) TUDIO BASIC

Tap the power of the newest [I—with a good idea and an idle

weekend, you can develop your own GS solutions

for home, school, and career.

By JOE ABERNATHY

UNTIL RECENTLY THE MOST POWER-
ful Apple I1 has also been the most difficult 11
to program. But don't let the 11GS intimidate
you, let it challenge you. Thanks to several
third-party language developers, the full cre-
ative scope of the 1IGS is now available to you
as a BASIC programmer.

DEVELOPMENT PLATFORMS

Before you even write your first line of code,
you'll need to determine which compiler to
use. Unlike built-in Applesoft, the 8-bit iner-
preter that translates BASIC into machine lan-
guage line by line, compilers translate an entire
BASIC program into machine language. Cur-
rently, you can choose among four commercial
BASICs. (A fifth is scheduled for release this
summer.) As you read the following rundown,
keep your ultimate programming goals in
mind. That should be the determining factor
in selecting the compiler that’s best for you.
AC/BASIC. This is the fastest way to program
your IIGS. Intuitive one-word commands re-
place traditional Toolbox access, making desk-
top programming readily accessible even to
beginners. AC/BASIC is good for any casual
custom programming, but lacks the speed or
flexibility to produce high-level applications.

Any Microsoft-compatible BASIC compiler
can share AC/BASIC source code, so you can
adapt a well-designed AC program written on

86 + inCider April 1989

your 1IGS for another brand of computer in
just a few hours.

GS BASIC. No longer produced or supported,
this compiler is still available through the Ap-
ple Progammers and Developers Association
(APDA) at Apple Computer.

Micol Advanced BASIC. The new kid on the
block is being touted as a latter-day Applesoft,
with Toolbox support and structure added.
This compiler, which doesn't require in-depth
instruction, lets you merge special GS capa-
bilities with programs written on older Is.

Micol is the only BASIC that can produce
classic desk accessories (CDAs, like the GS con-
trol panel), a feature that should be available
in every language. It also supports structured
programming considerably more advanced
than that of other compilers.

Micol BASIC isn't targeted at those who
want to produce “genuine” I1IGS desktop ap-
plications. This capability exists in theory, but
not in practice. Although Micol Systems plans
significant enhancements, for now you'll have
to weigh its comparatively limited abilities
againstits price, the highest of any 1S BASIC.
ORCA/BASIC. ByteWorks plans to release
ORCA/BASIC this summer. You'll be able to
use this product with other ORCA languages
in a single program. Reportedly, ORCA/BA-
SIC will incorporate a number of other pow-
erful features not yet available in 11Gs BASIC.
TML BASIC. This language produces the fast-
est programs and has the best manual. It em-

PPLE 11GS

BASICS

ploys a traditional Toolbox interface: You'll
have complete tool access, but you must use
the Toolbox reference manuals in conjunction
with the compiler.

TML BASIC is the best of the lot for ad-
vanced application programming. Its power,
together with its thorough implementation of
structured programming and the GS Toolbox,
makes it shine.

Which language should you buy? Your goals
for the coming weekend are only half the story.
Consider also what you hope to be doing six
months from now, and choose a product that
will grow with you.

If you prefer traditional Applesoft and a
text-based interface, or want to write CDAs,
Micol Advanced BASIC will add the most to
your efforts. Choose TML if you want to design
a large desktop application. AC is the best for
spare-time programmers who want to present
their work under the desktop metaphor.

STRUCTURED PROGRAM DESIGN

A structured program is one you write in
terms of “building block” subroutines. Struc-
tured programming requires more learning
and planning than does simple hacking at the
keyboard, but you must embrace it to realize
the GS’ abilities. Soon, you'll wonder how you
got by without it.

The theory behind modular programming
is that you can define even a large program
as a series of low-level tasks. When you first
write a procedure, its simple scope makes it
easy to program and debug. You can then use
the procedure, if designed properly, in every
program that needs its services. You'll even-
tually develop a personal library of procedures
that might handle anything from graphics to
database manipulation.

Looking at the big picture, structured de-
sign adds elegance to program flow. Proce-
dures replace the GOTO statement, for
instance. (Think of them as a latter-day version p.

