
Call-A.P.P.L.E. Magazine • April 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0049 of 0069

mop programmers rely upon a firm command of
data structures in order to tum out successful
programs. We will show how you can add this T Po Ii 'h to yO"' applicotion" fmm ,impl, ,"'iahl"
to Toolbox pointers and handles.

This month and next. Launching Into BASIC will discuss the
full range of Apple IIGS data structures in the context of real
world examples. In this installment, we examine the data
structures common to AC/BASIC and TML BASIC and show
how to build a library of routines with which you can manage the
environment for a customer database. Next month, we imple-
ment this database library in TML BASIC and examine the
advanced data structures offered by TML.

The compilers of today stretch the old idea of "data struc-
ture" quite a bit. You now can assign local variables in order to
reduce program clutter; extract information by bytes from a
special array type; and use memory pointers to access the
internal Apple IIGS tools.

Despite the edge it gives, there is little to learn to master
professional data manipulation. Particularly where pointers and
handles are concerned, there is an unjustified perception of
difficulty.

Built-in Data Facilities
Any logical representation of information is a data structure,

including our database files. Built-in facilities include such
things as variables and arrays, which are a part of the language.
There are few differences between how Absoft and TML
implement data handling. These will be noted when appro-
priate.

Variables - Named variables can be assigned a value
either directly; through the result of a mathematical operation;
or through the returned value of a function.

m Call ·A.P.P.L.E.

Global variables are available throughout a program. They
can be assigned at startup, through calling a file of standard
assignments, and by subroutines. You can declare a variable as
local in order to hide it within a subroutine. This is especially
valuable in large programs where variable overwrites can be a
problem.

Numeric variables allow four types. They are integer. single
precision, double precision, and extended precision. For most
math, the integer variable type will provide sufficient precision
and the greatest speed. The more sophisticated types allow you
to do scientific math and access SANE. the Standard Apple
Numerics Environment.

You will notice that I sometimes use scratch variables such
as x$ when a locally declared variable would be the right way to
do it. My habit is a holdover from languages in which the lack
of local variables forced you to use a pool of scratch variables
in order to maintain structure. You will likely want to adopt a
new habit of declaring scratch variables locally. (See Scratch
sidebar.)

Variable examples:

LET x = 10

LOCAL x$
x$ = "Sid"

x% FN_GetAge (birthyear%, year%)

Arrays - Arrays allow you to group related information.
You can use any legal variable type for an array declaration. The
only restriction is that all of its elements must be of that type. An
array can have more than one dimension (up to X dimensions
with TML, limited by memory in AC/BASIC).

Elements of arrays can receive and pass values just as with
simple variables. A special array type in TML BASIC lets you
manipulate information on the byte level. This "struct'· array
will be discussed next month when we develop records.

Arrays are often used for tasks such as loading lists of
information from disk. The second example below. which is an
extract from the datafile listing, shows how this can be done.
Note that in TML BASIC, 0 is the first element of the arrays. so
we use the loop counter minus one as our index.

Examples:

DIM DYNAMIC Scores%(NumTests%,NumPupils%)

DIM fwCustList$(NumCustomers%)
REM load list of custcmer files
DIM fwName$(NumCustomers%)
DIM fwPhone$(NumCustomers%)

j

Call-A.P.P.L.E. Magazine • April 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0050 of 0069

FOR i = 1 to NumCustomers%
x$ = fWCustList$ (i-I)
OPEN x$, FOR INPUT AS #FileInciex%
INPUT #FileIndex%; y$
fwName$ (i-I) = y$
INPUT #FiIeIndex%; y$
fwPhone$ (i-I) = y$
CLOSE #FileIndex%
NEXT i

Records - There is no AC/BASIC data structure that
correlates to the Pascal record. Next month, however, we will
show how Pascal programmers can utilize their knowledge of
records with the TML BASIC struct array type.

Pointers - ACIBASIC insulates the programmer from
the manipulation of memory pointers. This data structure type,
most often used when issuing Toolbox calls, will be addressed
next month under the auspices of TML BASIC.

