Hear what you've been missing! With one simple

statement, GS BASIC programmers can
play any digitized-sound file.

By JOE ABERNATHY

YOUR MISSIVES SAY, “LET THERE BE GRAPHICS AND
sound,” so tune your dial and let's round out your GS’ “natural” talents.
In addition to the powerful QuickDraw graphics primitives discussed
in August (“Tools to Draw On,” p. 78), you can add to your BASIC
library an efficient and easy-to-use sound-playback capability, handy in
education, special-needs, and entertainment programming.

Sound reproduction is within ready grasp of all IIGS programmers.
Best of all, you don’t even need to understand the technical details to
use these sound-software tools. Using Micol Advanced BASIC, TML
BASIC, or AC/BASIC, simply type in the accompanying Program listings
and start listening.

If you're interested in the theory, however, sound presents one of
the few occasions on which our normally friendly BASIC compilers
begin to balk. Yet learning to use BASIC to program sound can help
you master many lesser 1IGS programming tasks.

The GS can record and reproduce multichannel sound that’s similar
in quality to that of expensive music synthesizers. It does so by using a
special outboard logic chip, the Ensoniq, which is dedicated solely to
sound tasks. For true multichannel sound, you'll also need an expansion
stereo card and external speakers.

To help you access the Ensoniq’s sound capabilities, Apple has pro-
vided a built-in set of software utilities, collectively called the Sound
Manager tool set. In turn, your BASIC compiler provides a tool interface
to make the Toolbox sound calls available to you as though they were
a standard part of the BASIC language—more or less.

ORGANIZATION PAYS

The GS can produce concert-quality sound, but achieving this mag-
nificent effect requires an advanced music degree. So rather than fully
master the GS’ musical talents, we'll focus herein on a simple goal—
digitized-sound playback. This procedure meets the needs of most
programmers, as well as those who want to establish a foundation for

82 ¢ inCider October 1989

E IlGS

BASICS

further learning. In examining this technique,
we also can practice the more general skill of
how to coax any program from conception to
completion.

As I've emphasized repeatedly in this col-
umn, the first step in writing any program is
planning. Decide what your program must
do, what it should do, and what it would be
nice to do. Then strike a balance weighing
your goals, abilities, and time. The following
simple outline describes such a plan for sound playback:

I. Select a file to play.
A. Use Open File dialog in desktop environment.
B. Request user input if in text environment.
I1. Load sound file into memory.
A. Reserve memory for sound.
B. Load file into reserved memory.
I11. Prepare for playback.
A. Create table of sound parameters.
B. Fill it with information about this sound.
IV. Play the sound.

A. Start sound tools.

B. Begin playback.

C. Play until done.

D. Release memory.

E. Shut down sound tools.

The 1165 Toolbox Sound Manager contains two utilities for sound
reproduction: _FFStartSound and _FFSoundDoneStatus. So our sec-
ond outline lists the specific sound tool calls you'll need along with
related calls and data structures:

1. Sound Manager tool calls

o_FFStartSound to start sound playback

o_FFSoundDoneStatus to monitor playback progress
1. Other tool calls

o_NewHandle to get the sound into memory
I11. Related functions and DOS calls

®OPEN file

OGET to read file

®LOF to determine file size

®CLOSE file
IV. Data structures

ORECORD sound-parameter block

ONUMERIC VAR playback speed

®MEMORY HANDLE for sound

APPLE s

ORECORD file information

The next step is to implement your outline. Begin with the four data
structures (part IV) that normally go at the top of a BASIC program.
The exact form they'll take depends on your compiler.

What are data structures? 11s Toolbox calls often require that you
feed them a lot of information so that they can react properly to your
particular program. They often return quite a lot of information, as
well. Data structures represent a way of organizing this information
into a logical grouping with which you can work easily.

The Sound Manager is no exception. Ensoniq needs to know how to
reproduce your wave form. The sound-parameter table provides that
information, including such data as playback speed and volume. By
manipulating the sound-parameter block, you can make a soundtrack
loop continuously in the background or play a succession of wave forms,
for instance.

According to the IIGS Toolbox Reference Manual, the sound-parameter
block must keep track of the following items, among others:
waveStart: address of wave form to play
waveSize: waveform size in pages
freqOffset: playback rate
docBuffer: DOC-buffer start address
bufferSize: DOC-buffer size
nextWavePtr: pointer to next wave’s parameter block
volSetting: DOC-volume setting

BASIC has no way to represent a hodgepodge of information such
as that shown above. Standard BASIC arrays consist exclusively of
mathematical or string variables. But the sound-parameter block, indeed
most data structures, combine integers with memory pointers and more.

