
Call-A.P.P.L.E. Magazine     •     March 1989

  A)pple  P)ugetSound  P)rogram  L)ibrary  E)xchange Page 0028 of 0069

lGJ 
ood software, in large part, is the product of 

G 
good software tools. The theory, and the fact, is 

that you should only have to write the code to 

handle any particular task once, eventually 

building a library of tools to meet most needs. 

One high profile example of such a library is the Apple IIGS 

Toolbox, whose purpose is to make the familiar desktop meta-

phor readily available. Apple Computer didn't invent the idea of 

software tools, however, it does the best job so far and now is 

riding the wave. 

As nice as the Toolbox is, it leaves room for growth. To fill 

the gap, we can create personal tool libraries to manage every 

aspect of applications programming, including more conven-

ient Toolbox access and business quality data handling. 

Launching Into BASIC this month presents the first tools in 

the Call -A.P.PLE. libraries. Included are low-level text, 

window, and dialog handlers; a startup screen generator to 

copyright your programs; and a goodbye usage screen genera-

tor. The high level tools are written for ACIBASIC. Some of the 

low level tools, and all of the theory, also serve TML BASIC. 

(See the Roar of the Crowd heading if you need the main source 

code shell for either language.) 

These libraries represent a relatively new sophistication in 

Apple II BASIC, that of structured programming. C and Pascal 

previously had the field alone until both the TML and AC/ 

BASIC IIGS compilers provided support for structured pro-

gramming. 

This may not be the style of programming you are accus-

tomed to, however, adopting it will provide significant benefits; 

benefits which run deeper than just making source code reus-

able. Why this is so will become apparent as we discuss how to 

design and write a good software tool. 

It's in the Wrist 

Procedural programming, at first blush, would appear to be 

something practiced only in clean rooms. The reality is that the 

best structured programming takes place on a level that makes 

it ideal as a learning vehicle. With few exceptions, the best tools 

are simple procedures growing more sophisticated in the con-

text of their supporting fabric. 

For an example, look ahead to Listing 3, at the subroutine 

MarkLeader. By itself, MarkLeader prints a string, followed by 

a dividing leader of periods, then right justifies a second string. 

The end effect is similar to that of the index of your local 

newspaper. 

MarkLeader does not know what strings it is to print until 

you pass them nor does it know the width the total construction 

should occupy. It does not even know if it should print to the 

screen, a disk file, or a printer. These apparent failings are 

MarkLeader's strengths: Control structures can use it and so can 

subroutines to format an entire file, print it two ways, and save 

it. All of this without using redundant code. 

The idea, then, is not to create sophisticated procedures, but 

rather to do something sophisticated in small enough steps that 

may be of general utility. Working together, just a few good 

functions can accomplish a lot, e.g., Hello and GoodBye in 

Listing 5. This pair of procedures demonstrate how text handlers 

can be used to create a high level function which itself can 

become part of a greater whole. 

One cost associated with all of this is a forced parting with 

some of the comfort of earlier development platforms. In order 

to write programs in terms of tools, GOTO is suspect and 

planning is necessary. You don't have to relearn flowcharting, 

just spend the time to envision your program as an ordered 

collection of capabilities. 

To write a software tool, identify a recurring function in your 

programming, isolate the specific steps it requires, and group 

them as a procedure in a fashion offering the most general 

appeal. If you see a need for several related procedures, make a 

separate library addressing the topical area to which they apply. 

Pass the Parameter 

Structured BASIC is a product of C and Pascal. In C, the 

building block is the function while in Pascal procedures are 

also available in addition to functions. In Pascal, functions 

return a value whereas procedures perform a set of tasks, 

optionally using passed parameters. The C function can perform 

a set of tasks and indirectly modify values outside the function. 

Our procedures resemble C in that they can accept argu-

ments passed by value or by reference. If we pass an argument 

to a procedure by value, no changes are made to contents of 

variables in the main program. If we pass the argument by 

reference, the main program variable used as the argument may 

be changed along with the corresponding variable in the proce-

dure. 