Handles - Memory handles, too, will not confront you
under AC/BASIC. Handles allow the Memory Manager to do its
job, dynamically reassigning memory locations to blocks of
code at run time. We will discuss pointers next month.

Data typing - Another data facility that you should be
aware of although it is not yet available in any BASIC for the
IIGs. With data typing, you can create data structures dedicated
to a particular type of information such as phone numbers or
credit card accounts. I suspect that some form of data typing will
make its way to us in the summer of 1989.

Custom Data Facilities
Since data files are just another way to arrange information,

they are considered to be data structures. You can use data files
for a variety of housekeeping jobs to add elegance to your work.
We will demonstrate them by implementing a library used to
managc a customer database.

Data files. or at least the internal structure of data files, have
been the source of occasional controversy. The rights to a useful
data file are rightly regarded by vendors as valuable property
that should be protected. So how then does an independent
programmer go about reading a BusinessWorks company file,
for instance, when the file structure isn't published?

Apple Developer Services has attempted to set file format
standards with its most notable success coming in the area of
picture files. This success is a retlection of the graphics tools
built into the IIGs. Since these tools have no text file counter-
parts. you have the opportunity to create a data file template
conforming to your own specifications.

To obtain the most from your data files, you should create a
format general enough to be used by more than one program. By
studying Listing 2 as an example, you can see how to create both
a master data file and a set of customer information files which
can be used by any program written in any language. Indeed,
these DataFileLib structures are a scaled down implementation
of a fi Ie format I have used in three commercial programs, each
written in a different language.

This demonstrates a sequential access text file in which lines
of information are read in sequential order. Another type of file
access. random access, is much more efficient, but for the appli-
cation being developed here, it would be difficult to implement
and more limited in its utility. If you decide to expand your data
file library. random access routines would be a good place
to start.

When you want to load the information stored in a data file,
an array often is the best choice. However, for such things as

values read from the master data file, simple global variables
might be more practical. We will demonstrate both methods.

The AC/BASIC Data Library
The data file library implements a set of procedures that

collectively manage the disk and data structures of a customer
database. It comprises five procedures: FWDataSetUp,
FWWriteCust, FWDeleteCust, FWShutDown and Up-
dateFWData.

Listing I is an ACIBASIC program used to demonstrate the
functionality of the library. Listing 2 is the actual implementa-
tion of the customer database.

Missing are the calls to implement a user interface to the
library. This communication with the user, even under the
desktop metaphor, tends to be different in every application.
(We will, however, discuss data input dialogs in the future.)

It is quite easy to implement the database library from your
program shell. Under AC/BASIC, just make the additions
shown in Listing I. Remember to add the new values under
SetUp to your shell's SetUp label.

The procedures:
FWDataSetUp - This procedure prepares the customer

database for use. It reads two internal data files to determine the
number of customers online and their names. It then correlates
each name into a file name, dimensions the customer data
arrays, and loads the customer database information into these
arrays.

The first time FWDataSetUp is called, it will create its
master data files on the drive from which its calling program was
booted. These include "*/SYSTEM/FW.DATA", "*/SYS-
TEM/CUSTOMERS/", "*/SYSTEM/CUSTOMERS/
CUST.LIST", and the file called */SYSTEM/CUSTOMERS/
ABERNATHY.JOE for the default first customer.

Advanced Study: Implement a "Please wait ... " dialog to be
displayed if more than 30 customer files must be loaded at
startup. You will need a separate "end wait" call to remove the
dialog from the screen. (You can modify the "MsgDialog" tool.)

FWWriteCust(whom%) - This procedure either adds a
new customer to the database or updates information concern-
ing an existing customer. If you pass a zero value in whom%, the
information at the upper bound of the customer data arrays will
be used to add a customer. If you pass a non-zero value, the
information for that customer number will be updated with the
information at the matching offset in the customer arrays. No
error checking will be performed to ensure that this is what you
really want to do.

