APPLFE

SOFTWARE
PROTECTION

DIGEST

$3.00

Vol. 1, No. §

1986

Contents

Editorialcovvvevennnn. 1
CracksWanted 2
LRtters) « snvmin » conintins soewins 2
BURS < v susmeee e saiees 2
CrackIndex........oovvununen. 2

DOS 33: In the Back Door,
Through the Drive Door...... 3

How to Crack It’s the Pits. 5
The Ultimate Line Hider 6
Coming Next Issue 10

Apple Software Protection Digest

Publisher & Editor, Jules H. Gilder; Contribut-
ing Editor, J. Scott Barrus. Copyright © 1986 by
Redlig Systems, Inc., 2068 - 79th Street, Brook-
lyn, New York 11214. All rights reserved. No

part of this publication may be reproduced, or

electronically transmitted or stored without the
publisher’s written permission. Published
monthly at $24 per year by Redlig Systems, Inc.
(718) 232-8429. Reprints of prior issues avail-
able at $3 each. Printed in the U.S.A.

Apple is a registered trademark of Apple Com-
puter Inc.

THE JUDGE WAS WRONG

In late October, a federal court judge
in San Francisco issued a ruling that
could have disasterous .results for the
American software industry. In his rul-
ing, Judge William H. Orrick upheld the
right of a software developer to copy-
right the overall appearance, structure
and sequence of screens used in a pro-
gram.

The ruling came in a copyright in-
fringement suit filed by both Broder-
bund Software and Pixellite Software
against Unison World, Inc., and the
programs involved in the suit were
Broderbund’s Print Shop and Unison’s
Printmaster. Broderbund’s was the first
of the two on the market and Unison’s
is functionally identical to it. What Uni-
son apparently did was look at how the
program operated and asked program-
mers to sit down and do the same thing,
on their own, without stealing any code
from Broderbund. Apparently they suc-
ceeded, because the suit did not charge
Unison with "plagarism." Rather, it
claims that the use of a similar (al-
though clearly different) screen format
and a similar sequence of screens vio-
lates the program’s copyright. Unfortu-
nately for all of us, the judge upheld
their claim.

The public will suffer

If the decision is not appealed and
overturned, all owners of personal com-
puters will suffer for it. No longer will
companies have to worry about produc-

ing a bug-free product. If they’re the
first to annoucnce what potentially
could be a good product, all they have to
do is foist it upon an unsuspecting pub-
lic and prove to the world that they were
out with it first. No one can compete
head on with them, because of their
"look and feel" copyright.

Not only will we see the quality of ini-
tial offerings drop, but we’ll also see the
prices of this inferior software sky-
rocket. With no competition, there
would be no incentive for developers to
keep prices low. Another unhappy re-
sult of this decision will be to stifle the
development of better software. If com-
pany A comes out with a product and
company B figures out a way to make a
similar but far superior product,
shouldn’t they be allowed to do it? In
commenting on the judge’s ruling, Lind-
sey C. Kiang, Lotus Corp.’s (the maker
of 1-2-3) lawyer said, "I don’t buy the
idea that progress in the industry de-
pends on copying other people’s work."
Those are pretty high and mighty words,
but where would Lotus be today if it
didn’t copy the spreadsheet idea from
VisiCorp, manufacturers of VisiCalc,
the original electronic spreadsheet?

Judge Orrick we feel your decision
was dead wrong and hope it gets over-
turned. :

Jules H. Gilder

Publisher & Editor

Apple Software Protection Digest

Cracks Wanted

Listed below are programs
that our readers would like to
unprotected. Anyone who
comes up with a method of re-
moving the protection from
any of these programs will get a
free three-month subscription,
or extension to ASPD, so get
those solutions in.

If you have a program that
you’d like to see unprotected,
please let us know, and we’ll
add it to our list so that some of
our readers can try their hands
at it.

. Ace Writer IT

Aztec

Bag of Tricks

. Batter Up!

. Blazing Paddles

. Certificate Maker

. Compress Software

. Crush, Crumble & Chomp
. Dazzle Draw

10. Disk-O-Check

11. Magic Memory

12. Newsroom

13. Sargon III

14. Sensible Speller - DOS

15. Sensible Speller - ProDOS
16. Success With Math

17. The Game Show

18. Wizardry

19. Word Handler

Bugs

Although we spend a lot of time test-
ing and rechecking all the information
we present here, every once in a while a
problem will crop up. As soon as I find
out about it, I'll let you know in this col-
umn. It is my sincere hope that this col-
umn will be missing from most issues,
and be very short in those issues in
which it is included.

Print Shop Companion

In Vol. 1, No. 2 we listed the COPYP

parameters the you could use to make a
backup copy of the Print Shop
Companion. Unfortunately there was a
bug in it which was corrected in Vol. 1,
No. 4. While this bug allowed you to
make backup copies of the program, it
wouldn’t always workl We have now
come up with a sure-fire solution which
will consistently produce good backup
copies of Print Shop Companion. Simply
add the following lines to your COPYP
program (see Vol. 1, No. 2, p. 2).

72 POKE 863,34
1000 DATA 3,6,25,160,96
1010 DATA 3,6,26,0,64

Letters

Dear Editor:

My subscription to the Apple Soft-
ware Protection Digest started with
Vol. 1, No. 3 and it’s just great. Your
explanation of cracking techniques us-
ing Applewriter //e as an example sud-
denly clarified a whole bunch of things
I've heard and read elsewhere, but
couldn’t quite grasp. Alas, I also discov-
ered that Vol. 1, No. 2 apparently has
some great stuff in it too, including a
crack for the Print Shop Companion, for
which I have been looking ever since
last Christmas. Please send me a back
issue of Vol. 1, No. 2, for which I am
enclosing a check for $3.

Donald L. Martin
Santa Barbara, CA

I'm glad that you enjoyed our article on
"How to Crack Applewriter”. We try to
put things in simple, nontechnical lan-
guage so that you don’t have to be a
hacker to use the information. A new ver-
sion of the Print Shop Companion crack
is in this issue of ASPD. A copy of Vol. 1,
No. 2 has already been sent to you.

