APPLE

SOFTWARE
PROTECTION

DIGEST

$3.00

Vol. 1, No. 1

Premiere Issue

Contents

EDITORIAL. 1
HIDING APPLESOFT
PROGRAM LINES............ 2
APPLESOFT LINE FINDER....... 3
PROTECTION TUTORIAL—Part 1.6
Auto-Running Programs....... 6
Making Them Hard to Copy....6
Skip Track 3 Formatter 6
Adding Extra Tracks........... 8
BACKING UP PRINT SHOP...10
Print Shop Copy Program..... 10

REVIEW: Copy][Plus 11

COMING NEXT ISSUE........ 11

Apple Software Protection Digest:
Publisher & Editor, Jules H. Gilder;
Contributing Editor, J. Scott Barrus.
Copyright (c) 1985 by Redlig Systems,
Inc., 2068 - 79th Street, Brooklyn, NY
11214. All rights reserved. No part of this
publication may be reproduced, or elec-
tronically transmitted or stored without
the publisher’s written permission. Pub-
lished monthly at $24 per year by Redlig
Systems, Inc., (718) 232-8429. Reprints of
prior issues available for $3 each.

Apple is a registered trademark of Apple
Computer, Inc.

LEARNING TO LIVE WITH PROTECTION

Welcome to the Apple Software Protection
Digest. This is the first issue of what will be
a monthly publication that is dedicated to the
subject of protection and how it relates to
software for the Apple // series of com-
puters. If you’re like me, you’ve doubtless
seen scores of articles in the various com-
puter publications that tackle the subject of
software protection. Most of them take a
stand for or against it and that’s the last you
hear of the subject. But more is needed. Soft-
ware protection is a fact of life and we must
learn to live with it.

Too often, purchasers of programs get
stuck. They buy a program only to discover
that it can’t be used with a particular acces-
sory board or disk drive. And, because the
program’s protected, it can’t be modified.
Spelling checkers are a good example of this.
They’re frequently difficult or impossible to
use with non-standard or hard disk drives,
even though unprotected programs work
without difficulty on these drives.

Apple computer owners need a place
where they can get more information about
software protection. They need a forum
where they can exchange ideas with others
who face the same or similar problems. They
need to know what software protection is,
how it’s implemented, what are the conse-
quences of it, how it can be overcome if
necessary and if there are any comparable
unprotected alternatives to particular pro-
tected software packages.

Apple Software Protection Digest will pro-
vide you with this information and more. It
will show you new ways to protect, unprotect
and backup your programs. It will teach you
how to prevent others from accessing your
programs and it will show you how to make
them more difficult to copy. In addition,
you’ll learn how to overcome these and other
protection schemes that are in use. You'll
learn how to use the powerful, but compli-
cated nibble copy programs. You'll also learn
how to crack or remove protection entirely
from many programs.

With the programs that are included in
each issue of the digest, you’ll build a valua-
ble library of utility software that will make
the job of protecting, unprotecting and back-
ing up software easier. And, on-going tutori-
als will keep you up-to-date on both simple
and sophisticated protection techniques. In
addition to all this, every month you will get
reviews of hardware, software and books
that are of particular importance to the soft-
ware protection field.

We do not advocate software piracy, be-
cause we firmly believe that in the long-run
piracy only leads to more expensive and low-
er quality programs and less user support.
Programmers work long, hard hours to get
their software working and they deserve to
be compensated fairly for it. This cannot
happen if software is stolen. On the other-
hand, the honest consumer should not be
penalized and limited in his or her applica-
tion of a particular program simply because
the publisher decided to protect it. You may
have a legitimate need to to back up a pro-
gram and we hope to supply you with the
knowledge you need to do that. Alternative-
ly, you may wish to protect a program that
you’ve written so that others can’t copy it.
We’ll show you how to do that too.

Apple Software Protection Digest wel-
comes your comments, tips and article con-
tributions. If you have a problem backing

“up a particular program, let us know, we'll

try to help. If you've discovered a way to
copy or crack (unprotect) a particular pro-
gram, let us know about that too. Most likely
there are other people who would like to
know how to do it also. Finally, if you've
come up with an ingenious hardware or soft-
ware oriented protection scheme, write to us
about it so that we can share it with others.
If your article is used, you'll receive a free
6-month subscription (or subscription exten-
sion) to our publication. Let’s hear from you
soon.

Jules H. Gilder
Editor & Publisher

2

Apple Software Protection Digest

HIDING APPLESOFT PROGRAM LINES

Sometimes when you write an Applesoft
program, you may find it desirable to make
certain sections of it invisible. Maybe you’ve
developed a unique way of solving a problem
and you don’t want others to copy your al-
gorithm, maybe you want to bury a
copyright notice in the code where it won’t
be easily spotted and deleted, maybe you
want to use a machine language subroutine
without announcing it to the world, maybe
you want to include a password system to
prevent unauthorized use of your program
or maybe you want to hide the code that im-
plements your copy protection scheme.
Whatever the reason, the need to hide one
or more Applesoft program lines arises fre-
quently and you should know how to do. I'm
going to show three ways to do the job, with
the best one being the last one.

Hiding Applesoft lines is an old trick that
was used in a lot of early protected software.
The most common way to make a line dis-
appear is to end it with a :REM statement
and then imbed backspace characters in the
REM statement. You’ll need one backspace
for every character that is going to be hid-
den plus six additional ones. Remember to
include the line number and the spaces that
separate it from the text of the line, in the
character count. After you’ve put in the
backspace character (and I'll tell you how to
do that in a minute) then you’ll need an equal
amount of additional text that is going to be
printed over the text that is to be hidden.

If you try to type the program line: 10
REM and then try to enter backspaces so the
line can be erased, you’ll quickly find that
you have a problem. Go ahead try it. Instead
of inserting the backspace character into the
REM statement, when you type a backspace
(or left arrow) from the keyboard, it moves
the cursor back and prevents the line from
being stored in memory. This is not what we
want. Since backspaces cannot be entered
into a program line directly, we’re going to
have to force it in. To do this, we use a
process called patching. Patching requires
that we place a dummy character in the REM
statement every place where there’s going to
be a backspace. After that’s done, we must
search the computer’s memory for the dum-
my character and replace it with the code for
a backspace.

Since we’d like to automate the search and
replace task, a dummy character should be
chosen that’s not used anywhere else in the
program. Several such characters exist on the
Apple //e and //c keyboard, but only one
exists on the Apple II Plus keyboard, so we’ll
use that one. The character is the at sign (@).

To show you how this works, let’s make
the following Applesoft program line dis-
appear:

10 PRINT “A”

If we count everything to be hidden (in-
cluding the line number) we find that we’ll

need thirteen back spaces. But remember I
said you have to add on six to this, so the
total is nineteen. Now that we’ve backspaced
to the beginning of the display line, we have
to overprint the line to make it disappear.
The message you print must be at least as
long as the text being hidden. Thus, the new
line to be entered should look like this:

10 PRINT “A”. REM@@@Q@@Q@Q@@
@@@@@@@@@@@NOW THE LINE
IS HIDDEN

It’s important that you do not leave a space
between the REM and the first @. Now, if
we wanted to, we could get into the monitor
by typing CALL-151 and change all those a?
signs to the backspace character (which is
ASCII 8). But that’s tedious, so let’s make
the computer do it. Type in the following line
with no line number so that the computer will
start executing it the moment you press
<RETURN>. If you’re going to use this
technique a lot, you might prefer to create
a TEXT file with this line in it and then
EXEC it every time you need it.

D=ASC (“@”) : FOR X=2049 TO PEEK
(175) + 256*PEEK (176) : POKE X,(PEEK
(X) <> D)*PEEK (X) + 8*(PEEK (X)=D)
: NEXT

What this line does is set D equal to the
ASCII code of the dummy character that is
to be replaced. If you decide to use some
character other than the @, simply place it
between the quotation marks in the line
above. Next the computer starts at the be-
ginning of the Applesoft program (location
2049) and checks every byte until the end to
see if it’s equal to the @ character. If it is,
that character is replaced with an 8, which
is the backspace character, otherwise it’s left
alone.

