
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple
%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html

Apple III Fortran Reference Manual
TABLE OF CONTENTS
0 PREFACE

1 OVERVIEW
1.1 Introduction
1.2 Using This Manual
1.3 What Is Apple FORTRAN?
1.3.1 Apple vs. ANSI 77 Subset FORTRAN
1.3.2 ANSI 77 vs. Full Language
1.3.1 ANSI 77 vs. ANSI 66

2 FORTRAN READER'S GUIDE
2.1 Getting Oriented
2.2 Guide to Pascal Documentation
2.2.1 The COMMAND Level
2.2.2 The Filer
2.2.3 The Editor
2.2.4 6502 Assembler
2.2.5 The Linker
2.2.6 Utility Programs

3 PROGRAMS IN PIECES
3.1 Introduction
3.2 Partial Compilation
3.2.1 Source Code in Pieces
3.3.3 Object Code in Pieces
3.3.3 Units, Segments, and Libraries

4 THE COMPILER
4.1 Introduction
4.2 Files Needed
4.3 Using the Compiler
4.4 Form of Input Programs
4.4.1 Lower and Upper Case
4.4.2 Line Length and Positioning
4.5 Compiler Directives
4.6 Compiler Listing

5 THE LINKER
5.1 Introduction
5.2 Files Needed

http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#0
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#1.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#1.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#1.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#1.3.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#1.3.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#1.3.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2.2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2.2.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2.2.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2.2.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2.2.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#2.2.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#3.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#3.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#3.2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#3.3.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#3.3.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4.4.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4.4.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#4.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#5.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#5.2

5.3 Using the Linker

6 PROGRAM STRUCTURE
6.1 Introduction
6.2 Character Set
6.3 Lines
6.4 Columns
6.5 Blanks
6.6 Comment Lines
6.7 Statements, Labels, and Lines
6.8 Statement Ordering
6.9 The END Statement

7 DATA TYPES
7.1 Introduction
7.2 The Integer Type
7.3 The Real Type
7.4 The Logical Type
7.5 The Character Type

8 FORTRAN STATEMENTS
8.1 Introduction
8.2 FORTRAN Names
8.2.1 Scope of FORTRAN Names
8.2.2 Undeclared Names
8.3 Specification Statements
8.3.1 IMPLICIT Statement
8.3.2 DIMENSION Statement
8.3.3 Type Statement
8.3.4 COMMON Statement
8.3.5 EXTERNAL Statement
8.3.6 INTRINSIC Statement
8.3.7 SAVE Statement
8.3.8 EQUIVALENCE Statement
8.4 DATA Statements
8.5 Assignment Statements
8.5.1 Computational Assignment Statement
8.5.2 Label Assignment Statement

9 EXPRESSIONS
9.1 Introduction
9.2 Arithmetic Expressions
9.2.1 Integer Division
9.2.2 Type Conversions and Result Types
9.3 Character Expressions
9.4 Relational Expressions
9.5 Logical Expressions
9.6 Operator Precedence

10 CONTROL STATEMENTS
10.1 Introduction

http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#5.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.7
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.8
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#6.9
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#7
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#7.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#7.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#7.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#7.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#7.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.2.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3.7
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.3.8
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.5.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#8.5.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9.2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9.2.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#9.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.1

10.2 Unconditional GOTO
10.3 Computed GOTO
10.4 Assigned GOTO
10.5 Arithmetic IF
10.6 Logical IF
10.7 Block IF...THEN...ELSE
10.8 Block IF
10.9 ELSEIF
10.10 ELSE
10.11 ENDIF
10.12 DO
10.13 CONTINUE
10.14 STOP
10.15 PAUSE
10.16 END

11 INPUT/OUTPUT OPERATIONS
11.1 I/O Overview
11.1.1 Records
11.1.2 Files
11.1.3 Formatted vs. Unformatted Files
11.1.4 Sequential vs. Direct Access
11.1.5 Internal Files
11.1.6 Units
11.2 Choosing a File Structure
11.3 I/O Limitations
11.4 I/O Statements
11.4.1 OPEN
11.4.2 CLOSE
11.4.3 READ
11.4.4 WRITE
11.4.5 BACKSPACE
11.4.6 ENDFILE
11.4.7 REWIND
11.5 Notes on I/O Operations

12 FORMATTED I/O
12.1 Introduction
12.2 Formatting I/O
12.3 Formatting and the I/O List
12.4 Nonrepeatable Edit Descriptors
12.4.1 Apostrophe Editing
12.4.2 H Hollerith Editing
12.4.3 X Positional Editing
12.4.4 / Slash Editing
12.4.5 $ Dollar Sign Editing
12.4.6 P Scale Factor Editing
12.4.7 BN/BZ Blank Interpretation
12.5 Repeatable Edit Descriptors
12.5.1 I Integer Editing
12.5.2 F Real Editing

http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.7
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.8
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.9
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.10
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.11
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.12
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.13
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.14
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.15
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#10.16
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.1.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.1.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.1.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.1.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.1.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.1.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.4.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.4.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.4.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.4.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.4.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.4.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.4.7
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#11.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.4.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.4.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.4.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.4.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.4.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.4.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.4.7
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.5.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.5.2

12.5.3 E Real Editing
12.5.4 L Logical Editing
12.5.5 A Character Editing

13 PROGRAM UNITS
13.1 Introduction
13.2 Main Programs
13.3 Subroutines
13.3.1 SUBROUTINE Statement
13.3.2 CALL Statement
13.4 Functions
13.4.1 External Functions
13.4.2 Intrinsic Functions
13.4.3 Table of Intrinsic Functions
13.4.4 Statement Functions
13.4.5 The RETURN Statement
13.5 Parameters

14 COMPILATION UNITS
14.1 Introduction
14.2 Units, Segments, Partial Compilation
14.3 Linking
14.4 $USES Compiler Directive
14.5 Separate Compilation
14.6 FORTRAN Overlays

15 BI-LINGUAL PROGRAMS
15.1 Introduction
15.2 Pascal in FORTRAN Main Programs
15.3 FORTRAN in Pascal Main Programs
15.4 I/O from Bilingual Programs
15.5 Calling Machine Code Routines

16 SPECIAL UNITS
16.1 The Turtle Graphics Unit
16.1.1 The Apple Screen
16.1.2 The INITTU Subroutine
16.1.3 The GRAFMO Subroutine
16.1.4 The TEXTMO Subroutine
16.1.5 The VIEWPO Subroutine
16.1.6 Subroutines for Using Color
16.1.7 Cartesian Graphics
16.1.8 Turtle Graphic Subroutines
16.1.9 Turtle Graphic Functions
16.1.10 Sending an Array to the Screen
16.1.11 Text on the Graphic Screen
16.2 The Applestuff Unit
16.2.1 RANDOM Function/RANDOI Subroutine
16.2.2 Using the Game Controls
16.2.3 Making Music: the NOTE Subroutine
16.2.4 The KEYPRE Function

http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.5.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.5.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#12.5.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.3.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.3.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.4.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.4.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.4.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.4.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.4.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#13.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#14
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#14.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#14.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#14.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#14.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#14.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#14.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#15
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#15.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#15.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#15.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#15.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#15.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.7
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.8
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.9
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.10
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.1.11
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.2.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.2.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#16.2.4

 APPENDICES

A File Name Selection
A.1 Introduction
A.2 Pathname Selection
A.2.1 File Selection
A.3 Editing Input Fields
A.4 SOS Error Messages

B FORTRAN Error Messages
B.1 Compile-time Error Messages
B.2 Run-time Error Messages

C Tables
C.1 Unit Identifiers
C.2 Intrinsic Functions
C.2.1 Transcendental Functions
C.2.2 Lexical Comparisons
C.3 ASCII Character Codes

D FORTRAN Syntax Diagrams

E FORTRAN Statement Summary

F ANSI Standard 66 vs. 77 FORTRAN
F.1 Introduction
F.2 Conflicts
F.2.1 Line Format
F.2.2 Hollerith
F.2.3 Arrays
F.2.4 I/O
F.2.5 Intrinsic Functions
F.2.6 Other Conflicts
F.3 Adapting Programs
F.4 Additions

G Apple FORTRAN vs. ANSI 77
G.1 Introduction
G.2 Unsupported Features
G.3 Full-Language Features
G.4 Extensions to the Standard

 BIBLIOGRAPHY

 INDEX

NOTICE

http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#A
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#A.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#A.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#A.2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#A.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#A.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#B
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#B.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#B.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#C
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#C.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#C.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#C.2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#C.2.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#C.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#D
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#E
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.2.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.2.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.2.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.2.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.2.5
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.2.6
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#F.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#G
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#G.1
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#G.2
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#G.3
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#G.4
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#BIB
http://mirrors.apple2.org.za/Apple%20II%20Documentation%20Project/Software/Languages/Apple%20III%20Fortran/Manuals/Apple%20III%20Fortran%20Reference%20Manual.html#INDEX

Apple Computer Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. AND SILICON VALLEY SOFTWARE INC. MAKE NO
WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL OR
WITH RESPECT TO THE SOFTWARE DESCRIBED IN THIS MANUAL, ITS QUALITY,
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE.
APPLE COMPUTER INC. AND SILICON VALLEY SOFTWARE INC. SOFTWARE IS SOLD
OR LICENSED "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND PERFORMANCE
IS WITH THE BUYER. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR
PURCHASE, THE BUYER (AND NOT APPLE COMPUTER INC., SILICON VALLEY
SOFTWARE INC., ITS DISTRIBUTOR, OR ITS RETAILER) ASSUMES THE ENTIRE
COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL APPLE COMPUTER
INC. OR SILICON VALLEY SOFTWARE INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT IN THE
SOFTWARE, EVEN IF APPLE COMPUTER INC. OR SILICON VALLEY SOFTWARE, INC.
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES OR
LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE
LIMITATION OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer Inc.

 1983 by APPLE COMPUTER INC.
 20525 Mariani Avenue
 Cupertino, California 95014
 (408) 996-1010

 1980 by SILICON VALLEY SOFTWARE INC.
 1531 Sandpiper Drive
 Sunnyvale, California 94087

The word APPLE and the Apple logo are registered trademarks of
APPLE COMPUTER INC.

ACKNOWLEDGEMENTS

The Apple(R) Pascal System incorporates UCSD PascalTM and Apple extension
s
for graphics and other functions. UCSD Pascal was developed largely by

the Institute for Information Science at the University of California
at San Diego under the direction of Kenneth L. Bowles.

"UCSD Pascal" is a trademark of the Regents of the University of
California. Use thereof in conjunction with any goods or services is
authorized by specific license only and is an indication that the
associated product or service has met quality assurance standards
prescribed by the University. Any unauthorized use thereof is
contrary to the laws of the State of California.

0 PREFACE
This manual describes the Apple FORTRAN programming language for the
Apple /// computer. Apple FORTRAN conforms to the
American National Standard FORTRAN subset, also known as ANSI subset
FORTRAN 77.

Apple FORTRAN contains features which are extensions to the ANSI
standard subset. For instance, it incorporates a number of features of
the full language not included in the standard subset. Apple FORTRAN
also has features that are the result of the unique operating
environment of the Apple. The ANSI standard subset itself includes
most of the important revisions made to the full language over the
previous standard, ANSI FORTRAN 66.

The purposes of this manual are:

* Acquaint you with Apple FORTRAN's differences and extensions to
 standard FORTRAN 77.

* Acquaint you with the Apple FORTRAN operating environment on the
 Apple ///. FORTRAN uses the Apple Pascal Operating
 System.

* Introduce you to the principal differences between ANSI FORTRAN 77
 and ANSI FORTRAN 66, if you are not familiar with this more recent
 version of FORTRAN.

* Provide you with the complete language specification of Apple
 FORTRAN.

The complete Apple FORTRAN documentation includes one other manual:

* Apple Language System Installation and Operation Manual

To familiarize you with the Pascal Operating System, this Fortran manual
refers you to "Pascal documentation." These manuals are the Pascal
manuals included with your Apple /// Pascal System.

The published Standard on which Apple FORTRAN is based is:
ANSI X3.9-1978, American National Standard Programming Language FORTRAN
which is available from: American National Standards Institute, Inc.,
1430 Broadway, New York, New York 10018

1 OVERVIEW
1.1 INTRODUCTION
Apple FORTRAN is a programming language that runs on the Apple Pascal
Operating System. This powerful operating system is general enough to
be able to support languages other than just Pascal. By putting the
FORTRAN language on the Apple Pascal Operating System, you get several
distinct programming advantages. For example:

* The complete FORTRAN program development facility (including a text
 editor, file handler, code library and library handler, assembly
 language compiler, plus various and sundry utility programs) is
 identical to that supplied for Pascal.

* It is easy to make a turnkey FORTRAN system that immediately begins
 running a given program when the computer is turned on.

* Both the FORTRAN and Pascal languages operate on the same Apple.

* Only one operating system needs to be learned to run either FORTRAN
 or Pascal.

* Pascal subroutines can be linked to FORTRAN programs, and vice
 versa.

* Assembly language subroutines can be linked to either Pascal or
 FORTRAN programs or both.

There are other advantages. The Pascal Operating System supports a
number of desirable features that have been added to Apple FORTRAN.
These extensions make it easier to program, and easier to use FORTRAN
programs interactively. Putting FORTRAN on the Pascal Operating System
has caused two minor language restrictions in FORTRAN which are
discussed below under Apple vs. ANSI 77 Subset FORTRAN.

The essential difference between the Apple Pascal and Apple FORTRAN
packages is in the Compiler program. There are some other minor
differences that will be discussed later in this manual. The output
code generated by both FORTRAN and Pascal compilers is the same, and
both Pascal and FORTRAN created code files can be handled
interchangeably by the single operating system.

The program development system consists of the Editor, Linker, and
Filer and some other utility and library programs. The sequence of
program development is:

* Use the Editor to write FORTRAN programs.

* Use the Filer to fetch and store files on disks.

* Use the FORTRAN compiler to translate text files into code files.

* Use the Linker, if necessary, to combine code files into one
 executable code file.

* Execute the program.

Additional steps are required to link Pascal and FORTRAN programs
together, or to link FORTRAN and Assembly language programs.

1.2 USING THIS MANUAL
The next chapter discusses using FORTRAN in the Pascal Operating
System environment. It tells you where to look to find the most
important features in the documentation for the Pascal Operating
System.

The remainder of the first section of this manual, Chapters 3 through
5, discusses how to organize FORTRAN programs efficiently, the input
requiirements of the FORTRAN compiler, and the use of the Linker. The
next major section of this manual, Chapters 6 through 14, contains the
language specifications and description of Apple FORTRAN. It covers
details of data types, expressions, statements, I/O considerations,
and the format of programs acceptable to the FORTRAN compiler.

The remaining chapters, Chapters 15 and 16, discuss linking FORTRAN to
Pascal programs, CALLing assembly language routines from FORTRAN,
color graphics techniques, and other special Apple features.

The appendices summarize information given elsewhere in the manual and
provide other useful tidbits.

All those parts of the operating system which are common to both
Pascal and FORTRAN have been put into the documentation for the Pascal
Operating System. In order to learn how to create, edit and run
FORTRAN programs, you must have a copies of the Apple /// Pascal
Manuals.

The Pascal Operating System documentation describes two things: the
program development system and the operating system proper. The
examples in the Pascal documentation are Pascal programs. This will

not pose any problem in learning about the Editor, Filer and Linker
because these tools are independent of the programming language used.

Other parts of the Pascal documentation are specifically directed to
the Pascal language user. Some of those sections have been rewritten
in this manual. In certain other cases, you will be instructed to read
a particular section of the Pascal documentation with "FORTRAN colored
glasses," substituting the name of one disk for another and the
word FORTRAN for Pascal, and the like.

1.3 WHAT IS APPLE FORTRAN?
FORTRAN has been around longer than almost any other high level
programming language. As such, it has been through various stages of
development. In 1966 the American National Standards Institute (ANSI)
issued a Standard for FORTRAN that helped a great deal to clarify the
language. This is sometimes referred to as ANSI FORTRAN 66. After
that, development of the language continued, and enough of the
additions were of sufficient interest and generality that in 1977 ANSI
produced another Standard called ANSI FORTRAN 77 to incorporate these
developments. This newer Standard is just coming into wide acceptance
now. It is upon the official ANSI subset of the ANSI FORTRAN 77 full
language that Apple FORTRAN is based. FORTRAN continues to grow and to
find new environments, so that almost every implementation of FORTRAN
has some features which are unique to the particular processor being
used. Apple FORTRAN is no exception.

For this reason, it is important for users familiar with other
versions of FORTRAN to get a clear view of how Apple FORTRAN compares
with other varieties. There are three questions that need to be
answered:

* How is Apple FORTRAN different from ANSI Standard subset FORTRAN 77?

* How is the ANSI subset different from the full language?

* How is ANSI 77 different from ANSI 66?

We will now treat each of these in turn.

1.3.1 APPLE VS. ANSI 77 SUBSET FORTRAN

While Apple FORTRAN conforms largely to the ANSI Standard subset,
there are some small differences. It does not support some features,
takes some others from the full language specification, and in some
cases goes beyond the Standard.

In two instances Apple FORTRAN does not conform to ANSI subset
FORTRAN:

* INTEGER and REAL data types do not use the same amount of memory.
 ANSI says they must be the same. REAL data types are given 4 bytes of
 storage whereas INTEGER and LOGICAL data types are given 2 bytes. Thi
s
 means for INTEGER data, the range of numbers representable is from
 -32768 to +32767. The magnitude of nonzero REAL constants must fall
 within the range of approximately 5.8E-39 and approximately 1.7E+38.

* Subprogram names cannot be passed to other subprograms as formal
 parameters.

There are some capabilities which Apple FORTRAN allows that are in the
full ANSI FORTRAN language specification, but not in the subset. These
are:

* Subscript Expressions - Apple FORTRAN and the full ANSI 77 language
 allow function calls and array references in subscript expressions.

* DO Variable Expressions - The subset restricts expressions that
 define the limits of a DO statement, but the full language does not.
 Apple FORTRAN also allows full integer expressions in DO statement
 limit computations. Similarly, arbitrary integer expressions in
 implied DO loops associated with READ and WRITE statements are
 allowed.

* Unit I/O Number - Apple FORTRAN allows an I/O unit to be specified
 by an expression.

* Expressions in I/O list - Apple FORTRAN allows expressions in the
 I/O list of a WRITE statement, provided that they do not begin with a
 left parenthesis. Note that expressions such as: (A+B)*(C+D) can be
 specified in an output list as +(A+B)*(C+D) to circumvent this
 problem. Incidently, this does not generate any code at run time to
 evaluate the leading plus sign.

* Expressions in computed GOTO - Apple FORTRAN allows an expression
 for the value of a computed GOTO.

* Generalized I/O - Apple FORTRAN allows both sequential and direct
 access files to be either formatted or unformatted. The subset
 language requires direct access files to be unformatted, and requires
 sequential files to be formatted. The OPEN statement has been
 augmented to accept additional parameters from the full language that
 are not included in the subset. The CLOSE statement, which is not
 included in the subset, is provided. I/O is described in more detail
 in Chapter 11.

* CHAR intrinsic function - Apple FORTRAN includes the CHAR intrinsic
 function.

In some cases Apple FORTRAN has features that are not anywhere in the

ANSI Standard, subset or full langugage. These extensions are the
Compiler Directives which have been added to allow you to transmit
certain information to the FORTRAN compiler. An additional kind of
line, called a Compiler Directive Line, is recognized by the compiler
to enable it to receive this information. See Chapter 4 for a
description of these statements. Also, Apple FORTRAN includes the EOF
intrinsic function.

1.3.2 ANSI 77 VS. FULL LANGUAGE

To help make clear what features are available in the ANSI Standard
subset, two appendices that summarize the subset have been included in
this manual. Appendix D shows the syntax diagrams for the complete
subset, along with those things which are specific to Apple FORTRAN.
Appendix E gives a list of all statements in the subset and their
syntax.

1.3.3 ANSI 77 VS. ANSI 66

The differences between ANSI FORTRAN 77 and ANSI FORTRAN 66, such as
the fact that ANSI 77 deleted the Hollerith data type, are discussed
in Appendix F. Additional capabilities were added to ANSI 77, and
undefined areas in ANSI 66 were clarified.

2 FORTRAN READER'S GUIDE
2.1 GETTING ORIENTED
As we mentioned previously, this manual should be used with whichever
Pascal manual you have to get the complete picture of how to use Apple
FORTRAN. The two purposes of this chapter are to give you a list of
things to read in those manuals, and to help you interpret those
manuals in terms of FORTRAN.

The Pascal documentation gives a complete description of the Editor,
Filer, Linker, and numerous other aspects of the operating system. The
documentation necessarily gives program examples and disk names
for operating with Pascal. For FORTRAN, the only interpretation
required in most cases will be the substitution of disk names, and
the word FORTRAN for Pascal. There are some instances when this will
not suffice. All those cases are discussed in this chapter.

Here are some observations about the relationship between the Pascal
and FORTRAN languages on the Pascal Operating System:

* Apple /// FORTRAN is an applications program which is executed from
 within the Apple /// Pascal environment. It is not a stand-alone

 bootable system and to use it, the Pascal system must first be loaded.
 All the Pascal files are untouched except that the FORTRAN run-time
 units (FORTIO and FORTFUNC) must be in the SYSTEM.LIBRARY file along
 with REALMODES AND TRANSCEND. FORTRAN has three associated files all
 of which must be located in the same subdirectory:

 FORTRAN.LIB is the Compiler Library

 SOS.ERRORS is the File Selection error file

 FORTRAN.ERRORS contains all the Compiler and Run-Time
 errors

* The Pascal documentation makes references to Pascal Pseudo-code
 P-code. Both the FORTRAN and Pascal compilers generate P-code, they
 don't generate the native 6502 machine code of the Apple. The P-code
 produced by the compilers is executed by a P-code interpreter, which
 translates P-code instructions into the native machine code of the
 Apple. This allows both FORTRAN and Pascal to run on the Pascal
 Operating System.

* There are two fundamental kinds of disk files that the operating
 system uses: TEXT and CODE. TEXT files are in human-readable format,
 CODE files are machine-readable. TEXT files are just streams of
 characters, whether they are English, FORTRAN or whatever. CODE files
 are what the FORTRAN and Pascal compilers generate from reading
 FORTRAN or Pascal language TEXT files. Files that have names ending
 with the suffixes .TEXT and .CODE are treated specially by the
 operating system. For instance, the Editor will only allow you to edi
t
 a file that has a .TEXT suffix. The Linker will only link a file that
 has a .CODE suffix or a .LIBRARY suffix. Files with a .CODE suffix ar
e
 assumed to have a particular inner organization that allows system
 programs to manipulate them in appropriate ways. While the system
 generally takes care of the suffixes itself, it is possible for you to
 change any file to have any suffix. Some care should be taken
 to make sure that files with text have a .TEXT suffix, and files with
 code have a .CODE suffix.

* FORTRAN recognizes SOS and Apple][formatted disks.

2.2 GUIDE TO PASCAL DOCUMENTATION
What follows is a reading guide to the Pascal Operating System
documentation, suggesting what you should read for various FORTRAN
applications, and making specific substitutions and rewordings. Read
the introductory sections of whichever manual you have to get an
overview of the Pascal Operating System.

2.2.1 THE COMMAND LEVEL

Read the sections of the Apple /// Pascal - Introduction, Filer, Editor
manual for all applications.

Information on creating a turnkey program is included in the Apple ///
Pascal Program Preparation Tools manual.

2.2.2 THE FILER

For all applications of the Filer, refer to the Apple /// Pascal -
Introduction, Filer, Editor manual.

2.2.3 THE EDITOR

Same as above for Editor applications.

In the section Text Changing Commands, under I(nsert - Inserting with
A(uto-indent TRUE, F(illing FALSE, note that this is the normal
setting for writing FORTRAN programs as well as Pascal programs.

2.2.4 6502 ASSEMBLER

It is possible to have a FORTRAN program call assembly language
subroutines. The chapter on the 6502 Assembler, of whichever Pascal
manual you have, discusses how to write and link such subroutines.
However, the example host program given at the end of the chapter is
in Pascal. The assembly language program ASMDEMO requires changes to a
few lines of code to work with FORTRAN. Program ASMDEMO with the
changes required by FORTRAN is shown in Chapter 15 of this manual.

2.2.5 THE LINKER

The Linker combines separately compiled CODE files together into one
executable CODE file. Most of the time, FORTRAN programs do not require
linking. There are some exceptions and these are discussed in Chapter
5, The Linker in this manual. The procedure for using the Linker is
detailed in the Apple /// Pascal Program Preparation Tools manual.

2.2.6 UTILITY PROGRAMS

The procedure for Formatting Disks is discussed in the Utilities
Diskette section of the Apple /// Owner's Guide.

The section in the Apple /// Pascal Program Preparation Tools manual on
the System Librarian should be read by those who will be creating,
augmenting or altering library files. There is a main library called
SYSTEM.LIBRARY. Both Pascal and FORTRAN use the same Librarian program
to manipulate libraries. The structure of libraries is the same, but
the content of the SYSTEM.LIBRARY is slightly different in FORTRAN.

Those using the Librarian should also read the section Library Mapping
which describes a program that allows you to view the contents of any
library.

3 PROGRAMS IN PIECES
3.1 INTRODUCTION
The FORTRAN system has a variety of ways that allow you to optimize
the stages of writing and organizing programs. One of the most
important is that for large programming tasks you can remove groups of
subprograms from the main program and put them into individual
modules. These modules can then be developed by themselves, and
perhaps even be used in more than one program. The ability to treat
blocks of code as modules has several advantages over writing one
large program:

* Large tasks may be broken down conceptually into sections which can
 be developed independently and later combined, thereby speeding their
 development by focusing attention on one problem at a time.

* Subprograms that can be used in many programs need only be written
 once, then stored in a library for later use.

* Many useful subprograms have been written for you and included in
 the system library. They may be used directly in your programs.

* Procedures written in Pascal and Assembly language can be linked to
 FORTRAN language main programs.

* Several very efficient methods of handling subprograms are available
 in the operating system. These methods help make the size of compiled
 programs smaller, so that the storage capacity of either the disk or
 the computer's memory is not exceeded by a large program. These
 methods are discussed more fully later on in this chapter.

Sectioning programs is what makes it possible to treat blocks of code
as modules. While this is an extremely useful capability, it
introduces some complexities. The purpose of this chapter is to
explain the use of the features of the Apple Operating System.

3.2 PARTIAL COMPILATION
A FORTRAN program consists of one main program and its appropriate
subprograms. In the simplest case, the main program and any
subprograms appear in the same TEXT file, called the source code, and

are compiled at one time. The result is a CODE file, called the object
code, which contains the entire program and is stored on the disk.
When the program is to be executed, it is all loaded in memory at once
and started. A program loaded in memory is called a code image.

There are three levels where programs can be broken into modules: the
source code level, the object code level, and the code image level
while the program is running. Each level has distinct purposes. These
purposes and the advantages of using each level will be discussed
next.

3.2.1 SOURCE CODE IN PIECES

It is possible for any part of a program to be split up and placed in
different TEXT files. In place of the part of the program removed,
special statements are entered in the program which cause the FORTRAN
compiler to include the separate files in the compilation at the
correct point.

The only restrictions are that you must break the program at line
boundaries (you can't split up statements) and that the whole
collection of files, when reassemled by the compiler, must still make
up a complete FORTRAN program.

Dividing a program into modules can serve two purposes. First, you
need not edit an entire program at once. Secondly, it means that
different tasks of a program can appear in separate TEXT files. This
helps keep program structure and organization clear. For more
information on dividing programs into modules, see the discussion of
the $INCLUDE statement in Chapter 4.

3.2.2 OBJECT CODE IN PIECES

If the source code in a TEXT file is a complete subprogram, it can be
compiled separately instead of being included in the compilation of the
whole program to which it belongs. The technique of compiling
subprograms independently from the main program is called separate
compilation.

A complete subprogram can still be broken down into different TEXT
files, if desired. The point is that no matter how the subprogram is
spread across different TEXT files, all the pieces must be supplied to
the compiler so as to make at least one complete subprogram.

In the simplest case, separate compilation is done in two steps as
follows. First, each of the subprograms is compiled. A single TEXT fil
e
may actually contain more than one complete subprogram, if desired.
When the compiler begins, it sees that there is no main program
included, because the first statement is a SUBROUTINE or FUNCTION

statement. The compiler then proceeds to compile the subprograms. When
it has successfully compiled the subprograms, the compiler will write
out a CODE file containing both the code of the compiled program, as
well as a packet of information that will describe just what is in the
CODE file. This linker packet will also include
details about the subprograms in the compilaton unit such as their
type, number of arguments and so on.

The second step in the separate compilation process is the compilation
of the main program that uses the subprograms. A PROGRAM statement
informs the compiler that it is compiling a main program. A $USES
statement must precede the PROGRAM statement before any executable
statement. The $USES statement tells the compiler that subprograms in
the CODE file named in the $USES statement are required in the main
program. The compiler then looks up the named file and reads in the
names of all subprograms and their descriptions. The compiler is then
able to compile any references to these subprograms that the main
program may make. The $USES statement is described in more detail in
Chapters 4 and 14.

If no $USES or $EXT statement is encountered by the FORTRAN compiler
then the compiler will expect to find the entire program in the current
TEXT files being compiled.

Note that the FORTRAN compiler does not incorporate the actual code of
the separately compiled subprogram into the main program CODE file it
is currently generating. Instead, it generates a packet of information
that will tell the Linker how to couple the subprograms into the main
program during the linking process.

O.K., that's the simple case. It is possible to do a variety of things
with this mechanism, including having separately compiled subprograms
called from other separately compiled subprograms.

When the main program and separately compiled subprograms are to be
linked into one executable CODE file, you must tell the Linker all the
files that make up the one executable program.

There is a companion facility to the FORTRAN $USES statement in the
Pascal language compiler called the USES statement that enables FORTRAN
programs and Pascal programs to be linked. The actual use of the
Linker is discussed in Chapter 5. More complex uses of the $USES
statement are discussed in Chapter 14.

3.3 UNITS, SEGMENTS AND LIBRARIES
A group of one or more subprograms, when compiled together, form what
is called a compilation unit. When a subprogram is separately compiled,
the CODE file which results contains a compilation unit. The term
compilation unit is not to be confused with the FORTRAN concept of an

I/O unit. An I/O unit refers to a particular input/output device; a
compilation unit is a part of a CODE file.

There are two principal ways of using compilation units, as regular
units or as OVERLAY units. When regular units are linked into a main
program, the subprograms in the unit are actually copied into the
resulting CODE file which then contains the code for the main program
as well as the code for the subprograms.

