
Call-A.P.P.L.E. Magazine • January 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0019 of 0077

BASIC is back for the Apple IIGs. Dressed in its Sunday
best, polished with modern capabilities, BASIC is better than
ever, to the extent that you can be within an hour of having your
first Apple IIGS desktop-based program up and running.

Welcome to "Launching Into BASIC," Call-APPLE.'s
new column on BASIC programming for the Apple IIGs. We
will explain and demonstrate everything you need to create
sophisticated desktop applications, and along the way we'll
build a significant source code library that will put you ahead of
the pack.

It has been easy to forget that the IIGS even has a built-in
BASIC prompt, since you have turned to assembly, Pascal or C
to use the Toolbox. (See Toolbox sidebar.) But there now are
two strong commercial BASICs, with one or two more in the
works.

Apple came first with GSBASIC, but recently put it out of its
misery. TML BASIC from TML Systems is actually the product
Apple likely had in mind. (If you have any GSBASIC source
code on hand that you want to save, it can easily be ported to
TML BASIC.) Absoft Corp. offers AC/BASIC, whose pro-
grams are compatible with Microsoft BASICs. Micol Advanced
BASIC for the IIGS was recently introduced, but we have not
had the opportunity to examine it. During the first quarter of
1989, Byte Works reportedly will publish ORCAjBASIC.

If you have not yet purchased a BASIC compiler, your
choice is pretty straightforward. Choose ACjBASIC if you have
little or no knowledge of IIGS programming, for it is the
friendliest to learn. Choose TML BASIC if you already have
some idea of what the Toolbox is about or don't mind learning.
The difference is one of assumptions in the compilers' design-
TML chose to use very standard (to APW programmers) hooks
into the Toolbox, while Absoft offers Toolbox access in the
form of built-in statements such as WINDOW (at the price of
reduced flexibility).

Tools of the Trade
Central to everything is the Toolbox, the set of some 900

routines built into the IIGS that together make Apple's graphical
interface available to programmers. The Toolbox is what sets

m Call ·A.P.P.L.E.

iii

the IIGS apart, but it also is what has made IIGS software so slow
in arriving - the style of programming needed to employ tool
calls is essentially foreign to programmers who learned on the
old Apple II line.

This, however, like prejudice of any kind, is exposed in the
end to be wrong-headed. You will come to regard the Toolhox
as a good friend once you have made its acquaintance. Desktop
programs, which is what programs written using the tools arc
generally called, mainly consist of very similar routines that can
readily be reused. The result is programs that arc cleaner. more
sophisticated, and both easier and faster to write.

How is desktop programming different from the way you've
always programmed? Aside from an aura of mystery, not much.
The only thing new you really have to learn is how to think in
terms of an event-driven program, instead of the "top-down"
style encouraged by old Applesoft BASIC. (See Top-down
sidebar.)

You also will notice that line numbers and GOTOs are in
short supply these days, their place taken hy lahels and control
structures such as IF-THEN-ELSE and WHILE-DO. If you've
worked in C, Pascal, or another structured language, you're a
step ahead of the game; if not, you're in for a pleasant surprise.

Cecil recently lamented the demise of GOTO in the
Consultant's Corner, and his feelings are understandahle. But
its passing is actually acause for happiness. GOTO was a spoiler
constantly at work making source code difficult to read and
impossible to debug. Control structures make it quite clear what
turns the program is allowed to take and when. They encourage
you to carefully think through a routine, therefore, things often
turn out right the first time.

We will tie these common themes together, and give you a
standard programming platform, hy designing two program
shells, one for each language. What these shells do is handle all
of the background work that has to he done to prepare the tools
for use, and set up the desktop environment and an event-
handling routine. The shell can he the foundation upon which
you build all of your subsequent programs - all you do is add
the specific routines needed to accomplish the task at ham!.
Subsequent source code presented here will he designed to usc
within these shells.

AC/Exerciser is the shell for AC/BASIC. In addition to
setting up the desktop, it shows how to implement the most
common file-handling techniques, and some features specific to
ACjBASIC. Space limitations require that the TML shell await
the next column.

