
Call-A.P.P.L.E. Magazine • May 1988

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0023 of 0068

A Review of
AC/BASIC:
A BASIC Compiler For
The IIGS
In A Desktop
Ken Kashmarek

rior to the announcement of the IIGS, program

P development was fragmented across the Apple II
computer line, with DOS 3.3, Apple Pascal, CP/M,
and ProDOS. With the IIGS and ProDOS16, the

. has finally been opened for a uniform operat-
mg system enVIronment, supporting all languages. To date,
there are several assemblers, a Forth compiler, a C compiler, at
least two Pascal compilers, and now three BASIC compilers, all
operating under ProDOS 16. This month, we will take a look at
an innovative BASIC compiler for the Apple II world.

After the announcement of GSBASIC by Apple Computer,
Inc., several new products have come to the market which
support BASIC on the IIGS. While others support Applesoft and!
or GSBASIC, the AC/BASIC compiler is noteworthy because it
supports the Microsoft BASIC language. (See Microsoft side-
bar.)

Notice the term "interpreter." An interpreter is one which
"compiles" a statement every time it is executed. It requires
several machine language instructions to process each BASIC
element, e.g., PRINT. A compiler analyzes the BASIC program
and "converts" it into machine language statements for each
statement. The result is stored in a separate file resulting in a
faster operating program because each statement has been
converted to machine language form and fewer instructions are
executed compared to the interpreter process.

AC/BASIC offers IEEE and decimal math, dynamic arrays,
the desktop environment, support for super high resolution
graph!cs, .and sound generation using the sound chip. The
compIler IS denved from Absoft's 32 bit BASIC compiler,
marketed by Microsoft as the MS BASIC compiler for the
Macintosh.

A Powerful Alternative
The strength of the AC/BASIC compiler is the Microsoft

BASIC language. Existing Macintosh MS BASIC programs can
be ported to the IIGS with few changes. AC/BASIC also opens

m Call ·A.P.P.L.E.

the door for applications from other computers which use MS
BASIC.

Based on significant experience from QuickDraw on the
Macintosh, the compiler supports QuickDraw II on the IIGS
using PALETTE, CIRCLE, LINE, and COLOR commands, as
well as MENU, WINDOW, BUTTON, and DIALOG com-
mands, IIGS toolbox knowledge is not required to access the
most popular graphic features. This allows fast development of
sophisticated applications without using the QuickDraw II
documentation. For example, the GSBASIC demo program
called PICS is over 250 lines long. The AC/BASIC version of
this program is less than 60 lines.

The IIGS sound chip is supported with the SOUND, WAIT,
RESUME, and REPEAT commands. Complex instrumenta-
tion, multi-timbre sound, and synthesizer sequencing effects can
be developed.

Hardware Requirements
AC/BASIC is distributed on one 3.5" disk (IIGS System Disk

V3.1), including more than 100 example programs. SI2K of
memory is required for normal execution, while the AC/BASIC
version of the PICS demo program, requires 768K. (See BBS
sidebar.)

.The compiler approximately 4SK of memory, and stays
reSIdent for compIling and editing. The editor takes less than
30K, and is a version of the editor available with ORCA!M by
Byte Works, Inc. The run time library takes TSK and is loaded
with the compiled program, or dynamically loaded after the
program begins execution. Additional memory is used by the
RAM based IIGS toolset routines (80K to lOOK). The executing
program may use whatever remaining memory is available. (See
Run Time sidebar.)

The documentation is over 400 pages and is well written.
There is an appendix dealing with IIGS toolbox routines, mostly
the QUlckDraw II functions. Example programs are used
throughout the manual to illustrate compiler features.

