computer involves much more than
simply stringing language state-
ments together. The most important steps
in programming come long before yonen-
ter a PRINT or IFTHEN statement.
Before you code a program, you've got
to define what you want a program to
do, the output the program should pro-
duce, and the input necessary to produce
that output. Then you have to come up
with an aigorithm that'll convert the in-
put innto the appropriate output. In this
month’s column, Vil use the electrenic
game of Life to demonstrate the steps
needed to complete a programming proj-
ect successfully. Foilow along in the ac-
companying ACBASIC Program listing.)

T Ire art and science of programming a

DEFINING THE PROBLEM

The game of Life is one of the oldest and
most fascinating computer games, It was
created by John Conway, a British mathe-
matics professor, and popularized in the
early 1970s by Martin Gardner in his
"Mathematical Games” column in Scientific
Ameriggn. Its enduring popularity is a re-
flection of the complexity and diversity a
very simple set of vules can generate.

The game of Life simulates a simple
biological system consisting of a grid of
cells—vou can think of each cell as a
biological niche. Each cell therefore has
eight neighboring cells; one above, one
below, one on either side, and four on
the diagonals. At any time, a cell can
either contain life or be devoid of life.
(It can be either on or off) Whether a
cell is on or off is completely dependent
on the following rules of the Life system:

1) 11, in the previous generation, the total
number of neighboring cells that were on
was zero or one, then the cell will be off.
2} If the total number of neighbors with
life was two, then the cell maintains the
78

Life Goes On

by Robert M. Ryan

Stmulating a simple bio-
logical system in the game
of Life will show you how
to define a programming
problem and outline ihe
solution.

condition, either on or off, that it had in
the previous generation,

3) If the total number of neighbors with
life was three, then the cell has life in the
CHITERnt geneyation.

4j I the total number of neighbors with
life was four or more, then the cell is off
for the current generation.

In the Life system, time is discrete; you
measuye it in generations. You provide
the first generation, called the parent or
seed generation. The rules of the Life sys-
tem produce subsequent generations; the
game’s challenge is to create dynamic yet
stable systems that last for hundreds of
generations. Your challenge is to create
a program that adheres to the rules of
Life.

SPECIFYING OUTPUT
Since the game consists of a rectangular

Jan Muiler

grid of on and off cells, you can easily rep-
resent the output of the program with a
window on the HG8 graphics screen. To
keep generation-processing time short, 1
use a window that’s smalier than the
screen. Whenever a cell is off, [leave it
biank on the output display. When a cell is
on,] represent it with an asterisk.

The big question, of course, is how to
generate output. You achieve this by ex-
amining the Life universe and printing
asterisks wherever you find life. For this
you need an internal representation of
the Life universe; you'll find it in two
arrays, parent% and filial%, both two-
dimensional,

Parent% ceontains the current condi-
tion of the Life system, To create the next
generation, your program examines each
cell in parent% according to the rules of
Life, then stores the results in filial% and
displays them in the output window. The
program then copies {ilial% into par-
ent% and repeats the process.

The exact representation of the Life
universe in an array is quite simple: Each
element of parent% and flal% corre-
sponds 1o # cell in that unjverse. If an
array element such as (5,13) contains a 0
{zevo), then that cell doesn’t contain life,
and the corresponding location in the
output window will be blank, If the ele-
ment contains a 1 {one), then the cell has
life, and the corresponding location on
the output screen contains an asterisk.

To generate the output of the Life pro-
gram, you simply test the elements of the
output array (filial%) and print a bjank
where the array value is 0, and an asterisk
where the value is 1.

PROGRAM INPUT

Because both arrays are initialized to 0),
you need some way to seed the system with
life. I use a very primitive seeding routine

October 1988

(S BASIC S

in my program. 1 could have trapped
menu and mouse events, but they slow
down program execution, and I wanted to
produce generations as fast as possible.

To speed up the process, my program
lets you seed 12 cels with life by simply
clicking on them with the mouse. The
program polls the mouse and puts a 1
into the parent% array element that cor-
responds to the output location you
cdlicked. You can change the number of
seeds or modify the seeding routine en-
tirely if you ke,

INPUT TO OUTPUT

Once you have the seed, you must pro-
cess the next generation. | use nested
FORINEXT loops to add the values of
the neighbors of each cell in the parent%
array. I then apply the system rules in
series of IXTHEN statements to see
whether the corresponding cell in filiai %
is on or off.

“The game of Life is one
of the oldest and most
fascinating compruter

games. Its enduring
popularity is a reflection
of the complexity and
diversity a very simple sel
of rules can generate.”

