APPLE

SOFTWARE
PROTECTION

DIGEST

$3.00

Vol. 1 No. 4

Contents

Editorial < s zeemnn sesnmvasnaaee 1
CrackIndex.......ccvvueunnnnn 2
TELLETS: . . «iciitanes navliies vt sanss 2
BUES is5s 5isomsp waareseavoire 2

Protect and Unprotect Programs
with Muffin Plus and Demuffin..3
Protection Tutorial - Part IT1

All About Synch Bytes
Cracks Wanted................ 8
How To Restore Lost Applesoft
Programs.......cooveevveinnnn. 9

Apple Software Protection Digest

Publisher & Editor, Jules H. Gilder; Contribut-
ing Editor, J. Scott Barrus. Copyright © 1986 by
Redlig Systems, Inc., 2068 - 79th Street, Brook-
lyn, New York 11214. All rights reserved. No
part of this publication may be reproduced, or
electronically transmitted or stored without the
publisher’s written permission. Published
monthly at $24 per year by Redlig Systems, Inc.
(718) 232-8429. Reprints of prior issues avail-
able at $3 each. Printed in the US.A.

Apple is a registered trademark of Apple Com-
puter Inc.

HELP SPREAD THE WORD

As you can see we’ve gotten issue #4
of the digest out and cut down on the
delay between issues. Things are starting
to finally run a little smoother now and
we’ve just started doing the typesetting
for the newsletter in-house. This should
significantly cut down on our costs and
more importantly, make it easier for us
to get the newsletter ready for publica-
tion. By going in-house we've eliminated
a lot of delays that were caused by the
fact that we had to travel some distance
to get to the typesetter. It also precluded
the possibility of turning articles into
typeset material the same day. All that
has now changed.

Now that we’re back on track, we'd
like to move ahead somewhat and try to
build the subscription list, and we’re ask-
ing you to help. Show the digest to your
friends who have Apple // computers (or
clones like the Laser 128). I think that
once they see it, they’ll like it and want to
order it for themselves.

Get a free digital watch pen

We think you’ll tell your friends about
us because you like our publication and
they will too. But, as a little extra incen-
tive to you, we’ll send you a beautiful,
free digital watch pen for every new sub-
scriber who subscribes to the digest and
mentions your name. Obviously, a new
subscriber can only mention the name of
one already existing subscriber, but
there’s no limit on the number of new
subscribers who can mention your name.
Thus, if ten people subscribe because
they heard about us from you, you'll get

ten digital watch pens. This is a limited
offer and will only be good for one
month, so hurry up and get those sub-
scriptions in quickly.

Special group discounts

In order to encourage group pur-
chases of the digest, we have established
a special discount of 16.7% whenever ten
or more subscriptions are ordered at the
same time. This means that the normal
$24 subscription will cost only $20 ayear.
In order to qualify for this special rate, at
least ten subscriptions must be ordered
at once and they must be paid for with
one group check (or charge). The free
pen and discount offer cannot be com-
bined.

Let’s hear from you

" One of the most useful features of any
publication is the section that provides
feedback from the readers. This is the
Letters section. This is the place where
you can air your opinions (even if we
don’t agree with them) and ask for help.
1t’s also the place where we find out how
we’re doing. Certain things we know,
like we’re late and should try to improve
our schedule. Other things we don’t, like
how do you find the material presented?
Is it too simple or too complicated? Is
there something you don’t like? Is there
something you’d like included? Let us
know, we'll try to accomodate you.

Jules H. Gilder
Publisher & Editor

Apple Software Protection Digest

Crack Index

‘In order to make Iifé just a
little more convenient for you,
each issue of Apple Software
Protection Digest will contain
a list of all the programs
cracked so far, and what issues
those cracks appeared in. This
will save you from going
through all past issues of the
digest in order to find a partic-
ular program.

Applewriter //e - Vol. 1, No. 3,
p-3

Bookends - Vol. 1, No. 1, p. 7
Financial Cookbook - Vol. 1,
No.3,p.6

Hayes Terminal Program -
Vol. 1, No. 3,p. 11

Homeword - Vol. 1, No. 2,p. 9
Homeword Speller - Vol. 1,
No.2,p.9

Microwave - Vol. 1, No. 3,p. 11
PFS Series - Vol. 1, No. 2, p. 7
Print Shop - Vol. 1, No. 1, p. 10
Print Shop Companion - Vol.
1, No.2,p. 6

Sensible Grammar - Vol. 1,
No.2,p.7

Time Is Money - Vol. 1, No. 2,
p.9

Don’t miss a

single issue

SUBSCRIBE
TODAY!

BUGS

Although we spend a lot of time testing
and rechecking all the information we
present here, every once in a while a
problem will still crop up. As soon as
I find out about it, I’ll let you know in
this column. It is my sincere hope that
this column will be missing from most
issues, and very short in those issues in
which it is included.

Print Shop Copier

Many of you have written in and
complained of problems with the Print
Shop Copy program from the first issue
of ASPD. Interestingly enough, there
were almost as many solutions to the
problem as there were writers about it.
All of you however treated the sym-
ptom, and thus while each of these fix-
es worked, none got down to the real
cause of the problem, which lies in line
100 of Apple’s original COPYA
program.

This line sets up the start of the copy
buffer. Since we’ve added some lines to
the program the space between the end
of the program and the beginning of the
buffer — which is needed to store pro-
gram variables — has been reduced con-
siderably and thus causes the program
to crash frequently. I had actually al-
ready discovered this when I wrote
COPYP in the last issue, but didn’t have
time to get it into the issue. The problem
can be eliminated altogether by simply
adding the following line to the Print
Shop Copier program:

100 POKE 715, PEEK (110) + 2

I’m sorry for any inconvenience I may
have caused you.

Print Shop Companion

There was an omission in the listing
of the parameters to be used to back up |
the program. Line 72 should have read:
POKE 863,34. Thus line 72 should look !
like this:

72 POKE 863,34
This will tell the program not to copy

the last track and eliminate I/0O Error
messages.

Tutorial — Part II

On page 8 of the last issue, where the

modifications are listed from making a
protected DOS, the second occurence of
line 1 was incorrect. It should read:

1. B955:D5 N B95F:AA N BC7TA:D5 N
BC7F:AA

This will now restore normal DOS.

Letters
Dear Editor:

I continue to enjoy your magazine. I
don’t care if the issues are late, just
keep them coming! I will certainly re-
new my subscription when it is due. I
wonder if anyone has a crack for the
program, "The Game Show” by Ad-
vanced Ideas. It involves reading half
tracks and the disk is a combination of
DOS 3.3 and DOS 3.2 and it is beyond
my skills so far.

As far as your Cracks Wanted list is
concerned, Sensible Speller was cov-
ered in Hardcore Computing, issues 9,
10, 11, 13, 15, 16 and 23. It was also cov-
ered in the 1985 Pirate’s Harbor disk.
Crush, Crumble and Chomp was in
Hardcore’s issue 7. Wizardry was cov-
ered in the Bootlegger’s disk #2 and
Hardcore in issue’s 8, 20, 23, 26 and 29.
Dazzle Draw was covered in the 1985
Pirate’s Harbor disk and Hardcore 21
and 26. I have not seen cracks for Com-
pres Software, Word Handler or Disk-
O-Check anywhere.

Brian Symonds
Powell River, B.C.