The purpose of OVERLAY units is to be able to split up programs that
would otherwise be too big for memory. An OVERLAY unit is normally not
resident in memory. When the program is loaded into memory prior to
execution, the OVERLAY units are not loaded, but remain behind in the
CODE file or in SYSTEM.LIBRARY. They remain out of memory until the
main program executes a CALL statement for a subroutine or executes a
function call in an expression that refers to a subprogram in an
OVERLAY unit. Then the whole unit is brought into memory and the
appropriate subprogram is executed. When execution of the subprogram
is terminated, the space used for the unit is returned to the pool of
available memory.

An OVERLAY unit must have been separately compiled in advance of use.
It is compiled in the manner described above for separately compiled
subprograms. It becomes an OVERLAY unit when it is named in a $USES
statement that includes the word OVERLAY. See Chapter 14 for the
details of this usage.

The ability to separately compile subprograms makes it possible for
more than one main program to use the same subprogram. Usually, these
subprograms are placed in a common CODE file, using the library utility
program, LIBRARY.CODE on /PASCAL3/. Such a CODE file is then termed a
CODE library. This is described in Chapter 14. There is a CODE library
that comes with your system named SYSTEM.LIBRARY. It contains a variety
of compilation units such as units of run-time routines required by most
running FORTRAN programs, called FORTIO and FORTFUNC. In addition, it
contains routines to do color graphics, and a variety of other things.
You may put your own "homebrewed" compilation units into this library,
too!

4 THE COMPILER
4.1 INTRODUCTION
This chapter details the input requirements of the FORTRAN compiler
and describes its operation.

All input source files read by FORTRAN must be .TEXT files. This
allows the compiler to read large blocks of text from a disk file in a

single operation, increasing the compile speed significantly. The
simplest way to prepare .TEXT files is to use the screen oriented
editor. This means, however, that one cannot type programs directly
into the compiler from the keyboard. For a more precise description
of the fields in a FORTRAN source statement, see Chapter 6 which
explains the basic structure of a FORTRAN program.

The basic purpose of the compiler is to read TEXT files which contain
FORTRAN source programs and convert them into P-code. The output file
containing the P-code must always have the filename suffix .CODE.
Such files are called CODE files.

When you instruct the computer to eXecute your compiled program, the
Pascal operating system passes the P-code in the file to a P-code
interpreter. After a successful booting operation, the interpreter is
resident in the Apple's memory. It is the role of this interpreter to
take the P-code instructions and use them to drive the Apple's central
processing unit which uses low-level (6502) machine language
instructions. The point of a P-code interpreter is that it allows
your program to run on virtually any computer that operates Pascal
without recompiling. For more information on the pseudo-machine code,
see the Pascal documentation.

4.2 FILES NEEDED
These files are needed to run the FORTRAN compiler:

 Textfile to be compiled Any subdirectory or any disk, any drive;
 default is boot disk's text workfile,
 SYSTEM.WRK.TEXT, in any drive.

 FORTRAN.CODE Any subdirectory; required.

4.3 USING THE COMPILER
There are usually two steps to taking a FORTRAN program from a TEXT
file to a running program. First you compile the source (the TEXT
file), then you execute the resulting object code, which loads the code
into memory and begins running it.

There are situations where linking will be necessary. These are
discussed in the next Chapter.

The Compiler is invoked by typing X from the Command level of the
Pascal operating system and then keying in the pathname for FORTRAN.CODE
.
You are then prompted by the Compiler for a source
filename:

 COMPILE WHAT TEXT?

You should respond by typing the pathname of the text file that you wish
to have compiled.

If no .TEXT suffix is specified, the system will add one
automatically. If you wish to defeat this suffix-adding feature and
compile a textfile whose filename does not end in .TEXT, type a period
after the last character of your filename.

Next you will be asked for the name of the file where you wish to save
the compiled version of your program:

 TO WHAT CODEFILE?

If you simply press the RETURN key the compiled version of your
program will be saved on the boot disk's workfile SYSTEM.WRK.CODE.

If you want the compiled version of your program to have the same pathna
me
as the text version of your program, just type a dollar sign ($) and
press the RETURN key. Of course, the suffix will be .CODE instead of
.TEXT. This is a handy feature, since you will usually want to
remember only one name for both versions of your program. The dollar
sign repeats your entire source file pathname. Note that this use is
different from the use of the dollar sign in the Filer. There are a few
additional shortcuts and handy features that are available to you for
specifying a pathname. These are discussed in detail in Appendix A.

If you want your program stored under another filename, type the
desired filename. If no .CODE suffix is specified, the system will add
one automatically. If you wish to defeat this feature, in order to
specify an output filename that does not have a .CODE suffix, type a
period after the last character of your output filename.

You will then be asked for the name of the file where you wish to list
the compilation:

 List to what file?

You may choose to not list by pressing RETURN however, the compiler
listing may be useful to the programmer. See the Compiler Listing
section in this chapter for the details.

The Compiler then begins compiling the specified file. While the
compiler is running, messages on the screen show the progress of the
compilation. Below is an example of the messages which appear on the
screen:

 <current pathname> nnnn Total lines mmmm

 <procname> Memory available wwwww

 Apple /// Fortran Compiler [A3/1.03]

 Compile what text? <current pathname>.TEXT
 To what code file? <pathname>.CODE
 List to what file? <pathname>

 4 lines. 0 errors.
 Smallest available space = 21021 words

While the compiler is running, four counters ("odometers") are displayed
 in
inverse video at the top corners of the screen which show the progress o
f
the compilation. The "<current pathname>" shows the current file being
processed or a unit name during $USES processing. The 4-digit counter
("nnnn") shows which line number in the file is being processed. The wi
dth
of this field varies as the pathnames change. Since the counter is only
four digits, the count is mod 10000.

The "<procname>" field is always eight characters and shows the current
program or subroutine being processed.

The "Total lines" field ("mmmm") shows the total number of lines read by
the compiler during compilation. This includes all units and include fi
les.
As with the "<current pathname>" field, the counter is only four digits
so its value is mod 10000.

The "Memory available" field ("wwwww") indicates the number of 16-bit wo
rds
available for symbol table storage and compiler execution. It is update
d
when the "<procname>" field is updated. If the number falls too low, th
e
compiler may fail with a "stack overflow".

If the compilation is successful (that is, no programming errors are
detected), the Compiler saves the compiled code under the filename that
you specified earlier. If you didn't specify a filename the compiled
code is saved under the filename SYSTEM.WRK.CODE on the boot disk.

If the compiler reports an error, it will tell you which line number
was being compiled when the error was detected and will give a code
for the kind of error. The following example shows an error message
during compilation:

 Apple /// Fortran Compiler [A3/1.03]

 Compile what text? /P/FORTRAN/EXAMPLE.TEXT
 To what code file? /P/FORTRAN/EXAMPLE.CODE
 List to what file? .PRINTER

 ***** Error number: 159 in line: 12
 Unrecognizable I/O unit

Compilation will not stop when an error is detected. Pressing the
ESCAPE key will interrupt the compilation and you will be given the
option to abort or continue. You can abort by
pressing ESCAPE again or continue compiling by pressing RETURN.
If you abort or allow the compilation
to finish you can then return
to the Editor to fix the problem(s) and recompile. The list of compiler
error messages with their
corresponding error numbers appears in Appendix B of this manual.

The code workfile, SYSTEM.WRK.CODE, is automatically erased when any
text workfile is U(pdated from the Editor. So, if you have compiled
anything into that name, you may want to rename it using the Filer if
you don't want to lose it.

4.4 FORM OF INPUT PROGRAMS
FORTRAN source programs will usually be prepared using the Editor. The
FORTRAN system will process them regardless of their means of
preparation, however, providing they are in valid TEXT format. For
instance, a FORTRAN program from another processor can be transferred
to the Apple over the REMIN: remote input port. The Filer's T(ransfer
command can be used to copy text arriving via REMIN: into a diskette
file. See the information on the Filer in the Pascal documentation.
Source programs must be TEXT files and must be passed to the Compiler
from a blocked file device (i.e., a diskette).

4.4.1 LOWER AND UPPER CASE

Apple FORTRAN accepts both upper and lower case input, or any mixture
of upper and lower case with the following convention:

* No distinction is made between upper and lower case to represent
 FORTRAN keywords or defined symbols in a program. Example: oPeN, OPE
N,
 and open all stand for the same FORTRAN keyword.

* In character constants, the exact letters provided by the user are

 passed directly through the system.

* Options to I/O statements which have the syntax of character
 constants may be specified in either upper or lower case. Example:
 OPEN(1,FILE='*Bats').

4.4.2 LINE LENGTH AND POSITIONING

Apple FORTRAN allows lines of text to be up to 72 columns wide.
Shorter lines are not padded out to 72 columns with blanks. Text
beyond column 72 is ignored. FORTRAN reserves the first 6 columns to
represent whether the line is an initial or continuation line.
Columns 1 through 5 are for a label, and a nonblank character in
column 6 denotes a continuation line.

The fact that shorter lines are not padded out with blanks means that
character constants that are split across lines will not end up with a
lot of blanks in them. See Chapter 7 for a discussion of the treatment
of character constants.

Lines longer than 72 columns are truncated to 72 columns. No error
message is generated by characters appearing beyond column 72 unless
this truncation introduces some syntax error. It may later generate a
run-time error, however, or simply cause some strange behavior in your
program.

The FORTRAN compiler can produce a listing of the program source that
it compiled. The listing reflects the columns read by the FORTRAN
compiler and can be checked for unintentional line truncations. But
it's far better to avoid the truncations in the first place.

Source lines that are empty or completely filled with blanks are
treated as comment lines by FORTRAN 77. Neither ANSI FORTRAN 77 nor
Apple FORTRAN allow comments following the final END statement of a
program.

4.5 COMPILER DIRECTIVES
Compiler directives provide you with a way of communicating certain
information to the compiler via the text of the file being compiled.
To this end, Apple FORTRAN recognizes another kind of line, besides
comment lines, initial and continuation lines, called a compiler
directive line. A dollar sign ($) appears in column 1 of such compiler
directive lines.

Some of these directives are restricted to certain locations in the
text. Specifically, the $INCLUDE statement may occur anywhere a
comment line may appear. The other directives must appear before any
specification or executable statement, but otherwise have no
restrictions on placement or order. These directives are:

$INCLUDE filename

To facilitate the manipulation of large programs, the Apple compiler
has extended the FORTRAN 77 standard with an $INCLUDE compiler
directive. The directive must have the $ appearing in column 1. The
meaning is to compile the contents of the file 'filename' before
continuing with the current file. The included file may contain
additional $INCLUDE directives, up to a maximum of five levels of
files (four levels of $INCLUDE directives). It is often useful to have
the description of a COMMON block kept in a single file and to include
it in each subroutine that references that COMMON area, rather than
making and maintaining many copies of the same source, one in each
subroutine. There is no limit to the number of $INCLUDE directives
that can appear in a source file. An $INCLUDE can appear anywhere a
comment line is legal.

$USES ident [IN filename] [OVERLAY]

The $USES statement has the effect of making separately compiled
subprograms known to the FORTRAN compiler. This allows the program
being compiled to refer to that separately compiled code. The named
file must be a CODE file. The separately compiled FORTRAN subroutines
or Pascal procedures contained in the named file, or in the file
SYSTEM.LIBRARY if no file name is present, become defined and
available to the currently compiling program. This directive must
appear before the first non-comment input line. The optional OVERLAY
statement is used if the named unit is to be brought into memory
during execution only while being referenced from the main program,
instead of having the code added to the CODE file of the host program.
See Chapter 14 for more information on $USES.

$XREF

Produces a cross-reference listing of the compilation.

$EXT SUBROUTINE name #params
$EXT [type] FUNCTION name #params

The subroutine or function specified by 'name' is an assembly language
routine. The routine has exactly '#params' reference parameters.
$EXT for a given name should occur only once in a compilation. If a
program and a unit called by that program both use a given assembly
language routine, the $EXT should only occur in the program or the
unit, but not both.

4.6 COMPILER LISTING
The compiler listing, if requested, contains various bits of
information that may be useful to the FORTRAN programmer. The listing
consists of the user's source code as read, along with line numbers,
symbol tables, and error messages. Also, cross reference information
is listed if the $XREF compiler directive is specified. The compiler
can be interrupted by pressing ESCAPE. A message is displayed which
gives the user the option to abort (another ESCAPE) or continue
(RETURN). A sample compiler listing follows.

SAMPLE COMPILER LISTING:

 Apple /// Fortran Compiler [A3/1.03]
 0. 0 C
 1. 0 C --- Example Program #1234
 2. 0 C
 3. 0
 4. 0 $XREF
 5. 0
 6. 0 PROGRAM EX1234
 7. 0
 8. 0 INTEGER A(10,10)
 9. 0 CHARACTER*4 C
 10. 0
 11. 0 CALL INIT(A,C)
 12. 6 I = 1
 13. 9 200 A(I) = I
 ***** Error number: 57 in line: 13
 Too few subscripts
 14. 20 I = I + 1
 15. 26 IF (IABS(10-I) .NE. 0) GOTO 200
 16. 37
 17. 37 END

 A INTEGER 3 8 11 13
 C CHAR* 4 103 9 11
 EX1234 PROGRAM 6
 I INTEGER 105 12 13 13 14 1
4 15
 IABS INTRINSIC 15
 INIT SUBROUTINE 2,FWD 11

 18. 0 SUBROUTINE INIT(B,D)
 19. 0 INTEGER B(10,10)
 20. 0 CHARACTER*4 D
 21. 0
 22. 0 RETURN

 23. 2 END

 B INTEGER 2* 18 19
 D CHAR* 4 1* 18 20
 INIT SUBROUTINE 2 18

 EX1234 PROGRAM
 INIT SUBROUTINE 2,7

 24 lines. 1 errors.
 Smallest available space = 3966 words.

The first line indicates which version of the compiler was used for
this compilation (version 1.03 in this example).
The leftmost column of numbers is the source line number. The
next column indicates the procedure relative instruction counter that
the corresponding line of source code occupies as object code. It is
only meaningful for executable statements and data statements. To the
right of the instruction counter is the source statement.

Errors are indicated by a row of asterisks followed by the error
number, line number, and error description as appears in the example
between lines 13 and 14. In this case it is error number 57, "Too few
subscripts", indicating that there are not enough subscripts in the
array reference A(I).

At the end of each program unit (function, subroutine, or main
program), a local symbol table is printed. This table lists all
identifiers that were referenced in that program unit, along with
their definition. If the $XREF compiler directive has been issued, a
table of all lines containing an instance of that identifier in the
current program unit is also printed.

If the identifier is a variable, it is accompanied by its type and
location. If the variable is a parameter, its location is followed by
an asterisk, such as the variables B and D in the SUBROUTINE INIT. If
the variable is in a common block, then the name of the block follows
between two slashes.

If the identifier is not a variable, it is described appropriately.
For subroutines and functions, the unit relative procedure number is
given. If it resides in a different segment, then the segment number
follows. If the compiler assumes that it will reside in the same
segment, but has not appeared yet, it is listed as a forward program
unit by the notation FWD.

At the end of the compilation the global symbol table is printed. It
contains all global FORTRAN symbols referenced in the compilation. No
cross reference is given. The number of source lines compiled and the

number of errors encountered follows. If there were any errors, then
no object file is produced.

The last line shows the maximum amount of RAM used, recorded at the
first executable statement of each program unit. This can be used as
an indication of the amount of memory that remains available for
additional symbols. When the available memory space becomes less than
700 to 1000 words, the symbol table is nearly full, since some of the
memory pool is used for other purposes during the compilation of
executable statements.

5 THE LINKER
5.1 INTRODUCTION
Most of the time FORTRAN programs are compiled into code files and do
not have to be linked. These code files can be executed from the Pascal
command line and the FORTRAN run-time units needed are loaded
dynamically at this time. The only cases in which linking is necessary
are:

* If external units are referenced with $USES directives

* If Named COMMON blocks are used

In the first case, the libraries containing the external units must be
specified during the linking. In the second case, no libraries are
required (just press RETURN when libraries are requested). This chapter
is provided as a guide to using the Pascal operating system Linker for
the cases above.

5.2 FILES NEEDED
The following files allow you to use the Linker:

 SYSTEM.LINKER Root directory of any on-line volume

 Host codefile Any file, any subdirectory. Default is boot
 disk's code workfile SYSTEM.WRK.CODE

 Library codefiles Any disks, any drives

5.3 USING THE LINKER
The following describes how to run the Linker manually.

Start the Linker by typing L for L(ink from the COMMAND level prompt
of the FORTRAN system and receive the prompt:

 LINKING...

 LINKER II.1 [A4]
 HOST FILE?

The hostfile is the main program CODE file into which subprograms are
to be linked. If you just press the RETURN key in response to the
prompt, the Linker uses the boot disk's workfile SYSTEM.WRK.CODE
as the hostfile. If your main program is not in the workfile, enter
the filename containing it. If the Linker cannot find a file with the
exact filename you typed, it adds the suffix .CODE to the filename, if
the suffix was not specified originally, and tries again. For this
reason, if you respond by typing the non-existent filename
/MYDISK/MYFILE the Linker returns the message

 NO FILE /MYDISK/MYFILE.CODE

You'll also notice that when the Linker reports information about a
file it always displays the full name, including the disk name.

After successfully finding a host file, the Linker then asks for the
name of the first CODE file containing separately compiled subprograms
that are to be linked to the main program.

 LIB FILE?

There are two kinds of files that can be supplied here, either a
library file or a single compilation unit. The Linker treats them in
exactly the same way. Typing * and then pressing the RETURN key in
response to a request for a library file name will cause the Linker to
reference SYSTEM.LIBRARY on the boot disk. This is never done for
FORTRAN programs because the FORTRAN run-time routines will be loaded
automatically from SYSTEM.LIBRARY during their execution.

Enter the names of the CODE files (if any) that your program requires.
Again, the Linker looks first for the exact filename that you type, and
if the search was unsuccessful, adds the suffix .CODE and looks again.
In any case, it always displays the name of the file actually opened.
The Linker will continue to prompt you for files. Up to eight library
files may be included in one linking operation.

The term "library" is a little confusing, because in fact any CODE
file can be treated as a library. A CODE file can be thought of as a
library with only one compilation unit in it. Using the library
utility program, LIBRARY.CODE, supplied on /PASCAL3, it is
possible to make CODE files contain more than one entry. You may also
remove compilation units from libraries with the library utility
program. The file SYSTEM.LIBRARY on /PASCAL1 was created with

this program. For information on LIBRARIES and the LIBRARIAN see the
documentation for the Pascal Operating System in the Utility Programs
Section.

If you specify a library file that does not contain the proper
information, you may get one of these messages:

 BAD SEG KIND (Is this really a Pascal or FORTRAN program?)
 BAD SEG NAME (Is this a text file ?)

When all relevant library file names have been entered, answer the
next LIB FILE? prompt by just pressing the RETURN key to proceed. The
Linker will now prompt with:

 MAP NAME?

If you respond by typing a file name, the Linker writes a mapfile
which contains a text version of what the Linker did to link the CODE
files. Note that the suffix .TEXT is appended to the specified
filename unless a period is the last lr of the filename. Normally
you will simply press the RETURN key. This causes no mapfile to be
written. The mapfile is a diagnostic and system programming tool, and
is not required for most uses of the Linker.

The Linker now reads all the CODE files presented and begins the
linking process. If all the right subprograms are not present, the
Linker will respond with an appropriate message:

 UNIT,
 PROC,
 FUNC,
 GLOBAL,
 PUBLIC <identifier> UNDEFINED
 TYPE <SP>(CONTINUE), <ESC>(TERMINATE)

When the Linker is ready to write an output CODE file, you are
prompted to type a filename for it to use:

 OUTPUT FILE?

You will often want the same filename as that of the host file, but
you may not use the $ same-name option offered by the Compiler and
Filer. The Linker may not add any suffix to the output filename you
specify; if you want to insure a normal, executable code file, you
should explicitly include the .CODE suffix in the filename when you
type it. After this output file specification has been typed, press
the RETURN key and linking will commence. Responding with no filename
by pressing only the RETURN key causes the linked output to be saved
in the boot disk's workfile, SYSTEM.WRK.CODE.

During the linking process, the Linker will report on all subprograms
being copied into the output CODE file. The linking process will be
stopped if any required routines are missing or undefined. You will be
told what was missing and allowed to terminate or continue the linking
process.

Here is a sample session with the Linker for linking a main program
called MYPRG to a separately compiled code file named X.CODE. The main
program has a $USES statement in it that references a subprogram in
X.CODE.

 Apple /// Linker [A3/1.0]
 Host file? MYPRG
 Opening MYPRG.CODE
 Lib file? X
 Opening X.CODE
 Lib file?
 Map name?
 Reading MAINSEGX
 Reading MYPRG
 Reading X
 Output file? OUTPRG.CODE
 Linking MYPRG # 7
 Linking X # 8
 Linking MAINSEGX #1

You could then eX(ecute the code file OUTPRG.CODE.

6 PROGRAM STRUCTURE
6.1 INTRODUCTION
A FORTRAN program is a sequence of characters that are interpreted by
the compiler in various contexts as characters, identifiers, labels,
constants, lines, statements or other syntactic groupings. The rules
the compiler uses to group the character stream into substructures, as
well as various constraints on how these substructures may be related
to each other in the source program, are the topic of this chapter.

First, however, it is important to note the notation conventions
used in this manual:

* Upper case and special characters are to be written as shown in
 programs.

* Lower case letters and words indicate entities for which there is a
 substitution in actual statements as described in the text. The reade
r

 may assume that once a lower case entity is defined, it retains it
 meaning for the entire context of discussion.

 Example: The format which describes editing of integers is denoted
 'Iw', where w is a nonzero, unsigned integer constant. Thus, in an
 actual statement, a program might contain I3 or I44. The format wh
ich
 describes editing of reals is 'Fw.d', where d is an unsigned intege
r
 constant. In an actual statement, F7.4 or F22.0 are valid. Notice
 that
 the period, as a special character, is taken literally.

* Brackets indicate optional items.

 Example: 'A[w]' indicates that either A or A12 are valid as a mean
s of
 specifying a character format.

* Three dots (...) are used to indicate ellipsis. That is, the
 optional item preceding the three dots may appear one or more times.

 Example: The computed GOTO statement is described by 'GOTO (s [,
s]
 ...) [,] i' indicating that the syntactic item denoted by s may be
 repeated any number of times with commas separating the items.

* Blanks normally have no significance in the description of FORTRAN
 statements. The general rules for blanks, covered in this chapter,
 govern the interpretation of blanks in all contexts.

6.2 CHARACTER SET
A FORTRAN source program consists of a stream of characters,
originating in a .TEXT file, consisting of:

* Fifty-two upper and lower case letters A through Z and a through z

* Digits from 0 to 9

* Special characters consisting of the remaining printable characters
 of the ASCII character set

The letters and digits, treated as a single group, are called the
alphanumeric characters. FORTRAN interprets lower case letters as if
they were upper case letters in all contexts except in character
constants and hollerith fields. Thus, the following user defined names
are all the same to the FORTRAN system:

 ABCDE abcde AbCdE aBcDe

In addition, actual source programs submitted to the FORTRAN compiler
contain certain hidden or nonprintable control characters inserted by
the text editor which are invisible to the user. FORTRAN interprets
these control characters in exactly the same way that the text editor
does and transforms them, using the rules of Apple Pascal .TEXT files,
into the FORTRAN character set.

The collating sequence for the FORTRAN character set is the same as
the ASCII sequence. Refer to Table 5 in Appendix C.

6.3 LINES
A FORTRAN source program may also be thought of as a sequence of
lines, corresponding to the normal notion of lines in the text editor.
Only the first 72 characters in a line are treated as significant by
the compiler, with any trailing characters in a line ignored. Note
that lines with fewer than 72 characters are possible and, if shorter
than 72 columns, the compiler does treat as significant the length of
a line. See Chapter 7 which describes character constants for an
illustration of this. This 72 column format is a throwback to the days
of punched cards, when each statement or line required its own card.

6.4 COLUMNS
The characters in a given line fall into columns that are numbered
from left to right, beginning with column 1. The column in which a
character resides is significant in FORTRAN. Columns 1 through 5 are
reserved for statement labels, column 6 is used to indicate a
continuation line, and executable statements start in column 7.

6.5 BLANKS
The blank character, with the exceptions noted below, has no
significance in a FORTRAN source program and may be used for the
purpose of improving the readability of FORTRAN programs. The
exceptions are:

* Blanks within string constants are significant.

* Blanks within Hollerith fields are significant.

* Blanks on compiler directive lines are significant.

* A blank in column 6 is used in distinguishing initial lines from
 continuation lines.

* Blanks are included in the total count of characters that the
 compiler must process per line and per statement.

6.6 COMMENT LINES
A line is treated as a comment if any one of the following conditions
is met:

* A C or c character in column 1.

* Asterisk (*) in column 1.

* Line all blanks.

Comment lines do not effect the execution of the FORTRAN program in
any way. Comment lines must be followed immediately by an initial line
or another comment line. They must not be followed by a continuation
line. Note that extra blank lines at the end of a FORTRAN program
result in a compile time error since the system interprets them as
comment lines but they are not followed by an initial line.

6.7 STATEMENTS, LABELS, AND LINES
We will define a FORTRAN statement in terms of the input character
stream. The compiler recognizes certain groups of input characters as
complete statements according to the rules specified here. Specific
statements and their properties will be covered individually. When it
is necessary to refer to specific kinds of statements here, they are
simply referred to by name.

A statement label is a sequence of from one to five digits. At least
one digit must be nonzero. A label may be placed anywhere in columns 1
through 5 of an initial line. Blanks and leading zeros are not
significant. It is traditional to left-justify statement labels. A
statement label on a nonexecutable statement is ignored.

An initial line is any line that is not a comment line or a compiler
directive line and contains a blank or a 0 in column 6. The first five
columns of the line must either be all blank or contain a label. With
the exception of the statement following a logical IF, FORTRAN
statements begin with an initial line.

A continuation line is any line which is not a comment line or a
compiler directive line and contains any character in column 6 other
than a blank or a 0. The first five columns of a continuation line
must be blanks. A continuation line is used to increase the amount of
room to write a given statement. If a statement will not fit on a
single initial line, it may be extended to include up to 9
continuation lines.

A FORTRAN statement consists of an initial line, which may be followed

by up to 9 continuation lines. The characters of the statement are the
total number of characters, up to 660, found in columns 7 through 72
of these lines.

6.8 STATEMENT ORDERING
The FORTRAN language enforces a certain ordering among statements and
lines which make up a FORTRAN compilation. In general, a compilation
consists of from zero to some number of subprograms and at most one
main program. Refer to Chapter 13 for more information on programs,
subroutines, and functions, as well as the FORTRAN statements
mentioned in this section. The rules for ordering statements appear
below.

A subprogram begins with either a SUBROUTINE or a FUNCTION statement
and ends with an END statement. A main program begins with a PROGRAM
statement, or any other than a SUBROUTINE or FUNCTION statement, and
ends with an END statement. A subprogram or a main program is often
called a program unit.

Within a program unit, whether a main program or a subprogram,
statements must appear in an order consistent with the following
rules:

* A SUBROUTINE or FUNCTION statement, or PROGRAM statement if present,
 must appear as the first statement of the program unit.

* FORMAT statements may appear anywhere after the SUBROUTINE or
 FUNCTION statement, or PROGRAM statement if present.

* Specification statements must precede all DATA statements, statement
 function statements, and executeable statements.

* DATA statements must appear after the specification statements and
 precede all statement function statements and executable statements.

* Statement function statements must precede all executable
 statements.

* Within the specification statements, the IMPLICIT statement must
 precede all other specification statements.

These rules are summarized in the program rules chart that follows.

+----------+--
+
| | PROGRAM, FUNCTION, or SUBROUTINE Statement
|
| +--

+
| | | IMPLICIT Statements
|
| | +---------------------------------------
+
| | | Other Specification Statements
|
| Comment | FORMAT +---------------------------------------
+
| Lines | Statements | DATA Statements
|
| | +---------------------------------------
+
| | | Statement Function Statements
|
| | +---------------------------------------
+
| | | Executable Statements
|
+----------+--------------------+---------------------------------------
+
| END Statement
|
+---
+

Guidelines for interpreting the Program Rules Chart:

* Classes of lines or statements above or below other classes must
 appear in the designated order.

* Classes of lines or statements may be interspersed with other
 classes which appear across from one another.

7 DATA TYPES
7.1 INTRODUCTION
There are four basic data types in Apple FORTRAN: Integer, real,
logical, and character. This chapter describes the properties of each
type, the range of values for each type, and the form of constants for
each type.

7.2 THE INTEGER TYPE
The integer data type consists of a subset of the integers. An integer

value is an exact representation of the corresponding integer. An
integer variable occupies one word, two bytes, of storage and can
contain any value in the range -32768 to 32767. Integer constants
consist of a sequence of one or more decimal digits preceded by an
optional arithmetic sign, + or -, and must be in the allowable value
range. A decimal point is not allowed in an integer constant. The
following are examples of integer constants:

 123 +123 -123 0 00000123 32767 -32768

7.3 THE REAL TYPE
The real data type consists of a subset of the real numbers. A real
value is normally an approximation of the real number desired. A real
variable occupies two consecutive words, four bytes, of storage. The
range of real values within a power of 10 is approximately:

 -1.7E+38 ... -5.8E-39 0.0 5.8E-39 ... 1.7E+38

A basic real constant consists of an optional sign followed by an
integer part, a decimal point, and a fraction part. The integer and
fraction parts consist of one or more decimal digits. Either the
integer part or the fraction part may be omitted, but not both. Some
examples of real constants follow:

 -123.456 +123.456 123.456
 -123. +123. 123.
 -.456 +.456 .456

An exponent part consists of the letter 'E' followed by an optionally
signed integer constant. An exponent indicates that the value
preceding it is to be multiplied by 10 to the value of the exponent
part's integer. Some sample exponent parts are:

 E12 E-12 E+12 E0

A real constant is either a basic real constant, a basic real constant
followed by an exponent part, or an integer constant followed by an
exponent part. For example:

 +1.000E-2 1.E-2 1E-2
 +0.01 100.0E-4 .0001E+2

all represent the same real number, 1/100.

7.4 THE LOGICAL TYPE
The logical data type consists of the two logical values true and
false. A logical variable occupies one word, two bytes, of storage.

There are only two logical constants, .TRUE. and .FALSE., representing
the two corresponding logical values. The internal representation of
.FALSE. is a word of all zeros, and the representation of .TRUE. is a
word of all zeros except a one in the least significant bit. If a
logical variable contains any other bit values, its logical meaning is
undefined.

7.5 THE CHARACTER TYPE
The character data type consists of a sequence of ASCII characters.
The length of a character value is equal to the number of characters
in the sequence. The length of a particular constant or variable is
fixed, and must be between 1 and 255 characters. A character variable
occupies one word of storage for each two characters in the sequence,
plus one word if the length is odd. Character variables are always
aligned on word boundaries. The blank character is allowed in a
character value and is significant.

