oA PPLE

SOFTWARE
PROTECTION

DIGEST

©$3.00

Vol. 1 No. 3

1986

Editorial. :.cviis s : sbmneines s 1
Cracks Wanted 2
Crack: Index: uicovois s s suiiiomns 2
Letters « s sowsmmns s v s asaiss s 2
How to Crack a Program ... 3

Parameter Files for COPYP . 6
Add Undeletable Lines

to Your Program 7
Moving the Catalog to
Another Track 9
REVIEW: The quickLoader
{ ROM Card 10

-

Apple Software Protection Digest
Publisher & Editor, Jules H. Gilder; Contribut-
ing Editor, J. Scott.Barrus. Copyright © 1986 by
Redlig Systems, Inc., 2068-79th Street, Brooklyn,
NY 11214. All rights reserved. No part of this pub-
lication may be reproduced, or electronically trans-
mitted or stored without the publisher’s written
permission. Published monthly at $24 per year by

’Redlig Systems, Inc. (718) 232-8429. Reprints of
prior issues available at $3 each. Printed in the
U.S.A.

Apple is a resitered trademark of Apple Computer,
Inc.

SOME PUBLISHERS DROPPING PROTECTION

During the past few months we have
seen an interesting trend starting to de-
velop among software publishers. Many
of them, under increasing pressure from
corporate users, are starting to drop
software copy protection from their
products. The latest publisher to join the
pack is Software Publishing Corp.,
which produces the PFS line of
programs.

According to Software Publishing,
they’ve finally realized that copy protec-
tion is a big inconvenience for the cus-
tomer and they don’t have to worry
about protecting themselves so much
any more because their business cus-
tomers are protecting them and prevent-
ing employees from making copies.

I’m glad to see a movement away
from copy protection. In fact, I think
the whole issue of how much money is
lost due to the production of illegal co-
pies has been blown way out of propor-
tion. There really hasn’t been any hard
research to determine just how much
money is lost due to piracy. There also
hasn’t been any research done to deter-
mine how much money is lost due to the
problems and inconvenience caused by
copy protection, and I think that would
be a real eye-opener.

Be that as it may, don’t run out to buy
PFS software yet. According to a Soft-
ware Publishing spokesman, the protec-
tion is not going to be removed from
existing products, but rather as new ver-
sions of the various programs become
available.

In spite of the reasons given by Soft-
ware Publishing for this move I tend to
think the facts are a little different. I sus-
pect that enough people have gotten fed
up with copy protected software that

they’ve just decided not to buy any. This
is where we, the people who keep these
companies afloat, can really show our
strength. There is plenty of good soft-
ware available that is not copy pro-
tected. ;

Support unprotected shareware

Much cof the unprotected software
that is available is being put out on a
“shareware” basis. What this means is
the developer makes the diskette avail-
able to anyone who wants it for a nomi-
nal fee, ususally between $10 and $20.
He tells the purchaser that he is free to
make copies of the diskette and distrib-
ute it to anyone he choses provided he
doesn’t charge more than the developer
does, doesn’t modify the diskette in any
way and if he’s purchased documenta-
tion separately he must agree not to
duplicate it and give it away or sell it.

These shareware programs generally
come with a sufficient amount of
documentation on the diskette so that
the user can learn to run the program.
The shareware developer’s hope is that
the user will like the program so much,
he’ll support the developer by paying an
additional fee to register his copy, get
more complete printed documentation
and usually one or two future updates °
for free. Sometimes even the source
code is made available.

If you think these developers are fool-
ish for taking this approach, think
again. Several shareware developers
have made over $1 million so far and
their programs are as good as, or better
than many commercial products costing
hundreds of dollars more.

Apple Software Protection Digest

Cracks Wanted

Listed below are programs that our
readers would like to unprotect. Anyone
who comes up with a method of remov-
ing the protection from any of these pro-
grams will get a free three-month
subscription, or extension to ASPD, so
get those solutions in.

If you have a program that you’d like
to see unprotected, please let us know,
and we’ll add it to our list so that some
of our readers can try their hands at it.

. Sensible Speller — DOS Version

. Sensible Speller — ProDOS Version
. Crush, Crumple & Chomp

. Wizardry

. Educational Software from Compress
. Dazzle Draw

. Newsroom

. Word Handler

. Disk-O-Check

OO0\ WU H WK -

Crack Index

In order to make life just a little more
convenient for you, each issue of Apple
Software Protection Digest will contain
a list of all of the programs cracked so
far and what issues these cracks ap-
peared in. This will save you from go-
ing through all past issues of the digest
in order to find a particular crack you
are looking for a crack to a particular
program.

Bookends — Vol. 1, No. I, p. 7
Homeword — Vol. 1, No. 2, p. 9
Homeword Speller — Vol. 1, No. 2, p. 9
PFS Series — Vol. 1, No. 2, p. 7
Print Shop — Vol. 1, No. 1, p. 10
Print Shop Companion — Vol. 1, No.
2,p. 6

Sensible Grammar — Vol. 1, No. 2, p. 7
Time Is Money — Vol. 1, No. 2, p. 9

Don’t miss a

single issue

‘SUBSCRIBE
TODAY!

Letters

Dear Editor:

I liked your courtesy copy of ASPD
and I’'m going to try it for a year. I'm
also ordering your diskette. I do have a
problem however.

I am a writer and like Applewriter]/, -

but it has two limitations which center
around its copy protection. Oh, it’s easy
enough to make a backup copy of it (I
use Locksmith 4.1). The nature of its
copy protection however, makes itim-
possible to either put it onto a hard disk,
or use it with one. I can’t get the com-
puter to recognize the slot after I've
booted AW][.

My problem can be solved in one of
two ways, as I see it. I need a way to
modify a copy program, like Locksmith
4.1 or a way to copy Apple Writer][that
leaves it unprotected. Then I could put
it onto my hard disk easily. Can you tell
me how to do this?

I know this much, after my ex-
periences over the last few months, I
won’t buy a copy-protected program
again. They are just too inconvenient to
use.

Lee Baldwin
Concord, CA

The quick answer to your first question
is yes, we can help you. This issue con-
tains a full-length article devoted to un-
protecting Apple Writer. If you don’t
want to read the whole thing, but just
want the parameters for the COPYP
program, they can be found in the
COPYP Parameter List. The reason
Applewriter doesn’t recognize your hard
disk is that the modified DOS that is
needed to recognize your hard disk is
replaced by the protected DOS of Ap-
ple Writer. If your hard disk is a Sider
and you have a way of breaking out of
the program into the monitor mode, you
may be able to patch DOS so that it can
use your hard drive. The patching infor-
mation can be found in the Sider User’s
Guide on page 133.

Dear Editor:

I just read about your Apple Software
Protection Digest. If it is as excellent as
it has been reported to be, I will gladly
pay the annual subscription fee. Please

. send me a sample issue.

By the way, I bought a game called
Crush, Crumble and Chomp and ha
ven’t been able to make a backup copy.
If you know of any way of doing so,
please give me full details.

Michael Jacobs
Wolcothville, IN

Here’s your sample copy Mike. I hope
we’ve lived up to our advance billing.
I’'m adding your request to our Cracks
Wanted list. If any of our readers can
tell Mike how to back up Crush, Crum-
ble and Chomp, let’s here from you.

Dear Editor:

I was happy to see that my programs
(Two Solutions to the Hide-A-Line
Problem) had won your contest and
were published in ASPD #2. I must con-
fess though, that I have encountered a
problem with the concept of hiding a
line by resetting the link bytes.

