning the value of input file’s fwi ndow pointer
to the output file’s fwindow pointer. GETs from the input file and PUTs to
the output file would access the same memory location.

It is not difficult to allow a program access to a FIB, as is illustrated
below:

program tst;
uses kernel ;
const
STO = 196; fthis p—~code will be used to assign}
type fpointers with unlike base types}

308 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

thing = record {the sample base type for filest
item1: integer;
item2: char;
GROSSitem: array[@..1000] of integer;

end;
var

infile, outfile: file of thing;

fpIN, fpOUT: fibp; fpointers to FIB, from KERNEL}
begin

reset(infile, oldmaster’); fopen the files}

rewrite(outfile, ' newmaster');

pmachine(tfpIN,tinfile,STO);
§force fibps to point to FIBs of}
pmachine(tfpOUT,toutfile,STO);

finfile and outfile. This will allow}
fus to access these files’ FIBs}
fdirectiyt

fpOUTt. fwindow := fpINt.fwindow;
§THE KEY STATEMENT! make the windowt
fvariable of outfile identical to the}
fwindow variable of infile}
while not eof(infile) do
begin
foutfilet := infilet; <— we don’t need to do this!}
outfilet.iteml := outfilet.iteml + 10;
for whatever; do the record updatet

put(outfile); §no "outfilet := infilet;"! just put}
get(infile); f{after get — data is already there!}
end;

close(outfile,lock);

close(infile);
end.

The program declares fpINand fpOUT to be pointers to FIBs (type FIBP
is imported from KERNEL). The files are opened in the usual manner; the
PMACHINE intrinsic (see section 4.26) is used to take the address of the
input file (remember that the address of a file is simply the address of that
file’s FIB) and store it in fpIN, and to take the address of the output file and
store it in fpoUT. fpINt and fpOUT+ can be used to refer to the FIBs of the
input and output files, respectively.

The output file’s window variable is unneeded; we intend to use the
input file’s window variable for both files. The pointer to the output file’s
window variable can be discarded; remember that the window is on the
stack, not the heap, and thus does not have to be deallocated. The
assignment of the input file’s window pointer to the output f ile’s window
pointer is therefore a simple matter. .

The program loops through all the records, updating, writing and
reading, but not copying. When the loop terminates, the files are closed.

Sec. 8.6 File Information Blocks (FIBs) 309
8.6 Accessing Internal Operating System Procedures

The UCSD Pascal UNIT construct provides a means of accessing procedures
in other compilation units (see section 3.2 for a discussion of the UNIT
construct). Any procedure declared in the INTERFACE section of a UNIT
is accessible to any program using that UNIT.

This presumes that the INTERFACE section of the UNIT is available
at the time the host program (the program that wishes to use the UNIT) is
compiled. The compiler requires the INTERFACE section of the UNIT to
resolve procedure calls to the UNIT’s procedures.

The code file that makes up the p-System, SYSTEM.PASCAL, consists
of a number of separately compiled UNITs combined using the library
utility. In the interest of reducing the size of SYSTEM.PASCAL, however,
the INTERFACE sections of these units were removed (this is an option
provided by the library utility).

A number of operating systems UNITs were deemed to contain
procedures of general interest to the UCSD Pascal programming
community. These UNITs (which include KERNEL, SCREENOPS and
COMMANDIO) are distributed as separate code files with INTERFACE
sections. The other UNITs of the operating system were not deemed to
contain code of general utility and thus are not made available with
INTERFACE sections.

Most of the procedures in these other UNITs perform operating
system-level functions. A number of these procedures are used by non-
system-level programs; although the programmer does not invoke them
explicitly, the compiler generates calls to them as needed. These procedures
function as though they were part of a run-time library. For example, the
compiler generates calls to procedures within the operating system
STRINGOPS UNIT when a program uses UCSD Pascal’s string
manipulation routines. The compiler generates calls to the FILEOPS UNIT
when a program performs I/0.

It is rare for a program to need to call FILEOPS procedures explicitly.
There are times when this ability would be handy, however.
Accomplishing a call to a FILEOPS procedure without the FILEOPS
INTERFACE section is a challenging task. It requires detective work to
discover which procedure to call, as well as the number and type of
parameters that procedure expects to find on the stack when it begins
execution. (The compiler, of course, knows about the FILEOPS procedures
and their parameters; it can generate such a procedure call with no
problem.)

It requires some programming trickery-once the procedure and its
parameters have been identified-to enable the compiler to accept the call
without the FILEOPS INTERFACE section being available.

310 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

As an illustration of a situation where it would be handy to be able
to invoke an operating system procedure, consider a program that needs to
dynamically allocate and dispose of files.

File variables are normally considered to be static, rather than
dynamic items. That is, file variables are allocated on the stack when a
procedure is entered and removed from the stack when the procedure exits.
Programs do not normally allocate files “on the fly” using the NEW
intrinsic; they do not normally dispose of them explicitly when they are no
longer required using the DISPOSE intrinsic.

Yet such a capability would be quite useful to a large class of
programs, such as sort/merge utilities, where the number of files required
constantly changes, or cannot be known until the program executes. It
would also be useful in programs that require the arrangement of file
variables into dynamic data structures, such as linked lists or trees.

To implement dynamic files a program must declare the following
types: a base type (i.e. a structure that defines the records in the files), a
pointer to the base type, a file of that base type (remember that this is a file
type, not a file variable) and a pointer to that file type.

The program requires another type, this being a record containing one
each of the two previously declared pointers: a pointer to the base type and
a pointer to the file type. In the program called dynafiles that follows,
this record is called FDRec (for File Data Record). If a linked list structure
is used to dynamically manage the files, this record should also contain
pointers to its own type for linkage purposes.

Finally, the program requires a pointer to this record type. In the
program dynaf i | es, below, this pointer type is called FDRecP.

Dynamic management of files is accomplished using variables of type
FDRecP. Whenever a new file is required the program performs a NEW on a
variable of type FDRecP and initializes a file; when the file is no longer
required, the variable is deallocated using DISPOSE. Once a program
allocates and initializes a dynamic file it may open and close, read and
write from it as with any file.

Recall that when the Pascal compiler encounters a file variable
declaration it allocates a File Information Block (or FIB; see section 8.5) and
a window variable for that file on the stack. In the situation described,
however, the compiler will never encounter a file variable declaration-the
files in the program under discussion are allocated dynamically. Therefore
the compiler will never allocate FIBs or window variables for this
program’s files; the program will have to explicitly allocate these items as
part of the file initialization process, before the file is opened and used.

The problem that requires a FILEOPS routine involves the process of
initializing the FIB once it is allocated. If the program attempts to open a
dynamic file, even after a FIB and window variable are allocated, the

Sec. 8.6 Accessing Internal Operating System Procedures 311

program will crash. This is because the compiler not only allocates FIBs
and window variables, it also generates a call to a FILEOPS routine, for
each file variable encountered in a program, that initializes the FIB values.

Since the compiler cannot generate the FILEOPS initialization call for
dynamic files, the program must issue the call itself.

Assume a programmer wrote a program similar to dynafiles, below,
to manipulate dynamic files, but the programmer was not aware of the
requirement to explicitly issue the FILEOPS initialization call. The
program would fail. How could the programmer discover the existence of
the FILEOPS call and learn how to incorporate it into the program?

Here is where the detective work comes into play. The programmer
would hopefully realize that a program that manipulates dynamic files
has to assume part of the burden normally assumed by the compiler. It is
therefore reasonable to guess that the reason for the failure of the program
is a result of neglecting part of that burden. So the first step in solving the
problem is to discover exactly what the compiler does when it encounters a
file variable declaration in a program.

To that end, the programmer writes a test program that does nothing
but declare a file, as below:

Pascal Compiler IV.13 c6t—4 11/ 4/84 Page 1

1 2 1:d 1 program nothing;

2 2 1:d 1 type

3 2 1:d 1 thing = record

4 2 1:d 1 item1: integer;
5 2 1:d 1 item2: char;

6 2 1:d 1 end;

7 2 1:d 1 wvar

8 2 1:d 1 f: file of thing;
9 2 1:d 303 after: integer;
10 2 1:0 © begin
11 2 10 © end.

End of Compilation.

Note that the file is of type thing, the same type used in the program
under study, dynafile. Note also that type thing is 4 bytes long, and that
the FIB and window variable for file f occupy bytes with offsets O
through 303 in the stack (the variable after is declared after the file solely
for the purpose of discovering how much space the compiler allocates for
the file).

The last 4 bytes of those allocated for file f are for the file’s window
variable, which follows the FIB.

Once the programmer has seen the data structures allocated by the
compiler for the file, the compiler-generated code can be examined. The
DECODE utility (see the Program Development Manual) disassembles p-

312 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

code files; the output of DECODE, when run against the code file
corresponding to the listing above, follows:

Segment: NOTHING Procedure: 1

Block: 1 Block offset: 26 Seg offset: 26
Data size: @ Exit IC: 34

Offset Hex code
0(000): LAO 1 8601
2(002): LAO 301 86812D
5(005): SLDC 2 02

6(006) : SCXG FILEOPS 4 7204

exit code:

8(008): LAO 1 8601
10(00A) : SLDC 0 00
11(00eB): SCXG FILEOPS 3 7203
13(0eD): RPU 0 9600

A detailed discussion of the p-machine instruction set is beyond the
scope of this book. However, it is instructive to examine the few
instructions of the simple program above because they illustrate how the
compiler generates the call to the FILEOPS procedure.

The focus is on the instructions with offsets O through 6 (the
remainder of the procedure consists of exit code —code which is executed
before the procedure returns). The FILEOPS call is immediately apparent,
as DECODE explicitly names the segments containing external procedures.
Referring to the Internal Architecture Guide for the SCXG instruction
yields the information that SCXG is a call to an external procedure, and
that the procedure is procedure number 4 in FILEOPS. This is the
information the programmer has been looking for! A program which does
nothing but declare a file causes the compiler to generate a call to FILEOPS
procedure number 4. Evidently, that FILEOPS procedure somehow
initializes the FIB so that the file can meaningfully be used by the
program.

The next step is to figure out the parameters to FILEOPS procedure
number 4. Without knowledge of the parameters, the programmer will
not be able to explicitly generate the call to that procedure in the dynafile
program.

