JOHN’S DEBUGGER

By

JOHN BRODERICK, CPA

FOR -
ASSEMBLY LANGUAGE PROGRAMMING

o THE APPLE |l COMPUTER

OPTIONS:

LOGIC W/ INSTRUCTIONS - NOTING
TRACE ALL JUMPS, BRANCHES, JSR, ETC.

STEP EACH INSTRUCTION DISPLAYING:
ALL REGISTERS, STATUS AND POINTER
-ACCUMULATOR IN BINARY
-LAST 8 BYTES ON THE STACK
_DISPLAY ALL FLAGS SET
_DISPLAY WHAT IS IN ANY 12 MEMORY

POSITIONS WITH YOUR LABELS

BREAKPOINT BREAK ON KEYPRESS,
CYCLE COUNTER, ETC (6 OPTIONS) INCLUDES
TIMING DELAY FROM 0.0 TO 255 SECONDS

(ALL OF ABOVE SAVES ENTIRE PAGE OF STACK)

JOHN'S DEBUGGER

by

JOHN BRODERICK, CPA
BRODERICK & ASSOCIATES
PROFESSIONAL SOFTWARE HOUSE
8635 Shagrock
DALLAS, TEXAS 75238
(214) 341-1635

PURPOSE: TO ASSIST PROGRAMMERS WITH ASSEMBLY AND
MACHINE LANGUAGE PROGRAMMING TO HELP FIND
LOGIC ERRORS AND OTHER MACHINE LANGUAGE
BUGS THAT SOMEHOW GET INTO THE SYSTEM.

COMPUTER: APPLE II COMPUTER MANUFACTURED BY APPLE
COMPUTER, INC.

LANGUAGE : APPLESOFT & MACHINE LANGUAGE.

DOS: REQUIRES AT LEAST 1 DISK DRIVE.

MEMORY : 48 K IS REQUIRED

JOHN'S DEBUGGER IS A MACHINE LANGUAGE PROGRAM
THAT RESIDES IN MEMORY FROM $8600 to $9600.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES

INTRODUCTION

Hundreds of hours of my time has been expended with the design,
development and programming of this debugging system so that
each program may adhere to the high level of quality which I
demand from computer software. And almost every critical de-
cision was made keeping the user in mind so that these programs
would not only function properly but be enjoyable and fun to
use.

As a result you will find my debugger very educational for the
beginning programmer - for he can see how each instruction affects
such things 1ike the stack and which flags are set and cleared to
mention just a few of the displays.

Advanced programmers will 1ike the various logic trace options
along with the ability manually define the registers and then

step through the monitor routines all the time seeing what is
happening in up to 12 memory pesitions located anywhere in memorv.
With my debugger within a matter of hours I can thoroughly analyze
someones's machine language routines and completely understand
what they are doing and how it is being done.

My first trace program was written for a 16 bit 1410 Autocoder

(40 K) - a big machine in 1967 for it took up over half of the
entire computer dept. and almost supported a full time repairman.
We've come a long way since then and I expect the next generation
to be full of more surprises and I hope that my work can contribute
to them.

Thanks for purchasing my software - I really appreciate it and want
you to know that if you have any questions just feel free to call me.

Y nt®

ohn Broderick, CPA

INDEX

HOW TO RUN - AT A GLANCE {Triéa & StEB) seassisoxnmnnue 1

(Breakpoift) ssswwnssssasanssn 1

(Store Demo)ceveevvveenns 1
BREAKPOINT OPTIONS ..t iviiniiiivitrcacoroanssnsanssnsens 2
TRACE & STEP OPTIONS it virieiinernvrorcrnsonoonansnss 2
BREAKPOINT & HOW TO USE IT ..verviiniieiiinreannasennn 3
BREAKPOINT (Additional NOteS) ...evvvrieniniininennananns 5
HOW TO RUN TRACE & STEP WITHOUT LABELSenvvevenne... 6
HOW TO RUN TRACE & STEP WITH LABELScviiiiniennennn 8