The problem stems from the fact that
any line hidden in this manner will cause
an UNDEF’D STATEMENT error if

k

the program does a GOTO or GOSUB .

to it. Has anyone else run into this
dilemma?

Because of this apparent glitch, I
much prefer the method of adding five
colons at the start of the program line.
The GOTO/GOSUB problem does not
occur when using this technique. I've
had lots of fun using this technique and
baffling “unaware” people with it.

Thanks for the extra six months, I
look forward to future issues of ASPD.
You present ideas and concepts that
many of us can experiment with and
learn from, something that is missing
from many Apple periodicals nowadays.

Mark Landwehr

Thanks for your letter Mark. The
problem you encountered with the GO-
TOs and GOSUB:s in the first line hid-
ing technique is to be expected. When
Applesoft encounters a GOTO or
GOSUB, the 6502 starts scanning the
BASIC program from the beginning (via
the next line pointers) and looks at the
two bytes that follow each next line
pointer to see if the line that is desired

has been found. Since we've changed

these pointers so that they bypass the
line when the program is listed, the line
will also be bypassed when GOTOs and
GOSUBEs are encountered.

;

Vol. 1, No. 3

HOW TO CRACK A PROGRAM

Many people have written to me and
told me that they appreciate being given
step-by-step instructions on how to
backup or crack a particular program.
They also indicated however, that they
would like to know how one goes about
starting to crack a program and develop
their own technique for backing it up.
That’s really a tough question to answer
because there are almost an unlimited
number of ways to go about cracking a
program. To get you started however,
I'll take you step-by-step through the
thought processes involved in cracking
Applewriter //e (DOS version). The rea-
son this program was chosen was be-
cause one of our readers sent in a letter
asking how he could remove the protec-
tion from Applewriter so that he could
use it with his hard disk.

If you’re not interested in knowing
how Applewriter //e is unprotected, but
just interested in unprotecting it, you
can skip the rest of this article and sim-
ple use the COPYP parameter file that
is listed elsewhere in this issue to auto-
matically make an unprotected back up.

.Know it well before you start

Before you attempt to crack any pro-
gram, it is essential that you use it and
become thoroughly familiar with it. If
you know how the program will act in
various situations, you will ‘'have an
enormous advantage working for you
when you try to figure out how the pro-
gram is protected.

If you had become familiar with Ap-
plewriter //e before you attempted to
crack it, you would have discovered that
the Applewriter disk uses a fairly nor-
mal form of DOS. In fact, the diskette
can be CATALOGed like a normal
DOS diskette and you can use COPYA
to make a copy of the diskette. While
no error is generated when the copy is
made, don’t rejoice too quickly, because
the copy will not work. Nevertheless,
since the modification to standard DOS
seems to be small, chances are pretty
good that it won’t be too difficult to
crack the protection. This is generally
true for most protected programs. The
closer they are to standard DOS, the eas-
ier they are to crack.

Since we know that DOS 3.3 is more
or less intact, we can find out what the
boot program is. It’s important to un-
derstand how a program boots up in
order to crack its protection. By using

a sector editor, such as the one availa-
ble on the Copy][Plus diskette, we can
look at track $1, sector $9, byte $75
(remember the $ indicates the number
is a hexadecimal number), which is
where we’ll find the name of the pro-
gram that is automatically run when the
diskette is booted. In the case of Ap-
plewriter //e, the file is called
OBJ.BOOT. It isa binary file and it is
automatically BRUN when the diskette
is booted.

The job of OBJ.BOOT is simple. It
tests to see if the computer that is being
used is a Apple //e. If it’s a // Plus, it
will run the program OBJ.APWRT][D
which simply prints a message to the
user telling him that an Apple //e is re-
quired to run the program. If the com-
puter being used is a //e, OBJ.BOOT
then checks to see how much memory
is available. If only 64K is available,
then the file OBJ.APWRT][E is run. On
the otherhand, if 128K or more of RAM
is available, OBJ.APWRT][F will be
run.

Prepare all your tools

. Before you attempt to crack a pro-
gram, it is essential that you have some
basic tools. To begin with, you need a
sector editor that will let you read,
modify and write diskette sectors. The
second thing you’ll need is a diskette
searching ptogram. This is a program
that will let you enter a string of charac-
ters or hex values to be searched for on
a diskette. Both of these capabilities are
available in the Copy][Plus program
(which normally retails for $39.95 but
costs only $30 when you buy it through
us). Next, you should have a short, in-
memory search program that can be
used to locate a sequence of bytes in
RAM. For our Applewriter //e crack,
we’ll use a short machine language
search routine that Bob Sander-Cederlof
gives away with his S-C Macro Assem-
bler. It’s only 53 bytes long and can eas-
ily be keyed in when needed. The last
thing you’re going to need is a way of
breaking out of the program once it’s
running. I have found that the Wildcard
2 board is excellent for this purpose. It
allows you to press a button at any time
and then gives you a menu that let’s you
do several things, including jumping to
the monitor. It plugs into any slot in the
computer and will work on any Apple
or compatible except the Apple //c

(which has no slots).

STEP 1: Copy it if you can

When trying to crack a protected pro-
gram, always try to copy it first with
COPYA. If you can’t get anywhere at
all, another approach will have to be
taken. But if you can copy it, as is the
case with Applewriter //e, you’ve gone
a long way towards your ultimate goal.
Once you’ve made a copy of the dis-
kette, try to boot it up. Pay close atten-
tion to what happens during the boot
process and compare it to what happens
during a normal boot of the original
diskette.

In the case of Applewriter //e, when
the copy is booted, OBJ.BOOT is run
and if an Apple //e is being used, de-
pending on how much RAM is availa-
ble, either OBJ.APWRT][E or
OBJ.APWRT][F is run after it.
Whichever file is activated, if the dis-
kette is a copy, the program will detect
this, zero out all of memory and then
jump to Applesoft BASIC, most likely
via the . ‘cold start’ entry point at
$E000. It is this jump to BASIC that
turns out to be the Achilles Heel of Ap-
plewriter //e.

STEP 2: Boot the program

After you’ve made a backup copy of
Applewriter //e, put it aside and boot
the original diskette. Once the program
is loaded and you get to the opening ti-
tle screen, get into the monitor. I do this
by pressing the button on my Wildcard
2 and selecting the jump to monitor op-
tion from the menu that is presented.

Once you’re in the monitor, the whole
world of Applewriter is open to you.
You can examine the program code to
your heart’s content, but you won'’t be
able to modify it and save it out to the
diskette because you don’t have access
to a normal DOS. Nevertheless, there’s
a lot you can do to unprotect the pro-
gram from this mode.

STEP 3: Search the program

Once you’re in the monitor, you can
search for Applewriter’s Achilles Heel,
the jump to BASIC which occurs when
the program determines that an original
diskette is not being used. You can of
course search the computer’s memory
manually and examine every location
yourself. A much easier way to do it
however, is to let the computer do the

Apple Software Protection Digest

hard work. If you examine page 3 of
memory (addresses starting at $300)
you’ll find that most of it has been
zeroed out. Thus, it is a handy spot for
us to put in a short machine language
program that will do the searching for
us.

Since we don’t have access to the disk
drives from the monitor mode, we can’t
load the program in from the disk. The
only other choice is to load it in from
tape, for those people who still have this
capability in their computers (I think it
was eliminated with the enhanced Ap-
ple //e ROMs) or key it in directly.
Since the program I use is short (only
53 bytes long) I key it in whenever I need
it. Eventually, I’ll probably put it in an
EPROM that can be switched in
whenever the program is needed, but
that’s another project.