Dear Editor:

Your publication has provided me
with lots of information and ideas. Keep

up the good work. Enclosed with this
letter is a short article on a simple
modification to normal DOS 3.3 that
renders some protection schemes
ineffective. I would like to have this in-
cluded in one of your future issues.

If accepted, please give authoring credit
and extend my subscription as you
offered.

David Stoll
Manitoba, CANADA

I'm glad you enjoy our newsletter David.
Thanks for your article, Five Byte Disk
Analyzer. We've scheduled it for publica-
tion in the next issue of ASPD. Your sub-
scription has been extended. Keep the ar-
ticles coming.

Crack Index

In order to make life just a
little more convenient for you,
each issue of Apple Software
Protection Digest will contain a
list of all the programs cracked
so far, and what issues those
cracks appeared in. This will
save you from going through all
past issues of the digest in or-
der to find a particular pro-
gram.

Applewriter //e - Vol. 1, No. 3,
p.3

Bookends - Vol. 1, No. 1, p. 7

Financial Cookbook - Vol. 1,
No.3,p.6

Hayes Terminal Program -
Vol. 1, No. 3, p. 11

Homeword - Vol. 1, No. 2, p. 9

Homeword Speller - Vol. 1,
No.2,p.9

Microwave - Vol. 1, No. 3,p. 11

PFS PLAN - Vol. 1, No. 2,p. 9

PFS Series (ProDOS) - Vol. 1,
No.2,p.7

Print Shop - Vol. 1, No. 1, p. 10

Print Shop Companion - Vol.
1, No.2, p. 6, Vol. 1, No. 5§

Sensible Grammar - Vol. 1, No.
2. p:7

Time Is Money - Vol. 1, No. 2,
p.9

Vol. 1, No. §

DOS 3.3: IN THE BACK DOOR, THROUGH THE DRIVE DOOR

There is a little'documented trap or
error in DOS 3.3 that will often allow
you to get into BASIC or th¢ monitor
without any hardware modification. To
understand the trap, one needs to ex-
amine the way DOS works. In the boot
process, normal DOS loads itself and
then proceeds to run the HELLO pro-
gram of the file type set when the
diskette was initialized. DOS contains
vectors or pointers which tell it many
things, inculding where to go in the
event of an error. The standard DOS er-
ror routine is set up to print error mes-
sages when appropriate and then return
to BASIC. When a program is running,
the ONERR flag traps the condition
without interruption.

The weak link in this chain of activity
is the small period of time between the
loading of DOS and the loading and ex-
ecution of the HELLO program. Try an
experiment with a write-protected
backup copy of a normal DOS 3.3
diskette—the System Master will do just
fine. Boot the diskette. The moment
you see the Applesoft BASIC prompt],
open the door on the disk drive. DOS
should be in the process of loading the
HELLO program, and because it can no
longer read data from the diskette, go
immediately to the error handling rou-
tine which will print out a message say-
ing that an /O Error has occurred.

Now, close the door of the disk drive
and type CATALOG. After a few mo-
ments of grinding sounds, during which
time the disk drive is recalibrating the
position of the head, you will see the
catalog of files on the diskette. And, if
you carefully examine the situation, you
will find that you have complete access
to all the normal DOS commands as
well as the monitor. You can then load
and examine programs at will. There is
one thing you should be very careful
about however, even though you have
access to DOS and the monitor, you
may find that the DOS that is loaded
into memory may be a modified protec-
tion DOS. Part of this modification may

take the form of renamed DOS com-
mands, so you'll have to examine some
DOS memory locations to determine if
the commands have been changed or
not. You can easily do this by entering
the short Applesoft program, DOS
COMMAND COMPARER, that is
shown in the listing.

How the program works

The operation of this program is very
simple. It looks in memory where that
names of all the DOS commands are
supposed to be stored —between loca-
tions 43140 and 43271 —and takes the
data stored there and converts it into a
string (lines 50 to 70). In order to deter-
mine when the end of a particular com-
mand is reached, without having to
waste an extra byte as a delimiter be-
tween commands (such as a space), the
designers of DOS added 128 to the
ASCII value of the last letter of each
command. We can use this fact to deter-
mine where each command ends (line
40) and then set the string we’ve con-
structed equal to one of the elements in

the A$(X) array (line 70). Now that we
know what the commands are for the
DOS we’re examining, we can compare
it to the standard set of DOS 3.3 com-
mands by reading them in from the
DATA statements in lines 180 to 240.
This will produce a comparison listing
on the screen. If you want a printed list-
ing just include the following line to
turn your printer on:

145 PR#1

and the next line to turn your printer off
when the program is finished:

250 PR#0
Useful for old programs and new

This method of breaking out of a
protected program is most useful for
older programs where only minor modi-
fications were made to standard DOS to
make it difficult to copy the program.
This technique is also useful on the
newer hidden bit protection schemes,
where information is hidden between

1 REM DOS COMMAND COMPARER PROGRAM

2 REM
10 DIM A$(28)
20 N =1

30 FOR X = 43140 TO 43271

40 IF PEEK (X) > 128 THEN 60

50 A$ = A$ + CHR$ (PEEK (X)): NEXT X
60 A$ = A$ + CHRS$ (PEEK (X) - 128)

70 A3(N) = A$
80 A$ = "

90 N=N=+1
100 NEXT X

110 PRINT : PRINT "DOS COMMAND COMPARER"
120 PRINT : PRINT "STANDARD DOS",'THIS VERSION OF DOS"

130 PRINT " s
140 PRINT
150 FOR X =1 TO 28

160 READ T$: PRINT T$,A$(X)

170 NEXT

180 DATA INIT,LOAD,SAVE,RUN

190 DATA CHAIN,DELETE,LOCK,UNLOCK
200 DATA CLOSE,READ,EXEC,WRITE

210 DATA POSITION,OPEN,APPEND,RENAME
220 DATA CATALOG,MON,NOMON,PR#

230 DATA IN#,MAXFILESFP,INT

240 DATA BSAVE,BLOAD,BRUN,VERIFY

Apple Software Protection Digest

bytes on a specific sector. In general,
most software publishers try to maintain
a high degree of similarity between their
protected DOS and standard DOS 3.3 so
they won’t get caught off guard by hard-
ware modifications by Apple that will
make their software unusable.