A character constant consists of a sequence of one or more characters
enclosed by a pair of apostrophes. Blank characters are allowed in
character constants, and count as one character each. An apostrophe
(or single quote) within a character constant is represented by two
consecutive apostrophes with no blanks in between. The length of a
character constant is equal to the number of characters between the
apostrophes, with doubled apostrophes counting as a single apostrophe
character. Some sample character constants are:

 'A' ' ' 'Help!' 'A very long CHARACTER constant' ''''

Note the last example, '''', represents a single apostrophe, '.

FORTRAN allows source lines with up to 72 columns. Shorter lines are
not padded out to 72 columns, but left as input. When a character
constant extends across a line boundary, its value is as if the
portion of the continuation line beginning with column 7 is juxtaposed
immediately after the last character on the initial line. Thus, the
FORTRAN source:

 200 CH = 'ABC<cr>
 X DEF'

where <cr> indicates a carriage return, or the end of the source
line is equivalent to:

 200 CH = 'ABC DEF'

with the single space between the C and D being the equivalent to the
space in column 7 of the continuation line. Very long character
constants can be represented in this manner.

8 FORTRAN STATEMENTS
8.1 INTRODUCTION
This chapter describes specification statements, DATA statements, and
assignment statements in Apple FORTRAN. The rules for forming FORTRAN
names and the scope of names are included in this chapter also.

8.2 FORTRAN NAMES
A FORTRAN name, or identifier, consists of an initial alphabetic
character followed by a sequence of 0 through 5 alphanumeric
characters. Blanks may appear within a FORTRAN name, but have no
significance. A name is used to denote a user or system defined
variable, array, function, subroutine, and so forth. Any valid
sequence of characters may be used for any FORTRAN name. There are no
reserved names as in other languages. Sequences of alphabetic
characters used as keywords are not to be confused with FORTRAN names.
The compiler recognizes keywords by their context and in no way
restricts the use of user chosen names. Thus, a program can have, for
example, an array named IF, READ, or GOTO, with no error indicated by
the compiler, as long as it conforms to the rules that all arrays must
obey.

8.2.1 SCOPE OF FORTRAN NAMES

The scope of a name is the range of statements in which that name is
known or can be referenced within a FORTRAN program. In general, the
scope of a name is either GLOBAL or LOCAL, although there are several
exceptions. A name can only be used in accordance with a single
definition within its scope. The same name, however, can have
different definitions in distinct scopes.

A name with global scope may be used in more than one program unit, a
subroutine, function, or the main program, and still refer to the same
entity. In fact, names with global scope can only be used in a single,
consistent manner within a program. All subroutine, function
subprogram, and common names, as well as the program name, have global
scope. Therefore, there cannot be a function subprogram that has the
same name as a subroutine subprogram or a common data area. Similarly,
no two function subprograms in the same program can have the same
name.

A name with local scope is only defined within a single program unit.
A name with a local scope can be used in another program unit with a
different or similar meaning, but is in no way required to have a
similar meaning in a different scope. The names of variables, arrays,
parameters, and statement functions all have local scope. A name with

a local scope can be used in the same compilation as another item with
the same name but a global scope as long as the global name is not
referenced within the program unit containing the local name. Thus, a
function can be named FOO, and a local variable in another program
unit can be named FOO without error, as long as the program unit
containing the variable FOO does not call the function FOO. The
compiler detects all scope errors, and issues an error message should
they occur, so the user need not worry about undetected scope errors
causing bugs in programs.

One exception to the scoping rules is the name given to common data
blocks. It is possible to refer to a globally scoped common name in
the same program unit that an identical locally scoped name appears.
This is allowed because common names are always enclosed in slashes,
such as /NAME/, and are therefore always distinguishable from ordinary
names by the compiler.

Another exception to the scoping rules is made for parameters to
statement functions. The scope of statement function parameters is
limited to the single statement forming that statement function. Any
other use of those names within that statement function is not
allowed, and any other use outside that statement function is allowed.

8.2.2 UNDECLARED NAMES

When a user name that has not appeared before is encountered in an
executable statement, the compiler infers from the context of its use
how to classify that name. If the name is used in the context of a
variable, the compiler creates an entry into the symbol table for a
variable of that name. Its type is inferred from the first letter of
its name. Normally, variables beginning with the letters I, J, K, L,
M, or N are considered integers, while all others are considered
reals, although these defaults can be overridden by an IMPLICIT
statement. If an undeclared name is used in the context of a function
call, a symbol table entry is created for a function of that name,
with its type being inferred in the same manner as that of a variable.
Similarly, a subroutine entry is created for a newly encountered name
that is used as the target of a CALL statement. If an entry for such a
subroutine or function name exists in the global symbol table, its
attributes are coordinated with those of the newly created symbol
table entry. If any inconsistencies are detected, such as a previously
defined subroutine name being used as a function name, an error
message is issued.

In general, one is encouraged to declare all names used within a
program unit, since it helps to assure that the compiler associates
the proper definition with that name. Allowing the compiler to use a
default meaning can sometimes result in logical errors that are quite
difficult to locate.

8.3 SPECIFICATION STATEMENTS
This section describes the specification statements in Apple FORTRAN.
Specification statements are non-executable. They are used to define
the attributes of user defined variable, array, and function names.
There are eight kinds of specification statements: These are the
IMPLICIT, DIMENSION, type, COMMON, EXTERNAL, INTRINSIC, SAVE, and
EQUIVALENCE statements.

Specification statements must precede all executable statements in a
program unit. If present, any IMPLICIT statements must precede all
other specification statements in a program unit as well. The
specification statements may appear in any order within their own
group.

8.3.1 IMPLICIT STATEMENT

An IMPLICIT statement is used to define the default type for user
declared names. The form of an IMPLICIT statement is:

 IMPLICIT type (a [,a]...) [,type (a [,a]...)]...

where: type is one of INTEGER, LOGICAL, REAL, or CHARACTER[*nnn]

 a is either a single letter or a range of letters. A
 range of letters is indicated by the first and last
 letters in the range separated by a minus sign. For
 a range, the letters must be in alphabetic order.

 nnn is the size of the character type that is to be
 associated with that letter or letters. It must be
 an unsigned integer in the range 1 to 255. If *nnn
 is not specified, it is assumed to be *1.

The following are examples of IMPLICIT statements:

 IMPLICIT INTEGER (I-N)

 IMPLICIT INTEGER (I-Z),REAL(A-G)

 IMPLICIT CHARACTER*100(H)

An IMPLICIT statement defines the type and size for all user defined
names that begin with the letter or letters that appear in the
specification. An IMPLICIT statement applies only to the program unit
in which it appears. IMPLICIT statements do not change the type of any
intrinsic functions.

Implicit types can be overridden or confirmed for any specific user
name by the appearance of that name in a subsequent type statement. An

explicit type in a FUNCTION statement also takes priority over an
IMPLICIT statement. If the type in question is a character type, the
user name's length is also overridden by a later type definition.

The program unit can have more than one IMPLICIT statement, but all
implicit statements must precede all other specification statements in
that program unit. The same letter cannot be defined more than once in
an IMPLICIT statement in the same program unit.

8.3.2 DIMENSION STATEMENT

A DIMENSION statement is used to specify that a user name is an
array. The form of a DIMENSION statement is:

 DIMENSION var(dim) [,var(dim)]...

where: var(dim) is an array declarator of the form:

 var is the user defined name of the array.

 dim is a dimension declarator.

The following are examples of the DIMENSION statement:

 DIMENSION A(100,2),B3(10,4)

 DIMENSION ARRAY(10)

 DIMENSION MATRIX(16,10)

 DIMENSION MAXDIM(4,4,5)

The number of dimensions in the array is the number of dimension
declarators in the array declarator. The maximum number of dimensions
is three. A dimension declarator can be one of three forms:

* An unsigned integer constant.

* A user name corresponding to a non array integer formal argument.

* An asterisk.

A dimension declarator specifies the upper limit of the dimension. The
lower limit is always one. If a dimension declarator is an integer
constant, then the array has the corresponding number of elements in
that dimension. An array has a constant size if all of its dimensions
are specified by integer constants. If a dimension declarator is an
integer argument, then that dimension is defined to be of a size equal
to the initial value of the integer argument upon entry to the
subprogram unit at execution time. In such a case the array is called

an adjustable sized array.

If the dimension declarator is an asterisk, the array is an assumed
sized array and the upper bound of that dimension is not specified.
The following program is an example of an asterisk array dimension:

 PROGRAM ARR
 DIMENSION RLARR1(10),RLARR2(20)
 C TWO ARRAYS OF DIFFERENT SIZE TO PASS TO SUBARR BELOW.
 RLARR1(1)=1.0
 RLARR2(1)=3.14159
 C TWO DUMMY VALUES TO BE CLOBBERED BY SUBARR
 CALL SUBARR(RLARR1)
 CALL SUBARR(RLARR2)
 C TWO CALLS OF SUBARR WITH DIFFERENT SIZE ARRAYS
 WRITE(*,100) RLARR1(1), RLARR2(1)
 100 FORMAT(2F8.4)
 END
 SUBROUTINE SUBARR(R)
 DIMENSION R(*)
 C WHEN AN ACTUAL ARGUMENT IS PASSED TO SUBARR AS R, IT MAY HAVE
 C ANY NUMBER OF ELEMENTS.
 R(1)=2.0
 C CLOBBER THE FIRST ELEMENT OF R
 END

All adjustable and assumed sized arrays must also be formal arguments
to the program unit in which they appear. Additionally, an assumed
size dimension declarator may only appear as the last dimension in an
array declarator.

The order of array elements in memory is column-major order. That is,
the left most subscript changes most rapidly in a memory sequential
reference to all array elements. Note that this is the opposite of
Pascal which has row-major order.

The form of an array element name is:

 arr(sub [,sub]...)

where: arr is the name of an array.

 sub is a subscript expression.

A subscript expression is an integer expression used in selecting a
specific element of an array. The number of subscript expressions must
match the number of dimensions in the array declarator. The value of a
subscript expression must be between 1 and the upper bound for the
dimension it represents.

The following is an example of an array element name:

 MATRIX(2,3) referring to column 3, row 2

8.3.3 TYPE STATEMENT

Type statements are used to specify the type of user defined names. A
type statement may confirm or override the implicit type of a name.
Type statements may also specify dimension information.

A user name for a variable, array, external function, or statement
function may appear in a type statement. Such an appearance defines
the type of that name for the entire program unit. Within a program
unit, a name may not have its type explicitly specified by a type
statement more than once. A type statement may confirm the type of an
intrinsic function, but is not required. The name of a subroutine or
main program cannot appear in a type statement.

The form of an INTEGER, REAL, or LOGICAL type statement is:

 type var [,var]...

where: type is INTEGER, REAL, or LOGICAL.

 var is a variable name, array name, function name, or an
 array declarator.

The following are examples of the TYPE statement:

 INTEGER MATRIX Does not include Dimension information

 INTEGER MATRIX(16,10) Includes Dimension information

 REAL A Declares that A holds a REAL value

The form of a CHARACTER type statement is:

 CHARACTER [*nnn [,]] var [*nnn] [, var [*nnn]]...

where: var is a variable name, array name, or an array declarator.

 nnn is the length in number of characters of a character
 variable or character array element. It must be an
 unsigned integer in the range 1 to 255.

The following are examples of CHARACTER type statements:

 CHARACTER*100,A A holds up to 100 characters

 CHARACTER*50,STRING Variable name STRING can hold up to
 50 characters

The length nnn following the type name CHARACTER is the default length
for any name not having its own length specified. If not present, the
default length is assumed to be one. A length immediately following a
variable or array overrides the default length for that item only. For
an array the length specifies the length of each element of that
array.

8.3.4 COMMON STATEMENT

The COMMON statement provides a method of sharing storage between two
or more program units. Such program units can share the same data
without passing it as arguments. The form of the COMMON statement is:

 COMMON [/ [cname] /] nlist [[,] / [cname] / nlist]...

where: cname is the name of the Named COMMON block. If a cname is
 omitted, then the Blank COMMON block is specified.

 nlist is a list of variable names, array names, and array
 declarators separated by commas. Formal argument
 names and function names cannot appear in a COMMON
 statement.

The following is an example of the COMMON statement:

 COMMON/SHARE/MATRIX,ARRAY,A Block SHARE can refer to the
 variable names MATRIX, ARRAY,
 and A.

In the COMMON statement, all variables and arrays appearing in each
nlist following a COMMON block cname are declared to be in that COMMON
block. If the first cname is omitted, all elements appearing in the
first nlist are specified to be in the blank COMMON block.

Any COMMON block name can appear more than once in COMMON statements
in the same program unit. All elements in all nlists for the same
COMMON block are allocated storage sequentially in that COMMON storage
area in the order that they appear.

All elements in a single COMMON area must be either all of type
CHARACTER or none of type character. Furthermore, if two program units
reference the same named COMMON containing character data, association
of character variables of different length is not allowed. Two
variables are said to be associated if they refer to the same actual
storage.

The size of a COMMON block is equal to the number of bytes of storage
required to hold all elements in that COMMON block. If the same named
COMMON block is referenced by several distinct program units, the size

must be the same in all program units.

NOTE
If Named COMMON blocks are used, you will have to link before you
can run your program. See chapter 5 for that procedure.

8.3.5 EXTERNAL STATEMENT

An EXTERNAL statement is used to identify a user defined name as an
external subroutine or function. The form of an EXTERNAL statement
is:

 EXTERNAL name [,name]...

where: name is the name of an external subroutine of function.

Appearance of a name in an EXTERNAL statement declares that name to be
an external procedure. Statement function names cannot appear in an
EXTERNAL statement. If an intrinsic function name appears in an
EXTERNAL statement, then that name becomes the name of an external
procedure, and the corresponding intrinsic function can no longer be
called from that program unit. A user name can only appear once in an
EXTERNAL statement.

8.3.6 INTRINSIC STATEMENT

An INTRINSIC statement is used to declare that a user name is an
intrinsic function. The form of an INTRINSIC statement is:

 INTRINSIC name [,name]...

where: name is an intrinsic function name.

Each user name may only appear once in an INTRINSIC statement. If a
name appears in an INTRINSIC statement, it cannot appear in an
EXTERNAL statement. All names used in an INTRINSIC statement must be
system-defined INTRINSIC functions. For a list of these functions, see
Table 2 in Appendix C. Note that the use of the INTRINSIC statement is
optional. The INTRINSIC function can be used without the INTRINSIC
statement.

8.3.7 SAVE STATEMENT

A SAVE statement is used to retain the definition of a COMMON block
after the return from a procedure that defines that COMMON block.
Within a subroutine or function, a COMMON block that has been
specified in a SAVE statement does not become undefined upon exit from
the subroutine or function. The form of a SAVE statement is:

 SAVE /name/ [,/name/]...

where: name is the name of a COMMON block.

Note: In Apple FORTRAN, all COMMON blocks are statically allocated, so
the SAVE statement has no effect and is not normally used.

8.3.8 EQUIVALENCE STATEMENT

An EQUIVALENCE statement is used to specify that two or more variables
or arrays are to share the same storage. If the shared variables are
of different types, the EQUIVALENCE does not cause any kind of
automatic type conversion. The form of an EQUIVALENCE statement is:

 EQUIVALENCE (nlist) [, (nlist)]...

where: nlist is a list of at least two variable names, array names, or
array element names separated by commas.

Argument names may not appear in an EQUIVALENCE statement. Subscripts
must be integer constants and must be within the bounds of the array
they index.

An EQUIVALENCE statement specifies that the storage sequences of the
elements that appear in the nlist have the same first storage
location. Two or more variables are said to be associated if they
refer to the same actual storage. Thus, an EQUIVALENCE statement
causes its list of variables to become associated. An element of type
character can only be associated with another element of type
character with the same length. If an array name appears in an
EQUIVALENCE statement, it refers to the first element of the array.

An EQUIVALENCE statement cannot specify that the same storage location
is to appear more than once, such as:

 REAL R,S(10)
 EQUIVALENCE (R,S(1)),(R,S(5))

which forces the variable R to appear in two distinct memory locations.

Furthermore, an EQUIVALENCE statement cannot specify that consecutive
array elements are not stored in sequential order. For example:

 REAL R(10),S(10)
 EQUIVALENCE (R(1),S(1)),(R(5),S(6))

is not allowed.

When EQUIVALENCE statements and COMMON statements are used together,
several further restrictions apply. An EQUIVALENCE statement cannot
cause storage in two different COMMON blocks to become equivalenced.

An EQUIVALENCE statement can extend a COMMON block by adding storage
elements following the COMMON block, but not preceding the COMMON
block. For example:

 COMMON /ABCDE/ R(10)
 REAL S(10)
 EQUIVALENCE (R(1),S(10))

is not allowed because it extends the COMMON block by adding storage
preceding the start of the block.

8.4 DATA STATEMENTS
The DATA statement is used to assign initial values to variables. A
DATA statement is a non-executable statement. If present, it must
appear after all specification statements and prior to any statement
function statements or executable statements. The form of a DATA
statement is:

 DATA nlist / clist / [[,] nlist / clist /]...

where: nlist is a list of variable, array element, or array names.

 clist is a list of constants or constants preceded by an
 integer constant repeat factor and an asterisk,
 such as:

 5*3.14159 3*'Help' 100*0

 A repeat factor followed by a constant is the
 equivalent of the value of the constant repeated
 a number of times that is equal to the repeat
 constant.

There must be the same number of values in each clist as there are
variables or array elements in the corresponding nlist. The appearance
of an array in an nlist is the equivalent to a list of all elements in
that array in storage sequence order. Array elements must be indexed
only by constant subscripts.

The type of each non-character element in a clist must be the same as
the type of the corresponding variable or array element in the
accompanying nlist. Each character element in a clist must correspond
to a character variable or array element in the nlist, and must have a
length that is less than or equal to the length of that variable or
array element. If the length of the constant is shorter, it is
extended to the length of the variable by adding blank characters to
the right. Note that a single character constant cannot be used to
define more than one variable or even more than one array element.

Only local variables and array elements can appear in a DATA
statement. Formal arguments, variables in COMMON, and function names
cannot be assigned initial values with a DATA statement.

The following are examples of the DATA statement:

 DATA X,Y,Z,A,C/1.0,3.8,4.5,6.7,1.9/

 DATA MATRIX/1.5,2.0,2.5,3.0,10.5,3.2/

Note in the second example that the array called MATRIX must have 6
elements, one for each DATA constant.

8.5 ASSIGNMENT STATEMENTS
An assignment statement is used to assign a value to a variable or an
array element. There are two kinds of assignment statements,
computational assignment statements and label assignment statements.

8.5.1 COMPUTATIONAL ASSIGNMENT STATEMENT

The form of a computational assignment statement is:

 var = expr

where: var is a variable or array element name.

 expr is an expression.

Execution of a computational assignment statement evaluates the
expression and assigns the resulting value to the variable or array
element appearing on the left. The type of the variable or array
element and the expression must be compatible. They must both be
either numeric, logical, or character, in which case the assignment
statement is called an arithmetic, logical, or character assignment
statement.

If the types of the elements of an arithmetic assignment statement are
not identical, automatic conversion of the value of the expression to
the type of the variable is done. The following table gives the
conversion rules:

 +-----------------+--------------------------------------+
 | Type of | Type of expression |
 | variable or +-------------------+------------------+
 | array element | integer | real |
 +-----------------+-------------------+------------------+
 | integer | expr | INT(expr) |
 +-----------------+-------------------+------------------+
 | real | REAL(expr) | expr |

 +-----------------+-------------------+------------------+

 Table of Type Conversions for Arithmetic Assignment Statements

If the length of the expression does not match the size of the
variable in a character assignment statement, it is adjusted so that
it does. If the expression is shorter, it is padded with enough blanks
on the right to make the sizes equal before the assignment takes
place. If the expression is longer, characters on the right are
truncated to make the sizes the same.

8.5.2 LABEL ASSIGNMENT STATEMENT

The label assignment statement is used to assign the value of a format
or statement label to an integer variable. The form of the statement
is:

 ASSIGN label TO var

where: label is a format label or statement label.

 var is an integer variable.

Execution of an ASSIGN statement sets the integer variable to the
value of the label. The label can be either a format label or a
statement label, and it must appear in the same program unit as the
ASSIGN statement. When used in an assigned GOTO statement, a variable
must currently have the value of a statement label. When used as a
format specifier in an I/O statement, a variable must have the value
of a format statement label. The ASSIGN statement is the only way to
assign the value of a label to a variable.

9 EXPRESSIONS
9.1 INTRODUCTION
This chapter describes the four classes of expressions found in the
FORTRAN language. They are the arithmetic, the character, the
relational, and the logical expression. Note that any variable, array
element, or function referenced in an expression must be defined at
the time of the reference. Integer variables must be defined with an
arithmetic value, rather than a statement label value as set by an
ASSIGN statement.

9.2 ARITHMETIC EXPRESSIONS
An arithmetic expression produces a value which is either of type

integer or type real. The simplest forms of arithmetic expressions
are:

* Unsigned integer or real constant.

* Integer or real variable reference.

* Integer or real array element reference.

* Integer or real function reference.

The value of a variable reference or array element reference must be
defined for it to appear in an arithmetic expression. Moreover, the
value of an integer variable must be defined with an arithmetic value,
rather than a statement label value previously set in an ASSIGN
statement.

Other arithmetic expressions are built up from the above simple forms
using parentheses and these arithmetic operators:

 +-----------------+-----------------------------------+------------
+
 | Operator | Representing Operation | Precedence
|
 +-----------------+-----------------------------------+------------
+
 | ** | Exponentiation | Highest
|
 +-----------------+-----------------------------------+------------
+
 | / | Division |
|
 +-----------------+-----------------------------------+Intermediate
|
 | * | Multiplication |
|
 +-----------------+-----------------------------------+------------
+
 | - | Subtraction or Negation |
|
 +-----------------+-----------------------------------+ Lowest
|
 | + | Addition or Identity |
|
 +-----------------+-----------------------------------+------------
+

 Table of Arithmetic Operators.

All of the operators are binary operators appearing between their
arithmetic expression operands. The + and - may also be unary,

preceding their operand. Operations of equal precedence are left
associative except exponentiation which is right associative. Thus,
A / B * C is the same as (A / B) * C and A ** B ** C is the same as
A ** (B ** C). Arithmetic expressions can be formed in the usual
mathematical sense, as in most programming languages, except that
FORTRAN prohibits two operators from appearing consecutively. Thus,
A ** -B is prohibited, although A ** (-B) is permissible. Parenthesis
may be used in a program to control the order of operator evaluation
in an expression.

Certain arithmetic operations are illegal, since they are not
mathematically meaningful; such as dividing by zero. Other prohibited
operations are raising a zero-valued operand to a zero or negative
power and raising a negative-valued operand to a power of type real.

9.2.1 INTEGER DIVISION

The division of two integers results in a value which is the
mathematical quotient of the two values, rounded toward 0. Thus,
7 / 3 evaluates to 2, (-7) / 3 evaluates to -2, 9 / 10 evaluates to 0
and 9 / (-10) evaluates to 0.

9.2.2 TYPE CONVERSIONS AND RESULT TYPES

Arithmetic expressions may involve operations between operands which
are of different types. The general rules for determining type
conversions and the result type for an arithmetic expression are:

* An operation between two integers results in an expression of type
 integer.

* An operation between two reals results in an expression of type
 real.

* For any operator except **, an operation between a real and an
 integer converts the integer to type real and performs the operation,
 resulting in an expression of type real.

* For the operator **, a real raised to an integer power is computed
 without conversion of the integer, and results in an expression of
 type real. An integer raised to a real power is converted to type rea
l
 and the operation results in an expression of type real. Note that fo
r
 integer I and negative integer J, I ** J is the same as
 1 / (I ** IABS(J)) which is subject to the rules of integer division.
 For example, 2 ** (-4) is 1 / 16 which is 0.

* Unary operators result in the same result type as their operand
 type.

The type which results from the evaluation of an arithmetic operator
is not dependent on the context in which the operation is specified.
For example, evaluation of an integer plus a real results in a real
even if the value obtained is to be immediately assigned into an
integer variable.

9.3 CHARACTER EXPRESSIONS
A character expression produces a value which is of type character.
The forms of character expressions are:

* Character constant.

* Character variable reference.

* Character array element reference.

* Any character expression enclosed in parenthesis.

There are no operators which result in character expressions.

9.4 RELATIONAL EXPRESSIONS
Relational expressions are used to compare the values of two
arithmetic expressions or two character expressions. It is not legal
in Apple FORTRAN to compare an arithmetic value with a character
value. The result of a relational expression is of type logical.

Relational expressions may use any of these operators to compare
values:

 +-----------------+-----------------------------------+
 | Operator | Representing Operation |
 +-----------------+-----------------------------------+
 | .LT. | Less than |
 +-----------------+-----------------------------------+
 | .LE. | Less than or equal to |
 +-----------------+-----------------------------------+
 | .EQ. | Equal to |
 +-----------------+-----------------------------------+
 | .NE. | Not equal to |
 +-----------------+-----------------------------------+
 | .GT. | Greater than |
 +-----------------+-----------------------------------+
 | .GE. | Greater than or equal to |
 +-----------------+-----------------------------------+

 Table of Relational Operators.

All of the operators are binary operators, appearing between their
operands. There is no relative precedence or associativity among the
relational operands since an expression of the form A .LT. B .NE. C
violates the type rules for operands. Relational expressions may
only appear within logical expressions.

Relational expressions with arithmetic operands may have an operand of
type integer and one of type real. In this case, the integer operand
is converted to type real before the relational expression is
evaluated.

Relational expressions with character operands compare the position of
their operands in the ASCII collating sequence. An operand is less
than another if it appears earlier in the collating sequence, etc. If
operands of unequal length are compared, the shorter operand is
considered as if it were blank extended to the length of the longer
operand.

9.5 LOGICAL EXPRESSIONS
A logical expression produces a value which is of type logical. The
simplest forms of logical expressions are:

* Logical constant.

* Logical variable reference.

* Logical array element reference.

* Logical function reference.

* Relational expression.

Other logical expressions are built up from the above simple forms
using parenthesis and these logical operators:

 +-----------------+-----------------------------------+------------
+
 | Operator | Representing Operation | Precedence
|
 +-----------------+-----------------------------------+------------
+
 | .NOT. | Negation | Highest
|
 +-----------------+-----------------------------------+------------
+
 | .AND. | Conjunction |
|
 +-----------------+-----------------------------------+------------

+
 | .OR. | Inclusive disjunction | Lowest
|
 +-----------------+-----------------------------------+------------
+

 Table of Logical Operators.

The .AND. and .OR. operators are binary operators, appearing between
their logical expression operands. The .NOT. operator is unary,
preceding its operand. Operations of equal precedence are left
associative. For example, A .AND. B .AND. C is equivalent to (A .AND.
B) .AND. C. As an example of the precedence rules, .NOT. A .OR. B
.AND. C is interpreted the same as (.NOT. A) .OR. (B .AND. C). It is
not permitted to have two .NOT. operators adjacent to each other,
although A .AND. .NOT. B is an example of an allowable expression with
two operators being adjacent.

The meaning of the logical operators is their standard mathematical
semantics, with .OR. being nonexclusive, that is .TRUE. .OR. .TRUE.
evaluates to the value .TRUE..

9.6 OPERATOR PRECEDENCE
When arithmetic, relational, and logical operators appear in the same
expression, their relative precedences are:

 +-----------------+------------+
 | Operator | Precedence |
 +-----------------+------------+
 | Arithmetic | Highest |
 +-----------------+------------+
 | Relational | |
 +-----------------+------------+
 | Logical | Lowest |
 +-----------------+------------+

 Table of Operator Precedence.

All of the operators are binary operators appearing between their
arithmetic expression operands. The + and - may also be unary,
preceding their operand. Operations of equal precedence are left
associative except exponentiation which is right associative. Thus,
A / B * C is the same as (A / B) * C and A ** B ** C is the same as
A ** (B ** C). Arithmetic expressions can be formed in the usual
mathematical sense, as in most programming languages, except that
FORTRAN prohibits two operators from appearing consecutively. Thus,
A ** -B is prohibited, although A ** (-B) is permissible. Parenthesis
may be used in a program to control the order of operator evaluation
in an expression.

Certain arithmetic operations are illegal, since they are not
mathematically meaningful; such as dividing by zero. Other prohibited
operations are raising a zero-valued operand to a zero or negative
power and raising a negative-valued operand to a power of type real.

9.6.1 INTEGER DIVISION

The division of two integers results in a value which is the
mathematical quotient of the two values, rounded toward 0. Thus,
7 / 3 evaluates to 2, (-7) / 3 evaluates to -2, 9 / 10 evaluates to 0
and 9 / (-10) evaluates to 0.

9.6.2 TYPE CONVERSIONS AND RESULT TYPES

Arithmetic expressions may involve operations between operands which
are of different types. The general rules for determining type
conversions and the result type for an arithmetic expression are:

* An operation between two integers results in an expression of type
 integer.

* An operation between two reals results in an expression of type
 real.

* For any operator except **, an operation between a real and an
 integer converts the integer to type real and performs the operation,
 resulting in an expression of type real.

* For the operator **, a real raised to an integer power is computed
 without conversion of the integer, and results in an expression of
 type real. An integer raised to a real power is converted to type rea
l
 and the operation results in an expression of type real. Note that fo
r
 integer I and negative integer J, I ** J is the same as
 1 / (I ** IABS(J)) which is subject to the rules of integer division.
 For example, 2 ** (-4) is 1 / 16 which is 0.

* Unary operators result in the same result type as their operand
 type.

The type which results from the evaluation of an arithmetic operator
is not dependent on the context in which the operation is specified.
For example, evaluation of an integer plus a real results in a real

10 CONTROL STATEMENTS

10.1 INTRODUCTION
Control statements are used to control the order of execution of
statements in a FORTRAN program. This chapter describes the control
statements UNCONDITIONAL GOTO, COMPUTED GOTO, ASSIGNED GOTO,
ARITHMETIC IF, LOGICAL IF, BLOCK IF...THEN...ELSE, BLOCK IF, ELSEIF,
ELSE, ENDIF, DO, CONTINUE, STOP, PAUSE, and END.

The two remaining statements which control the order of execution of
statements are the CALL statement and the RETURN statement, both of
which are described in Chapter 13.

10.2 UNCONDITIONAL GOTO
The format for an unconditional GOTO statement is:

 GOTO s

where s is a statement label number of an executable statement that is
found in the same program unit as the GOTO statement. The effect of
executing a GOTO statement is that the next statement executed is the
statement labeled s. You are not allowed to GOTO into a DO, IF,
ELSEIF, or ELSE block from outside the block.