As I mentioned earlier, this search
program is one of several sample pro-
grams that come on the S-C Macro As-
sembler diskette from S-C Software.
The program itself is easy to use and it
allows you to specify the starting and
ending locations of the range to be
searched, the byte sequence to be
searched for and it allows you to desig-
nate any particular character as a wild-
card character. You can examine the full
assembly language source code listing to
see how it operates, or simply key in the
seven lines listed below.

300:A9 03 8D FA 03 AS 10 8D
308:F9 03 A9 4C 8D F8 03 60
310:A2 00 A0 00 B5 02 C5 O1
318:FO 04 D1 3C DO 11 C8 E8
320:E4 00 DO FO A5 3C 85 3A
328:A5 3D 85 3B 20 DO F8 20
330:BA FC 90 DC 60

Once the search program has been keyed
in, it must be initialized by typing 300G
from the monitor mode. Now you’re
ready to do your searching. Since we
know that the jump to BASIC is as-
sociated with the protection scheme, if
we find that, we can probably work our
way back towards the beginning of the
protection scheme code. Thus, it’s im-
portant for us to locate this jump to
BASIC. The machine code required to
jump to BASIC should contain a three-
byte sequence that looks like this:

4C 00 E0

so we’ll search through memory for this
sequence of bytes. We do this by plac-
ing a 3 in memory location 0 on the zero
page of memory to indicate how many

bytes are in the sequenceof characters
we’re looking for. Next, we place the
value of the wildcard character in loca-
tion 1. Since we have no need of a wild-
card character in this particular search,

I just place an FF in this location. Fi- -

nally, we have to enter the sequence of
bytes that are being searched for start-
ing with location 2 on zero page. In sum-
mary, the following line must be entered
(from the monitor mode) to set up the
search parameters:

0:03 FF 4C 00 E0

All that’s left to do now is specify the
range of memory locations to be
searched and activate the program. Both
of these tasks are done together by typ-
ing in the starting and ending address-
es, separated by a period, entering a
Control-Y and then pressing the
RETURN key. Since RAM ends at
$BFFF I decided to search all of
memory from $800 to $BFFF. To do
this the following line was entered while
in the monitor mode:

800.BFFF <Control-Y >

Notice that I’ve placed spaces after the
BFFF and the Control-Y. This is for
ease of reading only and these spaces
should not be used when you enter this
line.

STEP 4: Find where it begins

When you search memory for this
string of characters, you see that it ap-
pears only once, at location $2D0C.
This is indicated by the search program
which prints out the following line in
response to your search:

2D0C- 4C 00 E0 JMP $E000

Since that’s the only place in the pro-
gram where the jump to BASIC occurs,
chances are pretty good that starting at
this location and working our way back-
wards, we should be able to find the pro-
tection code. As you work your way
back, look for another JMP instruction
or an RTS instruction. The first one you
encounter on your journey back in
memory will usually mark the end of
some previous routine and the beginning
of the routine your examining. In the
case of Applewriter //e, I encountered
a JMP $0200 at $2CDD. At the time I
didn’t pay much attention to it, although
I should have because it is very unusual

to jump to a subroutine that is located.

in the input buffer, unless of course
you’re trying to hide something. My
failure to pay attention to this caused
one false start, but that was quickly cor-
rected. I'll get back to that in a little
while.

Since the JMP instruction takes up
three bytes, that means that the subrou-
tine I was examining probably started at
$2CDO0. The listing of the code that re-
sides between $2CDO0 and $2D0C, where
control is passed to BASIC is shown be-
low. This listing was made by using the
Apple’s built-in disassembler and I have
added line numbers to this listing so that
it will be easy to reference a particular
line.

100 2CDO- AD 83 CO LDA $CO83
110 2CD3- AD 83 CO LDA s$Co083
120 2CD6- A9 03 LDA #$03
130 2CD8- 85 01 STA $01
140 2CDA- AO 0O LDY #3$00
150 2CDC- 84 00 STY $00
160 2CDE- 98 TYA

170 2CDF- 91 00 STA ($00).Y
180 2CE1- C8 INY

190 2CE2- DO FB BNE $2CDF
200 2CE4- E6 01 INC s01
210 2CE6- FO OC BEQ $2CF4
220 2CE8- A6 01 LDX $O1
230 2CEA- EO CO CPX #sCO
240 2CEC- DO F1 BNE $2CDF
250 2CEE- A2 DO LDX «s$DO
260 2CFO- 86 O1 STX $01
270 2CF2- DO EB BNE $2CDF
280 2CF4- AD 82 CO LDA scCO082
290 2CF7- AD 82 CO LDA scCo082
300 2CFA- 8D OC CO STA scCooC
310 2CFD- 20 84 FE JSR $FEB84
320 2D00O- 20 2F FB JSR $FB20
330 2D03- 20 93 FE JSR S$FES3
340 2D06- 20 89 FE JSR S$FE89
350 2D0S- 20 58 FC JSR $FC58
360 2DOC- 4C 00 EO JMP $EQ0QO

STEP 5: Examine the code

Now that we know where at least
some of the protection code lives, let’s
take a close look at it to see what it does.
Because Applewriter //e wipes out all
of memory before jumping to BASIC
when a copied diskette is encountered,
we would expect this routine to perform
that task, and it does. Here is a detailed
explanation of exactly what goes on
when this routine is called.

In lines 100 and 110, the RAM card
in the computer is write enabled, so that
data can be stored in it. Lines 120 to 150
set up a pointer on page zero that will
be used to indicate which memory loca-
tions are to be zeroed out. Here the pro-
gram starts with location $300. Line 160
loads a zero into the accumulator and
line 170 is the line that actually zeroes
out the current memory location that is
being pointed to. The Y-register was in-

!
j

Vol. 1, No. 3

itially zero and is incremented in line
180. This allows the instruction in line
170 to point to every location on a par-
ticular page of memory. As long as the
Y-register has not returned to zero (been
incremented 256 times) the program
loops back to line 170 and keeps stor-
ing zeroes in successive memory lo-
cations.) ‘

Once the Y-register does become zero
again, line 200 increments the page
pointer so that the next page of memory

is set up to be zeroed out. As long as lo-

cation $01 does not contain a zero (and
it won’t until the very last byte of avail-
able memory has been addressed) con-
trol passes from line 200 to line 220
where the contents of location $01 are
loaded into the X-register. Line 230
checks this value to see if it is equal to
$C0. If it isn’t, control is passed once
again to line 170. In this manner, all of
memory from $300 to $BFFF (which is
one less than $C000 which was just
checked for) is zeroed out.

Because Applewriter //e also uses the
RAM card, the program then goes on
to wipe out all memory locations there
as well, which is why the RAM card was
write-enabled earlier. The RAM card’s
memory starts at $D000 and so line 250
loads a $D0 into the page counter at lo-
cation $01 on page zero. Control is once
again passed to line 170 and the program
loops once more to zero out all succes-
sive memory locations. This time
however, after a zero is stored in loca-
tion $FFFF on the RAM card, the page
counter is incremented again and thus
returns to zero. This triggers the instruc-
tion in line 210, which causes the com-
puter to jump to line 280 where the
RAM card is turned off.

Since Applewriter //e uses the 80
column mode when it is active, the next
instruction (line 300) turns off the 80
column card and activates the 40 column
mode. Line 310 makes sure the Apple
is set up for normal (not inverse or flash-
ing) video while line 320 makes sure the
text screen and not either of the graph-
ic screens, is activated. Line 330 does a
PR#0 to make sure the output hooks at
$36 and $37 are returned to their nor-
mal condition. Similarly, line 340 does
and IN#O0 to restore the input hooks ($38
and $39). Finally, line 350 clears the
screen and line 360 jumps to BASIC.