I'm glad to here that you enjoy our publi-
cation so much. I appreciate your toler-
ance of our lateness. We are trying to
overcome it. We have just purchased a
laser printer to do the typesetting in-house
and cutdown on costs and time. Parts of
this issue were set on the laser printer and
the entire next issue will be too. I don’t
know if anyone has crack "The Game

Show" vet, but we’ll add it to our list.

Thancks for all the info on where the other
programs on our list have already been:
cracked. That should be helpful to a lot

of people. Nevertheless, we'd like to see
other approaches to cracking these pro--
grams.

Vol. 1, No.4

3

PROTECT AND UNPROTECT PROGRAMS
WITH MUFFIN PLUS AND DEMUFFIN PLUS

Whenever you’re trying to protect or
upprotect programs, its always impor-
tant that you have the correct tools to
do the job. One of the tools that I have
found very useful over the years is a pro-
gram called DEMUFFIN PLUS. If the
name of this program sounds familiar
to you, it should, because it is a modifi-
cation of a program that Apple gives
away on its DOS 3.3 System Master dis-
kette. That program is called MUFFIN,
and was originally designed to bridge the
gap between Apple’s old DOS 3.2 oper-
ating system, and the subsequent DOS
3.3 operating system. When MUFFIN
was run, it allowed the user to take files
(of all types) that were stored on a DOS
3.2 diskette and transfer them over to
a DOS 3.3 diskette.

If you’ve ever tried using a DOS 3.2
diskette (are there still any around) on
a DOS 3.3 system, you will notice that
the Apple stubbornly refuses to recog-
nize it and prints out an I/0 Error mes-
sage to the user. The reason for this is
that the diskette is formatted different-
ly than a DOS 3.3 diskette is. To get
around this problem, the software wiz-
ards at Apple Computer designed a pro-
gram that could use two different
RWTS (Read and Write a Track and
Sector) routines. One RWTS routine
would be the standard one that is in
DOS 3.3 and located in memory at
$B800. The other one would be the
13-sector DOS 3.2 RWTS and it would
be located in memory at $1900. The
RWTS routine is the core of any DOS

,and is the routine that makes it possible
for the computer to write information
to, or read information from, a diskette.

Shortly after Apple came out with its
DOS 3.3 and MUFFIN programs, some
bright programmer decided that he was
going to replace the resident copy of the
DOS 3.2 RWTS with a copy of the DOS
3.3 RWTS. He apparently reasoned that
if he could then interrupt a running pro-
tected program by pressing the RESET
key (non-autostart ROMs that dropped
you into the monitor when RESET was
pressed were widely available) and
somehow load in this modified
MUFFIN program which was called
DEMUFFIN PLUS, programs could
then be transferred from a diskette with
the protected DOS on it to a diskette
with standard DOS 3.3 on it. An that’s
what was done. After DEMUFFIN

PLUS was produced, it was stored out
on a cassette tape and loaded in when
needed.

While most people are primarily in-
terested in transferring programs from
a protected diskette to an unprotected
one, if you’ve created your own protect-
ed DOS (see ASPD Vol. 1, No. 2, p. 22)
you’ll want some method of transferring
programs the other way, from un-
protected diskettes to protected ones.
That’s where a new program, which I
call MUFFIN PLUS, comes in. In the
rest of this article, I will show you how

to make both of these programs and

how to use them.

Here’s what you’ll need

To make the DEMUFFIN PLUS pro-
gram, you will need a DOS 3.3 System
Master with the MUFFIN program on
it and an Apple computer that has In-
teger BASIC with the Programmer’s Aid
ROM available. If you have a 16K RAM
card (or an Apple //c or //e) and you
boot your system with the System
Master diskette, Integer BASIC and the
Programmer’s Aid ROM will automat-
ically be loaded for you into the RAM
card memory. If your Apple does not
have the extra 16K of memory and you

don’t have the Programmer’s Aid ROM*

installed in your computer along with

Integer BASIC, don’t dispare, you'll still

be able to make DEMUFFIN PLUS.
The reason we need to have the

.Programmer’s Aid ROM available is be-

cause there is a very handy machine lan-
guage program in it that let’s you
relocate machine language programs. By
relocate, I mean move the program from
its current location in memory to
another one in such a manner so that it
can run at the new location without any
difficulty. Those of you somewhat
familiar with the Apple monitor ROM
might think that you can already do that
by using the memory move command
that is built into the F8 ROM. That will
only work under special circumstances.
Most of the time, Apple machine lan-
guage programs are written in such a
way, that they are tied to a specific lo-
cation in memory. Thus if you move the
program to a new memory location, it
won’t work because it is still going to
search for some of the information it
needs at The old location. However, if

as you move the program, you replace
the old addresses that were referenced,
with the matching ones for the new lo-
cation of the program, then everything
will run fine. This process of moving
and updating the program and its refer-
ences to specific memory locations is
called relocation.

As I mentioned earlier, this special
relocation program is only available in
those Apples that have 64K or more of
memory or Integer BASIC with the ex-
tra Programmer’s Aid ROM added to it.
However, to accommodate those read-
ers who do not meet either of these con-
ditions, I have rewritten the Apple
relocation program so that it does not
require the Integer or Programmer’s Aid
ROMs. This program, called 6502
RELOCATOR, is listed below. This
version of the 6502 RELOCATOR pro-
gram has been specially modified so that
it can run wherever it is loaded into
memory. It is not tied to any specific
memory locations. Unless you have a
machine language program on page
three that has to be worked on, you’ll
probably find it most convenient to load
and run the relocator program at ad-
dress $300. To make it easy to use, I
have included a short BASIC program
listing that will automatically enter the
6502 RELOCATOR program for you.
For those of you who do not like to
type, the 6502 RELOCATOR is availa-
ble on ASPD Diskette #3 along with all
of the others programs in this issue. The
diskette is available for $15.

In order to make DEMUFFIN PLUS,
it is necessary to move the standard DOS
3.3 RWTS from its usual location of
$B800 to $1900. Since the RWTS code
references specific locations within it-
self, it is necessary to modify those
specific references before we run the
program, hence the need for the
relocator.

Making DEMUFFIN PLUS

The first thing you have to do once
you have a copy of MUFFIN, is to acti-
vate the relocator program. If you have
an Apple with Integer BASIC in it and
the Programmer’s Aid ROM, activate
Integer BASIC by typing INT. If you’re
using my modified version of the 6502
RELOCATOR, just RUN the BASIC
version, or BLOAD and CALL the pro-
gram at 768. In either case, the next step
is for you to BLOAD the MUFFIN pro-
gram. MUFFIN loads in at location
$803.