Call-A.P.P.L.E. Magazine • May 1988

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0024 of 0068

Features
Some of the more important features include:

Dialect of Microsoft BASIC language.
IEEE or decimal math (32 and 64 bit floating point).
Dynamic arrays and strings.
Independent subprograms.
Labeled statements.
Block IF. .. THEN constructs.
FOR ... NEXT constructs.
WHILE ... WEND loops.
Global and local variables.
IIGS sound capabilities.
Super high resolution capabilities.
INCLUDE source files.
Batch compilations.
Sequential and random access files.
Generated code is position independent and reentrant.
(See Position Independent/Reentrant sidebar.)
Desktop applications and event handling.

Noted Differences
At this point in the life of the IIGs, many developers of new

applications are familiar with the APW or ORCA/M program-
ming environment. This means using an assembler or compiler
followed by a separate link process with the advanced linker, all
of which runs from the command oriented shell interface. ACj
BASIC does not require a shell program, nor does it use a
separate linker process. (See Linker sidebar.)

ACIBASIC is launched directly from the Launcher or Finder
and establishes the desktop environment for compiling (see
Figure 1 for the compiler options dialog). It does not provide a
command or file handling interface. The compiler translates
source code directly into position independent machine code.
ACIBASIC performs its own internal linking to the run time
libraries. Object code compatibility is not supported for other
languages, so only the ACIBASIC run time library is needed for
execution.

The run time library can be internally linked with the com-
piled program as part of the load file, or be dynamically loaded
at program execution time. The price for elimination of the
advanced linker process, is the loading of the complete 75K run
time library at execution time. When the load time is combined

I COIllPile] (K - Botch COIIIpile)

(X - COIIpi I e and Execute) (Q - CANCEL)
Compiler Options

o A - Actua I Line MUllbers o L - Generote Full List

Q c -Process Run-tile [vents Q M - Run-time Line Mllllbers

o D - Co.pile For Decillal Hoth o R - Link Run-tillle

DE - Generate Error List o H - "0 Defau I t Menus
01 - List Include Statelllents o U - Mo Defaul t WindOll

OJ -LOll Resolution (+ - SAVE) (o - CLEAR)

Figure 1

with initialization of the RAM based toolbox routines, it takes
just under 10 seconds to start up a program from a RAM disk,
more than 20 seconds to start up a program from a hard disk drive
(depending on file locations), and 30 seconds from a 3.5" drive.
These times can be somewhat improved by running the configu-
ration program supplied with the compiler.

Unlike a command oriented shell, the default environment
for the compiler and the compiled program is the IIGS desktop,
using QuickDraw II and super high resolution graphics. How-
ever, ACIBASIC does not use an editor running on the desktop.
It reverts to a text editor. The editor is suitable and gets the job
done, however, it seems a bit out of place in the super high
resolution desktop environment of the compiler.

AC/BASIC Language
If you have ever used Microsoft BASIC on any other com-

puter, you will be right at home with ACjBASIC. The manual is
familiar territory for experienced users. For Applesoft and
GSBASIC users, it will take a short time to become familiar with
the more common language features.

With an interpreter like Applesoft or GSBASIC, it is impor-
tant to use short variable names to improve execution speed.
(Applesoft will allow more than two characters in a name,
however, they will be ignored.) This often generates programs
which are hard to read or understand. With a compiler, variable
names can be longer and more descriptive. ACIBASIC supports

May 1988fE

Call-A.P.P.L.E. Magazine • May 1988

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0025 of 0068

variable names up to 40 characters long, beginning with a letter,
and consisting of letters, digits, or periods. Numeric constants
are converted to executable form at compile time. In particular,
constant expressions are converted at compile time for faster
execution at run time.

Variable types are:

Define type statements, DEFSTR, DEFINT, DEFSNG, and
DEFDBL, may be used to establish the definition of a variable
based on the first letter of the variable name.

Arrays are dynamically defined at execution time. The
OPTION BASE statement is used to define the lower bound (0
or 1) for array subscripts. ERASE is used to delete an array
definition.

Strings include the use of DA TE$, TIME$, INSTR, and
MID$ for selecting characters from a string, or replacing char-
acters in a string, and many others.