STEP 6: Find it on the disk

Now that we’ve located the protection
routine and understand how it operates,

we have to find out where its located on
the diskette, so that it can be modified.
To do this, we’re going to have to use
a disk scanning program which, like the
short machine language program we en-
tered earlier, will let us search for a par-
ticular byte sequence. Several such
programs are available commercially. I
use the one that is on the Copy][Plus
diskette. You get to it by selecting the
Sector Editor option and then pressing
the S key. The program will then ask
you if you want to enter your search
string as hex codes or text. Typing an
H selects the hex code mode.

Since we know from the disassembly
listing that starts at $2CDO0 what we’re
looking for the job is not to difficult.
I decided to search for the first eight
bytes of the routine that starts at $2CDO
— AD 83 CO AD 83 C0 A9 03. It seemed
to me that this sequence of bytes would
be fairly unique, and would probably
only be encountered in the protection
code. After entering this data, I found
that the code was stored on track 3, sec-
tor 9 and started at byte 1 (which is the
second byte in the sector because we
start with 0). I continued searching the
diskette to see if the code would crop up
somewhere else, and sure enough it did,
at track 6, sector B, byte D4. The fact
that the code was found in two places
on the diskette suggested that the code
was located in the OBJ.APWRT][E and
OBJ.APWRT]JF files.

STEP 7: Disable the protection

Once you find where the offending
code is located on the diskette, all you
have to do is disable the protection. In
this case, that can easily be done by stor-
ing a $60 (the RTS code) at the very be-
ginning of the protection scheme code.
To do this you’ll need a sector editor
that will let you read, modify and then
write a diskette sector. Always remem-
bér, NEVER WRITE ON THE ORIGI-
NAL. Do all of your work on a copy
only. Once again, I have found that
Copy][Plus is the tool to handle the
job. Using the copy that I made, but
wouldn’t boot, I stored a $60 at track
3, sector 9, byte 1 and track 6, sector B,
byte D4.

STEP 8: Test it out

With patches applied to the non-
working copy, it is now time to test it
out. Booting up this diskette, I was
delighted to see that the boot proceed-

ed as normal and was rewarded with the
normal Applewriter opening screen. But
my joy was to be short-lived. After go-
ing through a short sample session, I at-
tempted to quit Applewriter and lo and
behold, I couldn’t get out of it. It seems,
that as part of the procedure for quit-
ting the program, the memory wipeout
routine that I just disabled, gets called
into action. Back to the drawing board.

STEP 9: Find why it failed

With a lot of luck, you’ll be able to
skip this step. but such was not to be the
case with Applewriter. At this point, I
remembered the strange JMP $0200 in-
struction that I saw immediately before
the memory wipeout routine and
proceeded to examine it and the code be-
fore it more carefully. I discovered that
immediately preceding the protection
routine was another routine that trans-
ferred the original wipeout code into the
input buffer where it was then executed
by the JMP $0200 instruction. The short
routine that does the moving starts at
$2CBF. This apparently was the real
protection routine.

Once again, I typed in the memory

search program and looked for the place
where this code was called from using
the byte sequence: 4C BF 2C. It turns
out that this sequence of bytes is locat-
ed at $3B04 (when OBJ.APWRT]J[F is
loaded). Examining the code that pre-
cedes this JMP instruction reveals the
routine that is used to check and see if
the disk that is in the drive is an origi-
nal. This code starts at $3AF1 when
OBJ.APWRT][F is loaded and is listed
below.
Without going into a lot of detail, this
routine calls another one that immedi-
ately follows it (at $3B08) and reads the
disk. This routine checks for the correct
prologue bytes in the address field of the
sectors (for more information see Pro-
tection Tutorial - Part II, ASPD Vol. 1,
No. 2, p. 20). It then checks for special
information that is only present on the
original Applewriter //e diskette. If it
doesn’t find that information, it jumps
to the memory wipeout routine at
$2CBF.

By the way, it’s important to note that
any protection scheme that accesses spe-
cial information on a diskette, be it spe-
cial sync bytes, extra data or a nibble
counting routine, must access the dis-
kette with an instruction such as LDA
$C08C,X where X contains the slot
number that the disk drive is connected

Apple Software Protection Digest

6

. 3AF1- 20 08 3B JSR $3BO8
3AF4- 85 82 STA $82
3AF6- 20 08 3B JSR $3BO8B
3AF9- C5 82 CMP $82
3AFB- DO OA BNE $3B0O7
3AFD- 20 08 3B JSR $3BO8
3B0O0O- C5 82 CMP $82
3B02- DO 03 BNE $3B0O7
3B04- 4C BF 2C JMP $2CBF
3B07- 60 _ RTS
3B08- AE E1 02 LDX $02E1
3BOB- BD 8C CO LDA $COBC, X
3BOE- 10 FB BPL $3BOB
3B10- C9 D5 CMP #$D5
3B12- DO F4 BNE $3BO8
3B14- EA NOP
3B15- BD 8C CO LDA s$CO8C,X
3B18- 10 FB BPL $3B15
3B1A- C9 AA CMP #S$SAA
3B1C- DO F2 BNE $3B10
3B1E- EA NOP
3B1F- BD 8C CO LDA $CO8C,X
3B22- 10 FB BPL $3BIF
3B24- C9 S6 CMP #3$96
3B26- DO EB8 BNE $3B10
3B28- EA NOP
3B29- EA NOP
3B2A- BD 8C CO LDA scCo8C,X
3B2D- 10 FB BPL $3B2A
3B2F- 2A ROL
3B30- 85 80 STA $80
3B32- BD 8C CO LDA $CO8C,X
3B35- 10 FB BPL $3B32
3B37- 25 80 AND $80
3B39- 60 RTS

to. Searching a diskette for the bytes
that represent this instruction — BD 8C
CO0 — will usually get you to the protec-
tion code, eventually. The problem is
that any other routine that has a legiti-
mate need to access the disk drive will
also use similar code, so you’ll have to
examine a lot of code before you get to
what you want. Therefore, always try to
get close to your protection routine by

other means first, just as we did here.

Now that we know what the true pro-
tection scheme looks like, let’s use our
disk scanner again and try and locate on
the diskette. Remember, we’re working
with the copy of the original that we
made only! Using the search pattern C5
82 DO 03 4C, I located three possible
candidates. Finding three patterns dis-
turbed me a bit because I had expected
only two, as in the previous case. The
three patterns were located on track 4,
sector C, byte Bl; track 7, sector C, byte
8 and track 7, sector E, byte 1. Since I
had one more bit pattern than I antici-
pated I examined each carefully and
found that while the last pattern start-
ed out the same as the other two, it was
significantly different after the first
several bytes and most important, it did
not have the disk access instructions.
This routine was therefore discarded
and only the first two were used.

To eliminate the protection, once
again the first byte of these two routines
was replaced with a $60, the machine
language code for the RTS instruction
(ReTurn from Subroutine). Thus, a $60
was placed on track 4, sector C, byte Bl
and track 7, sector C, byte 8. After test-
ing the diskette this time, the program
worked perfectly. The interesting thing
about this whole thing is that all it took
was a two byte change on the copy of
the Applewriter //e diskette to make it

a working copy. The only reason it was
necessary to change two bytes was be-
cause there were two different versions
of the program on the diskette. Other-
wise, only a single byte change would
have been necessary. Isn’t the power of
information astounding?

If you don’t have all of the tools that
I used to crack this program, I suggest
you get them right away, if you antici-
pate cracking more software. In the
meantime, if you just want to make an
unprotected copy of Applewriter //e,
you can use the COPYP program that
appeared in the last issue and the Ap-
plewriter //e parameters that are listed
in the COPYP Parameters section of the
digest.