If there are parameters to FILEOPS procedure number 4, the compiler
must generate code to push the parameters onto the stack before the
procedure is called. The programmer therefore examines the DECODEd
instructions that precede the SCXG instruction. Sure enough, all three
instructions that precede the SCXG push values onto the stack. The first
instruction is LAO 1. Again referring to the Internal Architecture Guide,
the programmer learns that LAO loads the address of a global variable onto
the stack. The first LAQO instruction loads the address of the item with
global offset 1 onto the stack. Looking back at the compiler listing of the
test program, the programmer finds that the FIB of the file f is at global

Sec. 8.6 Accessing Internal Operating System Procedures 313

offset 1. The first parameter to FILEOPS procedure number 4 is the
address of a file’s FIB.

The next instruction is LAO 301. The programmer remembers that
the compiler allocates a file’s window variable immediately following the
FIB, and realizes that the window variable is 4 bytes long (type thing
occupies 4 bytes). Therefore, 301 is the global offset of the window
variable. The second parameter to FILEOPS procedure number 4 is the
address of the file’s window variable.

The instruction preceding the SCXG is SLDC 2. This instruction
simply pushes the value 2 onto the stack. The significance of the value 2 is
not immediately apparent. The programmer would probably experiment
with files of different “things” to see if and how the parameters changed.
Intuition obviously plays an important role here. Sufficient
experimentation yields the information that the third parameter to
FILEOPS procedure number 4 is the size of the window variable, measured
in words.

Evidently then, a call to FILEOPS procedure number 4 with three
parameters as discussed above is necessary to somehow initialize a file
before it can be used. The programmer may wish to use DECODE on the
compiled dynafile program to verify that the compiler does not generate
the call to FILEOPS procedure number 4 for dynamically declared files.

The call to the FILEOPS procedure must be explicitly coded in the
program. Without the INTERFACE section for FILEOPS, however, a trick
must be employed to force the compiler into generating the call —after
having pushed the appropriate parameters onto the stack.

The trick operates as follows: The programmer writes a UNIT called
FILEOPS which contains an INTERFACE section that resembles the
operating system’s FILEOPS and a skeleton IMPLEMENTATION section
with nothing but null procedures. Of course, the programmer does not
know what the INTERFACE section of the operating system’s FILEOPS
looks like. No matter, however —-the purpose of this phony INTERFACE
section is to be able to write a procedure header for FILEOPS procedure
number 4, and to force that header to appear in the phony UNIT numbered
as procedure number 4.

Procedure numbers depend on the ordering of procedure headers
within programs or units. Procedure number 1 is reserved for
initialization code of UNITs (if any) or main bodies of programs. The rest
of the procedures are numbered sequentially as their headers are
encountered by the compiler. Thus, the programmer must assure that the
header corresponding to FILEOPS procedure number 4 appears as the third
header in the phony FILEOPS INTERFACE section.

This is easily accomplished by declaring two dummy procedure
headers prior to declaring the header corresponding to FILEOPS procedure

314 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

number 4. Note that the programmer does not have to be aware of the
actual FILEOPS procedures corresponding to these dummy procedures. Nor
does the programmer have to be aware of the parameters to these
procedures, if any. These procedures will never be called; their sole
purpose is to force the header corresponding to FILEOPS procedure number
4 to be numbered as procedure number 4 when the compiler translates the
phony FILEOPS.

Following the dummy header is the header for the procedure
corresponding to the operating system’s FILEOPS procedure number 4,
which we name finit. This procedure will be procedure number 4 in the
phony FILEOPS as well. Note that for this procedure the parameters must
be supplied, since the dynafile program calls finit.

§$U-3
jcompile this unit to PHONYFILE.CODE}

unit FILEOPS; §MUST be U-; otherwise we won't be allowed
to use the name FILEOPS!}
interface

type
PhantomFIB = file; §for the first finit parameter}

§procedure dummyi is reserved for a unit’s
initializotion section}

procedure dummy2;

procedure dummy3;

procedure finit(var f: PhantomFIB;
window: integer;
recwords: integer);

implementation

procedure dummyi; begin end;
procedure dummy2; begin end;

procedure f_init;
begin
writeln('Whoops! We shouldn’’t be here!’);
fwe hope NEVER to execute this; see notes belowt

end;
end §FILEOPS}.

The first parameter to finit is of type file. As mentioned, a file is a
FIB to the compiler. This parameter is a VAR parameter, which means
that the compiler will pass the address of the FIB. As noted from the
DECODE output, the first parameter to FILEOPS procedure number 4
(which is called finit in the phony FILEOPS) is the address of the FIB of
the file to be initialized.

Sec. 8.6 Accessing Internal Operating System Procedures 3156

NOTE: Using a file type makes the finit procedure totally general
-any kind of a file, of any base type, can be passed to to a VAR file
parameter. The compiler does not check type compatibility for VAR file
parameters.

The second parameter corresponds to a pointer to a file window.
Since the type of a file window varies according to the base type of the
file, it has been made an integer for purposes of generality. A host program
(dynafile, in this example) will allocate a window, then pass ORDi(the
pointer to the window) to convert the pointer to an integer for finit.
Pointers are represented internally as integers, so once the operating system
receives the parameter it may resume treating it as a pointer.

DECODE informed the programmer that the third parameter
represents the size of the window variable in words. (In fact, finit should
be passed O for interactive files, -1 for untyped files and -2 for text files.)
The size of the window variable in words is 1/2 of the SIZEOF a dynamic
file’s base type for any base type less than MAXINT bytes long.

The phony FILEOPS unit must be compiled with the U- compiler
option (see section 5.0.1 2); this permits use of the name FILEOPS which is
otherwise reserved for system use.

The IMPLLEMENTATION section of the phony FILEOPS consists of
null procedure bodies for each of the procedure headers appearing in the
INTERFACE section. The procedure body for finit could also have been
made null; it consists instead of the WRITELN to highlight the fact that,
although the dynafile program will call finit, the body of finit in the
phony FILEOPS will never be executed!

What happens instead is this: When dynafile (or any host program
using the phony FILEOPS and calling finit) is compiled, the compiler
generates a SCXG instruction exactly like the one in the small test program.
The segment named is FILEOPS, since our phony UNIT also has that name.
The procedure is number 4, since the programmer took care to place finit
in that position in the phony FILEOPS. And the parameters passed to
finit when it is invoked in dynafiie are pushed onto the stack exactly as
they are pushed when the compiler itself generates the call; the
programmer took care to declare finit so that its parameters matched those
of the ”real” FILEOPS.

When the program using the phony FILEOPS is executed, however,
the operating system will not haul in the phony FILEOPS segment and try
to execute its procedure number 4. When constructing the runtime
environment of a program the operating system always searches for
segments internally (in SYSTEM.PASCAL) before looking elsewhere (see
section 8.4.4 for more information on the construction of a program’s
runtime environment). Therefore the call to FILEOPS procedure number 4
generated by the compiler in the host program will cause the actual

316 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

FILEOPS procedure number 4 to be executed! And it will execute correctly,
since the correct parameters were passed to it. The dynamic file whose FIB
and window variable information were passed to finit will be properly
initialized by the operating system, and the file can be opened and used
without error.

program dynafiles;
uses §$U phonyfile.code} fileops;

type
ThingP = tthings; fpointer to the base typei
things = record fthe base type in this example}

item1: integer;
item2: char;
end;
phyleP = tphyle; jpointers to files must be declared
BEFORE the file itself!}
phyle = file of things;
fthe file type which we will be working
with dynamical lyt

FDRecP = tFDRec; §pointer to the linked list record}
§(or File Data Record — FDRec) ¢
FDRec = record f§the linked list record, which

consists of..}

f: phyleP; §..0 pointer to o file of our
bose type}
wndow: ThingP; §..a0 pointer to a window variable
for the filet
NextFile: FDRecP; §..a pointer to the next element
in the list}
end;
var
first,latest,next: FDRecP; f{for linked Iist management}
int: integer; fused to generate test data
for our example}
ch: char; fditto}
s: string; §for interaction with user

in this example}

procedure Openfile(var TheFile: FDRecP; FileName: string);

begin
new(TheFile); fallocate a record for new file data}
with TheFilet do begin
new(f); fallocate a FIB for the new file}
new(wndow) ; {allocate a window variable

for the new file}

finit(ft, ord(wndow), (sizeof(things) div 2));
§call on the operating system finit procedure
to initialize FIB information; see text, and
comments on unit above for more informationt
reset(ft,FileName) §now we can open the filet
end;
end §{OpenFile};

Sec. 8.6 Accessing Internal Operating System Procedures

procedure CloseFile(TheFile: FDRecP);
begin
with ThefFilet do begin
close(ft,lock); §MUST close the file; no default
close when exiting a procedure
for these dynamic files}
dispose(wndow); fget rid of the "window"..}

dispose(f); §..and the FIB}
end;
dispose(TheFile); §get rid of the file data record
entirely}

end {§CloseFile};

begin
int := 1; finitialize these for our test data}
ch := "A’;
first := NIL; §begin generating linked list}
repeat

write('Next file (<Return> for no more files): ');
readin(s);
if length(s) > @
then begin
OpenFile(next,s); _
fallocate o file data record, with FIB and
window pointer, then open the dynamic file}
if first = NIL
fhandle linkage to previous element, if any}
then first := next
else latestt NextFile := next;
latest := next;
with latestt do begin

NextFile := NIL; f§this may be the last one!}

seek(f*,0); f§do what we want with file;
in this example. .}

ftr.itemt := int; §..we just write a single

record of test data}

fttr.item2 := ch;

int := succ(int); jgenerate new test data
for next filet

ch := succ(ch);

put(ft); fwrite the test data to
the file}

end; $withi
end; {if length(s)...}
until (length(s) = @);

latest :== first;
flet’s prove the data really is there by
going through the linked list and reading
it back; at the same time, we’ll clean up
aofter ourselves by closing and deallocating

the files}
repeat
if lotest <> NIL
then begin

with latestt do begin

317

318 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

fread in the record from current file and
and write it out}
writein(ftt.item1, * ', ftt.item2);
first := l|atest;
fget ready to do the same for the next file}
latest := NextFile;
end;
CloseFile(first);
fclose the dynamic file, then deallocate the
window record, FIB and file data record}
end;
until (latest = NIL);
end {§dynafiles}.

This program illustrates how dynamic files may be used to construct
a linked list of files. The base type of the files is type thing. A pointer to
type thing (ThingP) is declared; this is used to allocate window variables
for the dynamic files. A file type is declared with base type of things, and
a pointer to the file type (called phyleP) is declared. Note that phyleP is
declared prior to type phyle itself. Declaring a pointer to an as-yet-
undeclared type is always permitted in Pascal, but in this case it is
required; the compiler will not permit a pointer to be declared to an
already-declared file type.