Pascal functions only return a value. Its procedures perform 

a set of like tasks, allowing arguments to be passed by reference. 
Our procedures are like those of Pascal in form and in that, you 

are shielded from the data manipulation that is actually taking 

place. 

When you pass an argument by reference, you are passing to 

the procedure a pointer to the memory address of the argument. 

In C and assembly you work with the pointer directly. However, 

BASIC and Pascal, both teaching languages, hide this address 

manipulation. 

Pointers are powerful tools as evidenced by their heavy use 

by the Apple IIGS Toolbox. Even though you don't have to know 

what lies behind procedures in order to write and use them, you 

may want to open your eyes to the theory of pointers in order to 

March 1989m 



Call-A.P.P.L.E. Magazine     •     March 1989

  A)pple  P)ugetSound  P)rogram  L)ibrary  E)xchange Page 0029 of 0069

have a kinder, gentler experience with the Toolbox later. One 

exception is if you plan to stick with ACjBASIC, but even here, 

advanced Toolbox access involves the study of data structures. 

What's In It 

When you save time. it often means you ultimately have 

made money. Considering this as a worthy benchmark. time 

savings would have to be the best aspect of structured program-

ming. Sure, it initially takes longer to plan and write procedures 

than to string code together, but there is a payoff in the long run. 

Suppose you develop a set of low level tools to handle 

customer, vendor, employee records, and perhaps some busi-

ness math. What you have is the supporting fabric for a suite of 

database and planning applications. If you happen to have 

written these tools in AC/BASIC, you have almost immediate 

portability to the Macintosh where productivity software is the 

leading growth market. 

Another case study might be if you are a teacher or own your 

own business. If you develop a set of core software capabilities 

specific to your industry, you likely have something that can be 

turned into extra cash or a second stream of revenue. 

There are payoffs for the casual programmer as well. For 

instance, we can create a dialog generator through which entire 

data management screens can be implemented. Using TML 

BASIC, the speed and power are available to write games as 
good as any available on the market today. 

In discussing structured BASIC. there are compiler differ-

ences that have some meaning. TML supports a sty Ie of proce-

dural programming close to that of Pascal, with clearly struc-

tured procedures and functions. ACjBASIC has a less clear 

library interface requiring some extra planning on your part in 

order to keep things orderl y. 

The Source Code 

The source code listings implement a startup screen that will 

automatically copyright your programs, a goodbye screen 

whose main purpose is window dressing, and a set of general 

routines to support the high level procedures. Two general 

purpose dialog generators are included. 

(Note that some argument names do not directly match those 

used in the source listings. The variables in the listings are 

correct as shown; we just expanded the names for the discussion 

in order to make the procedures easier to understand.) 

Listing 1 shows the changes and additions to the ACjBASIC 

source code shell needed to implement the new subroutine 

libraries. This shell has been presented in the previous two 

installments ofthis series (January 1989 and February 1989 Call 

-A.PPLE.). 

The label INIT should be added right above SETUP in your 

shell and the redundant values deleted from SETUP. Add the 

values under the label SETUP in Listing I to your existing 

SETUP. The rest of the code just shows how and where in the 

program the new procedures can be called. 

INIT is kept separate from SETUP for a reason. Eventually. 

SETUP will consume more time reading data files and the like. 

The Hello screen will be displayed during this process, hiding 

the time lag from the user. In order to achieve this effect, you 

must start the program in the same fashion demonstrated in 

Listing I. 

For ACjBASIC, the $Include lines used to attach the new 

library files in your main program must be placed at the bottom 

of the main program along with any SUB declarations. 

all Call ·A.P.P.L.E. 

For TML BASIC, add a LIBRARY statement to the shell for 

each new library. Libraries must be called in each segment 

which uses their routines. 