PROGRAMS ON THE DISK INCLUDED WITH THIS DOCUMENTATION10

TIMING DELAY ROUTINE AND HOW TO USE ITcoicniinnnnn 11
MEMORY USAGE . ivvivioteinrerernrornrnsascessscnsnnnaneceos 12
REGISTRATION FORM L. iiiviiinrnrnnncnoncnnesscnennosnnanss 13
DISPLAY INFORMATION ..ivuvninniininiaeanannnans Appendix A

<3g3¥3\ﬂ&£ <j£>§ﬁ§
$11¢ngbﬂ, Schefres
(b ZOoZY

ii

HOW TO RUN = AT A GLANCE

TRACE & STEP
RUN WITHOUT LABELS
BRUN JOHN'S DEBUGGER \
or

*86006 (if already in memory)

RUN WITH LABELS

RUN LABEL MANAGER
or

*8600G6 (if already in memory)) *9000G is same entry
*9003G after M)ONITOR break.

BREAKPOINT
BLOAD JOHN'S DEBUGGER

. JSR $8603 (put in your program to stop processing)
RETURN with *8606G after M)ONITOR break.

STORE DEMO FOR TRACE & STEP

RUN DEMO MANAGER

NOTE: IF HIMEM is not set to less than $8600 and you are using an
assembler or an applesoft program after you load in JOHN'S
DEBUGGER then you will probably place your program on top
of the debugger and cause strange output displays.

INTEGER BASIC and many assemblers use the HIMEM at 4C & 4D
set by 4C:FF 85
APPLESOFT use HIMEM at 73 & 74 set by 73:FF 85 or
HIMEM: 34304

The trace and step program will automatically set basic HIMEM
to $85FF if it discovers that it is still set to $9600

NOTE: THIS DISK CAN BE COPIED - SO WE RECOMMEND THAT YOU MAKE EXTRA
COPIES FOR EACH PROGRAM YOU ARE DEBUGGING.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 1

BREAKPOINT OPTIONS

TIMING DISPLAY

O)PTIONS DELAY INFORMATION
0 NO ACTION TAKEN (always return) - -
1t STOP ALWAYS (every time thru) - ON
2! STOP ON (ESC) KEYPRESS ON -
t 3! 1] 1 1] 1] ON ON
9! NEVER STOP (to be used with basic) ON ON

poke 34336,9 : CALL 34307

$8620 $8603
ONCE YOU
HAVE STOPPED
KEYPRESS
0 0)PTION is reset by next number keyed (0,1,2,3,9)
M M)ONITOR exit and return with *8606G to continue
'R R)ESET all options to normal: always stop first time thru
and reset delay and counter to zero

'c' C)YCLE COUNTER is reset to zero
'S! S)ECONDS DELAY are set by next number keyed (0-9)
FT T)ENS OF SECONDS DELAY are set by next number keyed (0-9)

TRACE & STEP OPTIONS

KEYPRESS AT

ANY TIME

DURING

RUNNING

'T T)RACE LOGIC with execution and displaying one page of
instruction leaving spaces for all break in
Jogic path 1ike jumps, Jsr, branches taken,etc

'S! S)TEP INSTRUCTION one at a time displaying all of the information
1isted on the cover of this documentation

L LYINE only one line is traced or stepped at a time

(ESC) ACTIVATES continuous tracing or stepping until any key is
pressed.

M M)ONITOR EXIT to examine or change memory *9003G to return

and continue processing.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 2

BREAKPOINT - AND HOW TO USE IT

I really don't know where to start in explanating BREAK?OINT because it
does so much and has so many options and different combinations of options
that if you are not careful when using them or the program the processor
may disappear into never never land. If that happens I explain how to

manually reset the options.

ENTER WHAT THIS DOES

BLOAD JOHN'S DEBUGGER This places the breakpoint program into memory.
If you are subsequently using applesoft or an
assembler that stores data below DOS then it
js best to make sure that HIMEM is set to $8600
or less or JOHN'S DEBUGGER will be wiped out.

