
By JOE ABERNATHY

THE APPLE IIGs DESKTOP HAS A
carefully crafted way of communicating with
you. It's called the dialog. This elegant interface
requests the information needed to complete
a command, cautions you as to when you're
about to make a mistake, or prompts you to
fill out an entire data-entry form. In fact,
whenever a desktop program communicates
with you, there's a dialog for the job.

Dialog boxes are implemented with the help
of a software tool set called the Dialog Manager
(TOOL21), which is built into the IIGs. To use
the Dialog Manager, you must first be using
a language compiler that supports tool calls.
For BASIC, that means one of the three com-
pilers: Micol, TML, and AC/BASIC. Finally,
you must see to a number of tool-set inter-
dependencies implied in any program that
implements desktop-style features.

For AC/BASIC, the accompanying source-
code listings will show you everything you
need to make your dialogs work. For TML
BASIC, you must use a desktop program shell
of some sort to start the underlying tools,
such as the Window Manager, that the Dialog
Manager requires. If you don't have such a
shell program, you can obtain mine free from
inCider by sending a stamped (65c or appro-
priate postage for foreign destinations), legal-
sized, self-addressed envelope. For Micol
BASIC, you'll need a shell such as that included

with the compiler beginning with version 3.1.
While it isn't necessary to follow this column,

a full mastery of dialogs will demand that you
buy both volumes of the Apple Has Toolbox
Reference, along with the Apple Human Interface
Guidelines (Addison-Wesley, Reading, MA).
You can find all three rekrences at your book-
store, or via mail from the Apple Program-
mers and Developers Association (APDA, 290
SW 43rd Street, Renton, WA 98055, 206-251-
6548). A beta-level revision to the toolbox ref-
erences that includes GS/OS version 5.0 in-
formation is available only through APDA,
although this information is not yet germane
to any of the BASIC compilers. (Note that
Micol and AC/BASIC are compatible with
GS/OS version 5.0. TML BASIC is compatible
with ProDOS 16 version 3.2.)

WORK SMARTER, NOT HARDER
The Dialog Manager is one of the smartest

tool sets in the IIGs, and that helps you look
good. The standard dialog features allow text
editing; multiple-choice buttons; check boxes,
which let you customize program operation;
and radio buttons, which let you select among
a group of options, such as paper size for
printing. Dialogs may contain icons such as
the ones the Finder uses, or entire picture
images; they may contain custom controls,
such as a thermometer that monitors the pro-
gress of a disk operation.

The Dialog Manager can produce three

families of dialog windows: modal dialogs,
modeless dialogs, and alerts. Modal dialogs are
those that demand your input, such as "In-
formation is about to be erased. Continue?"
Modeless dialogs are those that hang out in the
background, like a spelling checker, waiting
to be of use. Alerts are communications be-
tween you and the program, such as "Please
wait for a time-consuming disk operation."

Like most Toolbox features, dialogs require
that the programmer supply a list of infor-
mation defining what the dialogs should do,
and when and how. If you're implementing a
simple dialog for something like the "About
this program" window, almost everything in
the list will have a default: You won't have to
do much work. With each level of sophisti-
cation you add, however, things get more com-
plex from a programmer's standpoint, so that
you might eventually find yourself managing
hundreds of lines of code for a sophisticated
game screen implemented via the Dialog
Manager.

The list of information a dialog requires is
called a data structure, and it highlights the
overriding weakness of all the existing BASIC
compilers. BASIC just wasn't built for sophis-
ticated data structures; it was built for strings
and arrays. The people who wrote the modern
compilers, not wanting to lose the flavor of
BASIC, haven't seen fit to provide an extended
set of data structures. Rather, each offers its
own quirky interface to the Toolbox. So we
end up with tradeoffs.

Throughout all our BASICs —in every lan-
guage compiler—there are tradeoffs that cre-
ate a bit more work for you than otherwise
might be the case. Don't let yourself become
discouraged. If you're trying to master dialogs
or any other desktop programming task, jot
down the structure of the "pure" call as it
appears in the toolbox references; examine
any similar source code you can find, no
matter its language; consult your compiler •-•

OPEN DWG
Desktop dialogs lend

elegance and credibility to
the programs you create.

66 • inCider February 1990

' This source code implements a mailing list dialog suitable for use
' in business applications. It includes the necessary logic to let a user
' interact with the dialog features; and the logic to extract the results
' of the user's interaction, including EditLine text items, check boxes,
' radio button items and standard buttons.

If you are using my TML starter shell, you can add the address dialog to
' . your shell with the following source code,

' Add "DoAdrplog'. to the SetUpMenus procedure.

PROC SetUpMenus ' Build the menus and menu bar

MENUDEF 16,DoSound ' Play a sound file
MENUDEF 17,DoAdrDlog ' Address list dialog

ENDPROC

Add this label to the shell,

' Change the "GoodiesMenu" procedure in -tile file DESKTOOLS
' so that it reads like this,

DoAdrDlog.
PROC AddressDlog

RETURN 0
DESKTOOLS library

DEF PROC GoodiesMenu ' Create goodies menu
LOCAL MenuStr$
MenuStr$ "ii Goodies \N5\0"
MenuStr$ • MenuStr$ + ...play Sound\N266\0"
MenuStr$ MenuStr$ + "..Address Dialog\N267\0"
SET(GoodMenuStrI(0)) -MenuStr$

InsertMenu(EXENNewMenu(VARPTR(GoodMenuStr1(1))),0)
END PROC GoodiesMenu

Add this procedure, which does the actual work, to DESKTOOLS.

Address Dialog. Displays a dialog to allow entry of information for
an address list, then retrieves the information entered. Demonstrates
how to use all of the standard dialog items -- buttons, radio items,
check boxes, edit lines.