In Listing 2, the library SHELL.TOOLS includes several 

low level system utilities of general interest. 

NewWindow (styIenum %): Prepares and opens a new full 

screen window that is centered a few pixels away from the 

screen boundary on all four sides. STYLENUM(!r is any legal 

window style. NewWindow increments the global variable 

WIN DOWNUM, the window counter. 

NewDWindowl: Opens a window of a size and location 

suitable for a single message dialog. The window holds a 

message up to 65 characters in length and one or two buttons. It 

also increments the window counter. 

NewDWindow2: Opens a window of a size suited to a 

dialog with a two line message. The window holds two lines up 

to 65 characters in length and one or two buttons. It also 

increments the window counter. 

Shut Window: Closes the most recently opened window 

and decrements the window counter. 

Pause (howlong%): Performs a standard wait loop of the 

form FOR I = I to X : NEXT L where X is the value passed in 

HOWLONG%. 

GetDate: Reads the date maintained by the internal clock 

and stores it in the global variable THEDA TE$. Other values 

returned are MONTH%. 1-12 (Jan.-Dec.): DA YO/C. 1-31: and 

YEAR%,19xx. 

GetTime: Reads the internal clock and stores the time in the 

global variable THETIME$. Other values returned are 
HOUR%, 1-24; MINUTEc/c. 1-60; and SECONDck. 1-60. The 

label SETUP calls GetTime then sets the string STAR1TlME$ 

for later use by the GoodBye procedure. 

If you are using TML BASIC, GetTime and GetDate corre-

spond with the DoTime and DoDate procedures given in the last 

installment of this series of articles. You can add Pause to your 

TML library by replacing the SUB and END SUB declarations 

in this listing with PROC and END PROC. 

In Listing 3, the library TEXT.TOOLS contains low level 

string manipulation procedures. Each routine performs justifi-

cation of one or more strings within a given width. and can 

output to the screen, a printer. or a disk file. Listing 6 shows the 

Pascal version of this library. 

Looking at the listings for Hello and GoodBye. you can see 

that the screen width value passed does not actually match the 

number of characters you would expect. This is because Ge-

neva, the IIGS system font, employs proportional spacing. 

throwing things out of kilter for routines such as these. If you 

have the TechAlliance IIGS fonts disks. you have a monospaced 

font that can circumvent this problem. Otherwise. figure that 

Geneva 8-point generally requires a width parameter about 

twice what you would expect for the output width. We avoided 

the Print Using statement because it has bugs in TML's implem-

entation. 

QuadCenter (string$,width %,fiIenumber %): Center 

justifies a string in a given width. If a file number 01'0 is passed. 

QuadCenter prints to the screen. If any other value is passed. 

printing will be routed to the output device currently opened 

with that file number. 

QuadRight (string$,width%,fiIenumber%): Right justi-

fies a string. The qualifiers operate the same way as with 
QuadCenter. 

I 



Call-A.P.P.L.E. Magazine     •     March 1989

  A)pple  P)ugetSound  P)rogram  L)ibrary  E)xchange Page 0032 of 0069

MarkLeader (stringl$, string2$, width %, 
filenumber%): Left justifies STRING 1$, right-justifies 
STRING2$, and fills out WIDTH% columns with a leader ( ... ) 
between the two. FILENUMBER% operates the same way as 
with QuadCenter. 

MarkWhite (stringl$, string2$, width %, 
file number % ): Left justifies STRING 1$, right justifies 
STRING2$, and fills out WIDTH% columns with white spaces. 
FILENUMBER% operates the same way as with QuadCenter. 

Exe rc is e : W ri te a proced ure that jus tifies three or morefields 
in a given width. This procedure is designed to handle tabular 
lists of information. 

In Listing 4. the library DIALOG. TOOLS has two dialog 
generators. one to do a single message dialog and another to do 
a two message dialog. Both will generate one or two buttons, 
optionally setting a proceed/cancel flag. DIALOG.TOOLS 
requires SHELL.TOOLS. 