Two examples of programs that this
technique can be used on are Font
Downloader by RAKWARE and Smart
Eyes by Addison-Wesley. Font Down-
loader is an example of an older pro-
gram which can be entered through the
back door. After you break out of the
boot process by opening the drive door
and you fall into the Applesoft mode
(where you’ll see the] prompt dis-
played), you will be able to LOAD and
BLOAD all of the program files except
two configuration text files (the flags for
those are in the BASIC programs and
can be manipulated easily). Now, in or-
der to transfer these files to an unpro-
tected diskette, just place a previously
initialized DOS 3.3 diskette into drive 2
(you can use drive 1 and swap diskettes
if you don’t have a second drive) and
LOAD or BLOAD each file into RAM
one at a time and then SAVE or
BSAVE it to the DOS 3.3 diskette.

If you’re using the BLOAD and
BSAVE commands for binary (B) files,

you’ll have to determine the starting ad-

dress (in hexadecimal) of the file by
looking" at locations $AA72 and
$AA73. This gives you the address in re-
verse order, low-byte first. Next, look at
locations $AAG60 and $AA61 for the
length of the file, again in hexadecimal
and in reverse order. Don’t forget to use
this information when BSA VEing a file.
To BSAVE a binary file called TEST af-
ter you've determined the starting ad-
dress and length of the file you would
enter:

BSAVE TEST, A$aaaa, L$bbbb

where aaaa is the hexadecimal value of
the starting address and bbbb is the hex-
adecimal value of the length of the file.
Smart Eyes, from Addison-Wesely, is an
example of one of the newer programs
that uses the hidden bit protection

scheme. In addition to using the hidden
bit technique, Smart Eyes also uses a
nibble count routine for additional pro-
tection. This will have to be disabled. In-
structions on how to do that follow.

Disable the nibble count

Smart Eyes has a HELLO program
that BRUNs SMART.OBJ, which has a
starting address of $4000 and a length of
$5480. SMART.OBJ does some house-
keeping on start up and then imple-
ments the nibble count protection
scheme. Let’s look at some of the code
from the beginning of the program:

1.4000- AD AD AD LDA $ADAD
2.4003- A0 00 LDY #$00
3.4005-99 63 08 STA $0863,Y
4. 4008- 88 DEY

5.4009- DO FA BNE $4005
6.400B-20 63 93 JSR $9363
7.400E- A5 01 LDA $01
8.4010- DO F9 BNE $400B
9.4012- AD 11 11 LDA $1111

As you can seee from the partial list-
ing above, I've added line numbers to
what would normally be a simple disas-
sembly produced by typing 4000L from
the monitor mode. The line numbers
are only there to make it easy for me to
reference specific lines during the dis-
cussion. The protection checking rou-
tine starts at location $400B (line 6)
with a JSR $9363. When the program
returns from this routine, a flag value
will be stored in location $01 if every-
thing is okay. The program then checks
the contents of location $01 to see if it is
any value but zero (lines 7 and 8). If it is,
it continues to execute the program
(line 9). Otherwise, it goes back and
runs the check loop forever (line 8).

The check loop can easily be disabled
by replacing the branching code in line 8
with NOP (no operation) instructions
as shown below in the new lines 8 and 9.
With these NOP instruction in place, it
doesn’t matter whether the diskette
passes the "protection test" or not, the
program just continues to go on operat-
ing. When unprotecting programs with
nibble counts, you may find that the
program contains more than one call to

the nibble count routine, but in this
case, the program only checks for the
protection scheme once.

7.400E- A5 01 LDA $01
8.4010- EA NOP
9.4011- EA NOP

10.4012- AD 11 11 LDA $1111

Cracking it step-by-step

Now TI'll give you step-by-step in-
structions on how to crack Smart Eyes.

STEP 1. To start off with, you’ll need to
make a copy of the original diskette.
NEVER WORK ON THE ORIGI-
NAL!

STEP 2. After you have a copy of the
program, boot it up and get into DOS
via the back door as explained earlier.

STEP 3. BLOAD SMART.OBJ and
change the two bytes at $4010 and
$4011 to NOPs ($EAs) and then
BSAVE the program back to the
diskette.

That’s all there is to it. You now have
an unprotected copy of Smart Eyes. If
you want to disable the nibble count on
other programs you should look for a
call to DOS’ RWTS (Read and Write a
Track and Sector) routine. Bear in mind
that not all calls to RWTS will involve
protection checking, especially if the
program interacts with the disk a lot,
but its a good place to start. To find this
routine scan memory for a JSR $3D9,
which would be represented by the byte
sequence: 20 D9 03. I use the scanning
program that S-C Software gives away
on its S-C Macro Assembler diskette. It's
short and easy to key in. A copy of it is
listed in ASPD Vol. 1, No. 3, p. 4. Once
you find the JSR, examine the four loca-
tions prior to it. These should contain
an LDY instruction and an LDA in-
struction, which are used to setup the
parameters for the RWTS routine.
Once you've found that, look for a sub-
routine jump that goes to the RWTS
setup code. In the case of Smart Eyes,
the subroutine jump we want is located

(continued on page 10)

Vol. 1, No. 5

HOW TO CRACK IT’S THE PITS

by Philip Goetz
Ellicott City, MD

It’s the Pits is a program produced by
Cactus Computer Co, of Moscow,
Idaho. It is a total-load program which
doesn’t do any disk accessing while the
program is running. Therefore, it is pos-
sible to unprotect the program and
store the whole thing as a single disk
file. In order to unprotect this program
you will need at least a 48K Apple with
one disk drive, a DOS 3.3 initialized
diskette with at least 105 sectors free
the old Integer F§ ROM or some other
way to get into the monitor and of
course the It’s the Pits program diskette.