A record type called FDRec is declared. Items of this type will make
up the linked list of files. Each FDRec contains a pointer to the base type
for a file’s window variable and a pointer to the file type for the file itself
(i.e. the FIB). Since the linked list of files will grow and shrink
dynamically, a pointer to FDRec (FDRecP) is declared so that the file data
for each file can be allocated as needed.

The program consists of two REPEAT loops. The first constructs a
linked list of files, permitting the user to enter as many file names as are
required. Each file is opened and a record of test data is written. The
second loop traverses the linked list, verifying that the test data was
written correctly and deallocating each file in the list as it is encountered.

Allocation and preparation of the file information is performed in the
OpenFile procedure. This procedure is passed the name of a file. Using the
NEW intrinsic, it allocates a file data record (FDRec) and — using pointers
within the new FDRec-allocates a FIB and window variable for the file.
OpenFile then calls the operating system procedure finit to initialize the
FIB, and opens the file using RESET. Note that RESET refers to the file not
as f, but as f+. This is because f is of type phyleP, a pointer to a file — the
file itself is therefore the data item referenced by f —or f+¢. OpenFile
returns the pointer to the new FDRec in a VAR parameter.

Deallocation of the file information is performed in the CloseFile
procedure. This procedure is passed the pointer to the FDRec of the file to be
deallocated. CloseFile first closes the file. This is extremely important,
since the compiler will not automatically close dynamic files when exiting

Sec. 8.6 Accessing Internal Operating System Procedures 319

the procedure wherein the files were declared (as it does with ordinary
“static” files). CloseFile then disposes of the window variable, disposes of
the FIB and disposes of the FDRec itself.

Note that the files’ window variable fields are not referenced as
ft.item but as ft+.item. Again, this follows from the fact that f is not a
file but a pointer to a file. The file itself is ft+ and the window variable
requires a further level of referencing.

The technique described for invoking FILEOPS procedures, though
somewhat complicated to explain, is straightforward in use and can be
quite handy. This technique can be used to invoke procedures in any UNIT
whose INTERFACE section is unavailable. In fact, it will work for
invoking any global procedure, even procedures which do not appear in a
UNIT’s INTERFACE section at all.

8.7 The Compiler/Operating System Interface

Of all the utilities that are a part of the p-System, the compilers —and other
language translators, such as the assemblers —are the most integrated into
the operating system. Although these programs exist as separate code files,
they rely on the operating system to perform certain preliminary
operations for them and to perform clean-up operations after they finish
execution.

When the Clompile or A(ssemble options are selected from the main
system promptline, the system checks to see if a text workfile is present
before the translator is invoked. If not, the system prompts the user to
supply both textand code file names. Then it opens the textand code files
and calls on the program named SYSTEM.COMPILER or
SYSTEM.ASSMBLER.

If no errors are detected by the translator, the system closes the text
and code files before the main promptline is re-displayed. If errors are
detected by the translator the user is normally given the option to continue
the translation, exit the translator, or invoke the editor. If the user opts to
invoke the editor, the operating system causes a transfer to
SYSTEM.EDITOR; the cursor is positioned at the error and the error
message is re-displayed.

NOTE: Because of the heavy interaction between the translators and
other system components, it is not normally possible to succesfully CHAIN
to a translator program.

This section discusses the mechanics of the translator/operating
system interaction from the perspective of the translator program. An
example ”toy compiler” illustrates how to write a translator program so

320 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

that it interfaces properly with the other operating system components.

The first item of concern for the translator is to be able to access the
source program text file and the file to which code output is to be sent. If
the translator is to be named SYSTEM.COMPILER or SYSTEM.ASSMBLER
and invoked from the main system promptline with the Clompile or
A(ssemble options, it cannot open these files. The file names were solicited
from the user by the operating system, and the files are already open by
the time the translator begins execution.

The translator can locate pointers to the FIBs (see section 8.5 for a
discussion of FIBs) of these files in a KERNEL record called USERINFO.
The USERINFO record is the primary means of communication between
the operating system, translator and editor as they interact in the process of
program development. The pointer to the FIB of the text file is called
symf i bp; the pointer to the FIB of the code file is called codef ibp.

To access the symf ibpt and codefibpt files the translator may declare
two files of its own called (for example) tex and cod. Declaring a file
causes the compiler to allocate stack space for a FIB for that file. The
declared files are never opened, however; instead, the MOVELEFT intrinsic
is used to copy the symfibp FIB to tex (i.e,to the FIB of tex) and the
codef ibp FIB to cod (i.e.,to the FIB of cod). In that way, the translator may
legally access tex and cod (since they are declared as bona-fide files) yet,
since their FIBs are now the FIBs of the source text and output code files
already opened by the operating system, the translator will actually be
accessing those files.

p-System textfiles are broken into units called pages, where each page
is 2 blocks (or 1k bytes) long. It is convenient, therefore, for a translator to
have a 2 block buffer to contain successive pages of the text file as the
translation process procedes. Since the buffer will contain text, it is best
declared as a packed array[0..1023] of char. The BLOCKREAD intrinsic
can be used to read one page at a time into the buffer, starting with the
second page of the text file (the first page of a text file contains header
information).

The translator should keep track of the block number at which the
current page begins (i.e.,2, 4, 6 etc. —pages will always begin on even block
boundaries). This information is required by the editor in the event it is
invoked due to an error in the current page. The translator should also
keep track of its current position within the page as it traverses the buffer.
This number, which is in the range 0..1023 for a 2 block buffer, is also
required by the editor if an error is located.

When the translator discovers an error it generates an error number
depending on the nature of the error discovered. The translator should
display some characters preceding the error, the text of the error and the
error number. In addition, the translator should display an error message

Sec. 8.7 The Compiler/Operating System Interface 321

that verbally clescribes the nature of the error.

The Pascal compiler accomplishes error message display by storing
error messages in a textfile called SYSTEM.SYNTAX. In this file, each line
contains an error number followed by a colon, followed by an error
message. The Pascal compiler searches through the textfile until it finds
the line beginning with the number of the current error. It displays the
error message on that line.

Following display of the error information the user should be given
the option of continuing the translation process, tranferring to the editor or
~ escaping to the main system prompt line. No special action need be taken if
the user chooses to continue the translation process.

If the user chooses to transfer to the editor the translator must store
the block number of the current page into the USERINFO field called
ERRBLK and the byte offset of the offending character within the page,
into the USERINFO field called ERRSYM. In addition, the error number
should be stored in the USERINFO field called ERRNUM. The translator
should then exit; no special action need be taken by the translator to
accomplish the transfer to the editor. The operating system automatically
transfers to the editor when SYSTEM.COMPILER or SYSTEM.ASSMBLER
leave non-zero values in ERRBLK and ERRSYM. The editor always
examines ERRBLK and ERRSYM when it begins execution; if it finds non-
zero values it arranges a jump to the appropriate position in the text. If it
finds a non-zero value in ERRNUM it looks up the error message in
SYSTEM.SYNTAX (as the translator did) and re-displays it.

If the user chooses to escape to the main system promptline the
translator must set ERRBLK to zero to avoid a subsequent transfer to the
editor. The translator may then exit.

The program below contains a compiler “’shell”; the components of a
translator that interact with the user and the operating system in the
manner described in this section. Program ToyCompiler actually translates
nothing, however; instead, it scans the input textlooking for occurrences of
the ”1” character. These are treated as ”syntax errors” to demonstrate the
compiler’s handling of such a situation.

program ToyCompiler;
uses kernel;

const
bell = 7; $ASCII code for bell}
esc = 27; §ASCII code for escape}
illegal = 6; fthe error number in this illustration}
pagesize = 1023; {text file page = 2 blocks}
type
buftype = packed array[@..pagesize] of char;
var
ch: char;
s: string; fjcontains an error message for display}

buf: buftype; {read the source file into here}

322

SYSTEM UNITS AND DATA STRUCTURES Chap. 8
curblk, fcurrent block in source file}
bytestosearch, {bytes left in current buffer}

Ibound, fdetermines text to display near error}
dum,i: integer;
tex, §the source file}
cod: file; f§the "code" file, which this toy
program doesn’'t use}
procedure lookup(num: integer; var msg: string);
§finds an error message in SYSTEM.SYNTAX
given an error number}
var
err: text; fthe file of error messages}
snum: string; fan error number in string form}
msgnum,i: integer;
begin
reset(err,’'ssystem.syntax’);
repeat
readin(err,msg);
snum := copy(msg, 1, (pos(’:',msg) — 1));
ferror number of this line}
msgnum := @; fconvert snum from string to..}
for i := 1 to length(snum) do finteger, in msgnum}
msgnum := (msgnum * 10) + (ord(snum[i]) - ord('©’));
if (msgnum = num) jget rid of the number and colon}

then delete(msg, 1, (pos(’:’,msg)));
until (eof(err) or (msgnum = num));
close(err);
if pos(’:’,msg) <> @
then msg := ’'Unknown error’;
fcouldn’t find error message}
end;

function mox(x,y:integer):integer;
begin
if x>y
then max := x
else max := y;
end;

begin
§a "real" compiler would prompt for a listing
file at this point}
writein;
writeln(’'Toy compiler — release level IV.13 c6t—4');
writein; write('One dot per block *);

with userinfo do begin
moveleft(symfibpt,tex,sizeof(tex));
fget the source file FIB into tex..}
moveleft(codefibpt,cod,sizeof(cod));
jand the "code" file FIB into code..}
end; §{so we can do 1/0 on the already—open
filest

curbltk := 2;

Sec. 8.7 The Compiler/Operating System Interface 323

fthe third block of o text file is where the text beginsi
with userinfo do begin

repeat funtil eof(tex)t
dum := blockread(tex,buf,2,curblk);
fread in next source page}

errblk := 0;
§if it stays @, system will not chain to editor
upon completion of compilert
errsym := 0;
fwill "travel" to each occurrence of the "I"}
write(’..’);

repeat funtil errsym >= bytestosearch}
bytestosearch := pagesize ~ errsym;

fbytes remaining after last "!1"}
errsym := scan(bytestosearch, ='1’', buf[errsym])
+ errsym;
§"compile"” it — this toy just looks for "!" charactersi
if errsym < bytestosearch fwe found a "!"}
then begin
writeln;
errnum := illegal; for whatever error number}
lookup(errnum,s); f§find the error message}

Ibound := max(@,(errsym — 30));
§display preceding 30 charactersi
for i := Ibound to errsym do write(buf[i]);
§spit out the surrounding text}
writeln(® <—"');
writein(s);
writein('Block ',curblk,
' at position ',errsym);
write(chr(bell),
'Type <sp> to continue, <esc> to terminate, or ''e’'’ to edit’

)s
repeat read(keyboard,ch)
until (ch in [* *,%e’,’E’,chr(27)]);
writeln;
if ch = chr(esc) fwill not chain to editor}

then exit(program) §since errblk = 0}
else if (ch in ['e’','E'])
then begin
errblk := curblk;
exit(program); fwill procede to editor}
end;
end §{if errsym < bytestosearch};
errsym := succ(errsym);
fcontinue searching this page..}
until (errsym >= bytestosearch);

funtil no more "!" found}
curblk := curblk + 2; {prepare to read next page..}
until (eof(tex)); funtil no more pages in file

end fwithi};
end §ToyCompiler}.