Getting Down to Basics
The true measure of any language software is found when

you sit down to do some programming. But since there are two
sophisticated, incompatible dialects of BASIC availahle for the
Apple IIGs, it is possible to examine the programming issues of
only one at a time.

Call-A.P.P.L.E. Magazine • January 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0020 of 0077

What follows is an introduction to the capabilities and
limitations of ACIBASIC, and of the program AC/Exerciser.
We will discuss the specific routines within AC/Exerciser in a
moment.

AC/BAS[C is potent. To give you an idea of just how potent,
it took less than an hour from first booting the compiler to get an
old Applesoft BAS[C program running as a windowed desktop
application. Two evenings later, it was a fully modem program
featuring buttons and Super Hi-Res (SHR) graphics.

AC/BAS[C is published by Absoft Corp., the company
behind Microsoft's BAS[C for the Macintosh as well as AC/
BAS[C for the Amiga. Hence, the source code of these three
products is very machine-portable. For Apple II enthusiasts, this
raises the intriguing prospect of doing cross-development for
the Macintosh on a IIGs.

Machine snobbery aside, portability truly is a strong point,
but only one of many. [f you like BASIC, you will love AC/
BAS[C. [t is fast to learn, quick in operation, and creates true
stand-alone GS/OS programs. It jettisons the traditional mind-
set that says you must start with a text-based user interface and
work your way up to the desktop: ACIBASIC programs auto-
matically compile as windowed desktop programs. (The Apple
II 40- and XO-column text screens are not available.)

Some of the significant features include: SOUND, WIN-
DOW. PALETTE, PICTURE, BUTTON, MENU, IF-THEN-
ELSE and WH[LE-WEND. Twenty-five QuickDraw II opera-
tions are available, such as OV AL, RECT, FILLRECT, ERAS-
ERECT, ROUNDRECT, etc. Programs will compile in 320 or
640 mode. and REPEA T will cause music or sound to sequence
in the background automatically. This is good for games.

Advanced features include the ability to INCLUDE external
source code from your programmer's library; a machine lan-
guage subroutine interface (which allows direct toolbox calls);
and custom wave forms for the Ensoniq sound chip (DOC).
Dynamic arrays, [EEE and decimal math, and 32- and 64-bit
tloating point support are provided.

Absoft gave careful thought when designing the tools you
use to maintain the desktop. There are event handlers for the
mouse, menu bar. timer, errors and dialogs - everything you
might need. ON MENU GOSUB and MENU ON, for example,
catch any mouse clicks in pull-down menu items. AC/Exerciser
shows how event handlers are used (nowhere else will you find
a main event loop two lines long).

Line numbers are not needed and both numeric and text
labels are available for identifying subroutines. The programs
you write will share the indented flow and readability of
structured languages. [F-THEN-ELSE, WHILE-WEND and

FOR-NEXT handle control of block functions.
Programs are typed in via a text editor. Absoft licensed the

text editor used in APW, but chose to rewrite it in a fashion that
actually impairs its functionality. You cannot rename your
source file as you are editing it, and you likewise cannot copy
source files to different volumes. In addition to the inconven-
ience, these failings undo whatever benefits batch compiling
might have afforded.

The text is turned into a program by running it through a
built-in, standard two-pass compiler. The compiler is fast, and
ostensibly supports batch jobs. One problem with the compiler
is that it is pretty simple-minded in identifying anything other
than an outright syntax error.

Compiling creates stand-alone GS/OS programs that can be
launched by the Finder. Actually, you can create programs that
rely on AC/BASIC being installed in the system folders of the
disk you boot from, or you can compile a program as a true
stand-alone application. Compiling for stand-alone, that at-
taches the Absoft run-time libraries to your program, increases
program size by 75K. (See Memory sidebar.) There is no charge
for this use of the libraries, although Absoft requires that you
give them a plug somewhere in your program.