If you look carefully at the one line pro-
gram that performs the search and replace,
you’ll notice that there’s no IFTHEN state-
ment in it, although from the verbal descrip-
tion it seems as though one is needed.
IF...THEN statements cannot be used as eas-
ily from the immediate mode, so another way
of doing the same thing had to be found. If
you haven’t already guessed by now, it has
to do with the strange statement POKE X,
(PEEK (X) < > D)*PEEK (X) + 8*(PEEK
(X)=D).

Here we're telling the computer to look at
the current location indicated by X. If the
value stored there is not equal to D the ex-
pression (PEEK (X) <> D) is true and is
mathematically equal to a 1, otherwise it’s
set equal to 0. At the same time, if the con-
tents of location X are not equal to D, the
expression 8*(PEEK (X) = D) is not true and
evaluates to zero. Thus, whatever was in lo-
cation X is stored back there again.
However, if the contents of location X are
equal to D, (PEEK (X) <> D)*PEEK (X)

becomes zero and 8*(PEEK (X) = D) be-
comes 8 (the backspace character), and that’s
what’s stored in memory.

If you’ve been following so far, and you’ve
typed everything in, you’ve noticed that when
you RUN the program it prints out an A like
it’s supposed to, but when you try to list it,
you get the message “NOW THE LINE IS
HIDDEN?” printed instead. Good for you.
You’ve just implemented one of several pro-
tection techniques that were used on early
Apple programs. But don’t get too excited,
because while this technique works nicely for
normal operation of the computer, as early
software publishers quickly found out, issu-
ing one simple command overcomes all the
hard work you’ve just done. With your in-
visible line program still in memory, type in
the following two lines in the immediate
mode (without a line number):

SPEED=100
LIST

The invisible line lists out to the screen very
slowly and you can see it get erased slowly
too. And, if you press Control-S before the
overprinting starts, you can freeze the line
on the screen for as long as you need to copy
it down on a piece of paper.

As you can see, this is not a very secure
way of hiding Applesoft program lines. In
addition, it has a tremendous overhead, and
requires a lot of additional memory for each
line that is hidden. Surely there must be
another way.

Hide a line between two others

If you understand how Applesoft stores
a program in memory (and I'll explain that
in a minute) you can hide a line between two
other lines and make it completely invisible.
A line hidden in this manner will function
correctly, but will not be visible at all, even
if you set SPEED to a very low number. Let’s
first see how Applesoft stores a program line
in memory by looking at the following line:

10 PRINT 123

If we were to look directly into memory,
we’d see that the line was stored in the fol-
lowing way:

Address |301 |302] 803 | 504 | s0s | 806 | 807 | s08] 09
Contents|0A [08 [0A { 00 [BA| 31 {32] 3300

Looking at locations $801 and $802 (2049
and 2050 in decimal) we see two hexadecimal
numbers stored there: 0A and 08, which
comprise the hexadecimal number $080A. In
6502 microprocessor systems, hex numbers
are always stored in memory with the low-
order byte first. This number represents the
location in memory of the start of the next
line of the Applesoft program. So if we were
to add another line to our program, it would
start at location $80A. Thus, the first to bytes
of any Applesoft program line are called the
next line pointer.

Vol. 1, No. 1 — Premieré Issue

3

The next two bytes at $803 and $804 hold
the hex equivalent of the line number. Since
our line number is less than 255, only the
low-order byte is used (it’s set to $0A which
equals 10 in decimal). The high-order byte
is set to zero. Next, on the fifth byte ($805)
we have the start of our line. $805 contains
$BA which is the code, or token, that
represents the word PRINT and the follow-
ing locations contain $31, $32 and $33 which
are the hex ASCII codes for 1, 2 and 3. Fi-
nally, there’s a zero, which serves as an end
of line marker.

If you're a good detective, by now you
may have guessed that this method of hid-
ing lines changes the next line pointer so that
the line you want to hide is bypassed. Let’s
clarify things by using the following three-
line program as an example:

10 PRINT
20 PRINT “THIS IS A TEST”
30 PRINT

Let’s get into the monitor by typing CALL
-151. Then type 801.824. The display you get
should look like this:

0801- 07 08 OA 00 BA 00 1D
0808- 08 14 00 BA 22 54 48 49
0810- 53 20 49 53 20 41 20 54
0818- 45 53 54 22 00 23 08 1E
0820- 00 BA 00 00 00

If we want to hide line 20, then all we have
to do is change the pointer to it (which is at
$801). Let’s change the pointer so that in-
stead of pointing to line 20, it points to line
30. If we look at $807, which is where line
20 begins, we see that it points to $81D which
is where line 30 begins. Now let’s change the
pointer to line 20 by typing:

801:1D

Next, get back to Applesoft by typing
3DO0G and LIST the program. You should
only see line 10 and line 30. Line 20 seems
to have disappeared completely. However,
if you type RUN, you’ll see that line 20 is
indeed still there because it prints out the
message “THIS IS A TEST”. The reason the
line is not listed, but is executed is that the
next line pointer is only used by the LIST,
GOTO and GOSUB routines. The routine
that executes a program just starts at the be-
ginning of the program and executes every-
thing it finds in consecutive order.

Well, it looks like we found a a good way
to hide an Applesoft line. We did, as long
as we don’t change, add or delete any lines
after we've hidden the ones we want, and the
lines have to be hidden under program con-
trol, after the program has been loaded. The
reason is, each time we add, delete or change
a line, Applesoft recalculates the next line
pointers by calling a routine in the ROMs
known as LINKSET ($D4F2) and corrects
the changes we made. Thus even if we try
to delete a non-existing line, our hidden line
will immediately re-appear. To verify this,
just type 0 and <RETURN > to delete the

non-existent line zero. Now list the program.
Line 20 has re-appeared again.

Unfortunately, when this version of Ap-
plesoft BASIC came out, there was also
another version of the language, whose pro-
grams started at $3000 instead of $800, be-
ing used. In order to insure compatibility
between programs written by both versions,
DOS was changed to include a call to an au-
tomatic pointer resetting routine when a pro-
gram is loaded from the disk. Thus, once
again our protected program will be correct-
ed when it is loaded into place. This is not
too bad however, because there are ways to
overcome that. We’ll talk about automati-
cally loading and running Applesoft pro-
grams and bypassing the pointer correction
routine next time.

The best way to hide a line

There is still one more way to hide an Ap-
plesoft program line and these one has few-
er problems and is more effective than the
others. This technique takes advantage of a
quirk in Applesoft and at the same time al-
lows you to insert invisible identification,
such as your initials, into the program as
well.

To use this technique, all you do is pre-
cede each line that you want to render invisi-
ble with 5 colons. Then, we’re going to
change the code ($3A) for the first colon of
each line to a $00. That’s all there is to it.
When you try to list the line, all you’ll get
is the line number. Let’s try an example.
Type in the following 3-line program:

10 PRINT
20 ::::: PRINT “THIS IS A TEST”
30 PRINT

Now get into the monitor by typing CALL
-151 and type AF.BO to get the location of
the end of the program + 1. This gives:

AF.BO
00AF- 2A
00BO- 08

Next, display a hex dump of the program
by typing 801.829 <RETURN>. You'll get
the following:

0801- 07 08 0A 00 BA 00 22
0808- 08 14 00 3A 3A 3A 3A 3A
0810- BA 22 54 48 49 53 20 49
0818- 53 20 41 20 54 45 53 54
0820- 22 00 28 08 1E 00 BA 00
0828- 00 00

Looking at the above hex dump, we see
that the first colon ($3A) is located at $80B.
Change it to a zero by typing 80B:0
<RETURN>. Now get back to Applesoft
by typing 3DOG and list the program. This
is what you should get:

10 PRINT
20
30 PRINT

If you run the program it will still print
out the “THIS IS A TEST” message. By the

way, there’s nothing magical about using col-
ons, it’s just that you can put them in without
effecting the operation of the program in the
unprotected mode. If you want, however, the
second through fifth characters at the begin-
ning of the line can be your initials or any-
thing else. Thus you could have:

20::JHG PRINT “THIS IS A TEST”

However, if you tried to run a program
with this line in it without changing the first
colon to a zero, you’ll get a syntax error. Af-
ter you make the change however, Applesoft
will ignore the remaining four characters so
no error message is generated.