All three 11Gs BASICs have a special way of feeding data structures
to the tool call. Micol lets you do a pseudo POKE, while TML and AC/
BASIC support a modified array that imitates a structure data type.
The accompanying Program listings included with this column show
the actual implementations for each language.

Pascal and C are rich with data structures, making the 11Gs BASIC
compilers pale in comparison. This one fact makes tool programming,
including sound, much more difficult in BASIC than it needs to be.
The compiler’s publishers maintain this is because BASIC programmers
don’t like powerful data structures resembling those of higher lan-
guages; I've yet to meet a programmer who'’s of that opinion. Perhaps
you should write a letter to the language publishers if you share these
concerns.

Once you've taken care of data structures, you can just look over
your outline to see the most straightforward way of putting together
the actual source code. You'll likely want procedures to set up the
environment and to let someone select a sound file to play, actually
play the file, and do a clean shutdown of the environment.

In a program that implements the desktop, you'd probably get the
most use out of a play sound option presented in a pull-down menu.
Our Program listings implement this technique in TML and AC/BASIC.

For text-based programs or background-sound reproduction, a sub-
routine such as that shown in the Micol Advanced BASIC code, Listing
1, is more appropriate. The subtle differences lie only in how the sound-
production routines fit into your application’s general structure.

After adding a sound-player utility to your software library, you may
wonder how you'll obtain the sounds you'll want to play. For sound
effects, which perhaps comprise the bulk of sound playback, you can »

84 + inCider October 1989

APPLEJIGs

buy cassette tapes at any good record store, then record the sounds
you need using hardware such as Sonic Blaster or FutureSound. You
can also program wave forms directly—if you're feeling brave.

Also, note that you can use the central procedure producing the actual
sound in a variety of fashions. If you're writing a game, for instance,
the player probably won't select a sound file; he or she just needs to
hear the drip of water in a dungeon or the sound of engines on the
raceway. You can easily edit these sound utilities for such uses. .

Before discussing language-specific features of sound, kudos are in
order for several people whose help made this column much more
effective. They include Applied Engineering’s Phil Montoya, who wrote
the software for Sonic Blaster and offered to share his insights; Absoft's
Lee Rimar, Jeff Knaggs, and D.K. Keppner, who provided both source
code and exceptional product support; Micol Systems’ Ron Lewin, who
provided insightful source code, along with a sympathetic ear; and TML
Systems’ newly hired Apple product manager, Vince Cooper, who let
me use source code to which TML owns the copyright, and also provided
ready product support.

MICOL ADVANCED BASIC

The most interesting aspect of the Micol sound implementation
(Listing 1) is the demonstration of how it uses PEEK and POKE com-
mands to support tool calls. This technique, which trades familiarity
for difficulty of use, will arise whenever you use the Toolbox. The good
news is that Micol Systems has been listening to concerns on this subject
and will include significant tool improvements in a forthcoming revision
to the compiler.

You can add Listing 1 to the inCider ShowFile utility, use it as a
permanent entry in your library of software tools, or both. The pro-
cedure DoSound is the actual work routine you should add to your
library. The procedure DoPlaySound demonstrates a more elegant way
of handling user input than demonstrated previously.

Micol BASIC lacks two features important to sound playback: a way
of determining a file's length and a way of reading GS/OS directory
information concerning the file to be played, especially playback speed,
which by default is stored in the auxiliary file-type field.

A compiler revision, which should be available as you read this, will
let you open GS/OS DIRectory files and read them a line at a time, so
that you can access the auxiliary file-type information. If you’re anxious
to work more with sound programming, implementing this capability
would be your first project.

AC/BASIC

This version of the sound player (Listing 2) suffers from an inability
to play long wave forms. This situation arises because AC/BASIC doesn't
deal well with the advanced data structures required for this type of
sound handling. (In fact, that's the purpose of AC/BASIC—to shield
you from such things as memory pointers.)

Theoretically, however, you could study the sound-parameter table
in the manual along with this month’s examples from the other lan-
guages to devise a way around this. I haven't explored it well enough
to provide expert advice, but the solution is likely to require an external
assembly-language subroutine. Unless your sound-playback feature
must support long digitized sounds, I doubt whether the reward justifies
the effort involved in this procedure.