A significant limitation in the current release of ACIBASIC
is that it is difficult to access any Toolbox functions that are not
directly implemented in the language. You can do so if you have
an understanding of assembly language, but it doesn't follow
that BASIC programmers are going to want to fool with assem-
bly. Like the lady said, that old dog won't hunt in Texas.

Exercising the Options
AC/Exerciser is the shell for AC/BAS[C mentioned earlier.

It is actually a complete program that lets you directly issue
some of the basic calls your applications will be likely to use.
Options are chosen from a standard menu bar; you can enter the
parameters of a call or accept the defaults that are provided.

AC/Exerciser shows how easily you can create a profes-
sional-feeling application in this language. Absoft's metaphors
are truly elegant - they do the job right without losing any of
the accessibility of BASIC.

To get AC/Exerciser running, type in the code in Listing I
and compile it with the U option clicked (no default window).
Create a volume off of your root directory called
/FW.PROCS/, then type in the two files AC.EX.ABOUT (See
Support File I) and AC.EX.HELP (Support File 2) and save
them to that volume. (Alternately, you can put them on any
volume if you edit the subroutines at 120: and 130: to reference
the correct volume name.) To save you some typing, AC/
Exerciser also is available for electronic download - see the
heading entitled Resources.

Only six lines of code are required to implement the
program's setup and event loop. The subroutine SETUP estab-
lishes values for the screen size (to aid in program portability to
machines with different screen dimensions). The SETMENU
subroutine customizes the pull-down menu bar.

The ON MENU GOSUB statement alerts the program that
a subroutine is available to interpret custom menu events, and
MENU ON activates the menu event handler. The MAIN event
loop causes the program to simply idle, waiting for menu events
to occur. (New Desk Accessories (NDAs) under the Apple
menu are handled without your interference. So are the FILE
and EDIT menus, unless you choose to customize them.)

The routine MENUPROC, installed by ON MENU
GOSUB, reads a menu event and its item number, then routes

January 1989 [Ill

Call-A.P.P.L.E. Magazine • January 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0021 of 0077

control to an action subroutine.
10: and 20: show how to open, read, print and close a file.

For print operations, you can "open" the printer for output of a
file, and the familiar printer dialog boxes will be generated for
you. The command FILE$ will generate the familiar desktop
file selection dialog box.

The routine at 30: shows how to kill a file. You also can
rename files, but any more advanced file manipulation be-
comes difficult. For more sophisticated applications that re-
quire internal data files, a variety of routines such as GET and
PUT support input/output.

WINDOWS lets you create various sizes and styles of
windows in various places on the screen. Be careful not to
exceed the suggested defaults or you might create a window off
the screen and force yourself to reboot the computer.

The SOUNDER option lets you work with the AC/BASIC
SOUND statement. The AC/BASIC manual, generally well-
written and usable, fumbles where the sound routines are
concerned, making them difficult to use beyond the most basic
level. Digitized sound files cannot readily be loaded, but SHR
pictures can.

HELP and ABOUT.. show file access and mouse-polling.
The routines under the SPECIAL menu allow you to manipu-
late the font, color, size and style of text.

Notably lacking in AC/Exerciser is a demonstration of the
built-in graphics commands. These were left out because most
of them require manipulation of data arrays, which is not
especially difficult but is often hard for beginners to understand
in this or any other BASIC. Good demos of the graphics can be
found on the AC/BASIC disk itself.

Call -A_P.P.L.E. Update
AC/BASIC was formally reviewed by Ken Kashmarek in

the May 1988 issue. Ken reviewed an early version of the
language and listed a couple of concerns he felt should be
addressed.

AC/BASIC will only print via the Apple IIGS ImageWriter
driver. This is slow through no fault of Absoft, and the print
quality is unacceptable by any professional standard. Absoft
has now added the ability to print in a faster draft mode, but any
program that prints in GS native mode is going to have
drawbacks until such time as a more capable driver is provided
as part of the IIGS system software.

Another new concern is that printing will not work at all in

W Call -A.P.P.L.E.

conjunction with system software versions 3.2 and 4.0 (GS/OS).
Absoft's interim solution is to use the printer driver from your
3.1 system software, which should work without hitches.