It’s easy to insert patches into a program
line when the line is at the beginning of the
program. However, it’s a pain in the neck to
do it when the line is in the middle of a large
program. To make this task easier, the Util-
ity program this month has been designed to
make the task easier. It’s called Applesoft
Line Finder and it will locate any line in the
program that you specify, display a hex
dump of just that line, and leave you in the
monitor mode so you can make any desired
changes. Of course, if you want to make all
the changes automatically, you can write a
short Applesoft program that gets append-
ed to the current program and run that, or
you can write a separate machine language
program to do it.

To make life interesting, and to give you
some incentive, we’ll give a free 6 month sub-
scription (or extension) to the best machine
language and Applesoft programs that au-
tomatically make the required changes. And,
if your program automatically changes the
remaining four colons to an identification
string that the user enters, we'll make it seven
months instead of six. Go to it!

APPLESOFT LINE
FINDER

Earlier, we had a short discussion on the
way a line of an Applesoft program is stored
in memory. Without repeating that discus-
sion in detail, let’s just review a few perti-
nent facts. With ROM or language card
Applesoft, program storage normally starts
at location $801. The first two bytes of an
Applesoft line contain a pointer to the loca-
tion in memory of the next Applesoft line.
The next two bytes are reserved for the hex
representation of the line number. Then, the
actual text of the line is stored with Applesoft
keywords replaced by one-byte tokens. Fi-
nally, the line is terminated with a zero.

The program APPLESOFT LINE
FINDER, takes a line number that is passed
to it by the ampersand command and uses
some of the routines in the Apple ROMs to
first locate the position of the line in memory
and then display the line in hex up to and
including the terminating zero byte. The pro-
gram then leaves you in the monitor mode
so that you can make any changes desired
in the line just displayed.

4

Apple Software Protection Digest

The program starts at location $2DA,
which is the upper part of the input buffer.
To use it, the program is loaded and then ac-
tivated by a CALL 730. Since the program
is located in pages 2 and 3 of memory, it can
be loaded and run at any time during an Ap-
plesoft program’s development, without af-
fecting the Applesoft program.

The first part of the program, which starts
on line 1360, clears the screen, prints out the
program title and sets up the ampersand
jump locations on page three to point to a
routine that locates the Applesoft line. Im-
mediately following this short routine, is the
text that it prints out. The reason the text is
placed here up front, is that it is going to be
used once, the first time the program is run,
and thus is expendable. So we won’t have to
worry about part of our program, which is
stored in the input buffer, being wiped out
if a long line of text is entered.

The actual program that finds and displays
Applesoft lines starts on line 1660, where an
Applesoft routine called LINGET ($DAOC)
is called. LINGET is the routine that is used
to check get the line number of an Applesoft
line that is being entered from the keyboard.
It uses TXTPTR, which is the text pointer
in the CHRGET routine, and reads the num-
ber that TXTPTR is pointing to. It takes this
number, converts it to hexadecimal and
stores it in LINNUM and LINNUM+1 ($50
and $51). Because this routine is the same
one that Applesoft uses to check line num-
bers, it has the same limitations, namely it
is only good for line numbers up to and in-
cluding 63999.

If you want to display lines greater than
that, the JSR LINGET should be replaced
by a JSR FRMNUM ($DD67), immediately
followed by a JSR GETADR ($E752).

Once the line number has been converted
to hex and stored in LINNUM, another Ap-
plesoft ROM routine, FNDLIN ($D61A), is
called (line 1670). FNDLIN will start at the
beginning of the Applesoft program and
search for the line number that is currently
stored in LINNUM (and of course
LINNUM+1). If the line is found, its begin-
ning address is stored in two page zero loca-
tions called LOWTR and LOWTR+1 ($9B
and $9C). Also, if the number is found the
carry bit is set. If the number is not found,
the next highest line number, if there is one,
is stored in LOWTR and the carry bit is
cleared.

Upon returning from FNDLIN, the first
thing the program does is to test the carry-
bit to see if the line number was found (line
1680). If it was not found, the program
branches to line 1940 where a message to the
user is printed that rings the bell and tells him
that no such line exists in the program. If the
line does exist, the Y-register and memory
location TEMP are both set to zero (lines
1690 and 1700) and the program jumps to
a subroutine that prints out the two-byte ad-
dress of the data that are going to be dis-
played on the next line of the video display
(line 1710). This subroutine, which is called

0008-
0018-
003C-
009B-
03F5-
D61A-
DAOC-
F941-
FC58-
FD8E-
FDDA-
FDED-
FF69-

02DA-
02DD-
02DF-
02E1-
02E4-
02E6-
02E8-
02EA-
02ED-
02F0-
02F3-

02F4-
02F7-
02FA-
02FD-
0300-
0303-
0306-
0309-
030B-
030E-
0311-
0314~
0317-
031A-
031D-
031E-
0321-
0324-
0327-
032A-
032D-
0330-
0331-
0334-
0337-
033A-
033D-
0340-
0343-
0344~
0347-

0349-

ocC

FC

03

03
03

DO
D3
D4
C9
AO
CE
D2

AO

AO
A0
cC
D2

DO
c9
D4
Cc3
Bl
B2

cC
c9
D4
D2
C5
Cc5

8D

DA

1000
1010
1020
1030
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

1520
1530

1540
1550

1560
1570

1580

1590
1600
1610
1620
1630
1640
1650
1660

Kkkkkkkkkkkhhkkkhkhkhkkhhkhkkkhkkkhkx

*kk *kk

*kk APPLESOFT LINE FINDER *kKk

Kk Kk

kkkkkkkkkkkkhkkkhkkkhhhhkkkhkkkkkrkrrx

*

*

*
.OR $2DA

*

*

* EQUATES

*

TEMP .EQ $8

TXTPTR .EQ $18

AlL .EQ $3C

LOWTR .EQ $9B

AMPERSD .EQ $3F5

FNDLIN .EQ $D61A

LINGET .EQ $DAOC

PRNTAX .EQ $F941

HOME .EQ $FC58

CROUT .EQ $FDSE

PRBYTE .EQ $FDDA

COUT .EQ $FDED

MONZ .EQ $FF69

*

*

* This is where the program title is

* printed out and the ampersand (&) vector

* jump is set up.

*
JSR HOME Clear the screen.
LDA #TEXT1 Get the address of the
LDY /TEXT1 text to be printed.
JSR MSGPRT Print it.
LDX #$4C Get a JMP op code and
LDA #START the low and high bytes
LDY /START of START's address and
STX AMPERSD store them in locations
STA AMPERSD+1 $3F5, $3F6 and $3F7.
STY AMPERSD+2
RTS

*

*

* This is the text for the title and

* copyright notice.

*

TEXT1 .AS -"APPLESOFT LINE FINDER"
.HS 8D8D
.AS -"BY JULES H. GILDER"
.HS 8D
.AS -"COPYRIGHT (C) 1982"
.HS 8D
.AS -"ALL RIGHTS RESERVED"
.HS 8D8D8D8D00

*

*

* This part of the program is the main

* loop. It gets the line number, finds

* it in memory and displays it in hex.
*

START JSR LINGET

Convert number after & to hex.