Apple Software Protection Digest

After MUFFIN has been loaded into
memory, you must get into the monitor
mode. You can do this by typing CALL
-151. Once in the monitor, people not
using my program must type D4D5G to
activate the 6502 RELOCATOR pro-
gram. The program is designed to work
with the monitor’s Control-Y capabili-
ties. To start the relocation process, type
in the following:

1900 <B800.BFFF Control-Y*

In the above instructions, you don’t type
the word “Control-Y”, but rather, you
hold down the Control key while at the
same time you press the Y key. Then
you let both of them go. Also, don’t type
a space after BFFF. I’ve put it in here
so that it’s a little easier to read. Don’t
forget to type the asterisk (*) immedi-
ately after the Control-Y. Now that
you’ve told the relocator which block of
code is being moved ($B800-$BFFF) and
where it is going ($1900), you’ve got to
tell the relocator which portions of this
block contain instructions that have to
be changed, and which portion contains
data that must only be moved and not
updated. Let’s tackle the instruction seg-
ment first. Type in the following line
and then press return:

1900 <B800.BA10 Control-Y

Next, you want to move a section of
data without modifying it. This is done
by typing in the following line:

.BCSTM

Don't forget the period preceding the
BC57M, it’s very important. Finally,
you want to move another section of
program and have all the internal refer-
ences updated. This is done by typing:

.BFFF Control-Y

At this point, you might want to con-
sider saving this file out to the diskette
because we’ll need it again later to make
up the program MUFFIN PLUS. You
can save it out by typing:

BSAVE MUFTEMP,A$803,L.$1900

Now that all of the DOS 3.3 code has
been properly relocated and you've
saved a copy for use again later, the next
thing to do is to modify the MUFFIN
program itself so that it will display the
correct title and so it will work as we

0000~
0002~
0002-
0004-
0008~
000B-
002F -
0034-
003C-
0042-
0100-
0200-
O3F8-
F88E-
FCB4-
FF58-

0300-
0303-
0304-
0307~
0309-
030A-
030D~
O30E~-
0310~
0312~
0314~

0316~
0318~
0318~
031D~
0320~
0322~
0326~

0326~
0328~
0328~
032D~
032F -
0331~

‘0333~

0336~
0337~
0338~
033A-

20

BD
85
CA
BD
18
69
85
90
E6

A9
8D
AS
8D
AS
80
60

A4
B9
ce
Do
E8
A2
B8
95
CA
10
60

58

(e]e]
01

(o]¢]

24
00
02
01

4C
F8
(o]0}
F9
01
FA

34
00
AA
oc
34
07
3c
02

F9

FF

01

01

03

03

03

02

ey R R L R A
PR R LR L]
- LR
LR T]
kw

6502 RELOCATOR

LR R
LE 2
e

by S Woznlak

EER]
* ok
LR]

Mod|fied to eliminate
the need for the Sweet-16
Interpreter and to be
completely relocatable by

=% -
EEE =
EE S LS
L]

JULES H. GILDER

Copyright (C) 1982
All Rights Reserved

LR R
LR

LR]
PR L]
LR R R R R R R
=

. ©) BBOO -Baro 5190
* Equates AN- sl = 130, \DSk
BEGIN £ s0(0) BBE1-BFAD 7 \01;578 200
RIL .EQ $2 RFAR- BFCT D Z0P%.
FROMBEG .EQ $2 p ~)7_0L8,‘L°ff
FROMEND .EQ s4 (7)_fNFed- Bl F
TOBEG .EQ $8
INST .EQ $B)
LENGTH (EQ $2F Qrg\aab\~| SroXe de Yo
YSAV .EQ $34 e
E0 $3C 900 Ggoo- BFFF AY ¥
A4L .EQ $42
STACK .EQ s100 <«BHCHT /"\V
IN .EQ $200 . {AEATT N
CNTRLY .EQ $3F8 , NN
INSDS2 .EQ $FB8BE ey)
NXTA4 .EQ $FCBa «(OF[FF
RETURN .EQ $FF58

.OR $300

*

* Do a subroutine jump to a known RTS
* instruction to push the address of

* beginning of the program +2 on the

* .stack. Then add 36 ($24) bytes to

* this address to get the beginning of
* the program.

-

JSR RETURN Put program start
TSX address on the
LDA STACK, X stack and then
STA BEGIN+1 retrieve It.
DEX
LDA STACK, X
CcLC

. ADC #$24 Ad just starting
STA BEGIN address.
BCC INITY
INC BEGIN+1

* Set up the Control-Y vector with the

. * address of the start of the program.

INITY LDA
STA
LDA
STA
LDA
STA
RTS

#$4C
CNTRLY
BEGIN
CNTRLY+1
BEGIN#+1
CNTRLY+2

-
* This |Is the beginning of the actual

* relocatlon routine.
. ;

~

RELOC LDY YSAV Initialize Y-reglister
LDA IN,Y Get next character.
CMP «'*+$80 Is It a *=?
BNE RELOC2 No, relocate code.
INC YSAV Yes, Incr. pointer,
LDX w»s$7 Get move

INIT LDA A1L,X parameters of
STA R1L,X block.
DEX
BPL INIT
RTS

Vol. 1, No.4

want it to. This is done by typing in the

following lines while still in the moni- 1840 *
tor mode. 1850 * Here the next three bytes are copied
. 1860 * and examined and the length of the
1155: 00 1E . 1870 * instruction is calculated.
115B: DS 03 1880 *
1197: AO 20 033B- A0 02 1890 RELOC2 LDY #%$2 Copy the next
? ' 033D- B1 3C 1900 GETINS LDA (A1L),Y 3 pbytes.
15A0:
1;2: SS 23 gi 22 gf_f 2; gg gg 033F- 99 OB 00 1910 STA INST,Y
15F7: AO AO AO AO C4 C5 CD D5 0342~ 68 1920 DEY
15FF: C6 C6 C9 CE AO DO CC D5 0343= #o: F@ 11930 BPL GETINS
1805 65 %6 0345- 20 BE F8 1940 JSR INSDS2 Calculate the (ogaram‘\
(U{E. E0: OF 64 O3 KO 08 DS &S 0348- A6 2F 1950 LDX LENGTH length.
1626: CA D5 CC C5 D3 AO C8 AE 034A- CA 1960 DEX O=1-byte, 1=2-byte,
182E:: 4D C7 b iCC C4 CF Pd 034B- DO OC 1970 BNE XLATE 2=3-byte.
ZOAO: AS 1E 8D B9 B7 20 FD AA 034D- A5 0B 1980 ° LDA INST Is It Zero
20A8: 48 AS BD 8D BS B7 68 60 034F- 29 0D 1990 AND #$D page mode?
; 0351- FO 2A 2000 BEQ STINST No, Immediate.
. . 0353~ 29 08 2010 AND #$8 Yes, clear the
Once these lines have been typed in, you 0355- DO 26 2020 BNE STINST high byte.
have completed the task of changing Ve~ BERE e Sal IigThe
MUFFIN into DEMUFFIN PLUS and 2050 * This section of code checks to see if
all that’s let for you to do is to save it ggsg : ::e add'eSSfOthhgl '":t”;ct 'g" t')S_ in
. 8 . e range o e ock of code being
out to disk. You can do this by typing: 2080 * relocated. If It Is, then the
. 2090 * address Is adjusted.
2100 *
BSAVE DEMUFFIN PLUS,A$803, 0359- A0 00 2110 XLATE LDY #$0 Compare the
L$1900 035B- A6 04 2120 LDX FROMEND instruction address
035D- E4 OC 2130 CPX INST+1 with the end
. 035F- A5 05 2140 LDA FROMEND+1 address of the
You now have a useful utility that can 0361- E5 OD 2150 SBC INST+2 source block.
be used to unprotect many programs. 0363- 90 18 2160 BCC STINST It’s larger.
0365- 38 2170 SEC
o 0366- A5 0OC 2180 LDA INST+1 Compare it with
Using DEMUFFIN PLUS 0368- E5 02 2190 SBC FROMBEG start address of
036A- AA 2200 TAX source block.
. 036B- A5 0D 2210 LDA INST+2
Now that you have this very handy 036D- E5 03 2220 SBC FROMBEG+1
tool, the next thing you have to learn is 036F- 90 OC 2230 BCC STINST It's smaller
how and when to use it. DEMUFFIN 2 e ol e Lt in Phe: rande
. i so adjust it
PLUS cannot be used with all protect- 0373- 18 2260 cLc for its new
ed programs, only those that have a 0374- 65 08 2270 ADC TOBEG location.
. 0376- 85 OC 2280 STA INST+1
DOS that has not been too heavily 0378- 68 2290 PLA
modified. One good indication of such gg;g- gg gg ;g?g ggi ngiG;
. - +
programs are those that dlsP]a)_' the Ap- 037D- A2 00 2320 STINST LDX #$0 Copy the fixed
plesoft prompt (]) at some time dur- gg;l;'- g? 32 2330 STINS2 LDA INST,X instruction to
: = 2340 STA (A4L),Y its 1 tion.
ing the boot-up process. If you see that SaEa. kb s e new location
prompt, even for only a short period of 0384- 20 B4 FC 2360 JSR NXTA4 Update pointers.
time, chances are pretty good that you’ll Sae oL B0 e e g of
" - nd o instruc?
be able to use DEMUFFIN PLUS with 038B- 90 AE 2390 BCC RELOC2 End of block?c
the program. If you don’t see the 0380- 60 2400 RTS
prompt, there’s no guarantee that
DEMUFFIN PLUS won’t work, but the
likelihood of it working is considerably
smaller. . .
Before you start to crack a diskette 803.2103W into memory starting at $6000. This is

