

PRODOS MESSAGES I 259

FILER AND CONVERT MESSAGES

This section lists the error messages presented by the FILER and CONVERT programs. The
form of these messages is different from the Monitor, Pro DOS, and Applesoft II BASIC ver­
sions. They are generated through the error trapping mechanism built into the programs by
the programmer and not handled through the Monitor, Applesoft II BASIC, or ProDOS.

Error message
FILER and
CONVERT module

CAN'T DELETE DIRECTORY Transfer (or List) Files
FILE

CAN'T TRANSFER DIRECTORY Transfer (or List) Files
FILE

DIRECTORY ALREADY EXISTS Copy Files
Make Directory

DIRECTORY EXPECTED

DIRECTORY NOT EMPTY

DIRECTORY NOT FOUND

List ProDOS Direc­
tory

Set Prefix
DELETE FILES

List ProDOS Direc-
tory

Copy Files
Delete Files
Compare Files
Alter Write-Protec-

tion
Rename Files
Make Directory
Set Preftx

Comment

The name of the DOS 3.3
flle you tried to transfer
is also the name of a Pro­
nos directory flle.

This program does not
allow directory files to be
transferred.

You tried to copy to a direc­
tory instead of a file, or
you tried to create a
directory with a name
already present in the
subdirectory or volume
directory.

You entered a file name in­
stead of a directory
name.

You can only delete files,
not directories that con­
tain other files.

The program cannot find
the subdirectory you
specified.

260 I ERROR MESSAGES

DISK II DRIVE TOO FAST Copy a Volume Your disk drive speed is too
Format a Volume fast.

DISK II DRIVE TOO SLOW Copy a Volume Your disk drive speed is too
Format a Volume slow.

DISK WRITE-PROTECTED Copy a Volume You need to write some-
Format a Volume thing to the disk, but the
Rename a Volume disk has the write-pro-
Copy Files tection notch covered. Be
Delete Files very careful when remov-
Alter Write-Protec- ing the tab.

tion
Rename Files
Make Directory
Select Configuration

Defaults
Restore Configura-

tion Defaults
Transfer (or List)

Files
DUPLICATE FILE NAME Rename Files You have tried to use a

Transfer (or List) name that already exists
Files or to transfer a file that

already exists.
DUPLICATE VOLUME Compare Volumes Two diskette volumes have

Copy Volumes the same name
ERROR CODE= xxx where xxx is any This error could happen

code anytime, but probably
will not due to the pro-
gram error trapping
routines.

FILES DO NOT MATCH Compare Volumes One or more of the bytes on
the two volumes being
compared do not match.

FILE EXPECTED Delete Files You entered a volume di-
Alter Write-Protec- rectory instead of a file

tion name or subdirectory.
FILE LOCKED Delete Files You have tried to delete or

Rename Files rename a file that is
write-protected.

FILE NOT FOUND Copy Files The file does not exist in the
Delete Files directory specified.
Compare Files
Alter Write-Protec-

tion

PROOOS MESSAGES I 261

Rename Files
Set Prefix
Transfer (or List) Files
Quit

FILE TOO LARGE Copy Files Not enough room exists on
the diskette for the file
you want to copy.

I/O ERROR Trapped in all mod- This error alerts you to the
ules. fact that you have an

open drive door, empty
disk drive, unformatted
diskette, misaligned
diskette, or bad blocks
on the destination
diskette.

ILLEGAL CHARACTER Set PrefiX You used an illegal charac-
Transfer (or List) Files ter in a pathname or file

name.
ILLEGAL WILDCARD Copy Files You tried to use more than

Delete Files one wildcard per path-
Alter Write-Protec- name

tion
Rename Files
List ProDOS Direc-

tory
INSUFFICIENT MEMORY During startup Your system does not have

64K.
INVALID DATE Set ProDOS Date You entered an invalid

date
INVALID DRIVE Copy a Volume When you supply drive

Format a Volume numbers, you may only
Rename a Volume use a 1 or 2. You en-
Detect Bad Blocks tered an illegal drive
Display Block Alloca- number.

tion
Compare Volumes
Select Configuration

Defaults
Change DOS 3.3 Slot

and Drive
Set Prefix

INVALID PATHNAME Copy Files You used an illegal charac-
Delete Files ter in a pathname. The

262 I ERROR MESSAGES

INVALID SLOT

NAME TOO LONG

NO DATA IN FILE

NO DEVICE CONNECTED

Alter Write-Protec­
tion

Rename Files
List ProDOS Direc-

tory
Set Prefix
Compare Files
Select Configuration

Defaults
Restore Configura-

tion Defaults
Copy a Volume
Format a Volume
Rename a Volume
Detect Bad Blocks
Display Block Alloca-

tion
Compare Volumes
Select Configuration

Defaults
Change DOS 3.3 Slot

and Drive
Set PrefiX
Set Prefix
Transfer (or List) Files

Transfer (or List) Files

Format a Volume
Copy a Vohime
Rename a Volume
Detect Bad Blocks
Display Block Alloca-

tion
Compare Volumes
Select Configuration

Defaults
Restore Configura­

tion Defaults
Change DOS 3.3 Slot

and Drive
Set PrefiX

prefiX may not be set
correctly.

You selected a drive outside
the allowable range of
(1-7).

The name you entered is
longer than 15 charac­
ters.

There is no data in the file
being transferred.

Disk drive is not connected
to the slot specified or is
not turned on.

PRODOS MESSAGES I 263

NO DIRECTORY List Volumes The program did not find
the volume specified.

NO PRINTER CONNECTED List Volumes You directed output to a
Detect Bad Blocks printer, but the printer
Compare Volumes is not connected.
List ProDOS Direc-

tory
NO ROOM ON VOLUME Transfer (or List) Files The volume is full.
NOT A DOS 3.3 VOLUME Transfer (or List) Files The diskette specified with

a slot-drive combination
is not a DOS 3.3 disk-
ette.

NOT A PRODOS DIRECTORY Set PrefiX You did not specify a Pro-
DOS directory.

NOT A PRODOS INTERPRETER Quit You did not enter a SYS-
TEM file name.

NOT A PRODOS VOLUME Rename a Volume You tried to use a Pro-
Display Block Alloca- DOS command with a

tion non-ProDOS diskette.
NOT THE SAME DEVICE TYPE Copy a Volume

Compare Volumes
Select Configuration

Defaults
NOT THE SAME DIRECTORY Rename Files You tried to name or re-

name a file or files into
a new directory.

PATH NOT FOUND Set Prefix The volume was found, but
the subdirectory was not
found.

PATHNAME TOO LONG Transfer (or List) Files Pathname is either longer
Set Prefix than 128 or 64 charac-

ters.
PATHNAMES INDICATE SAME Copy Files Source and destination

FILE pathnames are the same.
PREFIX NOT SET Transfer (or List) Files You did not specify the

proper prefix for the
transfer.

SAME FIXED DISK Copy a Volume You tried to copy a ProFile
Compare Volumes volume onto itself or

compare it with itself.
VOLUME DIRECTORY FULL Copy Files There is no more room in

Make Directory the directory for the
files you want to add.