DEF PROC AddressDlog
LOCAL Dialog0,1temHita,MyStr$,CancelStr$,Ireml$,Item25,Item3$,Item4$
LOCAL Item55.1tem6S,Item7$,Item8$,Item9S,I t em10$,Item11$,Ite...12$
LOCAL Item13$.1tem14$,Item15$,Item16$,Item17$,Item18$,I t em19$,I t em20$
LOCAL Item21$,Item22$,Item23$,Item24$,Name$,Title$,Company$, Street$
LOCAL City$,SteteS.EiPS,Nation$,Areacode$,Phone$, Salesa , Preferred%
' The dialog window rectangle:
setRect(VARPTR(aRectt(0)).8,18,632,195)
Get a handle to the dialog.

Dialog@ . EXFN NewModalDialog(VARPTR(aRectil(0)),1,0)
setForeColor(ii)

_
' black letters on

- Se,BackColor(15) ' white background

' Create each item in the dialog. The position of each item is determined
' by the four parameters given in the _Setliect call,

Item24$ - "Sales to Date"
SetRect(VARPTR(aRect4(0)),354,34,450,43)
-NewDltem(Dialog@,26,VARPTR(aRect5(0)),15,VARPTR$(1tem24$),0,0,0)

1tem23$. "Phone"
SetRect(VARPTR(aRect4(0)1,359,14,399,23)

:NewDltem(Dialog@,25,VARPTR(aRectS(0)),15,VARPTWItem23$),0,0,0)

Item22$. "Nation"
SetRect(VARPTR(aRect1(0)),20,117,66,126)
NewDItem(Dialo0.24,VARPTR(aRecta(0)),15,VARPTR$(1tem22$),0,0,0)

1tem21$. "State"
SetRect(VARPTR(aRect4(0)),241,96,281,105)

:NewnItem(Dialog@,23,VARPTR(aRectt(0)),15,VARPTR$(Item21$),0,0,0)

Item205 . "City"
SetRect(VARPTR(aRecta(0)1,34,96,64,105)

:NewDItem(Dialog@,22,VARPTR(aRect11(0)),15,VARPTRS(Item20$),0,0.0)

Item19$. "Street"
SetRect(VARPTR(aRectil(0)).19,75,66.84)

-NewDItem(Dialog@,21,VARPTR(aRecti(0)),15,VARPTR$(Item19$),0,0,0)

Item18$. "Company"
SetRect(VARPTR(aRecta(0)).11,54,68,63)

- NewDItem(Dialog0,20,VARPTR(aRecta(0)),15,VARPTR$(Iteml8S).0,0,0)

Item17$. "Title"
SetRect(VARPTR(aRect%(0)),28,33,66,42)

- Newintem(Dialog@,19,VARPTR(aRectil(0)),15,VARPTRWtem176),0,0,0)

Item16$ "Name"
SetRect(VARPTR(aRect5(0)),33,13,66,22)
NewDltem(Dialog@,18,VARPTR(aRectS(0)),15,VARPTWItem16$),0.0,0)

Item15$. "Joe Abernathy"
SetRect(VARPTR(aRect4(0)),73,10,319,23)
NeviDItem(Dialog@,17,VARPTR(aRectil(01),17,VARPTIWItem15$),20,0,0)

Item14$. "526-9711"
SetRect(vARPTR(aRect9(0)),459,11,561,24)

- NewDItem(Dialog0,16,VARPTR(aRect5(0)),17,VARPTRS(Item14$),8,0,0)

Item13$. "713"
_Settlect (VARPTR(aRec•% (0)), 404, 11,446, 24)

NewDItem(Di alog0, 15,VARPTR(eReCt% (0)), 17,VARPTR$ (It eml 3$), 3, 0, 0)

Item12$ "77266-6046"
SetRect(VARPTR(aRect5(0)),216,114,318,127)

:NewDItem(01 alogP, 14,VARPTR(aRec•E(0)), 17,VARPTR$(I•eml 2$) , 10, 0, 0)

Iteml 1$ • "U.S."
SetRect (VARPTR(aRectil (0)) , 71, 114, 197, 127)

:NewDItem(nalog0, 13,VARPTR(aRect1(0)) , 17, VARPTR$ (Item11$) , 10, 0,0)
Continued

APPLEsllo

manual, particularly in regard to its handling of data structures; and
make it work.

BRING IT TO LIFE
Each BASIC compiler makes you walk a different path in getting

dialogs up and running, but there are more similarities than it would
seem. To illustrate this column, I wanted to create a dialog through
which you might build a mailing list respectable enough to even fit into
business-quality applications. What do we need to do this? A set of very
predictable actions, it turns out:
*Prompt the user for input.
•Get input. In the case of a dialog, that means allowing the manipulation
of text, and of various types of buttons.
*Analyze and act on the input, or determine the final state of each item
in a dialog box and react accordingly.

To build a dialog that does this, you'd do the following:
*Create a new dialog, adding each item individually. Display the dialog.
*Write a loop to handle the dialog's logic. In the case of a one-button
("OK") dialog, your logic would just wait for any event to occur. Once
anything transpires, you know OK was chosen.

In more advanced dialogs, you'd check for action in specific item
types and specific items and react accordingly. If you have four radio
buttons and click on the third one, you must deselect the other three
and make sure the one that took the dialog hit is selected. Check boxes
must be turned on and off. You can check for actions in standard
pushbuttons, and depending on the buttons you create, initiate a suitable
response. As for EditLine text items, Dialog Manager handles all the
details for you—unless you use AC/BASIC, which makes you monitor
mouse clicks and TAB keys.
*Determine the results of your interaction with the dialog. Extract the
EditLine strings into usable form; set a flag showing which of the radio
buttons was chosen; set individual flags for each check item to determine
whether it was turned on or off Handle standard pushbuttons as
needed; if you create an "OK" button with an itemlD of 1, Dialog
Manager will consider it the default and accept Return as though it were
a mouse click on the OK button.

TML BASIC, despite being incompatible with IIGs system software
published since 1987, stays the closest to the intent of the Dialog Manager
as described in the toolbox references. So let's examine the logic for
managing our mailing-list dialog in TML. To do so, look ahead to
Listing 1, directly below the _NewDItem calls, at the DO/UNTIL loop.

First, an exit flag is set to empty. The first checks made thereafter
are for clicks on the OK or Cancel buttons; either of these events sets
exit%, which makes the control loop exit.