After displaying some initial messages, program ToyCompi ler enables
the use of the input text and output code files by moving the FIBs of the

324 SYSTEM UNITS AND DATA STRUCTURES Chap. 8

already-opened files to tex and cod. Note that in this program cod is never
used; the MOVELEFT to cod is for illustrative purposes only. The variable
curblk is used to track the block number beginning the current page.
Curblk is initialized to 2, since the first page of a textfile contains header
information necessary to an editor but not to a translator.

The body of the “compiler” consists of a pair of nested
REPEAT/UNTIL loops. The outer loop reads in successive pages until the
end of the input textfile is reached. ERRBLK and ERRSYM are initialized
to zero. ERRSYM is used to contain the byte offset into the page of the
latest ”” character. ERRBLK will remain zero until an ”!” is found.
When a ™” is found ERRBLK is set to the value of curblik if the user
wishes to transfer to the editor. The inner loop advances ERRSYM further
and further into the page until finally no more ™ characters are found.
The nextpage is then read in and the outer loop continues.

When an error is found the preceding thirty characters are displayed,
along with the ™ character itself. ToyCompiler uses the function max to
avoid an attempt to print non-existing characters when a ™ is located in
the first thirty bytes of a page. The procedure lookup is used to search
SYSTEM.SYNTAX for an error message corresponding to the error number.
Lookup searches sequentially; a real translator would presumably use a
more efficient search method.

The error number corresponding to ToyCompiler’s “error” is always
6, stored in the constant called illegal. Of course, a real compiler would
generate different error numbers depending on the nature of the error
discovered.

N o Y S WY
AR T R A o

W 2 N0 kW

Appendix A

STANDARD I/0 RESULTS

No error

Bad Block, Parity error (CRC)

Bad Unit Number

Bad Mode, Illegal operation

Undefined hardware error

Lost unit, Unit is no longer on-line
Lost file, File is no longer in directory
Bad Title, Illegal file name

No room, insufficient space

No unit, No such volume on line

No file, No such file on volume
Duplicate file

Not closed, attempt to open an open file
Not open, attempt to access a closed file

Bad format, error in reading real or integer

325

326

16.
17.
18.
19.
20.

Appendix A STANDARD 1/O RESULTS

Ring buffer overflow

Write Protect; attempted write to protected disk
Illegal block number

Illegal buffer address

Invalid textfile format

T
SAREE ol R I

© ® NN N A W=

Appendix B

STANDARD EXECUTION ERRORS

No error

Invalid index, value out of range
No such procedure in segment
Exitfrom uncalled procedure
Stack overflow

Integer overflow

Divide by zero

Invalid memory reference <bus timed out>
User Break

System 1I/0 error

User 170 error

Unimplemented instruction
Floating point math error
String too long

Programmed HALT

327

328

16.
17.
18.
19.
20.

Appendix B STANDARD EXECUTION ERRORS

Illegal heap operation

User breakpoint

Incompatible real number size
Set too large

Segment too large

Appendix C

CONDITIONS CAUSING I/0 ERRORS

1. CRC Error

Returned whenever a CRC (cyclic redundancy check) or Parity error
occurs.

2. Bad Unit Number
Returned for accesses to a device for which there is no driver declared.
3. Bad Mode

Returned for attempts to read on a write-only device or write on a
read-only device.

4. Undefined Error
Returned when an error of indeterminable type occurs.
S. Lost Unit

Returned by the file system only; it indicates that a disk has gone off-
line during an 1/0 operation.

6. Lost File

Returned by the file system only; it indicates that a file expected to be
in a disk directory is not present.

329

330 Appendix C CONDITIONS CAUSING 1/O ERRORS

7. Bad Title

Returned by the file system only; it indicates an attempt to open a
file with an invalid file name.

8. No Room

Returned by the file system only; it indicates either an attempt to
open or extend a disk file when disk space is unavailable, or an
attempt to open a new file on a disk with a full directory.

9. No Unit/Volume

Returned either after an attempt to access an off-line unit or after an
error occurs during UNITCLEAR. Also returned by the file system to
indicate an attempt to access a volume which is not on-line.

10. No File

Returned by the file system only; it indicates an attempt to open a
nonexistentdisk file.

11. Duplicate File

Returned by the file system only; it indicates an attempt to create
more than one temporary file with the same file name on a single
disk volume.

12. Not Closed

Returned by the file system only; it indicates an attempt to open a
file variable which is already connected to an externalfile.

13. Not Open

Returned by the file system only; it indicates an attempt to access a
file variable which is not connected to an externalfile.

14. Bad Format

Returned by the file system only; it indicates an attempt to read a
real value or integer value with incorrect input format.

15. Ring Buffer Overflow

Returned during a read from a serial device after its input buffer has
overflowed. (Not implemented on most systems.)

16. Write Protected Disk

Returned when attempting to write to a write-protected disk.

Appendix C CONDITIONS CAUSING I/O ERRORS 331

17. Illegal Block Number

Returned when attempting to access a nonexistent block on a block-
structured device, or when a seek error occurs.

18. Illegal Buffer Address

Returned when attempting to initiate an I/0O operation with a non-
word-aligned starting buffer address. (Applies only to block-
structured devices.)

19. Invalid TextFile

Returned by the file system when an attempt is made to create a text
file containing fewer than four blocks.

Appendix D

STANDARD 1/0 UNIT ATTRIBUTES

This section describes the operations defined for UCSD Pascal 170 units in
their standard configuration. All I/0 operations are performed with the
unit I/0 intrinsics described in section 3.9.

I/0 units can be divided into two classes according to their attributes:
serial units, and block-structured units. A unit’s class determines the
kinds of operations performed on the unit and the available I/0O options.
I/0 options are specified by setting various bits in the control word
parameter of the UNITREAD and UNITWRITE intrinsics.

NOTE: An option is enabled if its bit is set to 1; otherwise, it is
disabled. The low-order bit in a control word is bit 0. Unused bits in
control words should always be set to 0. For example, a control word
value of 6 sets bits 1 & 2 to 1 (and all other bits to 0).

NOTE: The standard UCSD Pascal I/0 system may be augmented by
user or vendor-supplied custom device drivers; these drivers are not
described in this text, but may be described in vendor-supplied
documentation.

332

Appendix D STANDARD I/O UNIT ATTRIBUTES 333
D.1 Serial Unit Attributes

Serial units read and/or write sequences of characters to a serial device
such as a console, printer or remote line. In normal I/0, an input stream or
an output stream may include either data characters or control sequences.
Input control sequences control the interpretation of input data characters
and are not returned as input data. Qutput control sequences may be
expanded to a series of data characters. The control sequences for the
console and keyboard devices are a superset of the control sequences for the
printer and remote devices. Special treatment of these control sequences
may be defeated by using the control options described in the following
sections.

D.2 Serial Input Attributes

Each serial input unit maintains its own input queue. All input data
characters and control sequences are stored in a device queue before being
tead and interpreted during an input operation. The exception to this rule
is the <break> control sequence, which bypasses the input queue and is
interpreted immediately. A device queue size is normally either 1
character or 32 characters, depending on the particular serial device driver
installed. See your System Installation Guide for details.
The control sequences recognized by all serial input drivers are:

<alphalock> Simulates the alphalock key on the keyboard. After
receipt of this character, the device driver automatically
shifts any upper case alphabetic characters to lower case
alphabetic characters and vice-versa. A second receipt of
this character toggles the alphalock state off.

<eof> Is treated as the end-of-file marker; the end-of-file marker
is placed in the input buffer and the input operation is
terminated immediately.

The control sequences recognized by the keyboard serial input drivers
are:

<stop/start> Alternately suspends and resumes console output.

<eof > Is treated as the end-of-file marker; a null is placed in the
input buffer, the remainder of the input buffer is filled
with nulls, and the input operation is terminated.

334 Appendix D STANDARD I/O UNIT ATTRIBUTES
<flush> Discards (”flushes”) subsequent console output.

<break> Aborts execution of the current program by causing a User
Break executionerror.

NOTE: Unitread operations on the console (unit 1) are received from
the keyboard and echoed to the console. Unitread operations on the
keyboard (unit 2) are not echoed. Console output control sequences echoed
to the console are subject to the same rules as console output control
sequences explicity written using the Unitwrite intrinsic. See the next
section for details.

NOTE: Each serial input control sequence may be defined by the user
in the System.Miscinfo file (see the System Installation Guide). The
normal definitions of these characters are as follows:

Control sequence Normal definition
<stop/start> Contro!=S (13 hex)
<eof> Control—C (@3 hex)
<flush> Control-F (@6 hex)
<break> Controi—0 (@0 hex)
<alphalock> Control-R (12 hex)

The interpretation of serial input control sequences is controlled by
the control parameter in the Unitread call. The control options are as
follows:

® Bit 2 - Suppress recognition of the <eof> and <alphalock> sequences.
Note that if an alphalock condition exists before an input operation is
begun, the alphalock condition persists throughout the input
operation. Also suppresses DLE expansion when echoing a DLE to the
console (see the nextsection for details).

e Bit 3 - Suppress CR/LF generation when echoing a CR to the console.
See the nextsection for details.

NOTE: It is not possible to suppress <stop/start>, <flush> and <break>
sequence interpretation.

Appendix D.2 Serial Input Attributes 335

WARNING: Although the Setup utility implies that it is possible to
specify control sequences preceded by a leadin prefix (such as ESC), no
version of the p-System honors this specification. Input control sequences
may consist of only one character.

D.3 Serial Output Attributes

The control sequences recognized by all serial output drivers are:

® The ASCII DLE character (10 hex)- treated as the first character of a
blank compression character sequence; the nextcharacter is defined to
contain a byte value which is 32 greater than the number of blank
characters to be written to the device. Note that DLE processing
applies only to the transmission of text files; it should be suppressed
when writing code or data files to a serial device.

® The ASCII CR character (OD hex) - defined as a "new-line” character
in text files. Whenever CR is written to a serial device, the 1/0
system automatically follows it with the ASCII LF character (OA
hex). Note that CR/LF processing applies only to the transmission of
textfiles; it should be suppressed when writing code or data files to a
serial device.