264 I ERROR MESSAGES

VOLUME FULL

VOLUME NOT FOUND

WILDCARD MUST BE FINAL
NAME

WILDCARD NOT ALLOWED

WILDCARD NOT PROCESSED

WILDCARD USE INCONSIS­
TENT

Make Directory
Copy Files

Applies to almost all
modules.

Transfer (or List) Files

Compare Files
Make Directory
Set Prefix

Rename Files

Copy Files
Rename Files

There is not enough room
left on the diskette for
the directory or file you
want to add.

The program cannot find
the specified volume
name.

You entered a character
after using the wildcard
character.

You used a wildcard char­
acter in a command that
does not allow wild­
cards.

Pathname became too large
when wildcard charac­
ters were substituted.

You did not use the wild­
card in both source and
destination pathnames.

Figure 0.3. FILER and CONVERT error messages.

APPLESOFT II MESSAGES

Applesoft II BASIC error messages are included here because these will also be seen when
developing programs. It is very difficult to separate them and treat them individually, since
both will occur as you develop your programs and program packages. However, your pro­
grams will treat them separately. They are here for your convenience.

Code# Message Possible Causes

0 NEXT WITHOUT FOR Encountered a NEXT without first having
executed a FOR statement.

16 SYNTAX ERROR Instruction constructed incorrectly. Syntax is
incorrect.

22 RETURN WITHOUT GOSUB Encountered a GOSUB without first having
executed a GOSUB statement.

42 OUT OF DATA Attempted to READ beyond the end of
available DATA.

53 ILLEGAL QUANTITY Attempted to store information in an array
beyond DIMension limits.

69 OVERFLOW Number too large to be handled.

77

90

107

120

133

163

176
191

224
254

255

OUT OF MEMORY

UNDEFINED STATEMENT

BAD SUBSCRIPT

REDIMENSIONED ARRAY

DIVISION BY ZERO

TYPE MISMATCH

STRING TOO LONG
FORMULA TOO COMPLEX

UNDEFINED FUNCTION
BAD RESPONSE TO INPUT

STATEMENT
CTRL-C INTERRUPT

ATTEMPTED
CAN'T CONTINUE

ILLEGAL DIRECT
COMMAND

PRODOS MESSAGES I 265

Program and data are too large for the memory
available.

Attempted to execute a statement that does not
exist.

Attempted to reference an element in an array
that does not exist.

Tried to dimension an array for the second
time.

Tried to divide a number by the value of 0 or
variable whose value is 0.

Tried to assign a string to a number or vice
versa.

String length is greater than 255 characters.
Formula involves more than can be handled by

language
Tried to execute a function that does not exist.
Entered the wrong response to the INPUT

statement.
Entered to a CTRL-C to interrupt the currently

executing program.
Program cannot continue because an error has

occurred. Language cannot identify error.
Command cannot be used in the immediate

mode

Figure 0.4. Applesoft II BASIC messages.

APPENDIX E.
MISCELLANEOUS
TOPICS

OVERVIEW

Titles are but nicknames,

and every nickname is a title.

Thomas Paine, 1791

The appendix provides a discussion of a number of miscellaneous topics that didn't seem to fit
neatly elsewhere. There really isn't anything special about these topics, except that they may
come in handy when you write your programs.

The topics covered briefly here are the clock/calendar card, the /RAM capability, and
the ProFile hard disk.

CLOCK/CALENDAR CARD
Pro DOS has the capability of being able to support a clock/calendar card. This capability was
not supported by DOS 3.3 directly. Now ProDOS directly supports a number of clock/calen­
dar cards. In general, the following Applesoft II BASIC code may be used to activate and pre­
sent the time on the video screen. Type in the following:

266

]NEW
)LIST

CLOCK/CALENDAR CARD I 261

100 PRINT PR# 4: IN# 4
110 INPUT "OJo" :T$
120 PR# 0: IN# 0
130 VT AB 2: HT AB 30: PRINT T$
140 END

Lines

Line 100

Line 110

Line 120
Line 130

Line 140

Description

Activate the Clock/Calendar card located in slot 4.
Allow for reading and writing to slot 4.
Input the time.
The OJo character signifies that you are using Applesoft II BASIC.
Notes: (1) The particular brand of clock/calendar card being used here uses the

following special characters to determine the format of the time to be
presented. These are:
"OJo" = Applesoft II BASIC
"&" = 24-hour clock display
"#" = Returns time in numeric format
"> " = Integer BASIC
'' < '' = 24 hour clock display
"," = Interrupt rate is 64 Hz
" " = Interrupt rate is 256 Hz
"I" = Interrupt rate is 2048Hz

(2) Please see your particular owners manual fpr specific code re-
quirements.

Return input and output to the video screen.
Position the cursor and print the time.
Position to line 2 on the video screen.
Move to horizontal position 30 on line 2.
Print the time.
END the program.

With a clock/calendar card installed you are able to time-date stamp a file for every up­
date that is made and when a file is created. ProDOS will JSR= $20 Gump to subroutine) to
memory location 48902 = $BF06 in hexadecimal. That memory location is the entry point to
the DATETIME routine. If there is no routine installed then an RTS = $60 will be stored at
this location.

268 I MISCELLANEOUS TOPICS

If you are using one of the Apple recommended clock/calendar cards, then when Pro­
nos finds the clock, it will set up the routine for you and place the correct jump address into
the routine for you. If you are using some other clock/ calendar card or one of your own mak­
ing, you must write your own routines.

The routine should read the date and time from the card and place it in bytes 49040
through 49043 in the format shown in Figure E.l.

At this point, you have all that is necessary to write your own routine. Just make sure
that the entry point and storage locations are maintained.

/RAM IN THE APPLE

This capability was not supported by DOS 3.3. Now you are able to fully use a 16K add-on
memory in slot 0 of Apple II and Apple II Plus. In addition, you may add an additional64K to
slot 0 for Apple II and Apple II Plus computers or an extended SO-column text card to the aux­
iliary slot of an Apple He.

When you boot up a ProDOS diskette, a check is made to determine the configuration
of your particular system. If a 128K computer system is found, then the additional64K bank
of memory is designated as a RAM disk, /RAM, that is mapped physically as slot 3, drive 2.
The reason for this is because normally an SO-column text card or any SO-column card resides
in slot 3, drive 1. If you intend to use the additional64K for any other purpose than a RAM
diskette, you must be very careful and protect yourself from any possible data destructions.

For example, assume that you save the two high-resolution pages of auxiliary memory
as /RAM/PAGE.l and /RAM/P AGE.2. If this is done as the first two entries in the /RAM
memory disk then PAGE. I will be saved at memory locations $2000 through $3FFF and
PAGE.2 will be saved at $4000 through $5FFF in the auxiliary memory space. These are ac­
tually "dummy" areas to be that you will use later.

However, there is really no specific formula for determining exactly where the blocks of
/RAM will physically reside in the auxiliary memory. In addition, the logical blocks stored are
not necessarily physically contiguous. As a result, there is not any guaranteed way to save
specific fiXed portions of any auxiliary memory space except through the procedure outlined
above.