If you get past exit%, you know you've done something in one of the
other fields, so check to see which type of dialog item took the hit. If it
was a radio item, store that particular item in a variable, so that you
can use the information later; then cycle the status of the radio buttons
to make sure only one is selected.

If your item type was "check item" instead of "radio," check to see
whether the check item is currently on or off, then switch it, because a
click means you want it to be in the only other state available. In the
example dialog, the "Preferred%" variable will be set if the customer
in question is a preferred customer, or set to zero otherwise.

Having made it through the entire logic loop, that takes care of
everYthing except determining what was typed in the EditLine items

68 • inCider February 1990

NIcGEE...
A VERY SPECIAL
PROGRAM FOR
YOUR PRESCHOOLER

Your kids don't have to
be able to read to explore
McGEE's "house" and
decide what they want to
do. Things like bounce the
ball, give the dog a treat,
ride the hobby horse, swing
in the back yard and much,
much more. Bright and
sparkling graphics with
realistic audio make McGEE
fun and easy to play.

With McGEE, you're giving
your children more than
than just a fun game to
play. You're helping them
develop the computer sense
they'll need to compete in
tomorrow's world.

Plus Shipping & Handling

Get your kid off to a head
start with this truly excep-
tional new program —
only from Lawrence Pro-
ductions, Inc., a national
leader in the development
of educational software
products.

Order your copy of McGEE
today. Specify Apple IIGs
or Macintosh version.
MasterCard and Visa
accepted.

LAWRENCE
PRODUCTIONS INC.

Department G-54
1800 35th Street

Galesburg, MI 49053
800-421-4157

A totally new concept
in preschool software...
McGEE is a program with

Continued

Item10$ = "TX"
SetRect(VARPTR(aRect%(0)).287,93,3i7,100,.••.
NewpItem(Dialog@,12,VARPTR(aRect%(0)),17,4ARBTRS1

1tem9$ = "Houston"
SetRectIVARPTR(aRect%(0)),71,93,221,106) •'•

:NewDItem(Dralog@,11,VARPTR(aRect%(0)),17,VARPTR

1tem8$ = "P.O. Box 66046" ' ' •
SetRect(VARPTR(aRect%(0)),71,72,317,85)

:NewDltem(Dialo0,10,VARPTR(aRect%(0)),17,VARPTWItem8$),20,0:0).

item7$ "First Word"
SetRect(VARPTR(aRect%(0)),72,51,318,64)
-NewDItem(Dialog@,9,VARPTR(aRect%(0)),17,VARPTWItem7$),20,0,0)

Item6$ = "Tech Support"
SetRect(VARPTR(aRect%(0)),73,30,319,43)
-NewDItem(Dialog8,8,VARPTR(aRect%(0)),17,VARPTRS(Item6$),20,0,0)

Item5$ = "Over 2000"
SetRect(VARPTR(aRect%(0)),401,96,494,105)

=NewDItem(Dialog@,7,VARPTR(aRect%(0)),12,VARPTWItem5S):0.0.0)

Item4$ = "1000-2000"
SetRect(VARPTR(aRect%(0)),401,80,498,89)
-NewDItem(Dialog@,6,VARPTR(aRect%(0)),12,VARPTR$(Item4$),0,0.0)

Item3$ = "500-1000"
_SetRect(VARPTR(aRec,%(0)),401,64,490,73)
NewDItem(Dialo0,5,VARPTR(aRect%(0)),12,VARPTIWItem3$),:.0.04).

1tem2$ = "0-500" • . .
SetRect(VARPTR(aRect%.(0)),401,49,465,58) :": • • .•

INewratem(Dialog@,4,VARPTR(aRect$(0)1,.12,1*OXWitsitig

SetRect(VARPTR(aRect%(0)),353.1i6,51Bril
:NewDItem(Dialog@,3,VARPTR(aRect%(0))41 IARPTECO*01;0

SetRect(VARPTR(aRect%(0)TiE30,142,308,156 .
Newl)Item(Dialog@,2,VARPiLlk(eRect8(0)),10.vnOtOte • . . •

' Any dialog item given.4r) item: reference number of 'orW1
Newiatem call) wilV:be•iile:0,4ault item, meaningLi

1T,ressreturn to aci.,:!4*110;•.40@,4,•••A §,t,qA0W4
' should be the OK bOtkin:.'..•

". .•
okstr$ = "01(...... •

SetRect
siOkail.4g0A;VOPt#14,0.) NewDite ; • ,•• ••-•

1
• ••• • ••'••' • •• ':••••••i••,••••"•••• t

must
 "• '•" ' • ••• • • ••• •• • • •• • • •• • ••••• • • ••

Dislogat:ixioeiiiWtha al Wk**00.4

Process
exit% = 0 •

O

itemAift titH m.aiabialo40() .
IF itemHlt%= 1 THEN exitili%i•x OK
IF itemHit% = 2..THEN ecif%*4,'L' :C*bg
'Whit% = MCP%) GetbItcmTYPeTilii064f0006

IF myhit% = 12 THEN ?.•1684ilii4k,

Sales% = itempit% ,.":stbkor3i0=.5'
SetDItemvalue(1,Dialog@,00UHit

"- Cycle the radio buttong•Amb•a440b
IF itemHit% <0 4 THEN

SetpItemvalue(0,Dialog@,4)
END IF

IF itereit% <> 5 THEN
SetDItemValue(0,DIalog@,5)

END IF
IF itemHit% <> 6 THEN
eetDItemValue(0,Dialog@,6)

D IF
IF itemHit% <> 7 THEN

SetDItemvalue(0,Dialog@,1)
END IF

END IF

IF myhit% = 11 THEN ' check item
myvel% = ExFNGetDItemValue(Dialog@,itemHit)
IF myval% = 0 THEN

SetDItemvalue(1,Dialog@,itemHit%)
Preferred% = 1 store for later use

ELSE
SetDItemvalue(0,Dialog@,itemHiii%)

Preferred% = 0 ' store for later use
END IF

END IF
UNTIL exit% = 1

Extract strings from EditLine items. To use these, you can
' do a simple "PRINT Name$", etc. (Note that these values must be

assigned to global variables to be used outside this procedure:
GetIText(Dialog@,17,VARPTR$(Name$))

_GetIText(Dialog@,16,VARPTR$(Phone$))
Get/Text(Dialog@,15,VARPTWAreacode$))

_GetIText(Dialog@,14,VARPTRS(ZipS))
GetIText(Dialog@,13,VARPTR$(Nation$))
-GetIText(Dialog@,12,VARPTRS(State$))
-Get1Text(Dialog@,11,VARPTR$(City$))
_GO- IText(Dialog@,10,VARPTR$(Street$))

GetIText(Dialog@,9,VARPTR$(Company$))
GetIText(Dralog@,8,VARPTRS(Title$))

All done:
closeDialog(Dialog@)

END PROC AddressOlog

te010.$1:4,1,

0)

APPLE10

70 inCider February 1990

Circle 139 on Reader Service Card.