The interpretation of serial output control sequences is controlled by
the control parameter in the Unitwrite call. The control options are as
follows:

® Bit 2 - Suppress DLE expansion.

® Bit 3 - Suppress automatic generation of a LF after a CR.

NOTE: Serial output is somewhat faster if bits 2 & 3 are set on a
Unitwrite call.

D.4 Block-structured Unit Attributes

Block-structured devices read and/or write sequences of characters to a
block-structured device such as a disk. All characters involved in a
transfer are treated as data; there are no embedded control sequences.

@ Bit 1 - Physical sector 1/0. Allows access to any physical sector on
the disk. Disk sectors are addressed by logical sector number; the first
sector on the disk is sector 0. Note that physical sector mode allows

336 Appendix D STANDARD 1/O UNIT ATTRIBUTES

normally inaccessible disk sectors to be accessed (e.g., bootstrap sectors
if present). The starting block parameter is redefined to denote the
starting logical sector number. In this situation, the byte count
parameter is ignored and the I/O operation transfers one physical
sector of data; the size of a physical sector is determined by the type
of the disk currently in use and may be obtained by using the
UNITSTATUS intrinsic.

WARNING: Because the byte count is ignored in physical sector mode,
a physical sector read may overrun a buffer that is not declared large
enough to hold a physical sector. The maximum p-System physical sector
size is 512 bytes.

D.5 1/0 Unit Specification

This section describes the standard system 1/0 units. The unit attribute
determines the options available for use with the UNITREAD and
UNITWRITE intrinsics. (See sections 4.42 and 4.45 for parameter
information.) Unit-specific features are described next to the operations
affected. The UNITSTATUS record format depends on the type of unit
being polled. See section 3.9.3 for details.

NOTE: Users and vendors may supply their own drivers for units 128
through 255. Vendor-supplied documentation may describe the action of
these drivers. See the System Installation Guide for further details.

NOTE: Subsidiary volumes and additional serial ports may be assigned
to units 13 through 127. These devices follow the general rules for block-
structured devices and serial devices, respectively. See the System
Installation Guide for further details.

NOTE: On early Version II systems, units 7 and 8 were combined into
a bidirectional unit 8 called REMOTE:..

Appendix D.5

#0:

#1:

#2:

#4.

Device
Volume Name
Attribute

UnitClear
UnitRead
UnitWrite
UnitBusy
UnitWait
UnitStatus

Device
Volume Name
Attribute

UnitCleoar
Uni tRead

UnitWrite
Uni tBusy
UnitWait
UnitStatus

Device
Volume Name
Attribute

UnitClear
Uni tRead
UnitWrite
Uni tBusy
UnitWait
UnitStatus

Device
Volume Name
Attribute

UnitClear
Uni tRead
UnitWrite
Uni tBusy
UnitWait
UnitStatus

1/0 Unit Specification

System information
none
System

Halt the system
Halt the system
Return FALSE

Return system stotus information

System console
CONSOLE:
serial

Clear type—ahead and keyboard buffers.
Echo input character, zero—fill
remainder of BUFF instead of

returning end—of-file marker.

Output to system console

Return FALSE

Return keyboard type—ahead information

System console
SYSTERM:
Serial

Clear type—ahead and keyboard buffers
Input from system keyboard

Output to system console

Return FALSE

Return keyboard type—ahead information

Floppy drive 9
user defined
Block—-structured

Seek to track 0.
Read from floppy
Write to floppy
Return FALSE

Return disk parameter information

337

338

#5:

#6:

#7:

#8:

Device
Volume Name
Attribute

UnitClear
Uni tRead
UnitWrite
Uni tBusy
UnitWait
UnitStatus

Device
Voiume Name
Attribute

UnitClear
UnitRead
UnitWrite
Uni tBusy
UnitWait
UnitStatus

Device
Volume Name
Attribute

UnitClear
UnitRead
UnitWrite
Uni tBusy
UnitWait
UnitStatus

Device
Volume Name
Attribute

UnitClear
Uni tRead
UnitWrite
UnitBusy
UnitWait
UnitStatus

Appendix D STANDARD 1/O UNIT ATTRIBUTES

Floppy drive 1
user defined
Block—structured

Seek to track ©.
Read from floppy
Write to floppy
Return FALSE

Return disk parameter information

Parallel printer output
PRINTER:
Serial

Bad mode
Write data to printer
Return FALSE

Remote input
REMIN:
Serial

Clear remote input type—ahead queue
Read data from remote input queue
Bad mode

Return FALSE

Return remote type—aheod information

Remote output
REMOUT :
Serial

Clear remote input type—ahead queue
Bod mode

Write daota to remote port

Return FALSE

No action

Return remote type—ahead information

Appendix D.5

#9:

#10:

#11:

#12:

Device
Volume Name
Attribute

UnitClear
UnitRead
UnitWrite
UnitBusy
UnitWait
UnitStatus

Device
Volume Name
Attribute

UnitClear
Uni tRead
UnitiNrite
Uni tBusy
UnitWait
UnitStatus

Device
Volume Nome
Attribute

UnitClear
UnitRead
UnitWrite
UnitBusy
UnitWait
UnitStatus

Device
Volume Name
Attribute

UnitClear
UnitRead
UnitWrite
UnitBusy
UnitWait
UnitStatus

I/O Unit Specification

Optional hard disk virtual floppy
user defined
Block-~structured

Read from virtual floppy
Write to virtual floppy
Return FALSE

Return disk parameter information

Optional hard disk virtual floppy
user defined
Block—structured

Read from virtual floppy
Write to virtual floppy
Return FALSE

Return disk parameter information

Optional hard disk virtual floppy
user defined
Bliock-structured

Read from virtual floppy
Write to virtual floppy
Return FALSE

Return disk parameter information
Optional hard disk virtual floppy

user defined
Block—structured

Read from virtual floppy
Write to virtual floppy
Return FALSE

Return disk parameter information

339

Appendix E

RESERVED WORDS

Standard Pascal Reserved Words

and end not then
array file of to
begin for or type
case function packed until
const goto procedure var
div if program while
do in record with
downto {abel repeat

else mod set

NOTE: NIL is a predefined identifier in UCSD Pascal.

UCSD Pascal Reserved Words

external segment
forward separate
interface uni t
implementation uses
process

340

Appendix F

PREDECLARED IDENTIFIERS

Standard Pascal Predeclared Identifiers

abs
arctan
boolean
char
chr

cos
dispose
eof
eoln
exp

false
get
input
integer
In
maxint
new

odd

ord
output

page
pred
put
read
readin
real
reset
rewrite
round
sin

sqr
sqrt
succ
text
true
trunc
write
writeln

341

342

UCSD Pascal Predeclared Identifiers

atan
attach
blockread
blockwrite
close
concat
copy
delete
exit
fillchar
gotoxy
halt
idsearch
insert
interactive

NOTE:

ioresult
keyboard
length
mark
memavai |
memiock
memswap
moveleft
moveright
nil
opennew
opencld
pos
processid
pwroften

release
scan

seek
semaphore
seminit
signal
sizeof
start

str
string
time
treesearch
uni tbusy
unitclear
unitread

NIL is a reserved word in standard Pascal.

Appendix F PREDECLARED IDENTIFIERS

unitstatus
unitwait
unitwrite
varavail
vardispose
varnew
wait

Appendix G

IMPLEMENTATION LIMITS

G.1 Quantitative Limits

Maximum number of segments in a program: 255

Maximum number of procedures in a segment: 255

Maximum level of nested procedures: 8

Maximum level of nested statements: 12

Maximunisize of a procedure: no limit

Maximumsize of variables in a procedure: 32766 words

Maximumsize of a record or array: 32766 words

Maximumsize of a set: 4080 elements

Maximumsize of a string: 255 characters

Integer range: -32768 .. 32767 (no overflow checking)

Long integer accuracy: up to 36 digits

Real range: -3.0E38 .. 3.0E38 (2-word reals, approximate)

-1.0E308 .. 3.0E308 (4-word reals, approximate)

Real accuracy: up to 6 significant digits (2-word reals)

up to 14 significant digits (4-word reals)

343

344 Appendix G IMPLEMENTATION LIMITS
G.2 Sets

An integer subrange type encompassing negative integer values may not be
used as the base type of a set in UCSD Pascal. "Negative” sets compile
successfully, but cause execution error 1 (*Value range error”) when they
are assigned negative values.

Exampleof an invalid set:

program revelation;
var nuclear: set of —66..6;
solar: set of 3..33;
begin
solar := [5];
nuclear := [-30]; § program crashes here }
end.

G.3 Mixed Expression Evaluation

The lack of integer overflow checking can affect expressions mixing
integers with long integers or reals. The compiler evaluates mixed
expressions left-to-right; the expression is evaluated with integer operations
until either an operand of the final type (long integer or real) is
encountered or the end of the expressionis reached. Only at this point does
the compiler convert the expression (sub)result to the final type; however,
the integer-valued expression may have already overflowed.
Example of mixed expression misevaluation:

program mal ;
var I: integer;

R: real;
begin
I := 20000;
R := 3.0;

writein(l + 20000 + R);

In this example, the compiler emits code to perform an integer addition of
the integer variable I and the integer constant 20000. The integer result is
then converted to type real and added to the real variable to obtain the
expression result. Unfortunately, the integer addition overflows, resulting
in an incorrect integer subresult; the error is merely propagated by the
subsequent real operations.

This problem can be avoided by reordering expressionsso that real or
long integer operands precede the integer operands; this forces the compiler
to convert integer operands to the final type as they are encountered.

Appendix G.4 Mixed Expression Evaluation 345

G.4 NIL Pointer References

UCSD Pascal does not detect dynamic variable references through pointer
variables containing the value NIL (these should be flagged with execution
error 7, but are not).

G.5 Record Variant Accesses

UCSD Pascal provides no checks for the detection of invalid record variant
references (i.e., accessing a record variant which does not correspond with
the tag field value).

G.6 FOR Statements

FOR statements with a final value of MAXINT become infinite loops.
Avoid using MAXINT (and -MAXINT) as the initial and final values.

G.7 Special Symbols

Some of the special symbols in UCSD Pascal are internally equivalent;
they may be substituted for each other without affecting the compilability
of a program.

SEGMENT is equivalent to PROGRAM

is equivalent to

G.8 MOD and DIV with Negative Arguments

The result of a MOD or DIV operation involving negative arguments
differs between implementations of UCSD Pascal. The result of a DIV
operation with positive arguments is always truncated. When using
negative operands, some processors round the result of a DIV towards the
larger integer (less negative); some processors round towards the smaller
(more negative). Since a MOD b is defined to be ¢ — (a DIV b) = b, the
values returned by MOD are affected by the result of DIV.