with DEMUFFIN PLUS, make sure
you have all the tools you’ll need. First,
you’ll need a blank, initialized diskette.
Next, you’ll need some way of breaking
out of the program you want to copy
once it has booted. This could be an In-
teger BASIC ROM card, an interrupter
card such as the WildCard 2, or a modi-
fied F8 ROM that will drop you into the
monitor when RESET (or Control-
RESET) is pressed. If you have an Ap-
ple computer that will still let you use
the cassette tape (those routines were
eliminated from the new enhanced //e
ROMs) DEMUFFIN PLUS can be
saved out to tape by typing:

and reloaded from tape again when it is
needed later by typing:

803.2103R

Both of these tape commands must be
typed while you’re in the monitor mode
— that means the prompt character is
an asterisk (*). If you’re not going to use
the cassette tape, most of the time you
should be able to work around it by
loading DEMUFFIN PLUS into an area
of memory that does not get destroyed
during the boot-up process.

I usually load DEMUFFIN PLUS

a fairly safe area. Once the protected
DOS has been loaded in, you should get
into the monitor using any one of the
techniques I discussed earlier. Once
you’re in the monitor, you'll have to
move the DEMUFFIN PLUS program
back down in memory where it belongs
and then start the program running.
You can do both of these things at once

by typing:
803 <6000.7900M N 803G
The spaces before and after the N are

important, so don’t leave them out. The
command preceding the N performs the

6

Apple Software Protection Digest

memory move, while the command af-
ter it causes the computer to jump to lo-
cation $803 and execute the program
that is stored there. The N and the
spaces are just used to separate multi-
ple monitor commands on the same line.

Once the program is running, you’ll
be presented with an opening screen and
a two-choice menu. The first choice is
to convert the programs and the second
is to quit. After selecting choice 1, you’ll
be asked for the source and destination
drives and the name of the file you want
transferred. Here you may answer with
a name, an equals sign (=) or a partial
name and equals sign, just as in FID.
That’s all there is to it.

How to make MUFFIN PLUS

- Earlier we said that DEMUFFIN
PLUS was a handy tool to use for trans-
ferring programs from a diskette with
protected DOS to standard DOS 3.3. If
you are developing your own protected
programs however, you’ll want a way of
transferring your programs from a stan-
dard 3.3 DOS diskette to a diskette with
your own protected DOS on it. To do
this, we use another variation of the
MUFFIN program which I call
MUFFIN PLUS.

You start out making MUFFIN
PLUS the same way you make
DEMUFFIN PLUS. If you saved out
the program MUFTEMP as suggested
earlier, all you have to do is BLOAD it.
Otherwise you have to load MUFFIN
into memory and then you move and
relocate the standard DOS 3.3 code
done in memory to $1900, just as I told
you how to do it for DEMUFFIN
PLUS. Once this code has been relocat-
ed, or MUFTEMP has been loaded, you
actually have a working copy of
MUFFIN PLUS, however, to prevent
you from confusing it with MUFFIN,
you should key in the following lines,
from the monitor mode, to change the
title that is displayed when the program
is run.

16F7:
16FF :
1607 :
161E:
1626:
162E:

AO AO AO
C6 C9 CE
AO AO
CD CF
CA D5

AO C7

AO AO
AO DO

CD D5 C6
CC D5 D3

C4 D3
cCc
Cc9

AO C2 D9 AO
C5 D3 AO C8 AE
CC C4 C5 D2

This program should now be saved out
to a diskette by typing:

BSAVE MUFFIN PLUS,A$803,L$1900

In operation, MUFFIN PLUS works
the same way that DEMUFFIN PLUS

1 REM BASIC PROGRAM TO INSTALL 6502 RELOCATOR
2 REM

10 TEXT HOME

20 PRINT PRINT : PRINT : PRINT

30 PRINT "INSTALLING 'RELOCATOR'..."

40 FOR X = 768 TO 909

50 READ Y

60 POKE X,Y

70 NEXT X

80 PRINT PRINT : PRINT PRINT " INSTALLATION COMPLETE."

90 PRINT PRINT "TYPE ‘CALL 768' TO RUN PROGRAM."

100 DATA 32,88,255,186,189,0,1,133

110 DATA 1,202,189,0,1,24,105,36

120 DATA 133,0,144,2,230,1,169,76

130 DATA 141,248,3,165,0,141,249,3

140 DATA 165,1,141,250,3,96,164,52

150 DATA 185,0,2,201,170,208,12,230

160 DATA 52,162,7,181,60,149,2,202

170 DATA 16,249,96,160,2,177,60, 153

180 DATA 11,0,136,16,248,32, 142,248

190 DATA 166,47,202,208,12,165,11,41

200 DATA 13,240,42,41,8,208,38,133

210 DATA 13,160,0,166,4,228,12,165

220 DATA 5,229,13,144,24,56,165,12

230 DATA 229,2,170,165,13,229,3, 144

240 DATA 12,72,138,24,101,8,133,12

250 DATA 104,101,9,133,13,162,0, 181

260 DATA 11,145,66,232,32,180,252,198

270 DATA 47,16,244,144,174,96

does. The only difference is that you
must have an initialized protected dis-
kette ready before the program is run.
In addition, since you are doing the pro-
tection it’s an easy matter for you to first
load MUFFIN PLUS into memory
where it belongs and then modify your

DOS so that it is a protected DOS. This
makes it a little easier to get MUFFIN
PLUS up and running.