DataLink ExpressTM

The Upgradeable External
Waited long enough for an upgradeable, full-featured modem?
Introducing the new DataLink ExpressTM from Applied Engineer-
ing. With the first comprehensive status light array. The first Line
Engage indicator. The first upgradeable design allowing for the
addition of send-Fax capability and MNP error correction. And the
first to offer these features affordably.

DataLink Express' exclusive Line Engage light indicates whether
the phone line is free or in use, before you log on, to help line-
sharing users save transmissions from time-wasting interruptions.

DataLink Express incorporates a perfectly matched Apple-
platinum case, along with both Apple-type serial port input (Mini-8)
and a DB-25 connector for use with PCs. It's fully Hayes compatible
and operates at 300, 1200 or 2400 baud. DataLink Express even has
non-volatile configuration memory with synchronous and asyn-
chronous communication and separate line and phone connectors
for line sharing.

Upgradeability
With our optional send-only Fax (available soon), text and

graphics can be composed on your Apple II and directly faxed at
4800 baud. And for the ultimate in data reliability, an MNP option
assures 100% accuracy, even if phone lines or other equipment are
at fault.
Software, too.

Unlike other modems, you don't have to shop for separate
software. Comprehensive communications software for Apple II,
Macintosh and MS-DOS computers is included.
Made by the Apple enhancement experts

Best of all, DataLink Express was designed and built by Applied
Engineering, long the leader in Apple enhancement products. AE
brings ten years' experience to producing feature-laden peripherals
that set the standard for quality and reliability.
DataLink Express modem $249
MNP option $89
Order today!

To order or for more information, see your dealer or call (214)
241-6060 today, 9 am to 11 pm, 7 days. Or send check or money
order to Applied Engineering. MasterCard, VISA and C.O.D.
welcome. Texas residents add 7% sales tax. Add $10 outside U.S.A.

AE APPLIED ENGINEERING
The Apple enhancement experts.

A Division of AE Reseach Corporation.

(214) 241-6060
P.O. Box 5100, Carrollton, TX 75011

Priem subject to change without notice. Brand and product names are registered trademarld of their respective holders.

WYSIWYG Editors
Something that'll simplify programming GS desktop ele-

ments such as dialogs is worth its weight in gold. Two recent
products sporting WYSIWYG (what you see is what you get)
desktop editors deserve platinum: Design Master (Byte-
Works, 4700 Irving Boulevard Northwest, Suite 207, Albu-
querque, NM 87114, 505-898-8183) and CailBox TPS ISo
What Software, 10221 Slater Avenue, Suite 103, Fountain
Valley, CA 92708, 714-964-4298, S99). With WYSIWYG
tools, creating and editing Apple's Human Interface Guide-
lines desktop simply involves selecting desktop elements from
pull-down menus and, using a mouse, placing them onto the
320- or 640-graphics desktop with clicks and drags.

Chris Haun promotes his creation, Design Master, as a
desktop "prototyping" tool. The results are source-code com-
patible with most of the 65816 assemblers and advanced lan-
guages available for the GS, including C, Pascal, and BASIC.

CalIBox TPS also includes a WYSIWYG image editor for the
creation of icons, cursors, and pixel elements for 320- and
640-mode super-high-resolution GS graphics screens, plus an
Applesoft BASIC interface package.

Now even the novice programmer can personalize his or her
desktop environments quickly and easily.D

—Bill Kennedy, Technical Editor

The _GetlText tool call handles that; it extracts the EditLine information
into strings usable in any traditional fashion for which you'd use a string.

That's it for the logic, and it's really pretty simple programming for
something that can do so much. The differences among the three
compilers are minor, and notes in the source-code listings alert you to
the differences that do exist. (See Listings 2 and 3.) Note that at the
time I wrote this column, the new version 3.1 of Micol BASIC supporting
direct desktop programming was still in beta release, and wouldn't
support the sample address dialog. You'll find an "About..." dialog—
which works—in its place by way of example.

The source-code listings, save that for Micol, show how to implement
every standard dialog item. By looking over these examples for just a
few moments, you should be able to use them as a basis for creating
any standard dialog of low- to medium-level complexity. You won't
outgrow them until you reach the point at which you want to define
custom procedures for updating the appearance of custom dialog items.
And at that point, you won't need me.

A BETTER MOUSETRAP
The biggest drawback to using dialogs is designing their layout. The

JIGS screen is based on a grid of either 320 by 200 pixels or 640 by
200 pixels. A sophisticated dialog, such as those in my examples, might
have 20 or 30 elements of varying sizes. Now where, with 64,000 or
128,000 screen positions, does each element go? The Dialog Manager
isn't smart enough to decide that for you. What you have to do, then,
is design each dialog in its entirety before you write a single line
of code.

First, there's graph paper. The best you'll get is a 64-by-64 grid, good

inCider February 1990 * 71

Make Sure You Don't
See The Light At The
End Of The Tunnel.

TUNNELS ApAb000Ni
The Future Is In Your Hands

Listing 2. Micol Advanced BASIC dialog sample.

' This source code implements an "About ..." this program dialog. Because
' the version of Micol BASIC supporting desktop programs was still in beta
release at the time of this writing, it was not possible to implement the
mailing list dialog.