When you put this routine to use, it will usually be called
from a procedure that obtains customer information either from
the keyboard or simple variables. In order for FWWriteCust to
use your new customer information correctly, the calling rou-
tine must always load the customer arrays at their upper bound.

FWDeleteCust(which%) - This procedure removes a
customer from the database. Which% should be a valid cus-
tomer number. No error checking will be performed to ensure
that this is so.

If you pass a zero value for which%, FWDeleteCust will
return with all data unchanged.

FWShutDown - Normally, this call would release array
and other memory used by the data file library. In ACIBASIC,
you must ERASE arrays in the main program (as discussed in
the source code comments) so it amounts to a marginal call

April 1989W

I

Call-A.P.P.L.E. Magazine • April 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0051 of 0069

whether you should bother with FWShutDown. This call will be
more useful in its TML BASIC incarnation.

UpdateFWData - This procedure might eventually wind
up in several different programs you write. When you share data
files, rememberthatchanges and additions to the fields made by
one program will affect all programs.

Advanced Study: Implement a NumFields% value in the
FW.DAT A master file to allow dynamic changes to the number
of subsequent fields read. Hard wire a hierarchy governing the
order in which variables are read. Any variables read past the
end of the data meaningful to a particular application should be
discarded by that application,

Resources
We welcome your questions, complaints and kudos. Write to

Launching Into BASIC in care of Call -APPL.E. On Ap-
pleLink - Personal Edition, send E-mail to JOEA 17.

Questions for the column and for the Call -APPL.E.
Consultants' Comer also are accepted in The Cortland Project
SIG on Europa bulletin board system. Launching Into BASIC
listings are available for download: (713) 526-0714, 1200/2400
bps.

Call-APPLE. listings also are available on the TechAlli-
ance Bulletin Board System (TBBS, formerly Apple Crate)
approximately one month after publication: (206) 251-6775 or
251-6784.m

Listing 1

This is a short demonstration program to
show how the datafile library might be
called from AC/BASIC. Ellipses ... indicate
a broken line.

'$Inc1ude "DataFileLib"

GOSUB Setup
ON ERROR GOTO DataErr
OPEN "* / SYSTEM/FW . DATA" FOR INPUT ...

. .. AS #FileIndex
CLOSE #FileIndex
FWDataSetUp

Ca1lDemo:
ON ERROR GOTO 0
GOSUB Demo

Error handler off

END

Demo:
PRINT
PRINT "There are NmnCustaners;

· .. custaners now on-line."
IF NmnCustaners <> Nil THEN

PRINT
PRINT "Here is a screen to show ...

· .. that the data library works:"
FOR i = 1 to NmnCustaners

x% = i - 1
PRINT
PRINT "Custaner # ". fwCustNum% (x%)
PRINT "Name: fwFirstName$...

· .. (x%) + " " + fwLastName$ (x%)
PRINT "Birthday : " ; fwMbirth% ...

· .. (x%); "-"; fwDbirth% (x%); ...
... "-"; fwYbirth% (x%)

PRINT "Social Security # , ...

EIll Call ·A.P.P.L.E.

PRINT "Company
PRINT "Address1
PRINT "Address2
PRINT "City :

" ". ...

:
:
:

. . . fwSSN$ (x%)
fwCompany$ (x%)

fwAddr1$ (x%)
fwAddr2$ (x%)

fwCity$(x%); .. .
fwState$ (x%); .. .
. .." fwZip$ (x%)

PRINT "Phone : ("; fwAreaCode% ...
... (x%); ") ". fwPhone$ (x%)

PRINT "Last Contacted On: , ...
. . . fwLastContacted$ (x%)

PRINT "Comnents: fwNote1$ (x%)