APPLEJIgs

of GOSUB.) Eliminating GOTO forces you to
use solid program logic, and has the side ben-
efit of making programs self-documenting.
Modular design is based on control struc-
tures—language features that let you plan
block design and program flow. Control struc-
tures are a series of statements in the form of
IF/THEN/ELSE, DO/UNTIL, DO/WHILE,
and so on. This differs from Applesoft BASIC,
in which a program can move only forward
in a straight line (line 10, line 20, and so on).
The best way to grasp these structures is to
see them in action:
IF Online% = Nil% THEN
PROC DoDialOut (Phone%)
ELSE
PROC DoLogon (Macro%)
END IF

WHILE NOT EOF (FileIndex%)
PROC ReadLine
PROC ShowLine

WEND

DO .
PROC ReadClient
UNTIL ClientNum% = NumClients%

DO
PROC ReadDataStream
CharCount% = FN CountEm
WHILE NOT EOL (1)

CASE TestScore% OF

100 : PROC SetCurve

90 : PROC DoA

80 : PROC DoB

70 : PROC DoC

60 : PROC DoD
ELSE

PROC DoFlunk (Student$)

ENDCASE

Although each compiler offers a different
set of control structures, there will always be
a way to make the program do what you want
it to. For instance, only Micol BASIC offers the
CASE statement, but you can mimic it with
the IF-THEN/ELSE of AC and TML.

In the examples above, you can see that
procedures, identified by PROC, and func-
tions (procedures that calculate and return a
value) are an integral part of structured pro-
gram flow. Here are examples of what some
of the definitions of the fictitious procedures
used above might look like:

PROC DoDialOut (Phone%)

88 = inCider April 1989

Listing 1. inCider. Shell.

.

* File: inCider,Shell
* By Joe Abernathy =
* '(c)1989. Joe Abernathy. -All Rightse Rese
s 3 ACIBASIC for the Apple IIGS.
; 1 3

< menus opt:lon salect

= 1 'lude mater:.al copyrxghtod (c) hy Absoft
988 Used with perm.ssion. All other copyrights ged.

Customize the ABOUT box:
$About "inCider shell. By Joe Abernathy

GOSUB DOSetup
DoMenu - s
i GOSUB menupgoc

: PP
nahle menu event trapping

. 'f‘RVent-driven program
' QUIT forces exit

. Interpret menu- evi
ead. which menu

Muupr&cz o E
menunum = MENU(@) o 9t e i

itemnum = MENU(1)
;[Ef menunum = 1 THEN

: sosua 10 N - _'
- BLSEIP itemnum = 2 '!'HEN : ' Edit

‘ELSEIF itemnum = 3 THEN ' Delete

. GOSUB 30

ELSEIP itemnum = 4 THEN ' Print
GOSUB 49 e

ELSEIF itemnum = 5 THEN . ! .Type File
GOSUB 58 o

ELSEIF itemnum = 6 THEN -~ * Quit
cosuB 64 « e

do anything with the selected file. In a program, you would use ‘the

;)
' This routine generates the standard new file dialog. It does not

.

' which$ value as a parameter to the edi.ting routines 1n your llbrary.

18: o © NEW
£§ = FILES$(8,"DEFAULT. NAM") < N standatd new filc dialog .
IF £$="" THEN RETURN . - - ' ~CANCEL was clicked . . -
whxchs = £$ * Store value
MENU U shuuld be called after working with tha- file.

RETURN

'
* This routine generates the standard get file dxalog. It does not

* do anything with the selected file. In a program, you would use the.
> uluchs value as a parmter to the editing routines Ln your la.brary

20: .. : 2 2 ..': ED!T L
£§ = PILESS(I,“DIR’I‘XT“) 0 e . ' Dialog, file typel DIR. TXT
IP £§$="" THEN RETURN ' - ' CANCEL was clicked =

- £5 - ' Store the file name -

. which$ = :
“MENU . M- 'm:u: should actually be called after working with the file.
RETURN -~ - .
3e: e * DELETE a file -&+°
KillFiles o - ' sub:from incider. Tool
MENU * ight menu bar
RETURN
PROC InitModem LOCAL x$
PROC O.H'I'[()Ok tmpline$ = “n
PROC Diallt {Phone%) WHILE NOT EOL (FileIndex%)
END PROC x$ = GetChar
PROC ReadLine tmpline$ = tmpline$ + x§

40:
£$ = “null”
WHILE £f$ <> ""
£$ = FILES$(1,"TXTSRC")
IF £$ <> "" THEN
PrintFile(£$)

' PRINT a file
' Force first While loop ..