10.3 COMPUTED GOTO
The format for a computed GOTO statement is:

 GOTO (s [, s] ...) [,] i

where i is an integer expression and each s is a statement label of an
executable statement that is found in the same program unit as the
computed GOTO statement. The same statement label may appear
repeatedly in the list of labels. The effect of the computed GOTO
statement can be explained as follows: Suppose that there are n labels
in the list of labels. If i < 1 or i > n then the computed GOTO
statement acts as if it were a CONTINUE statement, otherwise, the next
statement executed will be the statement labeled by the ith label in
the list of labels. It is illegal to jump into a DO, IF, ELSEIF, or
ELSE block from outside the block.

Here is an example:

 GOTO(1,2,3,4)X

If X=2, the program will branch to the line labeled 2 since 2 happens
to be the second, or Xth, label in the s list.

10.4 ASSIGNED GOTO
The format for an assigned GOTO statement is:

 GOTO i [[,] (s [, s] ...)]

where i is an integer variable name and each s is a statement label of
an executable statement that is found in the same program unit as the
assigned GOTO statement. The same statement label may appear
repeatedly in the list of labels. When the assigned GOTO statement is
executed, i must have been assigned the label of an executable
statement that is found in the same program unit as the assigned GOTO
statement. The effect of the statement is that the next statement
executed will be the statement labeled by the label last assigned to
i. If the optional list of labels is present, a runtime error is
generated if the label last assigned to i is not among those listed.
It is illegal to jump into a DO, IF, ELSEIF, or ELSE block from
outside the block.

Example:

 GOTO TARGET

If TARGET, which is a variable name in this example, = 100, the
statement causes a branch to the statement with the label 100.

10.5 ARITHMETIC IF
The format for an arithmetic IF statement is:

 IF (e) s1, s2, s3

where e is an integer or real expression and each of s1, s2, and s3
are statement labels of executable statements found in the same
program unit as the arithmetic IF statement. The same statement label
may appear more than once among the three labels. The effect of the
statement is to evaluate the expression and then select a label based
on the value of the expression. Label s1 is selected if the value of e
is less than 0, s2 is selected if the value of e equals 0, and s3 is
selected if the value of e exceeds 0. The next statement executed will
be the statement labeled by the selected label. It is illegal to jump
into a DO, IF, ELSEIF, or ELSE block from outside the block.

Example:

 IF (I) 100,200,300

If I evaluates to a negative number, the branch will be to the
statement labeled 100. If I is 0, it will be to 200. If I is a

positive number , the branch will be to the statement labeled 300.

10.6 LOGICAL IF
The format for a logical IF statement is:

 IF (e) st

where e is a logical expression and st is any executable statement
except a DO, block IF, ELSEIF, ELSE, ENDIF, END, or another logical IF
statement. The statement causes the logical expression to be evaluated
and, if the value of that expression is true, then the statement, st,
is executed. Should the expression evaluate to false, the statement st
is not executed and the execution sequence continues as if a CONTINUE
statement had been encountered.

10.7 BLOCK IF...THEN...ELSE
The following sections describe the block IF statement and the various
related statements. These statements are new to FORTRAN 77 and can be
used to dramatically improve the readability of FORTRAN programs and
to cut down the number of GOTOs. As an overview of these sections, the
following three code skeletons illustrate the basic concepts:

Skeleton 1 - Simple Block IF which skips a group of statements if the
expression is false:

 IF(I.LT.10)THEN
 .
 . Some statements executed only if I.LT.10
 .
 ENDIF

Skeleton 2 - Block IF with a series of ELSEIF statements:

 IF(J.GT.1000)THEN
 .
 . Some statements executed only if J.GT.1000
 .
 ELSEIF(J.GT.100)THEN
 .
 . Some statements executed only if J.GT.100 and J.LE.1000
 .
 ELSEIF(J.GT.10)THEN
 .
 . Some statements executed only if J.GT.10 and J.LE.1000
 . and J.LE.100
 ELSE

 .
 . Some statements executed only if none of above conditions
 . were true
 ENDIF

Skeleton 3 - Illustrates that the constructs can be nested. (Also, an
ELSE statement can follow a block IF without intervening ELSEIF
statements.) The indentation is solely to enhance readability.

 IF(I.LT.100)THEN
 .
 . Some statements executed only if I.LT.100
 .
 IF(J.LT.10)THEN
 .
 . Some statements executed only if I.LT.100 and J.LT
.10
 .
 ENDIF
 .
 . Some statements executed only if I.LT.100
 .
 ELSEIF(I.LT.1000)THEN
 .
 . Some statements executed only if I.GE.100 and I.LT.1000
 .
 IF(J.LT.10)THEN
 .
 . Some statements executed only if I.GE.100 and I.LT.1
000
 . and J.LT.10
 ENDIF
 .
 . Some statements executed only if I.GE.100 and I.LT.1000
 .
 ENDIF

In order to understand, in detail, the block IF and associated
statements, the concept of an IF-level is necessary. For any
statement, its IF-level is

 n1 - n2

where n1 is the number of block IF statements from the beginning of
the program unit that the statement is in up to and including that
statement, and n2 is is the number of ENDIF statements from the
beginning of the program unit) up to, but not including, that
statement. The IF-level of every statement must be greater than or
equal to 0 and the IF-level of every block IF, ELSEIF, ELSE, and ENDIF

must be greater than 0. Finally, the IF-level of every END statement
must be 0. The IF-level will be used to define the nesting rules for
the block IF and associated statements and to define the extent of IF
blocks, ELSEIF blocks, and ELSE blocks.

10.8 BLOCK IF
The format for a block IF statement is:

 IF (e) THEN

where e is a logical expression. The IF block associated with this
block IF statement consists of all of the executable statements,
possibly none, that appear following this statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF statement that has the same
IF-level as this block IF statement. The IF-level defines the notion
of matching ELSEIF, ELSE, or ENDIF. The effect of executing the block
IF statement is that the expression is evaluated. If it evaluates to
true and there is at least one statement in the IF block, the next
statement executed is the first statement of the IF block. Following
the execution of the last statement in the IF block, the next
statement to be executed will be the next ENDIF statement at the same
IF-level as this block IF statement. If the expression in this block
IF statement evaluates to true and the IF block has no executable
statements, the next statement executed is the next ENDIF statement at
the same IF level as the block IF statement. If the expression
evaluates to false, the next statement executed is the next ELSEIF,
ELSE, or ENDIF statement that has the same IF-level as the block IF
statement. Note that transfer of control into an IF block from outside
that block is not allowed.

10.9 ELSEIF
The format of an ELSEIF statement is:

 ELSEIF (e) THEN

where e is a logical expression. The ELSEIF block associated with an
ELSEIF statement consists of all of the executable statements,
possibly none, that follow the ELSEIF statement up to, but not
including, the next ELSEIF, ELSE, or ENDIF statement that has the same
IF-level as this ELSEIF statement. The execution of an ELSEIF
statement begins by evaluating the expression. If its value is true
and there is at least one statement in the ELSEIF block, the next
statement executed is the first statement of the ELSEIF block.
Following the execution of the last statement in the ELSEIF block, the
next statement to be executed will be the next ENDIF statement at the
same IF-level as this ELSEIF statement. If the expression in this
ELSEIF statement evaluates to true and the ELSEIF block has no

executable statements, the next statement executed is the next ENDIF
statement at the same IF level as the ELSEIF statement. If the
expression evaluates to false, the next statement executed is the next
ELSEIF, ELSE, or ENDIF statement that has the same IF-level as the
ELSEIF statement. Note that transfer of control into an ELSEIF block
from outside that block is not allowed.

10.10 ELSE
The format of an ELSE statement is:

 ELSE

The ELSE block associated with an ELSE statement consists of all of
the executable statements, possibly none, that follow the ELSE
statement up to, but not including, the next ENDIF statement that has
the same IF-level as this ELSE statement. The matching ENDIF statement
must appear before any intervening ELSE or ELSEIF statements of the
same IF-level. There is no effect in executing an ELSE statement. Note
that transfer of control into an ELSE block from outside that block is
not allowed.

10.11 ENDIF
The format of an ENDIF statement is:

 ENDIF

There is no effect in executing an ENDIF statement. An ENDIF statement
is required to match every block IF statement in a program unit in
order to specify which statements are in a particular block IF
statement.

10.12 DO
The format of a DO statement is:

 DO s [,] i=e1, e2 [, e3]

where s is a statement label of an executable statement. The label
must follow this DO statement and be contained in the same program
unit. In the DO statement, i is an integer variable, and e1, e2, and
e3 are integer expressions. The statement labeled by s is called the
terminal statement of the DO loop. It must not be an unconditional
GOTO, assigned GOTO, arithmetic IF, block IF, ELSEIF, ELSE, ENDIF,
RETURN, STOP, END, or DO statement. If the terminal statement is a
logical IF, it may contain any executable statement EXCEPT those not
permitted inside a logical IF statement.

A DO loop is said to have a range, beginning with the statement which
follows the DO statement and ending immediately after the terminal
statement of the DO loop. If a DO statement appears in the range of
another DO loop, its range must be entirely contained within the range
of the enclosing DO loop, although the loops may share a terminal
statement. If a DO statement appears within an IF block, ELSEIF block,
or ELSE block, the range of the associated DO loop must be entirely
contained in the particular block. If a block IF statement appears
within the range of a DO loop, its associated ENDIF statement must
also appear within the range of that DO loop. The DO variable, i, may
not be set by the program within the range of the DO loop associated
with it. It is not allowed to jump into the range of a DO loop from
outside its range.

The execution of a DO statement causes the following steps to happen
in order:

 1. The expressions e1, e2, and e3 are evaluated. If e3 is not
 present, it is as if e3 evaluated to 1; e3 must not evaluate
 to 0.

 2. The DO variable, i, is set to the value of e1.

 3. The iteration count for the loop is computed to be
 MAX0(((e2 - e1 + e3)/e3),0)
 which may be zero (Note: unlike FORTRAN 66) if either

 e1 > e2 and e3 > 0
 or
 e1 < e2 and e3 < 0.

 4. The iteration count is tested, and if it exceeds zero, the
 statements in the range of the DO loop are executed.

Following the execution of the terminal statement of a DO loop, the
following steps occur in order:

 1. The value of the DO variable, i, is incremented by the
 value of e3 which was computed when the DO statement
 was executed.

 2. The iteration count is decremented by one.

 3. The iteration count is tested, and if it exceeds zero, the
 statements in the range of the DO loop are executed again.

The value of the DO variable is well defined regardless of whether the
DO loop exits as a result of the iteration count becoming zero or as a
result of a transfer of control out of the DO loop.

Example of final value of DO variable:

 C This program fragment prints the number 1 to 11 on the CONSOLE:
 DO 200 I=1,10
 200 WRITE(*,'(I5)')I
 WRITE(*,'(I5)')I

10.13 CONTINUE
The format of a CONTINUE statement is:

 CONTINUE

There is no effect associated with execution of a CONTINUE statement.
The primary use for the CONTINUE statement is as a convenient
statement to label, particularly as the terminal statement in a DO
loop.

Here's an example of the CONTINUE statement in action:

C EXAMPLE OF CONTINUE STATEMENT
 DO 200 I=1,10
 WRITE(*,'(I5)')I
200 CONTINUE
 WRITE(*,'(I5)')I
 END

Note that CONTINUE simply acts as the terminator statement for the DO
loop in the routine.

10.14 STOP
The format of a STOP statement is:

 STOP [n]

where n is either a character constant or a string of not more than 5
digits. The effect of executing a STOP statement is to cause the
program to terminate. The argument, n, if present, is displayed on the
CONSOLE: upon termination.

 Example: STOP 'DONE!'

The message DONE! will be displayed on the screen when the program
executes the STOP statement.

10.15 PAUSE
The format of a PAUSE statement is:

 PAUSE [n]

where n is either a character constant or a string of not more than 5
digits. The effect of executing a PAUSE statement is to cause the
program to PAUSE until input is received from the keyboard. Execution
will then continue. The contents of n, if present, are displayed as
part of the prompt requesting input. When input is received, execution
resumes as if a CONTINUE statement had been executed.

10.16 END
The format of an END statement is:

 END

The effect of executing the END statement in a subprogram is the same as
execution of a RETURN statement and the effect in the main program is to
terminate execution of the program. The END statement must appear as
the last statement in every program unit.

11 INPUT/OUTPUT OPERATIONS
11.1 I/O OVERVIEW
Input/output (I/O) statements are all statements that transfer data
between the program and any devices attached to your Apple, such as
disk drives, the Apple's keyboard and screen, a printer, and the
like. Each device to be used as the source or target of I/O is
assigned a unit number. The transfer of data takes place between the
variables in your program and the appropriate device number, both of
which must be properly specified in the I/O statements that indicate
the direction of data transfer. FORMAT statements are used to edit the
form of the data to be transferred.

This chapter discusses the FORTRAN I/O system and statements, and
gives some general considerations that apply to handling files under
the system. The I/O system provided by Apple FORTRAN is a superset of
the ANSI Standard subset FORTRAN 77.

In order to fully understand the I/O statements, it is necessary to be
familiar with a variety of terms and concepts related to the structure
of the FORTRAN I/O system. Most I/O tasks can be accomplished without
a complete understanding of this material and the reader is encouraged
to use this chapter primarily for reference.

11.1.1 RECORDS

The building block of the FORTRAN file system is the Record. A Record
is a sequence of characters or a sequence of values. There are three
kinds of records:

* Formatted
* Unformatted
* Endfile

A formatted record is a sequence of characters terminated by the
character value 13 which corresponds to the RETURN key on the Apple.
Formatted records are interpreted on input in the same way that the
operating system and text editor interpret characters. Thus, reading
characters from formatted records from FORTRAN is identical to other
system programs and other languages on the system.

An unformatted record is a sequence of values, with no system
alteration or interpretation. No physical representation for the end
of record exists. Sequential, unformatted files on block devices do
have a structure. The first word (two bytes) is the record length.
On unblocked devices there is no structure.

The system makes it appear as though an endfile record exists, but no
actual record is there.

It should be noted that FORTRAN numbers records starting from 1, but
Pascal numbers records from 0.

11.1.2 FILES

FORTRAN files are sequences of records. FORTRAN files may be either
internal or external.

An external FORTRAN file is a file on a device or a device itself. An
internal FORTRAN file is a character variable that serves as the
source or destination of some I/O action. From this point on, both
FORTRAN files and the notion of a file (as known to the operating
system and to the editor) will be referred to simply as files, with
the context determining which meaning is intended. The OPEN statement
provides the linkage between the two notions of files and, in most
cases, the ambiguity disappears since after opening a file, the two
notions are one and the same.

A file which is being acted upon by a FORTRAN program has a variety of
properties as described below:

* A file may have a name. If present, a name is a character string
 identical to the pathname by which it is known to SOS (the UCSD file
 name convention is supported).
 There may be more than one name for the same file, such as SYS/A.TEXT
 and .d2/A.TEXT.

* A file has a position property which is usually set by the previous
 I/O operation. There is a notion of the initial point in the file, th
e
 terminal point in the file, the current record, the preceding record,
 and the next record of the file. It is reasonable to be between
 records in a file, in which case the next record is the successor to
 the previous record and there is no current record. The file position
 after sequential writes is at the end of file, but not beyond the
 endfile record. Execution of the ENDFILE statement positions the file
 beyond the endfile record, as does a read statement executed at the
 end of file (but not beyond the endfile record). Reading an endfile
 record may be trapped by the user using the END= option in a READ
 statement. Should the end of file record be detected in this manner,
 the program can then be directed to branch, or other appropriate
 action may be taken.

11.1.3 FORMATTED VS. UNFORMATTED FILES

An external file is opened as either formatted or unformatted. All
internal files are formatted. Files which are formatted consist
entirely of formatted records and files which are unformatted consist
entirely of unformatted records. Files which are formatted obey all
the structural rules of .TEXT files, so that they are fully compatible
with the system editor.

11.1.4 SEQUENTIAL VS. DIRECT ACCESS

An external file is opened as either sequential or direct. Sequential
files contain records with an order property determined by the order
in which the records were written. These files must not be read or
written using the REC= option which specifies a position for direct
access I/O. The system will attempt to extend sequential access files
if a record is written beyond the old terminating boundary of the
file, but the success of this depends on the existence of room on the
physical device at the end of the file.

Direct access files may be read or written in any order (they are
random access files). Records in a direct access file are numbered
sequentially, with the first record numbered one. All records in a
direct access file have the same length, which is specified at the
time the file is opened. Each record in the file is uniquely
identified by its record number, which was specified when the record
was written. It is entirely possible to write the records out of
order, including, for example, writing record 9, 5, and 11 in that
order without the records in between. It is not possible to delete a
record once written, but it is possible to overwrite a record with a
new value.

It is an error to read a record from a direct access file which has

not been written, but the system will not detect this error unless the
record which is being read is beyond the last record written in the
file. Direct access files must reside on blocked peripheral devices
such as disks, so that it is meaningful to specify a position in
the file and reference it. The system will attempt to extend direct
access files if an attempt is made to write to a position beyond the
previous terminating boundary of the file, but the success of this
depends on the existence of room on the physical device.

11.1.5 INTERNAL FILES

Internal files provide a mechanism for using the formatting
capabilities of the I/O system to convert values to and from their
external character representations. That is, reading a character
variable converts the character values into numeric, logical, or
character values and writing into a character variable allows values
to be converted into their external character representation.

An internal file is a character variable or character array element.
The file has exactly one record, which has the same length as the
character variable or character array element. Should less than the
entire record be written by a WRITE statement, the remaining portion
of the record is filled with blanks. The file position is always at
the beginning of the file prior to I/O statement execution. Only
formatted, sequential I/O is permitted to internal files and only the
I/O statements READ and WRITE may specify an internal file.

11.1.6 UNITS

A unit is a means of referring to a file. A unit specified in an I/O
statement may be either an external unit specifier or an internal unit
specifier.

External unit specifiers are either integer expressions which evaluate
to positive values or the character * which stands for the .CONSOLE
device. In most cases, external unit specifier values represent
physical devices or files resident on those devices by name using the
OPEN statement. After the OPEN statement, FORTRAN I/O statements refer
to the unit number instead of the name of the external entity. This
continues until an explicit CLOSE occurs or until the program
terminates. The only exception to the above is that the unit value 0
is initially associated with the .CONSOLE device for reading and
writing and no explicit OPEN is necessary.

11.2 CHOOSING A FILE STRUCTURE
FORTRAN provides a multitude of possible file structures. Choosing
from among these may at first seem somewhat confusing. However, two
kinds of files will suffice for most applications.

* An asterisk (*) which specifies the Apple console: This is a
 sequential, formatted file, also known as unit 0. This particular uni
t
 has the special property that an entire line terminated by the return
 key, must be entered when reading from it, and the various backspace
 and line delete keys familiar to the system user serve their normal
 functions. Note that reading from any other unit will not have these
 properties, even though that unit is bound to the console by an
 explicit OPEN statement.

* Explicitly opened external, sequential, formatted files: These files
 are bound to a system file by name in an OPEN statement. They can be
 read and written in the system text editor format.

Here is an example program which uses the kinds of files discussed in
this chapter for reading and for writing. The various I/O statements
are explained in detail later in this chapter.

 C Copy a file with three columns of integers, each 7 columns wide
 C from a file whose name is input by the user to another file named
 C OUT.TEXT reversing the positions of the first and second column.
 PROGRAM COLSWP
 CHARACTER*23 FNAME
 C Prompt to the .CONSOLE by writing to *
 WRITE(*,900)
 900 FORMAT('Input file name - '$)
 C Read the file name from the .CONSOLE by reading from *
 READ(*,910) FNAME
 910 FORMAT(A)
 C Use unit 3 for input, any unit number except 0 will do
 OPEN(3,FILE=FNAME)
 C Use unit 4 for output, any unit number except 0 and 3 will do
 OPEN(4,FILE='OUT.TEXT',STATUS='NEW')
 C Read and write until end of file
 100 READ(3,920,END=200)I,J,K
 WRITE(4,920)J,I,K
 920 FORMAT(3I7)
 GOTO 100
 200 WRITE(*,910)'Done'
 END

The less commonly used file structures are appropriate for certain
classes of applications. A very general indication of the intended
usages for them follows: If the I/O is to be random access, such as in
maintaining a database, direct access files are probably necessary. If
the data is to be written by FORTRAN and reread by FORTRAN on the same
type of system, unformatted files are more efficient both in file
space and in I/O overhead. The combination of direct and unformatted
is ideal for a database created, maintained, and accessed exclusively
by FORTRAN. If the data must be transferred without any system

interpretation, especially if all 256 possible bytes will be
transferred, unformatted I/O will be necessary, since .TEXT files may
contain only the printable character set as data.

A good example of unformatted I/O would be the control of a device
which has a single byte, binary interface. Formatted I/O would
interpret certain characters, such as the ASCII representation for
carriage return, and fail to pass them through to the program
unaltered. Internal files are not I/O in the conventional sense but
rather provide certain character string operations and conversions.

Use of formatted direct access files requires special caution. FORTRAN
formatted files attempt to comply with the operating system rules for
.TEXT files. The FORTRAN I/O system is able to enforce these rules for
sequential files but it cannot always enforce them for direct access
files. Direct access files are not necessarily legal .TEXT files since
any unwritten record "holes" contain undefined values which do not
follow .TEXT file conventions. Direct files do obey FORTRAN I/O rules.

A file opened in FORTRAN is either old or new. An old file just means
one that already exists, while a new one is being used for the first
time. There is no concept of opened for reading as distinguished from
opened for writing. Therefore, you may open old files and write to
them, with the effect of modifying existing files. Similarly, you may
alternately write and read to the same file, providing that you avoid
reading beyond end of file or trying to read unwritten records in a
direct file. A write to a sequential file effectively deletes any
records which had existed beyond the freshly written record. Normally,
when a device is opened as a file, such as .CONSOLE or .PRINTER, it
makes no difference whether the file is opened as old or new. With
disk files, opening a file with STATUS='NEW' creates a new
temporary file. If that file is closed using the keep option, or if
the program is terminated without doing a CLOSE on that file, a
permanent file is created with the name given when the file was
opened. If a previous file existed with the same name, it is deleted.
If closed using the delete option, the newly created temporary file is
deleted, and any previous file of the same name is left intact.
Opening a disk file as old that does not exist, will generate a
run-time error. Note that within FORTRAN, it is safer to explicitly
CLOSE a file that was OPENed.

11.3 I/O LIMITATIONS
Within the FORTRAN I/O system, there are limitations pertaining to
direct access files, backspacing, and function calls within I/O
statements. These limitations are discussed in this section.

The operating system has two kinds of devices, blocked and sequential.
A sequential file may be thought of as a stream of characters, with no
explicit motion allowed except reading and/or writing. The .CONSOLE

and .PRINTER are examples of sequential devices. Blocked devices, such
as disk files, have the additional operation of seeking a specific
location. They can be accessed either sequentially or randomly and
thus can support direct files. Since there is no notion of seeking a
position on a file which is not blocked, the FORTRAN I/O system does
not allow direct file access to sequential devices.

Sequential devices cannot be backspaced meaningfully under the Apple
Pascal operating system, so the FORTRAN I/O system disallows
backspacing a file on a sequential device.

There is also a limitation on calling functions within an individual
I/O statement. During the course of executing any I/O statement, the
evaluation of an expression may cause a function to be called. That
function call must not cause any I/O statement to be executed.

11.4 I/O STATEMENTS
I/O statements that are available from FORTRAN are as follows: OPEN,
CLOSE, READ, WRITE, BACKSPACE, ENDFILE, and REWIND.

In addition, there is an I/O intrinsic function called EOF that
returns a logical value indicating whether the file associated with
the unit specifier passed to it is at end of file. A familiarity with
the FORTRAN file system, units, records, and access methods as
described in the previous sections is assumed for the purpose of
describing these statements.

The various I/O statements use certain parameters and arguments which
specify sources and destinations of data transfer, as well as other
facets of the I/O operation. The abbreviations for these are used in
the descriptions of the statements and explained below.

The unit specifier, u, can take one of these forms in an I/O
statement:

* An asterisk (*) refers to the .CONSOLE.

* An integer expression refers to external file with unit number equal
 to the value of the expression (* is unit number 0).

* A name of a character variable or character array element refers to
 the internal file which is the character datum.

The format specifier, f, can take one of these forms in an I/O
statement:

* A statement label that refers to the FORMAT statement labeled by
 that label.

* An integer variable name that refers to the FORMAT label which that
 integer variable has been assigned to using the ASSIGN statement.

* A character expression that is specified as the current value of the
 character expression.

The input-output list, or iolist, specifies the entities whose values
are transferred by READ and WRITE statements. An iolist is a comma-
separated list of items which consist of:

* Input or Output entities

* Implied DO lists

An input entity may be specified in the I/0 list of a READ statement
and is of one of these forms:

* Variable name

* Array element name

* Array name which is a means of specifying all of the elements of the
 array in storage sequence order.

An output entity may be specified in the iolist of a WRITE statement
and is of one of these forms:

* Variable name.

* Array element name.

* Array name: This is a means of specifying all of the elements of the
 array in storage sequence order.

* Any other expression not beginning with the character '(' to
 distinguish implied DO lists from expressions.

Implied DO lists may be specified as items in the iolist of READ and
WRITE statements and are of the form:

 (iolist, i = e1, e2 [, e3])

where the iolist is as above, including nested implied DO lists, and
i, e1, e2 and the optional e3 are as defined for the DO statement.
That is, i is an integer variable and e1, e2, and e3 are integer
expressions. In a READ statement, the DO variable i or any associated
entity must not appear as an input list item in the embedded iolist,
but may have been read in the same READ statement outside of the
implied DO list. The embedded iolist is effectively repeated for each
iteration of i with appropriate substitution of values for the DO

variable i.

The following I/O statements are supported in the FORTRAN system. The
possible form for each statement is specified first, with an
explanation of the meanings for the forms following. Certain items are
specified as required if they must appear in the statement and are
specified as optional if they need not appear. The defaults are
indicated for optional items. All punctuation marks, parentheses, and
the like must be entered exactly as shown. Optional parameters and
other items are enclosed in brakets []. Commas within brackets are
required if the bracketed parameters are used. The single quotes
within the brackets are likewise required if the optional parameter is
used. Lower case items in the statement descriptions are explained.

11.4.1 OPEN

OPEN(u[,FILE=fname][,ACCESS=' '][,STATUS=' '][,FORM=' '][,PRINT][,RECL=r
l])

OPEN(u Required, must appear as the first
 argument. Must not be internal unit
 specifier.

 ,FILE=fname The file name, fname, is a character
 expression. If no name is specified,
 the name "UNIT....u" will be used
 where "u" is the unit number. This
 file will be DIRECT and UNFORMATTED
 unless other parameters specify
 differently.

The following arguments are all optional and may appear in any order.
The options are character constants with optional trailing blanks
except RECL=. Defaults are indicated.

 ,STATUS='OLD' or Default, for reading or writing
 existing files.
 'NEW' For writing new files.

 ,ACCESS='SEQUENTIAL' or Default.
 'DIRECT'

 ,FORM='FORMATTED' or Default.
 'UNFORMATED'

 ,PRINT Designates the file named "fname" as a
 "print" file. This argument to OPEN
 preserves the desired effects of the
 print control characters that are locat
ed

 in the first column.

 ,RECL=rl) The record length rl (in bytes) is an
 integer expression. This argument to
 OPEN is for direct access files only,
 for which it is required.

The OPEN statement binds a unit number with an external device or file
on an external device by specifying its file name. If the file is to
be direct, the RECL=rl option specifies the length of the records in
that file.

Note that STATUS='OLD' is the default. To open a new file, you must
specify STATUS='NEW' in the OPEN statement.

If a file is to be written to a printer, the format of the OPEN
statement must be:

OPEN(X,FILE='.PRINTER') where X is an integer.

Example program fragment 1:
 C Prompt user for a file name
 WRITE(*,'(A$)') 'Specify output file name - '
 C Presume that FNAME is specified to be CHARACTER*23
 C Read the file name from the .CONSOLE
 READ(*,'(A)') FNAME
 C Open the file as formatted sequential as unit 7, note that the
 C ACCESS specified need not have appeared since it is the default.
 OPEN(7,FILE=FNAME,ACCESS='SEQUENTIAL',STATUS='NEW');

Example program fragment 2:
 C Open an existing file created by the editor called DATA3.TEXT
 C as unit #3
 OPEN(3,FILE='DATA3.TEXT')

Example program fragment 3:
 C Open a new "print" file named "XXX" as unit #6
 OPEN(6,FILE='XXX',PRINT,STATUS='NEW')

The ",PRINT" option designates an output file as a "print" file so that
the first character in each record is replaced by a print control
character or a blank character. As a result the program can write a
"print" file to a disk and later transfer the disk file to a printer
with all the print control in effect.

FORTRAN reserves the first column in a line for printer control. The
printer control characters are also called "carriage control"
characters because they effect vertical spacing. The characters are
not printed and have the following effects:

 Character Vertical Spacing Before Printing the Line

 blank advance one line

 0 advance two lines

 1 advance to first line of next page

 + no advance

11.4.2 CLOSE

CLOSE(u[,STATUS=' '])

CLOSE(u Required. Must appear as the first
 argument. Must not be internal unit
 specifier.

 ,STATUS='KEEP') Optional argument which applies only
 ,STATUS='DELETE') to files opened NEW, default is KEEP.
 The option is character constant.

CLOSE disconnects the unit specified and prevents subsequent I/O from
being directed to that unit unless the same unit number is reopened,
possibly bound to a different file or device. Files opened NEW are
temporaries and discarded if STATUS='DELETE' is specified. Normal
termination of a FORTRAN program automatically closes all open files
as if CLOSE with STATUS='KEEP' had been specified. It is generally
safer, however, to explicitly CLOSE all files.

Example program fragment:

 C Close the file opened in OPEN example, discarding the file
 CLOSE(7,STATUS='DELETE')

11.4.3 READ

READ(u[,f][,REC=rn][,END=s])iolist

READ(u Required, must be first argument.

 ,f Required for formatted read as second
 argument, must not appear for
 unformatted read.

 ,REC=rn For direct access only, otherwise error.
 Positions to record number rn, where rn
 is a positive integer expression. If
 omitted for direct access file, reading
 continues from the current position in
 the file.

 ,END=s) Optional, statement label. If not
 present, reading end of file results in
 a run time error. If present,
 encountering an end of file condition
 results in the transfer to the
 executable statement labeled s which
 must be in the same program unit as the
 READ statement.

 iolist See description above. Note closing
 parentheses follows last of above
 parameters and immediately precedes the
 iolist.