Vol. 1, No. 1 — Premiere Issue

PRTADDR, starts on line 2050 and begins
by printing a carriage return and than a space
(lines 2050 to 2070). Next, the X-register is
set up as a displayed byte counter (line 2080)
and is used to permit the display of only eight
bytes of data per line. Then the subroutine
prints out the address that is stored in
LOWTR and LOWTR+1, high-order byte
first (lines 2090 to 2120). Finally, a colon is
printed out and the program returns to the
caller via the RTS in the COUT routine (lines
2130 and 2140).

After printing out the starting memory ad-
dress of the line of data to be displayed on
the screen, a space is printed (lines 1720 and
1730) and eight bytes of data are printed. The
byte to be printed is retrieved in line 1740 and
checked to see if it is a zero in line 1750. If
it is a zero, TEMP is tested to see if five or
more bytes have already been printed (lines
1760 and 1770). The reason for this is that
for line numbers below 255, the fourth byte,
which is the high-order byte of the line num-
ber is set to zero. This is not the zero we wish
to detect, but rather the zero that terminates
the Applesoft program line.

If five or more bytes have been printed al-
ready, we know that this zero represents the
end of the Applesoft line, so the program
jumps to a routine (on line 1850), that prints
out the zero, then prints out a carriage return
(line 1870) and finally jumps to a routine in
the F8 ROM called MONZ ($FF69) which
leaves the user in the monitor mode (line
1880). If for some reason you wish to return
to the program that called the APPLESOFT
LINE FINDER instead of being left in the
monitor, it is only necessary to replace the
JMP MONTZ in line 1880 with an RTS.

If less than five bytes have been printed,
we know that this is not the end of the line
and we print the zero out just as we would
print any other byte (lines 1790 and 1800).
Then the program jumps to a routine on line
2210 that increments the two-byte LOWTR
pointer and also increments TEMP. After
that, the X-register is decremented and test-
ed to see if eight bytes have been printed al-
ready (lines 1820 and 1830). If not the
program branches to line 1720 where the next
byte is retrieved and printed. Otherwise, it
branches to line 1710 where the address of
the next byte to be displayed is printed. This
process continues until the terminating zero
of the Applesoft program line is en-
countered.

The subroutine located in lines 2300 to
2400 is a message printing routine. Follow-
ing this routine, on line 2480, is the text for
the error message that says the line doesn’t
exist.

Unlike most programs that use the amper-
sand, this one is meant to be used primarily
from the immediate mode rather than being
called from a running program. However,
as I indicated earlier, if you want it to return
to a program that called it, the change that
has to be made is trivial.

continued on page 8

034C-
034F-
0351-
0353-
0355-
0358-
035A-
035D~
035F-
0361-
0363-
0365-
0367-
0369-
036C-
036F-
0370-
0372-
0374~
0376-
0379-
037C-

037F-
0381-
0383-

0386-
0389-
038B-
038E-
0390-
0392-
0395-
0397-
039A-
039C-

039F-
03A1-
03A3-
03A5-
03A7-

03A8-
03AA-
03AC-
03AE-
03B0-
03B2-
03B5-
03B7-
03B9-
03BB-
03BD-

03BE-
03BF-
03C2-
03C5-
03C8-
03CB-

20
90
A0
84
20
A9
20
B1
DO
A5
C9
BO
A9

20
CA
FO
DO
A9
20
20
4C

A9
AO
4C

E6
DO
E6
E6
60

85

AO
B1
FO
20
E6
DO
E6
DO
60

8D
CE
D3
Cc8
C9
87

1A
2E
00
08
86
AO
ED
9B

08
05
0D
00
DA
9F

E3

00
DA
8E
69

BE
03
A8

8E
A0
ED
08
9C
DA
9B
DA
BA
ED

CF
D5
AO
CE
8D

D6

03

FD
03

FD
FD
FF

03

FD
FD

FD
FD
FD

FD

A0
C3
cC
C5
00

1670 JSR FNDLIN Put address of line in LOWTR.
1680 BCC NOLINE Line doesn't exist.

1690 LDY #$0 Zero the Y-register.
1700 STY TEMP and TEMP.

1710 NXTLIN JSR PRTADDR Print address of line.
1720 PRTSPC LDA #$A0 Print a space.

1730 JSR COUT

1740 LDA (LOWTR),Y Get the next byte in the line
1750 BNE PRINTIT If it's not zero, print it.
1760 LDA TEMP It is zero, did we pass
1770 CMP #$5 the fifth byte?

1780 BCS DONE Yes, print it and end up.
1790 LDA #$0 No, print it and continue.
1800 PRINTIT JSR PRBYTE Print byte in accumulator.
1810 JSR INCR Increment LOWTR and TEMP.
1820 DEX Decrease X by one.

1830 BEQ NXTLIN X=0 start a new line.
1840 BNE PRTSPC Get and print next byte.
1850 DONE LDA #$0 The last byte is a zero
1860 JSR PRBYTE so print it.

1870 JSR CROUT Print a carriage return.
1880 JMP MONZ Jump to the monitor.
1890 *

1900 *

1910 * Tell the user the line he requested

1920 * does not exist.

1930 *

1940 NOLINE LDA #TEXT2 Point to text to be

1950 LDY /TEXT2 printed.

1960 JMP MSGPRT Print it.

1970 *

1980 *

1990 * This section of the program prints

2000 * out a carriage return, a space and then

2010 * the address in memory of the first byte

2020 * displayed on the line, followed by a

2030 * colon.

2040 *

2050 PRTADDR JSR CROUT Print a carriage return.
2060 LDA #$A0 Print out a space.

2070 JSR COUT

2080 LDX #$8 Count -8 bytes per line.
2090 LDA LOWTR+1 Print out the address of
2100 JSR PRBYTE the first byte on the
2110 LDA LOWTR line, high byte first.
2120 JSR PRBYTE

2130 LDA #$BA Then print a colon.

2140 JMP COUT

2150 *

2160 *

2170 * Here, the pointer to the contents of -
2180 * the line is incremented. Location

2190 * TEMP is incremented too.

2200 *

2210 INCR INC LOWTR

2220 BNE INCTEMP

2230 INC LOWTR+1

2240 INCTEMP INC TEMP

2250 RTS

2260 *

2270 *-

2280 * This is the message printing routine.

2290 *

2300 MSGPRT STA TXTPTR

2310 STY TXTPTR+1

2320 LDY #$0

2330 LOOP LDA (TXTPTR),Y

2340 BEQ ENDPRT

2350 JSR COUT

2360 INC TXTPTR

2370 BNE LOOP

2380 INC TXTPTR+1

2390 BNE LOOP

2400 ENDPRT RTS

2410 *

2420 *

2430 * This is the text that tells the user

2440 * that the requested line doesn't exist

2450 * in the program. A bell is also rung

2460 * to alert the user to the error.

2470 *

2480 TEXT2 .HS 8D

2490 .AS -"NO SUCH LINE"

2500 .HS 878D00

6

Apple Software Protection Digest

PROTECTION TUTORIAL — Part I

Copy protection wasn’t always a problem
for Apple // owners. In the early days of
computing (the late 1970s) no programs were
copy protected and all could be be easily
backed up by using the COPY or COPYA
programs provided on the System Master dis-
kette. However, as time went by, some
manufacturers discovered that many more
copies of of there program were available
than they had produced. In addition, they
were getting calls from people with questions
from people who never bought the program.
To combat this, they developed ways to au-
tomatically run programs when they were
loaded in and made it difficult to copy those
programs with the standard copy programs.

Making it run automatically

It’s not as difficult as you might think to
make machine language programs run auto-
matically as soon as they are loaded. All you
have to do is place the address of the start
of you machine language program in loca-
tions $36 and $37. This should be done by
the loading process, so that when the load-
ing is completed and the computer attempts
to print out the prompt character, control
is automatically transferred to your program.
Of course, one of the first things your pro-
gram should do is restore the proper values
to locations $36 and $37. Since it’s not pos-
sible to make the changes to these two loca-
tions and save them out to the disk, you must
do it somewhere else in memory, save it out
to the disk and then change the loading ad-
dress on the disk itself or BLOAD the pro-
gram at $36.

