® SOFTWARE
PROTECTION

APPLE

DIGEST

$3.00

Vol. 1, No. 2

January/February 1986

Contents

Editorial 1

Using COPYA to Backup Protected
Disks oo 5 5 4 o o & somenenacsnannee o 2

How to BRUN Applesoft
Programs. .. .ovssimeasssvevs 4

Parameter Files for COPYP ... 6
Change the BLOAD Address

of Binary Files ..o ivus 9
Lettersvvurinnnennnnnn. 10
Hiding Machine Language Programs

in; SEEINES icor s v ¢ + vorseameias » « 11
Two Solutions to the Hide-A-Line

Problem: s s swanmmns vy v ve 12
Hiding Program Lines from

BASIC . .onomesimidag s § sammess 14
A Handy Decimal/Hexel-

Decimal Converter 15
Applesoft Line Finder and

Vanisheroo... 16
Wipeout: The Ultimate

Weapon of Destruction 17
Review: Locksmith 5.0G 19

Protection Tutorial — Part II . 20

A LITTLE LATE, BUT BETTER THAN EVER

Well, we finally made it. For a while, I sus-
pect that quite a few of you were wondering
what happened to us. A couple of you even
wrote that you feared your hard-earned
bucks went into a black hole, never to be
heard from again. Not true! As all of you
early subscribers are aware, we sent out no-
tices to each of you explaining that there
would be a delay and offered you a complete
refund with no questions asked. I’'m happy
to announce that not one of you requested
a refund. I appreciate your confidence.

I think you’re all entitled to an explana-
tion of what happened and what you can ex-
pect in the future. The first issue of the
Digest went together so easily and so quick-
ly, that we really didn’t anticipate any
problems in getting the second one out. Well,
nothing could be further from the truth. Just
about everything that could go wrong did.
Authors who promised material on cracking
some of the more desireable programs, such
as Sensible Speller, Newsroom and
Wizardry, never came through. Add to that
a few hardware problems and some problems
with the printer and you wind up with a long
delay.

We've finally got everything straightened
out however, and we have a big jump on the
next issue, so we should be back on sched-
ule. We've also added back-up equipment,
so hardware problems shouldn’t cause any
major delays anymore.

Two bonuses to say thanks

To say thanks to you for bearing with us,
we’ve added two bonuses. Anyone who sub-
scribed to the Digest in 1985 will automati-
cally get an EXTRA FREE ISSUE to
compensate them for the long wait. And, all
subscribers are getting this double Janu-
ary/February issue, but it will only count as
a single issue. Thus, all 1985 subscribers will
have their subscriptions expire with the

February 1987 issue (that’s the last one they’ll
receive) while the last issue for everyone else
who has subscribed up to now, will be Janu-
ary 1987. Everyone who has subscribed to
date will have gotten the first issue free. Sub-
scriptions start with the second issue.

Although we’ve been quite late with this
issue, we hope you’ll agree that the wait was
well worth it.

Program diskettes available

With this issue of the Digest, we are ad-
ding a new service. Many of you have asked
us to consider coming out with a moderate-
ly priced diskette with all the programs on
it, so we have. Every month we will make
available a diskette with all of the programs
(with both source and object code when ap-
propriate) on it. Assembler source files will
be saved in text file format to facilitate use
with a variety of assemblers. The diskette will
be an unprotected DOS 3.3 diskette and will
cost only $15.

Cracks wanted list

We've added a new feature to the Digest
with this issue, its our Cracks Wanted list.
This will list all the programs that readers
have expressed an interest in have cracks or
back-up procedures for. In addition, start-
ing with the next issue, each issue of the Ap-
ple Software Protection Digest will contain
a list of all the program cracks we've present-
ed during the year so that you'll have a quick
and handy reference available at your finger
tips.

Another feature we've included with this
issue is a Letters column. This is a forum
where you, the reader, can ask for informa-
tion, present short ideas or discuss appropri-
ate topics. It’s also the way we get feedback
from you one how we’re doing.

continued on page 15

2

Apple Software Protection Digest

USING COPYA TO BACKUP PROTECTED DISKS

If you plan on doing a lot of copying of
protected diskettes, it would probably pay
for you to purchase one of the nibble copy
programs. My personal preference is Copy
J[Plus, which we reviewed in the last issue
of ASPD. By the way, since that review came
out, Central Point Software, the producers
of Copy][Plus, has come out with a new
version of the program — Version 6. The
program sells for $39.95, but you can pur-
chase it from us for only $30. Anyway, if
you’d rather not shell out the $30 dollars,
there’s an awful lot of protected programs
that you can copy with COPYA, as long as
you make the appropriate modifications to
it, and that’s what this article is going to tell
you how to do.

We used a slightly modified version of
COPYA to duplicate Print Shop in our last
issue. Comments by ASPD readers indicat-
ing they like that approach, convinced me
to go ahead and develop a general modifi-
cation to COPYA that could accommodate
a wide variety of programs.

Why doesn’t COPYA work?

Before we can modify COPYA to copy
protected disks (not all of them, but a good
number of them) we have to understand why
it won’t copy them to begin with. The first
thing that causes problems for us is the DOS
error checking routine. The second thing is
COPYA'’s error checking routine. If either
of these routines encounters a diskette with
a slightly modified DOS on it, they’ll gener-
ate an I/O ERROR message and stop. Both
of these routines can be easily disabled by
executing two POKEs. These are shown in
line 75 of the program listing. By the way,
the listing consists only of those lines that are
to be added to COPYA. I have found that
the simplest way to add them is to use an edi-
tor or word processor to create a text file that
contains these lines. Then you should load
COPYA into the Apple’s memory and final-
ly, EXEC the text file, which I call COPYP
MAKER. Lines 300 and 305 are blank lines
and when they’re EXECed in, they cause
those two lines to be deleted from Apple’s
original COPYA listing. From now on, I’ll
be referring to this modified version of COP-
YA as COPYP, and in fact, this issue already
contains some parameters that will allow you
to copy some protected programs.

Anyway, let’s get back to our program
description. The two POKEs that are added
in line 75 prevent the /0 ERROR from be-
ing generated and will thus permit COPYA
to go ahead and duplicate the protected dis-
kette, even though there’s something “fun-
ny” about it. Sometimes those two POKEs
will be all that you’ll need to copy a protect-
ed diskette. At other times, you may have
to change the address and data field bytes

to make it possible to copy the diskette. |
have provided additional modifications to
COPYA to permit you to do this. Lines 85
and 86 read in the address and data field in-
formation from data statements. There is a
separate data statement for the source (origi-
nal) diskette and target (copy) diskette. The
data listed below is for normal DOS 3.3 dis-
kettes, so you can use this program to copy
unprotected software as well.

As you can now see, the tutorial we have
in this issue on the data and address fields
has not been wasted. At least now you have
an idea of why these bytes are being changed.
In case you’re adventurous and are consider-
ing modifying COPYP further to enhance its
unprotecting capabilities (and I encourage all
of you to do so0), a little further explanation
of just what is going on here is in order. Line
198 makes the source diskette’s address and
data field bytes the active ones and inserts
them into DOS so that the protected diskette
can be read. Line 248 makes the target ad-
dress and data field bytes the active ones and
inserts them into DOS so that the copy dis-
kette can be initialized. Line 258 also uses
the bytes for the target diskette, but this time
they are inserted into DOS so that the target
diskette can be written to.

If you will examine the specific bytes that
are changed in lines 395 and 396, you wil}
notice that only the read locations of the ad-
dress and data field bytes are being changed

and might wonder why no write locations are
being changed. The answer to that question
is simple, the diskette that is being copied,
is being transferred from a diskette with a
protected DOS on it to a diskette with a nor-
mal DOS on it. Since we’re only reading the
protected diskette, there’s no need to change
its write locations. And, since the write lo-
cations haven’t been changed from those nor-
mally used, there’s no need to adjust them
when we want to write data out to the un-
protected diskette. Why then do we change
the read locations back to normal? The an-
swer to that is easy too. We change them-
back because after writing to the unprotected
diskette, DOS reads what it’s written to make
sure that it was properly recorded. Not too
difficult is it?

COPYP edits sectors too

So far the operation of COPYP has been
explained up to line 397. But, just because
we can copy a protected program onto an un-
protected diskette, doesn’t mean that the pro-
gram will run. It may, but chances are that
some routine .somewhere in the program
checks to make sure that the programis on
the protected diskette and the protection
scheme is intact. One way of doing this is to
incorporate a nibble counting routine (we’ll
look into nibble counting in more detail in
a future issue). To overcome these protec-
tion routines, it will be necessary to modify

0 REM COPYP MAKER . :
1 REM

2 TEXT: HOME _

65 DIM B(10), S(10), T(10)

75 POKE 47426 ,24: POKE 929,24

80 PRINT ' PROTECTED DISK DUPLICATION PROGRAM":

PRINT: PRINT

85 FOR X =1 TO 10: READ S(X): NEXT X
86 FOR X = 1 TO 10: READ T(X): NEXT X
100 POKE 715, PEEK (110) + 2: REM BUFSTART

= 1 THEN 295

POKE 47466,B(3): POKE 47505,B(4):

POKE 47356,B(8): POKE 47413,B(9):

IOB. + 12: RWTS

POKE IO0B + 3,0

198 FOR X = 1 TO 10: B(X) = S(X): NEXT X: GOSUB 395
225 VTAB 5: HTAB 24: PRINT" ": IF PEEK (713)
248 FOR X = 1 TO 10: B(X) = T(X): NEXT X: GOSUB 395
258 FOR X = 1.TO 10: B(X) = T(X): NEXT X: GOSUB 395
290 GOTO 550
295 VTAB 19: GOTO 400
300
305 ‘
395 POKE 47445,B(1): POKE 47455,B(2):
POKE 47515,B(5)
396 POKE 47335,B(6): POKE 47345,B(7):
'POKE 47423 ,B(10)
397 RETURN
400 10B = 47080: TRK = IOB + 4: SCT IOB + 5: CMD =
768: RD=1: WR = 2
410 . BUF = PEEK (IOB + 8) + 256 * PEEK (IOB + '9)
420 FOR X = 768 TO 774
430 READ Y: POKE X,Y
440 NEXT X
450 PRINT: PRINT "DOING SECTOR hD[TS NOW"
460 READ TK,SE,BYTE,QV,NV
470 IF (TK + SE + BYTb + OV + NV) * 1 = 0 THEN 550
480 POKE TRK,TK: POKE SCT,SE: POKE CMD RD: CALL RWTS
490 IF PEEK (BUF + BYTE) <) OV THEN 530
500 POKE BUF + BYTE,NV
510 POKE CMD,WR: CAll RNTS
520 ° GOTO 460
530 PRINT: PRINT: PRINT "THIS VhRSION OF THE PROTECTED PROCRAM"
540 PRINT '"'CANNOT BE UNPROTECTED WITH THE"

Vol. 1, No. 2 — January/February 1986

3

the code that is stored on the newly copied,
unprotected diskette. This is done by read-
ing in the appropriate sector, modifying the
bytes of interest, and then writing the sector
back out to the diskette. It’s possible to do
this manually, but it can be time consuming
and annoying. It also means you have to
have a little bit more of a hacker mentality.
With the sector editing modifications I’ve ad-
ded to COPYP, however, all you have to do ,,
is type in a few data statements, and the pro-
gram will do the sector edits for you auto-
matically. Here’s how it works.

Lines 400 and 410 set up the variable
names that will be used in this routine.
Descriptive names are used so that it will be
a little easier to see what is happening. Lines
420 through 440 read in a short machine lan-
guage program that uses DOS’s RWTS (Read
and Write a Track and Sector) routines. Line
450 informs the user that COPYP is now im-
plementing any sector edits that may have
been requested. Next, any DATA statements
that have been added between lines 999 and
9000 are read and used to specify what
specific sector edits should be made (line
460). Line 998 tells you what data and in
what order, it should be entered. Because
software companies frequently change pro-
tection schemes, the COPYP sector editor re-
quires that you enter both the value of the
original byte and the value of the new byte
that is to replace it. The program then checks
to see if the value of the byte to be edited
matches the old value of the byte that you
entered (line 490). If it does, it proceeds to

perform the edit (lines 500 and 510). If it
doesn’t, it assumes that the protection
scheme has changed somewhat and tells the
user that the program cannot be unprotect-
ed with the parameters that were supplied
(lines 530 to 545), and terminates the
program.

If no sector edits are requested, the pro-
gram will read the data in line 9000. It is very
important that this line always be present be-
cause the zeros it contains signal the program
that no more sector edits need to be done and
the program should be terminated (line 470).

Determining the parameters

While the COPYP program presented here
can be a very useful tool for unprotecting dis-
kettes, that’s all it is. As with any other tool,
you have to know how to set it up and use
it. Setting it up is easy if you have the right
information. But getting that information is
a little more difficult. How do you know
what values are used in the address and data
fields? How do you know if any sector edits
are required? Mostly its a matter of digging
into the protected program and figuring
things out. ASPD will provide you with
parameter files for use with COPYP and
hopefully, all of you will contribute your
time and expertise as well. Anyone who sub-
mits a parameter file or a modification to
COPYP that makes it even more useful will
get a one-month extension to his or her sub-
scription when we print it. Contribute on a

545 PRINT "PARAMETERS YOU'VE SUPPLIED."

550 POKE CMD,0

560 TEXT: HOME: PRINT CHR$(4);"FP"

890 REM

899 REM SOURCE ADDRESS FIELD PROLOGUE BYTES

900 DATA 213,170,150

909 REM SOURCE ADDRESS FILED EPILOGUE BYTES

910 DATA 222,170

919 REM SOURCE DATA FIELD PROLOGUE BYTES

920 DATA 213,170,173

929 REM SOURCE DATA FIELD EPILOGUE BYTES

930 DATA 222,170
935 REM

939 REM TARGET ADDRESS FIELD PROLOGUE BYTES

940 DATA 213,170,150

949 REM TARGET ADDRESS FIELD EPILOGUE BYTES

950 DATA 222,170

959 REM TARGET DATA FIELD PROLOGUE BYTES

960 DATA 213,170,173

969 REM TARGET DATA FIELD EPILOGUE BYTES

970 DATA 222,170

980 REM
981 REM RWTS ROUTINE
982 REM

983 DATA 160,232,169,183,76,217,3
990 REM
995 REM SECTOR EDIT DATA

996 REM
998 REM TRACK,SECTOR,BYTE,OLD VALUE,NEW VALUE
999 REM

9000 DATA 0,0,0,0,0

9993 REM

9994 REM

9995 REM COPYRIGHT (C) 1986 BY

9996 REM

9997 REM JULES H. GILDER

9998 REM

9999 REM ALL RIGHTS RESERVED

regular basis and you'll wind up getting the
Digest for free.

If you're interested in sorting things out
by yourself, the first place to start is to either
boot the program and then break out of it
(you’ll need a computer with an old F8 ROM
in it or an NMI switch (more about that next
issue) to do that. Once you get into the Ap-
ple monitor —that’s where you get an aster-
isk (*) as a prompt instead of a square
bracket (]), then you can examine the
memory locations that hold the data for the
data and address fields (see the chart in this
month’s tutorial). This of course assume that
only a slightly modified DOS is used. If that’s
not the case, then you’ll have to use a pro-
gram that can read in raw data directly from
the diskette and display it. From this you’ll
be able to tell what the various address and
data field bytes are.

COPYP is limited

While you’ll find COPYP helpful in un-
protecting many programs, it can’t be used
for all of them because it currently lacks the
ability to do some of the fancier things such
as quarter and half track, nibble insertion,
synchronous copying, etc. Over the next few
months I hope to be able to add some of
these capabilities to the program. Anyone
who has ideas on how to improve COPYP
is invited to send them in to me, and I'll see
to it that the rest of our readers find out
about it too. You'll also get a 3 to 6 month
extension to your subscription for major,
useful, modifications. In the meantime, you
have the beginnings of a powerful tool. Let’s
see what you can do with it.

Don’t miss a

single issue

SUBSCRIBE
TODAY!

Apple Software Protection Digest
Publisher & Editor, Jules H. Gilder; Contribut-
ing Editor, J. Scott Barrus. Copyright © 1986 by
Redlig Systems, Inc., 2068-79th Street, Brooklyn,
NY 11214. All rights reserved. No part of this pub-
lication may be reproduced, or electronically trans-
mitted or stored without the publisher’s written
permission. Published monthly at $24 per year by
Redlig Systems, Inc. (718) 232-8429. Reprints of
prior issues available at $3 each. Printed in the
U.S.A.