DoDialogl (text$,numbuttons%): Generate a single mes-
sage dialog box. The text string can be up to 65 characters long. 
The dialog will automatically have an "OK" button. If you pass 
the value of 2 for NUMBUTTONS%, a "Cancel" button will 
also be generated. 

If the user selects Cancel, the value ABORT will be set to a 
non-zero value. In your program, you can use a test such as IF 
NOT ABORT THEN PROCEED. (Use Abort% with TML 
BASIC.) Be sure not to use ABORT as a global value elsewhere 
in your program. 

DoDiaIog2 (text1$,text2$,nummsg%, numbuttons%): 
Generate a two message dialog box. Everything works just like 
DoDialogl. 

Exercise: These two procedures are widely useful, but basic. 
Write a dialog generator that will produce buttons with custom 

text and set a branching flag. Write one that will generate radio 
buttons. 

In Listing 5, the BYLINE.TOOLS library demonstrates 
most of the low level routines. It will use values declared in INIT 

to automatically generate a title/copyright screen for your 
programs, as well as an exit screen. BYLINE. TOOLS requires 
SHELL.TOOLS and TEXT.TOOLS. 

In order to use the GoodBye screen, you must have custom 
FILE and EDIT menus. This approach is used by our AC/ 
BASIC shell. 

Hello (program$, owner$, byIine$, publisher$, ver-
sion$): Generates the copyright screen. The program name will 
be centered using larger type with break-out rules. OwnerS 
should be the name of the licensee; bylineS is your name; 
publisherS is the distributor; and versionS is the version number 
of this release of the program. 

EndHelIo: Closes the Hello screen after main SETUP is 
complete. EndHello calls the Pause loop so that the window will 
be displayed long enough to read. Once your SETUP grows 
more time consuming, this Pause call can be adjusted or re-
moved. 

GoodBye (program$, owner$, byIine$, publisher$, ver-
sion$, mytime$, mydate$): The variables mytime$ and 
mydate$ must be obtained by calling GetTime and GetDate 
prior to calling GoodBye. Everything else works the same as 
with Hello. 

Exercise: These procedures work only in 640 pixel graphics 
mode. Rewrite them to optionally use 320 pixel graphics mode. 
(Under SETUP, the value Res is set to the screen width. Rewrite 
GoodBye to figure total time online.) 

Summary 

You don't have to stop here. Use these libraries, but keep in 
mind that they are incomplete. You can create new libraries of 
your own or enhance these. TEXT. TOOLS in particular is ripe 
for further development. 

Once you have begun, you'll find one benefit that can't be 
quantified - structured programming is fun. It is rewarding to 
identify the solution to a problem, write the procedure, fine-tune 
it, and use it. m 
The Roar of the Crowd 

Cecil Fretwell, Technical Editor - The TML shell hangs if 

the *ISYSTEMIFONTSI directory has been deletedfrom the GSI 

OS boot disk in order to save room. 

Joe Abernathy - There is no Font Manager error code that 

can be checked to circumvent this situation. Therefore, the 

directory always should be there even if you don't plan to use it. 

Even though it wastes a block, it is a part of the 16 bit system 

sofMare. 

A workaround is to write a procedure to testfor the existence 

of the file name "FONTS" of type DIR in the *ISYSTEMI 

directory. Ifit isfound, allow the program to construct the Font 

menu. Otherwise, branch out of Font setup. 

If you have a question or contribution, you can reach us at: 

AppleLink Personal Edition address JOEA 17; developers' 
AppleLink D 1370; or write to Launching Into BASIC in care of 
Call-APPL.E. 

Also, The Cortland Project, Europa, 1200/2400 bps, (713) 

526-0714. Launching Into BASIC source code listings avail-
able for download. Electronic posting of questions for Call -

A.PPLE. Consultant's Corner. 