COMPILER SYNTAX ERRORS

With thanks to Sof Tech Microsystems.

Error in simple type
Identifier expected
unimplemented error
'Y expected

’’ expected

Illegal symbol (terminator expected)
Error in parameter list
OF’ expected

'’ expected

Error in type

T expected

’} expected

’END’ expected
Semicolon expected
Integer expected

=" expected

’BEGIN’ expected
Error in declaration part
Error in <field-list>

"’ expected

»* expected

Appendix H

346

Appendix H COMPILER SYNTAX ERRORS 347

22.
23.
24.
50.
51.
52.
S3.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
101.
102.
103.
104.
10S.
106.
107.
108.
109.
110.
111,
112.
113.
114,
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.

INTERFACE’ expected

IMPLEMENTATION’ expected

"UNIT’ expected

Error in constant

=" expected

"THEN’ expected

"UNTIL’ expected

DO’ expected

"TO’ or ' DOWNTOQ’ expected in for statement
'IF’ expected

'FILE’ expected

Error in <factor> (bad expression)

Error in variable

Must be of type 'SEMAPHORFE’

Must be of type 'PROCESSID’

Process not allowed at this nesting level

Only main task may start processes

Identifier declared twice

Low bound exceedshigh bound

Identifier is not of the appropriate class
Undeclared identifier

Sign not allowed

Number expected

Incompatible subrange types

File not allowed here

Type must not be real

<tagfield> type must be scalar or subrange
Incompatible with <tagfield> part

Index type must not be real

Index type must be a scalar or a subrange

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard procedure parameter
Unsatisfied forward reference

Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure
Function result type must be scalar, subrange or pointer
File value parameter not allowed

A forward declared function’s result type can’t be re-specified
Missing result type in function declaration
F-format for reals only

Error in type of standard procedure parameter

348 Appendix H COMPILER SYNTAX ERRORS

126. Number of parameters does not agree with declaration
127. Illegal parameter substitution

128. Result type does not agree with declaration
129. Type conflict of operands

130. Expressionis not of set type

131. Tests on equality allowed only

132. Strict inclusion not allowed

133. File comparison not allowed

134. Illegal type of operand(s)

13S. Type of operand must be Boolean

136. Set element type must be scalar or subrange
137. Set element types must be compatible

138. Type of variable is not array

139. Indextype is not compatible with the declaration
140. Type of variable is not record

141. Type of variable must be file or pointer

142. Illegal parameter solution

143. Illegal type of loop control variable

144. Illegal type of expression

145. Type conflict

146. Assignment of files not allowed

147. Label type incompatible with selecting expression
148. Subrange bounds must be scalar

149. Indextype must be integer

150. Assignment to standard function is not allowed
151. Assignment to formal function is not allowed
152. No such field in this record

153. Type error in read

154. Actual parameter must be a variable

155. Control variable cannot be formal or non-local
186. Multidefined case label

157. Too many cases in case statement

158. Nosuch variant in this record

159. Real or string tagfields not allowed

160. Previous declaration was not forward

161. Again forward declared

162. Parameter size must be constant

163. Missing variant in declaration

164. Substition of standard proc/func not allowed
165. Multidefined label

166. Multideclared label

167. Undeclared label

Appendix H COMPILER SYNTAX ERRORS 349

168.
169.
170.
171.
172.
173.
174.
178.
176.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192,
193.
194.
1985.
201.
202.
203.
204.
250.
251.
252.
253.
254.
256.
257.
258.
259.
300.
301.
302.
303.
304.
398.

Undefined label

Error in base set

Value parameter expected

Standard file was re-declared

Undeclared externalfile

Fortran procedure or function expected
Pascal function or procedure expected
Semaphore value parameter not allowed
Undefined forward procedure

Nested units not allowed
Externaldeclaration not allowed at this level
Externaldeclaration not allowed in INTERFACE section
Segment declaration not allowed in INTERFACE section
Labels not allowed in INTERFACE section
Attempt to open library unsuccessful
Unit not declared in previous USES

"USES’ not allowed at this nesting level
Unit not in library

Forward declaration was not segment
Forward declaration was segment

Not enough room for this operation

Flag must be declared at top of program
Unit not importable

Error in real number - digit expected
String constant must not exceed source line
Integer constant exceedsrange

8 or 9 in octal number

Too many scopes of nested identifiers

Too many nested procedures or functions
Too many forward references of procedure entries
Procedure too long

Too many long constants in this procedure
Too many external references

Too many externals

Too many local files

Expression too complicated

Division by zero

No case provided for this value

Index expressionout of bounds

Value to be assigned is out of bounds
Element expressionout of range
Implementation restriction

350

399.
400.
401.
402.
403.
404.
408S.
406.
407.
408.
409.
410.
500.

Appendix H COMPILER SYNTAX ERRORS

Implementation restriction

Illegal character in text

Unexpected end of input

Error in writing code file, not enough room
Error in reading include file

Error in writing list file, not enough room
"PROGRAM’ or "UNIT’ expected

Include file not legal

Include file nesting limit exceeded
INTERFACE section not contained in one file
Unit name reserved for system

Disk error

Assembler Error

N = b et cd e e oD ed b
QOONOUVALUN—SCOROIINOUNAWUN=S®

NRNNDNDODNN
D WN -

GNNN
W

€]
-t

Appendix 1

ASCII CHARACTER SET

000 00 NUL 32 040 20 SP 64 100 40 © 96 140 60
001 @1 SOH 33 040 21 | 65 101 41 A 97 141 64 a
002 02 STX 34 042 22 * 66 102 42 B 98 142 62 b
003 03 ETX 35 043 23 § 67 103 43 C 99 143 63 ¢
004 04 EOT 36 044 24 § 78 104 44 D 100 144 64 d
005 @5 ENQ 37 045 25 % 69 185 45 E 101 145 65 e
006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
007 @7 BEL 39 047 27 ° 71 167 47 G 103 147 67 g
010 @8 BS 40 050 28 (72 110 48 H 104 150 68 h
011 @9 HT 41 051 29) 73 111 49 1 105 151 69 i
012 ©A LF 42 052 2A » 74 112 4A J 1066 152 6A |
013 @B VT 43 053 2B + 75 113 4B K 107 153 6B k
014 @C FF 44 054 2C , 76 114 4C L 108 154 6C |
015 @D CR 45 055 2D - 77 115 4D M 109 155 6D m
016 @E SO 46 056 2E . 78 116 4E N 110 156 6E n
017 OF SI 47 057 2F / 79 117 4F O 111 157 6F o
020 10 DLE 48 060 30 @ 80 120 5¢ P 112 160 70 p
221 11 DC1 49 061 31 1 81 121 61 Q@ 113 161 71 gq
022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 r
023 13 DC3 51 063 33 3 83 123 53 S 115 163 73 s
024 14 DC4 52 064 34 4 84 124 54 T 116 164 74 ¢
025 15 NAK 53 064 35 5 85 125 655 U 117 165 75 u
026 16 SYN 54 066 36 6 86 126 56 Vv 118 166 76 v
027 17 ETB 55 067 37 7 87 127 57 W 119 167 77 w
030 18 CAN 56 070 38 8 88 130 58 X 120 176 78 «x
031 19 EM 57 071 39 9 89 131 59 Y 121 171 79 y
032 1A SUB 58 @072 3A : 90 132 5A Z 122 172 7A 2
033 1B ESC 59 073 3B ; 91 133 5B [123 173 78§
034 1C FS 60 074 3C < 92 134 5C \ 124 174 7C |
035 10 GS 61 075 3D = 93 135 5D] 125 175 70 1}
036 1E RS 62 076 3E > 94 136 S5E ¢ 126 176 7E =~
307 1F US 63 @77 3F °? 95 137 S5F 127 177 7F DEL

3561

Appendix J

DIFFERENCES BETWEEN UCSD VERSIONS

This section describes differences between versions II, IIl and IV of the
UCSD Pascal system. Executable code files are not transportable across
versions; however, UCSD Pascal programs are generally source compatible
across versions (i.e.,they may be recompiled without changes to run on a
different version). Source incompatibilities result from changes in some of
the UCSD Pascal extensions; programs written in the UCSD variant of
Standard Pascal are completely source compatible across versions.

J.1 Concurrency

Concurrency is not included in Version I UCSD Pascal; it exists only in
versions III and IV. Concurrency in versions Il and IV is identical.

J.2 NOT

The NOT operator in versions II and IV returns the full-word logical
negation of its operand. NOT in Version III (releases HO and beyond)

returns the boolean negation of its operand (i.e.the low-order bit of the
operand is negated, but the high-order 15 bits of the result are zeroed).

352

Appendix J.3 NOT 353
J.3 Long Integers

In Version III, programs containing long integers must use the system unit
named LONGINT. This is unnecessary in versions II and IV.

J.4 Transcendental Functions

In some Version II systems, programs calling the transcendental functions
must use the system unit named TRANSCEND. This is not necessary in
versions IIl and I'V.

J.5 Segments

Some implementations of Version II allow a program to contain up to 8
segments. Version IV allows up to 255 segments.

J.6 Units

Separate units are unique to Version II. Data units (i.e,units containing
only an interface section of types and variables) are allowed in versions
IL.1 and III.1. Version IV units may contain segment procedures, files, and
termination sections. Versions IV, IL1, and some releases of Version Il
allow intialization sections.

J.7 TREESEARCH

The ordering of trees built by TREESEARCH is implementation dependent
and varies across machines. TREESEARCH itself works correctly on all
systems; only manual tree traversals are affected by this property.

J.8 Intrinsics

The intrinsics PMACHINE, ATTACH, SEMINIT, SIGNAL, START, and
WALIT are present in versions IIl and IV. Version IV allow the memory
management intrinsics MEMLOCK, MEMSWAP, DISPOSE, VARNEW,
VARDISPOSE, and VARAVAIL. Note that the file intrinsics OPENOLD
and OPENNEW are not present in Version IV. Version III allows the
memory management intrinsic RMEMAVAIL. Versions IV and II.1 allow
the Unit I/O UNITSTATUS intrinsicc. = The I/0O redirection intrinsic

354 Appendix J DIFFERENCES BETWEEN UCSD VERSIONS
REDIRECT is provided only in Version IV.

The value of the UNITBUSY boolean function in Version IIlI systems
distributed by Western Digital differs with values returned on other
UCSD Pascal systems. The UNITBUSY function value should be negated
when transferring software between Western Digital Version III systems
and others.