If you come up with any interesting
uses for either MUFFIN PLUS or
DEMUFFIN PLUS, let us know and
we’ll pass it along to everyone else.

continued from page 11
1 REM BASIC PROGRAM TO INSTALL AMPER RESTORE
10 TEXT HOME
20 PRINT : PRINT : PRINT PRINT
30 PRINT "INSTALLING ‘'AMPER RESTORE'..."
40 FOR X = 768 TO 970
50 READ Y
60 POKE X,Y
70 NEXT X
80 PRINT PRINT PRINT : PRINT “INSTALLATION COMPLETE."
90 PRINT PRINT "TYPE 'CALL 768° TO RUN PROGRAM.*"
100 DATA 169,76,141,245,3,169,18, 141
110 DATA 246,3,169,3,141,247,3,76
120 DATA 23,3,169,174,32,192,222,160
130 DATA 0,32,88,252,185,126,3,240
140 DATA 6,32,237,253,200,208,245,165
150 DATA 103,24,105,3,133,6,165,104
160 DATA 133,7,160,1,145,103, 136,200
170 DATA 177,6,208,251,152,24,105,5
180 DATA 160,0,145,103,165,103,133,6
190 DATA 165,104,133,7,169,0,133,8
200 DATA 177,6,200,208,2,230,7,201
210 DATA 0,208,241,165,8,201,2,240
220 DATA 4,230,8,208,235,200, 152,208
230 DATA 2,230,7,133,105,133,107,133
240 DATA 109,133,175,165,7,133,106, 133
250 DATA 108,133,110,133,176,96,166,210
260 DATA 197,211,212,207,210,197,141,141
270 DATA 194,217,160,202,213,204,197,211
280 DATA 160,200,174,160,199,201,204, 196
290 DATA 197,210,141,195,207,208,217,210
300 DATA 201,1989,200,212,160,168,195,169 .
310 DATA 160,177,185,184,178,141,193,204
320 DATA 204,160,210,201,199,200,212,211
330 DATA 160,210,197,211,197,210,214,197
340 DATA 196,141,141,141,210,197,1983,196
350 DATA 217,174,141

)
)|

Vol. 1, No.4

7

PROTECTION TUTORIAL — Part III
ALL ABOUT SELF-SYNC BYTES

Last time we discussed how a track on
a diskette is formatted. You may recall
that we said the Address and Data fields
on the diskette are separated by gaps.
What we did not say was just what these
gaps were composed of. They are
formed by writing a series of special
bytes to the diskette that are called self-
sync bytes. Self-sync bytes get their
name from the property that they have
of being able to automatically bring the
disk drive hardware into synchroniza-
tion with the data that is stored on the
diskette.

The newcomer to understanding disk
drive operation might wonder why this

is necessary. The explanation is simple. .

Data is stored on the diskette as in-
dividual bits, but must be retrieved as
8-bit bytes. The problem, however, is
that when the computer starts reading
information from a diskette, it has no
way of knowing where a particular byte
begins. When the disk drive starts to
read data, it starts from whatever posi-
tion the read head is located at. Since
we’re reading 8-bit bytes from the dis-
kette, there’s only a one-in-eight chance
that it has started reading data from the
beginning of a byte as we’d like it to.
Without some sort of special marker
bytes, the computer has no way of
knowing where the start of a series of
bits begins.

To clarify the situation a little, let’s
make believe that the following series of
bits were read from the disk drive:

11011111 10101011 1010

DF AB

If we begin interpreting our data with
the first bit, we find that the first two
bytes that we’ve read are DF and AB.
If, on the otherhand, the read head was
located at a position where it would start
reading data from the diskette at the se-
cond bit of the above data stream, then
the data would be interpreted as:

10111111 01010111 010

BF 57

As you can see from this very simple ex-
ample, the first two bytes have now be-
come BF and 57, a far cry from what
our original data was. Thus, it becomes
clear why where we begin reading our
-data is such a critical matter.

Self-sync bytes have 10 bits

To overcome this problem of decid-
ing where to start reading data, the
designers of Apple’s disk drive decided
to define a special byte called a self-sync
byte. The one thing that differentiates
this byte from all other bytes is that it
is composed of 10 bits, with the extra
two bits always being zeroes. In normal
DOS, the self-sync byte is an FF with
two zero bits appended to it. In the
modified DOS that’s used in many pro-
tection schemes, this FF byte has been
changed to other values. But, while the
value may change, one thing doesn’t.
The two extra bits are always zeroes.

At this point, if you are the least bit
curious, you'’re probably wondering how
these special bytes can bring the hard-
ware into sync with the data coming of
the diskette. It’s not difficult to under-
stand, but first we must know that the
Apple hardware will not start reading a
byte from the diskette unless the first bit
is a 1. So, if it encounters a zero bit first,

it will skip over it and wait for the next
“1“-bit to appear. Knowing this, it is
now possible to figure out how many
self-sync bytes will be necessary to
guarantee that the hardware is syn-
chronized with the data. To do this, we
should first write out the bits for about
half a dozen self-sync bytes. They would
look like the first line in the diagram be-
low. As you can see, I have included
spaces between each sync byte, but when
they are read off the diskette, they
would simply appear as a continuous
stream of bits. Now, if we start to read
this stream of data (e.g. the first time
we start with the first bit, the second
time we start with the second bit, etc.)
we can find out how many sync bytes
we’ll have to read before we can be sure
that the data we are reading is accurate.

If we look at the chart above, we find
that it takes a maximum of four self-
sync bytes to insure synchronization. No
matter where we start reading data, by
the time we’ve reached the fifth byte, we
know we must be reading an $FF. For
this reason, the gaps on a diskette track
must have a minimum of five self-sync
bytes.

How Self-Sync Bytes Synchronize Data and Hardware

Start Data Read From the Diskette Syncs
Bit Byte 1 Byte 2 Byte 3 Byte 4 Byte 5§ Byte 6 on Byte
1 1111111100 1111111100 1111111100 1111111100 1111111100 1111111100 1

2 111111100 1111111100 1111111100 1111111100 1111111100 1111111100 2
3 11111100 1111111100 1111111100 1111111100 1111111100 1111111100 2
4 11111001 111111100 1111111100 1111111100 1111111100 1111111100 3
5 11110011 11111100 1111111100 1111111100 1111111100 1111111100 3
6 11100111 11111001 111111100 1111111100 1111111100 1111111100 4
7 11001111 11110011 11111100 111111100 1111111100 1111111100 5
8 10011111 11100111 11111001 11111100 1111111100 1111111100 5
9 0011111111 0011111111 0011111111 0011111111 0011111111 0011111111 1
10 01711111110 0111111110 0111111110 0111111110 0111111110 0111111110 1

o e o .
Synchronizing Data and Hardware With 8-Bit Bytes
Start Syncs
Bit Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 on Byte
E4 92 E4 92 E4 92

1 11100100 10010010 11100100 10010010 11100100 10010010 1

2 11001001 0010010111 0010010010 010111001 00 10010010 6

3 10010010 010010111 0010010010 010111001 00 10010010 6

4 0010010010 010111001 00 10010010 11100100 10010010 4

5 01001001 0010111001 00 10010010 11100100 10010010 4

6 10010010 010111001 00 10010010 11100100 10010010 4

4 00 ' 10010010 11100100 10010010 11100100 10010010 2

8 (0] 10010010 11100100 10010010 11100100 10010010 2

9 10010010 11100100 10010010 11100100 10010010 2
10 0010010111 0010010010 010111001 00 10610010 6
11 010010111 0010010010 010111001 00 10010010 6
12 10010111 0010010010 010111001 00 10010010 6
13 0010111001 00 10010010 11100100 10010010 4
14 0101110010 O 10010010 11100100 10010010 4
15 10111001 00 10010010 11100100 10010010 4
16 (o} 3 11100100 10010010 11100100 10010010 3

8

Apple Software Protection Digest

Self-sync bytes can be eliminated

While it is not generally known, it’s
not absolutely necessary to have the
10-bit self-sync bytes on a diskette. If
you choose the right combination of
bytes, and there are several, you can
synchronize the disk hardware and data
with ordinary 8-bit bytes. You do pay
a price for this however. Generally
speaking you will need at least one more
8-bit sync byte. So, instead of requiring
a minimum of four 10-bit sync bytes to
guarantee synchronization, you'd need
a minimum of five 8-bit sync bytes. In-
terestingly enough, both situations result
in the same number of bits (40) to in-
sure synchronization. One bit pattern
that will insure synchronization within
5 sync bytes is E4 92. Let’s check this
out as we did with the 10-bit sync bytes.
As you can see from the table above, no
matter which of the first 16 bits you start
reading the diskette from, by the time
you have reached the 6th byte, the hard-
ware and the data are in sync.