I’'ve spent a lot of time explaining the
step-by-step process that I went through
to crack this program so that you could
understand - the thought process that
went on. This will help you to crack
other programs, but don’t expect any
miracles. There are many different ways
in which programs can be protected and
this has only been one of them. Hope-
fully, however, you’ve gained some in-
sight that can be applied to other

programs. If you do crack any other.

programs, let us know how you did it
so that we can share the procedure with
the rest of our readers. We'll reward you
with an extension of your subscription.
Let’s hear from you soon.

PARAMETER FILES FOR COPYP

Listed below are several parameter
files for use with the COPYP program
that was presented in ASPD Vol. 1, No.
2. You can key these lines in directly or
you can do what I do and create text
files that contain these lines. Then you
can load in COPYP and EXEC in the
appropriate file for the program you
want to copy. You can keep these text
files on a diskette and re-use them again
whenever you want to make another
copy.

Some of these files have been tested
by me and some haven’t. It gets to be
an expensive proposition to buy each of
these programs in order to test out each
file. Therefore, if you submit files to us,
please make sure you test them
thoroughly. Also, please give us the ver-
sion number of the program you’re
cracking. Nothing is more discouraging

than trying to use a routine that is sup-

. posed to work, only to find out that it

doesn’t. Your reward for doing this will
be a one-month addition to your sub-
scription.

Applewriter //e

A complete explanation of how Ap-
plewriter //e is unprotected is included
in a separate article in this issue. For
those of you who are merely interested
in making an unprotected copy of it and
not interested in the how and the why,
just add the following lines to your
COPYP program and make as many
unprotected copies as you want.

1000 DATA 4,1
1010 DATA 7,1

,177,76,96

2
2,8,76,96

Financial Cookbook

Financial Cookbook from Electron-
ic Arts is a program that can be easily
unprotected by changing just a single
byte in the program. The reader who
supplied the information for unprotect-
ing this program and the next couple of
programs neglected to tell us what the
value of the original byte that is being
changed was.

Since we have been unable to contact
him so far, we decided to add a slight
modification to COPYP that would
enable you to unprotect a program
without having to know what the origi-
nal value of the byte that’s being
changed is. This of course bypasses the
built-in safeguard that doesn’t let you
modify a different version of the pro-
gram (which is determined by checking
to see that the original value of the byte
is what it should be) but it can come in
handy sometimes.

continued on page 11

;},
!
73
i

y

b

’

P

Vol. 1, No. 3

ADD UNDELETABLE LINES TO YOUR PROGRAM

For those of you who write programs
in Applesoft BASIC this next program
will be of some interest to you. Did you
ever see some commercial programs that
had a copyright notice and author credit
listed at the bottom of the program us-
ing line numbers that somehow could
not be deleted? Have you ever wondered
how you could do the same thing? It’s
easy and this program will help you to
do it.

Most Applesoft BASIC programmers
eventually discover that the highest line
number that can be entered in an Ap-
plesoft program, from the keyboard, is
63999. That next to the last phrase
”...from the keyboard...” is the key here
however. The designers of Applesoft,
for some reason, decided to make it ille-
¢al to have line numbers that were great-
er than 63999. Therefore, everytime that
a line is entered from the keyboard, the
computer checks to see if the line num-
ber is greater than 63999. If it is, the
computer gives you a SYNTAX ER-
ROR message. Since the checking is
done as the line is entered, if we can find
someway to bypass the input routine, we
can have larger line numbers in our pro-
gram and everything will work fine. As
an added bonus, once we have this larg-
er numbered line in our program, there
will be no convenient way to delete it.

To make life easy, what I generally do
is write out the lines that are to become
permanent additions to my program as
a separate file and then I run this short
program, while that file is in memory.
I then save the resulting program, which
is usually just REMs with my name and
a copyright notice in them, out to disk.
When I finish developing an Applesoft
program, I then merge the newly deve-
loped program with my short credit file
program and I now have a program that
contains the proper credit to me in lines
that are difficult (but not impossible) to
delete.

This program, A/l Line Numbers to
65535 does just what its name implies,
it changes all line numbers in any par-
ticular program to 65535. For those of
you who may be wondering just how its
possible to have a program with more
than one identical line number, I'll ex-
plain in a minute. Suffice it to say that
you can’t have it if the lines are being
entered from the keyboard, because the
moment you enter a second line with a
number that is identical to an already ex-
isting line, the old line with the same

0006~
0008~
0067~
OOAF -
FC58-
FDED-

0300~
0303~
0305~
0307~
O30A-
030C-
O30E-
0310-
0312~
0314-
0316-

0317~
0319-
031B-
031D~
031F =~
0322-
0324-
0325~
0326~
0329~
032B-
032D~
032F~
0330~
0331~
0333~
0334~
0336~

0338~
033A~-
033C-
033E~
0340~
0342~
0346~
0346~
0348~

0349~
034C~
034F -
0362~
0366~
0368~
036B-
036E~
0361~
0362~
0364~

20
A9
AO
20
A5
A4
c5
90
Cc4
90
60

85
84
A2
AO
BD
91

E8
cs
BD
91

AO
B1

48
cs
B1

A8
68
4c

86
84
AO
B1
FO
20
cs
DO
60

c1
AO
CE
CE
c2
D3
CF
BS
B6
8D
c2

58
49
03
38
67
68
AF
05
BO
01

(o]:]
09
00
02
A2
(o]

A2
[o]:]
00
[o]:]

o8

OE

08
07
00
(o]}
06
ED

Fé

cc
cc
cé
D&
cé
AO
AO
BS

8D
=1}

FC

03

03

03

03

FD

cC
co
AO
co
D2
D4
B8
B3

AO

1000
1010
1020
1030
1040
1060
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1620
1630
1640
1650
1660
1670
1580
1690
1600
1610
1620
1630
1840
1660
1660
1870
1680
1690
1700
1710
1720
1730
1740

1760
1760

ALL LINE NUMBERS TO 66635

Copyright (C) 1986 by

sse Jules H., Gl lder wew

ane All RIghts Reserved bt

LR R} E®

T SRR RIS R R R R R R R R R R R R R L

-

-

* Equates

-

TXTPTR .EQ $06

POINTER .EQ s08

TXTTAB .EQ $67

PRGEND .EQ S$AF

HOME .EQ $FC58

couT .EQ $FDED

-

.OR $300

=
JSR HOME Clear the screen.
LDA #TEXT Point to the text
LDY /TEXT that Iis to be printed.
JSR MSGPRT Print It.
LDA TXTTAB Get the start of
LDY TXTTAB+1 program pointer

ENDCHK CMP PRGEND Compare with the
BCC NEXT end of program
CPY PRGEND+1 pointer to see if
BCC NEXT we're done yet.
RTS Yes, we’'re done.

*

* This section of the program saves the
* pointer to the current |ine and then

* replaces the |Ine number in that I|line
* with the number stored In LINNBR, in
* this case #$FFFF which Is 65535. Next,
-

=

-

-

=

the pointer Is updated to point to the

next line. The program then Jumps to
a routine that checks to see if we've
reached the end of the program.
NEXT STA POINTER Save the |ine
STY POINTER+1 polinter.
LDX #$0 Initialize the
LDY «$2 offset counters.
LDA LINNBR,X Get the low byte
STA (POINTER),Y of the new number
INX and replace the
INY old one.
LDA LINNBR,X Get the new high
STA (POINTER),Y and replace old.
LDY #$0
LDA (POINTER),Y Update POINTER to
PHA point to the next
INY line.
LDA (POINTER),Y
TAY
PLA
JMP ENDCHK
-
* This Is the message printing routine.
-
MSGPRT STA TXTPTR Store the pointer
STY TXTPTR+1 to the message.
LDY «$0 Initiallize offset.
LOOP LDA (TXTPTR),Y Get next character.
BEQ ENDPRT Done yet?
JSR cCouTt No, print It,
INY Point to next character.
BNE LOOP Go get It.
ENDPRT RTS Return to caller.
L
TEXT AS ="AL. LINE NUMBERS TO 65535"
.HS 8D8D

Apple Software Protection Digest

number gets erased and is replaced by
the new one.

