By JOE ABERNATHY

LEARNING TO USE THE GS’ BUILT-IN PROGRAMMER’S
toolbox is much like learning to use the computer itself. You should
begin exploring it region by region. As a BASIC programmer, you also
have access to some of the finest tools available in any language.

The Toolbox is a set of some 900 procedures that let you implement
such features as pull-down menus, sound, graphics, dialog boxes, and
50 on. These various tools are organized into topical kits such as Menu
Manager, Sound Manager, QuickDraw II, and Dialog Manager.

START SMALL

Learning how to program all 900 tool calls would seem to be a career
initself. Thisindeed can be the case with languages that take a traditional
approach to implementing the Toolbox (following the sophisticated
syntax of Apple’s Toolbox documentation faithfully). Within the various
dialects of BASIC, however, are numerous techniques and shortcuts
that can bring tool programming more within reach.

One good starting point is graphics. It's much of what makes the
11Gs special. A subset of the Toolbox entitled QuickDraw II lets you
display pictures, build in animation, and design sophisticated dialogs.

Most QuickDraw commands create primitive graphics such as points,
lines, rectangles, circles, and polygons. So animation using QuickDraw
might follow this simple recipe: Draw an oject, erase it, then redraw it
at a new location.

ANIMATION BASICS

Working in structured, modular BASIC, the most elegant approach
is to design a set of tools to handle each phase of this simple animation.
And they'll give you full access to QuickDraw graphics via easy one-line
calls in the programs you write.

The first step in using QuickDraw or any toolset is to turn it on.
Traditionally, this involves making sure other toolsets that QuickDraw

78 * inCider August 1989

0LS TO DRAW ON

Take control of the powerful drawing tools built into your GS.
Several techniques and shortcuts help you design advanced
graphics and build animation into your programs.

E1lGS

BASICS

uses internally are active, allocating memory
for QuickDraw’s functions, and finally issuing
a call to activate the toolset. Fortunately, our
11Gs BASICs simplify that process. In Micol
Advanced BASIC, for example, single com-
mands enable the various graphics modes:

GR {40x40 low-res graphics mode }
HGR { super-high-res 320x200 mode }
HGR2 { super-high-res 640x200 mode }
TEXT { turn off any graphics mode }

Here we must diverge from a general discussion of the various dialects,
since there are significant differences among their QuickDraw com-
mands. Although you might not own and use a particular language,
you should read each section.

MICOL ADVANCED BASIC

Micol offers a gentle introduction to graphics, much of it being familiar
if you've done Applesoft programming with Micol. There are a number
of built-in shortcuts, and you can easily build tools based on the Toolbox.
By combining the two, you can create uniquely powerful tools for
advanced graphics and fast animation.

A number of built-in commands afford drawing capabilities that
otherwise are more difficult to program. For example:

PROGRAM SHRDemo:
ROUTINE Main
HGR { start up QuickDraw, 320 mode }
BKCOLOR = 14 { light gray background }

HCOLOR = 4 { blue drawing pen }

HPLOT 4, 4 { locate pen at position 4, 4 }

DRAWSTR (“Hit any key to continue...”)

HPLOT 4, 5 { horizontal = 4, vertical = 5 }

HPLOT TO 314, 186 { draw a line }

GET a$ { await keypress }

TEXT { shutdown QDII, restore text screen }
END

The graphics shortcuts demonstrated above can provide a lot of
flexibility, but you need to call QuickDraw directly to achieve more
sophisticated 11GS graphlcs The following sample shows two ways to
accomplish animation using a combination of simple commands and
direct QuickDraw calls:

80 * inCider August 1989

PROGRAM Graphics
INT (A-2)
DIM Buffer (10)

PROC Draw_Rect [Func_Num, Min_X, Min_Y, Max_X, Max_Y]

{ Draw_Rect by Ron Lewin of Micol Systems }

LSB = ADDR (Buffer() { address of buffer; syntax cq }

MSB = PEEK (202) { bank num of buffer }

TOOLBOX (4, 74: MSB, LSB, Min_X, Min_Y, Max_X, Max_Y)
TOOLBOX (4, Func_Num: MSB, LSB)

ENDPROC { Draw_Rect }

ROUTINE Main
HGR { Start QuickDraw in 320 mode }
HCOLOR = 4 { drawing color blue }
BKCOLOR = 0 { black background, used also to erase }