Ken also pointed out that AC/BASIC doesn't truly launch
programs after a compile & run command, with the result that
programs return to the Finder, from which you can relaunch AC/
BASIC to make changes in your program. This adds quite a bit
of time to development turn around. This issue has not yet been
directly addressed, but it is feasible to work out of /RAM5/,
particularly if you have APW (write two short APW shell
utilities, one to load AC/BASIC to RAM, and another to run it
from RAM).

Summary
Today is the day to get started programming your IIGs. The

tools you've been waiting for are now in place, and winter grips
the land, so you can't beg off for the beach. A tremendous
adventure is in store, with the full promise of the Apple IIGS as
your reward.

Stay tuned for TML BASIC and how to update GSBASIC
code into TML and the A.P.P.L.E. Filer, in our next installment.

Resources
AC/BASIC: $125, Apple IIGS with 5l2K and 800K floppy

drive. Absoft Corp., 2781 Bond St., Auburn Hills, MI 48057,
(313) 853-0050.

TML BASIC: $125, Apple IIGS with 512K and 800K floppy
drive. TML Systems Inc., 8837-B Goodbys Executive Drive,
Jacksonville, FL 32217, (904) 636-8592.

Micol BASIC: New product. Micol Systems, 9 Lynch Rd.,
Toronto, Ontario, Canada MSJ 2V6, (416) 495-6864.

ORCA/BASIC: This product has been pre-announced by
The ByteWorks on AppleLink, and will be available during the
first quarter of 1989.

The Cortland Project: AC/Exerciser available for download.
Electronic posting of questions for the Call -A.P.PLE.
Consultant's Corner, with support for assembly, Pascal, BASIC
and C. Europa BBS, free, 1200/2400 bps, (713) 526-0714.

A Review of AC/BASIC, Ken Kashmarek, Call-AP.PL.E.,
May 1988,

The Apple II BASIC Handbook, Douglas Hergert. Sybex.
Berkeley, CA.

Basic Apple BASIC, James S. Coan, Hayden Book Co.,
Hasbrouck Heights, NJ.

Programmer's Introduction to the Apple IIGS, Apple Com-
puter Inc., APDA, Renton, W A.

Apple IIGS Toolbox Reference Volumes I and 2, Apple
Computer Inc., APDA, Renton, W A.

MasterinR the Apple IIGS Toolbox, Dan Gookin and Morgan
Davis, Compute! Publications Inc., Greensboro, NC.

Note: The above APDA publications also are available from
Addison-Wesley Publishing. m

Call-A.P.P.L.E. Magazine • January 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0022 of 0077

Listing 1
AC/Exerciser

, AC/Exerciser
, By Joe Abernathy
'Version1.0, Sept. 19,1988

(C)1988-89, Call-A.P.P.L.E.
, All Rights Reserved.

This program may be distributed and used
freely, but may not be included
in any commercial package without the
written consent of Call-A.P.P.L.E.
You may use any part or all of this
program as a foundation shell.
Portions of this program include
material copyrighted (C) by Absoft Corp.
1988. Used with permission. All
other copyrights acknowledged.

, File: AC. EXERCISER
, Compiler: AC/BASIC for the Apple IIGS.
, Portability: Amiga BASIC; Microsoft BASIC

Compile with the U option selected.

, Customize the ABOUT box:
, $About "AC/Exerciser, by Joe Abernathy"

gosub setup
gosub setmenu
on menu gosub menuproc
menu on

main:
goto main

, Setup defaults
, Setup menu bar
, Setup menu event

trapping.

, This program is
event-driven.