Line numbers may be used in programs, although labels are
preferred. A line number or label is not required for each
The editor does not support the RENUMBER command, so Ime
numbers would be extremely difficult to deal with anyway.

While GOSUB and RETURN may be used for subroutines,
the high level SUB. .. END SUB construct is a better way
of organizing a program. SUB. .. END SUB provides parameter
passing to the subroutine, plus local variables within the subrou-
tine.

Structured programs may be built using the
IF. .. ELSE. .. ENDIF constructs and WHILE ... WEND loops.
ELSE IF may also be used with the IF ... ENDIF. construct.
capabilities do not exist in Applesoft and only m a weak form m
GSBASIC.

File Handling
Some file statements are different. CHDIR (change direc-

tory) is used to set the prefix, while KILL is used to a file.
NAME ... AS is used for renaming a file, and FILES IS the same
as a CATALOG command. The FILES$ function is used to
invoke the standard file selector from the desktop (like the IIos
program launcher screen).

Non-disk file names are "SCRN:" for screen output,
"KYBD:" for keyboard input, "LPTl:" for printer output,
"COM1:" for a serial I/O port, and "CLIP:" for the clipboard.
The print manager is always invoked when printing listings. or
information generated by a program. The use of the
"LPTl :PROMPT" displays the style dialog box. (See NotatIOn
sidebar.) . .

Without directly coding a toolbox call, the user can Immedi-
ately take advantage of desktop interfaces for file and device
selection by using ACIBASIC standard features (FILES$ and
LPTl :PROMPT):

Bl Can ·A.P.P.L.E.

See Figures 2, 3, and 4 for the dialogs presented by the
toolbox routines for printer and file selection. Figure 4 is the
same as what you will see when opening a file for compiling or
editing. .

For Applesoft programmers, file handling in ACIBASIC IS
new and different. It will take some time to master the new
capabilities. These capabilities have been in use for several years
on other computers. Most of the remaining file commands are
similar to the GSBASIC file commands.

Graphics
ACIBASIC supports the super high resolution environment

directly with high level language capabilities. PRINT puts
characters directly on the same screen with super Hi-Res graph-
ics and colors, using 320x200 mode or 640x200 mode.

SCREEN 1 sets 320x200 while SCREEN 2 sets 640x200.
WINDOW creates or displays a window with given attributes
such as size, location, scroll bars, etc. Multiple windows may be
on the same screen. Windows may be opened, closed, or
switched. Output to a window is text (using PRINT) or graphics
using pixel commands, or LINE, CIRCLE, and SCROLL.

PALETTE and COLOR are used to control super high
resolution palettes and colors. LCOPY is used to dump a screen
to a printer including color.

ACIBASIC supports array based graphics for handling rec-
tangular images. GET and PUT move images from and to the
screen. PICTURE based graphics allows output of drawmg
commands to a string to be used later for display on the screen.
The PICTURE strings may be stored in arrays or files.

To support the desktop environment, ACIBASIC provides a
full set of event handling commands, including MOUSE, DIA-
LOG, BUTTON, EDIT FIELD, and MENU. There are also
TIMER, BREAK event, and ERROR handling capabilities.

Full desktop capabilities can be used without access t.o the
IIos toolbox documentation or knowledge of the toolbox mter-
faces used by ACIBASIC.

Sound
The SOUND statement is used for sound production. WAVE

is used in conjunction with SOUND to further control the sound
production. With ACIBASIC commands, sound chip can be
used to produce noises, special effects, mUSical notes, or entire
songs. Notes are controlled through the use of the time interval
and duration parameters. They overlap if the interval is less than
the duration. Tones range from 0 to 127 where middle C is tone
#60.

The WAVE statement is used to tailor sounds. This includes
setting up different instruments and wave forms such as SIN,
SQR, TRI for sine, square, and triangle waves.