Multiple lines with the same number
are possible however. To accomplish
this bit of micro magic, we must first
type in lines with ordinary line numbers.
Since we know what the structure of a
BASIC line is as it is stored in memory
(see ASPD, Vol. 1, No. 1, p. 2) we can
go into the monitor mode and change
the line number bytes manually so that
they contain any line numbers that we
wish.

To simplify and automate the process,
all you have to do is enter this short pro-
gram and it will do the job in a fraction
of a second.

Make it hard to modify

While my primary use for this pro-
gram is to produce undeletable credit
lines for Applesoft programs that I
write, it is also possible to use this pro-
gram to make it difficult for someone
else to modify your programs. If you
give all your lines in a program the same
high number, it will be hard to change
any line in the program. A woxid of cau-
tion is needed here however.'If entire
programs are going to have identical line
numbers in them, then you won’t be able
to use GOTOs, GOSUBs and THENSs
followed by a line number, because
there will be no way of telling the com-
puter to go to a specific line.

How it works

Operation of the program is fairly
straight-forward. After clearing the
screen and printing out the title page
(lines 1220-1250) the program gets the
start of program pointer (lines
1260-1270) so it knows where to begin
and then falls into a routine to check if
the end of the program has been reached
yet (lines 1280-1320). The check is made
by comparing the current location in
memory, which is stored in the accumu-
lator and the Y-register with the end of
program pointer located on Zero page
at AF and BO.

If the end of the Applesoft program
has not been reached, the machine-
language program branches to line 1440
where the current memory pointers are
saved. In lines 1460 and 1470 the X and
Y registers, which are used as offset
counters, are setup so that they can be
used to retrieve the two bytes of the new
line number and store it in place of the
old line number. This actual replace-

0367~
036A-
036D-
0370-
0373-
0376~
0377~
037A-
037D~
0380~
0383-
0386~ B9
0389~ 8D
038A- C1
038D- AO
0390- C7
0393- D3
0396- C5
0389- D2
039C- C4
039D- 8D
0O3A0- 8D

CA
C5
(o]
c7
Cc4
8D
C3
D9
c7
AO
A9

D5
D3
AE
cs
C5 1770
1780
CF
D2
cs
A8
AO B1
B8 1810
1820
cc
D2
c8
AO
D3
D6
1830
8D
(o]e] 1840
1850 *

1870 *

03A2- FF FF 1880 L INNBR

1860 * Number to which all

.AS -"by Jules H. Gilder"
.HS 8D

.AS -"COPYRIGHT (C) 1986"
.HS 8D

.AS -"ALL RIGHTS RESERVED"

.HS 8D8D8D8DO0O0

|lines are changed.

.HS FFFF

1 REM BASIC PROGRAM TO INSTALL ALL LINES TO 65535

2 REM

10 TEXT : HOME

20 PRINT : PRINT : PRINT : PRINT

30 PRINT "INSTALLING ‘ALL LINES TO 65535'..."

40 FOR X = 768 TO 931

50 READ Y

60 POKE X,Y

70 NEXT X

80 PRINT : PRINT : PRINT : PRINT "INSTALLATION COMPLETE."
80 PRINT : PRINT "TYPE ‘CALL 768°' TO RUN PROGRAM.*"
100 DATA 32,88,252,169,73,160,3,32

110 DATA 656,3,165,103,164,104,197,175
120 DATA 144,5,196,176,144,1,96,133

130 DATA 8,132,9,162,0,160,2,189

140 DATA 162,3,145,8,232,200,189, 162

1560 DATA 3,145,8,160,0,177,8,72

160 DATA 200,177,8,168,104,76,14,3

170 DATA 133,6,132,7,160,0,177,6

180 DATA 240,6,32,237,253,200,208,246
190 DATA 96,193,204,204,160,204,201,206
200 DATA 197,160,206,213,205,194,197,210
210 DATA 211,160,212,207,160,182,181, 181
220 DATA 179,181,141,141,194,217,160,202
230 DATA 213,204,197,211,160,200,174,160
240 DATA 199,201,204,196,197,210,141,195
250 DATA 207,208,217,210,201,199,200,212
260 DATA 160,168,195,169,160,177,185,184
270 DATA 182,141,193,204,204,160,210,201
280 DATA 199,200,212,211,160,210,197,211
290 DATA 197,210,214,197,196,141,141, 141
300 DATA 141,0,255,265

ment in done in lines 1480 to 1530 and
the pointer that tells the program where
the next line to be worked on is located
is updated in lines 1540 to 1600. Lines
1650 to 1730 comprise the routine that
is used to print text out to the screen and
lines 1770 to 1840 contain the text itself.
Finally, line 1880 contains the line num-
ber that is going to be used to replace
all of the existing ones. It is stored low
byte first and in this case is $FFFF,
which represents the number 65535.

o

To make entering the program easy,
I have included a short Applesoft BAS-
IC program that will automatically load
the machine language program for you.
After the program is entered, you can
execute it by typing CALL 768. If you
do that while the BASIC loading pro-
gram is in memory, all its line numbers
will be changed to 65535. If you then try
re-running the program, you see that it
executes without a problem because it
contains no GOTOs or GOSUBs.

Vol. 1, No. 3

.MOVING THE CATALOG TO ANOTHER TRACK

One very effective way to protect pro-
grams from being copied is to change
the track that the catalog is stored on.
Normally it’s stored on track 17 ($11)
from sectors 15 ($F) to 1. While chang-
ing the catalog track will stop the stan-
dard copy programs (COPYA, FID,
MUFFIN) it, of course, will not stop the
bit copier programs from duplicating a
diskette that uses this technique.
However, if you combine this technique
with some of the other copy protection
schemes we’ve discussed so far, or if you
move the catalog to track 37 or higher,
even the popular nibble copier programs
won’t be able to duplicate your diskette.

While most of track 17 is devoted to
the catalog, sector 0 of this track has a
special job. It contains what is known
as the VTOC (for Volume Table Of
Contents) and it keeps track of which
sectors have been used and which are
available for future storage. In addition
to keeping track of which sectors are
available, the presence of this special
sector makes it possible for you to lock
out any track and/or sector on the dis-
kette and make sure that it won’t be
written to. This is helpful if you want

to “bury” a serial number on the diskette -

somewhere. We’ll get back to a more
detailed discussion of the VTOC later.

Moving the VTOC

There are several different approaches
that can be used to move the contents
of track 17. You can choose to move
just the VTOC, just the catalog data or
both. If you move just the VTOC, you'll
still be able to run programs under nor-
mal DOS, you just won’t be able to save
anything out to the diskette without the
risk of damaging it. Nevertheless let’s
start by moving the VTOC. Moving the
VTOC is perhaps a misconception be-
cause we’re not going to take an initial-
ized diskette and then move it’s VTOC,
although it is possible. Instead, we’re go-
ing to modify DOS and then use this
modified DOS to initialize a new dis-
kette. The modification that we make to
DOS will cause the new diskette to be
initialized with the VTOC on another
track. The modification that we have to
make to DOS to move the VTOC is a
simple one and consists of changing only
a single byte of memory. That byte is lo-
cated at 44033 (SACO01), and it is the lo-
cation that contains the number of the
track on which the VTOC is located.