I always *4D:85 which sets the high order byte
of HIMEM to less than 86. Now I can run the
assemble language assembler which I purchased.

Since the breakpoint program resides in JOHN'S
DEBUGGER it has been loaded and is ready to use.

JSR $8603 You must insert this instruction in a place in
your program where you are debugging and would
Tike to just stop processing (not necessarily
break) and analyze the data in memory and in the
regs and then at youroption break or continue.
HIT RETURN to continue processing or press 'M!
to go into the monitor (return with *8606G).

Now please made a note of the BREAKPOINT options
on one of the Preceding pages. Say we don't want
the processor to stop but to continue with the
timing delay on(say set to 1 second) and then we
can see out program running slower. OK lets do it.

'0' LETTER Nothing. But the next number enter will change the
option. '0O' stands for option.

'8 Scrolls the display and now right below the break
address you should see the number '3' in inverse.
This means to not stop processing unless the escape
key is pressed but to use DELAY and DISPLAY.

NOW THIS IS IMPORTANT

if we don't set the timing DELAY to Tong enough to
sense the keyboard strobe then the stop will not
occur since I do not clear the strobe because you
may be using it in your program.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 3

BREAKPOINT - AND HOW TO USE IT (Cont)

ENTER WHAT THIS DOES

'St Nothing. But it does let the debugger know that
the very next keypress must be a number between
0 and 9 which will reset the DELAY to that number
of seconds (actually times 5/6). So lets enter the
delay in seconds.

i2' Scrolls up and DISPLAYS. You should now see the
delay window read '2.0' (2 seconds and O tenths
of a second). To set the DELAY for less than 1
second just enter 'T' followed by the number.

ANY KEY Will return you to your program and process using
option 3 (DELAY AND DISPLAY).

(ESC) Wil now stop processing. Otherwise processing will
continue. Please notehere that if you used option
2 (DELAY ONLY) then nothing will appear on the
screen each cycle (JSR $8603) but your own programmed
data - but the DELAY would still slow up your program
so we can sense the ESCAPE key being pressed.

*8620:01 WILL MANUALLY SET THE BREAKPOINT OPTION TO '1°
W?ICH WILL CAUSE THE PROGRAM TO STOP ON EVERY JSR
CYCLE. '

DON'T FORGET 70 FILL OUT AND RETURN THE REGISTRATION FORM - PG 13

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 4

BREAKPOINT = ADDITIONAL NOTES

I had not intended to release the breakpoint counter options with this
release because they will require much more time to enable the user to
use them easily. My next release will include them but it will sell for
a retail price of about twice what this version sells for.

Still you can use the counter options if you wish to manually set memory
position *8621 (checkcounter Tow byte) and $8622 (check counter high byte).
to the cycle number where you want a stop to occur. At this point you

will have the same options as before however before you debug again you
should press 'C' which will reset the cycle counter which is displayed on
the screen just below the option and seconds inverse display. This will not
effect the check counter - it will stay set to the bytes you entered.

You can set the counter options 4,5, and 6 thru the normal process of
entering a '0' and then the number.

COUNTER OPTIONS:
4 - Stop only when the check counter equals the cycle counter.

5 - Stop only when the check counter equals the cycle counter
but use the DELAY subrouting to slow processing.

6 - Stop only when the check counter equals the cycle counter
but use the DELAY and DISPLAY routines each cycle.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 5

HOW TO RUN TRACE & STEP WITHOUT LABELS

ENTER WHAT THIS DOES (((SCREEN MESSAGES)))

BRUN JOHN'S DEBUGGER This loads my binary debugging assembly language
program into memorystarting at location $8600
to $95FF (HEX) and begins execution of the first
instruction at address $8600 (which is a jump to
my trace program starting at $9000.