Generate file dialog box
If not Cancel was clicked ..
SUB from inCider.Tools lib

£$ = FILES$(1,"TXTSRC")
IF £$ <> "" THEN
TypeFile(£f$)

END IF
WEND
MENU ' Unhilight menu bar
RETURN
50: ' Type a file to screen
£$ = "null" ' Force first While loop ..
WHILE f§ <> ""

Generate file dialog box
If not Cancel clicked ...
SUB from inCider.Tools ..

bottom = 197
right = 618

END IF
WEND
MENU ' Unhilight menu bar
RETURN
'
60: ' QUIT
MENU ' Un-inverse menu bar
END
DoSetup: ' Set up program globals
top = 26 ' Screen dimensions:
left = 4

MENU 1,0,1," File"
MENU 1,1,1, "New"
MENU 1,2,1,"Edit"
MENU 1,3,1,"Delete"”
MENU 1,4,1,"Print"
MENU 1,5,1,"Type"
MENU 1,6,1,"Quit"
END SUB

WindEx = 2 ' Seed the window number
flag = 0 ' "CHANGED" flag
filenum = 1 ' Seed the file counter
RETURN
'
SUB DoMenu ' Create menu bar

The FILE menu
is it for now.

in which you have it installed.

With structured programming, you will develop libraries of routines to
handle various standard tasks. These must be attached to the program at
compile time. This is done in AC/BASIC by putting appropriate INCLUDE
directives at the end of the source code. You should create a data volume
to hold these libraries. Below, specify for INCIDER.TOOLS the disk volume

'S$INCLUDE “*/ASRC/BASIC/AC/DUMP/INCIDER.TOOLS"

' The End. (inCider.Shell)

WEND
END PROC

In the first instance, the procedure “dial
out” is made up of smaller procedures that

instruct the program to “initialize the modem,”
“take the phone off the hook,” and “dial.”
To introduce structured programming on
the 11GS, the first program you'll write is a
shell for AC/BASIC (Listing 1) that shows how

to manage various aspects of the desktop, such
as pull-down menus. You can reuse this shell
in subsequent programs. In addition, I'll pre-
sent a library of low-level software tools (List-
ing 2) you'll want to use in most of the
programs you write later.

In coming issues, I'll use the shell as a plat-
form on which you'll implement dialogs, user
input/output, data management, graphics,
sound, and more,

What if you're using a different compiler?
If its TML BASIC, send a self-addressed,
stamped envelope to inCider and you'll receive
free of charge the shell implemented in TML
BASIC. (It's too lengthy to print here.) You
can download the shells from inCider's BBS
(603-924-9801), and you can also refer to the
product information listed at the end of the
column. Because Micol Advanced BASIC isn’t
oriented toward desktop programming, no
shell is available for it.

I'll discuss each tool in the library individ-
ually in a moment, but you also can learn from
examining the program as a whole:

®Each procedure handles a narrowly defined
task you'll probably be able to use in a later
program. Logical branching replaces the
GOTO statement for directing program flow.
This makes debugging easier, and lends a self-
documenting quality to the program.
®Mnemonic variable names, as opposed to
abstract numbers and letters, make your intent
much clearer. Consistent indentation of inner
loops and control structures makes the pro-
gram easy to read.

oProcedures included in the inCider.Tools li-
brary are the low-level routines most appli-
cations need. On a more advanced level, you'll
want to build libraries in a topical fashion—for
instance, sound, graphics, or input/output.
oIn the shell, notice that subroutines 40 and
50, which correspond to the menu choices
Print and Type, must provide the parameters
(the filename) the program will print or dis-
play. PrintFile and TypeFile are essentially
dumb, but this quality makes them suitable
for a wide variety of applications. Study their
implementation in inCider.Tools with this in
mind. Compare to KillFiles.

oIn the Subroutine DoSetUp, I maintain a list
of global variables. Because BASIC has no
formal variable-declaration feature as Pascal
does, it’s a good idea to adopt this convention
to keep your global variables straight, even»-

inCider April 1989 * 89

APPLETIGS

though you don’t need to.