J.9 1/0 Redirection

I/0 redirection is provided only in Version I'V.

J.10 Pointer Comparison

Extended pointer comparison existsin versions IIl and I'V.

J.11 Procedure Size

The restrictions on procedure size are greatly relaxed in Version IV. This
can affect the transportability of programs developed on Version IV.

Bibliography

Introductory Pascal Texts:

Findlay, W., and Watt, D.A. 1978 Pascal: An Introduction to Methodical
Programming. Computer Science Press, Potomac, MD

Wilson, LR., and Addyman, AM. 1978. A Practical Introduction to
Pascal. Springer-Verlag, New York, NY

Cooper, D., and Clancy, M. 1982. Oh! Pascal! W.W. Norton & Company,
New York, NY

Welsh, J., and Elder, J. 1979. Introduction to Pascal. Prentice-Hall
International, New York, NY

Introductory p-System Texts:

Bowles, K.B. 1980. Beginner's Guide for the UCSD Pascal System.
Byte/McGraw-Hill, New York, NY

Overgaard, M., and Stringfellow, S. 1983. Personal Computing with the
UCSD p-System. Prentice-Hall, Englewood Cliffs, NJ

Luehrmann, A., and Peckham, H. 1981. Apple Pascal: A Hands-On
Approach. McGraw-Hill, New York, NY

Grant, W.G., and Butah, J. 1982. Introduction to the UCSD p-System.
Sybex,Berkeley, CA

3565

356 Bibliography
Pascal Language Reference Texts:

Jensen, K., and Wirth, N. 1974. Pascal User Manual and Report. Springer-
Verlag, New York, NY

IEEE Pascal Standards Committee, 1983. American National Standard
Pascal Computer Programming Language. The Institute of Electrical
and Electronic Engineers, Inc., New York, NY

Ledgard, H. 1984. The American Pascal Standard with Annotations.
Springer-Verlag, New York, NY

Tiberghien, J. 1981. The Pascal Handbook. Sybex,Berkeley, CA

More Advanced Programming Using Pascal:

Tenenbaum, AM., and Augenstein, M.J. 1981. Data Structures Using
Pascal. Prentice-Hall, Englewood Cliffs, NJ

Wirth, N. 1976. Algorithms + Data Structures = Programs. Prentice-Hall,
Englewood Cliffs, NJ

Schneider, M.S., and Bruell, S.C. 1981. Advanced Programming and
Problem Solving with Pascal./uf John Wiley & Sons, New York, NY

Glinert, E. 1983. Introduction to Computer Science Using Pascal.
Prentice-Hall International, New York, NY

Kernighan, B.W., and Plauger, P.J. 1981. Software Tools in Pascal.
Addison-Wesley, Reading, MA

Sand, P.A. 1984. Advanced Pascal Programming Techniques.
Osborne/McGraw-Hill, Berkeley, CA

More Advanced p-System Texts:

Clark, R. and Koehler, S. 1982. The UCSD Pascal Handbook. Prentice-
Hall, Englewood Cliffs, NJ

Barron, D.W., Editor, 1981. Pascal: The Language and its
Implementation. John Wiley & Sons, New York, NY

Pemberton, S. and Daniels, M.C. 1982. Pascal Implementation: The P4
Compiler. John Wiley & Sons, New York, NY

Hyde, R. 1983. p-Source. Datamost, Chatsworth, CA

De Groat, R., Editor, 1982. All About Pascal. Apple PugetSound Program
Library Exchange,Renton, WA

Bibliography 367
Applications in Pascal:

Swan, T. 1983. Pascal Programs for Business. Hayden, Hasbrouck
Heights, NJ

Swan, T. 1984. Pascal Programs for Data Base Management. Hayden,
Hasbrouck Heights, NJ

Cooper, J.W. 1981. Introduction to Pascal for Scientists. John Wiley &
Sons, New York, NY

Pyster, A.B. 1980. Compiler Design and Construction. Van Nostrand
Reinhold, New York, NY

Vile, R.C. Jr. 1984. Programming Y our Own Adventure Games in Pascal.
Tab Books, Blue Ridge Summit, PA

Davidson, G. and Poole, L., Editors, 1982. Practical Pascal Program.
Osborne/McGraw-Hill, Berkeley, CA

Davidson, G., Poole, L., and Borchers, M., Editors, 1982. Some Common
Pascal Programs. Osborne/McGraw-Hill, Berkeley, CA

%
R 48, 54
-6-
68000 85, 296
-8-

8080 3
8O88 85,214
-A -

Activation Record 39
ADDR Function 197,214
AND 186
Apple Pascal 2, 3, 39, 44, 49,
54, 149, 152, 154, 218, 225,

256, 289

Arbitrary Access

Index

of bit fields 179
ofbits.................... 180
of words................. 178
ARCTAN 98
Array 241
indicesof 226
Array Indexing
Using BOOLEAN or CHAR
Subscripts 10
Arrays
Type Compatibility 16
Assembler 319
Assembler Language 38, 198,
223
Associate Time 292
ATAN 98,113
ATTACH 35, 36,114

359

360
-B-

BACK 255
Backus-Naur Form 4
BAD 255
Binary Semaphore 31, 32
Binary Tree 103, 135
32-bit Integer 96, 230
Block 5,188, 247, 254, 258
Block File 22, 55, 60
Block Number 5,247
BLOCKREAD 55, 60, 114,

202, 283, 320
Block-structured Device 245,

247
Block-structured Unit 245,

247
Block-structured

Volume 247, 249
BLOCKWRITE 55, 60, 115,

267,283
BNF ... 4
BOOLEAN

Arithmetic with 11
Complementing 10
Boundary Restriction 176
Break Key 222
Byte Array Manipulation 79
Byte Magazine e 195
Byte Sex........... . 161,296
Bytes-in-last-block .. 252,254
-C-

CASE 7,238
CHAIN 116, 130,223, 319
Character Prompt 204
CHR 10, 186, 238
Clock Access 95
Clock Handler 37

CLOSE 14, 54, 56,117,131

CODE..............ccciiiin.. 255
CodeFile 253
Code File Structure 293
Code Offset 146, 215,232
Code Optimization 226
CodePool 39, 302, 30S
External................... 40
Management
Strategy 40, 42
Code Segment 38, 39, 51, 53,
215
COMMANDIO...... 116, 119, 129,
277
Comments...................... 15
Compilation Unit 291
Compiled Listings 145
Compile Flags 150
CompileOption 142
Compiler 256, 346
Compiler Error 321
Compiler Interface 319
Compiler Listing 215,257
Compile-time Functions 79
CONCAT 63,65,118,236
Concurrency 23
Conditional
Compilation 150,
217
Conformant Arrays........... 186
ConstantPool 298
Cooperating Processes 33
COPY 63,65,118, 165
COPYDUPDIR 251
Copyright Notice 153
Counting Semaphore 31
CP/M ... 170
Critical Section 32,188
CRUNCH.................. 56,117
CurrentTask 23

Index

-D-
DataFile................. 253,254
Data Prompt 203
DATASIZE 299
DataUnit....................... 49
DECODE 28, 253, 271, 311
DELETE.......... 63, 65, 118, 165,
237
Device Access 212
DeviceDriver................. 210
Devicel/O...................... 84
DIRINFOUnit................. 220
Disk Directory 249, 251, 282
Disk Drive 246
Disk File............. 249, 251, 252
Disk Unit................. 245, 249
Disk Volume 249
DISPOSE 9, 26, 72, 102, 195,
310
Dummy Segment.............. 157
Duplicate Directory 251, 288
Dynamic Arrays.............. 186
Dynamic Variable
Management 68
-E-
Editor 254
EOF 12,59, 62,132
EOLN - 59
EREC..................... 292, 301
Error Handler 152
ERRORS 257
Event 35
EXCEPTION 119
ExecutableUnits 162
ExecutionError 214
ExecutionState 23
EXIT............... 8,98, 119,121
InUnits................... 48

361

ExitCode 312
EXITIC 300
Extended Comparisons 77
Extended Precision

Arithmetic............. 74
EXTERNAL 295
ExternalCode Pool 40
ExternalFile 130,131
External Procedure 192, 198,

241

-F-

FIB.................. 306, 310, 320
File............................. 54
File Attributes 252
FileDate 252,254
File Designator 245, 259
FILEID 113
File Identifier 245, 249, 259
FileLength 252,254
FileName 5, 245, 252
FILEOPS 309
FilePrompt 205
Filer 259
File Suffix........ .. 252,254, 259,

262,263
File System 99, 244
File Title 252, 255, 257, 259,

262
FileType 252,253
File Variables 15, 310
FILLCHAR, 81, 120, 133,

187, 189
FOR........................... 109
FORWARD 9
Forward Declaration 41
FractionLength 13
Full-word Logical

Operations 186

Functional Parameters 14

362
Functions 192
-G -

Garbage Collection 195
General Prompt 263
GET........ 36, 56, 58, 60, 61, 130,
132,165
GETCVAL 225
GOTO........... ... 8,99,153,239
GOTO Statements
InUnits.................. 48
GOTOXY 94, 121, 165, 203,
228
-H-
HALT SN 103, 121
HardDisk 247
Heap 26, 28, 39, 69, 102, 187,
195, 302, 305
-I-
IBMPC. 229
$I Compile Option 60
Identifiers 92
IDSEARCH 106, 122
IMPLEMENTATION 45, 313
Implementation Section 45
Include File 92, 147
Initialization Code 162, 313
Initialization Section 45
Inline Machine Code 89
INPUT 12, 14,59
Input Prompt 262
INSERT 63, 65, 76,118, 122,
165,237
Integer Overflow 186
Integer Prompt 204

INTERACTIVE 54,58

Interactive File 58
INTERFACE 45, 49, 294, 309
Interface Section 45
Interpreter 257
Inter-Program Parameter
Passing 223
Interrupt 36
Hardware Generated 35
Interrupt Handling 24, 35
Intrinsic 22,112
IntrinsicUnit 54
I/OCheck 114,115,151
I/0 Completion Status 100
I/ODevice 245, 246
I/0 Operation
Effecton Tasks 38
1/0 Redirection 116, 354
IORESULT 60, 84, 87, 100,
122,203
-K -
KERNEL 159, 280, 306
KEYBOARD 54, 59
Keyboard 246
Keyboard File 204
KGunch 258
-L-
Labels
InUnits................... 48
LENGTH 63, 65,123
Length Specifier 252, 258,
259
LexicallLevel 156
Library 52,148, 158, 256
Library Modules 22
Linked List
of files................... 310
Linker 200