Boot code tracing proved fruitless
for me, so I installed my old F§ ROM,
booted up, pressed RESET, and looked
through memory. The program begins
at $1800 and runs to $3FFF, with pic-
tures on non-displayable hi-res pages 4
and 5 ($8000-BFFF). (Oddly enough,
this program uses page 2 for display and
page 3 as a background preserver. Ifyou
want to examine the shape generator
which draws on the screen, it begins
near $1900.) On bootup, the program
loads these 2 pictures at $4000-7FFF
and moves them to $8000-BFFF. We
can do this too. A little experimenting
reveals that the game starts at $185A.
So we need our file to move 2 pictures
to hi-res pages 4 and 5, set the reset vec-
tor to $185A, and clear the high score to
zero. By setting a high score, pressing
reset, and searching zero page, we see
that it is kept at $63-65.

So, here are the steps to unlock It's
the Pits. If you have an Integer BASIC
Apple 11, skip steps 2 and 3. Neither I
nor Apple Software Protection Digest
are responsible for any damage you do
to your computer. The main danger is
that you could break off pins while
pulling the F8 ROM out or putting it in.
If you are patient, you shouldn’t have
any problems.

STEP 1. Boot a'normal disk with 105
free sectors and rename the HELLO
program so it won’t be loaded on
bootup.

STEP 2. Open the Apple lid, touch the
power supply to release any static elec-
tricity you may have, and carefully pry
off the Applesoft F8 ROM. It is on the
left-hand side of the motherboard in the
middle between front and back with the
words ROM-F8 in front of it. Note that
there is some kind of mark on one end
of the chip, consistent with marks on all
the other chips. Whenever inserting a
chip, use this mark to make sure that
you put it in the right way. If you don’t
have a chip puller, pry the chip off by
gently rocking it back and forth. Don’t
force it, and make sure you exert very
little pressure so it doesn’t come flying
out and bend its pins.

STEP 3. Install an old Integer F§ ROM.
You can buy these from most Apple
dealers for about $15. Note that with
the old ROM, you have the monitor
Step and Trace functions, but cannot
use the ESC-I,J,K, or M. You can use
ESC-A,B,C, and D, but they are less
convenient.

STEP 4. Boot It’s the Pits. When the
picture -appears, press RESET. You
should fall into the monitor and receive
a * prompt.

STEP 5. Type 4000<8000.BFFFM

STEP 6. Type the following startup
code.

1828:A0 00 A9 00 85 42 85 3C
:A9 80 85 43 A9 40 85 3D

(continued on page 10)

5 D$=CHR$(4)

10 PRINT D$;"BLOAD IT'S THE PITS": HIMEM: 4096

20 TEXT:HOME : PRINT TAB(15)"IT'S THE PITS"

30 G= PEEK (7209): PRINT : PRINT "1. GRIMPI : "G:SL =
PEEK (7251) + 1: PRINT : PRINT "2. M STARTING LEVEL : "SL:
PRINT : PRINT "3. N SPEEDS : “;: FOR C = 10976 TO 108681:
PRINT PEEK (C)",";: NEXT : PRINT PEEK (10982)

40 PRINT : PRINT "4. ASPEEDS : “;: FOR C = 10984 TO 10989:
PRINT PEEK (C)",";: NEXT : PRINT PEEK (10990)

50 U=

PEEK (7048) - 128:D = PEEK (7064) - 128:L =

PEEK

(7056) - 128:R = PEEK (7072) - 128: PRINT : PRINT "5. UP "
CHRS$ (U): PRINT : PRINT "6. DOWN " CHR$ (D): PRINT :
PRINT "7. LEFT " CHR$ (L): PRINT : PRINT "8. RIGHT " CHR$ (R)
60 PRINT : PRINT "9. RUN PROGRAM": PRINT : PRINT "WHICH? ";:
GETA$:C= VAL (A$): IF NOT C OR C <0 THEN 20
70 V=C*2+1:VTABV: ON C GOTO 90,110,130,150,170,180,190,200

80 CALLG184

90 HTAB13: GETA$:G= VAL (A$): IF NOT G OR G >9 THEN 20
100 PRINT A$: POKE 7209,G: POKE 7229,G: POKE 7243,G: GOTO 20
110 HTAB23: GETA$:SL= VAL (A$): IF NOT SL OR SL > 6 THEN 20
120 SL=SL- 1: PRINT A$: POKE 7251,SL: GOTO 20
130 HTAB 14: INPUT " ;C(0),C(1),C(2),C(3).C(4).C(5).C(6):

FORD =0TO6: IF C(D) > 255 THEN 20
140 POKE 10976 + D,C(D): NEXT : GOTO 20
150 HTAB 14: INPUT " *;C(0),C(1),C(2),C(3),C(4).C(5).C(6):

FOR D =0 TO 6: IF C(D) > 255 THEN 20
160 POKE 10984 + D,C(D): NEXT : GOTO 20
170 HTAB7: GETA$:U= ASC (A$): POKE 7048,U + 128: GOTO 20
180 HTAB9: GETA$:D = ASC (A$): POKE 7064,D + 128: GOTO 20
190 HTABO: GETA$:L= ASC (A$): POKE 7056,L + 128: GOTO 20
200 HTAB10: GETA$:R= ASC (A$): POKE 7072,R +128: GOTO 20

6

Apple Software Protection Digest

THE ULTIMATE LINE HIDER PROGRAM

by Grant Stevens
Broad Brook, CT

When 1 first issued a challenge to
ASPD readers to come up with a ma-
chine language program that would im-
plement the line hiding technique that
used the 5 colons (see ASPD Vol. 1,
No.1) I had hoped that someone would
come up with a complete program that
would not only change the appropriate
colon to a zero, but would also insert
the colons automatically. But no one
did, until recently when I received a pro-
gram from Grant Stevens. Grant’s pro-
gram, which I call, "The Ultimate Line
Hider" does that and more.