Full control of the power of the IIos sound chip may require

Call-A.P.P.L.E. Magazine • May 1988

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0026 of 0068

File Edit

Figure 2

File Edit

Figure 3

Printing

Figure 4

I MAGEWR ITER/PR INTER
Paper: @ US lmer

OUS legal o lettfr o Internotionol Fanfold

v1.3

Verticol Sizing:
@Norlol

Printer Effects: o 50\ Reduction
o Condensed

Orientation:
o No Gaps Between

Pages

IMAGEWH ITER/PH IMTER v1.3
Quolity: 0 Bftter Text o Better Color

@Oroft
Page range:

@AIl
OFrOlll:Dro:D

Copies:[]
Paper Feed:@Aut.aticOManual

OColor

Standard.Print

..s ISc20/Acillfsicl
D BaSIC Ovella! S m
D Bench.Marks
[) Configure
D EXIllPles
[) Hello
[) Read.Me
[) Sortsubs

Disk

(Open

(Clm

Cancel

)
)

use of the toolbox reference. However, AC(BASIC provides
sufficient power to use this feature immediately. The sample
HELLO program (Listing I) provides a complete sound demo.

Looks Good - Sounds Great ...
AC(BASIC is a significant advance in use of the BASIC

language on the IIGs. It is not, however, without problems.
While the compiler was derived from the 32 bit compiler for

the Macintosh, Absoft chose not to implement 32 bit integers.
Using 32 bit integers would be faster than using floating point
operations where only the extra precision of long intergers is
needed.

The desktop is the default environment for the Macintosh.
Notsoon the IIGS. For example, the FINDER and LAUNCHER
tum off super Hi-Res by reverting to text mode when starting a
new program. The new program must restart the super Hi-Res
environment. This takes time. The screen is cleared and the
RAM based tools are reloaded. Since the IIGS does not provide
the capability for the tools to be left active and shared by many
applications, tool shutdown and restart is the normal mode of
operation.

AC(BASIC is handicapped by this limitation. A complete
cycle of compiler startup, source file editing, program compila-
tion, and execution, will see at least nine screen changes. More
if you count each screen change when tools are shutdown. The
time penalty is generally IO to 20 seconds from a 3.5" disk. Of
course, this is related to AC(BASIC using and generating a
default desktop environment.

AC(BASIC cannot generate anything but a desktop applica-
tion. In other words, no text screen processing is allowed. If you
want 40/80 column text screen applications or command driven
programs, then this compiler is not for you. This can be impor-
tant since text handling on the super Hi-Res screen is slower than
text on the standard 80 column text screen. The desktop
operation is dependent on the IIGS tools, therefore, the compiler
is not at fault.

There is no support for other languages or external run time
libraries of user written routines. Assembly language programs
are supported via the MACHINE and BLOAD statements.
However, this capability does not use the system loader and does
not support relocation of symbols. The assembly language
program must be position independent. This is a serious handi-
cap considering the extensive capabilities provided by the IIGS
for program loading. However, it is offset somewhat by the fact
that AC(BASIC is very powerful and should not require use of
assembly language programs.

The compiler must always be loaded for each compile and
run sequence. The compiler does not make use of the restart from
memory option provided by the system loader. This is not a big
problem since the compiler is small. The editor, like the com-
piler, is also loaded from disk each time it is used. It should also
use the memory restart option. The real problem is loading 75K
of run time modules every time a program is executed (loaded
dynamically or with the program load file). This, combined with
the startup of RAM based tools, takes 30 seconds from a 3.5"
drive. An option is available to speed up loading which bypasses
the Font Manager initialization, but with some restrictions.

The manual describes the search path for the run time
libraries BASIC.IL and BASIC.2L:

1. Current folder.
2. Current folder's BASIC.OVERLAYS folder.
3. Root folder of boot disk.
4. SYSTEM folder of boot disk's root folder.