Review Board 

1. Your First BASIC Program, Rodnay Zaks, Sybex, 2344 Sixth 
Street, Berkeley, CA. 94710. This book introduces tradi-
tional BASIC from the ground up for those new to comput-
ers. Dr. Zaks is one of the finest authors of introductory 
language reference books. 

2. Celestial BASIC - Astronomy on Your Computer, Eric 
Burgess, Sybex. Burgess, a fellow of the Royal Astronomi-

cal Society and a widely published journalist, presents a 
suite of programs for computerized stargazing. Pertinent 
math and astronomical calculations are covered. 

3. BASIC Programs for Scientists and Engineers, Alan R. 

Miller, Sybex. Dr. Miller's book reflects his background as 
a Ph.D. engineering graduate of Berkeley and long time 
teacher of methods for engineering programming. He pres-
ents over 60 scientific algorithms, including curve fitting, 
vector and matrix math, numerical integration, and statistics. 

March 1989 ED 

I 



Call-A.P.P.L.E. Magazine     •     March 1989

  A)pple  P)ugetSound  P)rogram  L)ibrary  E)xchange Page 0033 of 0069

Listing 1 

The following code demonstrates how to use 

the subroutine libraries in your own pro-
grams, using the AC/BASIC shell. 

In all listings, a line ending in ellipses 

.. followed by a line starting in ellipses 
indicates that a line was broken for 
typographical purposes. 

, At the start of the program, call Hello .. 

gosub Init Setup HELLO 

Hello title$,owner$,author$,company$,release$ 
gosub Setup , Main set up 

EndHello Erase Hello .. 

Main: 

Demo the dialog generators: 
DoDialogl "One text string, .. 

· . one-button dialog.", 1 
DoDialogl "One text string, .. 

· . two-button dialog.", 2 
DoDialog2 "Two text strings," " .. 

· . in a one-button dialog.", 2 , 1 
DoDialog2 "Two text strings," " .. 

· . in a two-button dialog.", 2,2 
When QUIT is selected, call GoodBye, 
then exit: 

GoodBye title$, owner$, author$, company$, .. 

· .release$,starttime$,thedate$ 
end. End of main program. 

Init: 

ownerS :: "call -A.P.P.L.E." 
authorS :: "Joe Abernathy" 
titleS :: "My Program" 

company$ = "First Word" 
releaseS :: "1. 0" 

res=640 
lwin :: 25 

twin = 23 

rwin = res - 25 
bwin :: 200 - 10 

yearS = right$(date$,4) 
return 

Setup: 

Set up HELLO 

Licensee 
Author 
Title 

Publisher 
Release It 

, Screen res 

'Window size 

, Main setup 

.. Read any necessary data files, etc., 
while the Hello screen is displayed. 
GetDate 
GetTime 

starttime$ = thetime$ 
return 

, At end of program, attach library files. 

Use the name of the volume holding 
your libraries: 

$Include "/CMS/ACBASIC/INTF /SHELL. TOOLS" 

$Include "/CMS/ACBASIC/INTF /TFXr . TOOLS" 

$Include "/CHl/ACBASIC/INTF /DIAU>G. TOOLS" 
$Include "/CHl/ACBASIC/INTF /BYLINE. TOOLS" 

Em Call -A.P.P.L.E. 

Listing 2 

File: SHELL.TOOLS (C)Tec:hAlliance 

By Joe Abernathy All Rights Reserved. 
Compiler: AC/BASIC and compatibles. 

Contains: NewWindow, NewDWindowl, GetDate, 
NewDWindow2, ShutWindow, Pause, GetTime 

Subroutine NewWindow: 

sub NewWindow(style%) shared 
windownum = windownum + 1 

window windownum,"", (lwin, twin) - .. 

.. (rwln,bwin),style% 
end. sub 

Subroutine NewD(Dialog)Windowl: 

sub NewDWindowl shared 
windownum :: windownum + 1 

window windownum, "", (lwin-5,twin+10) .. 