' This source code is designed to be called from a Micol-style desktop
menu such as those used in the examples on the Micol v3.0 and later disks.

' Add +hese data structures at the top of your program:

DIM Array (100)
DIM Array$ (100)

dialog data structure array
I dialog text strings array

(About Dialog
(Create standard "About ..." dialog box.)
(Based on an example by Ron Lewin. 1

PROC About Dialog [Control]
Array

0 1 F° TCo:tffral
DO 0 I Close the Dialog I

DIALOG (Array I, Array$ ()
ENDDO

DO 1

I First, you feed all of the text items into a text array:
Array$ (1) = "Micol BASIC Program Shell"
Array$ (2) = "By Joe Abernathy"
ArraY$ (3) = "OK"

(Now, you feed all of the attributes of each dialog item Into
an array. Compare this method with that used by TML. Although

Micol's methodis ier to understand, it takes about four
times as much typing:

eas
 I

Array (1) . 30 position of Dialog Box, Y Minimum 1
Array X Minimum I
Array (3) = 100 Y Maximum)
Array (4) . 500 X Maximum I
Array (5) = 3 Dialog Box contains x Items I
Array (6) = 1 This Item Reference #, default}
Array (7) . 10 Y Min of Item I
Array (8) = 10 x min of Item I
Array (9) = 25 Y Max of Item I
Array (10) = 400 X Max of Item I
Array (11) = 15 Item type I
Array (12) = 0 Enable thin Item I
Array (13) = 0 Item value, your own I
Array (14) = 1 String element 11
Array (15) - 2 This Item Reference, any unique value
Array (16) = 30 Y Min of Item I
Array (17).= 10 X Min of Item I
Array (18)-= 45 Y Max of Item I
Array (19) = 400 X Maze of Item I
Array (20) = 15 Item type, text 1
Array (21) = 0 Highlight Item)
Array (22) = 0 Item Status I
Array (23) - 2 String element 2)
Array (24) = 3 item ref.)
Array (25) = 50 y 0lD I
Array (26) = 10 x min)
Array (27) = 65 y max)
Array (28) = 100 x max 1
Array (29) = 10 item type, button I
Array (30) = 0 item enabled I
Array (31) = 0
Array (32) = 3 string 3)
(Display the dialog: I
DIALOG (Array (, Array$ ()
MOUSE (Array() (Monitor Response to Dialog 1
(When we get here, an Item hit has occurred. First, get

a handle to the dialog for use by other tool calls. For
this simple dialog, the handle isn't used, but it would
be by most dialogs: I

DialogLSB% = Array (0) f Keep Dialog pointer for TOOLBOX call)
Dialog_MSB% - Array (1)

(Now see which item took a hit: I
Item% . Array (0)

There's only one item, so we know the OK button took the hit.
Hence, we do nothing but shut things down and exit:)

ENDDO
ENDCASE

ENDPROC f About_Dialog I

(
DoAbout
Build "About Shell" Dialog Box.

This activates the dialog, then closes it:
PROC DoAbout

GOSUB About Dialog [1] (Create I
(.. and wait for OK button to be clicked 1

GOSUB About Dialog [0] (Close
ENDPROC I DoAbo& I

(Main
(Program execution occurs here.

(This shows how you would implement the logic
for a main control loop in Micol, and act on
a mouse selection in the "About ..." item: I

PROC MenuTask (heartbeat loop I
REPEAT

MOUSE (Array ()
Task Value = Array (0)
UNTIL Task Value = 17

Menu Item = Array (9)
Menu Number= Array (10)
GOSUB Do Menu [2] Highlight Menu
CASE_OF rienu_Item

DO 256 I About
GOODS DoAbout

Continued

(Create new Dialog Box I

APPLE.11o

Or the future
of the world won't
be too bright.
You'll be busy swerving
past moving barriers,
blasting robot guardians,
and keeping the walls from
caving in on you, not to
mention trying to find the
doomsday device in time.

Some say you're the best rocket jockey in the galaxy, but are
you ready for the TUNNELS OF ARMAGEDDON'"? Strap
your heart in as you warp through an extensive and deadly
network of underground tunnels at mind-numbing speed in
your quest to save the world. Pick up special items to help you
get past the "nastier" obstacles that
await you in the 20 increasingly
difficult stages of tunnels. And
remember to take the right route,
because every second counts.
Contact your local dealer for details.
Available on Apple IIGS Computers.

"Entertainment Software" CALIFORNIA yzionar- rm California Dreams
780 Montague Expwy., #403
San Jose, CA 95131
© 1989 Logical Design Works, Inc.

72 • inCider February 1990

Circle 264 on Reader Service Card.

Listing 3. AC/BASIC mailing-list dialog.

This source code implements a mailing list dialog suitable for use
)n business applications. It includes the necessary logic to let a user
interact with the dialog features; and the logic to extract the results
of the user's in,eraction, including EditLine text items, check boxes,
radio button items and standard buttons.

The routine an your program that monitors eents in pull-down menus
must contain routing t the address dialog. v If you are using my
inCider AC/BASIC utility/program y/program shell, your menu control procedure

' should look like this:

menuproc: Interpret menu events
meeunum MENU(0)

Read which menu
itemnum - 0E41(1)
 Read which item

IF menunum= 1 THEN . FILE menu
IF itemnum 1 THEN
 New

GOSUB 10
ELSEIF atemnum - 2 THEN
 Ed),

DOSES 20
ELSEIFatemnum = 3 THEN
 Delete

GOSUB 30
ELSEIF itemnum - 4 THEN
 Print

GOSUB 40
ELSEIF itemnum = 5 THEN
 Type File

GOSUB 50
ELSEIF atemnum = 6 THEN

Quit
GOSUB 60

END IF
ELSEIF menunum - 2 THEN

GOODIES menu
IF itemnum = I THEN

Show picture
GOSUB 70

ELSEIF itemnum - 2 THEN

Play a sound file
GOSUB 80

ELSEIF itemnum = 3 THEN

Address dialog
GOSUB 90

END IF
END IF

RETURN

Thi.s is en associated subroutine that actually builds the menus of your
' program, including the "Address Dialog" selection. Again, this procedure

will fit directly into your inCider AC/BASIC shell:

SUB DoMenu
FOR p = 1 to 6
FOR e = 0 to 12 STEP 4
PALETTE p,e+0,1,1,1
NEXT

NEXT
MENU 1,0,1," File"
MENU 1,1,1,"New"
MENU 1,2,1,"Edit"
MENU 1,3,1,"Delete"
MENU 1,4,1,"Print"
MENU 1,5,1,"Type"
MENU 1,6,1,"Quit"
MENU 2,0,1," Goodies"
MENU 2,1,1,"View Picture"
MENU 2,2,1,"Play Sound"
MENU 2,3,1,"Address Dialog"
FOR p = 1 to 6

FOR e = 0 to 12 STEP 4
PALETTE p,e+0,0,0,0
NEXT

NEXT
END SUB

Create menu bar
Eliminate screen flicker
by whiting-out the menu bar
before building it.
Thanks to Lee Rimar of
Absoft for the code.
Build FILE menu
and its entries ...

' Goodies menu header
' View SHR picture
' Play a sound file
' Get address info
' Restore original palette ..

' This is the actual dialog work procedure:

Address Dialog. Displays a dialog to allow entry of information for
' an address list, then retrieves the information entered. Demonstrates
' how to use all of the standard dialog items -- buttons, radio items,

check boxes, edit lines.

90:
WINDOW 2,"",(8,18)-(632,195),2
EDIT FIELD 1,"Joe Abernathy",(73,10)-(319,23),1
EDIT FIELD 2,"526-9711",(459,11)-(561,24),1
EDIT FIELD 3,"713',(404,11)-(446,24),1

Continued

Continued
ENDDO

DO 257

(Open [

[)
ENDDO

DO 258

I Close

ENDDO

ENDCASE
ENDPROC (MenuTask)

[This master routine calls the above menu interpreter,
which handles actual program flow:)

ROUTINE Main
HGR2

(6400200 graphics)
GOSUB SetUp

i start other tools
GOSUB Do Menu [1]

(set up menus
GOSUB Do Menu [7]

(allow NDAs I
TOOLBOX T27, 21: 0, 270, 4) I FixFon,Menu
MOUSE (Array ()

(show menus)
REPEAT

GOSUB MenuTask
UNTIL Done!

i Done: is set by QUIT item)
GOSUB Shu,Down

[shut down tools)
END (Micol Shell)

GET ON THE FAS-TRACK!

Call us for your FREE 1989 Best Sellers
Catalog-64 pages of software, hardware

arid accessories.
DISCOUNTS UP TO 45% EVERYDAY!

Productivity Software
AppleWorks 3.0 $169.95
AppleWorks GS 1.1 $199.95
Copy II Plus $22.95
HyperStudio 2.0 $84.50

TimeOut
Series

Starter Packs
Style

Ita.g!e,r1
$74.95
Decision
$84.95

Performance Starter Pack $64.95
BeagleWrite GS (Multiscribe GS) $57.95
Superfonts or Telecomm $37.50
GS Font Editor or Program Writer $28.45
Thesaurus or Powerpack ea $27.95
Desktools I or 11 ea $27.95
Sidespread or File Master ea $27.95
Spreadtools or Ultramacros ea $34.45
Graph or ReportWriter ea $42.95

Desktop Publishing & Graphics
Publish It! 2 $74.95
Childress' Writing and Pub Center $36.95
Print Shop $28.95
Print Shop llgs $36.95
Pow Zap Ker-Plunk Comic Maker $29.95
VCR Companion $29.95
Print Shop Lovers Utility Set $25.95
Labels, Labels, Labels $25.95

AMR AS800 3.5" Drive

Other Hardware
Apple He 80 Column 64K Card $24.95
FingerPrint GSI Ver 3

$92.95
4 Mhz Zip Chip $123.95
8 Mhz Zip Chip $159.95

Prometheus Promodem 2400A

$129.95
2400 Baud

Internal Modem
for 11+, He or llgs.
Includes Software!

Applied Engineering

GS Ram Plus w/1 Meg $239.95
RamKeeper $149.95
Vulcan 20 Meg Hard Drive $499.95
Vulcan 40 Meg Hard Drive $649.95
TransWarplIgs $289.95
TransWarp $137.95
RamWorks III w/256K

$149.95

egD£Yms.(se .. .
Education

Where in Time is C. Sandiego $27.95
Where in the World is C. Sandiego$25.95
Where in the USA is C. Sandiego $28.95
Math Blaster or Word Attack Plus $29.95
Math Blaster Mystery $29.95
Oregon Trail $25.95
Think Quick $30.95
McGee (IIgs) $27.95
Math Rabbit or Reader Rabbit ea $26.95
Talking Reader Rabbit (IIgs) $35.95
Writer Rabbit $29.95
Mavis Beacon Typing (IIgs) $33.95

Entertainment
Test Drive 11-The Dual (IIgs)

$26.95

Jack Nicklaus Golf (IIgs)

$29.95
Grand Prix (IIgs)

$27.95
Life and Death (IIgs)

$33.95
Keef the Thief (IIgs)

$33.95
Prince of Persia $23.95
Down Hill Challenge (IIgs) $20.95
Chessmaster 2100 (IIgs) ea $33.95
Arkanoid II Return of DOH (IIgs) $21.50
Battle Chess (IIgs) $29.95
Third Courier (IIgs) $30.95
Blue Angels (IIgs) $30.95

Accessories
ImageWriter Black Ribbon $2.50
ImageWriter 4-Color Ribbon $5.75
10 DS/DD 3.5" Bulk Diskettes $7.95
25 DS/DD 5.25" Bulk Diskettes $8.95
525" Disk Case (Holds 60)

$6.95

3.5" Disk Case (Holds 40)

$6.95
System Saver IIgs $69.95

$189.95
IIgs & IIc+

Daisy-Chainable

414rCOMPUER P3ODUCC3

7030C Huntley Road • Columbus, Ohio 43229

ALWAYS CALL 1-800-272-1600
TOLL -FREE 1-800438-1168 (Ohio) 7.- -,,,- ------

VISA ma'h'" 1-614-847-4050 (CentralOhio)

U.S., F.P.O., and A.P.O., add 3% (minimum $4.00) for each shipment.
No C.O.D. In Ohio, add 5.5% Sales Tax. MasterCard, VISA, and
American Expros., No extra charge. We accept purchase orders
from schools, universities and other qualified organizations.
FROM HOME TO SCHOOL AND BACK AGAIN, FAS-TRACK DELIVERS!