Appendix H describes another location as the
BASIC.OVERLA YS folder in the SYSTEM folder (recom-
mended for hard disk installation). While dynamic loading of the

May 1988fE

Call-A.P.P.L.E. Magazine • May 1988

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0027 of 0068

run time library cuts down on file size, it is offset by a lot of disk
searching. If you boot from a hard disk, you cannot launch the
compiler from a different disk. It will not find the run time
libraries on the other disk. The run time libraries must be on your
boot disk and in the folder with the source files.

The compiler and editor do not take advantage of IIGS
memory clipboard. The editor cut/paste operation goes to a disk
file. The editor always saves a source file to disk and the
compiler must always read the file from disk (it could be
compiled from memory). The compiler may create and delete
three or four work files on disk for each compile (in the current
source file directory). This degrades compiler performance, and
leaves a copy of the work files in each source file directory.
There are no options for directing the work files to a RAM disk
for faster execution. For speed, you should copy your source file
to a RAM disk before using the compiler.

Overall, the entire edit, compile, and execution of an AC/
BASIC program is not smooth. When the compile and run option
is selected, and program execution is complete, return always
goes to the Launcher (or Finder). This is annoying when you
want to immediately make changes for another test. However, I
expect this, and other desktop transition difficulties to improve
over the life of the product.

But The Speed ...
When dealing with compilers, significant emphasis is placed

on speed of the object code. In many cases, speed comparisons
are useful and sometimes they are even valid. Absoft provided
a set of programs and produced a speed comparison table. After
looking at the table and running the programs, my observations
indicate the compiler produces code significantly faster than
Applesoft and GSBASIC fornumeric calculations, but not much
faster for string operations or desktop operation.

If you rely on the speed comparison provided by the vendor,
be sure you examine the programs and understand what the
comparison is providing. The vendor included the loop over-
head in the timings. For small, simple programs, the load times
offset any performance improvements provided by compiled
code. The best comparison which can be made is to compile one
of your programs and check the results. This is the improvement
you should expect. Be certain you are using integer, single
precision, and double precision where appropriate in your pro-
gram, and that calculations have been optimized before and after
the comparison.

In particular, speed comparisons are a result of the code
generated and the function being compared. In the case of AC/
BASIC, the floating point numeric calculations are significantly
faster than the IIGS SANE package used by other vendors (AC/
BASIC does not use SANE but provides its own implementation
of IEEE math which is as much as 3: I faster than SANE for
single precision and 2: I faster for double precision).

The Vendor Response
I have used a beta release of the compiler and VI.O. The

review was written after using V 1.1. The compiler was tested on
an Apple IIGS with a one megabyte memory expansion card and
the level 01 ROM. Several errors I found have been fixed in
VI. I. I believe the vendor will be responsive to any problems
you find.

Absoft chose to use the IIGS Print Manager tool interface for
printing. I could not get the interface to print correctly. It always
double spaces output, both in text and better text modes. I even
used the control panel settings to remove line feeds after carriage

fIll Call -A.P.P.L.E.

Figure 5

"File Edit
SOUND DEHO -- Hove sliders, drow new woveforills, ond sounds

Voluille length Release Pitch Vibrato Speed Fullness

I T T T T I I 1 1 1 1
(Triangle) V' @D

Figure 6

returns, and this made no difference. The same file prints
correctly from APW with no printer changes or control panel
changes. The documentation did not provide any infornlation
about changing printer settings. The weakness is probably in the
Print Manager interface. If draft mode printing cannot be sup-
ported at ImageWriter speeds, the interface should not be used.

Absoft has stated that they are considering changes to the
compiler with regard to the user interface and improvement to
the turnaround time for program development. At this point. I
believe the vendor has provided a quality product which you
should find useful. m
Please rate this article on the Reader Service
Card by circling:

61 Excellent 62 Good 63 Fair 64 Poor

I

:

I

!

Call-A.P.P.L.E. Magazine • May 1988

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0028 of 0068