{ draw a line of circles .. }

=5

FOR i% = 100 TO 320 STEP 5
% =j% + 5
GOSUB Draw_Rect [89, j%, 5, i%, 70]
NEXT i%

{ erase sequentially ... }

=5

FOR i% = 100 TO 320 STEP 5
Bo=i%+5
GOSUB Draw_Rect [90, i%, 5, i%, 70]
NEXT i%

{ by changing the draw/erase order, }

{ you get another kind of animation .. }

=5

FOR i% = 100 TO 320 STEP 5
fo=fo+5
GOSUB Draw_Rect [89, j%, 5, i%, 70]
GOSUB Draw_Rect [90, %, 5, i%, 70]
NEXT i%

END { PROGRAM Graphics }

ROUND IT OFF

This example achieves its effects by calling the flexible Draw_Rect
procedure. This tool can draw rectangles or ovals in any size, and in
one of three capacities: framed, color-fill, or und color-fill, which
will erase a previously drawn color-fill object.

A similar procedure, Draw_Arc, provides the same capabilities for
round-cornered rectangles and arcs:

PROC Draw_Arc [Func_Num, Min_X, Min_Y, Max_X, Max_Y,
Start_Angle, Angle_Length]

{ Draw_Arc by Ron Lewin of Micol Systems } Tetng 2. Crapha potona oampe. .

LSB = ADDR (Buffer() {Syntax is correct}
MSB = PEEK (202)
TOOL BOX (4, 74: MSB, LSB, Min_X, Min_Y, Max_X,

Graphics plotting example
By Joe Abernathy. (C)1989, inCider

Max_Y) All Rights Reserved.
TOOLBOX (4, Func_Num: MSB, LSB) Compiler: AC/BASIC for Apple IIGS
;] - ’ E - ———
ENDPROC
DIM rect%(3) ' for QDII plotting
Together, Draw_Rect and Draw_Arc generate a complete set of DIM pat$%(3) ' QDII pen pattern
QuickDraw graphics primitives, and you should enter them into your ggigggoioa i ' izﬂ}::tz:m scrsen)
e 1t ig gray backgroun
permanent programmers.hbralty. The Func_Num values. that deter- TEXTCOLOR 8 ' black
mine what you draw are listed in the Micol manual and in volume 2 TEXTFONT 5 ' Venice
of the Toolbox Reference Manual. TEXTSIZE 14 ' ld-pt.
Listing 1 is another example of super-high-resolution (SHR) graphics PRINT "This is Venice 14, black on gray."
in Micol Advanced BASIC. It illustrates how to load a “full-sized” (32K) PRINT =~ : .
SHR picture from disk and display it on screen. This procedure is Lt Mglljgﬁk(g‘;uff 52 cenpianes
designed so that you can add it to the inCider Show File utility presented WEND ' Clear mouse buffer
in June’s GS BASICs (“Think It Through,” p. 86) or add it as a procedure WHVIWTE-‘SDMOUSE () a 2 . N i
o 1 ' Await real mouse clic
L0 your permanent programmer's hbrarY‘ BACKCOLOR 2 brown background
CLs clear screen to brown

L}

AC/BASIC FORECOLOR 6 ' orange graphics pen color
(]
L

, . . rectg(g) =5 upper left y
‘AC/BASIC is also designed to give you the power of the Toolb9x reeti(i) =E Gpper 16t %
without the trouble of tool calls. Hence, you can draw most graphics | rect2(2) = 70 ' lower right y
‘el . T . = ' <
primitives with a one-word command. AC's slick mouse-interface calls ;eCtgégéT—VIi ngR (reiz‘{;?; 5 ight x
also offer convenient on-screen graphics control of objects. MOVETO 10, 108 ' x, y
Different AC graphics commands affect different objects, which you PRINT "Click mouse to continue."
can combine to create sophisticated images. You can add graphics and e IOUSE (@) e butfer
disk-based pictures to your programs, enhance on-screen text, and even WHILE MOUSE (8) <> 1

record to disk the composite picture your program’s commands create. WEND ' z(xwait 1{&;} mouse click
e bt ; ERASERECT VARPTR(rect% (@
AC/BASIC graphics objects include lines, boxes, arcs, ovals, polygqns, i e
rectangles, and round-cornered rectangles. You can choose to paint,
invert, frame, fill, or erase the last five of those objects. To get a feel
for this, type in Listing 2, and compile it with the default menus and ' animate with a line of circles .