, This is a template for reading and acting
, on pull-down menu events. Think of it as
, the main event loop:

menuproc:
menunum = menu (0)
itemnum = menu (1)
if menunum = 3 then

if itemnum = 1 then
gosub 10

elseif itemnum=2 then
gosub 20

elseif itemnum=3 then
gosub 30

end if
elseif menunum = 4 then

if itemnum = 1 then
gosub 40

elseif itemnum=2 then
gosub 50

end if
elseif menunum = 5 then

if itemnum = 1 then
gosub 60

elseif itemnum=2 then
gosub 70

elseif itemnum=3 then
<]osub 80

elseif itemnum=4 then
<]osub 90

elseif itemnum=5 then
<]osub 100

end if
elseif menunum = 6 then

if itemnum = 1 then

, Trap menu events
, Read which menu
, Read which item
, FILE menu chosen

READ chosen
So <]osub READ

PRINT chosen
Gosub PRINT

DELETE chosen
Gosub DELETE

, FUNCTIONS menu
WINDOWS
Gosub WINDOWS
SOUNDER
Gosub SOUNDER

, SPECIAL menu
TEXTSIZE
Gosub TEXTSIZE
TEXTCOLOR

Gosub TEXTCOLOR
TEXTFACE
Gosub TEXTFACE
TEXTFONT
Gosub TEXTFONT
TEXTBCOLOR

, Gosub TEXTBCOLOR

, HELP menu
HELP FILE

<]osub 120
elseif i temnum=2 then

<]osub 130
end if

end if
return

Gosub HELP
ABOUT
Gosub ABOUT

, You can use this routine to read text
\ files off disk and show them on screen.

10: ' READ a file
f$ = files$(l,"TXTSRC") File dialog box
if f$="" then goto 15 CANCEL clicked

windownum = windownum+1 ' Prepare a window
, The following should be 1 line, no spaces:
window windownum, , (left+25, top+28)

-(right-25,bottom-15),2
open f$ for input as 2 ' Open the file

while not eof(2)
line input #2, a$
print a$, Print to screen

wend
close #2
print:print spc(30);"<CLICK>"

while not mouse (0) = 0 ' Delay loop
wend

while mouse (0) = 0
wend

window close windownum
windownum = windownum - 1
goto 10

15:
menu
return

, Await click

, Close the window

, Un-inverse menu

, This procedure reads a text file from
, disk and routes it to the printer:

20:
f$ = files$ (1, "TXTSRC")
if f$="" then goto 25

open f$ for input as 1
, Open printer as a device:

, PRINT a file
Call file dialog
CANCEL clicked

open "LPT1: PROMPT" for output as 2
while not eof(l)

line input #1, a$
print #2, a$

wend
close #2
close #1
goto 20

25:
menu
return

, This routines deletes files:

30:
f$ = blesS (1)
if f$="" then goto 35
kill f$

goto 30
35:

menu
return

, Print it

, Un-inverse menu

, DELETE a file
, File dialog box

CANCEL clicked

, Un-inverse menu

, This routine allows you to create windows
, in various sizes, styles and locations.

January 1989 ED

I

Call-A.P.P.L.E. Magazine • January 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0023 of 0077

Only a windows are allowed, but Exerciser
, does not perform error-checking for this:

40: , WINDOWS
windownum = windownum+l ' Prepare window

, The window call should be 1 line only:
window windownum, "", (left+25, top+13+15)

-(right-25,bottom-15),2
x% = windownum + 1 ' Scratch window #

wind:
print
print "AC/Windows: "
print
input "Enter title : ";title$
input "Enter leftX (15-640) : ";leftx%
if leftx% = 0 then leftx% = 15
input "Enter topY (15-200) : ";lefty%
if lefty% = 0 then lefty% = 15
input "Enter rightX (15-640) : ";rightx%
if rightx% = 0 then rightx% = 600
input "Enter bottomY (15-200) : ";righty%
if righty% = 0 then righty% = 175
input "Enter style : ";style%
if style% = 0 then style% = 1

, The window call should be 1 line only:
window x%, title$, (leftx%, lefty%)

-(rightx%,righty%),style%
x% = x% + 1 the window number
print
print "<RETURN> to continue, <Q> to quit";
input i$
Cmd$=ucase$ (i$) , Make input UPPERCASE
if Cmd$="Q" then goto wrtrn

goto wind

wrtrn: Close windows we created
for t% = x% to windownum step -1

window close t%
next

menu Un-inverse menu bar
windownum = windownum - 1
return

, Issue single notes, demonstrate REPEAT:

50: , SOUNDER
windownum = windownum+1 ' New window

, The window call should be 1 line only:
window windownum, "", (left+25, top+13+15)

-(right-25,bottom-15),2

soundl :
print
print "AC/Sounder:"
print

, Interval between notes (seconds) :
input "Select interval (xx) : ";i%
if i% = 0 then i% = 90

, Duration of note in seconds:
input "Select duration (xx) : ";d%
if d% = 0 then d% = 60
Low C to High G:
input "Select tone (0-127)
if t% = 0 then t% = 66
.. a note I like

, Loudness:

: ";t%

input "Select volume (1-255): ";1%
if 1% = 0 then 1% = 150
print
print "SOUND ";i%;",";d%;",";t%;",";l%

, Play and repeat:

m Call ·A.P.P.L.E.

sound 3, i%, d%, t%, 1%, repeat
print
print "<RETURN> to continue, <Q> to quit";
input i$

Cmd$=ucase$(i$)
if Cmd$="Q" then goto rtrn

sound stop , Stop sound
cls ' Clear the screen
goto sound1 ' And cycle

rtrn:
sound stop
window close windownum
windownum = windownum - 1
menu
return

, Play with font scaling:

60: , TEXT SIZE
windownum = windownum + 1 ' New window

, The window call should be 1 line only:
window windownum,"", (left+25,top+13+15)

-(right-25,bottom-15) ,2

tsize:
print
print "Text Size:"
print
print
print "Normal text is a-point."
print
input "Set size (1-255) : "; s%
if s% = 0 then s% = a
if (s%<l or s%>255) then goto tsize
textsize s%
print
print "Text point size is now ";s%
print
print "<RETURN> to continue, <Q> to quit";
input i$

Cmd$=ucase$(i$)
if Cmd$="Q" then goto trtrn
cls
goto tsize

trtrn:

, Clear the screen
, And cycle

window close windownum ' Close the window
windownum = windownum - 1
menu
return

, Play with text colors:

70: , TEXT COLOR
windownum = windownum + 1 ' New window

, The window call should be 1 line only:
window windownum, "", (left+25, top+13+15)

-(right-25,bottom-15),2

tcolor:
print
print "Text Color:"
print
print
print "Default color is 0 (black) . "
print "3, White, will be invisible."
print
input "Set color (0-3) : "; c%
if (c%<O or c%>3) then goto tcolor
text color c%

I

Call-A.P.P.L.E. Magazine • January 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0024 of 0077

print
print "Text color is now it" ; c%
print
print "<RETURN> to continue, <Q> to quit";
input i$

Cmd$=ucase$(i$)
if Cmd$="Q" then goto crtrn
cIs
goto tcolor

crtrn:
window close windownum
windownum = windownum - 1
menu
return

, Play with font attributes:

80:

, Clear the screen
, And cycle

, Close the window

, TEXT FACE
windownum = windownum + 1 ' New window
The window call should be 1 line only:

window windownum,"", (left+25,top+13+l5)
-(right-25,bottom-15),2

tface:
print
print "Text Face:"
print
print
print "Default face is 0 (Plain Text) ."
print
input "Set face (0-16) : "; f%
if (f%<O or f%>16) then goto tface
text face f'll
print
print "Text face is now #"; f'll
print
print "<RETURN> to continue, <Q> to quit";
input i$

Cmd$=ucase$(i$)
if Cmd$="Q" then goto frtrn
cIs
goto tface

frtrn:
window close windownum
windownum = windownum - 1
menu
return

, Change to new font:

90:
windownum = windownum + 1

, Clear the screen
, And cycle

, Close the window

, TEXT FONT
, New window

The window call should be 1 line only:
window windownum, "", (left+25,top+13+l5)