Fin-MAC(

Circle 85 on Reader Service Card. inCider February 1990 • 73

Continued
EDIT FIELD 4,"77288-8048",(216,114)-(318,127),1
EDIT FIELD 5,"U.s.",(71,114)-(197,127),1
EDIT FIELD 6,"TX",(787,83)-(317,106),1
EDIT FIELD 7,"Houston",(71,93)-(221,106),1
EDIT FIELD 8,"P.O. Box 66046",(71,72)-(317,85),1
EDIT FIELD 9,"First Nord",(72,51)-(318,64).1
EDIT FIELD 10,"Tech Support",(73,30)-(319,43),1
BUTTON 7,1,"Over 2000",(401,96)-(494,105),3
BUTTON 6,1,"1000-2000",(401,80)-(498,89),3
BUTTON 5,1,"500-1000",(401,84)-(480,73),3
BUTTON 4,2,"0-500",(401,49)-(465,58),3
BUTTON 3,1,"Preferred Customer",(353,116)-(519,125),2
BUTTON 2,1,"Cancel",(230,142)-(308,156),1
BUTTON 1,1,"OK",(344,142)-(391,156),1
LOCATE 5,42
PRINT "Sales to Date"
LOCATE 3,42
PRINT "Phone"
LOCATE 14,2
PRINT "Nation"
LOCATE 12,30
PRINT "State"
LOCATE 12,2
PRINT "City"
LOCATE 9,2
PRINT "Street"
LOCATE 7,2
PRINT "Company"
LOCATE 5,2
PRINT "Title"
LOCATE 3,2
PRINT "Name"

' Set up dialog event trapping:
preferred = 0 preferred customer flag
finished = 0 exit flag
ON DIALOG GoSUB DoAddress
DIALOG ON
WHILE finished = 0
WEND

DIALOG OFF
WINDOW CLOSE 2
MENU

RETURN

Process events:

DoAddress.
myevent = DIALOG(0)
itemhit DIALOG(1)
myfield = DIALOG(2)
DIALOG OFF

' Find out what occurred

' No interrupts to confuse things
.Continued

APPLE,'10
Continued

IF itemBit . 1 THEN finished = 1 OK
IF itemHit 2 THEN finished = 1 ' Cancel
IF myevent . 1 THEN ' button clicked
' radio buttons:
IF itemhit = 7 THEN
Sales . 7 Store for later use
BUTTON 7,2 Cycle radio button status
BUTTON 6,1
BUTTON 5,1
BUTTON 4,1
END IF

IF itemhit = 6 THEN
Sales . 6 ' store for later use
BUTTON 7,1
BUTTON 6,2
BUTTON 5,1
BUTTON 4,1
END IF

IF itemhit = 5 THEN
Sales - 5 ' store for later use
BUTTON 7.1
BUTTON 6,1
BUTTON 5,2
BUTTON 4,1
END IF

IF itemhit = 4 THEN
Sales - 4 ' store sales level for later use
BUTTON 7,1
BUTTON 6,1
BUTTON 5,1
BUTTON 4.2
END IF

' check box item:
IF itemhit = 3 THEN
IF preferred = 1 THEN ' enact button, flag

preferred = 0
BUTTON 3.1

ELSE
preferred = 1 set customer flag
BUTTON 3,2
END IF

END IF
END IF

IF myevent = 7 THEN TAB an edit field
theitem = myfield + 1 ' increment pointer
IF theitem > 10 THEN theitem = 1
EDIT FIELD theitem
END IF

IF myevent = 2 THEN mouse click in edit field
EDIT FIELD myfield
END Tr

' Extract strings from editl ne items. To use these, you can Continued

 c;f's\5'05 EASYDRIVE.
THE EASY HARD-DISK MANAGER.

So, your going to buy a hard-disk. The storage capacity is great, and it's easy to
use, once you've got it going. But how will you keep it organized, launch an
application, or use directories and subdirectories? It can be tedious, frustrating
work.
We have the answer. EasyDrive, the top selling software interface for the hard-
disk. EasyDrive is super user friendly.
EasyDrive automatically installs your programs so that you can choose the
applications you want from the EasyDrive menu. Running, removing, backing
up, restoring, indexing, copying, moving files, and dozens of other functions are
performed on screen. You select the commands. EasyDrive does the work.
EasyDrive comes with full documentation, ProDOS hand book, and is ProDOS
8, 16, and GS/OS compatible. We're continually updating EasyDrive with new,
exciting features to keep pace with your changing needs. Watch for updates!

EasyDrive $69.95
a product of Q Labs 313/331-0941

Available from: Quality Computers 1-800-443-6697
Also available from: Roger Coats, Silicon Express, N.A.U.G. or your favorite dealer

74 • inCider February 1990 Circle 155 on Reader Service Card.

Continued
' do aslmple PRINT Name$, etc.
Name$ = EDIT$(1)
PlIorle$ = EDITN(2)
Areacode$ = EDIT$(3)
Zip$ = EDIT$(4)
NaTioA$ = EDITN(5)
Sta,e$ = EDIT$(6) •
caty$ = EDITS(7)
street$ ED1T$(8)
Comparty$ ••• EDIT$ (9
Title$ = EDIT$(10)
DIALOG ON

RETURN
' END of

enough to get an idea of what you want, but not nearly good enough
to come up with professional results.

To do that, you'll have to start with your best guess, make allowances
for the varying pixel sizes of each letter in each field that's to be displayed,
then fiddle with exact screen locations through a couple of dozen
recompilations. Ugh.

