PLE 1168

Define your task, break it down into a logical series of steps—
and you're halfway there. If you know how to use structured BASIC
to implement a program, you can achieve professional results quickly.

By JOE ABERNATHY

THE KEY TO PROGRAMMING, LIKE
everything else, is to begin with a good idea.
But how do you create that spark? And how
do you turn it into software?

This month I'll illustrate the complete pro-
gram-design process and offer a library of
source-code procedures with which you can
manage file printing and display tasks. You'll
turn these procedures into a classic desk ac-
cessory (CDA) and learn an easy method of
writing programs that you can use with any
11Gs language.

DEFINE THE PROBLEM

Think of your favorite utility and ask your-
self how it originated. Chances are you're con-
vinced you could write a more efficient
program for your IIGS. That’s where the best
software always originates.

The first step in writing a program is to
define a problem or a task. How do you work
with your Apple, and what do you find an-
noying about the process? Is there something
your Apple could do better? Therein lies your
program’s definition.

And that'’s how I got the idea to create
ShowCDA (Listing 1). While using my GS, I
booted Cat Doctor (a catalog utility that comes
with ProSel drive-management software) to
find and read a text file I knew was somewhere
in my library. I grew annoyed at the endless

86 * inCider June 1989

steps involved: exit current application; launch
utility; find and read file; exit; relaunch.

What I needed was something that wouldn’t
force me to exit my current application to
consult my notes. A CDA was the perfect so-
lution. Its capabilities would have to include
display to screen, print, catalog, and set prefix.
A “print with header” option would be useful
for printing archival source code.

Choosing the compiler was simple—Micol
Advanced BASIC, the only one that generates
CDA files. And since CDAs don’t use
QuickDraw Toolbox screen output, the user
interface must be the 80-column text screen.
I set out to design a custom interface in the
fashion of a CDA.

With this much decided, I had yet to write
a line of code. Because I had clearly defined
the problem, though, the program was already
half finished. I let structured programming
style write the application for me, breaking
down the big picture into pieces small enough
that they fell into order.

SOLVE THE PROBLEM

Your outline should translate directly into
source code. Each of the program’s features,
including the CDA user interface, should end
up as a portable procedure or a group of
related procedures in the final listing. Look
ahead to the source code and you'll see this is
s0: The procedures FileTyper and DoTypeFile
handle output to screen; FilePrint and Do-

BASICS

PrintFile, printing; and HeaderPrint and
DoHPrintFile, print with headers. SetPrefix
and ShowCatalog speak for themselves. Note
that the procedures that do the work remain
separate from their program-specific calling
routines. Because of this design, we can reuse
the procedures in the desktop environment.
(See Listings 2 and 3.)

Something has to bring these procedures
alive. In our CDA, RouteMain, DoCDAScreen,
and MainScreen give us access to the CDA's
utilities. The short REPEAT/UNTIL structure
at the end of the program ties them together.

You can quickly modify this group of pro-
cedures to create other CDAs. To do so, update
the program-specific screen-menu strings, and
the INDEX menucommands$ filter string. Note
that you also must take along the global vari-
ables specified at the top of the program.

The last thing you must do with ShowCDA
is create text files for the on-line help function
(Listings 4-9). Create a directory called */SYS-
TEM/DISCGOV.DATA/ in which to place these
files.

That's it—a fast, direct path to completng a
program. Compile ShowCDA as listed to cre-
ate a link file, then use Micol's EXE.TO.CDA
utility to convert the link file to a classic desk
accessory. Place the file into your System Disk’s
SYSTEM/DESK.ACCS folder, and you're
done. (You could just as easily compile this as
a launchable .SYS16 file, rather than a CDA,
but that would defeat the purpose of this par-
ticular program.)

FINISH IT RIGHT

Simply finish a program—any program, at
any level of quality—and you've beaten per-
haps 80 percent of your competition. But if
you finish your program right, you have some-
thing worth money.

After I'm satisfied that a program is com-
plete, I ask a friend (preferably one who dis-
likes computers) to give it a try. This resulted, »



APPLE]IGs

88 + inCider June 1989




APPLE s

90 + inCider June 1989

X$ = "< Choose Help Key, or Press Q to quit >
x% = (8O-LEN(x$))/2
VTAB (24)
HTAB (x%)
PRINT x$;
HTAB (1)
VTAB (1)
GET a$
IF a$ = "" THEN Terror! = TRUE
IF a$ = " " THEN Terror! = TRUE
a$ = UPPERS (a$)
IF a$ = "Q" THEN Terror! = TRUE
IF NOT Terror! THEN BEGIN
GOSUB DoHelp[a$]
ENDIF
ENDPROC { BringHelp }
{
{ work routine for Main Menu
PROC RouteMain[actn$]
a$ = actn$
menucmnds$ = "HQSCWPT"
occurrence$ = INDEX (a$,menucmnds$)
IF occurrence$ <> ¢ THEN BEGIN
HOME
IF a$ = "Q" THEN BEGIN { Quit }
Done! = TRUE
ELSE IF a$ = "H" THEN BEGIN { Help }
GOSUB DoHelp{"H"]
REPEAT
GOSUB BringHelp
UNTIL Terror!i
Terror! = FALSE
ELSE IF a$ = "S" THEN BEGIN { Set Prefix }
GOSUB DoCDAScreen[title$,author$, companys$]
GOSUB SetPrefix
Terror! = FALSE
ELSE IF a$ = "C" THEN BEGIN { Show Catalog }
GOSUB ShowCatalog
ELSE IF a$ = "W" THEN BEGIN { Print w/header }
REPEAT
GOSUB DoCDAScreen[title$,author$, company$]
GOSUB HeaderPrint
UNTIL Terror!
Terror! = FALSE
ELSE IF a$ = "P" THEN BEGIN { Print file }
REPEAT
GOSUB DoCDAScreen[title$,author$, company$]
GOSUB FilePrint
UNTIL Terror!
Terror! = FALSE
ELSE IF a$ = “T" THEN BEGIN { Type File }
REPEAT
GOSUB DoCDAScreen[title$, author$, company$]
GOSUB FileTyper
UNTIL Terror!
Terrorl = FALSE
ENDIF { keypress }
ENDIF
ENDPROC { RouteMain 1}
{
{ praw shared background for a CDA
PROC DoCDAScreen[titl$,authr$, publshrs]
HOME
x$ = (8O-LEN(titl$))/2
VTAB (1)
FOR i% = 1 TO 80
PRINT "_";
NEXT i%
HTAB (x%)
VTAB (1)
PRINT titl$
HTAB (1)
VTAB (3)
FOR i% = 1 TO 80
PRINT " ";
NEXT i%~
HTAB (1)
VTAB (3)
Continued