(((ENTER ADDRESS TO BEBIN TRACE)))

PXXXX! HERE YOU ARE TO ENTER 4 HEX CHARACTERS WHICH MAKE
UP THE MEMORY ADDRESS OF THE FIRST INSTRUCTION OF
YOUR PROGRAM.

In other words, I assume that your assembly language
program is arleady in memory and waiting to be
executed-so instead of *XXXXG which will go to the
first 1ine in your program and execute, you instead
BRUN JOHN'S DEBUGGER which will ask you for the mem-
ory address which you would like to begin executing
and tracing from that point forward.

Some examples to enter are:

03A5 4C58
0800 F800
1CFA 4000

That's all there is to it -- DON'T HIT RETURN --

The debugger will grab that forth character out of
your hands and immediately start stepping with the
first instruction which can be found at that address.

Now the options can be entered depending on what you
need:

'"T' meemmeeee- Will trace the logic path lising your instruction
and its memory position. You will notice that every
time that there is a change to a new address the de-
bugger will skip a line (for jumps, jsr, rts, branches
taken, etc).

'S! e Will cause the debugger to begin immediately after
you pressed the 'S' to display all of the step
and breakpoint information. Please see the section
of this documentation entitled "Display Information"

M' memeeemee- Breaks processing and puts you into the MONITOR. Now
you can change or do anything that you want or need
to do - you have complete control.

*9003G ---------- RETURNS you to continue to process your program at the

exact point you were before you made your temporary
Took into.the monitor.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 6

HOW TO RUN TRACE

& STEP WITHOUT LABELS - (Cont'd)

ENTER

(ESC)

WHAT THIS DOES

Continued from preceding page.

Stands for LINE and what this does is to trace or
step just one line at a time. Pressing an LY owill
not change or disturb anything so use it freely as
much as you wish,

THE ESCAPE KEY s very useful for debugging. What
it does is to trace or step continuously without
stopping for the normal page display or whatever.

TO STOP the trace or step after pressing (esc) just
press any key and they you can continue tracing.

SAY YOU DON'T WANT TO "BRUN JOHMN'S DEBUGGER" BECAUSE YOU ARE IN THE

MONITOR.

ENTER:
*8600G

DON'T FORGET
IMI

*9003G

Provided that you have already 'BLOADED JOHN'S
DEBUGGER' which would have loaded the program into
memory then the next question on the screen will be:

(((ENTER ADDRESS TO BEGIN TRACE)))

Once the debugging program is loaded any of the
four instructions below will begin execution:

*86006G or CALL 34304
*90006G or CALL 36864

Since the first instruction at location $8600 is
a jump to the trace program located at $9000.

Wi1l put you into the monitor - to change the:

ACCUMULATOR *860B: XX
X REGISTER *860C: XX
Y REGISTER *860D: XX

PROCESSOR STATUS *860E:XX
STACK POINTER *860F : XX

Wi1l begin processing at the next instruction

and you will notice that the accumulator or reg-
isters will be changed to what you want. This is
a great way to find out how the various monitor
routines work. Just put a jump anywhere in memory
to the monitor routine that you want to test and
them press 'M' riaht after the JMP so that you can
change ahd enter the necessary data..

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 7

HOW TO RUN TRACE & STEP WITH LABELS

ENTER WHAT THIS DOES (((SCREEN MESSAGES)))

RUN LABEL MANAGER Bloads JOHN'S DEBUGGER into memory at $8600 and
then proceeds to poke into the debugger the Jabels
and related memory positions.

(((WOULD YOU LIKE YOUR LABELS TO BE POKED INTO
JOHN'S DEBUGGER)))

Answer 'N' NO to this the first time thru because

you have not yet defined your labels.

'N' You will now see on the screen the label menu. So
Jet's try out a few, first enter 'L' to list the
Tabels.

L Reads the label file off of the disk. In this case

it is reading my sample file which I have setup.
Now let's try the 'U' to update one of the 12 labels.