-(right-25,bottom-15),2

tfont:
print
print "Text Font:"
print
print
print "Default font is 0 (Geneva)."
print "Font must exist on system volume."
print
input "Set font (-32768 - 32768): ";tf'll
if (tf'll<-32768 or tf'll>32768) then

goto tfont
end if

text font tf'll

print
print "Text face is now #"; tf%
print
print "<RETURN> to continue, <Q> to quit" ;
input i$

Cmd$=ucase$(i$)
if Cmd$="Q" then goto tfrtrn
cIs
goto tfont

tfrtrn:
window close windownum
windownum = windownum - 1
menu
return

, Set text background color:

100:

, Clear the screen
, And cycle

, Close the window

, TEXTBCOLOR
windownum = windownum + 1 ' New window

, The window call should be 1 line only:
window windownum, "", (left+25, top+13+l5)

-(right-25,bottom-15),2

tbcolor:
print
print "Text Background Color:"
print
print
print "Default color is 3 (White)."
print
input "Set color (0-3) : ";bc'll
if (bc'll<O or bc'll>3) then goto tbcolor

textbcolor bc'll
print
print "Text background color is now it" ;bc'll
print
print "<RETURN> to continue, <Q> to quit";
input i$

Cmd$=ucase$(i$)
if Cmd$="Q" then goto tbcrtrn
cIs
goto tbcolor

tbcrtrn:
window close windownum
windownum = windownum - 1
menu
return

, The HELP file:

120:

, Clear the screen
, And cycle

, Close the window

, HELP FILE
windownum = windownum + 1 ' New window

, The window call should be 1 line only:
window windownum, "", (left+25, top+13+l5)

-(right-25,bottom-15),2
chdir "l/FW. PROCS/" ' Vol for help file
open "AC.EX.HELP" for input as 2 Open it

while not eof (2)
line input #2, a$
print a$, Print to screen

wend
close #2
print:print spc(30);"<CLICK>"

while not mouse (0) = 0 ' Delay loop
wend

while mouse(O) = 0
wend

window close windownum
windownum = windownum - 1

, Close the window

January 1989 m

I

Call-A.P.P.L.E. Magazine • January 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0025 of 0077

menu
return

, The special ABOUT box:

130:

, Un-inverse menu

, ABOUT
windownum = windownum + 1 ' New window

, The window call should be 1 line only:
window windownum, "", (left+25, top+13+15)

-(right-25,bottom-15),2
chdir "l/FW. PROCS/" ' About file vol
open "AC.EX.ABOUT" for input as 2 ' Open

while not eof(2)
line input #2, a$
print a$, Print to screen

wend
close #2
print:print spc(30);"<CLICK>"

while not mouse (0) = ° ' Delay loop
wend

while mouse (0) = °
wend

window close windownum
windownum = windownum - 1
menu
return

, Close window

, Un-inverse menu

, Customize this loop to set up your desktop
, menu bars. Menus are number from 1 to x,
, from the left. (1 & 2 are FILE and EDIT
, unless you tell the compiler to leave
, them out) :

setmenu:
menu 3,0,1,"Files"
menu 3,1,1, "Read"
menu 3,2,1,"Print"
menu 3,3,1,"Delete"
menu 4,Q,1,"Functions"
menu 4,1,1, "Windows"
menu 4,2,1, "Sounder"
menu 5,0,1,"Special"
menu 5,1,1,"Text Size"
menu 5,2,1,"Text Color"
menu 5,3,1,"Text Face"
menu 5,4,1, "Text Font"
menu 5,5,1,"Text BColor"
menu 6,0,1,"Help"
menu 6,1,1,"Help File"
menu 6,2,1, "About ... "

return

, Setup menu bar
, Install FILES

Read
Print
Delete

, FUNCTIONS menu
Windows
Sounder

, SPECIAL menu
Text size
Text color
Text face
Text font
Back color

, HELP menu
Help
About

, Gather all of the definitions etcetera
, together in one place:

setup:
top = °
left = °
bottom = 199
right = 639
windownum = 2
return

m Call -A.P.P.L.E.

, Setup program
, Screen dimensions
, This technique
, helps portability

, Default window #