The READ statement sets the items in iolist, assuming that no end of
file or error condition occurs. If the read is internal, the character
variable or character array element specified is the source of the
input, otherwise the external unit is the source.

Example program fragment:

 C Need a two dimensional array for the example
 DIMENSION IA(10,20)
 C Read in bounds for array off first line, hopefully less than
 C 10 and 20. Then read in the array in nested implied DO lists
 C with input format of 8 columns of width 5 each.
 READ(3,990)I,J,((IA(I,J),J=1,J),I=1,I,1)
 990 FORMAT(2I5/,(8I5))

11.4.4 WRITE

WRITE(u[,f][,REC=rn])iolist

WRITE(u Required, must be first argument.

 ,f Required for formatted write as
 second argument, must not appear for
 unformatted write.

 ,REC=rn For direct access only, otherwise
 error. Positions to record number
 rn, where rn is a positive integer
 expression. If omitted for direct
 access file, writing continues at
 the current position in the file.

)iolist Note parentheses after last parameter
 and immediately before iolist.

The WRITE statement transfers the iolist items to the unit specified.
If the write is internal, the character variable or character array
element specified is the destination of the output, otherwise the
external unit is the destination.

Example program fragment:

 C Place message: "One = 1, Two = 2, Three = 3" on the .CONSOLE
 C not doing things in the simplest way!
 WRITE(*,980)'One =',1,1+1,'ee = ',+(1+1+1)
 980 FORMAT(A,I2,', Two =',1X,I1,', Thr',A,I1)

11.4.5 BACKSPACE

BACKSPACE u Unit is not internal unit specifier.
 Only useable with blocked devices.

BACKSPACE causes the file connected to the specified unit to be
positioned before the preceding record. The file position is not
changed if there is no preceding record. If the preceding record is
the endfile record, however, the file becomes positioned before the
endfile record. UCSD files can not be backspaced.

11.4.6 ENDFILE

ENDFILE u Unit is not an internal unit
 specifier.

ENDFILE writes an end of file record as the next record of the file
that is connected to the specified unit. The file is then positioned
after the end of file record. This prohibits any further sequential
data transfer until either a BACKSPACE or REWIND is executed. If an
ENDFILE is written on a direct access file, all records written beyond
the position of the new end of file disappear.

11.4.7 REWIND

REWIND u Unit is not an internal unit
 specifier.

Execution of a REWIND statement causes the file associated with the
specified unit to be positioned at its initial point.

11.5 NOTES ON I/O OPERATIONS
1. Any function referenced in an expression within an I/O statement
cannot cause any I/O statement to be executed.

2. The ANSI Standard subset FORTRAN 77 language includes only

formatted sequential files and unformatted direct (random access)
files. As in the full ANSI Standard FORTRAN 77, Apple FORTRAN has all
combinations of formatted, unformatted, sequential, and direct access
files, with these restrictions:

* Direct access files must be connected to blocked devices such as
 disk drives, since only these devices can implement random access.

* The BACKSPACE operation is only supported when using files connected
 to blocked devices, since it depends on random access to the files.

3. Since the Apple system is interactive, it is sometimes desirable to
be able to write or read partial records in formatted READ and WRITE
statements. In order to accomplish this, the dollar sign format
control inhibits advancing to the next record when the next record is
also the last format control executed in a READ or WRITE operation.
This allows interactive prompting and reading from the console on the
same line of the screen instead of having to prompt on one line and
take user input from the next one. This also gives you the ability to
read and write formatted files in units smaller than one record. On
input, formatted records are almost infinitely extended with blanks
(ASCII space character, decimal code 32) to satisfy multiple read
operations until the next record is explicitly called for.

For convenient interaction with the console, you will find that
several features have been included in the FORTRAN system. ANSI
FORTRAN specifies that devices may be preconnected without an OPEN
statement, and that one such device may be given the special unit
number 0 and may also be referred to with the character *. In Apple
FORTRAN, the preconnected unit * is connected to the .CONSOLE device,
for reading and writing to the user of the system when a FORTRAN
program is executing. Reading from this unit will continue until
terminated by a RETURN character (ASCII CR, decimal 13). In addition,
this unit supports the backspace key (ASCII DEL, decimal 127) to
delete one character at a time as well as the line rubout key (ASCII
DLE, decimal 16) to delete the entire line entered since the last
RETURN.

The preconnected unit feature in conjunction with the end of record
inhibitor $ for writing on the .CONSOLE, the infinite blank extension,
and the standard BN format control option allow for very convenient
interaction. Here's an example of one-line prompting:

 WRITE(*,900)'Input a five digit integer: '
900 FORMAT(A$)
 READ(*,910)I
910 FORMAT(BN,I5)

This example prompts without a terminating carriage return after the
first WRITE statement and the cursor is left one space beyond the word
'integer:'. If the program user then typed the digits 123 and then

pressed RETURN, it would be interpreted as the number 123, since the
record is automatically blank-extended two columns to satisfy the I5,
and the BN edit control right-justifies the 123 input in the edit
field.

NOTE
Don't confuse the use of the * in FORTRAN I/O statements with
the use of the same character by the Pascal operating system to
specify the volume name of the system or boot disk. There is no
real ambiguity here, because the context of these two usages is
different. The unit * always means the .CONSOLE when it appears in
READ and WRITE statements; the unit * will never appear in OPEN
statements because it is preconnected. The volume * can and does
appear in OPEN statements where it can be a part of a complete file
name specification. The * boot disk volume name will never appear
in a READ or WRITE statement because only the unit number associated
to it will appear there.

4. To make interactive access to the Pascal operating system file
manager possible, the OPEN statement contains a reference to a Pascal
operating system filename. The following program fragment prompts for
a filename to be used as an input file to be connected to unit 3:

 CHARACTER*23 FNAME
 WRITE(*,920)'File name for input:'
920 FORMAT(A$)
 READ(*,930)FNAME
930 FORMAT(A)
 OPEN(3,FILE=FNAME)

Unformatted files used with unblocked devices are ideal for control of
I/O devices which require or produce arbitrary bit-patterns. The files
are "pure" to FORTRAN, with no end-of-record marks provided or expected
by the system, and with no character interpretation done at the system
level. Patterns such as those that correspond to characters with values
13 (RETURN on the keyboard) and 16 (DLE), which ordinarily have special
meanings when treated as ASCII characters, are passed directly through
the I/O system. Thus, instrument control or monitoring applications can
be programmed in a straightforward manner. Unformatted I/O is also
quite a bit more efficient than the formatted I/O procedures in
execution time and in file-space required. Data bases that will be
reread by FORTRAN should usually be written as unformatted files.

12 FORMATTED I/O
12.1 INTRODUCTION

This chapter describes formatted I/O and the FORMAT statement. Some
familiarity with the FORTRAN file system, units, records, access
methods, and I/O statements as described in the previous chapter is
assumed.

12.2 FORMATTING I/O
If a READ or WRITE statement specifies a format, in parentheses
immediately following the READ or WRITE statement, it is considered a
formatted, rather than an unformatted I/O statement. Such a format may
be specified in one of three ways, as explained in the previous
chapter. Two ways refer to FORMAT statements and one is an immediate
format in the form of a character expression containing the format
itself. The following are all valid and equivalent means of specifying
a format:

 WRITE(*,990)I,J,K
 990 FORMAT(2I5,I3)

 ASSIGN 990 TO IFMT
 990 FORMAT(2I5,I3)
 WRITE(*,IFMT)I,J,K

 WRITE(*,'(2I5,I3)')I,J,K

 CHARACTER*8 FMTCH
 FMTCH = '(2I5,I3)'
 WRITE(*,FMTCH)I,J,K

The format specification itself must begin with a left or opening
parenthesis, possibly following initial blank characters. It must end
with a matching closing or right parenthesis. Characters beyond the
closing parenthesis are ignored.

FORMAT statements must be labeled, and like all nonexecutable
statements, may not be the target of a branching operation.

Between the initial and terminating parentheses is a list of items,
separated by commas, each of which is one of these:

 [r] ed - repeatable edit descriptors

 ned - nonrepeatable edit descripors

 [r] fs - a nested format specification. At most 3 levels of
 nested parentheses are permitted within the outermost level.

where r is an optional, nonzero, unsigned, integer constant called a
repeat specification. The comma separating two list items may be
omitted if the resulting format specification is still unambiguous,

such as after a P edit descriptor or before or after the / edit
descriptor.

The repeatable edit descriptors, explained in detail below, are:

 Iw
 Fw.d
 Ew.d
 Ew.dEe
 Lw
 A
 Aw

where I, F, E, L, and A indicate the manner of editing and,

 w and e are nonzero, unsigned, integer constants, and
 d is an unsigned integer constant.

The nonrepeatable edit descriptors, also explained in detail
below, are:

 'xxxx' - character constants of any length
 nHxxxx - another means of specifying character constants
 nX
 /
 $
 kP
 BN
 BZ

where apostrophe, H, X, slash, dollar sign, P, BN, and BZ indicate the
manner of editing and,

 x is any ASCII character,
 n is a nonzero, unsigned, integer constant, and
 k is an optionally signed integer constant.

12.3 FORMATTING AND THE I/O LIST
Before describing in greater detail the manner of editing specified by
each of the above edit descriptors, it should be understood how the
format specification interacts with the input/output list (iolist) in
a given READ or WRITE statement.

If an iolist contains one or more items, at least one repeatable edit
descriptor is required in the format specification. In particular, the
empty edit specification, (), may be used only if no items are
specified in the iolist, in which case the only action caused by the
I/O statement is the implicit record skipping action associated with
formats. Each item in the iolist will become associated with a

repeatable edit descriptor during the I/O statement execution. In
contrast, the remaining format control items interact directly with
the record and do not become associated with items in the iolist.

The items in a format specification are interpreted from left to
right. Repeatable edit descriptors act as if they were present r
times; omitted r is treated as a repeat factor of 1. Similarly, a
nested format specification is treated as if its items appeared r
times.

The formatted I/O process proceeds as follows: The format controller
scans the format items in the order indicated above. When a
repeatable edit descriptor is encountered, either:

* A corresponding item appears in the iolist in which case the item
 and the edit descriptor become associated and I/O of that item
 proceeds under format control of the edit descriptor, or

* The format controller terminates I/O.

If the format controller encounters the matching right parentheses of
the format specification and there are no further items in the iolist,
the format controller terminates I/O. If, however, there are further
items in the iolist, the file is positioned at the beginning of the
next record and the format controller continues by rescanning the
format starting at the beginning of the format specification
terminated by the last preceding right parenthesis. If there is no
such preceding right parenthesis, the format controller will rescan
the format from the beginning. Within the portion of the format
rescanned, there must be at least one repeatable edit descriptor.
Should the rescan of the format specification begin with a repeated
nested format specification, the repeat factor is used to indicate the
number of times to repeat that nested format specification. The rescan
does not change the previously set scale factor or BN or BZ blank
control in effect. When the format controller terminates, the
remaining characters of an input record are skipped or an end of
record is written on output, except as noted under the $ edit
descriptor.

12.4 NONREPEATABLE EDIT DESCRIPTORS
Here are the detailed explanations of the various format specification
descriptors, beginning with the nonrepeatable edit descriptors.

12.4.1 APOSTROPHE EDITING

The apostrophe edit descriptor has the form of a character constant.
Embedded blanks are significant and double '' are interpreted as a
single '. Apostrophe editing may not be used for input (READ). It
causes the character constant to be transmitted to the output unit.

12.4.2 H HOLLERITH EDITING

The nH edit descriptor causes the following n characters, including
blanks, to be transmitted to the output. Hollerith editing may not to
be used for input (READ).

Examples of Apostrophe and Hollerith editing:

 C Each write outputs characters between the slashes: /ABC'DEF/
 WRITE(*,970)
 970 FORMAT('ABC''DEF')
 WRITE(*,'(''ABC''''DEF'')')
 WRITE(*,'(7HABC''DEF)')
 WRITE(*,960)
 960 FORMAT(7HABC'DEF)

If a Hollerith field spans more than one line, spaces must actually be i
n
the text and not assumed as shown in the following example.

 C All the blanks in the following format are actually spaces
 WRITE(*,950)
 950 FORMAT(80H12345 012345 012345 012345 01234567890
 C12345 012345 01234567890)

12.4.3 X POSITIONAL EDITING

On input (READ), the nX edit descriptor causes the file position to
advance over n characters, thus the next n characters are skipped. On
output (WRITE), the nX edit descriptor causes n blanks to be written,
providing that further writing to the record occurs, otherwise, the nX
descriptor results in no operation.

12.4.4 / SLASH EDITING

The slash indicates the end of data transfer on the current record. On
input, the file is positioned to the beginning of the next record. On
output, an end of record is written and the file is positioned to
write on the beginning of the next record.

12.4.5 $ DOLLAR SIGN EDITING

Normally when the format controller terminates, the end of data
transmission on the current record occurs. If the last edit descriptor
encountered by the format controller is the dollar sign, this
automatic end of record is inhibited. This allows subsequent I/O
statements to continue reading or writing out of or into the same
record. The most common use for this mechanism is to prompt the user
to respond on the keyboard, and to READ a response off the same line
as in:

 WRITE(*,'(A$)') 'Input an integer -> '
 READ(*,'(BN,I6)') I

The dollar sign edit descriptor does not inhibit the automatic end of
record generated when reading from the * unit. Input from the .CONSOLE
must always be terminated by the return key. This permits the
backspace character and the line delete key to function properly.

12.4.6 P SCALE FACTOR EDITING

The kP edit descriptor is used to set the scale factor for subsequent
F and E edit descriptors until another kP edit descriptor is
encountered. At the start of each I/O statement, the scale factor
begins at 0. The scale factor effects format editing in the following
ways:

* On input, with F and E editing, providing that no explicit exponent
 exists in the field, and F with output editing, the externally
 represented number equals the internally represented number multiplied
 by 10**k.

* On input, with F and E editing, the scale factor has no effect if
 there is an explicit exponent in the input field.

* On output, with E editing, the real part of the quantity is output
 multiplied by 10**k and the exponent is reduced by k, effectively
 altering the column position of the decimal point but not the value
 output.

12.4.7 BN/BZ BLANK INTERPRETATION

These edit descriptors specify the interpretation of blanks in numeric
input fields. The default, BZ, is set at the start of each I/O
statement. This makes blanks, other than leading blanks, identical to
zeros. If a BN edit descriptor is processed by the format controller,
blanks in subsequent input fields will be ignored until a BZ edit
descriptor is processed. The effect of ignoring blanks is to take all
the non-blank characters in the input field, and treat them as if they
were right-justified in the field with the number of leading blanks
equal to the number of ignored blanks. For instance, the following
READ statement accepts the characters shown between the slashes as the
value 123 where <cr> indicates hitting the return key:

 READ(*,100) I
100 FORMAT(BN,I6)

 /123 <cr>/,
 /123 456<cr>/,
 /123<cr>/, or

 / 123<cr>/.

The BN edit descriptor, in conjunction with infinite blank padding at
the end of formatted records, makes interactive input very convenient.

12.5 REPEATABLE EDIT DESCRIPTORS
The I, F, and E edit descriptors are used for I/O of integer and real
data. The following general rules apply to all three of them:

* On input, leading blanks are not significant. Other blanks are
 interpreted differently depending on the BN or BZ flag in effect, but
 all blank fields always become the value 0. Plus signs are optional.

* On input, with F and E editing, an explicit decimal point appearing
 in the input field overrides the edit descriptor specification of the
 decimal point position.

* On output, the characters generated are right justified in the field
 with padding leading blanks if necessary.

* On output, if the number of characters produced exceeds the field
 width or the exponent exceeds its specified width, the entire field is
 filled with asterisks.

12.5.1 I INTEGER EDITING

The edit descriptor Iw must be associated with an iolist item which is
of type integer. The field width is w characters in length. On input,
an optional sign may appear in the field. The general rules of numeric
editing apply to the I edit descriptor.

12.5.2 F REAL EDITING

The edit descriptor Fw.d must be associated with an iolist item which
is of type real. The width of the field is w positions, the fractional
part of which consists of d digits. The input field begins with an
optional sign followed by a string of digits optionally containing a
decimal point. If the decimal point is present, it overrides the d
specified in the edit descriptor, otherwise the rightmost d digits of
the string are interpreted as following the decimal point. Leading
blanks are converted to zeros if necessary. Following this is an
optional exponent which is one of these:

* Plus or minus followed by an integer.

* E or D followed by zero or more blanks followed by an optional sign
 followed by an integer. E and D are treated identically.

The output field occupies w digits, d of which fall beyond the decimal

point and the value output is controlled both by the iolist item and
the current scale factor. The output value is rounded rather than
truncated.

The general rules of numeric editing apply to the F edit descriptor.

12.5.3 E REAL EDITING

An E edit descriptor either takes the form Ew.d or Ew.dEe. In either
case the field width is w characters. The e has no effect on input.
The input field for an E edit descriptor is identical to that
described by an F edit descriptor with the same w and d. The form of
the output field depends on the scale factor set by the P edit
descriptor that is in effect. For a scale factor of 0, the output
field is a minus sign if necessary, followed by a decimal point,
followed by a string of digits, followed by an exponent field for
exponent, exp, of one of the following forms:

 Ew.d -99 <= exp <= 99 E followed by plus or minus followed
 by the two digit exponent.

 -((10**e) - 1) <= E followed by plus or minus followed
 Ew.dEe exp by e digits which are the exponent
 <= (10**e) -1 with possible leading zeros.

The form Ew.d must not be used if the absolute value of the exponent
to be printed exceeds 999.

The scale factor controls the decimal normalization of the printed E
field. If the scale factor, k, is in the range -d < k <= 0 then the
output field contains exactly -k leading zeros after the decimal point
and d + k significant digits after this. If 0 < k < d+2 then the
output field contains exactly k significant digits to the left of the
decimal point and d - k - 1 places after the decimal point. Other
values of k are errors.

The general rules of numeric editing apply to the E edit descriptor.

12.5.4 L LOGICAL EDITING

The edit descriptor is Lw, indicating that the field width is w
characters. The iolist element which becomes associated with an L edit
descriptor must be of type logical. On input, the field consists of
optional blanks, followed by an optional decimal point, followed by T
(for .TRUE.) or F (for .FALSE.). Any further characters in the field
are ignored, but accepted on input, so that .TRUE. and .FALSE. are
valid inputs. On output, w - 1 blanks are followed by either T or F as
appropriate.

12.5.5 A CHARACTER EDITING

The forms of the edit descriptor are A or Aw, in which the former
acquires an implied field width, w, from the number of characters in
the iolist item with which it becomes associated. The iolist item must
be of the character type if it is to be associated with an A or Aw
edit descriptor. On input, if w exceeds or equals the number of
characters in the iolist element, the rightmost characters of the
input field are used as the input characters, otherwise the input
characters are left justified in the input iolist item and trailing
blanks are provided. On output, if w should exceed the characters
produced by the iolist item, leading blanks are provided, otherwise,
the leftmost w characters of the iolist item are output.

13 PROGRAM UNITS
13.1 INTRODUCTION
This chapter describes the format of program units. A program unit is
either a main program, a subroutine, or a function program unit. The
term procedure is used to refer to either a function or a subroutine.
This chapter also describes the CALL and RETURN statements as well as
function calls.

13.2 MAIN PROGRAMS
A main program is any program unit that does not have a FUNCTION or
SUBROUTINE statement as its first statement. It may have a PROGRAM
statement as its first statement. The execution of a FORTRAN program
always begins with the first executable statement in the main
program. Consequently, there must be one and only one main program in
every executable program. The form of a PROGRAM statement is:

 PROGRAM pname

where: pname is a user defined name that is the name of the main
program.

The name, pname, is a global name. Therefore, it cannot be the same
as another external procedure's name or a common block's name. It is
also a local name to the main program, and must not conflict with any
other local name. The PROGRAM statement may only appear as the first
statement of a main program.

13.3 SUBROUTINES
A subroutine is a program unit that can be called from other program
units by a CALL statement. When called, it performs the set of

actions defined by its executable statements, and then returns control
to the statement immediately following the statement that called it.
A subroutine does not directly return a value, although values can be
passed back to the calling program unit via parameters or common
variables.

13.3.1 SUBROUTINE STATEMENT

A subroutine begins with a SUBROUTINE statement and ends with the
first following END statement. It may contain any kind of statement
other than a PROGRAM statement or a FUNCTION statement. The form of
a SUBROUTINE statement is:

 SUBROUTINE sname [([farg [, farg]...])]

where: sname is the user defined name of the subroutine.

 farg is a user defined name of a formal argument.

The name, sname, is a global name, but it is also local to the
subroutine it names. The list of argument names defines the number
and, with any subsequent IMPLICIT, type, or DIMENSION statements, the
type of arguments to that subroutine. Argument names cannot appear in
COMMON, DATA, EQUIVALENCE, or INTRINSIC statements.

13.3.2 CALL STATEMENT

A subroutine is executed as a consequence of executing a CALL
statement in another program unit that references that subroutine.
The form of a CALL statement is:

 CALL sname [([arg [,arg]...])]

where: sname is the name of a subroutine.

 arg is an actual argument.

An actual argument may be either an expression or the name of an
array. The actual arguments in the CALL statement must agree in type
and number with the corresponding formal arguments specified in the
SUBROUTINE statement of the referenced subroutine. If there are no
arguments in the SUBROUTINE statement, then a CALL statement
referencing that subroutine must not have any actual arguments, but
may optionally have a pair of parentheses following the name of the
subroutine. Note that a formal argument may be used as an actual
argument in another subprogram call.

Execution of a CALL statement proceeds as follows: All arguments that
are expressions are evaluated. All actual arguments are associated
with their corresponding formal arguments, and the body of the

specified subroutine is executed. Control is returned to the
statement following the CALL statement upon exiting the subroutine, by
executing either a RETURN statement or an END statement in that
subroutine.

A subroutine specified in any program unit may be called from any
other program unit within the same executable program. Recursive
subroutine calls, however, are not allowed in FORTRAN. That is, a
subroutine cannot call itself directly, nor can it call another
subroutine that will result in that subroutine being called again
before it returns control to its caller.

13.4 FUNCTIONS
A function is referenced in an expression and returns a value that is
used in the computation of that expression. There are three kinds of
functions: external functions, intrinsic functions, and statement
functions. This section describes the three kinds of functions.

A function reference may appear in an arithmetic expression.
Execution of a function reference causes the function to be evaluated,
and the resulting value is used as an operand in the containing
expression. The form of a function reference is:

 fname ([arg [,arg]...])

where: fname is the name of an external, intrinsic, or statement
 function.

 arg is an actual argument.

An actual argument may be an arithmetic expression or an array. The
number of actual arguments must be the same as in the definition of
the function, and the corresponding types must agree.

13.4.1 EXTERNAL FUNCTIONS

An external function is specified by a function program unit. It
begins with a FUNCTION statement and ends with an END statement. It
may contain any kind of statement other that a PROGRAM statement, a
FUNCTION statement, or a SUBROUTINE statement. The form of a FUNCTION
statement is:

 [type] FUNCTION fname ([farg [, farg]...])

where: type is one of INTEGER, REAL, or LOGICAL.

 fname is the user defined name of the function.

 farg is a formal argument name.

The name, fname, is a global name, and it is also local to the
function it names. If no type is present in the FUNCTION statement,
the function's type is determined by default and any subsequent
IMPLICIT or type statements that would determine the type of an
ordinary variable. If a type is present, then the function name
cannot appear in any additional type statements. In any event, an
external function cannot be of type character. The list of argument
names defines the number and, with any subsequent IMPLICIT, type, or
DIMENSION statements, the type of arguments to that subroutine.
Neither argument names nor fname can appear in COMMON, DATA,
EQUIVALENCE, or INTRINSIC statements.

The function name must appear as a variable in the program unit
defining the function. Every execution of that function must assign a
value to that variable. The final value of this variable, upon
execution of a RETURN or an END statement, defines the value of the
function. After being defined, the value of this variable can be
referenced in an expression, exactly like any other variable. An
external function may return values in addition to the value of the
function by assignment to one or more of its formal arguments.

13.4.2 INTRINSIC FUNCTIONS

Intrinsic functions are functions that are predefined by the FORTRAN
compiler and are available for use in a FORTRAN program. The table
following this section gives the name, definition, number of
parameters, and type of the intrinsic functions available in Apple
FORTRAN 77. An IMPLICIT statement does not alter the type of an
intrinsic function. For those intrinsic functions that allow several
types of arguments, all arguments in a single reference must be of the
same type.

An intrinsic function name may appear in an INTRINSIC statement, but
only those intrinsic functions listed in the table may do so. An
intrinsic function name also may appear in a TYPE statement, but only
if the type is the same as the standard type of that intrinsic
function.

Arguments to certain intrinsic functions are limited by the definition
of the function being computed. For example, the logarithm of a
negative number is mathematically undefined, and therefore not
allowed.

 TABLE OF INTRINSIC FUNCTIONS

+------------------+------------------+------+--------+-----------------
------+
| Intrinsic | | No. | | Type of
 |

| Function | Definition | Args | Name | Argument | Func
tion |
+------------------+------------------+------+--------+-----------+-----
------+
| Type Conversion | Conversion | 1 | INT | Real | Int
eger |
| | to Integer | | IFIX | Real | Int
eger |
| | int(a) | | | |
 |
| | See Note 1 | | | |
 |
| +------------------+------+--------+-----------+-----
------+
| | Conversion | 1 | REAL | Integer | Re
al |
| | to Real | | FLOAT | Integer | Re
al |
| | See Note 2 | | | |
 |
| +------------------+------+--------+-----------+-----
------+
| | Conversion | 1 | ICHAR | Character | Int
eger |
| | to Integer | | | |
 |
| | See Note 3 | | | |
 |
| +------------------+------+--------+-----------+-----
------+
| | Conversion | 1 | CHAR | Integer | Char
acter |
| | to Character | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+
| Truncation | int(a) | 1 | AINT | Real | Re
al |
| | See Note 1 | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+
| Nearest Whole | int(a+.5) a>=0 | 1 | ANINT | Real | Re
al |
| Number | int(a-.5) a<0 | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+
| Nearest Integer | int(a+.5) a>=0 | 1 | NINT | Real | Int
eger |
| | int(a-.5) a<0 | | | |

 |
+------------------+------------------+------+--------+-----------+-----
------+
| Absolute Value | |a| | 1 | IABS | Integer | Int
eger |
| | | 1 | ABS | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Remaindering | a1-int(a1/a2)*a2 | 2 | MOD | Integer | Int
eger |
| | See Note 1 | | AMOD | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Transfer of Sign | |a1| if a2>=0 | 2 | ISIGN | Integer | Int
eger |
| | -|a1| if a2<0 | | SIGN | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Positive | a1-a2 if a1>a2 | 2 | IDIM | Integer | Int
eger |
| Difference | 0 if a1<=a2 | | DIM | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+

 TABLE OF INTRINSIC FUNCTIONS - Continued
--

| Intrinsic | | No. | | Type of
 |
| Function | Definition | Args.| Name | Argument | Fun
ction |
+------------------+------------------+------+--------+-----------+-----
------+
| Choosing Largest | max(a1,a2,...) | >=2 | MAX0 | Integer | Int
eger |
| Value | | | AMAX1 | Real | Re
al |
| | | +--------+-----------+-----
------+
| | | | AMAX0 | Integer | Re
al |
| | | | MAX1 | Real | Int
eger |
+------------------+------------------+------+--------+-----------+-----
------+
| Choosing Small- | min(a1,a2,...) | >=2 | MIN0 | Integer | Int
eger |

| est Value | | | AMIN1 | Real | Re
al |
| | | +--------+-----------+-----
------+
| | | | AMIN0 | Integer | Re
al |
| | | | MIN1 | Real | Int
eger |
+------------------+------------------+------+--------+-----------+-----
------+
| Square Root | a**0.5 | 1 | SQRT | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Exponential | e**a | 1 | EXP | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Natural Logarithm| log(a) | 1 | ALOG | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Common Logarithm | log10(a) | 1 | ALOG10 | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Sine | sin(a) | 1 | SIN | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Cosine | cos(a) | 1 | COS | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Tangent | tan(a) | 1 | TAN | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Arcsine | arcsin(a) | 1 | ASIN | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Arccosine | arccos(a) | 1 | ACOS | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Arctangent | arctan(a) | 1 | ATAN | Real | Re
al |
| +------------------+------+--------+-----------+-----
------+
| | arctan(a1/a2) | 2 | ATAN2 | Real | Re

al |
+------------------+------------------+------+--------+-----------+-----
------+
| Hyperbolic Sine | sinh(a) | 1 | SINH | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+
| Hyperbolic Cosine| cosh(a) | 1 | COSH | Real | Re
al |
+------------------+------------------+------+--------+-----------+-----
------+

 TABLE OF INTRINSIC FUNCTIONS - Continued
+------------------+------------------+------+--------+-----------+-----
------+
| Intrinsic | | No. | | Type of
 |
| Function | Definition | Args.| Name | Argument | Func
tion |
+------------------+------------------+------+--------+-----------+-----
------+
| Hyperbolic | tanh(a) | 1 | TANH | Real | Re
al |
| Tangent | | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+
| Lexically Greater| a1 >= a2 | 2 | LGE | Character | Log
ical |
| Than or Equal | See Note 4 | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+
| Lexically | a1 > a2 | 2 | LGT | Character | Log
ical |
| Greater Than | See Note 4 | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+
| Lexically Less | a1 <= a2 | 2 | LLE | Character | Log
ical |
| Than or Equal | See Note 4 | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+
| Lexically | a1 < a2 | 2 | LLT | Character | Log
ical |
| Less Than | See Note 4 | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+

| End of File | End_Of_File(a) | 1 | EOF | Integer | Log
ical |
| | See Note 5 | | | |
 |
+------------------+------------------+------+--------+-----------+-----
------+

The number of each of the notes that follow refers to the number in
column 2 of the Table.

(1) For a of type real, if a >= 0 then int(a) is the largest integer
not greater than a, if a < 0 then int(a) in the most negative integer
not less than a. IFIX(a) is the same as INT(a).

(2) For a of type integer, REAL(a) is as much precision of the
significant part of a as a real value can contain. FLOAT(a) is the
same as REAL(a).

(3) ICHAR converts a character value into an integer value. The
integer value of a character is the ASCII internal representation of
that character, and is in the range 0 to 127. For any two characters,
c1 and c2, (c1 .LE. c1) is true if and only if (ICHAR(c1) .LE.
ICHAR(c2)) is true.

(4) LGE(a1,a2) returns the value true if a1 = a2 or if a1 follows a2
in the ASCII collating sequence; otherwise, it returns false.

LGT(a1,a2) returns true if a1 follows a2 in the ASCII collating
sequence; otherwise, it returns false.

LLE(a1,a2) returns true if a1 = a2 or if a1 precedes a2 in the ASCII
collating sequence; otherwise, it returns false.