Then there are layout utilities, but they're no perfect solution. Using
a program such as Dialog Layout Utility, you can create each dialog
element and drag it to the screen position you want. When you're done,
you can save the layout as Pascal or assembly-language source code.
Ostensibly, someone using one of these languages should be able to
paste this output code directly into a program, but in practice the output
isn't up to par for serious programs. The one feature it does have,
however, is precise screen locations.

So in half an hour, you can lay out your dialog and get a nice printout
or text file showing where everything should go. You'll still have to do
the programming, but there's really nothing hard about that—write a

few lines of code and paste those lines into your source file again and
again. Just change the screen location for each item, and perhaps its
type and default status.

There are a number of "mouse locator" desk accessories available for
download and from user-group libraries. While you may think one of
these utilities will serve the same purpose as DLU, it's not true. First,
they don't account for the size of an entire dialog item including text
and graphics. And, just as important, they produce global screen co-
ordinates, as opposed to the local screen coordinates you'll need to
position anything in a screen window.

DLU is freeware available from most on-line services. You may contact
its author, Scott Aitken, at S.AITKEN on GEnie, or SAITKEN on
America Online.

The future of dialog design lies in resource management, built into
the language compiler. With such a compiler, you'd design a dialog by
going through a point-and-click routine, which would subsequently
generate the source code for the task at hand. This is a welcome, although
untried, idea that is being explored now on the Macintosh, and less
successfully on the GS. It'll be a while before any standards appear, and
longer yet until it means anything to BASIC.

Until that time, we have a firm understanding of one of the most
elegant tools in the IIGS, and we have robust examples enabling us to
fully implement dialogs of our own. Where do you go next?

ON ALERT
We've discussed only the most common dialogs—modal dialogs. You o.

;;)to'"REPAIRWORKS.
N'T LOSE DATA WITHOUT IT.

In a perfect world a program like RepairWorks wouldn't be necessary. Unfor-
tunately the world isn't perfect and for those who have peered tearfully into a
monitor filled with the dying gasps of their precious work, it can almost seem
cruel. But, don't despair! RepairWorks can soften the blow of cruel fate when
it involves your AppleWorks files.
RepairWorks examines your AppleWorks files and surgically
removes the offending problems, reducing or eliminating the

need to recreate your work.
"When my AppleWorks crashed,' was looking
at hours of rebuilding time. RepairWorks turned
my hours into minutes. Thank you Repair-
Works."
Bruce Bauslaugh, Vero Beach, FL

"I wish RepairWorks had been around afew years
ago when 1 was writing my very first feature for
inCider."
Lafe Low, inCider Magazine

inCider Magazine
EDITORS' CHOICE

OCTOBER 1989 RepairWorks $39.95
a product of Q Labs 313/331-0941

Available from: Quality Computers 1-800-443-6697
Also available from: Roger Coats, Silicon Express, NA.U.G. or your favorite dealer

Circle 155 on Reader Service Card. inCider February 1990 * 75

can explore the use of alerts, too—dialogs you can program to react at
increasing levels of interactivity based on up to three repititions of an
action (often, three repititions of a mistake). Note that alerts require
only minimal logic to check for user input, and only one informational
field more than the lowest-level dialog—a field specifying which alert
graphic to use.

PRODUCT INFORMATION
AC/BASIC
Absoft Corp.
2781 Bond St.
Rochester Hills, MI 48307
(313) 853-0050
$125
MIcol Advanced BASIC
Micol Systems
9 Lynch Road
Willowdale, Ontario M2J 2V6
Canada
(4161495-6864
$145
TML BASIC
TML Systems
8837-B Goodbye
Executive Drive
Jacksonville, FL 32217
(904) 636-8592
$125

APPLEJD

Modeless dialogs, which act as a standard window available at all
times, are another challenge. The actual logic for a modeless dialog is
covered here. The added concern in this case is monitoring all windows
that might be available on the desktop at any one time. You'll have to
have in your main program logic a way of knowing when the dialog
window has been selected. (You can do this most easily with an empty
global variable set when a mouse-down event occurs in the dialog
window.)

DETAIL WORK
Ultimately, you can create full custom dialogs to meet needs only you

can imagine. To do this, you'll need to fully understand your compiler's
memory-management techniques (AC/BASIC won't do in this case), as
well as QuickDraw II screen drawing, and perhaps even graphics design
and animation algorithms.

You can take this as far as you want. The one thing that's most
important to remember, no matter what your goal, is to execute the
details right. Your goal is within your grasp. 0

CONTRIBUTING EDITOR JOE ABERNATHY IS A JOURNALIST WITH THE HOUS-
TON CHRONICLE. HE'S A CERTIFIED APPLE DEVELOPER AND THE AUTHOR OR
COAUTHOR OF EIGHT APPLE II PROGRAMS. WRITE TO HIM C/O INCIDER, 80
ELM STREET, PETERBOROUGH, NH 03458. ENCLOSE A SELF-ADDRESSED,
STAMPED ENVELOPE IF YOU'D LIKE A PERSONAL REPLY.

4,°v),'ISUPERPATCH.
-YOURSELF APPLEWORKS.

Q Labs announces SuperPatch 6.1, the world's most comprehensive customi-
zation program for AppleWorks 2.0, 2.1 and now, for AppleWorks 3.0!
SuperPatch 6.1 installs over 100 patches on AppleWorks 3.0,

and over 150 patches on AppleWorks 2.0 and 2.1.
SuperPatch is menu driven, and simple to use. SuperPatch will also de-install
alterations, enabling you to try various patches for as long as you like, and easily
remove some or all of them later. Plus, SuperPatch modifications are compat-
ible with your AppleWorks modifications.

Here are a few of the patches available with SuperPatch.
Time/Date Display Printer Modifications

Automatic Time/Date in Reports Change Cursor to any Mouse Character
No Space Bar on Boot Up Cursor Blinker Rate Modification
Error Tone Customization And Many, Many More!

SuperPatch $39.95
a product of Q Labs 313/331-0941

Available from: Quality Computers 1-800-443-6697
Also available from: Roger Coats, Silicon Express, N.A.U.G. or your favorite dealer

76 • inCider February 1990 Circle 164 on Reader Service Card.