If you do wish to protect all of auxiliary memory that is not reserved by Apple Com­
puter, Inc., then you will have to disconnect /RAM. In order to do that, there are three areas
of main memory within the ProDOS image system global page that may be affected. These
are:

$BF10-$BF2F
$BF31
$BF32-$BF3F

These locations contain the disk device driver addresses.
This location contains the number of devices minus 1.
These locations contain the list of disk device numbers.

These locations were shown and explained in Chapter 9.
In order to disconnect /RAM, the following steps need to be accomplished:

/RAM IN THE APPLE I 269

49041 = SBF91 49040 = $BF90

7654321076543210

I : : : : : : I ~onl~ I : : ~·< : I Dalu

7654321076543210

49043 = SBF93 49042 = SBF92

Figure E. I. Date and time locations.

1. Check the machine identification byte, $BF98, to determine if you are operating a
128K system.

2. If you have a 128K system, then check:
a) Slot 3, drive 1 vector, $BF16-$BF17, to determine if "No Device Connected".
b) Slot 3, drive 2 vector, $BF26-$BF27, to determine if "No Device Connected".

If true and equal to $DOA2, then /RAM is already disconnected.

3. If you have determined that /RAM is on line, then you are ready to disconnect
/RAM.

a) Retrieve the slot 3 device number. This is found in memory location $BF26-
$BF27 or in the device list bytes starting at location $BF32. You are looking for
a $FF= 255 value. You will want to save this value.

b) Remove the $FF number from the device list.
c) Move any remaining device numbers up in the list.
d) Retrieve the slot 3, drive 2 device driver vector and save it for later re­

installation.
e) Place the "No Device Connected" bytes, $DOA2, in that vector location.
f) Decrement the device number count by one. This is the memory location

$BF31.

/RAM is now disconnected and you are free to use the unreserved areas for your
own use.

If you are going to re-install/RAM, then you will have to essentially reverse the above
procedure. After you have re-installed /RAM you will have to further re-install the /RAM
directory.

270 I MISCELLANEOUS TOPICS

PROFILE HARD DISK STORAGE

With Pro DOS you are now able to use the ProFile hard disk drive from Apple Computer, Inc.
This gives you the ability to store up to an additional 5MB of auxiliary file storage.

One of the major problem areas encountered in providing an easily installed hard disk
was the disparity between storage formats between DOS 3.3 with Applesoft II BASIC and
Pascal with its storage format. ProDOS solves this disparity by making both storage media
formats more consistent.

Therefore, you now have the ability to store Applesoft II BASIC programs, Pascal pro­
grams, binary programs, high-resolution memory pages, text files, Pascal data files, and
other language files and data on the same media. In fact, you may intermix these various file
types on the same directory or subdirectory.

Normally, the default slot for your hard disk is slot 5. This does not mean that it will not
work in any other slot, but slot 5 is the recommended location for the ProFile hard disk.

Once you have your hard disk installed correctly, it may be referred to by slot 5, drive 1
or as the volume directory name, /PROFILE, pathname. With ProDOS, the ProFile may be
addressed like any other disk storage device. Since you have 5 million bytes of storage, it is
strongly recommended that you create a number of subdirectories for the storage of data.

The only real caution when working with ProFile is that you need to power up the Pro­
File first and wait until the READY light bums steady before powering up the rest of your
system. This will take between 20 to 30 seconds before the ProFile is ready.

Once your ProFile is powered up and READY, power up the rest of your system with
the ProDOS operating system. You are now ready to use pathnames to access files stored on
ProFile. All commands and instructions for accessing files will now work correctly.

APPENDIX F.
PROOOS, APPLE Ill,
AND SOS

OVERVIEW

There's no sauce in the world

like hunger.

Cervantes, 1610

This appendix discusses the relationship of ProDOS and SOS, the operating system for the
Apple III. SOS is pronounced "sauce." The abbreviation stands for sophisticated operating
system. This discussion should be helpful to those owning an Apple III, those contemplating
upgrading their system to an Apple Ill, or software developers writing assembly-language
programs for both machines.

PRODOS AND SOS

In Chapter 9 it was explained that blocks 0 and 1 on a ProDOS diskette store the boot code.
This code reads the operating system software and executes that code. What was not men­
tioned was that this boot code will run on either the Apple II computers or an Apple III.

As you power up either an Apple II or an Apple III computer system with a ProDOS
diskette installed, the boot code read into memory and executed is loaded at 2048 = $800.

271

272 I PRODOS, APPLE III, AND SOS

The first item of business for this boot code is to determine whether the software is run­
ning on an Apple II or an Apple III computer system. Once this code makes that determina­
tion, then either:

-PRODOS, for the Apple II family
-SOS KERNEL, for the Apple III computer

will be loaded. If the correct file is not found for the computer being used, an error message is
displayed.

The implication of this is that a single application may be written and placed on a single
diskette that could be run on either computer. This single diskette could then be sold to
owners of either Apple II computers or Apple III computers.

FILE COMPARISONS

ProDOS and SOS use exactly the same directory structure on a diskette. Therefore, every file
on a ProDOS diskette can be read by a SOS program and vice versa.

This means that you would have to use file types that are shared between the two
systems. Look at the file type delineation in Section 3.3. Probably, there are only three file
types that you will absolutely need. These are the directory (DIR), text (TXT), and binary
(BIN). All of these are then able to share data between the two operating systems.

When you come across file types intended for the exclusive use of one particular system,
but encountered on the other system, such as the CATALOG or CAT command, those file
types are displayed with numbers rather than their type abbreviations. The FILER and CON­
VERT programs from Pro DOS will recognize and display the names for all currently defined
file types including SOS file types. Pro DOS will display the file types in hexadecimal notation.

SYSTEM COMPARISONS

The Apple III computers have a great deal more memory available than the Apple II com­
puters. Because of this one overriding reason, the Apple III is able to have a much more com­
plete and powerful operating system (SOS). SOS has very well defined and implemented:

-File Manager
-Device Manager
-Memory Manager
-Interrupt Handler
-Event Handler

ProDOS has the following:

SYSTEM COMPARISONS I 213

-File Manager
-Memory Manager (Simplified)
-Memory Calls

The Apple III operating system has the ability to communicate with all peripheral
devices such as consoles, printers, disk drives, or MODEMs. This is done by using the open,
read, write, and close commands with the appropriate peripheral device. ProDOS only has
the ability to manipulate files. ProDOS communicates with hardware devices through firm­
ware driver code in ROM installed on the interface card in a slot. As it turns out, there is very
little consistency in the way the communications protocols have been implemented.

The calls to Pro DOS that were discussed in Chapter 9 are only a part of the calls that
may be made to SOS. The calls that involve files are essentially the same. However, some of
the differences are:

-ProDOS does not require that you specify the file size when you create the file, SOS does.
-SOS allows you to retrieve the file size in bytes. In Pro DOS you must open the file and then

issue a call in order to retrieve the file size.
-SOS uses a relative positioning in a file. ProDOS uses absolute positioning.