On the other hand, a worthy enhancement would be the ability to »

86 * inCider October 1989

POKE FFLOC + 8, Speed%
POKE FFLOC + 7, 00
POKE FFLOC + 8, 00
POKE FFLOC + 9, 00
POKE FFLOC + 10, 07
POKE FFLOC + 11, 00
POKE FFLOC + 12, 00
POKE FFLOC + 13, 00

' POKE FFLOC + 14, 00
POKE FFLOC + 15, 00
POKE FFLOC + 16, Voi%
POKE FFLOC + 17,0

ENDWF =

{ FFStopSound:
PUSH genMask; bit 0-15 indicates generator(s) 1o stop }

TOOLBOX (8, 15: 2) { FFStopSound: Used hers o Init sound tools)

{ FFStariSound: d
PUSH word genNumFFSynth (channel, generator, and type. Usually $0101)
m&lmmupﬂmmmm

chan-gen-type word:

15-12, DOC channel num; 11-8.9onmunbor00-§.

7-4 must equal 0; 3-0, $1 for free-form synthesizer, $2.-= note synthesizer
$0101 = DOC channel 0, generator #1, reserved val 0, ff synthesizer 1

.. and ... wiﬂ@mla)-m(boiohﬁﬂnmm

pBlockPtr:
Note that Micol syntax requires two PUSHed parameters, FFBank% and
FFAD%, to fulfill the one formal Toolbox pointer requirement. This is

TOOLBOX (8, 14: 257, FFBank%, FFAD%) { FFStartSound }
REPEAT

{ FFSoundDoneStatus:
PUSH wordspace, genNumber;
PULL genDoneFlag; Boolean var, bTHEﬂdomM)

TOOLBOX (8, 20: 00, 01; Finshed) { FFSoundDoneStatus }
ummwoﬁ
ENDIF
TOOLBOX (2,16: H.MHM) { release memory }
ENDPROC { DoSound} : ' '

* This procedure gets wmwmbm
'uundﬁlophynr,Doqm

{ }
{ PROC }
{ Control loop for sound wave player. }
PROC DoPlaySound
HOME
GOSUB Drawt.ines
x$ = "< Press <RETURN> for Main Menu >*
x% = (&H-El(ﬂ))lz
VTAB (24)
HTAB (x%)
PRINT x$;
HTAB (1)
viab (6)
PRINT *__ Play A Sound Flie _"
VTAB(O)
Wmmo'm
sndname$ = UPPERS (sndname$)
IF sndname$ = ™ THEN Terrorl = TRUE
input "Enter Playback Speed -> ";playrate%
IF playrate% < 10 OR playrate% > 1200 THEN Terrorl = TRUE
INPUT "Enter Flle Size in Bytes -> ";length
IF longth = 0 THEN Terror! = TRUE
myvolume% = 255 { default - dennvnwo)
iF NOT Terrorl THEN BEGIN
wsncu,sommmmn
QUIET (1) { and slience them. }
mﬁunmmmmw
ENDPROC { DoPlaySound }
Continued

APPLEJlgs

APPLETIGS

BASICS

90 * inCider October 1989

* File: IDG.DESKTOOLS Version 1.3 Revisions -- 7/10/89
' (C)1988, TML Systems Inc. (Requires full IDG.DESKTOOLS)
* All Rights Reserved. =============

' Modified with permission.

* Compiler: TML BASIC V1.10 for the Apple IIGS

* Version 1.3 starts up the Sound Manager tools, setting aside memory
* for them; adds a goodies menu with a "Play Sound" option; and adds
* a library procedure for the standard "Open File" dialog box.

' Add these data structures:

APPLEJlgs

Continued

DIM GoodMenuStri(200) * Goodies menu def string.
'DIMWI(‘I«)

* Reply record for SFGetFile

! This procedure is used to load and start up the Toolbox tool sets.

' The Mode% parameter indicates which graphics mode to use. The vaiue
* should be either 320 or 640. The PrintTools% parameter indicates

* whether the 100l sets necessary for using the Print Manager should

* be loaded or not.

DEF PROC StartUpTools(ScreenMode%,LoadPrintTools%)

' ... Add a line to StartUpTools to start the sound manager,
fitting in with the existing code like this:

' LIBRARY LOAD “Scrap®
' LIBRARY LOAD "Desk”
LIBRARY LOAD “Sound" * Add this line.