. Apple is a resitered trademark of Apple Computer,

Inc.

4 Apple Software Protection Digest

HOW TO BRUN APPLESOFT PROGRAMS

In the last issue we spoke about several 1000 *x*dkkkkkkkkdkkkkdkkrhhdkdkkkkkrrdddk

different ways that lines in an Applesoft pro- 1010 * *
gram can be hidden from view. One of the 1020 * BRUN MAKER FOR APPLESOFT PROGRAMS *
techniques used simply required that the next 1030 : . :
line pointer of the line before the one to be 1040 Copyright (c) 1986 by

hidden, be ch d so that it points to the 1050 .
lidden, De:CRANGEL 50 P , 1060 * Jules H. Gilder *
line that follows the line or group of lines 1070 * *
that are to be hidden. This is an effective 1080 * All Rights Reserved *

i i i 1090 * *
IeChn‘que’ bUt.ls has S9me ﬂaWS, Chle.f 1100 *khkkhkhkhkkkkkkkhkhkhkkkhkhkkhkkkkkkkkkhkhhkkkk
among them being a routine that automati- 1110 *
cally resets the line pointers to their correct 1120 *
value every time an Applesoft program is 0006- 1130 TXTPTR .EQ $06
loaded. 0023- 1140 WNDWBOT .EQ $23

The other problem with this approach is 88%;‘ 1}28 gXOGEND gg ﬁ?‘
that |fal|n§ is afided or c_leleted from thg Pro- ooD6- 1170 RUNFLAG "EQ $D6
gram, the line links again are automatically 0200- 1180 INBUFF .EQ $200
re-calculated and corrected. One way to 0240- 1190 INBUFF2 .EQ $240
overcome Apple DOS’s apparent desire to ~ 03F2- 1200 RESET .EQ $3F2
prevent you from hiding certain program 8;:;3' 1210_ POWERUP -EQ $3F4
lines is to let DOS BRUN Applesoft pro- . 1220 BRUNSIART wEQ 3150
anes 15 PP p D566 1230 RUN .EQ $D566
grams instead of RUN them. This overcomes E000- 1240 BASIC .EQ $E000
DOS’s zealous attempts to maintain line link l;gzg— 1%28 HOME .EQ chgg
integrity by fooling DOS into thinking that = 1 CRTN -EQ $FC
i i B R & FD6F— 1270 GETLN1 "EG $FD6F
our Applesoft program is actually a binary FDDA— 1280 PRHEX EQ $FDDA
one. In addition, while we’re loading our Ap- FDED- 1290 COUT "EQ $FDED
plesoft program into memory, we can disa- 1300 *
ble the RESET key and set Applesoft’s 1310 *

1320 .OR $93A8
auto-run flag to prevent anyone from press-
. 1330 .TA $0800
ing RESET to get out of the program and 1340 *
trying to list it. Finally, if you include an 1350 * This routine prints the opening screen and asks user
ONERR statement, that checks for someone 1360 * for the name of the file that will be converted to a
pressing Control-C, as the first statement in g;g % bioavy file g Ehat Lt can be BRUN. ‘
your program, you can also prevent the user 93A8- 20 58 FC 1390 START JSR HOME
from using Control-C to stop the program. 93AB- A9 83 1400 LDA #TEXT1
The statements you’d have to add to your gg:g— gg ‘;126 - }2%8 }igz {igg)&‘%
program would look something like these: 93B2_ 20 6F FD 1430 JSR GETLN1
1440 * '

0 ONERR GOTO 10000 ’ 1450 * Here the name entered name is transferred to a buffer
10000 IF PEEK (222) = 255 THEN RUN 1460 * where it won't be destroyed and the terminating
10010 Y = PEEK (222) lzgg * carriage return is converted to a zero.

“ — 1 » 1 -
10020 PRINT “ERROR = ;Y 93B5- A9 00 1490 LDA #$0
10030 RESUME 93B7- 9D 40 02 1500 STA INBUFF2,X
" 93BA- CA 1510 LOOP1 DEX

Of course, you can change the line numbers 93BB- BD 00 02 1520 LDA INBUFF,X
to anything that is convenient for you, but 93BE- 9D 40 02 1530 STA INBUFF2,X
the first line of the program should contain ggg;- Ei 1;‘;3 lI)NX
the ONERR statement. These statements will = EX
cause the program to re-run itself if a 93C3- DO F5 }238 & BNE LOOP1
Control-C is attempted and will print out the 1580 * A command that the user must copy with the cursor
error number if any other error is encoun- 1590 * is printed out on the last line of the display.
tered. It’s best to add these lines only after T %2(1)8 % Gk G
Lhe rest of the program has been completely 93C¢7- 8D 80 94 1620 STA CV2

ebugged. . 93CA- E6 25 1630 INC CV

To make life easy for you, I have written 93CC- A9 1D 1640 LDA #TEXT2
a machine language program that automat- 93CE- A0 95 1650 LDY /TEXT2
ically converts any standard Applesoft pro- 93D0- 20 52 94 1660 JSR MSGPRT

A 93D3- A9 17 1670 LDA #$17
gram into one that can be BRUN. The 93D5- 85 23 1680 STA WNDWBOT
BRUN MAKER program asks you for the 93D7- AD 80 94 1690 LDA CV2
name of the Applesoft program that is to be 93DA- 85 25 1700 STA CV
converted and loads it into memory. At this 1710 :)
point, it placesacommand,CALL37876 on {;:2,8 . User is told to type VTAB 24 to continue.
the last line of the screen and reduces the ac- 93DC- A9 35 1740 LDA HTEXT3
tive area of the screen by one line so that the 93DE- A0 95 1750 LDY /TEXT3 .
information displayed there won’t acciden- ~ 93EO- 20 52 94 1760 JSR MSGPRT
tally be erased. You may have noticed that };;g x T ST .
“ ” ncto memor an e use

there are several apparenl garbage” charac- 1790 * can do intermediate work or VTAB Z)Z'lo and copy t;e
ters at the lower right-hand corner of the 1800 * command that's on the screen.
screen. These “garbage” characters represent 1810 *

Vol. 1, No. 2 — January/February 1986 5

the machine-language cade that is being ad-

93E3- A9 9D 1820 LDA #TEXT4
93E5- A0 95 1830 LDY /TEXT4 ° . :
93E7- 20 52 94 1840 JSR MSCPRT gzd[;lgl)ﬁ\‘l” Applesoft program so that it can
93EA- A9 40 1850 LDA #INBUFF2 T
. 93EC- A0 02 1860 LDY /INBUFF2 At this point, the program returns to Ap-
93EE- 20 52 94 1870 JSR MSGPRT plesoft and allows you to set up your Ap-
93F1- 20 62 FC }ggg . JSR CRTN plesoft program. This is particularly
1900 * This is where the BRUN code is hnpoﬂan[ifyouinmndlojqdudesonwlﬁd-
1910 * copied to its required location. The command den lines. Once you've finished preparing
1920 * that is copied with the cursor re-starts program your Applesoft program, all you have to do
1930 : execution. is type VTAB 24. This will place the cursor
ek i 6 }g‘s’g EoX w80 in the protected area of the screen and al-
93F6- BD 68 94 1960 LOOP3 LDA BRUNCODE,X low you to copy over the CALL command
93F9- 9D E9 07 1970 STA BRUNSTART,X with the cursor (you do this by repeatedly
93FC- FO 03 1980 BEQ FINISHUP pressing the right arrow key) and then press-
gggg: gg 5 ;338 é:’é Lo0P3 ing RETURN. Copy over the CALL 37876
2010 * only. Do not copy over the “garbage” charac-
2020 * With the binary code in place, the length of the ters at the end of the line. You don’t have
2030 * file that is to be created is calculated and saved to worry about them being erased when you
%81;8 : for use with the BSAVE command. press RETURN. Since they’re located in a
9401- 38 2060 FINISHUP SEC protected portion of the screen, nothing will
9402- A9 E9 2070 LDA #BRUNSTART happen to them. After you trace over the
9404- E9 01 2080 SBC #$1 CALL command and press return, the new
gll:(o)g— gg 81 94 %090 STA LENGTH binary file is then saved to the disk drive with
. 940A: AS AF 2{?8 igg PROGEND a B. appep@ed to the beginning of the pro-
940C- ED 81 94 2120 SBC LENGTH gram’s original name. .
940F- 8D 81 94 2130 STA LENGTH The BRUN MAKER program is 570 bytes
3212— Ag BO 2140 LDA l/’RocENDA long and has been incorporated into an Ap-
14- E9 07 2150 SBC /BRUNSTART plesoft program to make keying it in and us-
9416- 8D 82 94 2160 STA LENGTH+1 : it ool i
2170 * ing it simpler. Another _advantage of this
2180 * The BSAVE command is issued. The name used is the approach is that it eliminates the need to
2190 * same as the original with a B. appended to know assembly language or have an assem-
2200 : it. The starting address and length are added bler available. For those of you who do know
%g%g 5 oo the end of the name. assembly language and want to see how the
. 9419- A9 AS 2230 LDA HTEXTS program was written and what is going on,
941B- A0 95 2240 LDY /TEXTS the well-commented source code listing in
gzl:m— 20 52 94 2250 JSR MSGPRT should be just the thing you’re looking for.
94%2_ :3 8(2) %g?g tg? #ﬂ:gg:g% If you take the binary file that is produced
= by the BRUN MAKER program and convert
9424- 20 52 94 2280 JSR MSGPRT . : By
9427- A9 BO 2290 LDA #TEXT6 it to an automatically running program as
9429- A0 95 2300 LDY /TEXT6 described on page 6 of the previous issue of
942B- 20 52 94 2310 JSR MSGPRT ASPD, you’ll have gone a long way in
glgiﬂ: ;2\8 gi gl[; %g%g _Ifls)ll: kg:g;”” preventing a user from ficcessing your pro-
9434— AD 81 94 2340 LDA LENGTH gram. If you then store it on a 37 track dis-
9437- 20 DA FD 2350 JSR PRHEX kette (ASPD Vol. 1, No. 1, p. 8) and use a
943A- 20 62 FC %ggg * JSR CRTN customized DOS (see tutorial in this issue)
2380 * Here the user is told the name of the binary file YOEJ!lld_/;?d l]]p w‘:)h idmke"e that will be
2390 * and control is returned to BASIC via the warm quite difficult to backup.
2395 * start vector.
2400 *
943D- A9 18 2410 LDA #$18
943F- 85 23 2420 STA WNDWBOT
9441- A9 BA 2430 LDA #TEXT7
9443- A0 95 2440 LDY /TEXT7
9445~ 20 52 94 2450 JSR MSGPRT
9448- A9 40 2460 LDA #INBUFF2
944A- A0 02 2470 LDY /INBUFF2
944C- 20 52 94 2480 JSR MSGPRT
944F- 4C 03 EO 2490 JMP BASIC+3 GET A FREE SUBSCRIPTION
2500 *
2510 * This routine prints out the message pointed to In our first issue, we offered a free six
2520 : by the A and Y registers. month subscription to anyone who wrote an
w2 i3 O %gzg - STA TXTPTR article that we subsequently published. We
9454 84 07 2550 STY TXTPTR+1 had a nice response, but would like to have
9456— A0 00 2560 LDY #$0 even more interaction with you, so we're ex-
9458- B1 06 2570 LOOP2 LDA (TXTPTR),Y tending that free offer another two months.
3223: 52"8 gg - %;gg ggg ES%RT So‘hurry up. This offer applies to full-blown
. 94SF— E6 06 2600 INC TXTPTR articles only. Parameters for use with
9461- DO F5 2610 BNE LOOP2 COPYP or minor modifications of COPYP
9463- E6 07 2620 INC TXTPTR+1 will entitle you to a one-month extension for
9465- DO F1 2630 BNE LOOP2 each one we use. However, a major revision
9467- 60 2640 ENDPRT RTS of COPYP will get you the 6-month prize.

2650 * ’ i H
So let’s see who the lucky winners will be.

6

Apple Software Protection Digest

PARAMETER FILES
FOR COPYP

Listed below are several parameter files for
use with COPYP. You can key these lines
in directly or you can do what I do and cre-
ate text files that contain these lines. Then
you can load in COPYP and EXEC in the
appropriate file for the program you want
to copy. You can keep these text files on a
disk and re-use them again whenever you
want to make another copy. Some of these
files have been tested by me and some ha-
ven’t. It gets to be an expensive proposition
to buy each of these programs in order to
test out each file. Therefore, if you submit
files to us, please make sure you test them
thoroughly. Also, please give us the version
number of the program you’re cracking.
Nothing is more discouraging than trying to
use a routine that is supposed to work, only
to find out that it doesn’t. Your reward for
doing this will be a one month addition to
your subscription.

Print Shop Companion

In the last issue we told you how to make
a copy of Print Shop. Since that appeared,
some of you have asked me to tell you how
to back up the Print Shop Companion. Now,
thanks to Stan Kelley, we can. By the way,
Stan is not yet a subscriber and neglected to
send us his address so we’re having a tough
time locating him to give him is complimen-
tary subscription. Stan, if you’re reading this,
get in touch with us so you can have your
own copy of ASPD.

Print Shop Companion does not use any
special DOS, but has a nibble counter built
in. Thus, it is not necessary to change any
of the Data or Address Field bytes. It will
however, be necessary to perform a sector
edit. The protection scheme used with this
program is identical to the one used with
Print Shop. The only difference involved is
in the actual location on the diskette where
the changes should be made.

Stan originally suggested that any copy
program could be used to copy the Print
Shop Companion diskette and that the patch
to overcome the protection could then be ap-
plied manually with a sector editor. He was
only half right. Standard copy programs can-
not be used because track $22 (which is the
35th track) is specially formatted and is in
fact the track that is used for nibble count-
ing. By adding another modification to our

COPYP program however, we can tell it to -

read and copy only the first 34 tracks (line
72) and forget about the last one, because
we're going to disable the nibble count any-
way. Thus, the required parameter file to al-
low COPYP to unprotect the Print Shop

Companion consists of the following two -

lines:

continued on page 7

9468-
946A-
946D-
946F-
9472-
9474
9476-
9479-
947C-
947F-
9480-
9481-

9483-
9485-
9488-
948B-
948E-
9491-
9494 -
9497-
949A-
949D-
94A0-
94A3-
94A6-
94A9-
94AB-
94AE-
94B1-
94B4 -
94B7-
94BA-
94BD-
94C0-
94C3-
94C6-
94C9-
94CA-
94CD-
94D0-
94D3-
94D6-
94D9-
94DC-
94DF -
94E2-
94E5-
94E6-
94E9-
94EC-
94EF -
94F2-
94F 5~
94F8-
94FB-
94FE-
9501~
9503-
9506-
9507-
950A-
950D-
9510-
9513-
9516-
9519-
951C-
951D-
9520-
9523-
9526-
9529-

A9
8D
A9
8D
85
A9
8D
20
4C
00

00

8D
AO
Cc2
CE
C1
D2
CF
C1
cc
CF
AO
CF
C1
8D
A0
A0
AO
Cc3
D9
c7
AO
A9
B9
A0
8D
AO
A0
AO
A0
CA
C5
Cc8
c7
C4
8D
A0
A0
A0
A0
cc
Cc9
D4
D2
C5
C5
8D
8D
C5
C5

AO
cc
CE
C5
00
8D
8D
8D
8D
A0

66
F2
D5
F3
D6
70
F4
58
66

00

8D
A0
D2
AO
CB
A0
D2
DO
C5
Ccé6
DO
c7
(0]
8D
A0
AO
A0
CF
D2
Cc8
A8
AO
B8
Cc2

AO
A0
A0
A0
D5
D3
AE
Cc9
C5

AO
A0
A0
C1
A0
C7
D3
C5
D2
C4
8D

CE
D2
Cc8
Cé
C5
C1
BA

8D
8D
8D
8D
C3

03
03

03
FC
D5

A0
D5
Ccbh
C5
Cé
AO
DO
D3
D4
D2
D2
D3

A0
AO
A0
DO
C9
D4
Cc3
B1
B6
D9

A0
A0
A0
A0
CcC
A0
A0
cC
D2

A0
A0
A0
cC
D2
Cc8
AO
D3
D6

8D

D4
A0
C5
Cc9
AQ
CDh
AO

8D
8D
8D
8D
C1

2660 * This is the actual code appended to an Applesoft
2670 * program to allow it to be BRUN. The RESET key is
2680 * programmed to RUN the program when it is pressed and
2690 * Applesoft's AUTO RUN FLAG is set to make it hard
2700 * for the user to get control of the computer.