.. -(rwin+5,bwin-100),2 
end sub 

Subroutine NewD(Dialog)Window2: 

sub NewDWindow2 shared 
windownum :: windownum + 1 

window windownum, "", (lwin-5, twin+10) .. 

.. -(rwln+5,bwin-B5),2 
end. sub 

Subroutine ShutWindow: 

sub ShutWindow shared 

window close windownum 
windownum = windownum - 1 

end sub 

--------._-----------

Subroutine Pause: 

sub Pause(HowLong%) 

for i :: 1 to HowLong% 
next i 

end sub 

---------------------------

Subroutine GetDate: 

sub GetDate shared 

thedate$ = dateS 
month% = val(left$(startdate$,2» 
day% = val(mid$(startdate$,4,2» 
year% :: val(right$(startdate$,4» 

end sub 

Subroutine GetTime: 

I 



Call-A.P.P.L.E. Magazine     •     March 1989

  A)pple  P)ugetSound  P)rogram  L)ibrary  E)xchange Page 0034 of 0069

sub GetTime shared 

thetime$ = timeS 
hour% = val. (left$ (thetime$, 2» 
minute% = val.(mid$(thetime$,4,2» 
second% = val. (right$ (thetime$, 2» 

end sub 

Listing 3 

, --------------------------------------------

File: TEXT.TOOLS (C)TechAlliance 
By Joe Abernathy All Rights Reserved. 
Compiler: AC/BASIC and compatibles. 

Contains: QuadCenter, QuadRight, 
MarkLeader, MarkWhite 

, --------------------------------------------

Subroutine QuadCenter: 

Centered OUtput 

sub QuadCenter (strng$, wdth% , filenm%) 
z$ = chr$(32) 'SPACE 
x% = (wdth% - len(strng$»\2 
z% = int(x%) 
for i = 1 to z% 

if filenm% then 
print ifilenm%, z$; 

else 
print z$; 

end if 
next i 

if filenm% then 
print ifilenm%, strng$ 

else 
print strng$ Centered 

end if 
end sub 

, --------------------------------------------

sub 

Subroutine QuadRight: 

Flush-right OUtput 

QuadRight (string$,width%, filenum%) 
z$ = chr$ (32) SPACE 
x% = (width% - len(string$» 
for i = 1 to x% 

if filenum% then 
print ifilenum%, z$; 

else 
print z$ 

end if 
next i 

if filenum% then 
print ifilenum%, stringS 

else 
print stringS 

end if 
end sub 

Subroutine MarkLeader: 

Classified ........................... lOB 
Sports ................................ 1C 

sub MarkLeader(str1$,str2$,width%,flnum%) 

x$ = str1$ + " " 

end 

y$ = 

z$ = 

" " + str2$ 

x% = (width% - (len (x$) + len(y$») 
if flnum% then 

print iflnum%, x$; Flush left 

else 
print x$; 

end if 
for i = 1 to x% 
if flnum% then 

print iflnum%, z$; 

else 
print z$; Pad line .. 

end if 
next i 

if flnum% then 
print iflnum%, y$ 

else 
print y$ Flush right 

end if 
sub 

,--------------------------------------------

Subroutine MarkWhite: 

Classified 
Sports 

lOB 
lC 

sub MarkWhite (strgl$ , strg2$ , widt%, filnum%) 
z$ = chr$(32) SPACE 
x% = (widt% - (len (strg1$) + len(strg2$») 
if filnum% then 

print ifilnum%, strg1$; Flush left 
else 

print strg1$; 
end if 
for i = 1 to x% 

if filnum% then 
print ifilnum%, z$; 

else 
print z$; 

end if 
next i 

if filnum% then 
print ifilnum%, strg2$ 

else 
print strg2$ 

end if 

end sub 

Listing 4 

Pad line .. 