SOS has a very nice memory manager. When more memory is needed, SOS allocates the
memory if more memory is available. When that requested memory is no longer needed, it is
released to be used for the next request.

Pro DOS allocates memory through its own memory manager. It finds memory by look­
ing in the memory bit map. If a particular page is unmarked, then it may be allocated. When
that page is no longer needed, it is released and the memory bit map is reset. In this way, pro­
tected areas of memory may be preserved.

SOS is able to honor interrupts from any device provided that particular device driver is
installed and able to handle interrupts. By the way, the device driver and the interrupt handler
are inseparable. Pro DOS does not have device drivers. Interrupt handling routines must be in­
stalled separately. Further, SOS has an interrupt priority capability for each device in the
system. ProDOS must poll the driver routines one by one until an interrupt is claimed.

APPENDIX G. THE APA PROGRAM

It is one of the beautiful compensations

of this life that no one can sincerely try

to help another without helping himself.

Charles Dudley Warner, 1873

OVERVIEW

The AP A, Applesoft Programmer's Assistant, program is a binary program provided with
your ProDOS diskettes to help you write programs. This program is a greatly expanded
version of the RENUMBER program provided in DOS 3.3.

This appendix outlines the commands available with this program so that you will be
able to take advantage of the program.

STARTING APA

If you have your system already powered up then from the immediate mode type in the
following command with the /EXAMPLES diskette in one of your disk drives.

274

AUTO COMMAND I 215

] - /EXAMPLES/EXTRAS/APA

If your system is not powered up, then power up your system with any startup diskette.
When you have your system up and running, then run the AP A program using the - (DASH)
command.

After APA has been loaded and executed, the following screen will be presented:

APPLESOFT PROGRAMMER'S ASSISTANT
VERSION 1.2
COPYRIGHT APPLE COMPUTER, 1979-83

When you have the Applesoft II BASIC prompt on the screen you are able to use any
of the AP A commands, write a program, run a program, or do anything else you want to
do.

The next sections in this appendix list and explain the AP A commands. The commands
shown are shown in the same format as other commands were shown.

AUTO COMMAND

This command allows you to enter programs faster and easier. It allows you to:

-Specify the starting line number.
-Specify the increment between line numbers.

The form of this command is:

Option

[st]
[,inc]

]AUTO [st] [,inc]

Description

-This option specifies the starting number for code entry in a program.
-This option specifies the increment to be used bet ween line numbers.

When you specify an increment with this command, that increment is activated by
typing a carriage return followed by typing the space bar. For example, enter a line number
followed by the program line. Then press the RETURN key and the space bar. This will
give you the next incremented line number.

If you want a line number not in the increment sequence, just type the number you
want in place of pressing the space bar.

276 I THE APA PROGRAM

Examples of the AUTO Command

Start with line number 100.
Line increment is 10.

AUTO 100
AUTO ,10
AUTO 1000,10 Start with line 1000 and increment by 10.

MANUAL COMMAND

If you want to leave the automatic line numbering mode, just execute the manual capability.
The form of this command is:

I]MANUAL I

All you need to do is type the command and you are returned to entering line numbers
on your own.

RENUMBER COMMAND

This command is for the purpose of renumbering a portion or all of a program.
The form of this command is:

]RENUMBER st,inc,first,last

The RENUMBER capability is probably the most useful and powerful command in
the APA program.

Option Description

st This is the starting line number of the code you want renumbered.
inc This is the increment you want between line numbers.
first This is the first line number of the present code that is to be renumbered.
last This is the last line number of the present code that is to be renumbered.

Notice that there are no options in this command. They are all required in the com­
mand either by specifying them explicitly or by using the default values by using a comma.
If any of the options are left out by using only a comma, then certain defaults are assumed
by the RENUMBER command. These default values are:

starting line number
increment

100
10

first
last

0
63999

MERGE COMMAND I 211

The RENUMBER command will not let you place one line number on top of another
line number within any program.

Examples of the RENUMBER Command

RENUMBER
RENUMBER
RENUMBER
RENUMBER
RENUMBER

3000,10,300,400
30000,,300,400
10,,
,300,

""

HOLD COMMAND

The HOLD command is for the purpose of placing a program in memory on hold above
HIMEM where it cannot be erased by loading another program into memory. In this way
you may load a second program and then merge the two programs.

The form of this command is:

When this command is executed, the message "PROGRAM ON HOLD" is presented
to you on the screen.

MERGE COMMAND

This command is for the purpose of putting two programs or program segments together.
The form of this command is:

The general plan of attack in using this command is the following:

-First, load a program into memory.

]LOAD PROGRAM.!

-Now, place this program on hold.

278 I THE APA PROGRAM

]HOLD

-Next, load a second program into memory.

]LOAD PROGRAM.2

-At this point, you may renumber, edit, or anything else except run the second program.
When you are ready, then merge the two programs.

]MERGE

-At this point, both programs are put together into one program. You can now continue
with the development of the program. By the way, this is exactly the way the XMAS.PROG
in Chapter 10 was built, from numerous general subroutines stored on a subroutine
diskette.

COMPRESS COMMAND

This command is for the purpose of removing embedded remark statements from a
program.

The form of this command is:

']COMPRESS

It is recommended that you save two versions of a program, the original with all of
the remark statements and the compressed version with all of the remark statements re­
moved. Aside: Before compressing a program, make sure your program does not branch to
any statement that starts with REM.

SHOW COMMAND

This command is for the purpose of displaying embedded control characters in a program.
The form of this command is: ·

Any control characters in a program will be displayed in a listing in inverse video.

XREF COMMAND I 219

NOSHOW COMMAND

This command is for the purpose of turning off the SHOW capability. The form of this
command is:

I]NOSHOW I

After using this command, any control characters will once again be invisible.

LENGTH COMMAND

The purpose of this command is to calculate the current length of a program in memory.
The form of this command is:

]LENGTH I

When this command is executed, the length of a program is presented on the video
screen in both decimal and hexadecimal.

XREF COMMAND

This command will produce a cross-reference listing of the variables used in the Applesoft
II BASIC program currently in memory.

The form of this command is:

I]XREF I
Once you execute this command, there will be a delay before you will actually get the

cross-reference listing. The delay depends upon the length of the program in memory. All
variables will be listed in alphabetical order with only the first two characters of the variable
presented.

Type

$
(

There are five kinds of variables identified in the cross-reference listing. These are:

Description

Represents a string variable.
Represents a real variable array.

280 I THE APA PROGRAM

$(
OJo
OJo(

Represents a string variable array.
Represents an integer variable.
Represents an integer variable array.

If your program is very long, then you may interrupt the listing by pressing the CTRL­
S. To resume the listing use the CTRL-S again. The CTRL-S notation means to type the
CTRL key and the S key together.

CONVERT COMMAND

This command is for the purpose of converting a number from one form to another form.
This command converts numbers from decimal notation to hexadecimal notation or vice
versa.