2710 *

2720 BRUNCODE LDA #RUN

2730 STA RESET

2740 LDA /RUN

2750 STA RESET+1

2760 STA RUNFLAG

2770 LDA #$70

2780 STA POWERUP

2790 JSR HOME

2800 JMP RUN

2810 .HS 00

2820 Cv2 .HS 00

2830 LENGTH .HS 0000

2840 * .

2850 * Below are all the text messages that are printed out
2860 * by the BRUN MAKER program.

2870 *

2880 TEXT1 .HS 8D8D

2890 .AS -" BRUN MAKER FOR APPLESOFT PROGRAMS'"
2900 .HS 8D8D

2910 .AS -" COPYRIGHT (C) 1986 BY"
2920 .HS 8D

2930 AS -" JULES H. GILDER"

2940 .HS 8D

2950 AS -" ALL RIGHTS RESERVED"
2960 -HS 8D8D8D8D

2970 -AS -"ENTER THE FILE NAME: "

2980 -HS 00 *

2990 TEXT2 -HS 8D8D8D8D8D8D8DEDSD8DSDSD

Vol. 1, No. 2 — January/February 1986

- 952C- cC cC A0

952F- B3 B7 B8

9532- B7 B6 3000 .AS -'" CALL 37876"
9534- 00 3010 -HS 00
9535- 8D 8D 3020 TEXT3 .HS 8D8D

9537- D7 €8 C5
953A- CE A0 D9
953D- CF D5 A7
9540- D2 C5 A0
9543- D2 C5 C1
9546- C4 D9 A0
9549- D4 CF A0
954C- C3 CF CE
954F- D4 C9 CE
9552- D5 C5 AC

9555- A0 D4 D9
9558- DO C5 3030

955A- 8D 3040 .HS 8D
955B- A7 D6 D4
955E- C1 C2 A0
9561- B2 B4 A7
9564~ A0 C1 CE
9567- C4 A0 D4
956A- C8 C5 CE
956D- A0 D4 D2
9570- C1 C3 C5
9573- A0 CF D6
9576- C5 D2 A0

-9579- D4 C8 C5
957C- A0 C3 C1
957F- CC CC 3050

CALL"

9581- 8D 3060 .HS 8D
9582- D3 D4 C1

9585- D4 C5 CD

9588- C5 CE D&

958B- A0 D7 C9

958E- D4 C8 A0

9591- D4 C8 C5

9594- A0 C3 D5

9597- D2 D3 CF

959A- D2 AE 3070 .AS -"STATEMENT WITH THE CURSOR.'"
959C- 00 3080 .HS 00
959D- 8D 84 3090 TEXT4 .HS 8D84

959F- CC CF C1

95A2- C4 AO 3100 .AS -"LOAD "
95A4- 00 3110 .HS 00

95A5- 8D 84 3120 TEXTS .HS 8D84

95A7- C2 D3 C1

95AA- D6 C5 A0

95AD- C2 AE 3130 .AS -"BSAVE B."
95AF- 00 3140 .HS 00

95B0- AC C1 A4

95B3- B7 C5 B9

95B6- AC CC A4 3150 TEXT6 .AS -",A$7E9,L$"
95B9- 00 3160 .HS 00

95BA- 8D 8D 3170 TEXT7 .HS 8D8D

95BC- D4 C8 C5
95BF- A0 C2 C9
95C2- CE C1 D2
95C5- D9 AO Cé6
95C8- C9 CC C5
95CB- A0 C8 C1
95CE- D3 A0 C2
95D1- C5 C5 CE
95D4- A0 D3 Ci
95D7- D6 C5 C4

95DA- A0 C1 D3

-AS -"WHEN YOU'RE READY TO CONTINUE, TYPE"

-AS -"'VTAB 24' AND THEN TRACE OVER THE

~-"THE BINARY FILE HAS BEEN SAVED AS:"

95DD- BA 3180 .AS

95DE- 8D 3190 .HS 8D

95DF- C2 AE 3200 .AS -"B."

95E1- 00 3210 .HS 00

95E2- 00 3220 .HS 00

10 TEXT : HOME -
20 PRINT " BRUN MAKER FOR APPLESOFT PROGRAMS'
30 PRINT : PRINT : PRINT

40 PRINT '"NOW LOADING MACHINE LANGUAGE PROGRAM"
50 PRINT "INTO MEMORY. PLEASE WAIT."

VTAB 9

continued from page 6

72 POKE 834,34
1000 DATA 3,12,224,169,96

Line 1000 puts a machine-language return
code right at the beginning of the call to the
nibble counting routine, totally bypassing it.
By the way, if you’re interested in examin-
ing the nibble counting code directly, break
out of the program and get into the moni-
tor. Then type B619L. This is the nibble
counting routine. If you have an Apple //e
or //c and can’t break out of the program
without it rebooting, then you can use a sec-
tor editor that disassembles code directly
from the diskette (Copy][Plus has this fea-
ture). The nibble counting routine is locat-
ed on track 3, sector 6 and starts with the
25th byte (in hex that’s 19). That’s all there
is to it. See, that wasn’t so hard.

Sensible Grammar and Bookends

Here’s some tips on how to unprotect Sen-
sible Grammar and Bookends (both of which
are published by Sensible Software) from Al-
len L. Southmayd of San Antonio, TX. Al-
len says that this procedure is based on
information published in Computist by Doni
G. Grande, who used it to unprotect version
2.06 of Bookends. It can be used for other
versions as well , he points out, but you’ll
have to locate the right track and sector. The
same technique is used on Sensible Gram-
mar, says Allen. I converted the information
Allen sent in to DATA statements for use
with COPYP. Here they are:

1000 DATA 5,0,56,247,86 : REM
BOOKENDS VERSION 2.0

1000 DATA 1,13,56,247,86 : REM
BOOKENDS VERSION 2.06

1000 DATA 4,4,17,247,56 : REM SENSI-
BLE GRAMMAR VERSION 1A

Allen notes that if you have the program Es-
sential Data Duplicator IIl (EDD) that you
can use that to make a backup copy of Sen-
sible Grammar. To do that you copy tracks
$0 to $22 (remember the $ indicates hex-
adecimal numbers) using option 2. Then, he
says, change parm 28 to $02 or $03 and reco-
py track $00 until the program boots proper-
ly. Thanks for the advice Allen. We're
adding one month onto your ASPD sub-
scription. Keep the contributions coming.

PFS Series - PRODOS Version

The new PRODOS versions of PFS
WRITE, GRAPH, REPORT and FILE all
use the same copy protection scheme. To dis-
able it, all you have to do is copy the disk,
and then perform a single sector edit.

continued on page 9

8

Apple Software Protection Digest

Tutorial

continued from page 22

line 1 or you can type in line 2 from Ap-
plesoft. Line 2 can be entered either from the
direct execution mode (without a line num-
ber) or in the deferred execution mode (with
a line number).

1. B955:AA N B95F:D5 N BCTA:AA N
BCT7F:D5

2. POKE 47445,170 : POKE 47455,213 :
POKE 48250,170 : POKE 48255,213

The first two locations that are modified by
these lines are the READ locations and the
last two are the WRITE locations. To switch
back to normal DOS 3.3, simply enter either
of the following lines:

1. B955:D5 N B95F:AA N BC7TA:AA N
BCT7F:D5

2. POKE 47445,213 : POKE 47455,170 :
POKE 48250,213 : POKE 48255,170

You could just as easily change the bytes in
the prologue of the data field instead of the
address field. Or, you can change the first
two epilogue bytes in either field. You can
use a combination of techniques. The possi-
bilities are almost endless, and each change
you make results in a unique protected DOS.

Try your hand at making up some dis-
kettes with a modified version -of DOS.
You'll be pleased to see how easy it really is.
If you are going to use a modified DOS as
described here, bear in mind that the level
of protection afforded is limited since most
nibble copy programs that are currently
available can easily copy diskettes created
with modified versions of DOS 3.3.
However, it will prevent standard copy pro-
grams, such as COPYA, from duplicating

your diskette. v
continued on puge 13

Table 3
Data Field DOS Locations

Location Byte Address
Hex Decimal
Prologue Read DS BSE7 47335
AA B8F1 47345
AD BS8FC 47356
Prologue Write DS B853 47187
AA B858 47192
AD B85D 47197
Epilogue Read DE B935 47413
AA B93F 47423
Epilogue Write DE B8OE 47262
AA B8A3 47267

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

540 -

550
560

570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

- 730

740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910

PRINT TAB(14);: FLASH :
FOR X = 1 TO 570

READ Y

POKE 37799 + X,Y
NEXT X
VTAB 7
PRINT : PRINT
PRINT "THE PROGRAM IS NOW READY TO USE."
PRINT "TYPE 'CALL 37800' TO ACTIVATE IT."
DATA 32,88,252,169,131,160,148,32
DATA 82.148,32.111,253,169,0,157
DATA 64.2,202,189,0,2,157,64
DATA 2,232,202 ,208,245,165,37,141
DATA 128,148,230,37,169,29,160,149
DATA 32,82,148,169,23,133,35,173
DATA 128,148,133,37,169,53,160,149
DATA 32,82,148,169,157,160,149,32
DATA 82.148,169,64.160,2,32,82
DATA 148,32.98,252,162,0,189,104
DATA 148.157,233,7.240,3,232,208
DATA 245.56,169,233,233,1,141,129
DATA 148.56.165,175,237,129,148,141
DATA 129.148,165,176,233,7,141,130
DATA 148.169.165,160,149,32,82,148
DATA 169.64,160,2,32,82,148,169
DATA 176.160,149,32,82,148,173,130
DATA 148.32,218,253,173,129,148,32
DATA 218.253,32.98,252,169,24,133
DATA 35,169,186,160,149,32,82,148
DATA 169,64.160.2,33,82,148,76
DATA 3,234,133,6,132.7,160,0
DATA 177,6.240.11,32,237,253,230
DATA 6,208.245,230,7,208,241,96
DATA 169,102,141,242.3,169,213,141
DATA 243.3,133,214,169,112,141,244
DATA 3,33,88,252,76,102,213,0
DATA 0.0,0,141,141,160,160,160
DATA 194.210,213,206,160,205,193,203
DATA 197.210,160,198,207,210,160,193
DATA 208.208.204,197,211,207,198,212
DATA 160,208,210,207,199,210,193,205
DATA 211,141,141,160,160,160,160,160
DATA 160.160,160,160,195,207,208,217
DATA 210,201,199,200,212,160,168,195
DATA 169.160,177,185,184,182,160,194
DATA 217.141,160,160,160,160,160,160
DATA 160.160,160,160,160,160,202,213
DATA 204.197.211,160,200,174,160,199
DATA 201.204.196,197,210,141,160,160
DATA 160,160,160,160,160,160,160,160
DATA 193.204.204.160,210,201,199,200
DATA 212,211,160,210,197,211,197,210
DATA 214,197,196,141,141,141,141,197
DATA 206,212,197,210,160,212,200,197
DATA 160,198,201,204,197,160,206,193
DATA 205,197,186,160,0,141,141,141
DATA 141,141,141,141,141,141,141,141
DATA 141,160,195,193,204,204,160,179
DATA 183,184,183,182,0,141,141,215
DATA 200,197,206,160,217,207,213,167
DATA 210,197,160,210,197,193,196,217
DATA 160,212,207,160,195,207,206,212
DATA 201,206,213,197,172,160,212,217
DATA 208,197,141,167,214,212,193,194
DATA 160,178,180,167,160,193,206,196
DATA 160,212,200,197,206,160,212,210
DATA 193,195,197,160,207,214,197,210
DATA 160,212,200,197,160,195,193,204
DATA 204,141,211,212,193,212,197,205
DATA 197,206,212,160,215,201,212,200
DATA 160,212,200,197,160,195,213,210
DATA 211,207,210,174,0,141,132,204
DATA 207,193,196,160,0,141,132,194
DATA 211,193,214,197,160,194,174,0
DATA 172,193,164,183,197,185,172,204
DATA 164,0,141,141,212,200,197,160
DATA 194,201,206,193,210,217,160,198
DATA 201,204,197,160,200,193,211,160
DATA 194,197,197,206,160,211,193,214
DATA 197,196,160,193,211,186,141,194
DATA 174,0
REM
REM
REM
REM

PRINT "LOADING...'": NORMAL

COPYRIGHT (C) 1986 BY
JULES H. GILDER
ALL RIGHTS RESERVED

Vol. 1, No. 2 — January/February 1986 9

CHANGE THE BLOAD ADDRESS OF BINARY FILES

When binary ﬁl;s are saved out to QIskette 10 HIMEM: 38320)
under DOS 3.3 it is necessary to specify not 20 POKE 40230.176: POKE 40231.149
only the length of the file to be saved, but 30 POKE 43158,68: POKE 43159,210
also the address of the start of the file. When 40 POKE 43281,32: POKE 43282,113
the file is loaded back into memory at a lat- 50 FOR X = 1 TO 67
ter time, it is this starting address that is used (7’8 ggﬁg §8320 v XY
to properly place the program where it be- 80 NEXT X ’
longs. The designer’s of Apple’s DOS 90 PRINT : PRINT : PRINT

however, realized that sometimes, you might 100 PRINT "THE 'CHAIN' COMMAND HAS BEEN CHANGED TO"
110 PRINT '"'CHADR'. TO USE IT SPECIFY THE FILENAME'

like to have the abilit ve a fi

locafioni ytosaveafileout from 155 pRINT "AND THE NEW ADDRESS. THE ADDRESS CAN"
one location in memory and load it back in 130 PRINT "BE IN DECIMAL, OR IF PRECEDED BY A"
to another. This is particularly important 140 PRINT '"DOLLAR SIGN ($), HEXADECIMAL."

when you're putting together protection 3(1)8 DATA %73,101,170,41,15,201,1,240
schemes or when you want to modif . DATA 3,76,196,166,173,114,170,141
y YaPro- 330 DATA 244,149,173,115,170,141,245,149

gram that it will automatically run when it’s 230 DAT
X A 32,168,162,173,194,181,201,127
loaded in (see ASPD Vol. I, No. 1, p. 6). 240 DATA 144,11,169,10,141,92,170,32
To accommodate such situations, Apple 250 DATA 252,162,76,213,166,41,15,201

made it possible to use the A or A$ option ~ 260 DATA 4,240,4,169,13,208,237,172
(e.g. BLOAD FILE,A$300) to BLOAD a file
into a different address than the one it was
saved from. While this technique is better
than not being able to do anything at all, it
nevertheless is awkward. A much more
reasonable solution would have been for Ap-
ple to include a DOS command that would
automatically change the information on the
diskette that tells DOS where to start load-
ing the file in.

Since Apple did not have the foresight to
include such a versatile command, we’ll just
have to do it ourselves. To make the job sim-
ple, I've decided to use the standard DOS
command parser (command interpreter). In
order to do this however, it will be necessary
to get rid of one of DOS’s already existing
commands. In the eight years that I’'ve owned
my Apple, I've never used the CHAIN com-
mand, so I think it’s fairly safe to convert
that command into one that will change the
BLOAD address of a binary file.

Change it to CHADR

The first thing we must do is change the
actual command to something that is more
mnemonic (connected with the operation
that’s going to be performed and therefore
easy to remember). Since we're going to
change the address, why not change the com-
mand to CHADR? To do that, all we have
to do is change the the last two letters of the
CHAIN command from IN to DR. DOS has
a table of all the commands stored in RAM
starting at 43140 ($A884). By POKEing new
values into these locations, it is therefore pos-
sible to change the commands that DOS
recognizes (we’ll talk more about this in the
next issue of ASPD). The changing of the
CHAIN command name is actually done by
two simple POKEs in line 30 of the program
listing. - :

Next, to keep the program out of the way,
we’ll store it in high memory starting at 38320
($95B1 in hex). Once we know where the pro-
gram is going to reside in memory, we have
to notify DOS so that it will know how to
access it. Just as DOS held a table of com-

270 DATA 244,149,173,245,149,32,224,163

280 DATA 76,252,162

mand names in RAM, it also holds a table
of addresses of where each routine begins.
This table starts at 40222 ($9D1E). The jump
address for the CHAIN command is locat-
ed at 40236 ($9D26). If we POKE the address
of our machine language program into 40236
and 40237, then whenever the CHADR com-
mand is issued, it will jump to our program
instead of the CHAIN routine. That’s exactly
what is done in line 20 of the program.