window selections on. ge:tz () =5 ' upper left

This AC/BASIC example shows how to accomplish animation similar rects(2) = 70 ' lﬁser rightyy
to that of the Micol program above, but apparently without making any FOR i = 100 TO 300 STEP 5
tool calls. The compiler is making them for you in the background. ge:tg (I)5= 3 D urper Tort
Listing 2 also shows how to manipulate fonts and colors quickly. Using rect%(3) = i ' lower right x
polygon commands, you can create figures or objects as complex as FILLOVAL VARPTR(rect%(@)), VARPTR(pat%(g))
your imagination. SgﬁEgVAL VARPTR(rects(g))

And as you can see by comparing source code, much of your knowl-
edge will be portable if you later add another BASIC compiler, or even
another language, to your repertoire. One consideration that counts MOVETO 16, 1006 ' x, ¥
against AC/BASIC is its lack of speed, which manifests itself as “flashy” EEINESS CECk oSy c ol e chEnuss
animation. So try to keep the size of animated figures small.

Another technique to use is pseudo animation—manipulating the WHILE MOUSE (8) <> @
color palette as demonstrated in the DoMenu routine in Listing 3. WEND ' Clear mouse buffer
Listing 3 also shows how to load a picture from disk and display it in WHILE MOUSE (@) <> 1 :
either 320 or 640 mode. (Listing 3 requires the original inCider.Shell L CATI. - ek
for AC/BASIC. See “Studio BASIC,” April 1989, p. 86.) NEXT i

END

TML BASIC

TML BASIC is unique in letting you write unfettered desktop-style
programs. AC/BASIC limits you to those desktop capabilities built into
the language (unless you know machine language), and Micol Advanced » |

inCider August 1989 » 81

APPLEJIGs

82 + inCider August 1989

BASIC lacks the intent and documentation to do desktop applications,
even though the ability ostensibly is there.

However, TML offers only one high-level shortcut to QuickDraw
graphics, the GRAF INIT command, which starts up QuickDraw and
its interdependent toolsets. But sophistication in data handling takes a
lot of the sting out of TML's tool interface.

Listing 4 shows how to implement our simple animation techniques
using TML BASIC. It also shows readily portable examples of other
tool calls that may be useful to Micol programmers. TML has no ready-
made shortcuts for displaying an SHR picture, as do the other BASICs.
If you need this capability, you must program it in traditional Toolbox
fashion as prescribed in the Toolbox References and in the TML manual.

In addition to strong support for desktop programming, TML
includes a broad-ranging discussion of QuickDraw graphics in its
manual—the best of any of the BASICs. On-disk source-code examples
show how to implement every QuickDraw graphics primitive and a
number of useful screen-display techniques.

PROJECTS

There are many programs you might write to further explore
QuickDraw graphics, while creating something worthy in the process.
For instance, using AG/BASIC, you have access to powerful mouse-
tracking commands that will let you program an art-capture function
easily.

In conjunction with automated scaling demonstrated in Listing 3,
this can become the basis for applications such as an SHR label-making
program or a database that mixes text and graphics. Refer to chapter
16, “Advanced Memory,” in the AC/BASIC manual.

TRICKS OF THE TRADE

Micol Advanced BASIC has the speed, tools, and Applesoft compat-
ibility to bring a lot of good but outdated software back to life. You can
add backgrounds to Applesoft adventure games, or use object-oriented
graphics to make a simulation or educational program more exciting.
I like these kinds of projects because you can do them in a weekend
and get a good upload to the networks with your name on it.

Inaddition, Micol promises to release an upgrade for the GS Advanced
BASIC (version 3.0) by early this fall that should make graphics a snap,
especially IIGs desktop windows, dialogs, menus, and mouse control.

"With TML BASIC, the disk examples and manual treatment of
QuickDraw enhance TML's status as the best compiler for desktop
programming. You may even prefer it for game design, because of the
wide availability of examples (in TML Pascal as well as BASIC). The
only feature missing in TML is a GS/OS-compatible compiler update.

MOVING ON

You don'’t need advanced knowledge to do significant graphics pro-
gramming. After a couple of hours of experimentation, you'll have a
great deal of confidence. And after a couple of projects, you'll no doubt
feel—and program—like a graphics pro.[]

CONTRIBUTING EDITOR JOE ABERNATHY IS A JOURNALIST WITH THE HOUS-
TON CHRONICLE. HE’S A CERTIFIED APPLE DEVELOPER AND THE AUTHOR OR
COAUTHOR OF EIGHT APPLE II PROGRAMS. WRITE TO HIM AT P.O. BoX 66046,
HousTON, TX 77266-6046. ENCLOSE A STAMPED, SELF-ADDRESSED ENVELOPE
IF YOU'D LIKE A PERSONAL REPLY.

inCider August 1989 » 83