ELSE
PRINT

NEXT i

PRINT "No customer files to read."
END IF

PRINT
INPUT "Press RETURN to exit clemo: i$
FwShutDown Shut down this lib

RETURN

DataErr:
CLOSE #FileIndex
DoDataInstall
RESUME CallDemo

Setup:
DataReady = 0
Nil = 0
FileIndex = 1
Ntm\Customers = 0

RETURN

SUB DoDataInstall SHARED
NmnCustomers = 1
DoDataDim
MakeDataFi1es
GetDefaultData
FwWriteCust(l)
DataReady = 1

END SUB

Listing 2

File: DataFile . BAS
Version 00000001 - 12/12/88

Close test file

Make arrays
Internal files
First custaner
Save custaner

Customer data file management library
(C)Joe Abernathy. All Rights Reserved.
Data files (C)1986-89, First Word.
All Rights Reserved. Used with permission.
Compiler: AC/BASIC and compatibles

Compile with N option set

Contains: FWDataSetup, FWWri teCust,
FWDe1eteCust, FWShutDown, UpdateFWData

SUB FWDataSetUp
Start up the customer data library :

SUB FWDataSetUp SHARED
OPTION BASE 0 For arrays
x1$ = "*/SYSTEM/FW.DATA"
x2$ = "*/SYSTEM/CUSTCHERS"
x3$ = "*/SYSTEM/CUSTCHERS/CUST.NAMES"

Has FWDataSetUp been called?
If not, begin:

IF DataReady = Nil THEN
FileIndex = File Index + 1

Read main data file:
OPEN x1$ FOR INPUT AS FileIndex

I

Call-A.P.P.L.E. Magazine • April 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0052 of 0069

LINE INPUT #FileIndex, x$
NumCustamers = VAL (x$)
CLOSE #FileIndex

Max # of new entries, 50 :
x% = NumCustomers + 50
DIM fwCustNum% (x%)
DIM fwCustList$ (x%)
DIM fwFirstName$ (x%)
DIM fwLastName$ (x%)
DIM fwInitial$ (x%)
DIM fwYBirtM (x%)
DIM fwMBirtM (x%)
DIM fwDBirth% (x%)
DIM fwSSN$ (x%)
DIM fwCompany$ (x%)
DIM fwAddrI$ (x%)
DIM fwAddr2$ (x%)
DIM fwCity$ (x%)
DIM fwState$ (x%)
DIM fwZip$ (x%)
DIM fwAreaCode% (x%)
DIM fwPhone$ (x%)
DIM fwLastContacted$(x%)
DIM fwNotel$ (x%)
ReadCustList Read Customers
ReadCustData Fill arrays
DataReady = 1
File Index = File Index - 1

END IF
END SUB

Private procedure - Create internal
customer data files:

SUB MakeDataFiles SHARED
OPEN ,,* / SYSTEM/FW . DATA" FOR OUTPUT ...

AS FileIndex
PRINT
CLOSE
OPEN

#FileIndex, NumCustamers
#FileIndex
"*/SYSTEM/CUSTOMERS/CUST.LIST" ...
FOR OUTPUT AS FileIndex

Whan$ = "* /SYSTEM/CUS'l'aERS/ ...
... ABERNATHY . JOE"

Your first customer:
PRINT #FileIndex, Whan$
CLOSE #Fi1eIndex

END SUB

Private procedure - Read list of customer
data file names

SUB ReadCustList SHARED
OPEN x3$ FOR INPUT AS FileIndex
FOR i = 1 to NumCustomers

LINE INPUT #FileIndex, x$
fwCustList$ (i-1) = x$
NEXT i

CLOSE #FileIndex
END SUB

Private procedure - Load customer arrays
with proper info

SUB ReadCustData SHARED
FOR i = 1 to NumCustomers

x$ = fwCustList$(i-1)
OPEN x$ FOR INPUT AS FileIndex
LINE INPUT #FileIndex, y$
fwCustNum% (i-1) = VAL (y$)
LINE INPUT #FileIndex, y$
fwFirstName$(i-1) = y$
LINE INPUT #FileIndex, y$
fwLastName$(i-1) = y$
LINE INPUT #FileIndex, y$