Before actually loading the program that
implements the CHADR command into
memory, we have one more job to do. We
must now tell DOS which of the optional fea-
tures of DOS are valid with our command.
For example, we want to require a file name
and address and also let the user specify an
optional volume number, slot number and
drive number. Once again, we have a table
in memory that holds this information (at
43281 for the CHAIN command) and once
again we have two POKE:s that will set the
command up the way we want it to be. This
is done in line 40 of the program.

Load the routine into memory

Now that we’ve set up the DOS command
to do exactly what we want, the only thing
left to do is load in a short machine language
routine that will do the actual work for us.
This is done in line 50 through 80 in the BAS-
IC listing.

Just as with the BSAVE command, the
new CHADR command that we’ve im-
plemented will permit you to use either an
A or an AS. To change the BLOAD address
of a file to 2048 (the text screen for exam-
ple), you would issue the following
command:

CHADR FILENAME,A2048 or CHADR
FILENAME,A$800

That’s all there is to it. I’'m sure you’ll find,
as I did, that this will be one of your most
useful DOS modifications and a big help in
implementing software protection schemes.

COPYP Parameters

continued from page 7

COPYP can do the job by simply adding the
line below:

1000 DATA 4,1,170,25,3

PFS PLAN uses a similar protection
scheme, but it is located on a different track
than the others. To make a usable unprotect-
ed copy of it type in the following line:

1000 DATA 1,13,170,25,3

Time Is Money

To make an unprotected éopy of Time Is
Money, use the following data:

1000 DATA 5,15,25,189,96

Homeword

This word processing program from Sier-
ra On-Line can be copied by typing in the
following line into the COPYP program:

1000 DATA 16,10,0,206,96

Homeword Speller

This is a companion spelling checker that
works with Homeword. Unprotecting it is
almost as simple as unprotecting Homeword,
except instead of changing one byte, you'll
have to change two. The following lines,
when added to COPYP will make the un-
protected copy for you.

1000 DATA 1,7,200,32,76
1010 DATA 1,7,201,18,220

10

Apple Software Protection Digest

Letters

Dear Editor:

Congratulations on your new publication.
The quality of the material in the premier is-
sue was excellent. If it remains that way you
should have a winner. I’m rooting for you.

For the past year I've wished that I could
deprotect a BASIC checkbook program
(Disk-O-Check) which no longer is being
sold. As a matter of fact, the company that
produced it has gone out of business. My aim
is to put the program onto my Sider disk
where file access would be considerably more
rapid. Is it your plan to consider such
problems and to provide information that
would enable me to accomplish this feat?

Regardless of your answer, please accept
my check for a one year subscription. 1 am
also purchasing your Assembly Language
book for my library.

Sandy Mossberg
Rye Brook, NY

Your complaint is a common one Sandy.
Many good programs would be much more
useful if they could be put on a hard disk
drive. Also, it is unfortunately too common
that software companies that were here
vesterday, are gone today. I am currently
working on cracking Disk-O-Check for you
and when it’s done, I will describe how it was
done in the digest so that others in a similar
situation, even though the program may be
different, can do it too.

Dear Editor:

In the past few months I have been search-
ing wildly for cracking and copying infor-
mation. 1 just read about your publication
and would like you to send me a sample
copy. | have been searching for something
like this for months. | am interested in the
challenge, fun and usefulness of hacking and
cracking and | hope you can help me.

Matt St. Jean
New Milford, CT

Matt, your sample copy is in the mail. I hope
you enjoy it and will become a regular read-
er of ours.

Dear Editor:

I have read the first issue of the Digest
from cover to cover several times and find
it unusually interesting and helpful. I look
forward to many learning sessions and I anx-
iously await its delivery. Some things I would
enjoy seeing in the Digest would be a letters
or readers column, checksums for the pro-
gram listings and available diskettes of the
programs on a periodic basis at a nominal
cost.

I have a problem with the print shop pro-
gram that maybe one of your readers can
help me with. My system is an Apple //e,
Rev. B, Apple Extended 80 Col. card, En-
hanced except | replaced the new character
generator ROM with the old one because |

Decimal/Hexadecimal Converter

continued from page 15

10 TEXT : HOME

20 A$ - "HEX/DECIMAL/HEX CONVERTER": GOSUB 420
30 PRINT :A$ = "COPYRIGHT (C) 1986 BY": GOSUB 420

40 A$ = "JULES H. GILDER": GOSUB 420

50 A$ = "ALL RIGHTS RESERVED": GOSUB 420

60 FOR X = 1 TO 84
70 READ NUM
80 POKE 767 + X,NUM

90 NEXT X
95 CALL 768
100 PRINT : PRINT : PRINT : PRINT

110 PRINT "THE HEXADECIMAL TO DECIMAL CONVERTER IS"

120 PRINT ''NOW ACTIVE.

TO USE IT, TYPE AN"

130 PRINT '"AMPERSAND (&) AND THE NUMBER TO BE"
140 PRINT '"CONVERTED. TO CONVERT FROM HEXADECIMAL'"

150 PRINT "TO DECIMAL, PRECEDE THE NUMBER WITH A"
160 PRINT "DOLLAR SIGN ($)."

165 PRINT : PRINT " &768 RETURNS $0300 WHILE"
170 PRINT " &$300 RETURNS 768"
190 END ’

200 DATA 162,76,169,16,160,3,142,245
210 DATA 3,141,246,3,140,247,3,96
220 DATA 201,36,240,23,32,103,221,32
230 DATA 82,231,169,164,32,237,253,165
240 DATA 81,240,3,32,218,253,165,80
250 DATA 76,218,253,160,0,32,177.,0
260 DATA 240,8,73,128,153,0,2,200
270 DATA 208,243,153,0,2,168,32,167
280 DATA 255,166,62,165,63,192,6,144
290 DATA 3,76,153,225,192,3,176,2
300 DATA 169,0,76,36,237

2%8 L LEN (A$)
PRINT TAB((40 - L) 2)3A
440 RETURN t \

didn’t like those mouse characters. I replaced
the CD ROM with a 2764 EPROM burned
with Don Lancaster’s patch to give absolute
reset capability. I have an Apple DuoDisk
drive in slot 6, a Microtek RV-611c parallel
card in slot 1 with an Apple DMP and an
Epson RX-100, and an Applied Engineering
Z-80 card in slot 7. When I run the Print
Shop printer test I get 2 or 3 garbage charac-
ters (not always the same) and then the
printer is deselected. The same thing happens
when | design something with the Print Shop
and try to print it out. My daughter runs the
same disk on her //c with an Apple Scribe
printer with no problems. Help!

Virgil Flint
Poway, CA

Well Virgil, here’s the Letters column. A dis-
kette with all the programs from this issue
and the previous one is now available from
us for only $15, so you don’t have to key all
the data in yourself. We’ll have a diskette
available with every issue. We haven’t im-
plemented a checksum technique yet, but
we’re working on it. It should be in the next
issue or at the latest the one after that. As
Jfar as your problems with Print Shop are
concerned, I don’t know what to say. We’ve
gotten lots of letters and so have other pub-
lications, concerning the problem of print-
ing out with the program. From all the
responses I've seen, Broderbund doesn’t seem
1o be very responsive to its customers’ needs.
I've printed your problem here and hopefully
one of our readers will be able to help you.

Dear Editor:

Thank you for the complementary copy
of your premier issue of Apple Software Pro-
tection Digest. | tried to use your Print Shop
copy program and got an UNABLE TO
WRITE error. | checked the drive and the
diskette and everything seemed fine. Then |
tried eliminating line 277 in Apple’s COP-
YA program, which is the error-trapping
routine for the UNABLE TO WRITE error,
and the program worked perfectly. 1 would
appreciate your entering a subscription for
me. By the way, if you have any suggestions
for backing up Word Handler or for
eliminating the non-standard file formats,
which have a tendency to garbage disks con-

taining other programs, I'd be grateful to
hear of them.

Paul Dunseath
Ottawa, Ontario

Glad you liked our first issue Paul. I think
you'll like our second one even better. I'm
adding your request to our Wanted list and

hopefully we’ll be able to accommodate you
real soon.

Vol. 1, No. 2 — January/February 1986

11

HIDING MACHINE LANGUAGE PROGRAMS IN STRINGS

One of the key elements involved in
producing protected software is making it
difficult for the software cracker to not only
access your program code, but to also make
it difficult for him or her to understand
what’s going on. Finally, you want to make
it easy for the would be cracker to overlook
some important code.

A technique that I have found very han-
dy in this last regard, is to hide short machine
language programs in either strings or REM
statements within your BASIC program. If,
after doing that, you go one step further and
hide the particular line that the REM or
string appears in, using any of the line hid-
ing techniques we’ve already discussed, then
you’ll make your program significantly more
difficult to crack.

The basic technique of hiding a machine
language program in REMs or strings mere-
ly requires that you set the string or REM
statement up to have at least the same num-
ber of characters as you have bytes in your
machine-language program. You could set
aside more than you need, but obviously less
just won’t do. To show you how it’s done,
let’s take a simple example. I’'m going to take
the WIPEOUT 1 program that’s described
elsewhere in this issue, and hide that in a
string. If you go back and look at that pro-
gram, you notice that the code is position de-
pendent (that means it was designed and
assembled to work in only one specific loca-
tion in the computer and thus it is not
relocatable). Because of that, the specific po-
sition dependent reference, which occurs on
line 1150 of the program, will have to be
changed once we know the new location
where the program is going to reside in
memory. To avoid this sort of problem, it
is best to use relocatable, or position in-
dependent programs when possible. They
take a little more time and effort to produce,
but they’re much more flexible.

Here’s how to do it step by step

To begin the step-by-step description of
how to hide machine language programs in
strings, let’s first produce a short Applesoft
BASIC program, such as the one listed
below.

10 PRINT "THIS IS A TEST"

20 GOTO 40

30 A$ = "12345678901234567
89012345678901234567890"

40 CALL XXXX

50 PRINT "THAT'S ALL FOLKS!'"

You'll notice that in line 30, I’ve defined A$
as a series of digits from 1 through 0 (for 10).
I've found this to be very convenient, because
it makes it very easy to count the number of
bytes used. Another advantage of this ap-
proach is that it stores an easily distinguish-
able pattern of bytes in RAM memory.

When this program is run, it should print
out THIS IS A TEST execute a machine lan-
guage program that is located at XXXX and
then print THAT'S ALL FOLKS! If the
machine language program that we have it
call is WIPEOUT 1, however, memory will
be cleared to all zeros and the last line of the
program will never be executed.

Locate the string in memory

Now we have two things to do. We must
first determine where our string begins in
memory so we know where to store our
machine language program, and second, we
must change the Xs in the CALL statement
to the appropriate number. The easiest way
to locate the string in memory is to use the
Applesoft Line Finder program that was
published in the last issue of ASPD (you can
also use the Applesoft Line Finder and
Vanisher program from this issue) and sim-
ply enter the number of the line that the
string is located on. By doing that and typ-
ing an &30, you'll get the following display
on your computer screen.

1&30

081F: 51 08 1E 00 41 24 DO 22
0827: 31 32 33 34 35 36 37 38
082F: 39 30 31 32 33 34 35 36
0837: 37 38 39 30 31 32 33 34
083F: 35 36 37 38 39 30 31 32
0847: 33 34 35 36 37 38 39 30
084F: 22 00

As you can easily see from this display (even
if you didn’t know that the 1 was stored as
a 31 in hexadecimal), the string itself begins
at memory location $0827 (remember that’s
a hexadecimal number). The decimal equiva-
lent of $827 is 2087. This is the location of
the start of our machine-language program
and line 40 can now be changed from CALL
XXXX to CALL 2087.

If you counted the number of digits we
placed in A$, you'd find that it’s 40, so that
is the maximum size we should allow our
machine language program to be. If we have
a longer program, just make the string
longer. You can go up to about 230 charac-
ters. Those of you who know that strings can
be as long as 255 characters may question
this discrepancy. The limit is due to the fact
that Applesoft limits the length of a line that
can be typed in to 239 characters. If you take
away what you need for the line number and
the A$= you're left with about 230 (actual-
ly 233).

Load the program into the string

To load the machine language program
into the string you can key it in directly as
it’s real short. The best thing, however is to
BLOAD it in from a diskette, using the des-’

tination (A$) parameter. If for example, I
had my program stored on a diskette as
WIPEOUT I, then to load it where it belongs
in my BASIC program | would have to type
BLOAD WIPEOUT 1,A$827. This would
load my machine language program right
into the string in my Applesoft BASIC pro-
gram. Alternatively, I could have typed in
(from the monitor mode) the following to
load the program in:

*827:A0 00 84 D6 B9 E2 02 99
00 02 C8 C9 82 DO F5 4C 70 FF
B8<RETURN>

*:BO0 BO BA BO A0 CE A0 B8 BO
B1 BC B8 BO BO AE B9 B5 C6 C6
CD 82<RETURN>

Once we have the machine code in its
proper location, if it’s not relocatable, we’ll
have to patch it so that it can run there. For
WIPEOUT 1, that means we’ll have to
change the two bytes located at $82C. We
do this by typing CALL -151 to get into the
monitor mode if we’re not already in it, and
then type:

* 82C:39 08 <RETURN>

Now type 3DOG to get back to Applesoft and
then type LIST. Your program should look
like this:

10 PRINT "THIS IS A TEST"

20 GOTO 40

30 A$ = " COLOR=

40 CALL 2087

50 PRINT "THAT'S ALL FOLKS!'"

Notice that line 30 has changed and now
has a strange looking statement in it. Don'’t
worry about it. It may look strange, but it
works fine. At this point, it’s very important
to tell you that absolutely no changes should
be made to your Applesoft program from
now on. Don’t add any lines and don’t de-
lete any lines. If you do, you will mess up
your program irretrievably. This, by the way,
is another plus for hiding critical machine
language routines in strings, because it makes
changing a program virtually impossible
without destroying it.

Ordinary saves won’t work

Another thing you should be aware is that
you shouldn’t count on being able to save
your program to a diskette this way, because
it will be destroyed after it’s loaded back into
memory. The reason for this is that there are
some zeros in the assembly language pro-
gram, and Applesoft interprets them as end
of line markers with faulty links to the next
line of the Applesoft program. When Ap-
plesoft tries to correctly link the program
(which occurs when a program is loaded or

continued on page 14

12

‘ Apple Software Protection Digest

TWO SOLUTIONS TO THE HIDE-A-LINE PROBLEM

by Mark Landwehr

After seeing the challenge offered in the
first issue regarding hidden program lines,
I put together two machine-language pro-
grams that will hide any Applesoft program
lines that are desired. The programs use two
of the different techniques that were
described in the first issue of Apple Software
Protection Digest.

In the first program, Applesoft Line-Hide
#1, all the lines that are to be hidden must
begin with 5 colons, as was described in the
original article. The program has two modes
of operation. In one, you can specify in-
dividual lines that should be hidden, while
in the second, all lines that have five colons
in front of them will be hidden.

The program makes use of several Ap-
plesoft ROM routines and also uses the & to
both jump to the machine language routine
and pass parameters (in this case the line
number) to it.

Set up the ampersand jump

The program is activated by typing CALL
768. It immediately returns you to Applesoft
and it appears as if nothing has happened.
In fact, however, the program set up the am-
persand (&) jump parameters (this is done
by the code marked INIT in the listing) so
that the working part of the program
(labelled START) will be jumped to every
time the & key is entered.

The first thing that the program does once
it’s called via the &, is a subroutine jump to
Applesoft’s CHRGOT routine. This is a very
short routine that is located on page zero and
is used everytime an Applesoft command is
entered. Applesoft used it to recognize that
the ampersand was entered, and it left an in-
ternal pointer set to the next character after
the &. If there was nothing else entered, the
pointer will be pointing to a zero. If,
however, a line number was entered too, the
pointer will be pointing to it.

A jump to the CHRGOT routine will
cause the accumulator to be loaded with
whatever is being pointed to. If it turns out
that the accumulator contains a value other
than zero, we know a line number was en-
tered too, and the program branches to the
code that handles individual lines (the sec-
tion marked ONE in the listing). If a zero
was loaded into the accumulator, then the
program assumes that the user wants all lines
that have five colons in front of them to be
hidden and falls into the subroutine, called
ALL, that does this.