This location is used both by the rou-
tine that initializes a diskette and by the
routines that load or save programs to
a diskette. Under normal circumstances
the number stored in 44033 is 17 ($11).

We can change the VTOC track by
simply POKEing a new number into lo-
cation 44033. For example, from BAS-
IC we can type in the following line in
the immediate mode (no line number)
and cause the VTOC to be saved out to
track 37 where it cannot be copied by
standard copy programs.

POKE 44033,37

As you will recall, we discussed how to
add up to 5 tracks to your diskettes in
the first issue of ASPD (Vol. 1, No. 1,
p. 8). Since none of the commercial bit
copier programs copies more than 36
tracks, storing) the VTOC and catalog
onto one of these extra tracks is an ef-
fective copy protection scheme.

You can move the catalog too

To make your files inaccessible to
normal DOS, you can move the catalog
sectors to track 37 as well. This would

‘make it almost impossible to access the

programs on a copied version of the dis-
kette, especially if the space on track 17
is released and used to store programs
on. To change the number of the track
that DOS goes to, to look for the cata-
log information, it is only necessary to
change two locations in DOS. They are
46012 ($B3BC) and 44764 (SAEDC).
The first location is used to tell DOS
which track to write the directory onto,
and the second location tells DOS which
track to format as a directory track.
Both of these locations must contain the
same track number, which is normally
17. Once again, by changing the num-
ber in these two locations, you can
produce a diskette that has its catalog
information on track 37, which cannot
be copied by most copy programs that
are available. The following BASIC line
executed in the immediate mode will
make the changes for you:

POKE 46012,37 : POKE 44764,37

There is a big advantage to doing this.
By putting the catalog and VTOC on a
track that cannot be copied, you can tell
users of your protected diskette that they
can make backup copies of the diskette
with COPYA, which will not run, and

save them in case the original becomes
damaged. Since odds are small that the
damage will occur on the 37th track,
most of the time, users will be able to
restore their damaged original by
recopying their backup copy onto the
original. Of course, if the damage does
occur on the 37th track, the diskette will
have to be replaced.

Tell the VTOC about the changes

Once you’ve modified DOS so that it
will produce a 37-track diskette and
moved your VTOC and catalog onto it,
you must also tell the VTOC that track
37 is used and that track 17 is available.
You do this by changing two locations
in DOS which contain information that
tells DOS where the catalog track is lo-
cated. These locations are 44741
($AECS) and 44745 (SAECY). The first
location (44741) contains the number of
the track on which the directory is lo-
cated, multiplied by four, while the se-
cond location (44745) contains four
times the directory track number plus
four. Thus, for standard DOS, 44741
contains 68 ($44) while 44745 contains
72 ($48). Interestingly enough, if we use
68 as an offset into track 17, sector 0
(the VTOC sector) we get exactly to the
point where we have four bytes that are
used to mark the availability of track 17.
This is not just a coincidence, because
these two locations are used by DOS to
create the VTOC bit map.

Thus, after we make the necessary
changes to move our directory (or cata-
log) onto track 37, we have to make
these changes too. They can easily be
implemented by typing in the following

line in the immediate mode:

POKE 44741,68 : POKE 44745,72

Now you have completed the modifica-
tions necessary to move the VTOC and
the catalog to a different track. All that’s
left for you to do is initialize your new
diskette. Don’t forget, if you're using
more than 35 tracks on your diskette,
you’ll have to modify DOS as described
in ASPD Vol. 1, No. 1. While I've con-
centrated on showing you how to move
the catalog and VTOC to an extra, non-
standard track, there is obviously no
reason why it cannot be moved to any
other track on the diskette. The reason
I've concentrated on these extra tracks
is, as I mentioned earlier, they cannot
be easily copied with the current crop of
copy programs.

To make the whole task of producing

10

Apple Software Protection Digest

custom diskettes easier, I have included
a short BASIC program that will take
care of all the nitty gritty details for you.
All you have to do is answer the ques-
tions it asks about the number of tracks
you want on the diskette and where you
want the catalog track located. The pro-
gram does the rest.

A challenge and a gift

For those of you who have the time
and the inclination, here’s a small
challenge for you. Use the information
I have just presented to you to come up
with a program that will produce a dis-
kette that has two catalog tracks on it.
You should provide a means of switch-
ing back and forth between the standard
catalog and the hidden one so that pro-
grams can be saved on one or the other.
Provision should also be made to update
both VTOCs whenever either one is
modified so that nothing will be acciden-
tally overwritten.

The simplest way to update the

VTOC:s is to first make sure that the
track with the hidden catalog on it is
locked out as an in-use track on that
normal VTOC. You can do this by stor-
ing zeroes in the appropriate bit map lo-
cations on track 17, sector 0 (remember
the offset to the starting location of the
bit map can be calculated by multiply-
ing the track number by four. Thus the
bit map for track 37 would start at byte
148 ($94) in the VTOC sector. To lock
out an entire track, four successive bytes
must be set to zero. After the standard
VTOC has been modified to protect the
hidden VTOC, just read the standard
VTOC sector into memory, modify byte
number 1 (the second byte in the sector)
so that it is equal to the track that the
hidden catalog is stored on and write it
out again to the VTOC sector of the hid-
den catalog track. Now, if you always
copy the the VTOC sector of the cata-
log that has just been modified (the cur-
rently active one) to the VTOC sector
that was not modified (the inactive one),
remembering to adjust that second byte

to the correct track number, you’ll al-4a

ways have both VTOCs properly updat-
ed and not have to worry about
accidentally overwriting something on
your diskette.

For your efforts in developing this
program, the winner will get fame and
recognition by having it published in
ASPD, the satisfaction of having deve-
loped your own protection scheme and
a free 6-month extension to your sub-
scription. The second best entry will get
a free 3-month extension. You may use
any programs that have already ap-
peared in ASPD as a starting point if
you think they’ll be helpful, so let’s see
you get those entries in.

If you need more information on just
how the catalog track is formatted you
can look in Apple’s DOS manual or in
one of the handiest books I’ve found on
the subject, Beneath Apple DOS. If you
have difficulty find this book, which is
published by Quality Software, you can
order it through us at a 10% discount,
for only $17.95.

REVIEW: The quikLoader

One of the most useful accessories
that you can purchase to help you crack
programs is the quikLoader ROM Card
from the Southern California Research
Group (SCRG). Designed to be used in
an Apple][, Apple][Plus or Apple //e,
the quikLoader card can hold up to 256
programs in ROM with a total memory
capacity of almost half a megabyte. Pro-
grams can be written in machine lan-
guage or either Integer or Applesoft
BASIC.

" The main reason the quikLoader card
is such a helpful tool in cracking pro-
grams is that it can be used to interrupt
a running program and let’s you select
from a menu, any other program you’d
like to have run. When the card is ena-
bled, one of the eight possible ROM
chips that are installed on it, is selected
for response to addresses in the $C100
to $FFFF memory range. At the same
time, motherboard response in this
range is inhibited. This is great for the
cracker because he can now reset direct-
ly into the monitor or run any other pro-
gram without having to worry about
overcoming protection schemes in pro-
grams that make it impossible to break
out of the program by pressing RESET.
When you have a quikLoader in your
computer, anytime the RESET or

ROM Card

Control-RESET key is pressed, the card
is enabled and ROM chip 0 is selected.
The result is that when RESET is
pressed, a program in chip 0 is run. This
program is called QLOS (for quikLoad-
er Operating System).