Self-sync bytes can’t be copied

Why have we spent so much time try-
ing to understand self-sync bytes? The
answer is simple, they can be used to
great advantage in copy protection
schemes. Many people have asked me,
“Why can’t you write a program that
simply reads a series of bits off of one
diskette and writes it out to another dis-
kette?” That’s a good question, and at
first glance you would think that it
would be a simple matter to do just that.
There is a problem however, and that is,
self-sync bytes cannot be copied. The
hardware in the Apple computer is setup
in such a way, that only 8-bit bytes can
be read from the diskette and stored in
memory. If a 10-bit sync byte is read,
the two trailing zeroes are lost. You may
be wondering why it’s so important to
identify self-sync bytes. It’s important
because with their help, it becomes pos-
sible to identify the beginning and the
end of a track. This is necessary on soft-
sectored systems like the one used for
the Apple, because there is no physical
marker on the diskette that can be used
to tell the computer where a track be-
gins. Hard sector diskettes have a hole
punched at sector zero, so the disk drive
hardware can be used to locate the be-
ginning of a track.

From our discussion of the track for-
mat in the last issue (ASPD Vol. 1, No.
2, p. 20) we learned that there are three

types of gaps on a track: one that marks
the beginning of a track, one that
separates the address field from the data
field and one that separates the data
filed from the next address field. As it
turns out, the gap that marks the begin-
ning of a track is easily identified be-
cause it turns out to be the longest gap
on the track. Thus, when nibble copy
programs go to copy a track, they read
the track into RAM and analyze it,
searching for a large group of $FFs.
Once they find this group of $FFs, they
assume that they have located the begin-
ning of the track and mark its location.
Next, the bit copier programs look for
a second occurrence of this large group
of $FFs. Once they find it, they know
that they’ve located the spot where the
track starts to repeat itself. They then
backup to the spot just before these
$FFs began and mark that as the end of
the track. Now that the bit copier knows
where the start and finish of the track
is, all it has to do is write this informa-
tion back out to the diskette. As it does
that it makes assumptions as to which
bytes are sync bytes. If the track over-
laps itself when it is written back out to
the diskette, the bit copier will then start
removing either zeroes from sync bytes,
or sync bytes themselves to shorten the
length. If bytes are removed, a problem
will result in those programs that con-
tain a nibble counting scheme.

After software developers analyzed
the bit copiers and realized that they
were looking for large groups of $FFs,
they decided to use different bytes for
self-sync bytes, temporarily making the
nibble copy programs ineffective. Some
developers even went so far as to use
many different self-sync bytes on the
same diskette. The next generation of
nibble copy programs learned to over-
come this new protection ploy by incor-
porating sophisticated disk reading
routines that could detect the presence
of the two trailing zeroes that were
tacked onto self-sync bytes. With these
reading techniques, it was no longer im-
portant what the sync byte was, the nib-
ble copiers could detect them because
they could find the two zero bits that are
characteristic of self-sync bytes.

Use your own sync bytes

If you want to create your own pro-
tection scheme by changing the byte
that’s used as a self-sync byte, it’s very
easy to do. All you have to do is change
one location in memory — location

48224 ($3BC60). This location is near the
beginning of the routine that’s called by
DOS’s formatter and writes the address
headers. It’s entered with a number in
the Y-register that tells the routine how
many self-sync bytes to write. An LDA
instruction at 48223 ($BCSF) gets the
byte that will be stored as the self-sync
byte on the diskette. You can change
this value from an $FF to any other le-
gal value (see chart of legal diskette
bytes in ASPD Vol. 1, No. 2, p. 22)
from BASIC. For example, if we want-
ed to change the normal self-sync byte
to $FE, we would type in the following
line:

POKE 48224,254

That’s all there is to it. While it’s easy
to change the sync byte, your software
must check for its presence to make it
effective as a software protection
scheme. In addition, it will not prevent
current copy programs from backing up
your diskette. In a future issue of ASPD
we will talk about producing a useful
protection scheme using modified sync
bytes, bit insertion and nibble counting.

Cracks Wanted

Listed below are programs that
our readers would like to unpro-
tected. Anyone who comes up with
a method of removing the protec-
tion from any of these programs
will get a free three-month sub-
scription, or extension to ASPD, so
get those solutions in.

If you have a program that you’d
like to see unprotected, please let
us know, and we’ll add it to our list
so that some of our readers can try
their hands at it.

. Sensible Speller - DOS

. Sensible Speller - ProDOS
Crush, Crumble & Chomp
Wizardry

. Compress Software
Dazzle Draw

. Newsroom

. Word Handler

. Disk-O-Check

. The Game Show

Batter Up!

. Certificate Maker

et
RROWVEIAUE LN

Vol. 1, No.4

Many programs that are written in
Applesoft appear to wipe themselves out
when they’re finished or when the pro-
gram detects an attempt by the user to
break out of the program by pressing
Control-C or Control-RESET. Other
programs contain special REM state-
ments, which I call Wipeout REMs, that
will automatically erase the program
when you try to list it. The RAM disk
formatter that was used with the Syne-

tix 294K RAM card contained many -

statements of this type. These REM
statements are easy to produce (I'll show
you how to produce them in the next is-
sue of ASPD) and provide protection
from novice or casual users who want
to examine, copy or otherwise manipu-
late your program code. They can be
overcome however in many ways, and
a program that can restore programs
that are erased by the NEW or FP com-
mands can be a powerful tool.
Another use for such a restoring capa-
bility comes up when you’re trying to
transfer Applesoft files from a protect-
ed disk to an unprotected one. This can
be done by loading the program in from
the protected disk. Once you get the Ap-
plesoft prompt back, you get into the
monitor by typing CALL -151. Then
type AF.B0. This command will print
out two hexadecimal numbers for you
which represent the low byte and the
high byte of the end of the current BAS-
IC program. Usually we know where an
Applesoft program begins, at $801.
However, if you don’t want to take any
chances, you can examine the start of
program pointers which are located on
page zero at locations $67 and $68.
Now that you know where the pro-
gram starts and ends, you can move it
_ up, out of the way of DOS’s bootup
i process. I usually move the BASIC pro-
gram up to $6000 and then boot a nor-
mal DOS 3.3 slave diskette. A slave
diskette is one that is created by just us-
ing the INIT command and not using
MASTER CREATE. Once DOS 3.3 has
been loaded into the computer, BLOAD
&RESTORE. Then move the BASIC
program down from the $6000 memory
range and restore the BASIC program
by typing CALL 768. Once
&RESTORE has been run, it can sub-
sequentl.y be invoked by typing CALL
68 again or by typing &RESTORE.
ﬁct'o clarify the situation, let’s take a
1onal BASIC program that is on a