Whether the ONE or ALL subroutines are
used, both of them make use of the CHECK
subroutine, which inspects the line being
processed to see if it has five colons in front
of it. 1f it does, the first colon is replaced
w!th a zero to implement the hiding, other-
wise, the line is ignored.

0000-
0067-
009B-
00B7-
03F6-
D61A-
DAOC-

0300-
0302-
0304-
0307-
030A-

030B-
030E-

0310-
0312-
0314-
0316~
0318-
031A-
031C-
031D-
031E-
0320-
0321-
0323-
0326-
0327-
0329-
032A-
032C-
032Dn-

032F-
0332-
0335-
0337-
0339-
033B-
033D-
033F-
0342-

0344-
0346-
0348-

A9
AQ
8D
8C
60

20
DO

A5
A4
85
84
AO
B1
48
Cc8
B1
48
FO
20
68
85
68
85
B8
50

20
20
90
A5
A4
85
84
20
FO

AO
B1
Cc9

OB
03
F6
F7

B7
1F

67

00
01
00
00

00

35
44

01
00
E9

0ocC
1A
23
9B
9C
00
01
44
16

04
00
3A

03
03

00

03

DA
D6

03

B R e e s e e s s T T T

& = all lines with 5 colons
&<line#> = desired line only

Will make any or all program lines that begin
with 5 colons disappear. Line numbers will
remain visible, but with no program data...

COMMAND SYNTAX

kkkkkkkkkkkkkkkhkkkhkhkkkkkkhkhkkkhhkhkkhkkhkhkkhkkkkkk

$00
$67
$9B
$B7
$3F6
$D61A
$DAOC

$300

LINE-HIDE #1

*
*
*
*
*
*
*
*
*
*
*
*
*

storage pointer

start of BASIC program
pointer used by FNDLIN

fetch data routine

ampersand vector

search for line number

put line number in zero page

initializes the ampersand jump vector.

#START
/START
AMPER
AMPER+1

Check entry after the "&'". If nothing, do all lines.
If there's a number, then execute only on that line.

CHRGOT
ONE

Get entry.
Handle a single line

lines in program that begin with 5 colons.

TXTTAB
TXTTAB+1
PTR
PTR+1
#$0
(PTR),Y

(PTR),Y

DONE
CHECK

PTR+1
PTR
L.OOP1

Load start of program
pointers.

Save pointers to zero
page locations.
Initialize index.

Get lo-byte link

and save it.

Get hi-byte
and save it
If it is 0, end prgrm
Check for 5 colons.
Retrieve hi-byte link.
Store it.

Retrieve lo-byte link.
Store it.

Always go and look at
the next line.

link
too.

* Hide only the line that was specified by the user.
*

LINGET
FNDLIN
DONE2
LOWTR
LOWTR+1
PTR
PTR+1
CHECK
DONE?2

* Check for 5 colons at the start of the line, and, if .
found, put a zero in place of first colon.

#$4
(PTR),Y

1000
1010 *
1020 * APPLESOFT
1030 *
1040 *
1050 *
1060 *
1070 *
1080 *
1090 *
1100 *
1110 *

1120 *
1130 *
1140 *
1150 *
1160 *
1170 PTR .EQ
1180 TXTTAB .EQ
1190 LOWTR .EQ
1200 CHRGOT .EQ
1210 AMPER .EQ
1220 FNDLIN .EQ
1230 LINGET .EQ
1240 *
1250 *
1260 .OR
1270 *
1280 * This routine
1290 *
1300 INIT LDA
1310 LDY
1320 STA
1330 STY
1340 RTS
1350 *
1360 *
1370 *
1380 *
1390 START JSR
1400 BNE
1410 *

1420 * Hide all
1430 *
1440 ALL LDA
1450 LDY
1460 STA
1470 STY
1480 LOOP1 LDY
1490 LDA
1500 PHA
1510 INY
1520 LDA
1530 PHA
1540 BEQ
1550 JSR
1560 PLA
1570 STA
1580 PLA
1590 STA
1600 CLV
1610. BVC
1620 *
1630
1640
1650 ONE JSR
1660 JSR
1670 BCC
1680 L.DA
1690 L.DY
1700 STA
1710 STY
1720 JSR
1730 BEQ
1740 *
1750
1760 *
1770 *
1780 CHECK LDY
1790 LOOP2 LDA
1800 CMP

#':

Put line# in LINNUM.
Find line in program.
Clear carry - no line.
Load address of the
desired line.

Store it in zero

page locations.

Check for 5 colons.
Return to caller.

Initialize index.
Get line data byte.
Is it ‘a colon?

S

Vol. 1, No. 2 — January/February 1986 13
Hide lines without colons too 8%22— gg OE }g;g : BNE DONE2 No, then forget it.
; = INY
If you have already written a program and 034D- CO 09 1830 CPY #$9 Done 5 checks ?
’ . s yet?
don’t want to go back through it to add col- 034F- 90 F5 1840 BCC LOOP2 No, do more.
. ons to it, you can use the second program, 8;2;: Qg 88 }gzg LOY 430 ek, Back Tu Jst byte.
Applesoft Line-Hide #2. This program will 0335- 91 00 1870 STA (FTR),¥ & Sere chate. rors
hide any line or group of lines, regardless of 0357- 60 1880 RTS ’ ’
whether there are five colons at the begin- 1890 *
]/ ning or not. In fact, you might want to use }g(l)g : Exit tr)::)utirl'ni:. [ff;_zntcred from ALL routine, link bytes
Both PiGaraThS . i must pulled off of the stack. If from the ONE
prog together to hide your pro 1920 * routine, just return to the calling routine.
1/ gram lines. 1930 *
This program is somewhat similar to the 8358- 68 1940 DONE PLA
first one in that it too uses the ampersand 339- 68 1950 s
p 035A- 60 1960 DONE2 RTS .

(&) to activate the program. In this case
however, entering just the & by itself will give
you a SYNTAX ERROR. This program re-
quires that you enter two line numbers, the

1000 ***kkkkkkk dkkhkhkhkkkhkhkhkhkhkhkhhkdhhkhdhkddhkhkkkthhkhhdhkhkkk

i 1010 * *
numbgrs ofthghnes that surroupd the one(s) 1020 APPLESOFT LINE-HIDE #2 *
you wish to hide. These two line numbers 1030 * *
must be separated by a comma. Thus, in a 1040 * Will hide any program line ghat uss; desires. :
ith li 1050 * User must enter line preceding hidden line
rogram
?0 hg'd l.:ltzholmes numli(ejred 10, 20 and 30, 1060 * and line immediately following hidden line. *
ARG SERDEES; PR WL type & 10,30. To 1070 * (Also works for a group of lines) *
hide several lines, just chose your first and 1080 * x
last lines so that they surround the range to 1(1)88 : COMMAND SYNTAX :
be hidden. The last line in you program can 3
. . . . * i i
be hidden too, by simply ifying a larg- ii;g e &<line# preceding>,<line# following> :
er, nonexistent line number for the second 1130 *rkkdkhkhkkkhkkhkhkkkhhhhhhkkidrrdddidiirtrihiiios
parameter in the ampersand command. 1140 *
Since the command syntax for both of 1%28 :
tl}ese programs ls'dlffcrent, 1t wou},d not be 0000- 1170 PTR .EQ $00 pointer for first byte |
difficult to combine both of them into one 0002- 1180 PTR2 .EQ $02 pointer for second byte
program. Personally, I think that this may 009B- 1190 LOWTR .EQ $9B pointer used by FNDLIN
be a little confusing, which is why I left them ~ 03F6- 1200 AMPER -EQ $3F6 ampersand vector
as separate programs D61A- 1210 FNDLIN .EQ $D61A search for line number
. DAOC- 1220 LINGET .EQ $DAOC put line number in zero page
DEBE- 1230 CHKCOM .EQ $DEBE check for comma
Thanks for your entry Mark. You won the 1250 *
best program award and will get an extra 6 3(7:8 " .OR $300
months of ASPD. }%gg : This routine initializes the ampersand jump vector.
A 0300- A9 OB 1300 INIT LDA #BEGIN
Tutorial continued from page 8 0302- A0 03 1310 LDY /BEGIN
. . A s 0304- 8D F6 03 1320 STA AMPER
After going through all of this article and 0307- 8C F7 03 1330 STY AMPER+1
reaching this point, you just might be ask- 030A- 60 iglsog " RTS
ing yourself, “If this copy protection scheme)
can be copied with a nibble copier, what }gg(s) : gsinggisflrst (preceding) line number and store |
good is it?” The answer is simple. Knowledge 1370 * ’
is power. If you understand how this scheme 030B- 20 OC DA 1380 BEGIN JSR LINGET Get the line number. |
works, you can incorporate it with a variety 030E- 20 1A D6 1390 JSR FNDLIN Find it in memory. |
of other techniques that we'll discuss in the ~ 0311- A5 9B 1400 LDA LOWTR Load pointers to the
s d be abl d a dis- 0313- A4 9C 1410 LDY LOWTR+1 desired line.
coming months and be able to produceadis- 315_ 85 00 1420 STA PTR Save to zero page
kette that will be awfully difficult to copy. 0317- 84 01 1430 STY PTR+1 locations.

' I say awfully difficult, because nothing can 0319- 20 BE DE 1440 JSR CHKCOM Check for a comma.

be 100% impossible to copy (although re- 1450 *
, cently I've seen some programs that sure }22(5) : gggngzis?econd (following) line number and store
seem like it). More importantly, if you're try- 1470 *
ing to unprotect or back up a disk that you’ve ~ 031C- 20 0C DA 1480 JSR LINGET Get the line number.
purchased, you’ll want to know what to look gl;;l"- 2(; })A D6 11;3(()) fﬁi ll-“gal&N iing itiir; memcéry.Ch
i 2- A5 9B oad pointers to the
for, Now at least you have the basic 35,7 W4 o0 1510 LDY LOWTR+1 desired line.
knowledge that you need.) 0326- 85 02 1520 ° STA PTR2 Save to zero page
Next time we’ll look at a special type of 0328- 84 03 1530 STY PTR2+1 locations.
byte that is used on diskettes and causes a 1540 * he add 2 e il By £ ik 4
i i - 1550 * Take the address of the link bytes o e secon
lot o-f probiems for !hos%;‘mqre;;ed“;::svﬁ:e 1560 * (following) line and store them as the link bytes
coming copy protection. 1his IS own 1570 * in the first (preceding) line.
sync byte. In the mean time, try experiment- 1580 *

(@ ing with what you've learned so far. If you 032A- A0 00 1590 LDY #30, Inicialize the index.
come up with any interesting cracking or pro- 032C- A5-02 1600 LDA PTR Lo-byte link of secon ne
tecting techniques, let us know about them. gggg: gé 00 ig;g ?EQ (PTR),Y stored in first line number.
If we publish yours, you'll get a free six- 331 A5 03 1630 LDA PTR2+1 Hi-byte link of 2nd line number
month extension to your current sub- 0333- 91 00 1640 STA (PTR),Y stored in first line number.

scription. 0335- 60 1650 RTS

y

14

Apple Software Protection Digest

HIDING PROGRAM LINES FROM BASIC

by Eric Wachtenheim

I recently bought your assembly language
book, Now That You Know Apple Assem-
bly Language: What Can You Do With It?
With it 1 got a free copy of your Apple Soft-
ware Protection Digest and read the article
on finding Applesoft program lines. I also
saw the challenge of making a program that
automatically hides the lines and saw the 6
free issue bonus for completing this program
and set at it.

My first step towards making this program
was analyzing the format in which the Ap-
ple stores its Applesoft programs. I learned
by looking through memory that the first two
bytes of a line point in Lo/Hi byte format
to the next line. After that was two bytes for
the line number, also in Lo/Hi byte format,
and then the tokens that represent the vari-
ous BASIC keywords (e.g. PRINT, REM,
GOTO, etc.) I saw for each line with five col-
ons at the beginning that there were five
“3A”s right after the line number. Seeing this
I decided to check if the first five characters
of each line were “3A”s and if they were, |
change the first 3A to a 00. I proceeded to

do this using the next-line pointer to find out
where the next line began. The result is the
program below. It must be appended to the
program on which you wish to hide the lines.
It can be activated by typing RUN 63000.

This magazine reminds me of the very be-
ginning of another protection oriented maga-
zine which has grown to be very informative
and popular. This rapid growth is in my

63000
63010
63020
63030
63040
63050
63060
63070
63080
63090
63100
63110
63120
63130
63140

REM *%kkkkkkkkhkhkhkkkkkhkkkkkkhk

REM * LINE HIDER *
REM * BY ERIK WACHTENHEIM *
REM *%*kkkkkkkkkkkkkkkhkkkkkhkk
REM

REM LINES TO BE HIDDEN MUST
REM BE PRECEDED BY 5 COLONS
REM THIS SUBROUTINE MUST BE
REM APPENDED TO THE TARGET
REM PROGRAM AND CALLED FROM
REM THERE WITHIN. GOOD LUCK
REM

BASE = 2049

IF PEEK (BASE)
IF PEEK (BASE + 4)
PEEK (BASE + 6) =
(BASE + 8) = 58 THEN POKE BASE
63150
63160
63170

GOTO 63130
END :
INSTEAD OF AN END.

opinion do to the contributions of the read-
ers. So come on all you ASPD readers, con-
tribute!!

" Thanks for your contribution Eric. Since you

were the only one to submit a BASIC pro-
gram to hide lines, the 6-month subscription
prize is yours. Keep the contributions
coming.

= 0 AND PEEK (BASE + 1) =:0:THEN 63170
= 58 AND PEEK (BASE + 5) = 58 AND
58 AND PEEK (BASE + 7) = 58 AND PEEK

+ 4,0

BASE = PEEK (BASE) + 256 * PEEK (BASE + 1)
REM IF USING AS A SUBROUTINE PLACE A RETURN HERE

Hiding Machine Language
continued from page 11

a line is added or deleted), your machine-
language program will get clobbered.

The only way you can save this program
out to a diskette is to use the BRUN MAK-
ER program. To do this, RUN BRUN
MAKER and have it load in your Applesoft
program. When BRUN MAKER returns you
to the Applesoft mode, BLOAD your
machine language program where it belongs
and then from the immediate mode (with no
line number) type VTAB 24 and trace over
the CALL statement. Your Applesoft pro-
gram with the machine language program in
the string will now be safely recorded on a
diskette.

To check out the program, just type RUN.
The computer will type out the message in
line 10, delay for a few seconds, and then
return with the Applesoft prompt (]). It never
got to the last line of the program, because
the call to the machine language routine
erased all of memory. Go ahead, try to list
the program. It’s not there. Unlike the NEW
or FP commands which only erase pointers
to the program (allowing it to be reconstruct-
ed by an ambitious cracker), WIPEOUT 1,
erased every memory location from the be-
ginning of BASIC to the beginning of DOS.
There’s no way that the program can be
resurrected.

While the example that | have given was
for storing programs in strings, the identi-
cal technique can be used to store machine
language program in REM statements.

continued from page 13

10 REM BASIC PROGRAM TO INSTALL
20 REM APPLESOFT LINE-HIDE #1
30 REM

40 TEXT : HOME

50 PRINT "APPLESOFT LINE-HIDE #1": VTAB 5

60 FOR X =1 TO 90

70 READ Y

80 POKE 767 + X,Y

90 NEXT X
100 PRINT :
110 CALL 768
120 DATA 169,11,160,3,141,246,3,140
130 DATA 247,3,96,32,183,0,208,31
140 DATA 165,103,164,104,133,0,132,1
150 DATA 160,0,177,0,72,200,177,0>
160 DATA 72,240,53,32,68,3,104,133
170 DATA 1,104,133,0,184,80,233,32
180 DATA 12,218,32,26,214,144,35,165
190 DATA 155,164,156,133,0,132,1,32
200 DATA 68,3,240,22,160,4,177,0
210 DATA 201,58,208,14,200,192,9,144
220 DATA 245,160,4,169,0,145,0,96
230 DATA 104,104,96

PRINT :

PRINT "INSTALLATION COMPLETE."™

10 REM BASIC PROGRAM TO INSTALL
20 REM APPLESOFT LINE-HIDE #2
30 REM

40 TEXT : HOME

50 PRINT "APPLESOFT LINE-HIDE #2": VTAB 5

60 FOR X

70 READ Y
80 POKE 767 + X,Y
90 NEXT X
100 PRINT :
110 CALL 768
120 DATA 169,11,160,3,141,246,3,140
130 DATA 247,3,96,32,12,218,32,26

1 TO 53

PRINT :

PRINT "INSTALLATION COMPLETE."