Ideally, the Life system is infinite. Unfor-
tunately, your output window isn't. The
easiest way to handle the borders of the
display is to keep track of one row or col-
umn of cells outside the visible dispiay and
to ignore what happens beyond these
boundary rows and columns. Thus, al-
though my arrays start with element {0,0),1
don’t display row 0 or column 0. They're
present in the Life universe, so ali dis-
plaved celis have eight neighbors.

80

Program histing, The game of Life.

rem 1IQF Game of Life by Bob Ryan
rem Copyright 1988, ingider

rem A BASIC compile with ¢, m, and u optlons

éim parent¥ (61,15}, Ffilial®{6l,15}
windew 1,"1life", (44,88)~{464, 192}
REnY i, ﬂ,l, project'

meni 1,1,.1,° rulb'

mess 2,%,@.

geni =)

gosuh GETSEED

LoGEs
qusul SWARIT
gusuh SOMPUTE
gozuh DISPLAY
gosul SWITCH
HE manu{@) <» @ then
locate 1,1

print "Poaral sumber of generationg:

delayl = Limer
witd e timer < delayi + 3
WG
akap
end i
gent = genirl
geta LOOP

DISPLAY:
cisg
fur y¥% = 1 to 14
for £k = 1 no
if fitial%(x% y&} = 1 then
tocate wi, %%
pring "
end if
next x%
next yk
return

FWITCH!:
for x% = § to 61
for yi = @ wo 15
parent®(nt,ye) = filial%ixs,ys)
nexrt y%
next xk
return

GETSEED:
[
MEOGP
delayl = timer
while timez + delayl + 1,28
wend
iE mouse{f) = o than MLOOP
colE = intimousel5)/8+.5)
rowi = intimousel&} /84,57
locate rom%,col%
print M+
parent%\col%,rnw%] ER S
co= oo+
if e = 11 then Teturn
goto MLOOR

SWARFIT:
for x% = @ to 83
parentkixt, 14} = parent®ixg.q}
parent(z%,1}) = parent®{x%,15}
next xi
for y& = # to 15
parentiil,vi) = parent®{6l,y3)
parent3 (6@, yE) = parent®(@,y%)
next y¥
return

COMPUTE :
for ¥3 = 1 to 6@
for yE = 1 to 14

Trgent

suRlE = parent®(zi-1,y%) + parent?{x%§,y%-1} + parventd (x3+l,y%)
sumlt = parent®{xi, yi+l) + parent®{x%~l1,y%-1} + parent¥{xi+l, yi-1)
sumit = pazentd{xk-i,yR+1} + parentR{xesl,ye+1}

sumd = gamii 4+ sum2l + suml
if zumb = 2 then

£iliala(x%, vi} = parent¥{xd,yd)

elgeif sumi = 3 then
fFiliala{rk,y%) = 1
elze filialt{xe,y:) = &
end if
next vi
next x%
return
end

End

Qctober 1368

It's a simple solution, but it’s not very
satisfying. A better method, the one I use
in the listing, is to make the Life system
toroidal—that 15, to nake it wrap arcund
itself so that the top row of cells borders
the bottom row and the left side borders
the right. This way, the Life system is
complesely self-contained.

Achieving a toroidal effect is quite sim-

ple—I use a swap routine. Here, after the |

program calculates a generation, displays
it, and copies it back to the parent%
array, 1 copy the top visible row of cells
to the boundary row at the botiom of the
system and the last visible row to the
boundary row at the fop. 1 perform a
similar swap between the left and right
sides. The result, in effect, is that each of
the visible cells around the border of the
window has eight neighbors, and their
invisible neighbors come from the op-
posite side of the display.

IMPLEMENTATION

Once you know what your output
should look like, what the input js, and
how you get from one to the other, you
can begin to write the program. The ac-
companying Program listing contains
the code I wroie to create the Life system.

Enjoy the game of Life, and note carefully
how I implemented the steps described
above. Because of space constraints, wasn't
able to add a lot of chrome to this progranm,
such as succeeding generations displayed
in different colors. If you want 1o see how [
imptemented color and event rapping in
version 2 of the program, download the
file life.extra from the nCider bulietin-
board system {603-924-9801). T also post
the printed edition on inCider's BBS.

Remember, you can't code a program
you haven’t thoroughly thought through.
Save yourself a lot of work coding and

debugging by putting vour effort into |
defining your problem. You'll be a faster

and better programmer for it. IR

Bob Ryan is a lechmical editor at AmigaWorld

magazine (IDG Communications/Peterbor-
ough} and is @ contributing editor at inCider.
Write to him oo inCider, 80 Elm Street,
Feterborough, NH 03438,

inCider

81