APPLEIgs

BASICS

92 » inCider June 1989




APPLElgs

BASICS

94 + inCider June 1989




APPLEJis

for example, in my writing the on-line help
function included in Listing 1 (procedures
BringHelp and DoHelp). Occasionally, it’s
caused major changes in a program’s design.
To “finish it right,” you need to weigh the
expectations of what you want the program
to do against what it actually does and what
someone else might try to make it do. These
variables change with every program, but you
can observe three general rules:
Document it. Explain in common language
what every feature is, how to invoke the pro-
gram’s features and make the most of them,
and how to abort an operation. You might
choose to write your documentation in the
form of a manual, put it on line, or both.
Make it bulletproof. If something you write
crashes someone’s computer, that isn’t going
to be pleasant for either of you. In ShowCDA,
I found that Micol Advanced BASIC's FILE
function contained a bug that could make the
program crash. The CheckInput procedure,
that ShowCDA calls after every filename
prompt is a filter that prevents a crash.

GS Basics Q&A

FINDER PROBLEMS

I’'m using TML BASIC for the llcs and
am trying to run the Finder directly
from a program. Whenever | enter RUN
FINDER, the Finder loads up, but | get
a FATAL SYSTEM ERROR. I've tried
renaming the START program in the
#/SYSTEM folder to MYSTAR and then
RUNning MYSTAR. The same result oc-
curs. Any suggestions?
Christopher Smeds
New York

I know what you’re asking, but I'm
not sure why. To invoke the Finder di-
rectly you need to RUN */PRODOS.

Generally, the Finder will have
launched a program. If so, the fastest
way back to the Finder is the END
statement, which is actually a ProDOS
QUIT that returns to the most recent

program executed before the one call-
ing END. Because you’ll have used the
Finder to launch most programs, it’'s
usually the most recent program.

Using the RUN statement to launch
the Finder directly defeats the pur-
pose of the GS’ powerful memory-man-
agement scheme. It will also add quite
a bit to the turnaround time required
to use the program you'’re writing.

TOOLS FOR LEARNING

I've programmed in Applesoft and
Microsoft QuickBASIC; now | want to
learn more about programming on my
ligs, particularly the Toolbox, in which
I’'m a complete novice. What's the best
way to start learning about the Tool-
box and how to use it with TML BASIC?

Also, can you recommend any refer-
ences for using TML BASIC?

Carl Beyer

Midland, Mi

You've already found the best source
of information for Toolbox program-
ming under BASIC—inCider’s Apple
llcs BASICs. Unfortunately, no one’s
written a book on this subject yet.

Two books you should look at are The
Apple llcs Toolbox References, Vol-
umes 1 and 2, available through Addi-
son-Wesley (6 Jacob Way, Reading,
MA 01867, 617-944-3700), B. Dal-
ton bookstores, and the Apple Pro-
grammers and Developers Association
(APDA, Apple Computer, 20525 Mar-
iani Avenue, Cupertino, CA 95014,
408-996-1010).

These volumes have no BASIC-spe-

cific information, and in many in-
stances presume a knowledge of C or
assembly language on your part. Still,
they're the only source of the infor-
mation necessary to issue tool calls.

For source-code examples, order one
of the suite of on-disk source samplers
available from APDA. There won’t be
any BASIC, but there will be TML Pas-
cal, which is the dialect most readily
portable to TML BASIC.

A starter TML BASIC program shell
is available free throughinCider—send
a stamped, self-addressed envelope to
receive a copy. This shell will handle all
the background work necessary to let
you write desktop-style programs.

Ninety-five percent of the BASIC
source code | write here is quickly por-
table to TML. Some will be specific to
TML, such as the program shell.(]

96 + inCider June 1989

Bulletproof takes on additional meaning when
you begin composing programs that write data
to disk. You need to ensure that no action, no
matter how arcane, can ruin the data on disk.
Sand the edges. After you've written the pro-
gram, give yourself two more days just to play
with it. Look over the source code, and re-
member what parts you rushed through trying
to finish.

Now that you've met the big challenge, en-
courage yourself to start tackling other pro-
gramming issues. Challenge yourself to
improve the quality of your programming with
every procedure you write. With an endless
supply of ideas, you'll have plenty of oppor-
tunity to refine your GS programming
skills. (]

CONTRIBUTING EDITOR JOE ABERNATHY IS A
JOURNALIST WITH THE HOUSTON CHRONICLE.
HE'S A CERTIFIED APPLE DEVELOPER AND THE AU-
THOR OR COAUTHOR OF EIGHT APPLE II PRO-
GRAMS. WRITE TO HIM AT P.O. Box 66046,
HousTon, TX 77266-6046. ENCLOSE A STAMPED,
SELF-ADDRESSED ENVELOPE IF YOU'D LIKE A PER-
SONAL REPLY.