140 DATA 214,165,155,164,156,133,0,132

150 DATA 1,32,190,222,32,12,218,32

170 DATA 132,3,160,0,165,2,145,0
180 DATA 200,165,3,145,0,96 !

DATA 26,214,165,155,164,156,133,2

Vol. 1, No. 2 — January/February 1986

15

A HANDY DECIMAL/HEXADECIMAL CONVERTER

As you get more and more involved in pro-
tecting and unprotecting programs you'll find
yourself using hexadecimal numbers more
frequently. You'll find that having a quick
and easy way of converting numbers back
and forth between decimal and hexadecimal
will become essential. If you've got a Texas
Instruments Programmer calculator or a pad
of our Programmer’s Number Conversion
System forms, then you’ve got the problem
licked. If not, you'll probably find this short
utility program to be extremely useful. It can
reside in memory while you're working on
other programs and be instantly called up by
using the ampersand (&) character.

Of course, you can write a BASIC pro-
gram to do the conversion, but that would
mean it couldn’t be conveniently available for
use while you're working on other BASIC
programs. The alternative is to use a
machine-language program to do the conver-
sions for you. That’s where the
HEX/DECIMAL/HEX CONVERTER
program comes in. This program will allow
you to convert numbers in either direction.
An added advantage of the program is that
it does not have to be used in an Applesoft
program only, but can also be used in the
immediate mode. A fully-commented assem-
bly listing of the program and an Applesoft
program to load and activate the converter
are provided. continued on page 10

Editorial

continued from page |

Free unclassified ads

Starting with the next issue, we’re going
to add an Unclassified Ad section to the
Digest. Subscribers are each entitled to one
free unclassified ad. Ads must be typed dou-
ble spaced, contain no more than 50 words
and include full name and address. Ads are
printed on a first-come, first-served, space
available basis.

Protection consultants wanted

Frequently we get requests from people
who are interested in hiring a consultant to
implement a copy protection scheme. If
you're knowledgeable in this area and are
available for consulting work, please write
us a letter stating your experience in this area,
and what your consulting fee is. Be sure to
include your name, address and phone num-
ber. We will place you on a list that will go
out to all those who inquire. While our
Digest deals only with the Apple computer,
several of the requests we've had deal with
other computers as well, so please list all the
computers that you offer protection consult-
ing for.

Jules H. Gilder
Publisher & Editor

003E-
0050-
00B1-
0200-
03F5-
DD67-
£199-
E752-
ED24-
F941-
FDDA-
FDED-
FFA7-

0300-
0302-
0304-
0306-
0309-
030C-
030F-

0310-
0312-
0314-
0317-
031A-
031C-
031F-
0321-
0323-
0326-
0328-

032B-
032D-
0330-
0332-
0334-
0337-
0338-
033A-
033D-
033E-
0341-
0343-
0345-
0347-
0349-
034C-
034E-
0350-
0352-

A2
A9
AQ
8E
8D
8C
60

Cc9

20

20
A9
20
A5

20
A5
4C

AO
20
FO
49
99
c8
DO
99
A8
20
A6
AS
co
90
4C
Cco
BO
A9
4c

4C
10
03
FS
Fb
F7

24
17
67
52
A4
ED
51
03
DA
50
DA

03
03
03

DD
E7

FD

FD
FD

00

02

02
FF

ED

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1120
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260

1270.

1280
1290
1300
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540

1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860

kkkkkkhkhkhkkkhkhhkkhhkhkhhkhkhhkkhkhkhkkkhkkkk

*kk *kk
%% HEX/DECIMAL/HEX CONVERTER ***
*kk *kk
Kkk COPYRIGHT (C) 1982 BY *kk
kkk JULES H. GILDER Kk
Kk ALL RIGHTS RESERVED *kk
*kk *kk
dkhkkhkkhkhkkkkhkkhkkhkkhkhkkkhkkkkkkkkkhkkkkkkkk
*

.OR $300
*
* EQUATES
*
A2L .EQ $3E
LINNUM .EQ $50
CHRGET .EQ $B1
IN .EQ $200
AMPERSD .EQ $3F5
FRMNUM .EQ $DD67
IQERR .EQ $E199
GETADR .EQ $E752
LINPRT .EQ $ED24
PRNTAX .EQ $F941
PRBYTE .EQ $FDDA
COuT .EQ $FDED
GETNUM .EQ $FFA7

*

* This is where the ampersand (&) vector
* jump is set up.
*

W2 ok Ok Ok Ok Ok OF 3k OF Ok

TART

PRINTLO

*
*

LDX
LDA
LDY
STX
STA
STY
RTS

This part
see if the character immediately following
the ampersand (&) was a dollar sign.

If it was, control is passed to the
routine that converts from hexadecimal
Otherwise the number is
decimal and converted to hexadecimal.

to decimal.

CMP
BEQ
JSR
JSR
LDA
JSR
LDA
BEQ
JSR
LDA
JMP

#$4C
#START
/START
AMPERSD
AMPERSD+1
AMPERSD+2

Get JMP op code and

the low and high bytes

of START's address and

store them in locations
$3F5, $3F6 and $3F7.

of the program checks to

#$24
HEXIN
FRMNUM
GETADR
#$AL
couTt
LINNUM+1
PRINTLO
PRBYTE
LLINNUM
PRBYTE

Is it a dollar sign ($)?
Yes, convert hex to decimal.

No, evaluate number or formula.

Convert to integer form.
Output a dollar sign ($).

Get most high byte.

If zero, get low byte.
Otherwise print high byte.
Get low byte.

Print it.

* This routine handles the hexadecimal
* to decimal conversion.

*

HEXIN
HEXIN2

PUTBUF

[NRANGE

PRINTIT

LDY
JSR
BEQ
EOR
STA
INY
BNE
STA
TAY
JSR
LDX
LDA
CPY
BCC
JMP
CPY
BCS
LDA
JMP

#$0
CHRGET
PUTBUF
#$80
IN,Y

HEXIN2
IN,Y

GETNUM
A2L
A2L+1
#$6
INRANGE
IQERR
#$3
PRINTIT
#$0
LINPRT

Zero offset index.

Get the next character.
Store in buffer and convert.
Set high bit.

Store in input buffer.
Increment offset index.

Get next character.

Store zero in buffer.

Zero offset index.

Convert ASCII to hex.

Store low byte in X-register.
Store high byte in Y-register.
Check if number too large.
No, it's okay.

Yes, print error message.
Converting only 1 byte?

No, do both.

Yes, do just one.

Convert and print number.

16 Apple Software Protection Digest

PR S S Ty TR e

APPLESOFT LINE FINDER AND VANISHER

by Adam Levin

'l take a shot at seven (vee issues of your 1120 JOR $200 .‘
fine magazine! L have written written a rou- 125% RDKEY ., KQ FDOC Monitor read routine,
tine to antomatically hide BASIC program }ggg START jg{: :rrlu':?'l;rli‘ zn;ml“%;r:r 5;:’: gg“:hw
lines that have tive colons in front of them, 1680 BGC NOLINE where my [’m" IO'C tusertad,
The routine is short, sweet and simple, and a1 LDY #$4 Offset to uklz next line pointer & number.
iteven overwrites those four pesky JAs (the }gg% }iga '(' Lgkl’l‘ﬂ).v {E }:ttch".ﬁ .{t. colon?
hex code for a colon), ! 6, make zero,

To save time and effort, the program has 1684 BNE It's not continue Jules' routine.

e - : | 1685 .0 S8TA (LOWIR),Y Store zero in line, and

been written as an addition to the Applesolt — 1ga6 INY F" ready to index to next byte.
Line Finder program that was published in =~ 1687 cpy #,9 ant all possible colons?
the last issue. All you have to do is add the {:gg ls!'(i“g - :n, conttn:’u Jtl:ln{ ::uttno.
lines listed below to that file and the result- 0, pave index for later.
§ SN R Q 1690 JSR RDKEY Get a character to put in place
\ag program will not only display the BAS. 4o JSR COUT of colon and echo 1t to screen.
IC line as it stored in memory, but it will 1692 LDY TEMP Restore the index.
also prevent it from being listed out from 1693 CMP #880 <RETURN> key?
BASIC. 1694 BNE No, put it into line & repeat.

As an extra added bonus, my routine will 1695 1 LDY #0 This 1s your line with local label.

: 1880 IC instead of monitor.
add from one to four characters in place of RTS Return to BASIC ‘ins

from one to four 3As, The characters to be
substituted for the 3As, are typed directly in
from the keyboard. If you don't want to
change the 3As, just press RETURN. Also
note, that my additions will never alter a line
which doesn't begin with a colon (which no
normal line needs to do).

You did a nice job Adam but one thing you 10 TEXT : HOME : PRINT "APPLESOFT LINE VANISHING PROGRAM": VTAB 5

A 20 FLASH : PRINT "INSTALLING MACHINE LANGUAGE PROGRAM.'
Jorgat to do was to check that all five col- 35 NSAR,S“L

ons were present. [f they're not (let’s say only 30 FOR X = 1 TO 272
Jour are present) the modifications that your 40 READ Y

program makes will cause the BASIC pro- 28 NE;:,?.KE 703 + X,Y ‘
gram to crash. This is not the best program 70 yTAB S: PRINT "INSTALLATION HAS BEEN COMPLETED. TO USE"

submitted, but we will reward your effort by 75 PRINT "THE PROGRAM, TYPE '& LINENUMBER'. IF THE'";
giving you a free three month subscription. 80 PRINT "LINE IS PRECEDED BY 5 COLONS, IT WILL BE";

Let’s see what else you can do. For those of 85 PRINT "HIDDEN AND A HEX DUMP OF THE LINE WILL'

. s . 90 PRINT "BE DISPLAYED. IF THE 5 COLONS ARE NOT"
you who missed the last issue, I've included 92 PRINT "PRESENT, JUST THE HEX DUMP WILL BE"

@ BASIC program listing that implements the 93 PRINT “'DISPLAYED." ;
Applesoft Line Finder with Adam Levine’s 94 PRINT : PRINT "PRESS ANY KEY TO CONTINUE'";: GET A$: PRINT
modification to it 96 CALL 704
: 100 DATA 32,88,252,169,218,160,2,32
110 DATA 169,3,162,76,169,47,160,3
120 DATA 142,245,3,141,246,3,140.247
130 DATA 3,96,193,208,208,204,197,211
140 DATA 207,198,212,160,204,201,206,197
150 DATA 160,198,201,206,196,197,210,141
160 DATA 141,194,217,160,202,213,204.197
170 DATA 211,160,200,174,160,199,201,204
. 180 DATA 196,197,210 141,195,207,208,217
CRACKS WANTED 190 DATA 210,201,199,200,212,160.168.195
200 DATA 169,160,177,185,184,178,141,193
Every month we will devote one section of 210 DATA 204,2010,;60,210,201 ,199,200,212
the magazine to listing programs that you, ~ 220 DATA 211,160,210,197,211,197.210.214
our rea::lers would liki 'lJoosgee cracked)(Iun- 230 - DATA 197’196’1“’“‘1:141:141 :0‘32 '
A . 240 DATA 12,218,32,26,214,144,73,160
protected). Apyone submitting a technique 250 DATA 4,177,155,73,58,208,21,145
for unprotecting any of these programs will 260 DATA 155,200,192,9,176,14,132,8
receive 2 months of the Digest for free. Be- %gg D:%: ggilf&f536325327i§3361‘1’§588
‘1 1 - D » b 3] 3)
:;’1“ 'S?Sh"" l'ls‘."rpmgmm cracks ’eq:“' 290 DATA 32,135,3,169,160,32.237,233
50 far, so let's see you get to work on 350 para 177,155,208,8,165,8,201,5

these. 310 DATA 176,13,169,0,32,218,253,32

. 320 DATA 160,3,202,240,227,208,228,169
1. Sensible Speller — DOS 3.3 330 ‘DATA 0,32,218,253,32,142,253,96
2. Sensible Speller — ProDOS 340 DATA 169,191,160,3,76,169,3,32
3. Néssioom 350 DATA 142,253,169,160,32,237,253,162
4. Disk-O-Check 360 DATA 8,165,156,32,218,253,165,155
: 370 DATA 32,218,253,169,186,76,237,253
5. Dazzle Draw . 380 DATA 230,155,208,2,230,156,230.8 .
6. Crush, Crumble and Chomp 390 DATA 96,133,24,132,25,160,0,177
7. Wizardry 400 DATA 24,240,11,32,237,253,230,24
8. Word Handler 410 DATA 208,245,230,25,208,241,96,141

420 DATA 206,207,160,211,213,195,200,160
430 DATA 204,201,206,197,135.141.0,0

Vol. 1, No. 2 — January/February 1986

WIPEOUT: THE ULTIMATE WEAPON OF DESTRUCTION

The ultimate method of preventing un-
authorized access to your program is to com-
pletely wipe it out of memory. I don't mean
you should implement a NEW or even an FP
command, if the program is in BASIC. That
only changes the program pointers, and
leaves the bulk of the program intact in
memory, ready for the would be cracker to
resurrect it. And if you did take that ap-
proach, how would you handle machine code
programs? No, the ultimate answer to get-
ting rid of your program is to totally obliter-
ate it by filling all of memory with zeros, or
some other byte if you've a mind to.

Drastic as this may sound, implementing
the actual task is really quite simple and re-
quires only very short and simple machine
language programs. Of course, a BASIC
routine could be used to do most of the job,
but that would be easily detectable, and
would take quite a bit of time too. No,
machine language is definitely the right
choice for this job, and here’s how to do it.

Two different approaches

Since the task is really quite simple to im-
plement, I will show you two different ways
to do it. Both have their advantages and dis-
advantages. The first program is called, ap-
propriately enough, WIPEOUT 1, and while
it is the longer one of the two, it is also more
flexible and harder to detect.

WIPEOUT 1 makes use of the fact that
if we stuff the input buffer, which starts at
location 512 ($200), with a valid string of
monitor commands and then jump to the ap-
propriate place in the F8 ROM, that series
of commands will be implemented. This ap-
proach to wiping out memory is quite uncon-
ventional from a programming point of
view, which is one of the reasons it’s harder
to detect (people don’t know what they’re
looking at). For those of you who have done
some work while in the Apple’s monitor
mode however, you'll recognize this as be-
ing a quite common approach to the sit-
uation.

Looking at the assembly language source
listing you’ll notice that the first thing the
routine does is to store a zero in the auto-
run flag. I've included that just in case your
program set it, so that you don’t have to
remember to reset it. The rest of the code
simply moves the command string from its
current location into the input buffer. And
finally, line 1200 jumps to the ROM routine
that causes the command in the input buffer
to be executed.

If you look at line 1220, you notice that
the command string ends with a hex $82.
This is the code for a Control-C, and it cause
the computer, which would normally return
to the asterisk prompt in the monitor mode,
to instead return to the Applesoft mode. As
long as this short program resides somewhere
in the $800 to $95FF memory range, the pro-

00D6-
FF70-

02D0-
02D2-
02D4-
02D7-
02DA-
02DB-
02DD-
02DF-
02E2-
02E5-
02E8-
02EB-
02EE-
02F1-
02F4-
02F7-

1000 *hkkdkkhkhkkhkhhkkhkhhkhrhkhhkk
1010 *** kkk
1020 *** WIPEOUT 1 hkk
1030 *** hkk
1040 *hkhkkhhkkkhkkhhkkkhkkhhkkkkkk
1050 *
1060 *
1070 .OR $2D0O
1080 *
1090 RUNFLAG .EQ $D6
1100 EXECUTE .EQ $FF70
1110 *
1120 *

A0 00 1130 LDY #$0

84 D6 1140 STY RUNFLAG

B9 E2 02 1150 LOOP LDA STRING,Y

99 00 02 1160 STA $200,Y

Cc8 1170 INY

Cc9 82 1180 CMP #$82

DO F5 1190 BNE LOOP

4C 70 FF 1200 JMP EXECUTE

B8 BO BO

BA BO AO

CE AO B8

BO B1 BC

B8 BO BO

AE B9 B5

C6 C6 CD 1210 STRING .AS -"800:0 N 801<800.95FFM"

82 1220 .HS 82

REM BASIC PROGRAM TO INSTALL

2 REM WIPEOUT 2 PROGRAM
3 REM
30 TEXT : HOME
40 FOR X = 1 TO 26
50 READ Y
60 POKE 543 + X,Y
70 NEXT X
80 PRINT : PRINT : PRINT "INSTALLATION COMPLETE."
90 PRINT : PRINT "CALL 544 TO USE WIPEOUT 2"
100 DATA 169,8,133,7,169,0,168,133
110 DATA 6,133,214,145,6,200,208,251
120 DATA 230,7,165,7,201,150,208,236
130 DATA 96,82
1000 *****************************
1010 *kk *kk
1020 *** WIPEOUT 2 *kk
1030 *kk *%k%k
10[.0 *****************************
1050 *
1060 *
1070 .OR $220
1080 *
0006- 1090 POINTER .EQ $06
00D6- 1100 RUNFLAG .EQ $D6
9600- 1110 STARTDOS .EQ $9600
1120 *
1130 *
0220- A9 08 1140 LDA #$8
0222- 85 07 1150 STA POINTER+1
0224- A9 00 1160 LOOP1 LDA #$0
0226- A8 1170 TAY
0227- 85 06 1180 STA POINTER
0229- 85 D6 1190 STA RUNFLAG
022B- 91 06 1200 LOOP2 STA (POINTER),Y
022D- C8 11210 INY
022E- DO FB 1220 BNE LOOP2
0230- E6 07 1230 INC POINTER+1
0232- A5 07 1240 LDA POINTER+1
0234- C9 96 1250 CMP /STARTDOS
0236- DO EC 1260 BNE LOOP1
0238- 60 1270 RTS

18

Apple Software Protection Digest

gram will not only wipe out the program you
want to protect, but itself as well. To make
it easy for you to key in and use the program,
it has_been converted to a short Applesoft
BASIC program.