The program lets you protect a single
line or a whole range of lines. In addi-
tion, Grant has made provision for al-
lowing you to enter a four-character
code which will be imbedded in each
coded line. Finally, Grant has included a
routine that will unprotect lines that
were hidden with this technique. Since
Grant implemented all of the features I
originally specified in my challenge, I am
giving him a free seven month extension
to his subscription, even though his en-
try was late. You did a nice job Grant.

How it works

The Ultimate Line Hider program
starts out by setting the ampersand (&)
jump vector so that the computer will
jump to the start of the program when-
ever the ampersand key is pressed. The
sixteen bytes of code that are used to set
this vector will only be run once, after
that, they can be eliminated. For this
reason, Grant has placed them in the
last part of the input buffer, starting at
$2F0, so if it is accidentally wiped out, it
has no affect on the program,

The actual program starts on line
1610 where the processor status register
Is saved on the stack and a check is
made to see if a number or a U follows
the ampersand. 1f it is a digit, the pro-

0006—
003C—
003D—
003E—
003F—
0042—
0043—
0050—
0069—
0094—
0096—
009B—
009D—
009E—
00AF—
00B1—
00B7—
03F5—

D39A—
D4F5—
D61A—
De6C—
DAOC—
DD6C—
DD7B—
DECO—
DEC9—
FE2C—

02F0— A9 4C
02F2—8D F5 03
02F5— A9 00
02F7—8D F6 03
02FA—A9 03
02FC—8D F7 03
02FF— 60

0300 08
030180 11

1m RERARARRARRRARARAASARRRRAAARRERRARARNR

1010 hhd L2 2
1020 *** THE ULTIMATE LINE HIDER ***
1030 khk L2 2
1040 *** by Grant Stevens aee
1050 k& £ 2 2
1%0 RERRARRRRRAARRARARRARARRARRARARSRAARAN
1070 *
1080 *
1090 *

1100 * SYNTAX: &[U] LNUM1 [- LNUMZ] [STREXPR]
1110 *
1120 * RAM USAGE

1130 *

1140 STRING .EQ
1150 A1L EQ
1160 A1H EQ
1170 A2L EQ
1180 A2H EQ
1190 A4L EQ
1200 A4H EQ

1210 LNUM EQ
1220 LOMEM EQ
1230 MOVEND .EQ
1240 MVSTART .EQ
1250 LINADRS .EQ
1260 STRLEN .EQ
1270 STRADR .EQ
1280 PGMEND .EQ
1290 CHRGET .EQ
1300 CHRGOT .EQ

BEELEERBEEERLREES

1310 AMPVEC .EQ $3F5
1320 *

1330 * ROM USAGE

1340 *

1350 MOVEUP .EQ

1360 EXIT EQ

1370 FINDLIN EQ
1380 CLEAR EQ
1390 LINGET EQ
1400 STRCK EQ
1410 EVAL EQ
1420 SYNCHEK .EQ
1430 SYNTAX .EQ
1440 MOVDOWN .EQ
1450 *

1460 OR $2F0

1470 *

1480 * Set up the ampersand (&) vector to jump to
1490 * the start of the program.

$D39A

$D4F5

$SD61A

$D66C
SDAOC
$DD6C
$DD78B
S$DECO
$DEC9
$FE2C

1500 *

1510 LDA #84C

1520 STA AMPVEC
1530 LDA #START
1540 STA AMPVEC+1
1550 LDA /START
1560 STA AMPVEC+2
1570 RTS

1580 *

1590 * Execution of the & begins here. Get the line number(s)
1595 * and optional code string.

1600 *
1610 START PHP Save Hide/Unhide selection,
1620 BCC START.1 Branch if digh follows “&°.

Vol. 1, No. 5

gram branches to line 1700 where the
number is retrieved. If it's not a num-
ber, then the only other correct charac-
ter is a capital U. In line 1630, a capital
U is loaded into the accumulator and
then a jump is made to the syntax check-
ing routine in the Apple ROMs. If the
character is a capital U the program re-
turns from the syntax checking routine
with the carry bit cleared and then a
branch is made to line 1700 where the
line number is retrieved. If the character
is not the required U, then the carry bit
is set and the program jumps to a rou-
tine in the Apple’s ROMs that prints
out the SYNTAX ERROR message
(line 1660).

As was mentioned earlier, at line
1700, the number following the amper-
sand is retrieved here. The Apple’s
LINGET routine is used to do this.
When it gets the number, it converts it
to hexadecimal and stores it in zero
page locations (LNUM) $50 and $51,
low byte first. Next the accumulator is
temporarily stored on the stack (line
1710) because the next routine that is
called destroys the contents of the accu-
mulator. This routine, also in the Apple
ROM, is called FINDLIN. It starts at
the beginning of an Applesoft program
and searches for the line number that is
currently stored in LNUM and
LNUM?+1. If the line is found, its begin-
ning address is stored in two other zero
page locations called LINADRS and
LINADRS +1 ($9B and $9C).

Upon returning from the FINDLIN
routine, the program restores the accu-
mulator by pulling the value it tem-
porarily stored on the stack off (line
1730) and then checks it to see if there
is supposed to be a second line number
(line 1740). If there is, the program goes
to line 1760 where an attempt is made
to retrieve the number. If no number is
found, a syntax error message is gener-
ated (line 1770). If a number is found, it
is retrieved and converted to hexadeci-
mal (line 1780). If there is not supposed

to be a second line number, or if there is.

and it is successfully retrieved, control is
passed to line 1790 where the buffer
area that is used to store the four letter