The action that QLOS takes when a
reset is encountered depends on which
key was pressed just before. or, at the
same time as the RESET key and the
status of the power-up byte at $3F4. By
pressing the appropriate key concurrent-
ly with Control-RESET, you can choose
from a variety of resets. Included in this
list are a normal reset, forced power-up
reset, forced disk boot, a catalog of the
quikLoader ROM(s), execution of
specific programs from the ROM(s). Be-
low is a list of the actions allowed when
areset is encountered, and the keys that
must be pressed to implement them.

Z - Move Integer BASIC, the monitor
ROM and DOS into RAM, initialize
DOS and and enter Applesoft BASIC.
n - (number 0-7) Run a program on chip
n.

Q - quikLoader catalog (referred to as
katalog to differentiate from a disk
catalog).

H - Do a Z-Reset and then run the HEL-
LO program.

B - Boot DOS by moving DOS to RAM,
initializing it and entering Applesoft.
D - Disk boot.

C - Catalog a diskette.

M - Enter the monitor mode.

S - Soft reset (slot 0, 16K RAM card
reset).

X - Go to the mini assembler.

In addition to these reset options,
there is an additional one call A-reset.
This is encountered when an undefined
key is pressed. In an A-reset, the com-
puter jumps to the address contained in
$FFFC and $FFFD on the motherboard
(the main Apple circuit board) if the
power-up byte is good. If the power-up
byte is not good, the computer jumps to
the power-up routine on chip six of the
quikLoader.

If you replace the power-up routine
that is stored in the chip 0 ROM with
one of your own programs, you can
have the quikLoader card do anything
you want when the RESET (or Control-
RESET) key is pressed.

Uses very little RAM

The design philosophy behind the
quikLoader is to transfer programs that
are stored on EPROMs into RAM for
execution. However, programs can be
run while they reside in the ROM card

1

Vol. 1, No. 3

11

.(thal’s how QLOS is run). When this is

done, very little user RAM is needed.
The memory that it does need is primar-
ily used for pointers, counters and tem-
porary storage. Zero page locations are
used for most temporary storage and
certain routines that must run in RAM
are loaded either into the input buffer
at $200 or the bottom of the 6502 stack
at $100. These locations were chosen by
the board’s-designer Jim Sather (author
of Understanding Your Apple) so as to
minimize any likely interference with

.user programs. And his goal was

achieved.

Using the board’s B-RESET feature,
you can load DOS into the Apple and
very few memory locations will be
changed. There’s no multi-stage boot

‘process involved that wipes out large

chunks of memory. DOS is loaded
directly from the card into the final lo-
cation in memory where it will be run.
Thus, it is a simple matter to boot up
a protected diskette, load the program
into memory, boot normal DOS from
the quikLoader card, and then save the
program out to an unprotected diskette.

.It comes with software

The quikLoader card has eight sock-
ets on it for EPROMs. When you buy
the card, you’ll get it with some
EPROMs already in it. These will con-
tain DOS 3.3, Integer BASIC, FID and
COPYA. These programs are licensed

from Apple Computer. SCRG also has
other programs available in ROM for
use with this board. These include the
Beagle Bros. Double-Take utility and

Central Point’s Copy][Plus. And, if ,
you send them your configured version '

of AppleWorks on a diskette, they’ll
burn it into ROM for you so that you
can be up and running with it in less
than 2 seconds.

The board is extremely versatile and
can accomodate any combination of
EPROMs from the 2K 2716s to the 64K
27512s. If completely populated with
64K EPROMSs, the quikLoader can
store almost a half megabyte of
data.Since the card can be plugged into
any slot except slot 0 (but including slot
3 in the Apple //e) it is possible to store
over 3 MB of data in EPROMSs and have
any of it instantly available.

Support is superb

For those of you who may not have
heard of SCRG, it’s a small company
that sells a number of hardware acces-
sories for the Apple. But don’t hold its
size against it, because you’ll be hard
pressed to find another company, even
a Fortune 500 one, that supports its
products as well as SCRG does. While
my quikLoader card has always worked
well and I've never encountered any
problems, the company sent around a
notice that a change had been made to
the card and the ROMs to enable it to

work with the 27512 EPROMs (I bought
mine before these chips were available).
And though SCRG was not obligated
to, it offered to update my card for free
if I sent it back to them. I did, and they
turned it around very quickly. In the
years that I have owned this card, I have
had several ocassions to call the compa-
ny and ask technical questions about
how or why something was done, or if
the card could be used for specific ap-
plications. I always found someone
technically knowledgeable to talk to,
usually Phil Wershba himeself (he’s the
president). In those rare circumstances
when he couldn’t answer my questions,
the designer, Jim Sather could.
SCRG offers a 6 month warranty on
everything it sells, but I have found that
if you encounter a problem even after
the warranty expires, that the company
will take care of it for you anyway (if
possible), at no charge. Another nice
practice of this company is its 10-day
free trial period. You can order any of
their products and try them for 10 days.
If for some reason you’re not happy
with a product, all you have to do is
return it for a prompt refund. If you’re
going to be doing a lot of program
cracking, or if you just want the added
convenience of having your most fre-
quently used programs in ROM ready
for instant access, then this card is a
must for you. Price: $179. Source:
Southern California Research Group,
P.O. Box 593, Moorpark, CA 93020.

COPYP Files continued from page 6

The checking routine is bypassed by
adding line 485, which is listed below
and setting the old value of the byte to
0.5. Actually, any value between 0 and
1 will do, but 0.5 is easy to remember.
Thus the parameter file for Financial
Cookbook becomes:

485 IF OV > 0 AND OV < 1 THEN
500
1000 DATA 1,6,8,0.5,98

COPYP will now make a backup copy
of the program and, without checking
to make sure this is the correct version
of the program, modify the diskette so
that it will work.

Hayes Terminal Program

Like the previous program, this one
was submitted without the value of the

byte that is to be changed, Since we do
not have a copy of this program, we
can’t check it and find the value of the
original byte.

485 IF OV > 0 AND OV < | THEN
500
1000 DATA 16,3,157,0.5,37.

Microwave

Although this program is a few years
old, it has proven to be a very popular
one and for that reason, cracking infor-
mation is included here.

485 IF OV > 0 AND OV < 1 THEN
500 ‘

1000 DATA 2,1,218,0.5,173

1010 DATA 2,1,219,0,5,3

1020 DATA 2,1,220,0.5,129

1030 DATA 2,1,221,0.5,96

That’s all it takes to unprotect
Microwave.

Give us a hand

In order for this publication to be
really useful to you, you have to get in-
volved. Tell us what you’d like to see
and also contribute your favorite cracks
to us. If you took the time out to un-
protect a program, chances are that

'someone else is interested in it too.
Remember, you get a one-month sub-
scription extension for every program
crack you submit and we use. So let’s see
those helpful hints.

ASPD PROGRAM *
DISKETTE AVAILABLE
FOR ONLY 815

Barting with this issue, we will make & DOS
3.0 dinkelle available every month that
containe all of the programs from the cur-
ront lasue of the Apple Sufiware Protection
Digest,

To order send a check, money order or
your charge card number and expiration
date 1o

REDLIG B8YSTEMS, INC,
2068 79th Street
Brooklyn, New York 11214

REDLIG SYSTEMS, INC, BULK RATY,

2068 79th Street U.8. POSTAGE,
Brooklyn, New York 11214 PAID |
BROOKIYN, N.Y.

Permit No, 631