LLT(a1,a2) returns true if a1 precedes a2 in the ASCII collating
sequence; otherwise, it returns false.

The operands or LGE, LGT, LLE, and LLT must be of the same length.

(5) EOF(a) returns the value true if the unit specified by its
argument is at or past the end of file record, otherwise it returns
false. The value of a must correspond to an open file, or to zero
which indicates the .CONSOLE device.

(6) All angles are expressed in radians.

(7) All arguments in an intrinsic function reference must be of the
same type.

13.4.3 STATEMENT FUNCTIONS

A statement function is a function that is defined by a single
statement. It is similar in form to an assignment statement. A
statement function statement can only appear after the specification
statements and before any executable statements in the program unit in
which it appears. A statement function is not an executable statement;
since it is not executed in order as the first statement in its
particular program unit. Rather, the body of a statement function
serves to define the meaning of the statement function. It is
executed, as any other function, by the execution of a function
reference. The form of a statement function is:

 fname ([arg [, arg]...]) = expr

where
fname is the name of the statement function.
arg is a formal argument name.

 expr is an expression.

The type of the expr must be assignment compatible with the type of
the statement function name. The list of formal argument names serves
to define the number and type of arguments to the statement function.
The scope of formal argument names is the statement function.
Therefore, formal argument names may be used as other user defined
names in the rest of the program unit containing the statement
function definition. The name of the statement function, however, is
local to its program unit, and must not be used otherwise, except as
the name of a common block, or as the name of a formal argument to
another statement function. The type of all such uses, however, must
be the same. If a formal argument name is the same as another local
name, then a reference to that name within the statement function
defining it always refers to the formal argument, never to the other
usage.

Within the expression expr, references to variables, formal arguments,
other functions, array elements, and constants are allowed. Statement
function references, however, must refer to statement functions that
have been defined prior to the statement function in which they
appear. Statement functions cannot be recursively called, either
directly or indirectly.

A statement function can only be referenced in the program unit in
which it is defined. The name of a statement function cannot appear in
any specification statement, except in a type statement which may not
define that name as an array, and in a COMMON statement as the name of
a common block. A statement function cannot be of type character.

13.4.4 RETURN STATEMENT

A RETURN statement causes return of control to the calling program
unit. It may only appear in a function or subroutine. The form of a
RETURN statement is:

 RETURN

Execution of a RETURN statement terminates the execution of the
enclosing subroutine or function. If the RETURN statement is in a
function, then the value of that function is equal to the current
value of the variable with the same name as the function. Execution of
an END statement in a function or subroutine is treated in exactly the
same way as is execution of a RETURN statement.

13.5 PARAMETERS
This section discusses the relationship between formal and actual
arguments in a function or subroutine call. A formal argument refers
to the name by which the argument is known within the function or
subroutine, and an actual argument is the specific variable,
expression, array, and so forth, passed to the procedure in question
at any specific calling location.

Arguments are used to pass values into and out of procedures.
Variables in common can be used to perform this task as well. The
number of actual arguments must be the same as formal arguments, and
the corresponding types must agree.

Upon entry to a subroutine or function, the actual arguments become
associated with the formal arguments, much as an EQUIVALENCE statement
associates two or more arrays or variables, and COMMON statements in
two or more program units associate lists of variables. This
association remains in effect until execution of the subroutine or
function is terminated. Thus, assigning a value to a formal argument
during execution of a subroutine or function may alter the value of
the corresponding actual argument. If an actual argument is a
constant, function reference, or an expression other than a simple
variable, assigning a value to the corresponding formal argument is
not allowed, and may have some strange side effects.

If an actual argument is an expression, it is evaluated immediately
prior to the association of formal and actual arguments. If an actual
argument is an array element, its subscript expression is evaluated
just prior to the association, and remains constant throughout the
execution of the procedure, even if it contains variables that are
redefined during the execution of the procedure.

A formal argument that is a variable may be associated with an actual
argument that is a variable, an array element, or an expression. A
formal argument that is expressed as an array may be associated with
an actual argument that is an array or an array element. The number

and size of dimensions in a formal argument may be different than
those of the actual argument, but any reference to the formal array
must be within the limits of the storage sequence in the actual array.
While a reference to an element outside these bounds is not detected
as an error in a running FORTRAN program, the results are
unpredictable.

14 COMPILATION UNITS
14.1 INTRODUCTION
This chapter describes the relationship between FORTRAN and the Apple
Pascal segment mechanism. In normal use, the user need not be aware of
such intricacies. However, if you want to interface FORTRAN with
Pascal, to create overlays, or to take advantage of separate
compilation or libraries, the details contained here are helpful.

The first section of this chapter discusses the general form of a
FORTRAN program in terms of the operating system object code
structure. The next section deals with linking FORTRAN programs. The
third describes the $USES compiler directive. This directive provides
access to libraries or already compiled procedures, and provides
overlays in FORTRAN. The next section describes how you link FORTRAN
with Pascal.

14.2 UNITS, SEGMENTS, PARTIAL COMPILATION
When a full FORTRAN program is compiled in one piece, the .CODE file
created contains 2 distinct segments and a reference to a third. Unit
number 1, called MAINSEGX, contains code to manage all other segments,
defines named common blocks, initializes the run time system, etc. No
actual user code resides in the segment MAINSEGX. It must, however,
remain as a distinct unit in order for the linker to properly define
named common data areas and file support for the run time system.
Unit number 7, given the name of the main program, contains all of the
user code. A reference to unit number 8, RTUNIT, is also contained in
the .CODE file. This is the FORTRAN run-time system.

If a FORTRAN compilation contains no main program, then it is output
as if it were a Pascal unit compilation. The unit is given the name U,
followed by the name of its first procedure. For example:

 C --- No PROGRAM statement present
 SUBROUTINE X
 ...
 END
 SUBROUTINE Y

 ...
 END
 ...
 SUBROUTINE Z
 ...
 END

would be compiled into a single unit named UX. Assume for later
examples that the object code is output to file X.CODE. All procedures
called from within unit UX must be defined within unit UX, unless a
$USES or a $EXT statement has shown them to reside in another unit.
Similarly, procedures in unit UX cannot be called from other units
unless the other units contain a $USES UX statement. Thus, a typical
main program that would call X might be:

 C
 C --- This is the main program BIGGIE
 C
 $USES UX IN X.CODE
 PROGRAM BIGGIE
 ...
 CALL X
 ...
 END
 SUBROUTINE W
 ...
 CALL Y
 ...
 END

If the $USES statement were not present, the FORTRAN compiler would
expect subroutines X and Y to appear in the same compilation,
somewhere after subroutine W. Assume that the object code for this
compilation is output to the file BIGGIE.CODE.

Thus, the user can create libraries of functions and partial
compilations, and save compilation time and disk space, by a simple
use of the $USES statement. More inforation on the $USES statement,
will be found later on in this chapter.

14.3 LINKING
If external units or Named COMMON are used, the user program must be lin
ked
before it may be executed. Normally, you specify the file containing
the main program as the 'host file'. In addition, you must specify the
files containing any user defined units referenced via the $USES
statement as 'lib file' entries. Thus, to link the program BIGGIE you
would run the linker by using the L(ink command, and respond as shown
below.

 Linker II.1 [A4]
 Host file? BIGGIE User inputs the name of the file
 Opening BIGGIE.CODE containing the main program.
 Lib file? X File containing user defined unit.
 Opening X.CODE
 Lib file?
 Map name?
 Reading MAINSEGX
 Reading BIGGIE
 Reading UX
 Output file? BIG.CODE File for linked object code
 Linking BIGGIE # 7
 Linking UX # 8
 Linking MAINSEGX # 1

You could then eX(ecute the code file called BIG.CODE.

14.4 $USES COMPILER DIRECTIVE
The $USES compiler directive provides several distinct functions. It
allows procedures and functions in separately compiled units, such as
the system library, to be called from FORTRAN. It provides a
relatively secure form of separate compilation for FORTRAN programs.
It allows us to call Pascal routines that have been compiled into
Pascal units. It also provides an overlay mechanism to the FORTRAN
user that is somewhat more general than that provided in the Pascal
language.

The format of the $USES control statement is:

 $USES unitname [IN filename] [OVERLAY]

where
unitname is the name of a unit.
filename is a valid file name.

As with all $ control statements, the $ must appear in column one.
This compiler directive directs the compiler to open the .CODE file
filename, or the SYSTEM.LIBRARY if the filename is absent, locate the
unit unitname, and process the INTERFACE information associated with
that unit, generating a reasonable FORTRAN equivalent declaration for
the FORTRAN compilation in progress. There cannot be any global
variables in the INTERFACE portion of a Pascal unit. All $USES
commands must appear before any FORTRAN statements, specification or
executable, but they are allowed to follow comment lines and other $
control lines. If the optional 'IN filename' is present, the name
filename is used as the file to process. If it is not, the file
*SYSTEM.LIBRARY is used as a default. If the optional field OVERLAY is
present, the unit in question is treated as an overlay. It is only

present in memory when one of its procedures is active. If the OVERLAY
field is not present, the unit is loaded into memory before the user
program is executed, and remains there until execution is over.

Warning: If a FORTRAN main program $USES a Pascal unit, that Pascal
unit cannot have any global variables in the INTERFACE part of its
declarations.

14.5 SEPARATE COMPILATION
Separate compilation is accomplished by compiling a set of subroutines
and functions without any main program. Each such compilation creates
a code file containing a single unit. Then, when the main program is
compiled, possibly along with many subroutines or functions, it $USES
the separately compiled units. The routines compiled with the main
program obtain the correct definition of each externally compiled
procedure through the $USES directive.

In the simplest form, when no $USES statements appear in any of the
separate compilations, the user simply $USES all separately compiled
FORTRAN units in the main program. However, this limits the procedure
calls in each of the separately compiled units to procedures defined
in the that particular unit. If there are calls to procedures in unit
A from unit B, then unit B must contain a $USES A statement. The main
program must then contain a $USES A statement as its first $USES
statement, followed by a $USES B statement. This is necessary for the
compiler to get the unit numbers allocated consistently.

In more complex cases, the user must insure that all references to
procedures in outside units are preceded by the proper $USES statement
in the same order, and are not missing any units. If unit B $USES unit
A, and unit C $USES unit B, then unit C must first $USES unit A.
Likewise, if units D and E both $USES unit F, they both must contain
exactly the same $USES statements prior to the $USES F statement.

14.6 FORTRAN OVERLAYS
The FORTRAN overlay mechanism is slightly more general than the Pascal
mechanism. In Pascal, an overlay procedure is specified by the
reserved word SEGMENT appearing prior to that procedure's name. The
meaning is that the procedure and all nested procedures are to become
an overlay. Thus, whenever that procedure is active, the segment is
present in memory, and not otherwise! There is no way to combine two
or more procedures into a single overlay such that the calling of
either one causes the overlay to be loaded into memory, due to the
fact that the static nesting of Pascal procedures hides any sub-
procedures from any outside caller. The FORTRAN mechanism allows many
such procedures to be visible to outside procedures, thus overcoming
this limitation.

15 BI-LINGUAL PROGRAMS
15.1 INTRODUCTION
As was discussed in Chapter 3, Programs in Pieces, if you want to mix
FORTRAN and Pascal code, you must first separately compile all the
subprograms that will be needed using the compiler of their native
language. For instance, in order to call Pascal functions and
procedures from a FORTRAN program, the Pascal routines must first be
compiled into a Pascal unit. The FORTRAN program must then contain a
$USES compiler directive statement for that unit as described in
Chapter 4.

In attempting to interface the two languages, there are some
fundamental differences which must be pointed out. For instance, the
exceedingly rich type and data structures in Pascal are not available
in FORTRAN. Also, the I/O systems of FORTRAN and Pascal are not
compatible. The fact that they both execute P-code on the Apple Pascal
operating system overcomes most of the other problems, however. This
section is designed to help you interface the two languages.

15.2 PASCAL IN FORTRAN MAIN PROGRAMS
Since there are Pascal types that have no FORTRAN equivalent, the way
FORTRAN looks at Pascal data structures is somewhat limited. Thus,
when a FORTRAN program $USES a Pascal unit, the FORTRAN compiler must
make some translations of the kinds of data it finds there. The table
below shows how these are mapped into FORTRAN data types.

Ordinary FORTRAN compilers do not recognize the passing of an argument
by value to a subprogram; they only recognize passing arguments by
reference. It should be noted that FORTRAN does not recognize global
variables declared in the INTERFACE portion of a Pascal unit. If there
is a global variable in a unit called by FORTRAN, the Linker will
gemerate the error message: PUBLIC <varname> UNDEFINED.

The difference between value and reference arguments is that, for a
variable passed to a subprogram by reference, the address of the
variable is passed to the subroutine, so that the subroutine can then
fetch the contents of that variable, and possibly replace its contents
with another value. When a variable is passed to a subroutine by
value, the contents of the variable is first copied into a special
temporary location before the subroutine is called. The subroutine is
only given the address of this temporary cell, which allows the
original variable to be protected from the subroutine.

It should be understood that the Apple FORTRAN compiler cannot create

FORTRAN subroutine argument calls by value, but that if, via a $USES
statement, it encounters a Pascal procedure or function which does
have value parameters in its argument list, it will generate the
correct calling sequence for that Pascal procedure.

The following table shows how FORTRAN views Pascal declarations that
it finds via a $USES statement:

 Pascal FORTRAN

DECLARATIONS:
--
 CONST anything ... ; Ignored
 TYPE anything ... ; Ignored
 VAR anything ... ; Ignored
 PROCEDURE X(arg-list); SUBROUTINE X(arglist)
 FUNCTION X(arg-list): type; type FUNCTION X(arglist)

Note: Type of FUNCTION may only be INTEGER, LOGICAL, or REAL.

DATA TYPES:
--
 REAL REAL
 BOOLEAN LOGICAL
 CHAR CHARACTER*1
 any other identifier INTEGER

Note: Be aware that the results of passing some of the more esoteric
Pascal data types to FORTRAN INTEGER data types can be tricky. You
should do trials first to determine the exact results.

Note: There is no proper FORTRAN equivalent to value parameters, but
the FORTRAN compiler does generate the correct calling sequence for
Pascal routines with value parameters.

The following FORTRAN program calls a Pascal unit called PUNIT found
in Z:PAS.CODE. If your disk is not designated Z:, you will have to
change the FORTRAN program to give the correct name.

C FORTRAN PROGRAM TO CALL PASCAL ROUTINE
$USES PUNIT IN Z:PAS.CODE
 I=ADDONE(3)
 WRITE(*,100)I
100 FORMAT(I8)
 END

This is the Pascal unit called by the FORTRAN program:

 (*$S+*)
 UNIT PUNIT;
 INTERFACE

 FUNCTION ADDONE(INT:INTEGER): INTEGER;
 IMPLEMENTATION
 FUNCTION ADDONE;
 BEGIN
 ADDONE:=INT+1;
 END
 BEGIN
 (* NO INITIALIZATION CODE IN THIS EXAMPLE *)
 END

15.3 FORTRAN IN PASCAL MAIN PROGRAMS
The following table gives the data type correspondences:

 FORTRAN Pascal

DECLARATIONS:

 SUBROUTINE X(arg-list) PROCEDURE X(arg-list);
 type FUNCTION X(arg-list) FUNCTION X(arg-list): type;

DATA TYPES:

 INTEGER INTEGER
 REAL REAL
 LOGICAL BOOLEAN
 CHARACTER* CHAR

 argument list:
 (I) (VAR I: type)
 type I

When a Pascal program USES a FORTRAN unit, it is the responsibility of
the Pascal program to make sure that any needed type declarations for
the string or packed array of CHAR types are properly defined for the
FORTRAN unit. This cannot consistently be done by FORTRAN as it would
lead to duplicate type definitions should a program use two FORTRAN
units in which each declare the same entity.

Note: Pascal stores its multidimensional arrays by row-major order,
while FORTRAN stores them by column-major order.

The following Pascal program is used to call a FORTRAN function called
ADDONE:

 PROGRAM CALLFORTRAN;
 (*$U Z:FOR.CODE*)
 USES UADDONE;
 BEGIN
 WRITELN(ADDONE(3));

 END

This is the FORTRAN function saved as Z:FOR.CODE:

 INTEGER FUNCTION ADDONE(I)
 ADDONE=I+1
 END

Note that the FORTRAN unit got the name UADDONE automatically from the
concatenation of U to the first function or subroutine name
encountered in the file, ADDONE.

15.4 I/O FROM BILINGUAL PROGRAMS
Because the I/O systems of FORTRAN and Pascal are not compatible, it
is not always possible to do everything that is desired. This section
does, however, help the user to do what is possible in interfacing the
two languages.

The FORTRAN compiler assumes that the run time support unit RTUNIT is
assigned unit number 8. Therefore, it is generally a good idea for
Pascal programs that use FORTRAN units to USES RTUNIT in such a manner
that it will be assigned number 8. For this to happen, RTUNIT must be
the second unit used by the Pascal program. While not all FORTRAN
units actually call run time support routines that reside in RTUNIT,
the absence of RTUNIT in such a case can lead to very mysterious
results.

It is not generally possible to do I/O from Pascal routines called
from a main program that is written in FORTRAN. Normal Pascal I/O to
and from the console, however, can always be done from Pascal routines
providing that there is no file name in the I/O statement. The Pascal
routines RESET, REWRITE, CLOSE, etc., should not be called from Pascal
routines running under a FORTRAN program.

It is possible to do I/O from a FORTRAN procedure that is called from
a Pascal main program. In general, however, this practice should be
avoided. The following information is provided to allow the user who
absolutely must mix I/O operations from both languages to do what is
possible.

There are several precautions that the user must take for FORTRAN I/O
to work from a Pascal program. The Pascal main program must USES the
FORTRAN run time unit RTUNIT. This must be done in such a manner that
RTUNIT is assigned unit number 8 by the Pascal main program. Prior to
any FORTRAN I/O operations, the Pascal program must call the procedure
RTINITIALIZE. After all FORTRAN I/O is completed, the Pascal program
must call the procedure RTFINALIZE. Both of these procedures exist in
the FORTRAN run time unit. The FORTRAN I/O procedures use the heap for
the allocation of file related storage, so the user should not force

the deallocation of heap memory via calls to MARK and/or RELEASE. If
the user USES TURTLEGRAPHICS in the Pascal program, then INITTURTLE
must be called prior to calling RTINITIALIZE. This is due to the way
that TURTLEGRAPHICS handles the heap marker. Other restrictions may
apply in special cases.

15.5 CALLING MACHINE CODE ROUTINES
The following example uses a machine code function and a subroutine.

;
; SAMPLE MACRO POPS 16 BIT ARGUMENT
;
 .MACRO POP
 PLA
 STA %1
 PLA
 STA %1+1
 .ENDM

 .FUNC PADDLE,1 ;ONE WORD OF PARAMETERS
;___
;
; SAMPLE GAME PADDLE FUNCTION FOR PASCAL
; (This function provided in APPLESTUFF unit.)
;
; FUNCTION PADDLE(SELECT: INTEGER): INTEGER;
;
;__
RETURN .EQU 0 ;TEMP VAR FOR RETURN ADDR
 ;note: 0..35 hex available
TEMP .EQU 2 ;TEMP VAR FOR ARGUMENT ADDR

 POP RETURN ;SAVE PASCAL RETURN ADDR
 PLA ;DISCARD 4 BYTES STACK BIAS
 PLA ;(ONLY DO FOR .FUNC)
 PLA
 PLA
 POP TEMP ;GET ARGUMENT ADDR
 LDY #0
 LDA (TEMP),Y ;LOAD ARGUMENT'S VALUE
 AND #3 ;FORCE INTO RANGE 0..3
 TAX
 LDA 0C070 ;TRIGGER PADDLES
 LDY #0 ;INIT COUNT IN Y REG
 NOP ;COMPENSATE FIRST COUNT
 NOP
PREAD2 LDA 0C064,X ;TEST PADDLE
 BPL DONE ;BRANCH IF TIMER DONE

 INY ;ELSE INC Y EVERY 12 USEC
 BNE PREAD2 ;LOOP UNLESS 255 EXCEEDED
 DEY ;MAKE 0 INTO 255 (MAX COUNT)
DONE LDA #0
 PHA ;PUSH MSB OF RETURN VALUE=0
 TYA
 PHA ;PUSH LSB OF RETURN VALUE
 LDA RETURN+1 ;RESTORE PASCAL RETURN ADDR
 PHA
 LDA RETURN
 PHA
 RTS ;AND RETURN TO PASCAL CALLER

 .PROC TTLOUT,2 ;TWO WORDS OF PARAMETERS
;___
;
; ROUTINE TO SET OR CLEAR ONE OF THE TTL I/O BITS
; (This procedure provided in APPLESTUFF unit.)
;
; PROCEDURE TTLOUT(SELECT: INTEGER; DATA: BOOLEAN);
;
RETURN .EQU 0 ;TEMP RETURN ADDR

 POP RETURN ;SAVE PASCAL RETURN ADDRESS
 ;POP PARAMETERS, LAST FIRST
 PLA ;GET LSB BOOLEAN DATA 1=TRUE
 LSR A ;SAVE BOOLEAN IN CARRY
 PLA ;DISCARD MSB BOOLEAN DATA
 PLA ;GET LSB SELECT
 AND #03 ;TREAT IT MOD 4
 ROL A ;DOUBLE, ADD DATA FOR INDEX
 TAY ;PUT I/O STROBE INDEX IN Y
 LDA 0C058,Y ;ACTIVATE I/O STROBE
 PLA ;DISCARD MSB SELECT PARAM
 LDA RETURN+1 ;RESTORE PASCAL RETURN ADDR
 PHA
 LDA RETURN
 PHA
 RTS ;GO BACK TO PASCAL

 .END ;END OF ASSEMBLY

The $EXT statement can be used to call machine language routines from
a FORTRAN program. The following example calls the machine language
routines listed above. You should note a couple of things here. First,
we don't use the normal $USES statement, but substitute $EXT.
Secondly, we don't have to CALL the routine called PADDLE because it

is a function. We do, of course, CALL TTLOUT.

$EXT INTEGER FUNCTION PADDLE 1
$EXT SUBROUTINE TTLOUT 2
C
 PROGRAM CALASM
 DO 100 I=1, 100
 WRITE(*,400)PADDLE(0),PADDLE(1)
100 CONTINUE
 CALL TTLOUT(0,.TRUE.)
400 FORMAT(2I12)
 END

The example simply reads the two control paddles and writes the values
returned to the screen. This is a handy routine for game programming,
and the incredible speed of the machine language operations can be
very useful in such real-time applications.

16 SPECIAL UNITS
16.1 THE TURTLE GRAPHICS UNIT
There is a CODE unit in SYSTEM.LIBRARY which contains a set of
subroutines that have been designed to enable the use of fancy color-
graphics on your Apple.

The following compiler directive statement must appear near the top of
the program or subprogram that uses this CODE unit:

 $USES TURTLEGRAPHICS

The statement must come before any executable statement or
specification statement. It may appear after other compiler directive
statements or comment lines.

If this statement appears, the graphics subroutines and functions
described in this section can be used. This statement tells the
FORTRAN system to get the graphics subprograms from the library. These
subprograms are loaded in at run-time, which means that the library
file must be available to the system when any program using
TURTLEGRAPHICS or APPLESTUFF is executed.

Incidentally, this graphics package is called Turtle Graphics since it
is based on the turtles devised by S. Papert and his co-workers at the
Massachusetts Institute of Technology. To make graphics easy for
children who might have difficulty understanding Cartesian
coordinates, Papert et al. invented the idea of the turtle who could
walk a given distance and turn through a specified angle while

dragging a pencil along. Very simple algorithms in this system, which
could be called relative polar coordinates, can give more interesting
images than an algorithm of the same length in Cartesian coordinates.

16.1. THE APPLE SCREEN

The Apple screen is a rectangle with the origin (X=0,Y=0) at the lower
left corner. The upper right corner has the coordinates (X=279,Y=191).
Since points may only be placed at integral coordinates, all arguments
to the graphics functions are integers.

There are two different screen images stored in the Apple's memory.
One of them holds text, the other holds a graphic image. There are
three statements that switch between the modes. They are INITTU,
TEXTMO and GRAFMO.

16.1.2 THE INITTU SUBROUTINE

This subroutine has no parameters. It clears the screen, and allows
the screen to be used for graphics rather than text. It is a good idea
to use this routine before starting any graphics.

INITTU does a few other things as well: the turtle (more about it
later) is placed in the center of the screen facing right, the pen
color is set to NONE (more about this later too) and the viewport is
set to full screen.

16.1.3 THE GRAFMO SUBROUTINE

The GRAFics MOde subroutine has no parameters. It switches the monitor
or TV to show the graphics screen, without the other initialization
that INITTU does. It is usually used to show graphics in a program
that switches between graphics and text display.

16.1.4 THE TEXTMO SUBROUTINE

The TEXT MOde subroutine has no parameters. It switches from graphics
mode, obtained by INITTU or GRAFMO, to showing text. It is a very,
very good idea to conclude any graphics program with a return to text
mode. If you forget to do this, you may not be able to see the usual
COMMAND: prompt or any other text. When you switch to text mode, the
image that you saw in GRAFMO is not lost, but will still be there when
you use GRAFMO to go into graphics mode again, unless you deliberately
changed it.

16.1.5 THE VIEWPO SUBROUTINE

The VIEWPOrt subroutine has the form

 VIEWPO (left, right, bottom, top)

where the four parameters are integers which give the boundaries you
want the viewport to have. If you don't use this subroutine, Apple
FORTRAN assumes that you want to use the whole screen for your
graphics.

 VIEWPO (130, 150, 86, 106)

This example would allow the screen-plotting of all points whose
X-coordinates are from 130 through 150 and whose Y-coordinates are
from 86 through 106. For further information on VIEWPO see the
descriptions of the line drawing subroutines, FILLSC and DRAWBL.

NOTE
Clipping: When a line is drawn using any of the graphic commands, it
is automatically clipped so that only the portion which lies within
the current viewport is displayed. Points whose coordinates are not in
the current viewport, even those points that would not be on the
screen at all, are legal but are ignored.

This allows some dramatic effects. It also allows you to plot off-
screen all day, and never see a thing or get an error message.
Clipping cannot be disabled.

16.1.6 SUBROUTINES FOR USING COLOR

The PENCOL and FILLSC subroutines are used for color in Turtle
Graphics. The PENCOL subroutine sets the pen color. It has the form

 PENCOL (PENMODE)

where penmode is an integer which corresponds to a particular color or
other mode as described in the table below.

 Integer PENMODE color
--
 0 NONE
 Drawing with this "color" produces no change on the
 screen. You can consider it as drawing with the color
 that happens to be there already, or as invisible ink.

 1 WHITE

 2 BLACK

 3 REVERSE
 Drawing with REVERSE changes BLACK to WHITE and WHITE
 to BLACK. It also changes WHITE1 to BLACK1, WHITE2
 to BLACK2, GREEN to VIOLET and ORANGE to BLUE and
 vice versa. It is rather a magical pen. It allows

 you to draw, say, a line across a complex background
 and have it still show up.

 4 RADAR
 This "color" has been left unused for future
 applications.

 5 BLACK1 (two dots wide, for use with green and violet)

 6 GREEN

 7 VIOLET

 8 WHITE1 (two dots wide, for use with green and violet)

 9 BLACK2 (two dots wide, for use with orange and blue)

 10 ORANGE

 11 BLUE

 12 WHITE2 (two dots wide, for use with orange and blue)

If you'd like the drawing to be in GREEN, you would use the statement:

 CALL PENCOL (6)

Now, it may seem strange that aside from WHITE, BLACK, GREEN, VIOLET,
ORANGE, and BLUE, there are two additional flavors of WHITE and BLACK.
These are due to the intricate, not to say bizarre, way that color
television sets concoct their color, interacting with the technique
that Apple uses to get a lot of color very economically. Rather than
explaining how this all works, suffice it to say here that WHITE and
BLACK give the finest lines possible, and the colors give a wider line
in order to make the colors show. If you wish to make a white or black
line that corresponds exactly in position and width with a green or
violet line then you should use WHITE1 or BLACK1. If you wish to make
a white or black line that corresponds exactly in position and width
with an orange or blue line, then you should use WHITE2 or BLACK2.

On a black-and-white monitor or TV set, just use WHITE and BLACK for
your colors.

The FILLSC subroutine has the form

 FILLSC (PENMODE)

where PENMODE is any of the integers standing for colors described
above. FILLSC fills the entire viewport with the color indicated by
PENMODE. For example

 FILLSC (2)

clears the viewport. The statement

 FILLSC (3)

makes a color negative of the contents of the viewport.

16.1.7 CARTESIAN GRAPHICS

The MOVETO subroutine has the form

 MOVETO (X, Y)

where X and Y are integer screen coordinates. MOVETO creates a line in
the current penmode from the last point drawn to the coordinates given
by (X,Y). When you INITTU, the turtle moves (with color NONE) to the
center of the screen.

The direction of the turtle, as described below, is not changed by
MOVETO.

16.1.8 TURTLE GRAPHIC SUBROUTINES

To understand turtle graphics, first imagine a small turtle sitting at
the center of the screen, facing right. This turtle can turn or it can
walk in the direction it is facing. As it walks, it leaves behind a
trail of the current pen color.

The TURNTO subroutine has the form

 TURNTO (DEGREES)

where DEGREES is an integer. It is treated modulo 360, and thus never
gets out of the range -359 through 359. When invoked, this subroutine
causes the turtle to turn from its present angle to the indicated
angle. Zero is exactly to the right, and counterclockwise rotation
represents increasing angles. This command never causes any change to
the image on the screen. A negative argument causes clockwise
rotation; a positive argument causes counterclockwise rotation.

The TURN subroutine has the form

 TURN (DEGREES)

where DEGREES is again an integer number treated modulo 360. This
subroutine causes the turtle to rotate counterclockwise from its
current direction through the specified angle. It causes no change to
the image on the screen.

The MOVE subroutine has the form

 MOVE (DISTANCE)

where DISTANCE is an integer. This subroutine makes the turtle move in
the direction in which it is pointing a distance given by the integer
DISTANCE. It leaves a trail in the current pen color. The sequence of
statements:

 CALL PENCOL (1)
 CALL MOVE (50)
 CALL TURN (120)
 CALL MOVE (50)
 CALL TURN (120)
 CALL MOVE (50)

draws an equilateral triangle, for instance.

16.1.9 TURTLE GRAPHIC FUNCTIONS

The functions TURTLX, TURTLY, TURTLA and SCREEN allow you to ask your
Apple about the current state of the turtle and the screen. Note that
any functions specified without parameters must have () following
the function name.

The TURTLX and TURTLY functions, no parameters, return integers giving
the current X and Y coordinates of the turtle.