More conventional destruction

A more conventional way of wiping out
memeory is shown in the program. This is
probably the way most programmers would
approach the task if asked to implement it.
The advantage of this approach is that it is
much shorter than the other one. It takes

memory wipeout begins, the autorun flag is
reset to zero. '

Once again for your convenience, the
machine language program has been convert-

ed to a BASIC one. By using either one of
these techniques, you can make it much
harder for prying eyes to find out what
you’re doing.

1 REM BASIC PROGRAM TO INSTALL
2 REM WIPEOUT 1 PROGRAM

PRINT "INSTALLATION COMPLETE."

3 REM
30 TEXT : HOME
40 FOR X = 1 TO 40
50 READ Y
60 POKE 719 + X,Y
70 NEXT X
80 PRINT : PRINT :
90 PRINT : PRINT "CALL 720 TO USE WIPEOUT 1"

only 26 bytes instead of the 40 required by 100

the other routine. This might be an import- 38
ant factor if memory space is of the essence, 130
as it so often is. Again, before the actual 140

DATA 160,0,132,214,185,226,2,153
DATA 0,2,200,201,130,208,245.76

DATA 112,255,184,176,176,186,176,160
DATA 206,160,184,176,177,188,184,176
DATA 176,174,185,181,198,198,205,130

BECOME AN ASSEMBLY LANGUAGE
PROGRAMMING WHIZ

“Now That You Know Apple Assembly Language: What Can You
Do With It?” will take you step-by-step through the assembly
language programming experience. You'll delve into the
mysteries of the 6502 stack and learn how to use it to increase
the power and versatility of your programs. You'll also learn how
to use the Apple’s built-in routines to minimize the amount of
coding you must do.

Control the output and the input

Frequently it's desirable to gain total control of the computer’s
output. This book shows you how to steal control away from the
Apple’s normal output routines and redirect it to your own pro-

| "NOTE: Shipping and handling fees are not refundable.

Redlig Systems, Inc., Dept. A 9783
2068—79th St., Brooklyn, NY 11214

'

' '
']
;)
1

« Pleaserushme _____ copies of “Now That You Know '
. Apple Assembly Language: What Can You Do With ;
112" at $19.95 each plus $2 shipping and handling. |
, understand that if | am not delighted with the book .
« I may return it within 10 days for a prompt and courte-
1 ous refund. In any case, the Programmer’s Number '
« Conversion System and $5 coupon are mine to keep.
. _Enclosed is my check for$ _ X
' Please charge my credit card: :
; ;
] 1

] '

' '

.- American Express ' MasterCard | Visa
CardNo. . Exp. '
Signature _
Name —
Address S
City _. State Zip___

. Applesoft programming, you'll be able to do it faster with the

gram. Thus if you wanted, you could see the normally invisible
control characters, display text on your screen as black on white
instead of the normal white on black, format text sent to a printer
into pages and much more.

Expand the power of your Apple by stealing control away from
the normal input routines. Do things like adding a screen print
capability, or convert part of the normal keyboard into a
numeric keypad. It's even possible to produce self-modifying
programs by EXECing in commands from RAM instead of
from the disk drive. Think about the possibilities that offers for
protecting your programs. When you want to go back to

aid of Applesoft Shorthand, an assembly language program
that types in one or more Applesoft commands at the press of
a key, or use another program in the book to automatically
count the number of lines in your Applesoft program.

With this book you'll also learn about generating tones and
how to figure out the frequency, producing sound effects,
teaching your Apple to send Morse code, restoring
accidentally erased Applesoft programs, adding new
commands to Applesoft and running two Applesoft programs
in memory together, to name a few.

As an extra bonus for prompt ordering, you'll receive a FREE
coupon worth 85 off the price of a disk with all the assembled
programs on it or a disk that contains the source code. These
disks normally sell for $15 each. We're offering these FREE
gifts for a limited time only, so hurry! Order today!

Money-back guarantée'

We're so confident that you'll find this book invaluable and
want it in your library, that we're offering a 10-ddy,
no-questions-asked, money-back guarantee. Order the book.
Read it and try the programs for ten days. At the end of ten
days if you don't think it's worth every penny you paid for it,
just send it back in resalable condition and we'll refund your
money immediately, no questions asked.

@

Vol. 1, No. 2 — January/February 1986

19

REVIEW: Locksmith 5.0 Level G

by J. Scott Barrus

First let me preface my review with the
comment that | really wanted to review the
much publicized Locksmith 6.0, but as late
as February 17th, Alpha Logic Business Sys-
tems was still not shipping the program.
They have my order, and money, for over
a month and say that it should be shipping
any day now, but I’ve heard that before.
With this in mind, I'll therefore go ahead
with a review of the latest, currently availa-
ble version of Locksmith.

Locksmith was one of the first anti-copy
protection programs out on the market and
was originally produced and marketed by
Omega MicroWare. The original Locksmith
could copy programs with almost any pro-
tection scheme that was in use when it first
came out. Naturally, upon hearing this, soft-
ware manufacturers rushed to change their
schemes so that they would be Locksmith
resistant. As they changed, so did Lock-
smith. The race was on. Over the years, a
total of seven different revisions have come
and gone, with the last currently available
one being 5.0 level G.

It has an impressive manual

The program comes with an impressive
139 page manual that discusses everything
from the history of Locksmith and protec-
tion schemes, to how to use the program. To
supplement the manual, Omega MicroWare
decided to come out with a Locksmith News-
letter. They came out with one issue. (Edi-
tor’s note: Alpha Logic Business Systems
decided to pick up on that idea too, but in
spite of the fact that they collected money
for it, no further issues were ever produced.)
The issue of the newsletter that did come out
gives suggestions on how to use some of the
harder to understand functions of
Locksmith.

The Locksmith manual is very technical,
and most people will find it hard to read and
use. Alpha Logic Business Systems has said
however, that they are in the process of re-
writing the manual. They claim that this will
be available to all former Locksmith own-
ers, but I suspect that it will really only be
pertinent to the next release, Version 6.0 of
Locksmith, and that it would be of limited
value to Version 5.0 owners. Nevertheless,
the company says that it is being written with
the average user in mind. This contrasts with
the former manual which assumed you were
an expert, or at least an advanced user.

When the program is booted up, the user
is asked if he wants to load the language
card. Upon further investigation of the
manual, | found out that this is how The In-
spector is loaded into memory. The next

thing that the user sees is the main menu.
There are many options available to the user
from this menu. The program always goes
to an option and then returns to this main

menu. The utilities that come with the pro-
gram, as well as the copier, are:

e Backup/copy disk

e Parameter changes

e Text editor

e Quick scan disk

e 16 sector utilities (fast disk verify,
backup, format, compare, sync signature)

® [nspector/Watson

e Erase diskette

e Nibble editor

e Disk speed

e Certify disk

One of the important aspects of Lock-
smith is that there is built into it a Locksmith
Programming Language. Files (called LPL
files), produced by the editor for use with this
language, allow the user to change different
algorithms, parameters and send special in-
structions to the screen. The manufacturer
makes available a file of parameters for a
variety of programs, or if you wish, you can
key the file in yourself from the newsletter.
There is also a default file that comes on the
Locksmith diskette.

It’s not easy to use

The Locksmith Programming Language is
not easy and it takes some time and effort
to study and master it. The language is not
needed however, because the user can change
parameters and algorithms manually. The
problem with the manual approach,
however, is that if at a later date you want
to use the same changes, you must again
enter them manually. Nevertheless, | have
found that for occasional copying of a dis-
kette, the manual approach is fine.

Locksmith comes with a text editor that
can be used to change the LPL file. There’s
nothing special about the editor and it can
in fact be used to edit any DOS 3.3 text files.
Due to the slow loading nature of Lock-
smith, however, I'd really recommend other
text editors for non-Locksmith applications.
After loading in an LPL file with the text edi-
tor, you can then copy a disk using this
parameter file by selecting the Backup op-
tion from the main selection menu.

Many options are available

There are many other options available
with Locksmith as well. There is a Disk Scan
option which lets the user visually (through
hi-res graphics) check a diskette to see what
the sync byte format is. A Disk Speed op-
tion can be used to check, and if necessary
adjust, your disk drive speed for best copy-
ing results. Another handy tool is the nibble
editor. With it, the user can access any nib-
bles on the diskette to try and figure out what
protection scheme is being used. With it, a
test of the different algorithms and
parameters can be made to see what is neces-

sary to make the diskette readable. It can also
be used to find specific byte patterns. This
searching capability comes in very handy
when you're trying to locate nibble counting
code.

It’s a powerful copy program

Locksmith is a very powerful copy pro-
gram. It can copy almost anything. The big-
gest drawback that I have found with it is
that the algorithms, although briefly
described in the manual, are still difficult to
understand. There are not enough examples
provided to make their functions crystal
clear. | have been using Locksmith for quite
a while now, and am still not overly com-
fortable using it and the manual to make
backups. Also, it would be very helpful if the
manual had an index in it so that pertinent
information could be easily located. Another
shortcoming of the program and its
documentation is that it is not clear why one
would want to use a particular algorithm.
What'’s the selection process? Why should al-
gorithm A be used and not B? The manual
never tells us.

Another problem with the program is the
everything starts and ends with the main
menu, and there is not enough memory in
the Apple to hold all the Locksmith files in
memory. Thus, the diskette is constantly be-
ing accessed any time a different utility or
change must be made. This is particularly an-
noying when you try to copy a diskette and
fail. You now have to go back to the LPL
file and make some changes there. To do
this, the diskette you were copying must be
removed from the drive, the Locksmith dis-
kette must be re-inserted, the editor loaded,
the LPL file must be loaded, the changes
made, the LPL file must be saved, the copy
option selected, the Locksmith diskette re-
moved and finally the protected diskette
must be re-inserted. If another change has
to be made, and that’s a real strong possi-
bility, the whole process must be repeated
again. It’s certainly not a shining example of
ease of use.

Literature on the new Version 6.0 indicates
that it supports the expanded RAM cards
from Applied Engineering and Checkmate.
Hopefully Locksmith will'set up a RAM disk
in these cards to speed up operation of the
program. ,

Overall, I think Locksmith is a good pro-
gram, although at present it is not easy to
use. It is certainly not recommended for the
faint of heart or those who do not want to
invest the time and effort to learn how to use
it properly. If you're thinking of getting
Locksmith, don’t. Wait until the new version
of it is out. If it’s half as good as the ads
claim it is, it will be a must buy product.
Source: Alpha Logic Business Systems, 4119
North Union Rd., Woodstock, IL 60098.
Call: (815) 568-5166.

20

Apple Software Protection Digest

PROTECTION TUTORIAL — Part 11

In the previous article in this series, we
talked about some of the early techniques
that were used to make it difficult to copy
diskettes. Early techniques were simple, but
effective. But as Apple users became more
sophisticated, more complicated ways of im-
plementing copy protection became
necessary.

Before we get into some of these more ad-
vanced techniques, it will be helpful for us
to understand just how a diskette is format-
ted and how information is stored on it.
While this is normally a subject that is gener-
ally meant for technical types, don’t be con-
cerned. We are going to assume you have no
technical expertise and explain everything
from scratch. So sit back and get comforta-
ble, you're about to learn a little bit more
about the black magic of copy protection.

Formatting a disk

If you have ever placed a new diskette into
a disk drive and tried to save a program onto
it, you undoubtedly heard your drive make
a lot of noise and finally give up, beep and
print the message I/0 ERROR. Go ahead,
try it, you won’t damage anything. The rea-
son this happens is that diskettes fresh out
of the box have absolutely no information
stored on them. Such a disk is not divided
up into tracks or sectors and thus the Apple
doesn’t know where to store data, which is
why it gives the /O ERROR message.

For the Apple computer to be able to use
a diskette, certain information must first be
stored on it that can later be used to tell the
computer exactly where the magnetic head
is located at any particular point in time. This
information is put on the diskette when you
initialize it by using DOS’s INIT command.
The INIT command calls up a machine lan-
guage program that turns the drive on,
moves the magnetic recording head in the
disk drive as far away from the center of the
diskette as possible (similar to moving the
arm and needle of a record player to the very
first selection of a record) and finally starts
recording magnetic information on the dis-
kette. This information divides the diskette
up into 35 tracks that each have 16 sectors
in them. More about this later.

The magnetic head in the disk drive is
mounted on an arm that moves in and out,
from the outer circumference of the diskette
towards its center. The mechanics of the disk
drive are designed such, that this magnetic
head can be moved in discrete steps that are
each one half the width of a normal disk
track. This is done by a special type of mo-
tor called a stepper motor.

When a DOS command is issued for the
first time, the Apple has no idea where the
disk’s magnetic head is currently located, so
itissues instructions to the stepper motor to
move the head back to track zero. If the head
were on track three it would only have to
move back three tracks, while if it were on

track 20, it would have to move back 20
tracks. Since we said the Apple doesn’t know
where the head is, it assumes the head is on
track 80 (which doesn’t exist on standard Ap-
ple disk drives) and tells the stepper motor
to move the head back 80 tracks towards the
outer circumference of the diskette. Since
most Apple drives only work with 35 tracks,
the head reaches track zero long before it
moves back 80 tracks. When this happens,
the arm that the head is mounted on bounces
against a bumper inside the disk drive and
makes that clattering noise that you hear.
You can reduce the noise the disk drive
makes and speed DOS up a bit by changing
this number from 80 to 40. You can do this
from Applesoft BASIC by typing in POKE
48844,40. This can be done either in the im-
mediate mode (without a line number) or
from within a program. Alternatively, if you
wish to modify this number from the moni-
tor mode, simply type BECC:28 and then
press RETURN. If you do this and then in-
itialize a new diskette, the version of DOS
that is put on the newly initialized diskette
will have this modification on it.

Getting on the track

As | mentioned earlier, the Apple divides
a diskette into 35 individual tracks that are
concentric with the large hole in the center
of the diskette. These tracks are not connect-
ed together in a spiral the way the grooves
of a record are, but instead are more like the
rings around a bullseye. Each of the 35 tracks
is given a number from 0 through 34. Thus,
the first track is called track 0 and the 35th
(or last) track is called track 34. Track 0 is
located the farthest away from the center of
the diskette and track 34 is located the closest
to the center.

In addition to electronically dividing a dis-
kette into 35 tracks (remember the marks are
magnetic ones and invisible to the eye) the
computer also divides the diskette into sec-
tors, which can be thought of as the equiva-
lent of slices of a pie. DOS 3.3 divides a
diskette into 16 of these wedge-shaped sec-
tions called sectors. Thus each track has 16
sectors. So with 35 tracks of 16 sectors each,
we have a total of 560 sectors on an Apple
diskette. Each sector is capable of storing 256
bytes of information, for a total storage ca-
pacity of 143,360 bytes of data. On a nor-
mal diskette, not all of this space is available
to store programs because some of it is used
to store DOS and one track (17) is used to
hold the diskette’s catalog information. To-
tal usable space on a normal DOS 3.3 dis-
kette then, is 126,976 bytes, or 496 sectors.