0303— A9 55 1630 LDA #$55 If not a digit, must be a "U",
0305—20 CO DE 1640 JSR SYNCHEK
0308— 90 0A 1650 BCC START.1 Error if no line number.
030A—4C C9 DE 1660 SYNTAX1 JMP SYNTAX Print SYNTAX ERROR
message.
030D—28 1670 DONE PLP Clear Hide/Unhide from stack.
030E—20 6C D6 1680 JSR CLEAR
0311—4C F5 D4 1690 JMP EXIT End.
0314— 20 0C DA 1700 START.1 JSR LINGET Get the first line number.
0317—48 1710 PHA
0318—20 1A D6 1720 JSR FINDLIN Point to the selected line.
031B—68 1730 PLA
031C—C9 C9 1740 CMP #3C9 Is there a second line
number?
031E—DO0 08 1750 BNE NOLNUM Branch if no.
0320— 20 B1 00 1760 JSR CHRGET
0323— B0 E5 1770 BCS SYNTAX1 Error—no line number found.
0325—20 0C DA 1780 JSR LINGET Get second line number,
0328— A2 03 1790 NOLNUM LDX #8$3 Get ready to clear the
032A—A9 A0 . 1800 LDA #$A0 string storage area.
032C—95 06 1810 INITSTR STA STRINGX Clearit.
032E—CA 1820 DEX
032F—10 FB 1830 BPL INITSTR
0331— 20 B7 00 1840 JSR CHRGOT Is there a string expression?
0334—F0 18 1850 BEQ SETLOM No, set LOMEM.
0336— 20 7B DD 1860 JSR EVAL Yes, get it.
0339—20 6C DD 1870 JSR STRCK Make sure it’s a string.
033C—A4 9D 1880 LDY STRLEN Find out how long it is.
033E—CO0 04 1890 CPY #%4 Is it longer than 4 letters?
0340—90 09 1900 BCC NOTRUNC No, it's okay, continue.
0342— A0 03 1910 LDY #383 Yes, truncate it.
0344— B1 9E 1920 MOVSTR LDA (STRADR),Y Copy string to new area.
0346— 09 80 1930 ORA #%$80
0348— 99 9E 00 1940 STA STRADR,Y
034B—88 1950 NOTRUNC DEY
034C—10 F6 1960 BPL MOVSTR
1970 *
1980 * Now, go through the selected range of line numbers
1990 * hiding or unhiding lines within the range.
2000 *
034E—A5 AF 2010 SETLOM LDA PGMEND Set LOMEM to default value.
0350— 85 69 2020 STA LOMEM This is required by the
0352— A5 BO 2030 LDA PGMEND+1 EXIT routine.
0354— 85 6A 2040 STA LOMEM+1
2050 *
2060 * Process one line.
2070 *
0356— A0 01 2080 DOLINE LDY #$1
0358— B1 9B 2090 LDA (LINADRS),Y Have we reached end of
program?
035A—F0 Bt 2100 BEQ DONE Yes, finish up.
035C—C8 2110 INY No, do this line.
035D—AS5 50 2120 LDA LNUM Get current line number
035F—D1 9B 2130 CMP (LINADRS),Y and see if it is within the
0361— C8 2140 INY selected line limits.
0362— A5 51 2150 LDA LNUM+i
0364— F1 9B 2160 SBC (LINADRS),Y
0366— 90 AS 2170 BCC DONE It's not, finish up. _
0368— 28 2180 PLP Recall Hide/Unhide selection.
0369— 08 2190 PHP
036A—C8 2200 INY Now Y=4.
036B—B1 9B 2210 LDA (LINADRS),Y
036D—90 27 2220 BCC HIDELIN Hide the line.
2230 *
2235 * Unhide one line.
2240 *
036F— DO 4E 2250 BNE NEXTLIN Don't unhide if not hidden.

Apple Software Protection Digest

code is blanked out. Then in line 1840, a
check is made to see if the user entered
a string that is to be hidden in each
erased line. If there is none, the pro-
gram jumps to line 2010. If there i, it is
retrieved in line 1860.

Once the code data is retrieved, another
of the Apple’s ROM routines is used to
verify that in fact the data is a string and
not a number (line 1870). The routine
that checks to see if a string was en-
tered, also stores the length of the string
in zero page location $9D. The program
next retrieves the length of the string
(line 1880) and checks to see if it is
more than four characters long (line
1890). If it’s not, the Y-register is decre-
mented by one (line 1950) so that it will
contain the proper count (3) to handle
all four code characters. If the string is
longer than four characters, the string is
truncated by loading a 3 into the Y-reg-
ister (line 1910). In either case, the pro-
gram goes to line 1920 next where each
character of the code is retrieved in turn
and the high bit is set to zero (line
1930). The string is then stored in a new
area (line 1940).

After the string has been moved,
LOMEM is set to its default value (the
end of the program) and the program
then begins to process a single line (line
2080). The first thing that the line pro-
cessor does is to check if the end of the
program has been reached. If it has,
control is passed to the routine labelled
DONE (line 2100). If not, the Y-regis-
ter is incremented so that it will be
pointing to the low byte of the line num-
ber and the number of the current line
is loaded into the accumulator (line
2120). It is then checked to see if the
current line is within the range of the
lines we are processing. If it’s not, the
program branches to the DONE rou-
tine and finishes up. If it is, the proces-
sor status byte is pulled off the stack to
retrieve the Hide/Unhide selection, and
stored back on the stack for use again
later (lines 2180-2190).

Next, the Y-register is incremented to 4,
so that it points to the fifth byte in the
BASIC program line (remember we

LOMEM
A2L

#3$5
LOMEM
LOMEM+1
A2H

#$0
LOMEM+1
LINADRS
AdL

#$4

A1L
LINADRS+1
A4H

#3$0

A1H
MOVDOWN
NEXTLIN

PUTSTR
LOMEM
MVSTART
#$5
MOVEND
LOMEM
LOMEM+1
MVSTART+1
#30
MOVEND+1
LOMEM+1
MOVEUP
#34

#3$0

Carry is set.
Set up parameters for move.

+1 since carry is set.

Note: Y=4
(forced)

Don't hide if already hidden.

Carry is clear.
Set up parameters for move.

Make room for 5 bytes.
Get ready to hide the line.

(LINADRS),Y Hide it.

STRING-5,Y

Point to next byte.
Get character to hide.

(LINADRS),Y Hide it in line.