The form of this command is:

]CONVERT

To use this command, use the following procedure:

]CONVERT 255

This will present the conversion on the screen:

255 ($00FF)

In order to convert hexadecimal numbers, type:

]CONVERT $20

This will return on the screen:

32 ($0020)

EXIT COMMAND

This command is for the purpose of exiting from the APA program.
The form of this command is:

EXIT COMMAND I 281

This causes your system to exit from the AP A program and release all of the memory
used by the program. If you want to use any of the AP A commands later you will have to
load and execute the program again.

APPENDIX H.
ASOI CHARACTER CODES

DEC = ASCII decimal code
HEX = ASCII hexadecimal code

CHAR = ASCII character name
n I a not applicable

Apple II Plus and Apple lie

DEC HEX CHAR WHAT TO TYPE

0 00 NULL ctrl@
1 01 SOH CTRLA
2 02 STX CTRLB
3 03 ETX CTRLC
4 04 EOT CTRLD
5 05 ENQ CTRLE
6 06 ACK CTRLF

282

I know sage, wormwood, and

hyssop, but I can't smell

character unless it stinks.

Edward Dahlberg, 1965

Meaning

Null character
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge

ASCll CHARACTER CODES I 283

Apple II Plus and Apple lie

DEC HEX CHAR WHAT TO TYPE

7 07 BEL CTRLG Bell
8 08 BS CTRL H or<-- Back space
9 09 HT CTRLI Horizontal tab

10 OA LF CTRLJ Line feed
11 OB VT CTRLK Vertical tab
12 oc FF CTRLL Form feed
13 OD CR CTRL M or RETURN Carriage return
14 OE so CTRLN Shift out
15 OF SI CTRLO Shift in
16 10 DLE CTRLP Data link escape
17 11 DCI CTRLP Device control 1
18 12 DC2 CTRLR Device control 2
19 13 DC3 CTRLS Device control 3
20 14 DC4 CTRLT Device control 4
21 15 NAK CTRL U or--> Negative acknowledgment
22 16 SYN CTRLV Synchronous idle
23 17 ETB CTRLW End of transmission block
24 18 CAN CTRLX Cancel
25 19 EM CTRLY End of medium
26 lA SUB CTRLZ Substitute
27 IB ESC ESCAPE Escape
28 IC FS n/a File separator
29 ID GS CTRL-SHIFT -M Apple II+ Group separator
30 IE RS CTRL" Record separator
31 IF us n/a Unit separator
32 20 SPACE
33 21
34 22 " "
35 23 # #
36 24 $ $
37 25 OJo 0/o
38 26 & &
39 27

,. ,.

40 28 ((
41 29))
42 2A • •
43 2B + +
44 2C
45 2D
46 2E

284 I ASCII CHARACI"ER CODES

Apple II Plus and Apple He

DEC HEX CHAR WHAT TO TYPE

47 2F I I
48 30 0 0
49 31 I 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A
59 3B
60 3C < <
61 30 =
62 3E > >
63 3F ? ?
64 40 @ @
65 41 A A
66 42 B B
67 43 c c
68 44 D D
69 45 E E
70 46 F F
71 47 G G
72 48 H H
73 49 I I
74 4A J J
75 4B K K
76 4C L L
77 40 M M
78 4E N N
79 4F 0 0
80 50 p p
81 51 Q Q
82 52 R R
83 53 s s
84 54 T T
85 55 u u
86 56 v v
87 57 w w

ASCII CHARACTER CODES I 285

88 58 X X
89 59 y y
90 ~A z z
91 5B [[Apple lie only
92 5C Apple lie only
93 50] Shift M Apple II +
94 SE
95 SF _ n/a Apple II+

Apple lie only

DEC HEX CHAR WHAT TO TYPE

96 60
97 61 a a
98 62 b b
99 63 c c

100 64 d d
101 65 e e
102 66 f f
103 67 g g
104 68 h h
105 69
106 6A j j
107 6B k k
108 6C l 1
109 60 m m
110 6E n n
111 6F 0 0

112 70 p p
113 71 q q
114 72 r r
115 73 s s
116 74 t t
117 75 u u
118 76 v v
119 77 w w

120 78 X X

121 79 y y
122 7A z z
123 7B
124 7C
125 70
126 7E
127 7F DEL DEL

APPENDIX I. DEOMAL TO
HEXADEOMAL CONVERSIONS

A wise man changes his mind,

a fool never will.

Spanish Proverb

The top row represents the decimal digits from 0 through 9 with a unit's value.
The left column of numbers represents the decimal digits zero through 25 with a tO's

value.

286

DECIMAL TO HEXADECIMAL CONVERSIONS I 281

0 1 2 3 4 5 6 7 8 9

0 00 01 02 03 04 05 06 07 08 09
1 OA OB oc OD OE OF 10 11 12 13
2 14 15 16 17 18 19 lA lB lC lD
3 IE IF 20 21 22 23 24 25 26 27
4 28 29 2A 2B 2C 2D 2E 2F 30 31
5 32 33 34 35 36 37 38 39 3A 3B
6 3C 3D 3E 3F 40 41 42 43 44 45
7 46 47 48 49 4A 4B 4C 4D 4E 4F
8 50 51 52 53 54 55 56 57 58 59
9 SA SB sc SD SE SF 60 61 62 63

10 64 65 66 67 68 69 6A 6B 6C 6D
11 6E 6F 70 71 72 73 74 75 76 77
12 78 79 7A 7B 7C 7D 7E 7F 80 81
13 82 83 84 85 86 87 88 89 SA SB
14 sc SD SE SF 90 91 92 93 94 95
15 96 97 98 99 9A 9B 9C 9D 9E 9F
16 AO AI A2 A3 A4 AS A6 A7 AS A9
17 AA AB AC AD AE AF BO B1 B2 B3
18 B4 BS B6 B7 BS B9 BA BB BC BD
19 BE BF co Cl C2 C3 C4 C5 C6 C7
20 cs C9 CA CB cc CD CE CF DO Dl
21 D2 D3 D4 DS D6 07 DS 09 DA DB
22 DC DD DE DF EO El E2 E3 E4 ES
23 E6 E7 ES E9 EA EB EC ED EE EF
24 FO Fl F2 F3 F4 FS F6 F7 FS F9
25 FA FB FC FD FE FF 100

This means that the hexadecimal equivalent of the decimal value of 32 can be found in
the fourth row, 3 x 10 = 30, plus the third column, 2 x 1 = 2. This is a 32 decimal, which
equals a $20 hexadecimal.

BIBLIOGRAPHY

A sick man that gets talking about himself,

a woman that gets talking about her baby,

and an author that begins reading out of

his own book never knows when to stop.

Oliver Wendell Holmes, 1872

A

Ahl, David H., 101 Basic Computer Programs (Digital Equipment Corporation, 1974).