‘U (((ENTER A=ADD C=CHG D=DELETE)))

My manager wants to know whether you want to add a
label in case you have not used all 12 of them,
change one of the Tabels or memory positions, or
delete a label so a blank will appear during de-
bugging. Let's try a 'C' -Notice that you didn't
have to hit return here.

1! (((CHANGE LABEL NUMBER)))
So why don't you enter number 7.
T (((ENTER LABEL # 7)))

LABEL MANAGER wants to know what your 8 character
label is to be which will replace the one in the
file. Enter HIMEM or whatever wicked word you can
think of.

"HIMEM' (((HEX MEMORY # 7)))

Now the manager wants to know what memory position
from $0001 to $FFFF in hex should be analyzed and

the byte displayed next to your label in the debugging
program. Since we want to know what the high order
byte of himem is why don't we enter 4D.

'4D" Notice that it is not necessary to enter leading
Zeros.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 8

HOW TO RUN TRACE & STEP WITH LABELS (Cont)

ENTER WHAT THIS DOES (((SCREEN MESSAGES)))

Continued from previous page.

"END' You were so anxious to see my program work that
you couldn't wait so go ahead and enter 'END'.

This return you to the MENU so why don't we go
ahead and poke the labels in the debugger.

'p! The disk will read the labels off of the file and
poke them into memory - this takes only a few
seconds. The sound from the disk drive will be
the closing and Tocking of the Tabel file.

At this point you can hit reset or you can allow
my final goodbye question to properly sent you
on your way.

But what do 1 NOW JOHN'S DEBUGGER IS IN MEMORY AND READY TO RUN.
do now?

How do I run it you ask? Now turn to my documentation

entitled:
"HOW TO RUN TRACE & STEP WITH_O_U_I LABELS"

Do not, I repeat DO NOT perform the first step on
that page because if you do you will Toad the
debugger program right over you labels and have to
poke them in again.

Remember they are already in memory and ready to run
so from this point on we can enter the 4 character
hex address and use all of the options available

for the trace without labels. The trace and step
program is not aware of the fact whether or not

your labels will be displayed in the DISPLAY sub-
routine.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 9

PROGRAMS ON THE DISK INCLUDED WITH THIS DOCUMENTATION

JOHN'S DEBUGGER

This is my primary debugging program. It is written
100% in assembly language and loads in starting at
hex address $8600. It consists of four separate
programs:

1. BREAKPOINT - which is used to stop execution
of your program and then resume.
This program uses the DISPLAY
and DELAY subroutines.
(Memory $8600 - 8BAO)

2. TRACE & STEP is completely separate from the
BREAKPOINT in that it is primarily
concerned with the proper execution
of each instruction within the
program itself. ($9000-9500)

3. DISPLAY is a subroutine that is used by
both of the two programs above.
It display all of the information
that is listed on the cover of this
documentation. ($8BAA-8FFF)

4. DELAY is a stand alone delay subroutine
that can be set to cause an internal
wait from 0.0 seconds up to 255
seconds. ($95C0- 95FF)

DON'T FORGET T0 FILL OUT AND RETURN THE REGISTRATION FORM ON PAGE 13

LABEL MANAGER

SURPRISE #1

SURPRISE #2

This program was written in applesoft to do all of

the file management for the labels and memory positions
which are used by the DISPLAY subroutine. Its sets up
labels, deletes them. I hold the label manager to be
completely responsible for all of the information under
his care.

Run this program and you will enjoy the extra program
that I have included as a freebie.

Same as the above except this program is much more
complicated and requires thought on your part.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 10

TIMING DELAY ROUTINE AND HOW TO USE IT

Within JOHN'S DEBUGGER is a very useful timing delay that you can use
at any time. A1l it is is a series of loops that delay the processing
of your program. There are three Toops which need to be set and once
they are set you need not set them again. Keep in mind though that 1
have set these loop and use them during debugging so you may need to
relocate the program somewhere else in memory.