fwInitial$(i-1) = y$
LINE INPUT #FileIndex, y$
fwYBirth% (i-1) = VAL (y$)
LINE INPUT #FileIndex, y$
fwMBirtM (i-1) = VAL (y$)
LINE INPUT #FileIndex, y$
fwDBirth%(i-1) = VAL (y$)
LINE INPUT #FileIndex, y$
fwSSN$ (i-1) = y$
LINE INPUT #FileIndex, y$
fwCompany$ (i-1) = y$
LINE INPUT #FileIndex, y$
fwAddr1$ (i-1) = y$
LINE INPUT #FileIndex, y$
fwAddr2$ (i-1) = y$
LINE INPUT #FileIndex, y$
fwCity$(i-1) = y$
LINE INPUT #Fi1eIndex, y$
fwState$(i-1) = y$
LINE INPUT #FileIndex, y$
fwZip$ (i-1) = y$
LINE INPUT #FileIndex, y$
fwAreaCode%(i-1) = VAL (y$)
LINE INPUT #FileIndex, y$
fwPhone$ (i-1) = y$
LINE INPUT #FileIndex, y$
fwLastContacted$(i-1) = y$
LINE INPUT #FileIndex, y$
fwNote1$(i-1) = y$
CLOSE #FileIndex
NEXT i

END SUB

Private procedure - Generate the first
customer

SUB GetDefaultData SHARED
fwCustList$ (0) = "Abernathy. Joe"
fwCustNum% (0) = 1
fwFirstName$ (0) = "Joe"
fwLastName$ (0) = "Abernathy"
fwInitial$ (0) = "D"
fwYBirth%(O) = 1961
fwMBirtM (0) = 6
fwDBirth% (0) = 14
fwSSN$(O) = "444-66-8878"
fwCompany$ (0) = "First Word"
fwAddr1$(0) = "P.O. Box 66046"
fwAddr2$ (0) = ""
fwCity$ (0) = "Houston"
fwState$(O) = "TX"
fwZip$(O) = "77266-6046"
fwAreaCode% (0) = 713
fwPhone$ (0) = "526-9711"
fwLastContacted$ (0) = "12/25/1988"
fwNote1$ (0) = "Journalist; has Great ...

. .. Dane; likes girls with glasses."
END SUB

Save new or updated info for a custaner .
To add a new custaner to the database,
your user interface must load the arrays
at index #NumCustomers+1, then pass 0
for whom% to this procedure. To update
an existing custaner, pass any valid
customer number.

SUB FWWriteCust (whom%) SHARED
NewFlag% = 0
FileIndex = FileIndex + 1
IF whom% = Nil THEN Was value passed?

NewFlag% = 1
NumCustaners = NumCustomers + 1

Amount offset into database:
CustIndex% = NumCustamers

I
April 1989 ED

Call-A.P.P.L.E. Magazine • April 1989

 A)pple P)ugetSound P)rogram L)ibrary E)xchange Page 0053 of 0069

ELSE
CustIndex% = whom%
END IF

FWFile$ = fwLastName$(CustIndex%-l) ...
+ "" + fwFirstName$ (CustIndex%-l)

Truncate if needed for ProDOS:
IF LEN (FWFile$) > 15 THEN

FWFile$ = LEFT$ (FWFile$, 15)
END IF

Place in correct DIR:
Whom$ = "* /SYSTEM/CUSTOMERS/" + FWFile$
x% = CustIndex% - 1
OPEN Whan$ FOR OUTPUT AS FileIndex
PRINT #FileIndex, STR$ (fwCustNum% (x%»
PRINT #FileIndex, fwFirstName$ (x%)
PRINT #FileIndex, fwLastName$ (x%)
PRINT #FileIndex, fwInitial$ (x%)
PRINT #FileIndex, STR$ (fwYhirth% (x%»
PRINT #FileIndex, STR$ (fwMbirth% (x%»
PRINT #FileIndex, STR$ (fwDbirth% (x%»
PRINT #FileIndex, fwSSN$(x%)
PRINT #FileIndex, fwCompany$ (x%)
PRINT #FileIndex, fwAddr1$ (x%)
PRINT #FileIndex, fwAddr2$ (x%)
PRINT #FileIndex, fwCity$ (x%)
PRINT #FileIndex, fwState$ (x%)
PRINT #FileIndex, fwZip$(x%)
PRINT #FileIndex, STR$ (fwAreaCode% (x%»
PRINT #FileIndex, fwPhone$ (x%)
PRINT #FileIndex, fwLastContacted$ (x%)
PRINT #FileIndex, fwNote1$ (x%)
CLOSE #Filelndex