Apple Computer, Inc. Publications (Apple Computer, Inc., 1977-1981).
Apple II Monitors Peeled D2L0013
Apple II Reference Manual A2L0001A
Applesoft II Manual A2L0006
Autostart ROM A2L0022
Programmer's Aid A2L0011
The Applesoft Tutorial A2L0018
Parallel Printer Manual A2L0004
Apple II Basic Manual A2L0005
Communications Manual A2L0007
The DOS Manual (DOS 3.2) A2L0012
The DOS Manual (DOS 3.3) A2L0036
Si/entype Printer Manual A2L0034

288

Graphics Tablet Manual
Apple 6502 Assembler/Editor
Applesoft Tool Kit
Apple lie Owner's Manual
Apple lie Applesoft Tutorial
Applesoft Reference Manual

Volume 1
Volume 2

Apple lie 80-column Text Card
ProDOS USER'S Manual
ProDOS Technical Reference Manual
Basic Programming with ProDOS

Apple Orchard (Dilithium Press, 1981).

A2L0033
A2L0039
A2L0038
A2L2001
A2L2003

A2L2005
A2L2005
A2L2006

A2L2015

Artwick, Bruce, Microcomputer Interfacing (Prentice-Hall, Inc. 1980).

B

BIBLIOGRAPHY I 289

Blackwood, Brian D. and Blackwood, George H., Applesoft Language (Howard Sams & Co., Inc.
1981).

Bryan, Paul, Programming Your Apple II Computer (Tab Books, Inc. 1982).

BYTE Magazine (Various Issues)

c

CALL A.P.P.L.E. Magazine

Campbell, J. L. and Zimmerman, Lance, PROGRAMMING the APPLE: A Structured Approach
(Robert J. Brady Co., 1982).

Campbell, J. L., Tips and Techniques for the Apple II Plus/Apple Ile (Robert J. Brady Co., 1984).

Carnahan, Luther and Wilkes, Applied Numerical Methods (John Wiley & Sons, 1969).

Coan, James S., Advanced Basic (Hayden Book Company, Inc. 1977).

Coan, James S., Basic Basic (Hayden Book Company, Inc. 1978).

Conte & DeBoor, Elementary Numerical Analysis: An Algorithmic Approach (McGraw-Hill Book
Company, 1965).

Conway, Richard and Gries, David, An Introduction to Programming (Winthrop Publishers, Inc. 1975).

D

Donovan, John J., Systems Programming (McGraw-Hill publishers, 1972).

Dyckman, Thomas R. and Thomas, Joseph L., Algebra and Calculus/or Business (Prentice-Hall, Inc.,
1974).

E

Espinoza, Christopher, Apple II Reference Manual (Apple Computer, Inc., 1979).

290 I BIBLIOGRAPHY

F

Findley, Robert, 6502 Software Cookbook (Scelbi Publications, 1979).

Finkel, LeRoy and Brown, Jerald R., Apple BASIC: Data File Programming (John Wiley & Sons, Inc.,
1982).

G

Gilder, Jules, Basic Computer Programs in Science and Engineering (Hayden Book Company, 1980).

Gildersleeve, Thomas R., Organizing and Documenting Data Processing Information (Hayden Book
Company, 1977).

Goldsmith, W. B., Jr., BASIC Programs/or Home Financial Management (Prentice-Hall, Inc., 1981).

Grillo, John P ., Introduction to Graphics (William C. Brown Publishers, 1981).

H

Hornbeck, R. W., Numerical Methods (Quantum Publishers, Inc., 1975).

Hyde, Randy, Using 6502 Assembly Language (DATAMOST Inc., 1981).

I

Inman, Don and Inman, Kurt, Apple Machine Language (Reston Publishing Company, Inc., 1981).

Interface Age Magazine (Various Issues).

K

Kemeny, J. G. and Kurtz, T. E., BASIC Programming (John Wiley & Sons, Inc., 1980).

Ketter & Prawel, Modern Methods of Engineering Computation (McGraw-Hill Book Company, 1969).

KILOBAUD Magazine (Various Issues).

Knuth, Donald E., The Art of Computer Programming, Vol. 1 (Addison Wesley, 1968).

Knuth, Donald E., The Art of Computer Programming, Vol. 2 (Addison Wesley, 1969).

Knuth, Donald E., The Art of Computer Programming, Vol. 3 (Addison Wesley, 1973).

L

Lien, David A., The Basic Handbook (COMPUSOFT PUBLISHING, 1979).

Luebbert, William F., What's Where in the APPLE? (MICRO INK, Inc., 1981).

M

McGowan, Cement L. and Kelly, John R., Top-Down Structured Programming Techniques (Petro­
celli/ Charter Publishing, 1976).

MICRO Magazine (Various Issues).

BIBLIOGRAPHY I 291

N

Nagrin, Paul and Ledgard, Henry F., BASIC with Style (Hayden Book Company, Inc., 1978).

Nazem, S. G., The Folks Who Brought You Apple, (FORTUNE Magazine, January 1981).

NIBBLE Magazine (Various Issues).

p

PEEKing at Call A.P.P.L.E. (Apple Pugetsound Library Exchange, 1979).

PEELINGS Magazine (Various Issues).

Perles, Benjamin and Sullivan, Charles, Modern Business Statistics (Prentice-Hall, Inc.).

Personal Computing Magazine (Various Issues).

Pooch, Udo W. and Chattergy, Rahul, Designing Microcomputer Systems (Hayden Book Company,
Inc., 1979).

Poole, Lon and Borchers, Mary, Some Common Basic Programs (OSBORNE/McGraw-Hill, 1979).

Poole, Lon and McNiff, Martin, and Cook, Steven, Apple II User's Guide (OSBORNE/McGraw-Hill,
1981).

R

Raskin, Jeff, Apple II Basic Programming Manual (Apple Computer, Inc., 1978).

Richardson, Caryl, The Applesoft Tutorial (Apple Computer, Inc., 1979).

s

Simon, David E., BASIC from the Ground Up (Hayden Book Company, 1978).

Sippi, Charles J., Microcomputer Dictionary and Guide (MATRIX Publishers Inc., 1976).

Spencer, Donald D., Game Playing with BASIC (Hayden Book Company, Inc., 1975).

Stanton, Jeffrey, Apple Graphics & Arcade Game Design (The Book Co., 1982).

Sternberg, Charles D., BASIC Computer Programs for the Home (Hayden Book Company, Inc., 1980).

Sternberg, Charles D., BASIC Computer Programs for Business (Hayden Book Company, 1980).

w

Wadsworth, Nat, Introduction to Low Resolution GRAPHICS (Scelbi Publications, 1979).

Wadsworth, Nat, Graphics Cookbook for the Apple Computer (Scelbi Publications, 1980).

Wagner, Roger, Assembly Lines: The Book (A SOFTALK BOOK, 1982).

Weston, J. F., Managerial Finance (The Dryden Press, 1972).

Worth, Don and Lechner, Pieter, Beneath Apple DOS (Quality Software, 1981).

GLOSSARY

access time. The time required to locate and read
or write data on a direct access storage device,
such as the disk drive.

acoustic coupler. Hardware designed to connect a
telephone handset to a computer system.

address. 1. A numeric location of data, usually in
memory. This is normally expressed as a hex­
adecimal number. 2. A diskette address is ·
normally expressed in terms of the track and sec­
tor numbers.

algorithm. A prescribed set of rules or processes
for the solution of a problem in a finite number
of steps.

alphanumeric. A term that refers to the class of
characters that includes all of the characters of
the alphabet and arabic numerals.