®To add a capability to the shell, add a line to
the DoMenu subroutine, a corresponding line
in the MENUPROC routine, and a label to do
the actual work. The ON MENU directive
makes this program design possible; it acti-
vates event polling in which the system will
automatically handle any selections made
from the pull-down menus. Your manual ex-
plains this at length, but all you really need
to know is how to make it work. No other
compiler uses this methodology.

®The last line of inCider.Shell uses the $IN-
CLUDE directive to tie the inCider.Tools li-
brary to the main program. Note that this
directive is written just as shown, including
the REMark character.

oThe inCider.Tools library is a set of utilities
that'll be some of the first building blocks
you'll need. When designing your own pro-
cedures, remember to keep things simple,
and document each procedure thoroughly
so that you don’t have to wonder how to call
it or modify it later.

File : inCider.Tools

Compiler :

(c)1989, Joe Abernathy. All Rights Reserved.
AC/BASIC for the Apple IIGS.

This library requires global variables declared in inCider.Shell.

SUB PrintFile(thefile$)
SHARED FileNum
FileNum = FileNum + 1

WHILE NOT EOF(FileNum)
LINE INPUT #FileNum, a$
PRINT #FileNum + 1, a$
WEND
CLOSE #FileNum + 1
CLOSE #FileNum
FileNum = FileNum - 1
END SUB

Procedure PrintFile =-- Print a file.
You must pass name of file to print in thefile§.

OPEN thefile$ FOR INPUT AS FileNum
OPEN "LPT1:PROMPT" FOR OUTPUT AS FileNum + 1

' Global var

' open file passed in thefile$
' Open printer

' Print line from thefile$

0

' Procedure TypeFile =-- Show a file on the screen.
: You must pass name of file to type in myfile$.

SUB TypeFile(myfile$)
SHARED FileNum
FileNum = FileNum + 1
DoWind(1)
OPEN myfile$ FOR INPUT AS FileNum
WHILE NOT EOF(FileNum)
LINE INPUT $#FileNum, a$
PRINT a$§
WEND
CLOSE #FileNum
FileNum = FileNum - 1
DitchWind
END SUB

' Global var

' Open file passed in thefile$

' Print line

' Procedure KillFiles =~ Kill one or

SUB KillFiles
£$ = "null" ‘
WHILE £$ <> “"

f$ = FILESS$(1) .

IF £f$ <> "* THEN
KILL £$ '
END IF
WEND
END SUB

more files, using std dialog.

Force first loop ...

Value will be set to "" when
Cancel is clicked, forcing
the Delete loop to repeat ...

90 * inCider April 1989

INDIVIDUAL TOOLS

PrintFile (thefile$). This procedure prints
a file to the installed printer. It requires that
you pass the name of a file as its parameter.
In my example, I get the filename from the
standard select-file dialog, then repeatedly call
PrintFile until you select the Cancel button.
No error checking is performed to ensure that
a printer is on line.

This procedure uses the “device name”
LPT] to send output to a printer in slot 1.
You can change the device name to SCRN,
KYBD, COMI, or CLIP to send a file to the
screen, keyboard, any serial device, or the
clipboard. COM1 and LPT1 use the modem
and printer ports on the back of the GS.
TypeFile (myfile$). This procedure prints a
file to the screen display. It works like
PrintFile, requiring that you pass it the file-
name to type.

KillFiles. KillFiles generates its own standard
file dialog, and kills any number of files until

you select Cancel. I wrote it this way to provide »

APPLEJIGs

SUB MsgDialog{msg$,style$
cancel$ = @
DoDWind
LOCATE 2,2
PRINT msg$

iF style% = 2 THEN

END IF

WHILE DIALOG (0)=0
WEND

WHILE DIALOG(®)<>1
WEND

x = DIALOG(1)
IF x = 51 THEN cancel$
END SUB

) SHARED

=1

Procedure MsgDialog(msg$,style®) -- Generate dialog with a text string,

and one or two buttons depending on
the value of style$. When this proc
detects OK, it ends. If Cancel was
clicked, the val cancelg is set to 1.