Flush right 

,--------------------------------------------

File: DIALOG.TOOLS (C)TechAlliance 
By Joe Abernathy All Rights Reserved. 
Compiler: AC/BASIC and compatibles. 
Requires: SHELL. TOOLS 
Contains: DoDial.oq1, DoDialoq2 

, _.-------------------------------------------

Subroutine DoDial.oq1: 
,--------------------------------------------

sub DoDialoq1 (text$,numbttns%) shared 
abort = 0 

NewDWindow1 
locate 2,2 
print textS 
button 100,1,"QK", (lwin+20,bwin-160)- .. 

.. (lwin+120,bwin-145),1 
if numbttns% = 2 then 

March 1989 EEl 

I 



Call-A.P.P.L.E. Magazine     •     March 1989

  A)pple  P)ugetSound  P)rogram  L)ibrary  E)xchange Page 0035 of 0069

button 101,1, "Cancel", (lwin+135,bwin- .. 

· .160)-(lwin+235,bwin-145),1 
end if 

while dialog(O)=O 
wend 

while dialog (0) <>1 
wend 

x = dialog(l) 

if x = 101 then abort = 1 
ShutWindow 

end sub 

, -------------_.- ----------

Subroutine DoDialog2: 

sub DoDialog2 (textl$, text2$, nUImlSg%, .. 

· .numbuttons%) shared 
abort = 0 

NewDWindow2 
locate 2,2 
print textl$ 
if nUImlSg% = 2 then 

locate 4,2 
print text2$ 

end if 
button 100,1, "OK", (lwin+20,bwin-145) .. 

· .-(lwin+120,bwin-130),1 
if numbuttons% = 2 then 

button 101,1, "Cancel", (lwin+135,bwin- .. 

· .145)-(lwin+235,bwin-130),1 
end if 
while dialog(O)=O 

wend 

while dialog(O)<>l 
wend 

x = dialog(l) 
if x = 101 then abort = 1 

ShutWindow 
end sub 

Listing 5 

File: BYLINE.TOOLS (C)TechAl1iance 
By Joe Abernathy All Rights Reserved. 
Compiler: AC/BASIC and compatibles. 

Requires: SHELL. TOOLS, TEXT. TOOLS 
Contains: Hello, EndHel10, GoodBye 

Subroutine Hello: 
-----------_ .. _------------------------ ----

sub hello (prog$, owned$, byline$, pblshr$ .. 

.. ,version$) shared 
NewWindow 2 'Draw a window 
Light Gray Background frame: 

line (9,4)-(rwin-32,bwin-27),204,204,b 
Red background frame: 
line (35,120)-(rwin-58,bwin-34),17,17,b 

textsize 14 

line (125,25)-(475,25),204,204,b 

locate 3,2 

QuadCenter prog$,68,0 Prog name 
textsize 8 
line (125,80)-(475,80),204,204,b 
locate 8,3 

version$ = "Version " + version$ 

QuadCenter varsion$,125,0 
locate 12,5 

Ell Call -A.P.P.L.E. 

x$ = "By "+byline$ 

y$ = "(C) "+year$+", "+pblshr$ 
MarkWhite x$,y$,lOO,O 
locate 16,7 

x$ = "Licensed to: " + owned$ 

QuadCenter x$,lOO,O 
end sub 

Subroutine EndHello: 

sub EndHello shared 
Pause 2000 
ShutWindow 

end sub 

Subroutine GoodBye: 

Delay loop 

sub GoodBye (prog$, owned$, byline$, pblshr$ .. 
.. , version$ , mytime$ , mydate$) shared 