Apple De. A personal computer in the Apple II
family, manufactured and sold by Apple Com­
puter, Inc.

292

Words in their primary or immediate

signification, stand for nothing but the

ideas in the mind of who uses them.

John Locke, 1690

Applesoft II BASIC. An extended version of the
BASIC programming language used with the
Apple II Plus or Apple lie computer. An inter­
preter for creating and executing programs.

AND. The logical operator that describes the in­
clusive set.

APPEND. Attach to the end of. The APPEND
command is used to write new data to the end of
an existing file.

argument. An independent variable.
array. An orderly arrangement of storage ele­

ments having both dimension and value.
ASCII. An acronym for the American Standard

Code for Information Interchange. This is nor­
mally the hexadecimal-to-character conversion
code.

assembly language. This refers to a language that
uses mnemonic symbols that relate on a nearly
one-to-one correlation to the native symbols of
the individual computer.

asynchronous. Signals or device actions that are
not synchronized to a master clock frequency.

auxiliary slot. The special expansion slot inside
the Apple lie used for the 80-column card and
the memory extension.

back up. Make a copy of a program, data, or
diskette.

BASIC. Beginners All-purpose Symbolic Instruc­
tion Code. A common, high-level programming
language. It was developed by Kurtz and
Kemeny at Dartmouth College in 1963 and has
become the most popular microcomputer
language.

binary. The represenation of numbers in terms of
powers of two. A term used to describe the base
two number system.

binary file. 1. A file whose data is to be inter­
preted in its binary form. l. A file of the BIN
type.

bit. A binary digit in the binary number system.
This is the smallest possible unit of information
consisting of a simple two-way choice.

BLOAD. Binary load.
block. S 12 bytes of data. This is the unit of storage

used by ProDOS.
BLOCKS. When you use the CAT or CATALOG

command, the column on the screen labeled
BLOCKS lists the number of blocks of disk
space occupied by the file in that directory.

boot. The process of getting a computer system
powered up and running.

boot disk. A disk that contains all of the informa­
tion needed to get the computer system running.

BPS. Bits Per Second. A common measure of the
rate of flow of information between digital
systems.

branch. This refers to a departure from the nor­
mal sequential order of processing.

BRUN. Binary run. The BRUN command causes
a binary program to be loaded into memory and
run.

BSA VE. Binary save. The BSA VE command
causes the binary data in some portion of
memory to be saved as a disk file.

buffer. An area in memory that stores data tem­
porarily.

293

bug. A man-made error in hardware or software.
An error in a program that causes the program
not to work as intended.

byte. That 8-bit unit of data or information con­
sidered a word in microcomputers. This is the
smallest unit of information in memory that
may be addressed.

caD. A BASIC instruction on the Apple II Plus or
Apple lie that invokes a machine-language
subroutine.

CAT. This command causes a list of the names
and characteristics of all files in a directory to be
displayed.

CATALOG. A list of all files stored on a diskette.
See CAT.

CHAIN. The CHAIN command runs a BASIC
program without first erasing the variables in
memory.

character. Any symbol that has meaning to peo­
ple. Normally thought of as being one of the
ASCII set of characters.

checksum. A character residing at the end of a
data block. Used for error checking.

clock. The most basic source of synchronizing
signals in electronic equipment. The generator
of periodic electrical pulses that control the tim­
ing of switching circuits in microprocessors.

CLOSE. This command is issued when you have
finished using a file.

code. 1. A method of representing something in
terms of something else; e.g., the code used to
program in the BASIC language. 2. Anum­
ber or symbol used to represent some piece of in­
formation in a compact or easily processed
form. 3. The statements or instructions mak­
ing up a program.

coding. The conversion of flowcharts into a par­
ticular computer language.

command. 1. The portion of an instruction that
specifies the operation to be performed. l. A
communication from the user to a computer
system directing it to perform some immediate
action.

compiler. A program that translates a high-level
language into machine-readable code.

computer. 1. That arrangement of electronic
elements necessary to solve problems. l. An

294 I GLOSSARY

electronic device for performing predefmed
computations at high speed and with great ac­
curacy.

constant. A data item that remains unchanged
during the running of a program.

CPU. Central Processing Unit.
CREATE. This command creates a new flle. It

places a new file of a designated type into a
designated directory.

CRT. Cathode Ray Tube.
cursor. 1. A marker or symbol that delineates

where the next action will take place. 1. The
blinking square of white on a black screen when
in the NORMAL mode on an Apple II Plus.
3. The blinking checkerboard square of white
on a black screen on an Apple lie.

DASH(-). This command runs a basic, machine
language, EXEC, or interpreter program.

data. A general term that is used to denote any or
all information, facts, numbers, letters, or sym­
bols, which can be processed or produced by a
computer.

DCT. Device Characteristics Table; describes the
hardware characteristics of the disk drive.

debug. To detect, locate, and correct errors in a
program.

decision. The operation performed by the com­
puter that enables it to choose between alter­
natives.

decrement: The fixed amount that is subtracted
from another quantity.

DELETE. The command that removes a flle from
its directory.

delimiters. Characters that limit the size, range, or
limits of some physical or logical element of a
computer system.

directory file. A file that contains the names and
locations on the disk of other flies.

disk. Name of a magnetic storage peripheral
device.

diskette. Magnetic storage media of varying size
used with disk drives.

DMA. Direct Memory Access. The procedure of
bypassing the CPU and moving data directly to
or from memory.

documentation. The written explanation of a pro­
gram.

driver. The program or program segment that
controls the execution of other program
modules.

ENDFILE. End of flle.
EOF. End Of File.
EPROM. Electrically Programmable Read Only

Memory.
error. A mistake.
EXEC. This command causes input to be taken

from a sequential text me rather than from the
keyboard.

execution time. Time required by a micro­
processor to execute an instruction in a high­
level language, a program, or a machine
language instruction.

field. In a me, a string of characters preceded by a
carriage return character and terminated by a
carriage return character.

file. A named collection of data or a program nor­
mally stored on a mass media, usually a disk
drive.

file name. The name that identifies a file.
file type. The type of data that is stored in the file.
firmware. Programs stored in a ROM chip or

chips.
flag. Information that indicates whether a par­

ticular condition is present or not. See switch.
FLUSH. Send unwritten data to its me.
format. 1. A predetermined arrangement of

data. 1. The form in which information is
organized or presented. 3. To prepare a blank
diskette to receive information by dividing its
surface into tracks and sectors.

full duplex. The ability to communicate in two
directions simultaneously.

graphics. 1. A system that displays characters or
figures in some form on a display tube. 1. In­
formation presented in the form of pictures or
images. 3. The display of pictures or images
on a computer display screen.

half duplex. Bidirectional communications in
which data flows in one direction only at any
one time.

handshake. Exchange of predetermined signals
when a connection is established between two
data set devices.

hard copy. Typewritten or printed characters pro­
duced on paper by a computer.

hardware. The metallic, plastic, or other "hard"
components of a computer system.