If you have a short machine language pro-
gram (less than 500 bytes long) you can let
it reside in pages 2 and 3 of memory ($200
to $3FF). If it’s longer than that, you’ll have
to place it at $800 and above. In the later
case, to retain the auto-run capability, you’ll
have to save out the screen area as well. Let’s
see how a program to run automatically. To
begin with, we’ll first assume that the pro-
gram will fit in pages 2 and 3 of memory and
that its starting address is at $200. We’ll use
a simple program that clears the screen and
prints an “A” as an example.

" Since we already said that we can’t assem-
ble our auto-run program in the final loca-
tion it is going to reside in, let’s choose
another convenient spot. In this case we'll
start with $836. At $836 we’ll place the ad-
dress of the start of our program, which we
said would be $200. So from the monitor,
type in:

836:00 20

Now we have to leave the same amount
of space between $836 and the start of our
program, as there is between $36 and $200.
So, our program which should be assembled
to operate at $290, is temporarily stored at
$A00 and here it is:

A00:A9 BD 85 36 A9 9E 85 37 20 58 FC
A9 C1 20 ED FD 4C 00 E0

Next, we want to transfer the contents of
page 1, which is the stack area for the 6502,
to its equivalent higher memory location. In
order for the 6502 microprocessor to oper-
ate properly, it expects certain values in cer-
tain locations on the stack. By transferring
the stack to higher memory, we can preserve
those locations and load them back in when
we load our program. We can do this by typ-
ing from the monitor:

900<100.1FFM

Finally, we save the whole thing out to disk
as one file by typing:

BSAVE TEST,A$836,L$1DD

where $1DD is the length of memory be-
tween $836 and $A 12 which is the end of our
program. To automatically run our program,
we just have to BLOAD TEST,A$36. Try it.
If you want to eliminate the need to add the
A$36 to the load command, you can use a
track and sector editor program to modify
the two bytes on the disk that tell DOS where
to BLOAD the program. We’ll take a look
at how to do that next time.

How to make it harder to copy

Until now, we've only talked about auto
running machine language programs. While
this is an essential part of copy protection,
its not enough. If you want to prevent un-
authorized copying of a program, you have
to prevent copy programs from reading the
disk. One of the earliest ways this was done
was to leave one or more tracks on a diskette
unformatted. Usually this was track 3. When

10 TEXT : HOME
20 "A$ = "SKIP TRACK 3 FORMATTER"
30 PRINT TAB(
40 PRINT : PRINT :
50 PRINT :

PRINT :

ordinary copy programs copy a diskette, they
do it one track at a time. After copying DOS
onto the new diskette (DOS is on tracks 0,
1 and 2) the program would attempt to copy
track three. Since it was unformatted, the
program was unable to read it and an 1/0
ERROR was caused, crashing the copy pro-
gram. This was a fairly effective method of
preventing copying but eventually copy pro-
grams came out that either ignored the /0
ERROR or copied only those sectors that
were marked as being used on the Volume
Table of Contents — VTOC — which is lo-
cated on track 17 ($11), sector 0.

Erasing or leaving a track unformatted on
a disk is still an effective way to keep people
from making casual copies. Although most
nibble copy programs (Copy][Plus, Lock-
smith, Essential Data Duplicator) will easily
overcome this obstacle, most Apple // users
do not own one of these programs, and rely
on COPYA to backup their diskettes.

Those of you who would like to experi-
ment with producing disks with an unformat-
ted track, can do so with the aid of the
Applesoft program listed below. This pro-
gram temporarily modifies DOS 3.3’ for-
matting routine so that it will leave track 3
unformatted. You must use new or erased
diskettes because this program simply skips
over track three. If you are using a previously
formatted diskette, which had track 3 for-
matted, then it will remain formatted.

A patch to DOS is inserted in line 120
which tells the formatting routine to jump
to location $300 (768) where there is a short
routine to check and see if track 3 has been
reached yet. If it has, the formatter’s track
counter is incremented by one so that track

-3 will be skipped and not formatted. This is

followed by the original four bytes that were
removed from the formatter code to make
room for the jump-to-patch instructions. Fi-
nally, this routine jumps back to the format-

ter which then finishes its job.

Leaving track 3 unformatted is not
enough. If you want to prevent any crashes
continued on page 8

INT (LEN (A$) / 2));A$
INPUT "ENTER SLOT NUMBER: '";SLT
INPUT "ENTER DRIVE NUMBER: ";DRV

60 IOB = 47080:TRK = IOB + 4:SCT = IOB + 5

80 FOR X = 768 TO 787

90 READ Y
100 POKE X,Y
110 NEXT X

120 POKE 48891,76: POKE 48892,0: POKE 48893,3

130 PRINT CHR$ (4)3;"INITHELLO,S";SLT;",D",DRV
140 POKE 48891,165: POKE 48892,68: POKE 48893,201
150 POKE TRK,17: POKE SCT,0: POKE IOB + 3,0

160 CMD = 47092: POKE CMD,1: CALL 781
= PEEK (47089)

170 BUF PEEK (47088) + 256 *

180 POKE BUF + 68,0: POKE BUF + 69,0: POKE CMD,2

190 CALL 781: POKE CMD,0
200 PRINT : PRINT :

INPUT "DO YOU WANT TO FORMAT ANOTHER DISK? '';A$

210 IF LEFT$ (A$,1) = "Y" OR LEFT$ (A$,1) = "y" THEN RUN
220 DATA 165,68,201,3,208,2,230,68,201,35,76,255,190

230 DATA 160,232,169,183,76,217,3
997 REM

998 REM COPYRIGHT 1985 BY JULES H. GILDER

999 REM ALL RIGHTS RESERVED

Vol. 1, No. 1 — Premiere Issue 7

SOFTWARE PROTECTION
TECHNIQUES EXPOSED!

Now, for the first time, owners of Apple // ser-

ies computers can learn all about the tricks and APP[i‘ﬁ/ ARE
techniques used to protect Apple software. Ap- SOF

. s " 1 PROTECTION
ple Software Protection Digest, a new monthly DIGEST

publication, will show you how to protect, un-
protect and backup your software.

LEARNING TO LIVE WITH PROTECTION

* Prevent others from accessing your programs e T
® Make your programs difficult to copy RILCTAE SEmReReE
¢ Overcome protection schemes on commercial * Srrpimeiy Enimmeeae
software Contents i b
* Build a library of protection-oriented utility i, | EEEERSEE BRRRES
e Get help with your specific problems hiceelophs
e Learn about the latest advances in protection o st
hardware and software e,

All this and more can be yours by subscribing
to the Apple Software Protection Digest. A one-
year subscription is $24, two years is $42.

hemes e sbn cuen-
fearn how 10 wse the pomerful, but compli- w08} 10 ur publaation. Las hear (o you
cated wibble copy programn. YouTl ahokearn soom.
e 10 ok o remove protection entirely
from many programs Jules H. Gider

Fdwor & Publivher

SUBSCRIBE TODAY!

B e e eceemmmemmmemmemmmemmeeemeeccceecceeeooad

REDLIG SYSTEMS, INC., Dept. A1357
2068 - 79th St., Brooklyn, NY 11214

Please enter my ________ year subscription to Apple Software Protection Digest.