HOW TO RESTORE LOST APPLESOFT PROGRAMS

004C-
OOAE-

0006-
0008~
0067~
0069~
006B-
006D~
OOAF -
O3F5-
DECO-
FC58-
FDED-

.0300-
0302-
0305-
0307-
030A-
o30c-
030F -

0312-
0314-
0317~
0319~
031C-
031F-
0321-
0324-
03256~

0327~
0329-
032A-
032C-
032E-

A9
8D
A9
8D
A9
8D
4c

A9
20
AO
20
B9
FO
20
cs
Do

AS
18
69
85
AS

4c
F5
12
F6
03
F7
17

AE
co
00
58
7E
(o]}

F§

03
03

03
03

DE

FC
03

FD

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1
38
1510
1520
1530
1540
15650
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1760
1760
1770
1780
1790
1800
1810
1820

L e e S

%
PR
-
-k
EE R
EE T
LR

COPYRIGHT (C)
JULES H. GILDER
ALL RIGHTS RESERVED

rxx

&RESTORE 25
P

1982 BY oo
xx
£

-xx

i i e

-
-
-

.OR
-
=
* CONSTANTS
*
JUMP .EQ
RESTORE .EQ
*
*
* EQUATES
*
POINTER .EQ
TESTBYT .EQ
TXTTAB .EQ
VARTAB .EQ
ARYTAB .EQ
STREND .EQ
PRGEND .EQ
AMPERSD .EQ
SYNCHR .EQ
HOME .EQ
cout .EQ
*

This

is

$300

JMP op code
RESTORE token

$4C
$AE

$6
$8
$67
$69
$6B
$6D
$AF
$3F5
$DECO
$FC58
$FDED

Is where the ampersand jump

set up. After set-up,

a relative jump is made to the
second entry point of the program.

LDA #JUMP Get the JUMP
STA AMPERSD op-code & store
LDA #START it and the
STA AMPERSD+1 address of the
LDA /START start of this
STA AMPERSD+2 program.
. JMP START2 Go to START2.
-
* There are two entry points to this
* program. One Is via the &RESTORE
* command (START) and one by a CALL 768
* (START2). At START, the program
* looks at the Information that fol lows
* the & to see If It Is the RESTORE
* token This |Is done by SYNCHR. |f
* not RESTORE a syntax error |Is
* generated. Once syntax has been
* checked, the program title Is
* printed out.
-
START LDA #RESTORE Does the RESTORE
JSR SYNCHR token follow the &?
START2 LDY #$0 Yes, zero character pointer.
JSR HOME Clear the screen.
LOOP1 LDA TEXT,Y Get a character.
BEQ NEXT | f done go to NEXT.
JSR COuUT Print a character.
INY Increment the polinter.
BNE LOOP1 Get more characters.

£
*
* vector
*
*
*

This section of program resets the

wiped out when a NEW or Control-B
are entered.

-

-

-

* start of program polnters that are
-

-

-

LDA
cLC
ADC
STA
LDA

TXTTAB Get program start

low byte. Calculate
*$3 and save the starting
POINTER line's low byte.
TXTTAB+1 Get program start

10

Apple Software Protection Digest

protected diskette. After booting the
protected diskette, we reset into the mo-
nitor and find the beginning and end of
the program by typing:

67.68 N AF.B0

For our fictitious program, the com-
puter responds by printing:

0067 - 01
0068 - 08
00AF-97
00B0- 21
*

Next, we move the program up in
memory, out of harms way by typing:

6001 <801.2197TM

With the the program safe from destruc-
tion, we boot a DOS 3.3 diskette and
BLOAD &RESTORE. Then we move
our BASIC program back down where
it belongs getting into the monitor mode
with CALL -151 and then typing:

801<6001.7997™M

Finally, we restore the program by typ-
ing CALL 768.

What makes it possible for a program
like &RESTORE to resurrect a dead Ap-
plesoft program is the fact that the
designers of the Applesoft language
wanted to have an efficient language
and decided that it was not necessary to
actually erase the contents of memory
every time a NEW or FP command was
issued. Instead, they just changed the in-
formation stored in the end of program
pointer and erased only two bytes of
data from the program. Thus, the pro-
gram is still in memory, it’s just that Ap-
plesoft doesn’t know where to look for
it. By restoring the two bytes that were
erased (the pointer to the second line of
the Applesoft program), and searching
through memory until the end of the
program is found and restoring the
PRGEND pointer, the program can be
brought back to life, as if it were always
there.

While &RESTORE will bring back
programs that were NEWed or FPed, it
will not help a bit if the program has
been wiped out by zeroing out all of
memory with a program such as
Wipeout 1 or Wipeout 2 (see ASPD Vol.
1, No. 2, p.17 for more details). Bear
this in mind when setting up your own

0330-
0332-
0334-
0336~
0337-
0338-
O33A-
033C-
033D-
O33E-
0340-
0342-

0344-
0346-
0348-
034A-
034C-
034E-
0350-
0352-
0353-
0355-
0357-
0359-
035B-
035D~
035F -
0361-
0363-
0365-
0366-
0367~
0369~
036B-
036D~
036F -
0371-
0373-
0375-
0377~
0379~
037B-
037D~

037E-
0381~
0384-
0386~
0388~
038B-
O38BE-
0391~
0394-
0397~
039A~
0398~
039E-
03A1-
03A4-
03A7-
03AA-
O3AD-
O3AE-

03B1-
03B4-

03B7-
03BA-
03BD-
03COo-
03C1-
03C4-
03C7-
O3CA-

85
AO

88
cs
B1
DO
98
18
69

91

AB
D3
D2
8D
c2
CA
c5

cs,

c7
Cc4
8D
c3
D9

C7:

AO
A9
B9
8D
Cc1

AQ
c7
D3
Cc5
D2

8D
D2
C4

07

67

06
FB

05

67

c5
CF

AO
ccC
AO
AO
cc
D2

(s]0}
(o4:)
D4
c3
B1
B2

cC

c9
D4

D2
Cc5
8D

AE

1830
1840
1850
1860
1870
1880
1880
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2080
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350

23860
2370

2380
2390

2400
2410

2420
2430

2440
2450

F INDEOL

LOOP2

LOOP3

ZEROCHK

EXIT

STORPTR

This

R BN B BN 4

TEXT

STA
LDY
STA
DEY

INY
LDA
BNE
TYA
CcLC
ADC
LDY
STA

LDA
STA
LDA
STA
LDA
STA
LDA

INY
BNE
INC
CMP
BNE
LDA
CMP
BEQ
INC
BNE
INY
TYA
BNE
INC
STA
STA
STA
STA
LDA
STA
STA
STA
STA
RTS

POINTER+1 high byte and save it.
#3$1 Save 2nd line‘s
(TXTTAB),Y high byte.
Zero the Y-register.
Look for the end
(POINTERY,Y of I|ine marker

F INDEOL Keep looking.
Found end of line,
find value of

#3$5 program start

«30 low byte and

(TXTTAB),Y restore it.

This part of the program resets the
end of program pointers.

TXTTAB Store start of
POINTER program pointers
TXTTAB+1 in POINTER for
POINTER+1 future use.

#3$0 Initiallze end of
TESTBYT program test byte.
(POINTER),Y Start scanning

the program.

ZEROCHK Page boundary?
POINTER+1 Yes, Increment the byte.
#30 Does the accumulator=0?
LOOP2 No, keep scanning.
TESTBYT Yes, Is it the
2 2 end of the program?
EXIT Yes, finish up.
TESTBYT No, Iincrement the test byte.
LOOP3 Get the next byte.