' Change memory manager startup:

* Start the memory manager
AppMemorylD% = EXFN_MMStartUp

* Allocate 7 pages of memory in bank O for tool set globals
* (4 pages already aflocated by TML.) (1 page = 256K bytes)
ToolZeroPageH@ = EXFN_NewHandle(7*258,AppMemorylD%,-16379,0)
ToolZeroPageP@ = VAR(ToolZeroPageH@,3)
TooiZeroPage% = EXFN_LoWord(ToolZeroPageP@)

* Start the printing tools if requested
* IF LoadPrintTools% THEN
' _QDAuxStartUp
+ _ListStartUp
_FMStartUp{AppMemoryiD%, ToolZeroPage%-+1024)

" _PMStanUp(AppMemoryID%, TooiZeroPage%+1280)
_SoundStartUp(ToolZeroPage%+1536) * ADD THIS LINE

END PROC StartUpTools

* Tool shut down routine.
DEF PROC ShutDownTools
* GRAF OFF
_SoundShutDown ° ADD THIS LINE
' IF svLoadPrintTools% THEN

END PROC ShutDownTools
Mdmwoeodumbdmh?ﬁocm

DEF PROC GoodiesMenu
LOCAL MenuStr$
MenuStr$ =#### “>> Goodies \NS\0"
MenuStr$ = MenuStr$ + "==Play Sound\N266\0°
SET(GoodMenusStri(0)) = *MenuStr$
_InsertMenu(EXFN_NewMenu(VARPTR(GoodMenuStri(1))),0)
END PROC GoodiesMenu

* Create goodies menu

' Add this procedure at the end of the file:

* Display the standard “get file" dialog box.

' This call will display all files. To display only files of a particular

' type, use a TypeList with the appropriate file types specified.

* After making the call, we get the salected filename from aReplyRecord. -

DEF PROC DoOpenFile
_SFGetFile(100,50,"Open which file:",0,0,VARPTR(aReplyRecord!(0)))
proceed% = VAR(aReplyRecord|(0),2)
IF proceed% THEN * f NOT proceed, CANCEL was clicked.
filetype% = VAR(aReplyRecord!(2),2)
auxfiletype% = VAR(aReplyRecord|(4),2)
FileName$ = VAR(aReplyRecord|(6),7,15)
FuliPathName$ = VAR(aReplyRecord!(32),7,127)
END ¥
END PROC DoOpenFie

END LIBRARY

92 + inCider October 1989

read a sound file’s auxiliary file type to let the program determine a
sound’s playback speed. To do this, open the DIRectory file containing
the sound file as a random-access file. Input each line as a string, and
search for lines beginning with a 0 (zero) byte, which indicates that a
filename follows. Bytes 0-15 of this string will contain the name of the
file; byte 16 will contain the file type; and bytes 30-31 will contain the
auxiliary file type as an unsigned integer. (Don'’t sweat it if none of this
makes sense to you. It's intended for fairly sophisticated programmers.)

TML BASIC

Listings 3 and 4 show how to add a Goodies menu with sound-
playback option to your TML desktop program shell. However, I dis-
covered a bug in TML that hampers the code’s effectiveness. In the
procedure DoSound in Listing 3, you can see that the loop calling
—FFSoundDoneStatus to monitor the progress of playback is disabled.
This is because _FFSoundDoneStatus is either misspelled or missing
from TML's libraries. (Because of this bug, I couldn’t test the TML
sound code fully, but all major features work as they should.)

As this column was going to press, TML Systems couldn’t find the
solution to this library problem. You should be able to call TML today,
though, and get the spelling of the call the libraries use. Then you can
substitute that spelling in Listing 3 and remove the REMark characters
in the DO/WHILE loop.

PRODUCT INFORMATION
AC/BASIC Canada
Absoft Corp. (416) 495-6864
2781 Bond Strest e $145
Rochester Hills, M| 48307 TML BASIC
(313) 853-0050 TML Systems
§125 8837-B Goodbys
Micol Advanced BASIC Executive Drive
Micol Systems Jacksonville, FL 32217
9 Lynch Road (804) 636-8592

Willowdale, Ontario M2J 2V6 $125

There are several other points of interest in the source code. In
Listing 4, I added startup and shutdown procedures for the Sound
Manager, including the allocation of direct page space using the Memory
Manager. I've rewritten the Open File dialog and moved it from the
IDG.TML.SHELL file to IDG.DESKTOOLS so that you can call it from
any procedure. (The Play Sound option demonstrates this.) Also, I
added the Goodies menu, showing how you can construct and use
custom pull-down menus.

FURTHER EXPLORATION

Stereo-sound playback is one attractive feature you can add easily to
your sound tools. You just need to specify the channel and generator
number on which a sound should be played.

To conform to Apple standards software must use channel 0 (zero)
for the right-hand stereo signal and channel 1 for the left. See Apple
Developer Technical Notes 19 and 37 for more information (Apple Com-
puter, 20525 Mariani Ave., Cupertino, CA 95014, 408-996-1010).00

WRITE TO JOE ABERNATHY C/O INCIDER, 80 ELM ST., PETERBOROUGH, NH
03458. ENCLOSE AN SASE IF YOU'D LIKE A REPLY.