The TURTLA function, no parameters, returns an integer giving the
current turtle angle as a positive number of degrees modulo 360.

The SCREEN function has the form

 SCREEN (X,Y)

where X and Y are screen coordinates. This function returns the
logical value true if the specified location on the screen is not
black, and false if it is black. It doesn't tell you what color is at
that point, but only whether there is a turtle-mark, anything
nonblack, there.

16.1.10 SENDING AN ARRAY TO THE SCREEN

The DRAWBL subroutine has the form

 DRAWBL (SOURCE, ROWSIZE, XSKIP, YSKIP, WIDTH, HEIGHT, XSCREEN,
 YSCREEN, MODE)

where the SOURCE parameter is the name without subscripts of a two-

dimensional array of type LOGICAL. All the other parameters are
integers.

DRAWBL copies an array of dots in memory or a portion of the array
onto the screen to form a screen image. You may choose to copy the
entire SOURCE array, or you may choose to copy any specified window
from the array, using only those dots in the array from XSKIP to
XSKIP+WIDTH and from YSKIP to YSKIP+HEIGHT. Furthermore, you can
specify the starting screen position for the copy, at (XSCREEN,
YSCREEN).

The DRAWBL subroutine parameters have the following meaning:

 SOURCE is the name of the two-dimensional BOOLEAN array to be
 copied.

 ROWSIZE is the number of bytes per row in the array.

 XSKIP tells how many horizontal dots in the array to skip over
 before the copying process is started.

 YSKIP tells how many vertical dots in the array to skip over
 before beginning the copying process. Note that copies are
 made starting from the bottom up. The array, in effect,
 gets turned upside down.

 WIDTH tells how many dots width of the array, starting at XSKIP,
 will be used.

 HEIGHT tells how many dots height of the array, starting at
 YSKIP, will be used.

 XSCREEN and YSCREEN are the coordinates of the lower left corner
 of the area to be copied into. The WIDTH and HEIGHT
 determine the size of the rectangle.

 MODE ranges from 0 through 15. The MODE determines what appears
 on the portion of the screen specified by the other
 parameters. It is a powerful option which can simply
 send white or black to the screen, irrespective of what is
 in the array, copy the array literally, or combine the
 contents of the array and the screen and send the result to
 the screen. The following table specifies what operation is
 performed on the data in the array and on the screen, and
 thus what appears on the screen. The algebraic notation
 uses A for the array, and S for the screen. The symbol ~
 means NOT.

 MODE EFFECT

 0 Fills the area on the screen with black.

 1 NOR of array and the screen. (A NOR S)

 2 ANDs array with the complement of the screen. (A AND ~S)

 3 Complements the screen. (~S)

 4 ANDs the complement of array with the screen. (~A AND S)

 5 Complements array. (~A)

 6 XORs array with the screen. (A XOR S)

 7 NANDs array with the screen. (A NAND S)

 8 ANDs array and the screen. (A AND S)

 9 EQUIVALENCEs array and the screen. (A = S)

 10 Copies array to the screen. (A)

 11 ORs array with the complement of the screen. (A OR ~S)

 12 Screen replaces screen. (S)

 13 ORs complement of array with screen. (~A OR S)

 14 ORs array with screen. (A OR S)

 15 Fills area with white.

16.1.11 TEXT ON THE GRAPHIC SCREEN

Two subroutines, WCHAR and CHARTY, allow you to annotate graphics. If
the turtle is at (X,Y) you can use these subroutines to put a
character or string on the screen with its lower left corner at (X,Y).
The WCHAR subroutine uses an array stored in the file SYSTEM.CHARSET.
This array contains all the characters used, and is read in by the
initialization routine when your program $USES TURTLEGRAPHICS. The
subroutine DRAWBL is then used to copy each character from the array
onto the screen. (Note that WSTRING is not available in FORTRAN
because its argument is a string.)

If you make up a file containing your own character set, you should
rename the old SYSTEM.CHARSET and then name your new array
SYSTEM.CHARSET.

The WCHAR subroutine has the form

 WCHAR (CH)

where CH is an expression of type CHAR. This subroutine places the
character on the screen with its lower left corner at the current
location of the turtle. When this subroutine is used, the turtle is
shifted to the right 7 dots from its old position. For example, this
puts an X in the center of the screen:

 CALL PENCOL (0)
 CALL MOVETO (137,90)
 CALL WCHAR ('X')

In this example, note that it was not necessary to specify a new
PENCOL before calling WCHAR. The character is not plotted with the
current pen color; rather it depends on the current MODE, just as
DRAWBL does. For details, see CHARTY below.

The CHARTY subroutine has the form

 CHARTY (MODE)

where MODE is an integer selecting one of the 16 modes described above
for DRAWBL. MODE defines the way characters get written on the screen.
The default MODE is 10, which places each character on the screen in
white, surrounded by a black rectangle. One of the most useful other
MODEs is 6, which does an exclusive OR of the character with the
current contents of the screen. Note that redrawing a character in
exclusive OR mode effectively erases the character, leaving the
original image unaffected. This is especially useful for user messages
in a graphics oriented program.

Another useful MODE is 5, which gives inverse characters. Lastly,
inverted exclusive OR would be a MODE of 9.

16.2 THE APPLESTUFF UNIT
This section tells you how to generate random numbers, how to use the
control paddle and button inputs, how to read the cassette audio
input, how to switch the control's TTL outputs and how to generate
sounds on the Apple's speaker. To use these special Apple features
from FORTRAN, you first have to place the statement

 $USES APPLESTUFF

before any executable statements in your program. The $ must appear in
column 1. This compiler directive statement may appear after other
compiler directive statements or comment statements. If you wish to
use both TURTLEGRAPHICS and APPLESTUFF you would say both:

 $USES TURTLEGRAPHICS
 $USES APPLESTUFF

16.2.1 RANDOM FUNCTION/RANDOI SUBROUTINE

RANDOM is an integer function with no parameters. It returns a value
from 0 through 32767. If RANDOM is called repeatedly, the result is a
psuedo-random sequence of integers. The following routine will display
a random integer on the screen that is between the indicated limits:

C DEMO PROGRAM OF RANDOM FUNCTION
$USES APPLESTUFF
 INTEGER HI,LO,RESULT
 HI=100
 LO=10
 DO 100 I=1,10
 X=(HI-LO)/32767.0
 RESULT=X*RANDOM()+LO
100 WRITE(*,200)RESULT
200 FORMAT(I8)
 END

RANDOI is a subroutine with no parameters. Each time you run a given
program using RANDOM, you will get the same random sequence unless you
use RANDOI.

RANDOI uses a time-dependent memory location to generate a starting
point for the random generator. The starting point changes each time
you do any input or output operation in your program. If you use no
I/O, the starting point for the random sequence does not change.

16.2.2 USING THE GAME CONTROLS

The PADDLE and BUTTON functions and the TTLOUT subroutine are
known as the game controls.

The PADDLE function has the form

 PADDLE (SELECT)

where SELECT is an integer treated modulo 4 to select one of the four
paddle inputs numbered 0, 1, 2, and 3. PADDLE returns an integer in
the range 0 to 255 which represents the position of the selected
paddle. A 150K ohm variable resistance can be connected in place of
any of the four paddles.

If you try to read two paddles too quickly in succession, the hardware
may not be able to keep up. PADDLE data will be clipped and the PADDLE
function will not return the correct results. A suitable delay is
given by using a do-nothing loop as illustrated in the following example

.
This program reads the paddles and loops until a key is pressed.

C DEMO OF PADDLE FUNCTION
C
C HERE WE ARE USING A DO (NOTHING) LOOP TO SLOW DOWN
C
$USES APPLESTUFF
300 I=PADDLE(0)
 DO 200 K=0,3
200 CONTINUE
 J=PADDLE(1)
 WRITE(*,100)I,J
 IF (.NOT. KEYPRE()) GOTO 300
100 FORMAT(2I8)
 END

The BUTTON function has the form

 BUTTON (SELECT)

where SELECT is an integer treated modulo 4 to select one of the three
button inputs numbered 0, 1, and 2, or the audio cassette input
numbered 3. The BUTTON function returns a logical value of true if
the selected game-control button is pressed, and false otherwise.

When BUTTON(3) is used to read the audio cassette input, it samples
the cassette input, which changes from true to false and vice versa at
each zero crossing of the input signal.

There are four TTL level outputs available on the game connector along
with the button and paddle inputs. The TTLOUT subroutine is used to
turn these outputs on or off. TTLOUT has the form

 TTLOUT (SELECT, DATA)

where SELECT is an integer treated modulo 4 to select one of the four
TTL outputs numbered 0, 1, 2, and 3. DATA is a logical expression.

If DATA is true, then the selected output is turned on. It remains on
until TTLOUT is invoked with the DATA set to false.

16.2.3 MAKING MUSIC: THE NOTE SUBROUTINE

The NOTE subroutine has the form

 NOTE (PITCH, DURATION)

where PITCH is an integer from 0 through 50 and DURATION is an integer
from 0 through 255.

A PITCH of 0 is used for a rest, and 2 through 48 yield a tempered
(approximately) chromatic scale. DURATION is in arbitrary units of
time.

NOTE (1,1) gives a click.

A musical scale is played by the following program:

C PROGRAM PLAYS MUSICAL SCALE
C
$USES APPLESTUFF
 PROGRAM MUSIC
 INTEGER PITCH
 DO 100 PITCH=2,48
100 CALL NOTE(PITCH,10)
 END

16.2.4 THE KEYPRE FUNCTION

The KEYPRE function returns a value of true if a key is pressed from
the console. Refer to the program in the Using the Game Controls
Section for an example of the KEYPRE function.

APPENDIX A FILE NAME SELECTION
A.1 INTRODUCTION
Chapter 4 discusses the responses to the codefile prompt (during compila
tion)
and it was noted that you could enter a "$" as an abbreviation to indica
te
that the previous name (the input pathname) was to be used. This is onl
y one
special case of a more general abbreviation facility allowed in response
 to all
pathname prompts. Additionally, there is a menu facility that allows yo
u
to examine all the files that share a common prefix. From this menu, yo
u can
then select the file you wish to enter. If you make a mistake or wish t
o
change your mind about a file that was selected, a editing facility is
available to make a change. These features are described in the followi
ng
sections.

A.2 PATHNAME SELECTION
A pathname may be viewed as having a prefix and a suffix. The prefix is
 the
pathname of the directory containing the desired file, the suffix. Thus
,
for example, if /P/Q/R/S is the full pathname, /P/Q/R is the prefix, and
 S
its suffix. See the Pascal documentation for a description of the "*"
abbreviation. The default prefix when none is explicitly specified with
 a
filename is the "$" notation, which refers to "the previous pathname".

Additionally, we have an abbreviation scheme for both the prefix and suf
fix
based on the prefix and suffix of a previous pathname.

By placing a "$" or"$/"at the begining of a filename (with a suffix, e.g
., XYZ)
you indicate
the prefix of the previous file is to be used. Thus, if /P/Q/R/S is the
previous pathname, then $XYZ or $/XYZ means /P/Q/R/XYZ. If a "$" or a "
/$"
is used as a suffix (the filename), you indicate that the preceding file
's
is to be used. Thus .D1$ or .D1/$ would mean .D1/S assuming /P/Q/R/S wa
s
the previous pathname. So, $$ or $/$ means use both the previous
file's prefix and suffix. In other words, $/$ is identical to just a si
ngle
$.

In some cases you might want to refer to a file in a different director
y
from the previous file, but related because it has a common node on the
pathname tree. For example, /P/Q/R/S might be the input field and /P/Q/
XYZ
might be the name for the codefile. For these cases the special prefix
character "^" has been provided. The "^" means use the previous prefix,
but with the final directory component removed. Thus, in our example,
if /P/Q/R/S is the input pathname, then ^XYZ or ^/XYZ can be used to ref
er
to the codefile /P/Q/XYZ. The prefix is /P/Q/R, so the single "^" indic
ates
only /P/Q is to be used.

The "^" notation is repetitive, i.e., multiple "^"s may be used to "peel
"
off layers of directories in a prefix. Again using the previous example
,

given the file /P/Q/R/S with its prefix /P/Q/R, a single "^" indicates t
he
prefix /P/Q is to be used (as in ^XYZ or ^/XYZ to mean /P/Q/XYZ). Two
"^"s, i.e., "^^" indicate that /P should be used (e.g., ^^XYZ or ^^/XYZ
means /P/XYZ). Three "^"s, in this example, removes all directories.
This is the same as not specifying any prefix in the first place. Thus
^^^XYZ or ^^^/XYZ is the same as just XYZ>

The following table summarizes these abbreviation rules using the exampl
es
we have been using (previous pathname /P/Q/R/S, current file - XYZ):

 $ ---> ~/P/Q/R/S
 $XYZ or $/XYZ --->~ /P/Q/R/XYZ
 ^XYZ or ^/XYZ ---> /P/Q/XYZ
 ^^XYZ or ^^/XYZ ---> /P/XYZ
 ^^^XYZ or ^^^/XYZ ---> XYZ
 .D1$ or .D1/$ ---> .D1/S

Note that these abbreviations are based on a previous pathname. Initial
ly,
when you are prompted for the input field, there is no previous pathname
.
Thus the initial prefix and suffix are both null so that these abbreviat
ions
cannot be used (except, of course, for the abbreviation "*"). Once the
 input
file is specified, a prefix and a suffix is determined, so the codefile
specification can refer to the input file's prefix and suffix. The code
file
specification, in turn, determines a prefix and a suffix for the listing
 file
and (you don't get an error file if there is a listing file, and a null
response
to the listing request does not affect the prefix and suffix determined
by the
codefile).

A.2.1 File Selection

In addition to all abbreviation options provided, the compiler also supp
orts
the File Selection notation of the Systems Utility Filer by using the wi
ldcard
character, "=" in a pathname's suffix. If this is used, and an up or do
wn arrow
is typed, a menu will be displayed showing all the files in the specifie
d
directory which satisfy the pathname pattern. If an "=" is not specifie
d and

the up or down arrow is typed, an "=" will be added to the end of the fi
le
patern. A RETURN will also have the same effect as an up or down arrow
when the
pathname ends in a "/" or has an explicit "=" in its suffix.

When the menu is displayed, the first file on the list will be highlight
ed.
You may select a file by pointing to a highlighted file with the right a
rrow.
The highlight can be moved with the up or down arrows. If you change yo
ur
mind you may deselect a highlighted file with the left arrow. Since onl
y
one file may be selected for any one compiler prompt, you will get a war
ning
message if you select a second file. If you do select a second file, yo
ur
first choice will be deselected for you.

Once you are satisfied with your selection, press RETURN. The full path
name
for the selected file will be shown on the prompt line. Press RETURN ag
ain
to enter the pathname you just chose.

If the file you selected was actually a directory (as indicated by a "/"
 at
the end of the name), the pathname will end with a "/" after pressing RE
TURN.
Pressing RETURN the second time turns on the file selector again display
ing the
file menu for the specified directory. You can descend through the dire
ctory
tree using this scheme.

Any errors that occur during pathname selection result in an error messa
ge
displayed in a window on the screen. You can recover from the error by
pressing RETURN or terminate the compiler with ESCAPE. If RETURN is use
d
the cursor will be located at the end of the prompt line that caused the
error. You may correct it by using the system's editing capabilities.
These are discussed in the next section.

A.3 EDITING INPUT FIELDS
All responses to the prompts can be edited the same way. Basically edit
ing
is similar to the Systems Utility Filer, except for a few minor changes

and additions.

The left and right arrow keys move the cursor back and forth enabling yo
u
to type over mistakes. A character is entered in the position indicated
by the cursor and the cursor moves one place to the right.

To delete a character, move the cursor to that character, then press the
open apple and right-arrow keys simultaneously. All the characters to t
he
right of the cursor will shift to the left to filling the space of the d
eleted
character. The cursor does not move. You can also delete a character t
o
the left of the cursor by pressing the open apple and left-arrow keys
simultaneously. Everything to the right of the cursor (including the cu
rsor)
will move to the left to occupy the deleted character position. Holding
down the open apple and right or left arrow keys will provide multiple
deletions.

To insert a character, move the cursor to the character which is immedia
tely
to the right of the desired location and press the open apple and "i" ke
y
at the same time. A vertical bar ("|") will appear within the cursor
to indicate the insert mode. Each character typed is entered at the cur
sor
location. The cursor and everything to the right shifts to the right wi
th
each insertion. You can also move and delete characters in the insert m
ode
by using the open apple and left or right arrow keys as described above.
Insert mode is terminated by pressing the open apple and "i" keys simult
aneously
a second time.

What has been described so far is essentially the same as the Systems Ut
ility
Filer. However, ESCAPE in the Systems Utility Filer has a differs from
the
ESCAPE in the compiler. In the Systems Utility Filer ESCAPE means resto
re
the originally displayed information whereas pressing ESCAPE during a co
mpiler
prompt means terminate the compiler (unless, like in the Filer, you are
"popping" a menu window). To restore an originally displayed line in th
e
compiler press the open apple and ESCAPE keys simultaneously.

There is one additional editing function provided by the compiler. Pres

sing
the open apple and "d" keys at the same time will delete everything to t
he
right of the cursor on that line. This function is not allowed in the i
nsert
mode.

If you forget any of these functions you can type the "help" request fun
ction
by pressing the open apple and "?" keys simultaneously (shift is optiona
l).
A window display will present a summary of the editing keys. The window
 is
removed by typing either RETURN or ESCAPE.

A.4 SOS ERROR MESSAGES
1 Invalid system call number
2 Caller's zero page is not $1A
3 Invalid extend byte in pointer
4 Invalid system call parameter count
5 Pointer parameter is out of bounds

16 Device name not found
17 Invalid device number

32 Invalid request code
33 Invalid control/status code
34 Invalid control/status parameter
35 Device is not open

37 Resource is not available
38 Invalid operation
39 I/O error

43 Device is write-protected
44 Byte count is not a multiple of 512
45 Block number is too large
46 Diskette has been switched

64 Invalid pathname syntax
65 Character file control block is full
66 Block file control block is full
67 Invalid file reference number
68 Path not found
69 Volume not found
70 File not found
71 Duplicate filename
72 Overrun error
73 Directory is full

74 Incompatible file format
75 Unsupported storage type
76 End of file error
77 Position is out of range
78 Access error
79 User-supplied buffer is too small
80 File is busy
81 Directory error
82 Directory is not in SOS format
83 Invalid value in list parameter
84 Out of free memory for system buffer
85 Buffer table is full
86 Invalid system buffer parameter
87 Duplicate volume error
88 Not a block device
89 Level error
90 Invalid bitmap address has been found on volume

112 Invalid joystick mode

224 Invalid segment address
225 Segment request denied
226 Segment table is full
227 Invalid segment number
228 Segment not found
229 Invalid search mode
230 Invalid change mode
231 Invalid page count

252 No files were selected from the directory or the directory is empty
253 Pathname does not specify a directory
254 No file was selected from the list
255 Too many open files for the Primitives to handle

APPENDIX B FORTRAN ERROR MESSAGES
B.1 COMPILE-TIME ERROR MESSAGES
1 Fatal error reading source block
2 Nonnumeric characters in label field
3 Too many continuation lines
4 Fatal end of file encountered
5 Labeled continuation line
6 Missing field on $ compiler directive line
7 Unable to open listing file specified on $ compiler directive
 line
8 Unrecognizable $ compiler directive
9 Input source file not valid textfile format

10 Maximum depth of include file nesting exceeded
11 Integer constant overflow
12 Error in real constant
13 Too many digits in constant
14 Identifier too long
15 Character constant extends to end of line
16 Character constant zero length
17 Illegal character in input
18 Integer constant expected
19 Label expected
20 Error in label
21 Type name expected (INTEGER, REAL, LOGICAL, or CHARACTER[*n])
22 Integer constant expected
23 Extra characters at end of statement
24 '(' expected
25 Letter IMPLICIT'ed more than once
26 ')' expected
27 Letter expected
28 Identifier expected
29 Dimension(s) required in DIMENSION statement
30 Array dimensioned more than once
31 Maximum of 3 dimensions in an array
32 Incompatible arguments to EQUIVALENCE
33 Variable appears more than once in a type specification
 statement
34 This identifier has already been declared
35 This intrinsic function cannot be passed as an argument
36 Identifier must be a variable
37 Identifier must be a variable or the current FUNCTION
38 '/' expected
39 Named COMMON block already saved
40 Variable already appears in a COMMON block
41 Variables in two different COMMON blocks cannot be equivalenced
42 Number of subscripts in EQUIVALENCE statement does not agree
 with variable declaration
43 EQUIVALENCE subscript out of range
44 Two distinct cells EQUIVALENCE'd to the same location in a COMMON
 block
45 EQUIVALENCE statement extends a COMMON block in the negative
 direction
46 EQUIVALENCE statement forces a variable to two distinct
 locations, not in a COMMON block
47 Statement number expected
48 Mixed CHARACTER and numeric items not allowed in same COMMON
 block
49 CHARACTER items cannot be EQUIVALENCE'd with non-character items
50 Illegal symbol in expression
51 Can't use SUBROUTINE name in an expression
52 Type of argument must be INTEGER or REAL
53 Type of argument must be INTEGER, REAL, or CHARACTER
54 Types of comparisons must be compatible

55 Type of expression must be LOGICAL
56 Too many subscripts
57 Too few subscripts
58 Variable expected
59 '=' expected
60 Size of EQUIVALENCE'd CHARACTER items must be the same
61 Illegal assignment - types do not match
62 Can only call SUBROUTINES
63 Dummy parameters cannot appear in COMMON statements
64 Dummy parameters cannot appear in EQUIVALENCE statements
65 Assumed-size array declarations can only be used for dummy
 arrays
66 Adjustable-size array declarations can only be used for dummy
 arrays
67 Assumed-size array dimension specifier must be last dimension
68 Adjustable bound must be either parameter or in COMMON prior to
 appearance
69 Adjustable bound must be simple integer variable
70 Cannot have more than 1 main program
71 The size of a named COMMON must be the same in all procedures
72 Dummy arguments cannot appear in DATA statements
73 COMMON variables cannot appear in DATA statements
74 SUBROUTINE names, FUNCTION names, INTRINSIC names, etc. cannot
 appear in DATA statements
75 Subscript out of range in DATA statement
76 Repeat count must be >= 1
77 Constant expected
78 Type conflict in DATA statement
79 Number of variables does not match number of values in DATA
 statement list
80 Statement cannot have label
81 No such INTRINSIC function
82 Type declaration for INTRINSIC function does not match actual
 type of INTRINSIC function
83 Letter expected
84 Type of FUNCTION does not agree with a previous call
85 This procedure has already appeared in this compilation
86 This procedure has already been defined to exist in another unit
 via a $USES command
87 Error in type of argument to an INTRINSIC FUNCTION
88 SUBROUTINE/FUNCTION was previously used as a FUNCTION/SUBROUTINE
89 Unrecognizable statement
90 Functions cannot be of type CHARACTER
91 Missing END statement
92 A program unit cannot appear in a separate compilation
93 Fewer actual arguments than formal arguments in
 FUNCTION/SUBROUTINE call
94 More actual arguments than formal arguments in
 FUNCTION/SUBROUTINE call
95 Type of actual argument does not agree with type of format
 argument

96 The following procedures were called but not defined:
97 This procedure was already defined by a $EXT directive
98 Maximum size of type CHARACTER is 255, minimum is 1

100 Statement out of order
101 Unrecognizable statement
102 Illegal jump into block
103 Label already used for FORMAT
104 Label already defined
105 Jump to format label
106 DO statement forbidden in this context
107 DO label must follow DO statement
108 ENDIF forbidden in this context
109 No matching IF for this ENDIF
110 Improperly nested DO block in IF block
111 ELSEIF forbidden in this context
112 No matching IF for ELSEIF
113 Improperly nested DO or ELSE block
114 '(' expected
115 ')' expected
116 THEN expected
117 Logical expression expected
118 ELSE statement forbidden in this context
119 No matching IF for ELSE
120 Unconditional GOTO forbidden in this context
121 Assigned GOTO forbidden in this context
122 Block IF statement forbidden in this context
123 Logical IF statement forbidden in this context
124 Arithmetic IF statement forbidden in this context
125 ',' expected
126 Expression of wrong type
127 RETURN forbidden in this context
128 STOP forbidden in this context
129 END forbidden in this context
131 Label referenced but not defined
132 DO or IF block not terminated
133 FORMAT statement not permitted in this context
134 FORMAT label already referenced
135 FORMAT must be labeled
136 Identifier expected
137 Integer variable expected
138 'TO' expected
139 Integer expression expected
140 Assigned GOTO but no ASSIGN statements
141 Unrecognizable character constant as option
142 Character constant expected as option
143 Integer expression expected for unit designation
144 STATUS option expected after ',' in CLOSE statement
145 Character expression as filename in OPEN
146 FILE= option must be present in OPEN statement
147 RECL= option specified twice in OPEN statement

148 Integer expression expected for RECL= option in OPEN statement
149 Unrecognizable option in OPEN statement
150 Direct access files must specify RECL= in OPEN statement
151 Adjustable arrays not allowed as I/O list elements
152 End of statement encountered in implied DO, expressions beginning
 with '(' not allowed as I/O list elements
153 Variable required as control for implied DO
154 Expressions not allowed as reading I/O list elements
155 REC= option appears twice in statement
156 REC= expects integer expression
157 END= option only allowed in READ statement
158 END= option appears twice in statement
159 Unrecognizable I/O unit
160 Unrecognizable format in I/O statement
161 Options expected after ',' in I/O statement
162 Unrecognizable I/O list element
163 Label used as format but not defined in format statement
164 Integer variable used as assigned format but no ASSIGN statements
165 Label of an executable statement used as a format
166 Integer variable expected for assigned format
167 Label defined more than once as format
169 Function calls require '()'
170 Only sequential formatted files can be print files

200 Error in reading $USES file
201 Syntax error in $USES file
202 SUBROUTINE/FUNCTION name in $USES file has already been declared
203 FUNCTIONS cannot return values of type CHARACTER
204 Unable to open $USES file
205 Too many $USES statements
206 No .TEXT info for this unit in $USES file
207 Illegal segment kind in $USES file
208 There is no such unit in this $USES file
209 Missing UNIT name in $USES statement
210 Extra characters at end of $USES directive
211 Intrinsic units cannot be overlayed
212 Syntax error in $EXT directive
213 A SUBROUTINE cannot have a type
214 SUBROUTINE/FUNCTION name in #EXT directive has already been
 define

400 Code file write error
401 Routine too complex
402 Too many SUBROUTINES/FUNCTIONS in segment
403 Procedure too large (code buffer too small)
404 Insufficient room for scratch file in system directory
405 Read error on scratch file

B.2 RUN-TIME ERROR MESSAGES

600 Format missing final ')'
601 Sign not expected in input
602 Sign not followed by digit in input
603 Digit expected in input
604 Missing N or Z after B in format
605 Unexpected character in format

607 Integer expected for w field in format
608 Positive integer required for w field in format
609 '.' expected in format
610 Integer expected for d field in format
611 Integer expected for e field in format
612 Positive integer required for e field in format
613 Positive integer required for w field in A format
614 Hollerith field in format must not appear for reading
615 Hollerith field in format requires repetition factor
616 X field in format requires repetition factor
617 P field in format requires repetition factor
618 Integer appears before '+' or '-' in format
619 Integer expected after '+' or '-' in format
620 P format expected after signed repetition factor in format
621 Maximum nesting level for formats exceeded
622 ')' has repetition factor in format
623 Integer followed by ',' illegal in format
624 '.' is illegal format control character
625 Character constant must not appear in format for reading
626 Character constant in format must not be repeated
627 '/' in format must not be repeated
628 '$' in format must not be repeated
629 BN or BZ format control must not be repeated
630 Attempt to perform I/O on unknown unit number
631 Formatted I/O attempted on file opened as unformatted
632 Format fails to begin with '('
633 I format expected for integer read
634 F or E format expected for real read
635 Two '.' characters in formatted real read
636 Digit expected in formatted real read
637 L format expected for logical read
639 T or F expected in logical read
640 A format expected for character read
641 I format expected for integer write
642 w field in F format not greater than d field + 1
643 Scale factor out of range of d field in E format
644 E or F format expected for real write
645 L format expected for logical write
646 A format expected for character write
647 Attempt to do unformatted I/O to a unit opened as formatted
648 Unable to write blocked output, possibly no room on device
 for file
649 Unable to read blocked input
650 Error in formatted textfile, no <cr> in last 512 bytes

651 Integer overflow on input
652 Too many bytes read out of or into a direct access unit record
653 Incorrect number of bytes read from a direct access unit record
654 Attempt to open direct access unit on unblocked device
655 Attempt to do external I/O on a unit beyond end of file record
656 Attempt to position a unit for direct access on a nonpositive
 record number
657 Attempt to do direct access to a unit opened as sequential
658 Attempt to position direct access unit on unblocked device
659 Attempt to position direct access unit beyond end of file for
 reading
660 Attempt to backspace unit connected to unblocked device

662 Argument to ASIN or ACOS out of bounds (ABS(X) .GT. 1.0)
663 Argument to SIN or COS too large (ABS(X) .GT. 10E6)
664 Attempt to do unformatted I/O to internal unit
665 Attempt to put more than one record into internal unit
666 Attempt to write more characters to internal unit than its length
667 EOF called on unknown unit
697 Integer variable not currently assigned a format label
698 End of file encountered on read with no END= option
699 Integer variable not ASSIGNed a label used in assigned goto
700 Attempt to backspace UCSD file - Restriction
701 Underflow in TAN
702 Argument to LN negative or zero
703 Argument to SQRT negative
704 Too many bytes read out of unformatted sequential unit record

902 Bad unit number
903 Illegal operation (e.g., read from .PRINTER)

905 Lost unit -- no longer on line
906 Lost file -- file is no longer in directory
907 Illegal pathname
908 No room -- insufficient space in directory
909 No unit -- unit is not on line
910 No such file in specified directory
911 Duplicate pathname
912 Attempt to open an already open file
913 Attempt to access a closed file
914 Bad input format -- error in reading number
915 Ring buffer overflow -- input arriving too fast
916 Write-protect error -- disk is protected

919 Too many files open for system to handle

932 Invalid request code
933 Invalid control/status code
934 Invalid control/status parameter
935 Device is not open

937 Resource is not available
938 Invalid operation
939 I/O error

943 Device is write-protected
944 Byte count is not a multiple of 512
945 Block number is too large
946 Diskette has been switched

964 Invalid pathname syntax
965 Character file control block is full
966 Block file control block is full
967 Invalid file reference number
968 Path not found
969 Volume not found
970 File not found
971 Duplicate filename
972 Overrun error
973 Directory is full
974 Incompatible file format
975 Unsupported storage type
976 End of file error
977 Position is out of range
978 Access error
979 User-supplied buffer is too small
980 File is busy
981 Directory error
982 Directory is not in SOS format
983 Invalid value in list parameter
984 Out of free memory for system buffer
985 Buffer table is full
986 Invalid system buffer parameter
987 Duplicate volume error
988 Not a block device
989 Level error
990 Invalid bitmap address has been found on volume

1000+ Compiler debug error messages - should never appear in
 correct programs

APPENDIX C TABLES
C.1 UNIT IDENTIFIERS
The identifiers listed below are declared or defined only if your
program $USES the unit under which they are listed. If your program
does not use the particular unit, you can use the identifier names for

other purposes.