BUTTON 50@,1,"0K",(left+20,bottom=-160)-(1left+128,bottom~145),1

BUTTON 51,1, "Cancel",(left+135,bottom=-160}=-(left+235,bottom=-145),1
‘ Clear dialog queue ...
‘ Wait for real event ...

' Read the event

SUB DoWind(kind¥) SHARED
WindEx = WindEx + 1

END SUB

' Procedure DoWind{kind%) -- Open a window.

kind% specifies the style number.

WINDOW WindEx,"", (left,top)-{(right,bottom),kind%

SUB DoDWind SHARED
WindEx = WindEx + 1

' Procedure DoDWind =~ Generate a window for use with dialogs.

SUB DitchWind SHARED
WINDOW CLOSE WindEx
WindEx = WindEx - 1}

END SUB

WINDOW WindEx,"", (left-5,top+l@)-(right+5,bottom-140),2
END SUB
' Procedure DitchWind -- Close a previously opened window, decrement the
'

window counter variable.

2781 Bond Street
Rochester Hills, Ml 48307
(313) 853-0050

$125

Reader Service No. 386

GS BASIC

Apple Pragrammers

and Developers Assoc.
Apple Computer

20525 Mariani Ave.
Cupertino, CA 95014
{408) 996-1010
Reader Service No. 387

R Rk Bk
PRODUCT INFORMATION
AC/BASIC ‘ Micol Advanced BASIC TML BASIC
Absoft Corporation Micol Systems TML Systems

9 Lynch Road 8837-B Goodbys
Willowdale, Ontario Executive Drive
M2J 2vB Jacksonville, FL 32217

(416) 495-6864

$145

Reader Service No. 388

(904) 636-8592
$125
Reader Service No. 390

ORCA/BASIC
ByteWorks Inc.
4700 Irving Bivd. N.W.

Suite 207

Albugquergue, NM 87114
(505) 898-8183

$95

Reader Service No. 389

92 « inCider April 1989

something against which to weigh the design
of PrintFile and TypeFile.

MsgDialog (msg$,style%). Generates a stan-
dard dialog for your communication. Re-
quired parameters are a text string—the
message you want to display—and the style of
dialog. The procedure generates an “OK”
button automatically. If style% has a value of
2, MsgDialog will also generate a “Cancel”
button.

Ifyou specify and click on the Cancel button,
MsgDialog will set the value of the global vari-
able cancel% to 1, as a way of communicating
with the calling routine. You could use this
value for a test, as in the following:

IF NOT cancel% THEN
SortList
ShowList
CloseFiles

ELSE
CloseFiles

END IF

DoWind. This procedure opens a full-screen
document window with the screen dimensions
established in DoSetUp (in the inCider.Shell).
1t also increments the global-window counter
variable WindEx.

The reason for using global screen dimen-
sions is portability. Screen size is one of the
key differences between computers that sup-
port AC/BASIC-compatible compilers. By lim-
iting hard-wired dimensions to one
occurrence in the program, it becomes easier
to adapt the program.

DoDWind. This procedure works like Do-
Wind, but generates a window suitable for a
dialog box.

DitchWind. This tool closes the most recently
opened window, then decrements the window
counter.

It's not the same old BASIC anymore—the
GS challenges your creativity anew. From desk
accessories to games, from education to com-
mercial development, all the tools and support
you need are within arm’s reach.[J

JOE ABERNATHY IS A PRODUCTION EDITOR AND
OCCASIONAL ARTS CRITIC AT THE HOUSTON
CHRONICLE. HE'S ALSO A CERTIFIED APPLE DE-
VELOPER AND THE AUTHOR OR COAUTHOR OF
EIGHT APPLE II PROGRAMS. WRITE TO HIM AT P.O.
Box 66046, HOUSTON, TX 77266-6046.