#3$8
PSTR.1

Done yet?
No, get another character.

(LINADRS),Y Look for the end of the line.

NEXTLIN

LINADRS
LINADRS
DOLINE
LINADRS+1
DOLINE

0371— A5 69 2260 LDA
0373—85 3E 2270 STA
0375—E9 05 2280 SBC
0377—85 69 2290 STA
0379— A5 6A 2300 LDA
037B—85 3F 2310 STA
037D—ES 00 2320 SBC
037F—85 6A 2330 STA
0381— A5 9B 2340 LDA
0383— 85 42 2350 STA
0385— 69 04 2360 ADC
0387—85 3C 2370 STA
0389—A5 9C 2380 LDA
038B—85 43 2390 STA
038D—69 00 2400 ADC
038F—85 3D 2410 STA
0391—20 2C FE 2420 JSR
0394— B0 29 2430 BCS
' 2440 *
2450 * Hide one line.
2460 *
0396—F0 17 2470 HIDELIN BEQ
0398— A5 69 2480 LDA
039A—85 96 2490 STA
039C—69 05 2500 ADC
039E—85 94 2510 STA
03A0—85 69 2520 STA
03A2—A5 6A 2530 LDA
03A4—85 97 - 2540 STA
03A6—69 00 2550 ADC
03A8—85 95 2560 STA
03AA—85 6A 2570 STA
03AC—20 9A D3 2580 JSR
03AF—A0 04 2580 PUTSTR LDY
03B1—A9 00 2600 LDA
03B3—91 9B 2610 STA
03B5—C8 2620 PSTR.1 INY
03B6—B9 01 00 2630 LDA
03B9—91 9B 2640 STA
03BB—CO0 08 2650 CPY
. 03BD—90 F6 2660 BCC
2670 *
2680 * Advance to next program line.
2690 *
03BF—C8 2700 NEXTLIN INY
03C0—B1 9B 2710 LDA
03C2—DO0 FB 2720 BNE
03C4—98 2730 TYA
03C5—38 2740 SEC
03C6—65 9B 2750 ADC
03C8—85 9B 2760 STA
03CA—90 8A 2770 BCC
03CC-E6 9C 2780 INC
03CE—BO 86 2790 BCS

Didn't find it, keep looking.
Found it, set up pointer so
that it points to it.

Point to next line.

1 REM BASIC PROGRAM TO INSTALL THE ULTIMATE LINE HIDER

2 REM

10 TEXT : HOME
20 PRINT : PRINT : PRINT : PRINT
30 PRINT "INSTALLING THE ULTIMATE LINE HIDER..."

40 FOR X = 752 TO 975

50

READ Y

Vol. 1, No. 5§

start with 0 so byte number 4 is actually
the fifth byte). In line 2210 the fifth byte
of the current BASIC line is loaded into
the accumulator and then the carry bit
from the processor status register is
checked to see if the line is to be hidden
or unhidden (line 2220). If it’s to be hid-
den (the carry bit is clear), the program
branches to HIDELN on line 2470.

The first thing the HIDELN routine
does is to test the accumulator (which
contains the value of the fifth byte) to
see if it is already zero (line 2470). If it
is, the line is already hidden and does
not have to be re-hidden. If it’s not hid-
den, then the program has to be moved
up in memory by five bytes to make
room for the data required to hide the
line (lines 2480-2580). After the pro-
gram has been moved in memory, a zero
is stored in the fifth byte (lines 2590-
2610) and the four character code (or
four spaces) is added to the line (lines
2620-2660). Once the line has been hid-
den, the programs pointers are setup to
point to the next line to be processed
(lines 2700-2780) and then the program
goes back to process another line (line

2790). -

If the carry bit was set when it was
tested in line 2220, the branch is not
taken and processing continues with
line 2250. This is where the unhide rou-
tine begins. The first thing this routine
does is to check if the line was already
hidden. If it wasn’t, there’s no need to
unhide it and the next line is retrieved.
If it was hidden, we simply have to move
the BASIC program down in memory
five bytes, thus wiping out the hide-a-
line code. This is done in lines 2260-
2420. The program then gets the next
line (line 2430).

Using the program

Using the Ultimate Line Hider is easy,
but you must make sure you use the cor-
rect syntax. You may hide or unhide a
single line or a range of lines. If you are
going to include a four-letter code in

: you hidden lines, it must be surrounded
by quotation marks. Thus to hide lines
you could type:

&10 (no code included)
&10"JHG" (3 letter code included)
&10-100

&10-100"ABCD"

To unhide lines you must type in a com-
mand line that looks something like one
of these:

&U10
&U10-100

When specifying a range of lines, the
starting and ending line numbers must
be separated by a hyphen and not a
comma. To hide or unhide an entire
program, use the range 0-63999.

60 POKE XY
70 NEXT X

80 PRINT : PRINT : PRINT : PRINT "INSTALLATION COMPLETE."
90 PRINT : PRINT "TYPE 'CALL 752° TO RUN PROGRAM."

100 DATA 169,76,141,245,3,169,0,141
110 DATA 246,3,169,3,141,247,3,96
120 DATA 8,144,17,169,85,32,192,222

130 DATA 144,10,76,201,222,40,32,108
140 DATA 214,76,245,212,32,12,218,72
150 DATA 32,26,214,104,201,201,208,8

160 DATA 32,177,0,176,229,32,12,218
170 DATA 162,3,169,160,149,6,202,16
180 DATA 251,32,183,0,240,24,32,123

190 DATA 221,32,108,221,164,157,192,4

200 DATA 144,9,160,3,177,158,9,128

210 DATA 153,158,0,136,16,246,165,175
220 DATA 133,105,165,176,133,106,160,1
230 DATA 177,155,240,177,200,165,80,209
240 DATA 155,200,165,81,241,155,144,165
250 DATA 40,8,200,177,155,144,39,208
260 DATA 78,165,105,133,62,233,5,133
270 DATA 105,165,106,133,63,233,0,133
280 DATA 106,165,155,133,66,105,4,133
290 DATA 60,165,156,133,67,105,0,133

300 DATA 61,32,44,254,176,41,240,23

310 DATA 165,105,133,150,105,5,133,148
320 DATA 133,105,165,106,133,151,105,0
330 DATA 133,149,133,106,32,154,211,160

340 DATA 4,169,0,145,155,200,185,1

350 DATA 0,145,155,192,8,144,246,200
360 DATA 177,155,208,251,152,56,101,155
370 DATA 133,155,144,138,230,156,176,134

_ DON'T MISS A SINGLE ISSUE OF -
__Apple Software
Protection Digest

SUBSCRIBE TODAY!