 TURTLEGRAPHICS UNIT IDENTIFIERS

 CHARTY MOVETO TURTLA
 DRAWBL PENCOL TURTLX
 FILLSC SCREEN TURTLY
 GRAFMO TEXTMO VIEWPO
 INITTU TURN WCHAR
 MOVE TURNTO

 APPLESTUFF UNIT IDENTIFIERS

 BUTTON KEYPRE NOTE
 PADDLE RANDOM RANDOI
 TTLOUT

C.2 INTRINSIC FUNCTIONS
This is the list of intrinsic functions available in Apple FORTRAN.
The type of the result is listed first, followed by the name of the
function in all caps, and the type of the argument(s) in parentheses.

TYPE CONVERSION

 integer INT (real)
 integer IFIX (real)

 Converts from real to integer.

 real REAL (integer)
 real FLOAT (integer)

 Converts integer to real.

 integer ICHAR (character)

 Converts the first character of the argument string to its
 corresponding integer value, according to the ASCII
 collating sequence. CHAR is the reverse of ICHAR.

TRUNCATION

 real AINT (real)

 Removes the fractional part of a real variable, returning

 the result as a real.

NEAREST WHOLE NUMBER

 real ANINT (real)

 Finds nearest whole number, that is: INT(argument+.5) if the
 argument is .GE. 0, otherwise INT(argument-.5).

NEAREST INTEGER

 integer NINT (real)

 Finds nearest integer: INT(argument+.5) if argument .GE. 0,
 otherwise INT(argument-.5).

ABSOLUTE VALUE

 integer IABS (integer)
 real ABS (real)

 Returns absolute value.

REMAINDERING

 integer MOD (integer_a, integer_b)
 real AMOD (real_a, real_b)

 Returns the result of a-INT(a/b)*b.

TRANSFER OF SIGN

 integer ISIGN (integer_a, integer_b)
 real SIGN (real_a, real_b)

 Converts sign of a according to sign of b. Result is |a| if
 b .GE. 0, otherwise result is -|a|.

POSITIVE DIFFERENCE

 integer IDIM (integer_a, integer_b)
 real DIM (real_a, real_b)

 Takes the positive difference of the two arguments. Result is
 a-b if a .GE. b, otherwise result is 0.

MAGNITUDE COMPARISON

 integer MAX0 (integer_a, integer_b,... integer_n)
 real AMAX1 (real_a, real_b,... real_n)
 real AMAX0 (integer_a, integer_b,... integer_n)
 integer MAX1 (real_a, real_b,... real_n)

 Returns the largest (most positive) of all the actual
 arguments.

 integer MIN0 (integer_a, integer_b,... integer_n)
 real AMIN1 (real_a, real_b,... real_n)
 real AMIN0 (integer_a, integer_b,... integer_n)
 integer MIN1 (real_a, real_b,... real_n)

 Returns the smallest (least positive) of all the actual
 arguments.

SQUARE ROOT

 real SQRT (real)

 Returns the square root of the argument.

C.2.1 TRANSCENDENTAL FUNCTIONS

The transcendental functions all return real results, and all
arguments are real. The arguments to SIN, COS, TAN, SINH, COSH and
TANH are in radians. The results of ASIN, ACOS, ATAN and ATAN2 are in
radians.

 EXPExponential

 ALOGNatural logarithm

 ALOG10Common logarithm

 SINSine

 COSCosine

 TANTangent

 ASINArcsine

 ACOSArccosine

 ATANArctangent

 ATAN2(a, b)...................Arctan(a/b)

 SINHHyperbolic Sine

 COSHHyperbolic Cosine

 TANHHyperbolic Tangent

C.2.2 LEXICAL COMPARISONS

The lexical functions all return logical results, and all arguments
are character strings.

 LGE(a, b)

 Returns true if the two strings are identical, or if the first
 non-identical character in string a has an ASCII collating
 sequence number greater than or equal to the corresponding
 character in string b.

 LGT(a, b)

 Returns true if the first non-identical character in string a
 has an ASCII collating sequence number greater than the
 corresponding character in string b.

 LLE(a, b)

 Returns true if the two strings are identical, or if the first
 non-identical character in string a has an ASCII collating
 sequence number less than the corresponding character in
 string b.

 LLT(a, b)

 Returns true if the first non-identical character in string a
 has an ASCII collating sequence number less than the
 corresponding character in string b.

C.3 ASCII CHARACTER CODES
 Code Char Code Char Code Char Code Char

 Dec Hex Dec Hex Dec Hex Dec Hex
 0 00 NUL 32 20 SP 64 40 @ 96 60 `

 1 01 SOH 33 21 ! 65 41 A 97 61 a
 2 02 STX 34 22 " 66 42 B 98 62 b
 3 03 ETX 35 23 # 67 43 C 99 63 c
 4 04 EOT 36 24 $ 68 44 D 100 64 d
 5 05 ENQ 37 25 % 69 45 E 101 65 e
 6 06 ACK 38 26 & 70 46 F 102 66 f
 7 07 BEL 39 27 ' 71 47 G 103 67 g
 8 08 BS 40 28 (72 48 H 104 68 h
 9 09 HT 41 29) 73 49 I 105 69 i
 10 0A LF 42 2A * 74 4A J 106 6A j
 11 0B VT 43 2B + 75 4B K 107 6B k
 12 0C FF 44 2C , 76 4C L 108 6C l
 13 0D CR 45 2D - 77 4D M 109 6D m
 14 0E SO 46 2E . 78 4E N 110 6E n
 15 0F SI 47 2F / 89 4F O 111 6F o
 16 10 DLE 48 30 0 80 50 P 112 70 p
 17 11 DC1 49 31 1 81 51 Q 113 71 q
 18 12 DC2 50 32 2 82 52 R 114 72 r
 19 13 DC3 51 33 3 83 53 S 115 73 s
 20 14 DC4 52 34 4 84 54 T 116 74 t
 21 15 NAK 53 35 5 85 55 U 117 75 u
 22 16 SYN 54 36 6 86 56 V 118 76 v
 23 17 ETB 55 37 7 87 57 W 119 77 w
 24 18 CAN 56 38 8 88 58 X 120 78 x
 25 19 EM 57 39 9 89 59 Y 121 79 y
 26 1A SUB 58 3A : 90 5A Z 122 7A z
 27 1B ESC 59 3B ; 91 5B [123 7B {
 28 1C FS 60 3C < 92 5C \ 124 7C |
 29 1D GS 61 3D = 93 5D] 125 7D }
 30 1E RS 62 3E > 94 5E ^ 126 7E ~
 31 1F US 63 3F ? 95 5F _ 127 7F DEL

APPENDIX D FORTRAN SYNTAX
DIAGRAMS

APPENDIX E FORTRAN STATEMENT
SUMMARY
In the following summary of Apple FORTRAN statements, FORTRAN reserved
words are capitalized; other entities that are required by the
statement, such as arguments and type qualifiers, are in lower case.
Items enclosed in square brackets: [] are optional. An ellipsis
indicate that the previous item may be repeated. For instance in the
CALL statement shown below, the named subroutine can have no

arguments, in which case the name of the subroutine is not followed by
anything, or it can have one argument, in which case the argument is
enclosed in parentheses, or it can have more than one argument in
which case the argument list is enclosed in parentheses and the
individual arguments are separated by commas.

The type identifier below can be any of INTEGER, REAL, LOGICAL, or
CHARACTER[*length]. The length argument specifies the number of
characters that the entity can store, and is an unsigned, nonzero,
integer constant. I/O device unit numbers may be integer expressions.

ASSIGN statement label TO integer variable

BACKSPACE unit

CALL subroutine [([argument [,argument]...])]

CHARACTER [*length[,]] name [,name]...

COMMON [/[common_block]/]name_list[[,]/[common_block]/name_list]...

CONTINUE

DATA name_list/constant_list/ [[,]name_list/constant_list/]...

DIMENSION array(dimension) [,array(dimension)]...

DO statement [,] integer_variable=expression_1, expression_2
 [,expression_3]

ELSE

ELSE IF (expression) THEN

END

END IF

ENDFILE unit

EQUIVALENCE (name_list) [,(name_list)]...

EXTERNAL procedure [,procedure]...

FORMAT format_specification

function ([dummy_argument [,dummy_argument]...]) = expression

[type] FUNCTION function ([dummy_argument [,dummy_argument]...])

GO TO integer_variable [[,][statement_label [,statement_label]...)]

GO TO statement_label

GO TO (statement_label [,statement_label]...)[,] integer_variable

IF (expression) statement

IF (expression) statement1, statement2, statement3

IF (expression) THEN

IMPLICIT type (a [,a]...) [,type (a [,a]...)]...

INTEGER variable_name [,variable_name]

INTRINSIC function [,function]...

LOGICAL variable_name [,variable_name]...

OPEN (open_list)

PAUSE [character_constant or integer]

PROGRAM program_name

READ (control_information_list) [i/o_list]

REAL variable_name [,variable_name]

RETURN

REWIND unit

SAVE a[,a]...

STOP [character_constant or integer]

SUBROUTINE subroutine [([dummy_argument [,dummy_argument]...])]

arithmetic_variable = arithmetic_expression

logical_variable = logical_expression

character_variable = character_expression

WRITE (control_information_list) [i/o_list]

APPENDIX F ANSI FORTRAN: 66 VS. 77
F.1 INTRODUCTION
This Appendix contains a brief description of the major differences
between the new ANSI 77 Standard FORTRAN and the earlier, much more
common ANSI 66 Standard FORTRAN that you are probably more familiar
with. These differences break down into two categories, first, changes
that cleaned up those undefined areas remaining in the ANSI 66
specification, and secondly changes that added capabilities not
available in ANSI 66.

F.2 CONFLICTS
There are some conflicts between ANSI 66 and ANSI 77 FORTRAN. These
are listed in the sections immediately following. The additions made
to the language are described under ADDITIONS.

F.2.1 LINE FORMAT

A line that contains only blanks which are defined in Apple FORTRAN to
be the standard ASCII SPACE character in columns 1 to 72 is treated as
a comment line whereas ANSI 66 treated it as the initial line of a
statement.

Columns 1 through 5 of a continuation line must now contain blanks.
ANSI 66 made no requirement except that column 1 could not contain a C
unless it were to be treated as a comment. Noncontinuation lines must
be blank in column 6.

F.2.2 HOLLERITH

Hollerith constants and Hollerith data have been deleted. A new
character type has been substituted in their place, see below under
ADDITIONS. There is still an H edit descriptor, but it is not a
Hollerith constant.

F.2.3 ARRAYS

Each array subscript expression must not exceed its corresponding
upper bound. ANSI 66 allowed this under some circumstances.

You must now always specify all the dimensions of an array element.
ANSI 66 allowed multi-dimensional arrays to be specified with a one-
dimensional subscript in EQUIVALENCE statements.

F.2.4 I/O

No records may be written after an endfile record in a sequential
file. (This is made to be impossible by Apple FORTRAN I/O.)

Only positive values are allowed for I/O unit identifiers. ANSI 66 did
not specifically prohibit negative values.

You may not read into an H edit descriptor in a FORMAT statement.

F.2.5 INTRINSIC FUNCTIONS

An intrinsic function must appear in an INTRINSIC statement prior to
its use as an actual argument. ANSI 66 allowed it to appear in an
EXTERNAL statement instead. The intrinsic function class includes the
basic external function class of ANSI 66.

Naming an intrinsic function in a type-statement that conflicts with
the type of the intrinsic function does not remove the function from
the class of intrinsic functions. For ANSI 66, this would have been
sufficient to remove it.

There are now more intrinsic functions available than defined in ANSI
66. See Appendix B for a list of these.

F.2.6 OTHER CONFLICTS

This section summarizes the other conflicts between ANSI 66 and

ANSI 77.

* It is illegal to specify the type of an identifier more than once.

* The range of a DO loop may be entered only by execution of a DO
 statement. The concept of extended range of a DO as described in ANSI
 66 no longer exists and will be trapped by the compiler. Also, in
 ANSI 66 a large number of systems extended the standard by allowing
 the terminal parameter in a DO statement to be less than the initial
 parameter, but executed the DO loop one time, rather than zero times
 as specified in ANSI 77.

* A labeled END statement could conflict with the initial line of a
 statement in ANSI 66.

* The E or D output FORMAT edit descriptors will now append a plus or
 minus before the exponent field. This is an ANSI 77 feature not
 present in ANSI 66.

F.3 ADAPTING PROGRAMS
Here are some problem areas that you should consider if you are
contemplating translating programs into Apple FORTRAN from other

versions.

Subprograms written in languages other than FORTRAN or Pascal will
need to be rewritten. This is especially true of machine language
subprograms. It may be possible, however, to use a program written in
Pascal 6502 assembler code for the Apple without rewriting it.

FORTRAN has never specified the collating sequence of the character
set used. Apple FORTRAN uses both the ASCII encoded binary
representation as shown in Appendix B and its collating sequence.
Character relational expressions may not necessarily have the same
value if the translated program used another character collating
sequence. It is possible that the character set of the source program
contains characters not in the ASCII set.

* File name formats may be different.

* I/O capabilities may be different.

* The program may utilize full language features not available in the
 ANSI Standard subset.

* There are usually some language extensions introduced in most
 versions of FORTRAN that may not be available in Apple FORTRAN which
 is subset standard conforming.

* The program may utilize aspects of ANSI 66 FORTRAN that have been
 deleted from ANSI 77.

F.4 ADDITIONS
The three major additions to ANSI 77 are the IF statement constructs,
the CHARACTER data type, and the standardizations to I/O. I/O is
treated extensively in Chapter 11. The IF statement is discussed in
Chapter 10, and the CHARACTER statement is discussed in Chapter 7.

ANSI FORTRAN 66 had only an Arithmetic IF statement. ANSI 77 has
extended this to include the Logical IF statement, the Block IF
statement and the ELSE IF, ELSE and END IF statements. Together these
statements provide a vastly improved method of clearly and accurately
specifying the flow of program control. Refer to Chapter 10 for a
discussion of these IF statements.

APPENDIX G APPLE FORTRAN VS. ANSI 77
G.1 INTRODUCTION

This appendix is directed at the reader who is familiar with the ANSI
Standard FORTRAN 77 Subset language as defined in ANSI X3.9-1978. It
describes how Apple FORTRAN 77 differs from the standard language.
The differences fall into three general categories, unsupported
features, full-language features, and extensions to the Standard.

G.2 UNSUPPORTED FEATURES
There are two significant places where Apple FORTRAN 77 does not
comply with the Standard. One is that procedures cannot be passed as
formal parameters and the other is that INTEGER and REAL data types do
not occupy the same amount of storage. Both differences are due to
limitations of the UCSD P-Code architecture.

Parametric procedures are not supported simply because there is no
practical way to do so in the UCSD P-Code. The instruction set does
not allow the loading of a procedure's address onto the stack, and
more significantly, does not allow the calling of a procedure whose
address is on the stack.

REAL variables require 4 bytes (32 bits) of storage while INTEGER and
LOGICAL variables only require 2 bytes. This is due to the fact that
the UCSD P-Code supported operations on those types are implemented in
those sizes.

G.3 FULL-LANGUAGE FEATURES
There are several features from the full language that have been
included in this implementation for a variety of reasons. Some were
done at either minimal or zero cost, such as allowing arbitrary
expressions in subscript calculations. Others were included because it
was felt that they would significantly increase the utility of the
implementation, especially in an engineering or laboratory
application. In all cases, a program which is written to comply with
the subset restrictions will compile and execute, since the full
language includes the subset constructs. A short description of full
language features included in the implementation follows.

The subset does not allow function calls or array element references
in subscript expressions, but the full language and this
implementation do.

The subset restricts expressions that define the limits of a DO
statement, but the full language does not. Apple FORTRAN also allows
full integer expressions in DO statement limit computations.
Similarly, arbitrary integer expressions are allowed in implied DO
loops associated with READ and WRITE statements.

Apple FORTRAN allows an I/O unit to be specified by an integer

expression, as does the full language.

The subset does not allow expressions to appear in an I/O list whereas
the full language does allow expressions in the I/O list of a WRITE
statement. Apple FORTRAN allows expressions in the I/O list of a WRITE
statement providing that they do not begin with an initial left
parenthesis. User note: the expression (A+B)*(C+D) can be specified in
an output list as +(A+B)*(C+D) which, incidentally, does not generate
any extra code to evaluate the leading plus sign.

Apple FORTRAN allows an expression for the value of a computed GOTO,
consistent with the full language rather than the subset language.

Apple FORTRAN allows both sequential and direct access files to be
either formatted or unformatted. The subset language requires direct
access files to be unformatted and sequential to be formatted. Apple
FORTRAN also contains an augmented OPEN statement which takes
additional parameters that are not included in the subset. There is
also a form of the CLOSE statement, which is not included at all in
the subset. I/O is described in more detail in Chapters 11 and 12.

Apple FORTRAN includes the CHAR intrinsic function. CHAR (i) returns
the character in the ith position of the ASCII collating sequence.

 ICHAR(CHAR(i))=i

G.4 EXTENSIONS TO STANDARD
The language implemented has several minor extensions to the full
language standard. These are briefly described below.

Compiler directives have been added to allow the programmer to
communicate certain information to the compiler. An additional kind of
line, called a compiler directive line, has been added. It is
characterized by a dollar sign ($) appearing in column 1. Certain
directives are restricted to appear in certain places. A compiler
directive line is used to convey certain compile-time information to
the FORTRAN system about the nature of the current compilation. The
set of directives is briefly described below:

 $INCLUDE filename Include textually the file
 filename at this point in the
 source. Nested includes are
 implemented to a depth of nesting
 of five files. Thus, for
 example, a program may include
 various files with subprograms,
 each of which includes various
 files which describe common
 areas; this would be a depth of

 nesting of three files.

 $USES ident Similar to the USES command in the
 [IN filename] UCSD Pascal compiler. The already
 [OVERLAY] compiled FORTRAN subroutines or
 Pascal procedures contained in
 the file filename, or in the
 file *SYSTEM.LIBRARY if no
 file name is present, become
 callable from the currently
 compiling code. This directive
 must appear before the initial
 non-comment line.

 $XREF Produce a cross-reference listing
 at the end of each procedure
 compiled.

 $EXT SUBROUTINE name #parms The subroutine or function called
 or name is an assembly language
 $EXT [type] FUNCTION routine. The routine has exactly
 name #params #params reference parameters.

The edit control character $ can be used in formats to inhibit the
normal advance to the next record which is associated with the
completion of a READ or a WRITE statement. This is particularly useful
when prompting to an interactive device, such as the CONSOLE:, so that
a response can be on the same line as the prompt.

An intrinsic function, EOF, has been provided. The function accepts a
unit specifier as an argument and returns a logical value which
indicates whether the specified unit is at its end of file.

Upper and lower case source input is allowed. In most contexts, lower
case characters are treated as indistinguishable from their upper case
counterparts. Lower case is significant in character constants and
hollerith fields.

BIBLIOGRAPHY
 The FORTRAN readings suggested here provide information on the full
FORTRAN language.

Brainerd, Walter S., Charles H. Goldberg, and Jonathan L. Gross.
 "FORTRAN 77 Programming," New York, N.Y.: Harper & Row
 Publishers Inc., 1978.

Brainerd, Walter S. "FORTRAN 77." Communications of the ACM,

 Vol. 21, No. 10 (Oct. 1978).

Katzan, Harry, Jr. "FORTRAN 77," New York, N. Y.: Van Nostrand
 Reinhold Company, 1978.

Meissner, Loren P., and Elliott I. Organick. "FORTRAN 77,"
 Reading, Mass.: Addison-Wesley Publishing Co., 1980.

Wagener, Jerrold L. "FORTRAN 77 Principles of Programming,"
 New York, N. Y.: John Wiley and Sons, 1980.

INDEX
A

A edit descriptor 96
ANSI FORTRAN 66 4, 6, 216-218
ANSI FORTRAN 77 4, 6, 216-222
APPLESTUFF unit
 BUTTON function 133
 game controls 132, 133
 KEYPRE function 134
 NOTE subroutine 134
 PADDLE function 132, 133
 RANDOI subroutine 132
 RANDOM function 132
APPLE1 diskette 136-138, 154-156
APPLE2 diskette 136-138, 154-156
APPLE3 diskette 10
arguments
 by reference 116
 by value 116
arithmetic expressions
 integer division 59
 operators 58, 59
 result type 59
 type conversions 59
arithmetic IF statement 65
arrays
 ANSI 66 vs. ANSI 77 216
 assumed size 48
 asterisk dimension 47
 element name 48
 number of dimensions 47
 order of elements 48
 storage 48, 118
 subscript expression 48
 Turtle Graphics 129, 130

ASMDEMO program 10, 120-122
ASSCII Character Codes Table 186
Assembly language routines
 120-122
ASSIGN statement 54, 55
assigned GOTO statement 65
assignment statements
 computational 54
 label 54, 55

B

BACKSPACE statement 79, 85
bilingual programs 119-122
block IF statement 66-68
BN edit descriptor 86, 94
BUTTON function 133
BZ edit descriptor 94

C

CALL statement 98, 99
Cartesian coordinates 125, 127
CHAR intrinsic function 5, 221
character collating sequence
 35, 186
character data type 41, 42
character expressions 60
character set 34, 35
CHARACTER type statement 49
CHARTY subroutine 131
CLOSE statement 78, 83
CODE files 8, 12-15
comment lines 36
COMMON statement 23, 49, 50
compilation
 CODE file 12-15
 error messages 20, 21, 26,
 172-175
 modules 12, 13
 organizing programs 12
 partial 12
 same name option 20
 separate 13, 113
 TEXT file 12, 13
Compiler
 input requirements 18

 operation 18-26
 sample listing 25
compiler directives 5, 221, 222
 $EXT 14, 23, 24, 121
 $INCLUDE 23
 $USES 13, 14, 23, 110-113,
 116, 121
 $XREF 23, 26
compile-time error messages
 172-175
computational assignment statement
 54
computed GOTO statement 64
configuring Apple FORTRAN
 multi-drive user 155, 156
 single-drive user 136-138
CONSOLE: 10, 76, 80, 82, 84, 86,
 100, 105
CONTINUE statement 71
control statements
 arithmetic IF 65
 assigned GOTO 65
 block IF 66-68
 CONTINUE 71
 DO 70, 71
 END 72
 logical IF 65
 PAUSE 72
 STOP 72

D

DATA statements 37, 38, 52, 53
data type correspondence 118
data types
 character 41
 integer 40
 logical 41
 real 40, 41
database 78, 87
DIMENSION statement
 asterisk array dimension 47, 48
 dimension declarator 47
 form 47
direct access files 75, 76, 78, 85
diskettes
 formatting 141-143, 160-162
 making backups 140-145, 159-163
DO loop range 217

DO statement 70, 71
DO variable expression 5
DRAWBL subroutine 129-131

E

E edit descriptor 95
edit descriptors
 apostrophe 92
 blank interpretation 86, 94
 character 96
 dollar sign 86, 93, 222
 Hollerith 93, 216
 integer 95
 logical 96
 nonrepeatable 92-94
 positional 93
 real 95
 repeatable 94-96
 scale factor 94, 95
 slash 93
Editor 138-152, 157-170
ELSE statement 69
ELSEIF statement 69
END statement 22, 37, 38, 72, 99
ENDFILE statement 85
ENDIF statement 69
EOF 5, 79, 222
EQUIVALENCE statement 51, 52
error messages 172-177
expressions
 arithmetic 58-60
 character 60
 logical 61, 62
 operator precedence 62
 relational 60, 61
external files 75-77
external FUNCTION 100
EXTERNAL statement 50

F

F edit descriptor 95
Filer 138-152, 157-170
files
 direct access 5, 75, 76, 78, 85
 external 75-77

 internal 75, 76
 name 75
 sequential 5, 75, 77, 79, 85
FILLSC subroutine 127
formal parameters 5
FORMAT statement 37, 90-92
formatted files 75, 77, 78
formatted I/O 90-96
FORTLIB.CODE 10, 15, 30
FORTRAN
 ANSI 66 vs. 77 216-218
 Apple unsupported features 220
 Apple vs. ANSI 77 220-222
 Pascal interface 8, 116-120
 program development facility 2
 running a compiled program
 151, 167
 running a new program 145-151,
 165-167
 transferring programs 217, 218
 writing a program 151, 152, 168
FORTRAN statement summary 212,
 213
FORTRAN statements
 assignment 53-55
 continuation 37
 control 64-72
 DATA 52, 53
 defined 37
 initial line 37
 ordering 37, 38
 specification 45-52
 statement label 36
FORTRAN syntax diagrams 188-209
FORT1:
 configuring 136-138, 155, 156
 system files 138, 156
FORT2:
 configuring 136-138, 155, 156
 system files 138, 156
FUNCTION statement 13, 37, 38,
 98-100
functions
 calling with I/O statements 79
 external 100
 formal and actual arguments
 106, 107
 intrinsic 101-105

G

game controls 132, 133
global names 44, 45, 100
global symbol table 26
GOTO statements 64, 65
GRAFMO subroutine 125

H

H edit descriptor 93
heap marker 120

I

I edit descriptor 95
identifiers 20, 28
IMPLICIT statement 38, 46
INITTU subroutine 124, 125
INITTURTLE 120
integer data type 4, 40
integer division 59
INTEGER type statement 49
internal files 75, 76
intrinsic function 101-105
 CHAR 5
 EOF 5, 79
 placement in statement 216
Intrinsic Functions Table 181-183
INTRINSIC statement 51
iolist
 defined 80
 expressions in 5
 formatting 91, 92
 implied DO list 81
I/O device
 blocked 76
 external files 75
I/O statements
 BACKSPACE 85, 91
 CLOSE 83
 ENDFILE 85
 OPEN 81, 82
 READ 83, 84
 REWIND 85
 WRITE 84
I/O System 74-87

I/O unit number 5
I/O unit specifier 80

J

K

KEYPRE function 134
keywords 44

L

L edit descriptor 96
label assignment statement 54, 55
Lexical Comparisons Table 185
library 29-31
Linker
 mapfile 31
 operation 28-32, 111
 system files used 28
local scope names 44, 45
logical data type 41
logical expressions 61, 62
logical IF statement 65
LOGICAL type statement 49

M

main program 12-15, 98
MAINSEGX 110, 112
memory after compilation 26
modules 12, 13
MOVE subroutine 128
MOVETO subroutine 127
multi-drive user
 compilation 19
 Linker 28
 system configuration 155, 156

N

names
 common data blocks 45
 global scope 44, 45
 integers 45
 keywords 44
 local scope 44, 45
 undeclared 45
 variables 45
notation conventions 34
NOTE subroutine 134

O

OPEN statement 81, 82, 86, 87
operator precedence 62
overlay 14, 15, 23, 113

P

P edit descriptor 94, 95
P-code 8, 18
PADDLE function 132, 133
partial compilation 110, 111
Pascal
 FORTRAN interface 8, 116-120
 INTERFACE 116
 RTFINIALIZE 120
 RTINITIALIZE 119, 120
 USES 118
Pascal documentation 9, 10
Pascal Operating System 2, 3
PAUSE statement 72
pen colors 126
PENCOL subroutine 126, 127
preconnected unit 86
PRINTER: 78
program identifier 20
program input
 blanks 36
 character set 34, 35
 columns 35
 comment lines 36
 END statement 22
 form 21
 line length 22
 upper and lower case 21, 222
PROGRAM statement 37, 98

program units 37, 98-107

R

RANDOI subroutine 132
RANDOM function 132
READ statement 83, 84
real data type
 basic real constant 41
 defined 4, 40
 real constant 41
REAL type statement 49
record
 endfile 74, 75
 formatted 74-78
 kinds of 74
 unformatted 74-79, 85
recursive subroutine calls 99
relational expressions 60, 61
REMIN 21
RETURN character 38
RETURN statement 99, 106
REWIND statement 85
RTUNIT 8, 10, 15, 29, 110, 119
RUN Command 19
run-time error messages 176, 177

S

SAVE statement 51
SCREEN function 129
sequential files 75, 77, 79, 85
single-drive user
 compilation 18, 19
 Linker 28
 system configuration 136-138
specification statements
 COMMON 49, 50
 DIMENSION 47
 EQUIVALENCE 51, 52
 EXTERNAL 50
 IMPLICIT 46
 INTRINSIC 51
 SAVE 51
 statement ordering 37, 38
 type 48, 49
statement function 105, 106

statement label 64, 65
STOP statement 72
subprograms 12-15
SUBROUTINE statement 13, 37, 38,
 98-100
subscript expressions 5
symbol table 45
SYSTEM.COMPILER 8, 18, 19
SYSTEM.EDITOR 18, 19
SYSTEM.LIBRARY 8, 10, 14, 29, 111
SYSTEM.WRK.CODE 19-21
SYSTEM.WRK.TEXT 18, 19

T

TEXT files 8, 12, 13
TEXTMO subroutine 125
Transcendental Functions Table
 184
TTLOUT subroutine 133
TURN subroutine 128
turnkey system 2, 9
TURNTO subroutine 128
TURTLA function 128
Turtle Graphics
 Apple screen coordinates 124
 arrays 129, 130
 Cartesian graphics 127
 CHARTY subroutine 131
 DRAWBL subroutine 129-131
 FILLSC subroutine 127
 GRAFMO subroutine 125
 INITTU subroutine 124, 125
 MOVE subroutine 128
 MOVETO subroutine 127
 Pascal programs 120
 PENCOL subroutine 126, 127
 SCREEN function 129
 text on screen 130, 131
 TEXTMO subroutine 125
 TURN subroutine 128
 TURNTO subroutine 128
 TURTLA function 128
 TURTLX function 128
 TURTLY function 128
 VIEWPO subroutine 125
 WCHAR subroutine 130, 131
TURTLX function 128
TURTLY function 128

U

unconditional GOTO statement 64
unformatted files 75, 78, 79,
 85, 87
Unit Identifiers Table 180

V

VIEWPO subroutine 125

W

WCHAR subroutine 28, 130, 131
WRITE statement 84

6502 Assembly Language 8-10, 18

This file was created from the Washington Apple Pi diskettes 3PCL-17 and 3PCL-18.

Large parts of this manual are identical to the Apple II Apple FORTRAN Language Reference Manual.