O Enclosed is my check for

O Please charge my credit card: O VISA 0O MasterCard (0 American Express

Card Number Exp. Date Signature
Name

Address

City State Zip

8

Apple Software Protection Digest

Protection Tutorial

continued from page 6

caused by DOS’s attempt to store something
on track 3, you must tell DOS that track 3
is not available for storage. This can be done
by modifying the appropriate bytes (344 and
$45) on track 17 ($11) sector 0. This sector
has a special name. It’s called the Volume Ta-
ble of Contents, or VTOC for short and it
keeps a record of which tracks are free and
which aren’t. By changing bytes $44 and $45
on this sector to zeroes, we effectively noti-
fy DOS that track 3 cannot be used to store
anything. This is done by the code starting
at line 150. Line 150 sets up the track and
sector, while line 160 sets up the input/out-
put block (IOB) that the next disk operation
we do is going to be a read from the disk.
The actual disk access is done by a short
machine language routine located at 781
($30D). This program uses DOS’s internal
read or write a track or sector (RWTS) rou-
tine. Once the sector has been read and is
stored in memory, line 180 changes the ap-
propriate bytes to zero and sets up the RWTS
so that it will write the sector back out to the
diskette. This is done in line 190, after which
the RWTS command is changed from a write
command to a null command.

Add extra tracks to your disks

Another method that is used to prevent
people from backing up programs is to add

extra tracks to your diskette. While the nor-
mal Apple DOS 3.3 diskette is formatted for
35 tracks (numbered 0 through 34) most peo-
ple are not aware that it is possible to for-
mat a diskette with more tracks. In the early
days, a single extra track was added and crit-
ical information was stored on this track.
Since normal copy programs would only
copy 35 tracks, the copy wouldn’t work be-
cause the critical 36th track was missing.
However, it didn’t take long for the nibble
copy programs to incorporate a 36th track
capability into their programs. This coupled
with the fact that early Apple drives had
difficulty accessing the extra track, gradu-
ally caused this protection technique to fall
out of favor. It is well worth considering
again today, however, because drives that are
currently available can format a diskette with
as many as 40 tracks on them. In addition
to giving you extra storage space on the same
diskette, you should know that todays nib-
ble copiers still only go up to 36 tracks.

To be safe, and minimize problems with
other drives, you ought to consider adding
only two tracks to the normal diskette (for
a total of 37). This will give you an extra 8K
of storage space on the diskette and defeat
most copy programs currently available.
Making diskettes with the additional tracks
is easy. Here’s how:

1) First boot DOS 3.3 as usual.
2) Next, enter the monitor by typing CALL
-151

3) Change location $AEBS from $8C to $90
to add one track or 94 to add two tracks

4) Change location $B3EF from $23 to
either $24 or $25 (one or two extra tracks)

5) Make the same change to location
$BEFE.

6) INIT a blank disk with the newly modi-
fied DOS. It will now have 1 or 2 extra
tracks on it.

Putting the extra tracks on the disk is not
enough. You must now tell DOS that they’re
available for use. To do this you must change
track 17, sector 0 (the VTOC). To do this
use a track and sector editor (such as the one
found in Copy][Plus) and read in track 17
($11), sector 0. Next, change byte number
$34 from $23 to $24 or $25 — depending on
how many tracks you've added. If you’ve ad-
ded just one track, change bytes numbered
$C4 and $CS from 0 to $FF. If you’ve ad-
ded two tracks, change bytes $C6 and $C7
to $FFs also. Now, just write the sector back
out to the disk. That’s all there is to it. If you
check the disk space on this diskette with
FID, you’ll find that you now have 32 more
sectors available.

Next Issue: All About Modified Disk For-

_ mats and RWTS

Applesoft Line Finder

continued from page 5

To use APPLESOFT LINE FINDER, just
type in an ampersand, followed by the line
number like this, &10. This will cause line
10 of the current Applesoft program to be
displayed on the screen in hexadecimal form
and leave you in the monitor mode so that
changes can be made to it. Since a colon is

“used to separate the address from the dis-
played data, it is only necessary to move your
cursor up to the line that is going to be
changed and copy everything with the right
arrow key except those items that are going
to be modified. It couldn’t be simpler.

Take out a 2-year subscription
to Apple Software Protection Digest
and save over 12%.

FREE BONUS!

If you subscribe for 2 years
before October 1985
we’ll send you our
Programmer's Number Conversion System
FREE.

Vol. 1, No. I — Premiere Issue

BECOME AN ASSEMBLY LANGUAGE
PROGRAMMING WHIZ

You've spent a lot of time learning Apple
assembly language and finaily know the
difference between BEQ and BCS. Now
it's time to put your new-found knowledge
to work. Time to throw away your
Applesoft programming manual and write
programs that make your Apple work like
a super-charged, super-fast computer.
Time to graduate from the Applesoft
BASIC used by beginners, to the 6502
assembly language used by
professionals.

To help make this transition, you need an
experienced programmer to guide you.
You need to develop a library of
subroutines that make programming in
assembly language as easy as
programming in BASIC. You need to learn all the tricks that
take experienced assembly language programmers years to
acquire. Most important of all, you need the book, “Now that
You Know Apple Assembly Language: What Can You Do With
It?" because it contains all this information and more.

It shows you how, step-by-step

“Now That You Know Apple Assembly Language: What Can You
Do With It?” will take you step-by-step through the assembly
language programming experience. You'll delve into the
mysteries of the 6502 stack and learn how to use it to increase
the power and versatility of your programs. You'll also learn how
to use the Apple’s built-in routines to minimize the amount of
coding you must do.

Control the output and the input

Frequently it's desirable to gain total control of the computer’s
output. This book shows you how to steal control away from the
Apple’s normal output routines and redirect it to your own pro-
gram. Thus if you warited, you could see the normally invisible
control characters, display text on your screen as black on white
instead of the normal white on black, format text sent to a printer
into pages and much more.

Expand the power of your Apple by stealing control away from
the normal input routines. Do things like adding a screen print
capability, or convert part of the normal keyboard into a
numeric keypad. It's even possible to produce self-modifying
programs by EXECing in commands from RAM instead of
from the disk drive. Think about the possibilities that offers for
protecting your programs. When you want to go back to
Applesoft programming, you'll be able to do it faster with the
aid of Applesoft Shorthand, an assembly language program
that types in one or more Applesoft commands at the press of
a key, or use another program in the book to automatically
count the number of lines in your Applesoft program.

With this book you'll also learn about generating tones and
how to figure out the frequency, producing sound effects,
teaching your Apple to send Morse code, restoring
accidentally erased Applesoft programs, adding new
commands to Applesoft and running two Applesoft programs
in memory together, to name a few.

Everything is explained

Unlike other books that merely consist of a
collection of programs, this one explains
what'’s happening, where and why. You get
detailed descriptions of how the programs
work and detailed program listings with
virtually every line of code explained.
Nothing is left to chance or
misinterpretation.

Order now, get 2 FREE gifts

The book costs only $19.95 plus $2 for
shipping and handling. Order now and
you’ll also get a FREE Programmer’s
Number Conversion System that makes it
easy to convert between binary,
hexadecimal and decimal numbers. No calculators are
required. You'll convert numbers almost instantly and wonder
how you ever got along without it.

As an extra bonus for prompt ordering, you'll receive a FREE
coupon worth $5 off the price of a disk with all the assembled
programs on it or a disk that contains the source code. These
disks normally sell for $15 each. We're offering these FREE
gifts for a limited time only, so hurry! Order today!

Money-back guarantee*

We're so confident that you'll find this book invaluable and
want it in your library, that we're offering a 10-day,
no-questions-asked, money-back guarantee. Order the book.
Read it and try the programs for ten days. At the end of ten
days if you don't think it's worth every penny you paid for it,
just send it back in resalable condition and we'll refund your
money immediately, no questions asked.

Redlig Systems, Inc., Dept. A 9783

1

1
2068—79th St., Brooklyn, NY 11214 :

1
Please rush me copies of ““Now That You Know '
Apple Assembly Language: What Can You Do With |
I1t?"" at $19.95 each plus $2 shipping and handling. |
understand that if | am not delighted with the book |
| may return it within 10 days for a prompt and courte-
ous refund. In any case, the Programmer’s Number |
Conversion System and $5 coupon are mine to keep.
1

1

]

]

1

(J Enclosed is my check for $

Please charge my credit card:
(J American Express [J MasterCard [J Visa

Card No. Exp.
Signature
Name
Address

*NOTE: Shipping and handling fees are not refundable.