Ad just the byte

count & see |If
STORPTR we have to Increment
POINTER+1 the high byte too.
VARTAB Store the low byte
ARYTAB of the end of the program
STREND in the appropriate
PRGEND zero page locations.
POINTER+1 Store the high byte
VARTAB+1 of the end of the program
ARYTAB+1 In the appropriate
STREND+1 zero page
PRGEND+1 locations.

Return.

|s where text for program title

.AS
.HS

.AS
.HS

.AS
.HS

.AS
.HS

.AS
.HS

and copyright notice are stored.

-"&RESTORE"
8D8D

-"BY JULES H. GILDER"
8D

-"COPYRIGHT (C) 1982"
8D

-"ALL RIGHTS RESERVED"
8D8D8D

-"READY."
8D00

—

Vol. 1, No.4

11

protection schemes. Don’t be lazy. Take
the extra effort to include a wipeout fea-

‘ture in your protection schemes, if you

really want to keep your programs from
prying eyes.

For those of you who are interested
in just how the &RESTORE program
works, a detailed description of this as-
sembly language program follows. For
those of you who just want to use it, typ-
ing the accompanying BASIC program
and it will install &RESTORE into
memory for you and give you the op-
tion of saving the machine language pro-
gram out to disk.

Redefining commands

In this program I’ll also show you
how you can use the existing set of key
words and give them new functions to
perform. In this case, as you’ve already
guessed, we’re going to use the RE-
STORE command. This command will
still perform its usual function without
any problems. But, when it is preceded
by another command, the ampersand
(&), it takes on an entirely new task.

The &RESTORE program begins, on
line 1410, by setting up the ampersand
jump vector to point to START and af-
ter that jumps to START2 (line 1470),
skipping the code that checks for the
presence of the word RESTORE. At line
1620, which is the ampersand entry
point, the program loads the token for
the word RESTORE (which is $AE) into
the accumulator and then jumps to the
syntax character checking routine
(SYNCHR) to see if that token matches
the information following the amper-
sand. If it doesn’t, the subroutine prints
out SYNTAX ERROR and stops execu-
tion of the main program. If it matches,
the main program falls into the START2
routine.

It is not at all necessary to use the RE-
STORE command, but I thought you’d
like to see how to do it. If you prefer
to use just the & as the command, sim-
ply eliminate lines 1470, 1620 and 1630
and rename the label on line 1640
START. Once at line 1640, the program
clears the screen and prints out the pro-
gram’s title, copyright notice and the
word READY, indicating to the user
that the program has already been re-
stored. While the program has not yet
been restored, the task is accomplished
so quickly, that the user never 'realizzs it.

The actual program restoration begins
on line 1780 where the start of program
pointer, TXTTAB, is used to produce

another pointer (lines 1780 to 1830),
called POINTER, which will skip the
first four bytes of the line (these consist
of the next line pointer and the line num-
ber). The reason we want to skip these
bytes is that ultimately we want to find
the end of the first line which is termi-
nated with a zero. However, any of the
first four bytes can legitimately contain
a zero, which could result in premature
termination of this program.

After POINTER has been calculated
and stored, the high-byte of the start of
program pointer is still in the accumu-
lator and it is stored as the high byte of
the pointer to the second line in the pro-
gram (line 1850).

Now that the high-byte of the next
line link to the second line has been re-
stored, we have to find out where the
first line ends in memory so that we can
restore the low-byte. The routine that
does this, FINDEOL, begins in line
1870. In lines 1870 and 1880, the Y-
register is incremented and the contents
of the location pointed to by both
POINTER and the offset of the Y-
register, are checked to see if they are
zero. If not, the process is repeated un-
til they are. If they are, the Y-register
is transferred to the accumulator (line
1900), the carry bit is cleared in prepa-
ration for adding two numbers (line
1910) and 5 is added to the accumula-
tor (line 1920). The five includes the four
bytes that were skipped at the beginning,
plus an additional byte so that the
pointer will point not to the last charac-
ter of the Applesoft line, but one past
it, where the next line actually begins.
This number is stored in the low byte of
the next line pointer (line 1940).

If the program were to stop at this
point, you would be able to list the pro-
gram and it would appear as if it had
all been restored. It hasn’t, because if
you saved it out to tape or disk and then
loaded it back in, you’d find you had
nothing, even though you were able to
list it, and also run it. The program can
be saved at this point only by listing it
to an EXEC file. The reason the pro-
gram will not save out properly is that
we have not adjusted the end of pro-
gram pointer, PRGEND, to point to the
end of the program. This is what is
done, starting at line 2000, where
TXTTAB, the start of program pointer,
is loaded into POINTER (lines 2000 to
2030).

In lines 2040 and 2050, a flag called
TESTBYT is set to zero. This is going
to be used to help us determine when the

end of the program has been reached.
A loop to scan the program is set up
starting at line 2060, where POINTER
and the Y-register are used to determine
the next location from which a byte will
be loadedsand tested to see if it is equal
to zero. After the byte is loaded, and be-

fore the test is performed, the Y-register

is incremented (line 2070) and a check
is made to see if a memory page bound-
ary has been crossed (e.g. did we go
from an address in the $800 range to an
addresses in the $900 range). If no page
boundary was crossed (line 2080) the
program branches to ZEROCHK,
otherwise, the high-byte of POINTER
is incremented by one.

ZEROCHK is where the byte in the
accumulator is tested to see if it is a zero
(line 2100). If it’s not, the program
branches back to line 2040 where TEST-
BYT is reset to zero, and then checks the
next byte. If it is a zero, we have to de-
termine if this is the end of an Applesoft
line or the end of the program. To do
this we check TESTBYT and see if it is
equal to two (lines 2120 and 2130). If it
is (line 2140), this is the end of the pro-
gram and the program branches to a
routine that stores all of the pointers. If
it’s not equal to two, we increment
TESTBYT by 1 and go back to check
the next byte. As you see, TESTBYT is
used to determine how many consecu-
tive zeros we have encountered. The end
of the program is indicated by three con-
secutive zeros; one for the end of line
marker and two instead of the next line
pointer.

The EXIT routine is where all of the
Applesoft pointers are adjusted. These
include the end of program pointer
(PRGEND), the start of variable storage
(VARTAB), the start of array storage
(ARYTAB) and the end of string storage
(STREND). In line 2170, the Y-register

s incremented by one because we want

to point to one past the three consecu-
tive zero bytes. The Y-register is then
transferred to the accumulator (line
2180) and the high-byte of POINTER
is incremented if a page boundary is
crossed (lines 2190 and 2200). All of the
appropriate zero page pointers are up-
dated in lines 2210 to 2290.

continued on page 6

.

In the Next Issue
THE ULTIMATE LINE HIDER

ASPD PROGRAM
DISKETTES AVAILABLE
FOR ONLY $15 EACH

Every month we will make a DOS 3.3 diskette available
that contains all of the programs for the current issue
of Apple Software Protection Digest.

Each diskette is available for only $15 each. Diskette 1
contains the programs from issues 1 and 2. There are
currently 3 diskettes available.

To order send a check, money order or your credit
card number and expiration date to:

REDLIG SYSTEMS, INC.
2068 - 79th Street
Brooklyn, New York 11214

REDLIG SYSTEMS, INC.
2068 79th Street
Brooklyn, New York 11214

BULK RATE
U.S. POSTAGE
PAID
BROOKLYN, NY
Permit No. 631