NewWindow 2 Draw a window 
Light Gray Background frame: 

line (9,4)-(rwin-32,bwin-27),204,204,b 

Red background frame: 
line (35,50)-(rwin-58,bwin-34),17,17,b 
Setoff lines: 

line (50,57)-(rwin-71,57),204,204,b 

line (50,150)-(rwin-71,150),204,204,b 
locate 3,5 
MarkWhite prog$,version$,113,0 
x$ = "(C)" + year$ +" "+ pblshr$ 

y$ = "By " + byline$ 
locate 4,5 
MarkWhite x$,y$,102,0 

locate 9,7 
print "Bye for now, ";owned$;":" 
locate 11, 11 
MarkLeader "Date", mydate$, 79,0 

locate 12,11 
MarkLeader "Started" ,mytime$, 80, 0 
GetTime 
locate 13,11 

MarkLeader "Ended", thetime$ , 82, 0 
, Red divider line: 

line (80,125)-(rwin-155,125),17,17,b 

Pause 2000 
end sub 

Listing 6 

File: TEXT.TOOLS (C)TechAlliance 
By Joe Abernathy All Rights Reserved. 
Compiler: TML BASIC. 

Contains: QuadCenter, QuadRight, 
MarkLeader, MarkWhite 

DEF LIBRARY TextTools 

$DEBUG OFF 

$KEYBOARDBREAK OFF 

PROC QuadCenter: 
, -----------------------------

Centered Output 

I 



Call-A.P.P.L.E. Magazine     •     March 1989

  A)pple  P)ugetSound  P)rogram  L)ibrary  E)xchange Page 0036 of 0069

DEF PROC QuadCenter (strng$, weith%, filrun%) 
z$ chr$(32) , SPACE 

x% = (wdth% - len(strng$»\2 

z% = int (x%) 

FOR i = 1 TO z% 

IF filerun% THEN 

PRINT jlfilerun%, z$; 

ELSE 

PRINT z$; 

END IF 

NEXT i 

IF filerun% THEN 

PRINT jlfilerun%, strng$ 

ELSE 

PRINT strng$ 

END IF 

END PROC QuadCenter 

PROC QuadRight: 

, Centered 

Flush-right Output 

DEF PROC QuadRight (string$, width'", filenum%) 

$ = chr$(32) , SPACE 

x% = (width% - len(string$» 

FOR i = 1 TO x% 

IF filenum% THEN 

PRINT jlfilenum%, z$; 

ELSE 

PRINT z$ 

END IF 

NEXT i 

IF filenum% THEN 

PRINT jlfilenum%, stringS 

ELSE 

PRINT stringS 

END IF 

END PROC QuadRight 

PROC MarkLeader: 

Classified ............. . ..... . ......... 10B 

Sports ................................. 1C 

DEF PROC MarkLeader (str1$, str2$, width% .. 

x$ str1$ + " " 

y$ "" + str2$ 

z$ 

. . , flnum%) 

x% (width% - (len (x$) + len(y$») 
IF flnum% THEN 

PRINT jlflnum%, x$; , Flush left 

ELSE 

PRINT x$; 

END IF 

FOR i = 1 TO x% 

IF f1num% THEN 

PRINT jlflnum%, z$; 

ELSE 

PRINT z$; 

END IF 

NEXT i 

IF flnum% THEN 

PRINT jlflnum%, y$ 

ELSE 

PRINT y$ 

END IF 
END PROC MarltLeader 

, Pad line .. 

, Flush right 

PROC MarkWhite: 

Classified 

Sports 

lOB 

1C 

DEF PROC MarkWhite (strg1$, strg2$,widt%, .. 

. . filnum%) 

z$ chr$(32) , SPACE 

x% (widt% - (len (strg1$) + len(strg2$») 

IF filnum% THEN 

PRINT jlfilnum%, strg1$; 

ELSE 

PRINT strg1$; 

END IF 

FOR i = 1 TO x% 

IF filnum% THEN 

PRINT jlfilnum%, z$; 

ELSE 

PRINT z$; 

END IF 

NEXT i 

IF filnum% THEN 

PRINT jlfilnum%, strg2$ 

ELSE 

PRINT strg2$ 

END IF 

END PROC MarkWhite 

END LIBRARY 

, Flush left 

, Pad line .. 

, Flush right 

March 1989 Em 