Add customer to list if new:
If NewFlag% THEN

AddCustList
END IF

File Index = FileIndex - 1
END SUB

Private procedure - Add customer to list
of data file names

SUB AddCustList SHARED
OPEN "*/SYSTEM/CUSTOMERS/CUST.LIST" FOR ...

PRINT
CLOSE

END SUB

#FileIndex,
#FileIndex

APPEND AS FileIndex
whan$

Shut down the data file library, release
memory, clean up flags.

SUB FWShutDown SHARED
FileIndex = FileIndex + 1
UpdateFWData Update master data file

Release array storage. Note that if you
are exiting the application, you do not
need to erase the arrays. If you do wish
to erase the arrays, AC/BASIC requires
that you make this code a subroutine
in the main program:

ERASE fwCustNum%
ERASE fwCustList$
ERASE fwFirstName$
ERASE fwLastName$
ERASE fwlnitial$
ERASE fwYBirth%
ERASE fwMBirth%
ERASE fwDBirth%
ERASE fwSSN$

W Call ·A.P.P.L.E.

ERASE fwCompany$
ERASE fwAddr1$
ERASE fwAddr2$
ERASE fwCity$
ERASE fwState$
ERASE fwZip$
ERASE fwAreaCode%
ERASE fwPhone$
ERASE fwLastContacted$
ERASE fwNote1$
DataReady = 0
FileIndex = Filelndex - 1

END SUB

Remove a customer. which% should be a
valid customer number. If it is not, the
procedure will return with data unchanged.

SUB FWDeleteCust (which%) SHARED
FileIndex = FileIndex + 1
Custlndex% = which%
FWFile$ = LastName$(CustIndex%-l) + ...

... "" + FirstName$(CustIndex%-l)
IF LEN (FWFile$) > 15 THEN

FWFile$ = LEFT$(FWFile$,15)
END IF

Whom$ = "* /SYSTEM/CUSTOMERS/" + FWFile$

Make sure file exists:
OPEN Whom$ FOR OUTPUT AS File Index
CLOSE Whom$

NumCustomers = NtnnCustomers - 1
KILL Whan$
f$ = "* /SYSTEM/CUSTOMERS/FW. TEMP"
x$ = "* /SYSTEM/CUSTOMERS/CUST. LIST"
OPEN f$ FOR OUTPUT AS FileIndex
OPEN x$ FOR INPUT AS FileIndex + 1
WHILE NOT EOF = Filelndex + 1

LINE INPUT #FileIndex + 1; z$
Everything except the customer
being deleted:

IF z$ <> Whan$ THEN
PRINT #FileIndex, z$
END IF

WEND
CLOSE #FileIndex
CLOSE #FileIndex + 1
KILL x$
NAME f$, x$
UpdateFWData
FWShutDown
FWDataSetUp
FileIndex =

END SUB
FileIndex - 1

FW. TEMP - > CUST. LIST
master data file
Clear cust. arrays
Re-init data

This updates the master data file. Add and
remove saved fields as your needs change.

SUB UpdateFWData SHARED
FileIndex = FileIndex + 1
OPEN "*/SYSTEM/FW.DATA" FOR OUTPUT ...

. .. AS FileIndex
PRINT #FileIndex,
CLOSE #FileIndex

STR$(NtnnCustomers)

FileIndex = FileIndex - 1
END SUB

End of AC/BASIC Data File Library

I