ENTER WHAT THIS DOES
*95C0:01 01 O1 sets the timing delay to 0.0 - no delay.
02 FF FF Sets to 5/6 of 1 second
03 FF FF 2 seconds
04 FF FF 3 seconds
01 40 FF .25 seconds
01 80 FF .50 seconds
01 CO FF .75 seconds
03 80 FF Sets to: (03) (80)
2 seconds X .5 seconds = 1 second
x 5/6 seconds
.833 seconds
JSR $95C6 Will go to the delay subroutine and delay for the

amount of time set above and then return to the
orginal location.

JSR $95C6 Will again cause the same delay as above-it is not
necessary to reset the input positions because the
delay subroutine stores them each time in memory
positions $95C3 to 95C5.

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 11

MEMORY USAGE

Extreme care has been taken to utilize only those portions of memory
and monitor routines which are necessary. Below lists the memory that
is being used by JOHN'S DEBUGGER.

PAGE_ZERO:

$ 3A Program Counter Low Address
$ 3B Program Counter High Address

PAGE ONE to PAGE EIGHTY SIX ($8600)

NONE

PAGE EIGHT SIX TO NINTY SIX ($8600 - 9600)

Al11 of this memory is utilized by the Debugger

MONITOR ROUTINES USED:

F8DO Monitor instruction Display
FBFD Vidio Out

FC58 Home

FD35 Read Key

FDBE Carriage Return Out

FF3A Ring Bell

FF65 Monitor Entry

FF69 Monitor Entry

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 12

JOHN BRODERICK, CPA REGISTRATION FORM
BRODERICK & ASSOCIATES

PROFESSIONAL SOFTWARE HOUSE

8635 Shagrock

Dallas, Texas 75238

I sure would appreciate it if you would take the time right
now to fill out this form and return it to me with any add-
itional comments or suggestions which you may have regarding
JOHN'S DEBUGGER. Also I will put your name on my mailing
list so that you can be informed of all improvement and new
versions.

DATE PURCHASED:

PURCHASED FROM:

SERIAL NUMBER:

YOUR NAME:

YOUR ADDRESS:

CITY:

STATE:

PHONE

SUGGESTIONS AND COMMENTS:

COPYRIGHT, 1980 BRODERICK & ASSOCIATES PAGE 13

Appendix A
DISPLAY INFORMATION

for the two programs BREAKPOINT and TRACE & STEP

A 4000 20 00 50 JSR $5000
B ACC=97 X=21 Y=00 STATUS=C9 STACK=E7
ACC (BINARY) '1001 0111’ BREAK § 4002 G
D ON STACK: 01 20 00 F9 00 00 00 00 1-0.0 H
FLAGS SET: NEG ORV DEC CRY 0000 {
F 05 LABEL #1 FA LABEL #5 2C LABEL #9

44 LABEL #2 7D LABEL #6 20 LABEL#10
21 LABEL #3 EE LABEL #7 02 LABEL#11
CA LABEL #4 AO LABEL #8 FF LABEL#12

Hex address of the instruction executed in TRACE & STEP.
In the BREAKPOING program it is the place in your program
where you JSR $8603 to breakpoint

ACC is the accumulator, X & Y are the two registers, STATUS

is the processor status-this Tets us know the condition of
the flags, and STACK is the stack pointer.

The accumulator displayed in binary.
The last 8 bytes pushed on to the stack-(01) is last one pushed.

FLAGS SET is the same as STATUS except I have shown you that
a 'C9' means the the 4 flags above are now on and set.

'05' is the byte that is in memory at a predetermined position

which you defined the the program label manager. LABEL #1 is
a 8 character label which you are to make up in LABEL MANAGER.

Used only in breakpoint té display place of break in your program.
1 means break option 1 (always break & display). 0.0 tells us

the the DELAY routine in BREAKPOINT is set to 0O seconds and O
tenths of seconds.

Is the BREAKPOINT cycle counter.

Appendix A