10

Apple Software protection Digest

DOS 3.3: In the Back Door

(continued from page 4)

at $9373 where a JSR $93F9 can be
found. The code at $93F9 looks like
this:

93F9- A9 94 LDA #$94
93FB- A0 05 LDY #8305
93FD- 20 D9 03 JSR $03D9

This is the so-called smoking gun and is
the clue to search for when you're trying
to disable code that checks the status of
the diskette.

Locking the back door

Now that we've told you how to
sneak into many programs through the
back door, you’re probably wondering
why this technique won’t work with all
programs. The answer is easy, many
people simply lock the back door. Lock-
ing the back door is not difficult. All you
have to do is locate the DOS error han-
dling routine and patch it so that in-
stead of printing out an error message,
it jumps to the code that reboots the
disk. We'll show you how to do this in a

future issue, but in the meantime think
about it. You can use the book Beneath
Apple DOS to find the necessary loca-
tions. If you come up with any interest-
ing solutions, let us know.

How to Crack It’s the Pits

(continued from page 5)

A9 FF 85 3E A9 7F 85 3F
20 2C FE A9 5A 8D F2 03
A9 18 8D F3 03 49 A5 8D
:F4 03 A9 00 85 63 85 64
85 65

STEP 7. If you press ESC when the
game menu is displayed, you will get a
flashing number congratulating you on
your high score. The number that ap-
pears has no apparent function. It is
stored at $1C5D,$1C61, and $1C65. To
change it to zero, for instance, type:

1C5D: 0
1C61: 0
1C65: 0

STEP 8. Boot the normal disk with 105

free sectors with a 6 ctrl-P.

STEP 9.Type: BSAVE IT’S THE PITS,
A$1828, L$67D8

You can customize the game

If you have 5 more free sectors on
the disk and want to gain some control
over the program, type in the following
program that runs the game. I saved it
under the name PITS. All of the modifi-
cations possible with this program are
self-explanatory except for the speed
changes. The fastest speed is 0, while the
slowest is 128.

Do not modify the program to allow
higher values than it does (i.e. over 9
Grimpi) or the screen will fill up with
garbage during the game. Also, make
sure that you never have more than 9
Grimpi. If you are finishing the second,
fourth, or sixth level and have 9 Grimpi
left, kill one off or else you will gain a
tenth Grimpi when you reach the third,
fifth, or seventh level. When the game
tries to draw the shape for the "digit"
10, it will fill up the screen with garbage.

COMING NEXT ISSUE

How to Crack DAZZLE DRAW
Unprotecting LOCKSMITH 5.0 Level F and the Fast Disk

Backup Routine

Review: LOCKSMITH 6.0
Five Byte Disk Analyzer

Parameters for Backing Up THE HOBBIT, KARATE CHAMP
and KUNG-FU MASTER

Vol 1, No, §

BECON

You've apen! a lot of ime learning /
assembly language and finaily kno
difterence belween BEQ and NCH

,; it time to put your new-found know

: to work. Time 1o throw away your
Applesoft grogramming manual an
programs that make your Apple wo
a super-charged, auper-fast compu
Time to graduate from the Applesol
BASIC used by beginners, to the 05

| assembly language used by

I

-

profeasionals. ‘

To help make this transition, you net
experienced programmer o guidae y
You need to develop a library of

subroutines that make programming
assembly language as easy as

programming in BASIC. You need to
take experienced assembly languag
acquire. Most important of all, you n
You Know Apple Assembly Language
1t?" because it contains all this inforr

| It shows you how, step-by-

i “Now That You Know Apple Assembly

; Do With It?" will take you step-by-step

| language programyming experience. Y
mysteries of the 6502 stack and learn |
the power and versatility of your progra
1o use the Apple's bullt-in routines to m
coding you must do.

Control the output and the |

Frequently it's desirable to gain total co
output. This book shows you how to ste
Apple's normal output routines and redir
gram. Thus if you wanted, you could se
control characters, display text on your ¢
Instead of the normal white on black, foi
into pages and much more,

Expand the power of your Apple by stes
the normal Input routines. Do things like
capability, or convert part of the normal .
numeric keypad. It's even possible to pr
programs by EXECing in commands fro
from the disk drive. Think about the pos
protecting your programs. When you wa
Applesoft programming, you'll be able tc
aid of Applesoft Shorthand, an assembly
that types in one or more Applesoft com
a key, or use another program in the boo
count the number of lines in your Applesc

With this book you'll also learn about ge
how to figure out the frequency, producir
teaching your Apple to send Morse code
accidentally erased Applesoft programs,
commands to Applesoft and running two
in memory together, to name a few.

*NOTE: Shipping and handling fees are not refundable.

ASPD PROGRAM
DISKETTES AVAILABLE
FOR ONLY $15 EACH

Every month we will make a DOS 9.9 diskette avallable
that contalna all of the programs for the current Issue
ol Apple Software Protection Digost.

Each disketto ls avallable for only $15 each, Disketie 1

contalne the programa from Issues 1 and 2, There are
currently 4 diskottos avallable,

To order send a check, money order or your credit
card number and expliration date 1o:

REDLIG SYSTEMS, INC,
2068 - 70th Stroot
Brooklyn, New York 11214

REDLIG SYSTEMS, INC.
2068 79th Street
Brooklyn, New York 11214

BULK RATE
US. POSTAGE,
PAID
BROOKLYN, NY
Permit No. 631