10

Apple Software Protection Digest

BACKING UP THE PRINT SHOPV

One of the more popular programs avail-
able for the Apple // is The Print Shop from
Broderbund Software. This program lets
your dot matrix printer produce high quali-
ty letterheads, signs and greeting cards with
nice high-resolution graphic pictures. Like
most software from Broderbund, this pro-
gram has a copy protection scheme on the
diskette that makes it difficult to produce
backup copies, although there is provision
for producing one backup. This is done if
the user presses the ESC key while the pro-
gram is booting.

In general, most of the diskette is format-
ted fairly normally, with the exception be-
ing that Broderbund has placed the VTOC
on track 17,sector 2 instead of sector zero.
Also, DOS is stored in slightly different lo-
cations on this disk, but that’s not really crit-
ical. What is critical is that the 35th track (we
start from zero so it’s labelled track 34) is not
.written in a standard format and is not copy-
able by standard copy programs. It turns
out, that the major problem that prevents
The Print Shop from being copyable is a nib-
ble counting routine that is located in a file
called MENULIB. If the subroutine jump to
the nibble count routine is disabled by replac-
ing the JSR with NOP codes, the rest of the
disk is copied, and track 17, sector 2 is stored
in sector 0 (where the VTOC should normally
be located), the disk will run perfectly.

The Applesoft program that follows
should be added on to Apple’s COPYA pro-
gram. This can be done by first loading in
COPYA and then typing these lines in, or
more conveniently, this program can be en-
tered via a word processor and stored in a
text (T) file. From the text file, it can be EX-
ECed into memory once COPYA has been
loaded.

As a matter of policy, when copying pro-
tected programs, I generally eliminate the
disk error routine by using the first two
POKE:s in line 75. In this case, however, it’s
not really necessary, because the one track
that gives us problems has been eliminated
by the third POKE in line 75. Thus the disk
with the copy on it will only have the first
34 tracks of the original disk on it. Since the
copy program initializes all 35 tracks on the
blank, however, the last track will be initial-
ized and will not cause any problems when
you want to make a copy of the copy.

Line 80 changes the title of the program
that is displayed and line 225, 290 and 295
hook the program additions into the regu-
lar COPYA program. Lines 300 and 305 are
not needed, so they should be eliminated
from COPYA. A call to DOS’ RWTS rou-
tine is set up in lines 400 to 460, while line
470 reads track 17, sector 2 into memory.
Once in memory, one byte in this sector must
be changed before it is written back out to
the disk on sector 0. The last byte in the sec-

tor must be changed from a zero to a one.
This is done in line 480 and the sector is then
written back out to the disk. Once this oper-
ation is complete, DOS’ file handler can now
access the files on the disk without requir-
ing a modification.

You may recall that I mentioned earlier
that if the ESC key is pressed whole the pro-
gram is booting, that control is passed to The
Print Shop’s copy routine. Since this routine
checks track 34 to see if the one permitted
backup copy has already been made, and we
have eliminated track 34 from the copy disk,
pressing ESC during a boot could cause the
program to hang up. To eliminate this, we
have to eliminate the code that checks for the
ESC key being pressed. Since any check of
this sort would require a CMP #3$9B instruc-
tion, a disk scanning utility (such as the one
in Copy][Plus) was used to locate the byte
sequence C9 9B on the disk. It turns out that

it is in three places: track 0, sector 5; track
0, sector 10 and track 6, sector 14. In lines
490 to 510, these sectors are loaded into
memory. If the correct byte sequence is
found (it may be located somewhere else on
other versions of the program) these two
bytes are replaced with two other bytes that
prevent the jump to the copy program. If the
byte sequence is not located, nothing is done.
Next, the MENULIB file is loaded into
memory and a check is made for the presence
of the nibble count JSR (lines 530 and 540).
If its not where it’s supposed to be, the user
is notified that this version of the program
cannot be copied and execution is terminat-
ed. If it is there, however, the JSR is elimi-
nated (line 550) and the modified file is
stored back out onto the disk (lines 560 and
570). That’s all there is to it. Copies made
with this program can be backed up with the
normal, unmodified, COPYA program.

75 POKE 47426,24: POKE 929,24: POKE 863,34

80 HOME :
: PRINT

225. VTAB 5: HTAB 24: PRINT "
THEN 295

290 GOTO 600

295 VTAB 19: GOTO 400

PRINT "

PRINT SHOP DUPLICATION PROGRAM': PRINT
: IF PEEK (713) =1

47080:TRK = IOB + 4:SCT = IOB + 5:CMD = IOB + 12

300
305
400 1IO0B =
:RD = 1:WR = 2
410 BUF = PEEK (IOB + 8) + 256 * PEEK (IOB + 9)
420 FOR X = 768 TO 774
430 READ Y: POKE X,Y
440 NEXT X
450 PRINT : PRINT "UNPROTECTING COPY"

460 POKE IOB + 3,0

470 POKE TRK,17: POKE SCT,2: POKE CMD,RD: CALL 768
480 POKE BUF + 255,1: POKE SCT,0: POKE CMD,WR: CALL 768

490 POKE TRK,0: POKE SCT,5: POKE CMD,RD: CALL 768: IF PEEK
(BUF + 57) = 201 THEN POKE BUF + 57,169: POKE BUF + 58,1
: POKE CMD,WR: CALL 768

500 POKE TRK,0: POKE SCT,10: POKE CMD,RD: CALL 768: IF PEEK
(BUF + 55)= 201 THEN POKE BUF + 55,169: POKE BUF + 56,1
: POKE CMD,WR: CALL 768

510 POKE TRK,6: POKE SCT,14: POKE CMD,RD: CALL 768: IF PEEK
(BUF + 68) = 201 THEN POKE BUF + 68,169: POKE BUF + 69,1
: POKE CMD,WR: CALL 768: POKE CMD,0

520 PRINT CHR$ (4);'"BLOAD MENULIB"

530 CK = PEEK (30727) + 256 * PEEK (30728)

540 IF CK < > 36311 THEN 590

550 POKE 30726,234: POKE 30727,234: POKE 30728,234

560 S = PEEK (43634) + 256 * PEEK (43635):L = PEEK (43616)
+ 256 * PEEK (43617)

570 PRINT CHR$ (4);"BSAVE MENULIB,A";S;",L";L

: VTAB 5: PRINT "RE-RUN 'PRINT SHOP COPY' TO

580 TEXT : HOME
MAKE ANOTHER COPY OF THE PROGRAM':PRINT CHR$
(4) ;"FP"

590 PRINT : PRINT : PRINT CHR$ (7);"THIS VERSION OF PRINT

SHOP CANNOT BE COPIED WITH THIS PROGRAM."
600 PRINT CHR$ (4);"FP"
610 DATA 160,232,169,183,76,217,3
990 REM
995 REM COPYRIGHT 1985 BY JULES H. GILDER
999 REM ALL RIGHTS RESERVED

Vol. 1, No. 1 — Premiere Issue

11

REVIEW: Copy Il Plus

One of the handiest tools that any Apple
// owner can possess is this program. Origi-
nally designed as just a nibble copy program,
over the years, it has developed into a full-
blown back-up and disk repair tool with an
impressive set of DOS utilities. To give you
an idea of just how powerful this program
is, here is a list some of the things you can
do with it:

e Copy any 16- or 13-sector unprotected disk

e Copy just DOS onto a disk

e Copy individual files

e Catalog a disk

® Show file lengths on the catalog

® Show control characters on the catalog

e Catalog deleted files ge

® Delete files

® Delete DOS to get more file space

® Lock or unlock files

e Rename files

e Alphabetize the catalog

e Format a disk

e Verify that the disk is good

e Verify that files are good

e Verify whether or not two files are identical

® Check disk drive speed -

e View the contents of files

e See a map of what files are stored on the
disk and where

e Edit any sector or any file

e Fix file sizes to free up wasted disk space

e Change the boot program on the disk

e Recover files that were accidentally erased
by undeleting them

As you can see, the list is a long and im-
pressive one. And the best part of all, is that

the program only costs $39.95. While the
program is mainly designed to work with
DOS 3.3 and DOS 3.2 formatted diskettes,
the disk copy and verify functions, as well
as the sector editor, can be used with any un-
protected 16- or 13-sector diskette, includ-
ing ProDOS, SOS, CP/M and Pascal
formats. While we obviously can’t get into
a detailed review of every single function of
this powerful program, we will take a look
at a few of the more interesting features from
a software protection point of view.