Index

LOCK 56,117
Logical Volume 247
Long Integer 74, 230, 241
Parameter 76
Reading from
Console 76
-M-
Main Task 2§, 30
MARK 9, 26, 28, 69,123,130
MARKDUPDIR 251
Master File Update 307
MAXINT 19, 315
MEMAVAIL 102, 124, 186,
188
MEMLOCK 40, 42, 72, 124,
125, 1585, 303
Memory Management 38, 39,
51, 306
Memory-Mapped /O 212
MEMSWAP 40, 42, 124, 125,
155, 303
Meta-words 4
MOD....... .. B 152
Monitor 278
MOVELEFT 81, 125, 133,
187, 202, 224, 320
MOVERIGHT 81, 126, 133,
187
Multiprocessing 102
Multiword Constants 227
Mutual Exclusion............. .. 32
-N-
Name Compatibility 16
NativeCode 159, 221
Native Code Generator 38
NestingLevel 146
NEW 69,123,174, 187, 189,

363
NIL 9,71,114
Attaching to
Semaphore 35
Noload 154
NORMAL 56,117
NOT.................. 10, 186, 352
-0-
ODD....................... 10, 186
Offline 246
Online 246
OPCODES 257
OPENNEW 56,127, 353
OPENOLD 56,127, 353
Operating System 253
Operating System
Procedures 309
OR............. 186
ORD.......... . . 94, 186, 201, 238
OTHERWISE Clause 8
OUTPUT 14
Output Prompt 263
-P-
PACK 13
Packed Array 171
Packed Field References 228
Packed Record 173
Packed Variables 170
Packing Rules 174
PAGE 165
Page Break
in compiler listing 147
Partial Boolean
Expression......... 83,131
Pascal User Manual and
Report.............. 26,47
PATCH 253
PDP-11 2,41, 85, 88, 211,
296

364
Peeking 179
Physical Unit 245
Physical Unit Number......... 245
P_MACHINE......... 22, 89,127,
200, 214, 308
Pointer 18,179,193
comparison 94
type conversion 94
POS............... 63, 65, 128, 165
Powersof Ten o 97
PRED 165
P(refixX...........oooiveii... 250
Prefixed Volume 248, 250,
259
PrefixOptions 250
Primary Segment 162
Printer 246
Print Spooler 36
Priority 24,29
Private Semaphore 33
Procedural Parameters.......... 14
ProcedureCall 240
Procedure Dictionary 297
Procedure Number 146, 215,
216, 313
Procedure Parameters.......... 241
Procedure Termination 98
Process.................. 24,26,98
PROCESSID 25, 27
Programming Practices 169
Program Segmentation 38
Prompt Conventions 262
Pseudo-comment 142
PURGE.................... 56,117
PUT 12,61,132,165
PWROFTEN 97,128
-Q-
QBus................ 211

QuietConsole 154
-R-
Random AccessFile 61
Range Check 152, 227
Range Checking
with Block I/O 60
$R Compile Option 64
READ........ 13, 36, 58, 63, 65, 75,
210
READLN 13, 58, 63, 65, 165,
253
Ready Queue 23,29, 31
Ready-To-Run Task 23
Real 75, 230
Real Constant 231, 298
REALCONV 222,231,299
REALOPSUnit................ 161
Real Prompt 206
Real Size 160, 299
Record 241
Records
Type Compatibility 17
REDIRECT 129, 130, 353
Relational Operators............ 77
On packed data 78
On pointers 79
Onstrings 78
RELEASE 9,26, 28, 69,123,
129
Relocation List 297
Reserved Word 21, 340
RESET 12, 14, 54, 55, 58, 62,
117,127, 130, 206, 283
Resident 154
Reverse Field Allocation 177
REWRITE 12, 14, 54, 55, 62,
127,131, 206
Root Volume 250

Index

-S-
SCAN.................. 22, 83,131
Screen Control 94
SCREENOPS 270
SEEK e 55, 61,132,165
Segment 39, 41, 156, 288
Segment Dictionary 291,

293,294
Segment Format 296
Segment Number 291
Segment Procedure 191
Segment Reference List 292,

294, 295, 300
Segment Residency 154
Selective USES S0
Semaphore 24, 30, 214
SEMINIT 31,133
Separate Compilation 44
Serial Device 245,247,253
Serial Unit 245, 247
Serial Volume 247,257
Set ... 18, 180, 228

Type Compatibility 16

SetConstant 228
SETCVAL 225
SETUP................... 256,270
Short Form pcodes 231
SIB....................... 292, 301
SIGNAL 31, 32,133
SIZEOF 79,120,133, 171,

315
Sorting 201
Sort/Merge Utility 310
SQR ... 165
Stack 39, 308, 306
Stack Overflow 28, 39,69
Stack Size 24
Stack Space 28
Standard Input 12, 54, 246

Standard Output 12, 55, 246

365
START 25,134
Starting Block 252,254
Storage Allocation 170,174
STR................... 76, 134, 165
String 63,223,241
String Constant 172
String Manipulation 236
STRINGOPS 309
String Option 142
String Overflow 64
String Parameter 66
Structure Compatibility 16
Structured Field 174
Subranges 174
Subsidiary Task 25
Subsidiary Volume 246, 260
SUCC......................... 165
Suspended Task 24
SVOL 255
Swapping 149
SwitchOption 142
Symbolic Debugging 161
Synchronization 33
Synchronous1/0 30
SyntaxError 346
System Clock 37
SYSTEM.COMPILER 256
System Constants 281
System Data Structures........ 266
System Date 281
System File Title 255, 257
System Globals 158, 280
SYSTEM.LIBRARY 53,256
System Library 52
SYSTEMMMENU 256
SYSTEMMISCINFO 288,

256,270

SYSTEM.PASCAL 256
System Programs 155
System Shell 354
SYSTEM.SPOOLER 257

266
SYSTEM.STARTUP 256
SYSTEM.SWAPDISK 148,
256
SYSTEM.SYNTAX 256
System Units 266
System Volume 248, 250
SYSTEM.WRK.CODE 256
SYSTEM.WRK.TEXT 256
-T-

Task ...l 23
Task Blockage 37
Task Identifier 24,27,134
Task Priority 134
Task Scheduling Policy 29
Task Stack 134
Task Switch 23,29
Task Synchronization 24, 32
TerminationCode 162
Termination Section 45

FTEXT i 255
TextFile 57, 247, 253, 320
TextFile Format 267
TIME 95,135,186
Time Slicing 24, 37
Tiny Compiler 165
Title

in compiler listing 147
TREESEARCH 103, 135, 353
TRUNC 75,76
Type-ahead Buffer 246
Type-checking Prompt 262
Type Compatibility 16, 315
TypeRules.................... 196
-U-

$U Compiler Option 53
UCSD Pascal Users’

Society 158,271, 280

Index

UNIT.............. 45, 99, 148, 309
Unit......... 5,113, 150, 162, 186,
192,217,290
UNITBUSY 87,136, 332
UNITCLEAR 87, 136, 203,
332
Unitl/O....................... 261
Unit Linkage 52
Unit Number 5, 246, 248,
259
UNITREAD 36, 84, 136, 165,
332
UNITSTATUS 38, 88,137,
332, 336
UNITWAIT 87,138, 332
UNITWRITE 84, 138, 267,
332
UNIV ... e 113
UNPACK 13
Unsigned Integer 72,182
Untyped Parameters........... 196
User-Defined Serial
Device 246
User File Title 257
User Library 52,218
USERLIB.TEXT 53, 149, 257
USES................... 45, 50, 164
-V -
Value Parameter 242
StringL. 67
VARAVAIL 72,102,139,
190, 201
VARDISPOSE 72,139, 191
Variable Parameter
String 67
Variable Scope 232
Variable-sized Array
Allocation 186
Variant Record 174,179, 201

Index
VariantRecords 14
VARNEW 72, 140, 186, 189,
201
VAR Parameter 171,195
Volume Identifier 2485, 248,
259
Volume Name 247, 248, 259
-W-
WAIT 31, 32,133, 140
WaitQueue 24, 30
Western Digital
MicroEngine 3,36
WILDUnit.................... 220
Window Variable 59, 307
WITH.. 234
Workfile 256, 319
WRITE 13, 36,63, 75
WRITELN 13,63,217
-7 -

367

Biography

Eliakim Willner, CDP is a consultant specializing in mini and
microcomputer-based systems. Mr. Willner has designed and coded many
applications in UCSD Pascal, which is his language of preference. He heads
a group which is currently maintaining and marketing the UCSD Pascal
System for Digital Equipment Corporation PDP-11 computers.

Mr. Willner is an adjunct lecturer of data processing at Kingsborough
Community College of the City University of New York. He has
published articles on data processing in Byte, Small Systems World and
other publications. Mr. Willner is a member of the ACM and the IEEE
Computer Society and is Chairman of the Board of Directors of the UCSD
Pascal Users’ Society.

Barry Demchak began programming in Pascal at the University of
California, San Diego while working on the UCSD Pascal Project. Later, he
maintained the UCSD operating system and helped develop the p-System
I/0 system. He graduated from UCSD in 1979 with a bachelor’s degree in
Computer Science with a minor in Economics.

Barry worked at SofTech Microsystems where he helped design and
implement the p-System Version IV p-machine and operating system. He
is currently a consultant with Software Construction, Inc. in La Jolla,
California, where he is still actively involved with the p-System. He
enjoys skiing, movies and the theater.

368

AD\IRNNCED

ucsSD

paScAL

OCRAMMING

Eliakim Wiliner « Barry Demchak

In his Preface to this absorbing new book, Ken Bowles writes, “This is a book
for ‘serious’ users of the UCSD Pascal System as most widely distributed on
many different personal computers. It is a book that | wish had been available
five years ago.

“Njklaus Wirth designed Pascal to be a teaching language, one that would be
an expression of the systematic or ‘structured’ methods of writing better
programs. Like many others, we at UCSD found Pascal to be too good to be
limited to teaching only. We saw it as a superb vehicle for creating large,
complex system programs—not just the USCD p-System itself, but a wide
variety of large and complex application programs and products. But to use
Wirth's Pascal for these applications in practice on a microcomputer required
subtle changes and extensions in Wirth's teaching language Pascal. Thus
was born the UCSD Pascal language.

“In writing this book, Barry Demchak and Eli Willner have provided a highly
readable compendium of the essential lore needed by any serious user of the
USCD p-System. As both a collection of suggested techniques and a
reference work, a short study of this book will often save large amounts of
time for both professional programmers and advanced students of computer
science who use the USCD p-System.”

PRENTICE-HALL, INC.
Englewood Cliffs, N.J. 07632

ISBN 0-13-011k10-b

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	xBack