What a formatted track looks like

You will recall that earlier we said that the
Apple couldn’t use new diskettes fresh out
of the box because they hadn’t been initial-

ized and thus didn’t have certain informa-
tion on them. Understanding just what that
information is and how it can be changed,
is the subject of this next section and is the
key to understanding how and why copy-
protected diskettes can be produced.

To better understand the discussion that
follows, take a look at Fig. 1, which is a
representation of a portion of a formatted
track. From this drawing, you can see that
there are many different components that
make up the data storage area of a track. Af-
ter a quick glance at Fig. 1, you can see that
each sector of information that is stored on
a diskette contains two areas known as fields
and two areas known as gaps. You'll also no-
tice that the beginning of a track also starts
with a gap. We'll get back to this in a little
while, but suffice it to say for now, that while
Gap | originally starts out to be unique from
the other two types of gaps, eventually, it
gets converted into a Type 3 gap.

SECTOR 0

GAP | Address | Gap Data Gap | Address
1 Field 2 Field 3 Field
#0 #0 #1

Fig. 1 — Formatted track

If you think you’re getting a little lost, just
hang in there for another minute or so, and
everything will start to become crystal clear.
Now back to our explanation. The purpose
of the gaps on the track is simply to provide
for a separation between the two types of
fields and also to allow the computer to have
enough time to read the information off the
diskette and interpret it. The only difference
between the three types of gaps is their
length. Some are longer than others.

Now, lets concentrate on those areas in
Fig.1 that are labelled as fields. If you look
closely, you'll see that there are only two
types of fields present on a track: address
Sields and data fields.

What’s the address?

The first field that we're going to look at
is known as the address field, and Fig. 2
shows it in more detail. When a diskette is
formatted (initialized) address fields are writ-
ten onto the surface of the diskette for each
and every sector. Thus, if the Apple wants
to locate a particular track and sector, all it
has to do is check the address fields until it
finds the one it is looking for. Each address
field consists of 14 bytes. The first three bytes
are known as the prologue or starting bytes
and they form a unique sequence of bytes.
These specific three bytes will never be found -
anywhere else on a normal DOS 3.3 diskette
except in the address field. This makes it pos-
sible to use them as sign posts to indicate
where an address field starts. The three bytes
that have been reserved by DOS 3.3 as ad-
dress field markers are D5 AA 96 (these are
hexadecimal numbers). Every time DOS sees

Vol. 1, No. 2 — January/February 1986

21

a D5 AA 96 byte sequence, it knows that it
has found the start of an address field.
The two bytes that immediately follow the
prologue, contain information on the volume
number of the diskette. Since this number
is never higher than 255, it can be represent-
ed by only a single byte of data. You may
therefore wonder why two bytes are used in
the address field. The reason is simple. The

Apple hardware cannot be used to read all,,

256 possible byte combinations from a dis-
kette. It is therefore necessary to encode the
data so that all 256 bytes can somehow be
represented. This is done in the address field
(except for the prologue and epilogue bytes)
by writing out all the odd bits of a byte as
one byte (XX) and all the even bits of the

ADDRESS FIELD

Prologue Volume Track Sector Checksum Epilogue
b5 A 96] xx YY [XX ¥¥ [XX Y¥ [XX v¥ [0E An £8|

Fig. 2 — Address field format

same byte, as a second byte (YY). Splitting
one 8-bit byte into two separate bytes me-
ans there will be four extra bits that have not
been defined in each of these new bytes. The
Apple makes sure that each of these new
bytes starts with a 1 and that each bit from
the original byte is separated from the next
by a 1 also. Thus the XX byte would look
like this:

1B71B51B31B1

while the YY byte would look like this:

ed format, is used by DOS 3.3 to insure that
the previous three pieces of information, the
volume, track and sector numbers, are cor-
rect. DOS calculates the checksum when the
diskette is formatted, by performing a
mathematical operation known as an exclu-
sive OR on these three pieces of data. It then
stores the result on the diskette. This makes
it possible to check for data integrity when
reading the diskette by reading the first three
pieces of information and calculating the
checksum. This can then be compared with
the checksum stored on the diskette. If they
match, all is well. If not, data stored on the
diskette is probably corrupted, and thus un-
reliable.

Just as everything must start somewhere,
s0 too, it must end somewhere, and the three
épilogue bytes mark the end of the address
field for DOS. The epilogue bytes have the
values DE AA EB. The address fields are
only written once, when the diskette is initial-
ized. Because of that, in spite of a variety
of utility programs that claim to do other-
wise, it is generally not possible to change
the volume number of a diskette after it has
been formatted. What the programs that
change the volume number do is simply
change the number that is displayed when the
diskette is cataloged. That does not affect the
true volume number of the diskette that is
embedded in the address field of every sector.

Unlike the address field, which is only
written once (when a diskette is formatted),

DATA FIELD
Prologue Used Data Checksum Epilogue
[D5 AA AD| 342 BYTES DATA | XX |DEAAEB|

6+2 encoded
Fig. 3 — Data field format

the data field is re-written every time infor-
mation is saved out to the diskette. The data
field is similar in many ways to the address
field. Like the address field, it features a pro-
logue that uniquely identifies it to DOS as
a data field, a checksum to verify that the
data is stored accurately and an epilogue to
mark the end of the data field (see Fig. 3).
In between the prologue bytes and the check-
sum is an area where data is stored, just as
it is in the address field. The difference here,
however, is that in the address field the data
consisted of the volume, track and sector
numbers. In this case, it consists of the user’s
data. This could be a program, data file, etc.

Encoding the user data

You may recall that earlier we said that
since we couldn’t use all of the 256 possible
byte combinations to store our data on a dis-
kette, that we had to encode it. For the
volume, track and sector numbers, Apple
chose to use a 4 + 4 encoding scheme. While
this is useful, it is also very inefficient, be-
cause with that scheme, you’d have to write

1000 B T S B

1010 *

*

1020 * HEXADECIMAL TO BINARY CONVERTER *
*

1030 *
10&0 P T T TR Rt EE s £ s TS s S e e s et
1B61B41B21B0 1050 *
y " 1060 *
Now, if the volume number on our disk was 1070 .OR $0300
1, the XX and YY bytes would be: 1080 *
FDDA- 1090 PRHEX .EQ $FDDA
*
XX=10101010=AA e
1120 * This routine converts a hexadecimal number
YY=10101011=AB 1130 * into individual binary bits that are
1140 * temporarily stored in the 8 bytes that begin
. . * i i
This method of coding bytes is called by a }{(5:(0) % Skt Che location marked TEMP.
special name, 4 + 4 encoding. If you'rein- 0300 A2 08 1170 LDX #$8 Get length of byte
terested in figuring out what the 4 + 4 en- 0302- 18 1180 CLC Set carry to 0
coded values are for any particular number ~ 0303- OE 11 03 1190 LOOP ASL II;;{TE Shigt :igg bit into Carry
H 0306- A9 00 1200 LDA 0 Load the Carry
between 0/and 255-' just run the the 4 + ¢ 0308- 69 00 1210 ADC #$0 byte into the accumulator
Encoder program listed below and enter the — 304_ 9p 11 03 1220 STA BYTE,X and store it
number of interest. It will tell you what the og30p- cA 1230 DEX Update bit counter
coded value will be. 030E- DO F3 1240 BNE LOOP Ifdnoc end get ne)l(ll: bit
: 0310- 60 1250 RTS En return to caller
Following [he.two bytes reser.ved for the 0311- 00 1260 BYTE BRK Numt’)er to be converted
volume number in the address field are two 312_ FF FF FF
bytes which are reserved for the track num- 0315- FF 1270 TEMP _HS FFFFFFFF Temporary storage for
ber and another two bytes which are reserved 0316- FF FF FF) _
for the sector number. As was the case with 0319- FF }%gg . .HS FFFFFFFF individual bits
the volume number, the track and sector 1300 *
numbers are also stored in 4 + 4 encoded 1310 * This routine takes the byte that is stored in
format. 1320 * location NUMBER and prints it out as a
There are only two more pieces of infor- gzg : hexadecimal number.
mation left to talk about in the address field: 031A- 00 1350 NUMBER BRK
the checksum and the epilogue. The check- 031B— AD 1A 03 1360 PBYTE LDA NUMBER
031E- 4C DA FD 1370 JMP PRHEX

sum, which again is storedina 4 + 4 encod-

22

Apple Software Protection Digest

Table 1
Legal DOS Bytes (Hex)

96 AC BA DS E6 F4
97 AD BB D6 E7 F§
YA AE BC D7 E9 F6
9B AF BD D9 EA F7
9D B2 BE DA EB F9
9E B3 BF DB EC FA
9F B4 CB DC ED FB
A6 BS CD DD EE FC
A7 B6 CE DE EF FD
AA B7 CF DF F2 FE
AB BY D3 ES F3 FF

out 512 bytes to a diskette in order to save
just 256 bytes of data. That would allow for
atotal diskette storage capacity of only 88K,
certainly not very attractive.

The software wizards at Apple however,
devised a different encoding scheme that in-
creased the storage capacity by over 50%. In-
stead of having four data bits per byte as in
the 4 + 4 scheme, they decided to use 6 data
bits per byte. The remaining 2 bits are split
up among other bytes and the whole encod-
ing process is somewhat complex, so we
won't go into it here. Suffice it to say, that
the new scheme is called 6 + 2 encoding and
it converts 256 data bytes into 342 bytes that
are written to the diskette, and results in the
previously mentioned diskette storage capac-
ity of 143K.

What is important for us to know from
this whole discussion is that only certain
bytes are used to store data on a diskette and
that by changing the way they are used, we
can produce copy-protected diskettes. The 6
data bits of the DOS 3.3 encoding scheme
can be used to represent 64 different bytes.
In addition, two bytes, DS and AA, are
reserved for use in the address and data field
prologues only. Thus, only 66 unique bytes
are required to store anything on a diskette.
A list of the valid bytes that can be used is
shown in Table 1.

Making your own protected DOS

Now that we have an idea of how infor-
mation is stored on a diskette by the Apple,
we can go ahead and produce our own pro-
tected DOS by making minor changes to
DOS 3.3.

To prevent any standard copy program
from duplicating diskettes it is only neces-
sary to change any one or more of the pro-
logue, epilogue or checksum bytes. The only
thing to be wary of here is changing the last
byte of the epilogue on either the address or
data fields. A change to this byte will have
no affect because, while it is always written
to the diskette, its value is never checked.

In another approach to copy protection,
the track or sector numbers can be modified.
This is what Muse Software did with their
products. They modified a version of DOS
3.2 50 that it would increment the track num-

were physically 35 tracks on a diskette, they
were numbered O through 70 in increments
of 2.

I you're going to change the prologue
bytes, you must be careful. You may recall
that earlier we said that two of the bytes in
the address field (DS and AA) were reserved
bytes that don’t appear anywhere else on the
diskette. That is essential to insure that DOS
knows how to locate the address and data
fields. If you're going to change these bytes,
you must make sure that whatever pattern
you do decide on is unique.

One common technique that was used in
carlier protection schemes was to simply
reverse the first two bytes of the prologue.
Alternatively, you could substitute a new
value for bytes 2 or 3 of the prologue. Just
make sure you use one of the bytes that are
listed in Table 1.

In order to substitute new values for the
standard ones, you have to know where to
put them. That’s the job of Tables 2 and 3.
They list the locations in DOS 3.3 that have
critical bytes that can be easily changed to
produce a custom, protected DOS. One thing
to pay attention to, is that for every
parameter that you change, two separate lo-
cations must be modified: one for the rou-
tine that deals with reading data, and the
other for the routine that deals with writing

Table 2
Address Field DOS Locations

Location Byte Address
Hex Decimal
Prologue Read D5 B955 47445
AA B95SF 47455
96 B96A 47466
Prologue Write D5 BC7A 48250
AA BC7F 48255
96 BC84 48260
Epilogue Read DE B991 47505
AA B99B 47515
Epilogue Write DE BCAE 48302
AA BCB3 48307

data. If you do one and not the other, you’re
going to wind up with problems.

To put our new-found knowledge to work,
let’s produce a protected DOS by swapping
the first two bytes of the address field pro-
logue. To do this you can get into the moni-
tor mode by typing CALL -151 and type in

continued on puge 8

10 TEXT : HOME

20 A$ = "4 + 4 BYTE ENCODER'": GOSUB 420
30 PRINT :A$ = "COPYRIGHT (C) 1986 BY': GOSUB 420

40 A$ = '"JULES H. GILDER": GOSUB 420

50 A$ - "ALL RIGHTS RESERVED": GOSUB 420

60 PBYTE = 795

70 FOR X = 1 TO 33

80 READ NUM

90 POKE 767 + X,NUM

100 NEXT X
110 PRINT : PRINT : PRINT :
NUM

120 IF NUM > 255 THEN PRINT :

INPUT "ENTER NUMBER TO BE CONVERTED: -

,

PRINT ~CHR$ (7);"NO NUMBER LARGER

THAN 255 MAY BE ENTERED": GOTO 340

130 POKE 785,NUM
140 CALL 768
150 FOR I = 8 TO 2 STEP - 2
160 X(1) =1
170 X(I - 1) = PEEK (785 + I)
180 Y(I) =1
)

190 Y(I - 1) = PEEK (784 + I)

200 NEXT 1

210- X =0

220 Y = 0

230 FOR I =1 TO 8

240 X=X+ 2~ (I -1)* X(I)
250 Y=Y4+2A (I -1) *y(I)
260 NEXT I

270 PRINT : PRINT :

280 PRINT : PRINT "IS: '";

290 POKE 794,X

300 CALL PBYTE

310 PRINT '"4'";

320 POKE 794,Y

330 CALL PBYTE

340 PRINT : PRINT :
350 IF
360 PRINT : PRINT : PRINT

370 DATA 162,8,24,14,17,3,169,0

PRINT :

380 DATA 105,0,157,17,3,202,208,243

PRINT "THE 4 + 4 ENCODED VERSION OF '';NUM

INPUT "CONVERT ANOTHER NUMBER? '';A$
LEFT$ (A$,1) = "Y" OR LEFT$ (A$,1) - "y" THEN J10

390 DATA 96,10,255,255,255,255,255,255
400 DATA 255,255,0,173,26,3,76.218.253

410 END
420 L = LEN (A$)
430 PRINT TAB((40 - L) / 2);A$

ber by two instead of one. Thus, while there 440 RETURN

Vol. 1, No. 2 — January/February 1986

23

Now, for the first time, owners of Apple // ser-
ies computers can learn all about the tricks and
techniques used to protect Apple software. Ap-
ple Software Protection Digest, a new monthly
publication, will show you how to protect, un-
protect and backup your software.

¢ Prevent others from accessing your programs

e Make your programs difficult to copy

¢ Overcome protection schemes on commercial
software

¢ Build a library of protection-oriented utility
programs

e Get help with your specific problems

e Learn about the latest advances in protection
hardware and software

All this and more can be yours by subscribing

to the Apple Software Protection Digest. A one-
year subscription is $24, two years is $42.

SUBSCRIBE TODAY!

REDLIG SYSTEMS, INC., Dept. A1357
2068 - 79th St., Brooklyn, NY 11214

Please enter my __

[Enclosed is my check for

[Please charge iny credit card:

SOFTWARE PROTECTION
TECHNIQUES EXPOSED!

APPLE) 7
SOFTWARE ¢ F\’
PROTECTION A \

DIGEST

- Prommare itsue

LEARNING TO LIVE WITH PROTECTION

Wk e g (b o el

Contents

veat, subscription to Apple Software Protection Digest.

() VISA [J MasterCard [J American Express

Card Number . _ Exp. Date Signature
Name -

Address

City — State Zip

ASPD PROGRAM
DISKETTE AVAILABLE
FOR ONLY $15

Starting with this issue, we will make a DOS
3.3 diskette available every month that
contains all of the programs from the cur-
rent issue of the Apple Software Protection
Digest. Disk 1, which is available now,

also contains the programs from the
premiere issue of the Digest.

To order send a check, money order or

your charge card number and expiration
date to:

REDLIG SYSTEMS, INC.
2068 79th Street
Brooklyn, New York 11214

REDLIG SYSTEMS, INC.
2068 79th Street Py 1550 :
Brooklyn, New York 11214 2