To begin with, the designers of Copy][
Plus Version 5.X (5.5 is the latest current ver-
sion) did their homework. They realized that
people want a powerful tool, but that it also
must be easy to operate. It is. Central Point
Software has included an Auto Copy feature
into the program. When you select the bit
copier mode of operation, the Copy][Plus
asks you for the name of the program you
want to copy. It then searches its internal list
of programs and copy parameters to see it
it already “knows” how to copy the program.
If it does, all you have to do is press
RETURN and you’re off. Sometimes there
are several versions of the same program,
each with its own unique copy protection
scheme. In that case, the program will list
either an alternate, or specify a way of iden-
tifying your particular version (e.g. new Pro-
DOS version or old ProDOS version). To
choose the one you want, simply use the ar-
row keys to move the cursor to your choice,
and press RETURN.

With over 500 entries on the latest version
of the program, the list is fairly substantial.
Nevertheless, you'll still find plenty of pro-
grams that have not yet made it to the list.
But don’t worry. Central Point has taken
care of that too. About every three months,

the company comes out with a parameter up-
date list. If you'’re a registered owner (you
sent your card back) you can get this update
for only $5. Believe me, it’s worth it. Of
course, if the program you wish to copy is
not included in the parameter list of Copy
1[Plus, you can still copy it manually, but
this requires a lot more skill.

Another outstanding feature of Copy][
Plus is one of the functions that is available
from the sector editor operating mode: the
disk scanning feature. This function will let
you scan the entire diskette, or any part of
it, a any series of bytes. You may enter the
search text in hexadecimal, or if it is a word
or phrase, you can enter the text directly. The
search is quick and easy to use and is ex-
tremely helpful when you’re trying to make
back-up copies of disks for which you have
no copy parameters. This feature in fact, was
used to develop the Print Shop Copy pro-
gram listed elsewhere in this issue.

While Central Point Software has done an
outstanding job in developing the software,
they weren’t quite as good with the manual
Don’t get me wrong, the manual is quite
good and comprehensive. It’s neatly and con-
veniently produced as a softcover paperback.
The usefulness of the book, however, ha:
been severely limited by the fact that it has

* no index. With many questions bound tc

arise during the use of this program, 2
detailed index would have been an invalua-
ble aid. Without it, the user is forced to fre-
quently thumb through large sections of the
book until what he’s looking for is found.
Let’s hope they fix this one major flaw to an
otherwise superb product.

Price: $39.95. Source: Central Point Soft-
ware, Inc., 9700 SW Capitol Hwy., #100,
Portland, OR 97219. Call: (503) 244-5782

COMING NEXT ISSUE

How to Back-Up Sensible Speller
How to Back-Up The Newsroom
How to Back-Up Wizardry
Using RAM Cards as a Back-Up Tool
Moving the CATALOG to Other Tracks
Protection Tutorial — Part II:
Modified Disk Formats and RWTS
Using COPYA to Copy Protected Disks
Changing the BLOAD Address of
Machine Language Programs
A Handy HEX/DEC/HEX Converter
Review: Locksmith 5.0

12

Apple Software Protection Digest

BECOME AN ASSEMBLY LANGUAGE
PROGRAMMING WHIZ

Now That You Know
- APPLE ASSEMELY LANGUAGE:

You've spent a lot of time learning Apple
assembly language and finaily know the
difference between BEQ and BCS. Now
it's time to put your new-found knowledge
to work. Time to throw away your
Applesoft programming manual and write
programs that make your Apple work like
a super-charged, super-fast computer.
Time to graduate from the Applesoft
BASIC used by beginners, to the 6502
assembly language used by
professionals.

To help make this transition, you need an
experienced programmer to guide you.
You need to develop a library of
subroutines that make programming in
assembly language as easy as
programming in BASIC. You need to learn all the tricks that
take experienced assembly language programmers years to
acquire. Most important of all, you need the book, “Now that
You Know Apple Assembly Language: What Can You Do With
/t?"” because it contains all this information and more.

It shows you how, step-by-step

“Now That You Know Apple Assembly Language: What Can You
Do With It?” will take you step-by-step through the assembly
language programming experience. You'll delve into the
mysteries of the 6502 stack and learn how to use it to increase
the power and versatility of your programs. You'll also learn how
to use the Apple’s built-in routines to minimize the amount of
coding you must do.

Control the output and the input

Frequently it's desirable to gain total control of the computer’s
output. This book shows you how to steal control away from the
Apple's normal output routines and redirect it to your own pro-
gram. Thus if you warited, you could see the normally invisible
control characters, display text on your screen as black on white
instead of the normal white on black, format text sent to a printer
into pages and much more.

Expand the power of your Apple by stealing control away from
the normal input routines. Do things like adding a screen print
capability, or convert part of the normal keyboard into a
numeric keypad. It's even possible to produce self-modifying
programs by EXECing in commands from RAM instead of
from the disk drive. Think about the possibilities that offers for
protecting your programs. When you want to go back to
Applesoft programming, you'll be able to do it faster with the
aid of Applesoft Shorthand, an assembly language program
that types in one or more Applesoft commands at the press of
a key, or use another program in the book to automatically
count the number of lines in your Applesoft program.

With this book you'll also learn about generating tones and
how to figure out the frequency, producing sound effects,
teaching your Apple to send Morse code, restoring
accidentally erased Applesoft programs, adding new
commands to Applesoft and running two Applesoft programs

in memory togetner, to name a few.

What Can You Do With i?
Jules H. Glider

Everything is explained

Unlike other books that merely consist of a
collection of programs, this one explains
what's happening, where and why. You get
detailed descriptions of how the programs
work and detailed program listings with
virtually every line of code explained.
Nothing is left to chance or
misinterpretation.

Order now, get 2 FREE gifts

The book costs only $19.95 plus $2 for
shipping and handling. Order now and
you'll also get a FREE Programmer's
Number Conversion System that makes it
easy to convert between binary,
hexadecimal and decimal numbers. No calculators are
required. You'll convert numbers almost instantly and wonder
how you ever got along without it.

As an extra bonus for prompt ordering, you'll receive a FREE
coupon worth $5 off the price of a disk with all the assembled
programs on it or a disk that contains the source code. These
disks normally sell for $15 each. We're offering these FREE
gifts for a limited time only, so hurry! Order today!

Money-back guarantee*

We're so confident that you'll find this book invaluable and
want it in your library, that we're offering a 10-day,
no-questions-asked, money-back guarantee. Order the book.
Read it and try the programs for ten days. At the end of ten
days if you don't think it's worth every penny you paid for it,
just send it back in resalable condition and we'll refund your
money immediately, no questions asked.

Redlig Systems, Inc., Dept. A 9783
2068 —79th St., Brooklyn, NY 11214

Please rush me copies of *“Now That You Know
Apple Assembly Language: What Can You Do With
I1t?"" at $19.95 each plus $2 shipping and handling. |
understand that if | am not delighted with the book
I may return it within 10 days for a prompt and courte-
ous refund. In any case, the Programmer’s Number
Conversion System and $5 coupon are mine to keep.

[J Enclosed is my check for §

Please charge my credit card:
() American Express [J MasterCard [J Visa

Card No. Exp.
Signature
Name
Address

*NOTE: Shipping and handling fees are not refundable.