HELPSCREENS. A file, stored on the
/PRODOS diskette, which contains all of the
help screens.

hertz. A unit of frequency equal to one cycle per
second.

hexadecimal. A numbering system that is based
on the powers, radix, of 16. It uses the symbols
0-9 and A-F.

high-level language. A problem-oriented pro­
gramming language (e.g., BASIC), closely
related to a natural language such as English,
that does not reflect the nature of machine
language.

high order. The most significant bit in a byte or
the most significant byte in a word.

HLL. High-Level Language.

IN#. This command designates the source of
subsequent input characters.

increment. The fiXed amount that is added to
another quantity.

input. 1. A device used for bringing data into
another device. 2. In the English language,
the "input" may be used as a noun instead of
"input data," "input signal," etc., when the
usage is clear. 3. In a computer language, "in­
put'' refers to the command for the collection of
data from some input device.

instruction. The statement written to the com­
puter.

integer. A number that does not have a decimal
point.

integration. In computer terminology, the ac­
cumulation of a large number of circuits (say
1,000 or more) on a single chip or substrate.

interactive. The condition in which the operator
and the computer are in direct communication
during the execution of a program.

interface. 1. The common boundary that
matches adjacent components in a computer
system. 2. The devices, rules, or conventions

295

by which one component of a system com­
municates with another.

interpreter. A program that operates directly on a
source program in memory. The interpreter
translates the instructions of the source program
one by one and executes them immediately.

jump. Analogous to the GOTO statement in an
HLL. Perform a hard branch.

K. Abbreviation for kilo.
kilo. In engineering, 1 ,000. In computer ter­

minology, 1024.
kilobyte. 1024 bytes.

language. The set of rules or conventions required
to write computer programs.

language card. An Apple computer interface card
which, when placed in slot zero of an Apple II or
Apple II Plus with 48K memory, adds 16K more
memory to the computer.

Hne number. The positive integer that will begin
each BASIC program statement.

link. An address pointer as an element of a linked
list of data.

list. A one-dimensional sequential array of data
items.

Hteral. The sequence of characters enclosed
within quotation marks. See string.

LOAD. This command brings a BASIC program
into memory from a file.

LOCK. This command protects a file from being
accidentally renamed, deleted, or altered.

logic. In a computer program, the systematic
scheme that defines the interactions of various
components of a computer program.

loop. A sequence of instructions cyclically
repeated a number of times. This is normally a
construction in code.

lsb. Least significant bit.
LSB. Least Significant Byte.
LSI. Large-Scale Integration, a component den­

sity of more than 100 per chip.

M. Mega or million.
machine language interface. The set of machine

language routines, stored in the file named

296 I GLOSSARY

/PRODOS, with which ProDOS talks to disk
drives.

memory. 1. One of the basic components of a
computer. 2. The main storage unit of the com­

puter system.
menu. 1. A table of items from which selections

are made that determine the order of execution
of program components. 2. A list of choices
presented by a program.

micro. A small, usually 8-bit machine. Slang
for microcomputer.

microcomputer. Complete computer of the micro
size.

microprocessor. CPU built into chips by means of
LSI technology.

MODEM. MODulator-DEModulator.
module. A section of code that performs only a

single function or set of functions.
monitor. 1. A CRT that does not contain an RF

section. 2. A machine language program that
resides in memory and performs basic func­
tions.

motherboard. Name for the main board on the
Apple.

msb. Most significant bit.
MSB. Most Significant Byte.

NAME. When a catalog of files is displayed on
the screen, the NAME column contains the
names of the files in the listed directory.

NMOS. N-channel MOS circuit.
numeric. A data type that is numeric in nature.

Refers to numbers.
Nybble. Name given to one-half of a byte.

OPEN. This command allocates space in memory
for a ftle's buffers, and sets the me position
pointer to the beginning of the file.

operand. This is a data item on which some opera­
tion is performed.

operating system. A machine language program
that manages a multiplicity of functions in a
computer system, including peripherals.

operator. 1. The action taken upon an operand.
2. The person operating the computer.

option. An item in the syntax of a Pro DOS com­
mand that determines a single aspect of the com­
puter's action.

OR. A logical operator.
output. 1. The display of the final computer solu­

tion on some visual display; e.g., CRT or
printer. 2. Information transferred from a
computer to some external destination.

page. A group of 256 bytes of memory that shares
the same high order address byte.

pagination. Page numbering and page formatting
in a report.

parallel. The simultaneous transmission of,
storage of, or logical operation on, a word in the
computer memory.

parameter. Variable that can take the place of one
or more other variables in mathematics.

parity. The odd-even characteristic of l's in a
byte. This scheme allows for the detection of er­
rors.

parse. To take apart and analyze a word,
sentence, instruction, etc.

pathname. A series of file names, preceded and
separated by slashes, that indicates the entire
path from the volume directory to the file.

peripheral. Auxiliary equipment used in the com­
puter system that is external to the computer
itself.

pixel. The smallest addressable picture element
that may be displayed on a video screen.

pointer. An address or number of a block of data.
The address "points" to the data.

POSITION. This command causes a specified
number of fields to be read and discarded from
an open file.

PR#. This command sends output to the slot
specified.

prefax. A settable pathname that indicates a direc­
tory file.

/PRODOS. The volume name of the disk that
contains the ProDOS program.

Pro DOS command. Any one of the 28 commands
recognized by ProDOS.

program. 1. The set of statements or instructions
that tells the computer how to solve a particular
problem. The program MUST be stored in
memory. 2. A set of instructions describing
the actions for a computer to perform.

PROM. Programmable Read Only Memory.

prompt. An output string that lets the operator
know what is required. A character that informs
the operator that some input is required.

RAM. Random Access Memory. Access time is
time independent of the physical location of
memory accessed.

/RAM. The volume name of a small volume
automatically placed by ProDOS in the alter­
nate 64K of an Apple lie when the SO-column
extended text card is installed.

READ. This command, when used with the
OPEN command, prepares a file to be read.

record. A collection of associated data items or
fields.

register. Fast temporary-storage locations, usu­
ally inside the microprocessor itself.

RENAME. This command allows you to change
the name in the file.

resolution. Refers to the size of a picture element
(pixel) displayed on a video screen.

RESTORE. This command clears the BASIC
variables currently in memory, and it then reads
in a new set of variables from a variable file.

ROM. Read Only Memory. This information
may be accessed by the microprocessor, but may
not be changed.

RUN. 1. Toexecuteaprogram. 2. Toloadand
execute a program from some external device.

RWTS. Read/Write/Track/Sector. A collection
of subroutines that allows access to the diskette
at the track/sector level.

SAVE. This command lets you save the BASIC
currently in memory.

scroll. The act of moving the text display, usually
upward, to make room for information to be
displayed on the screen.

sector. The smallest addressable unit on a diskette
track that may be changed.

semantic. The meaning of an instruction.
serial. The time-sequential transmission of,

storage of, or logical operations on, a word in a
computer.

sequential. A mode of data retrieval in which each
data element is read in exactly the same order in
which it was written.

297

simplex. Ability to communicate in one direction
only.

software. The programs, languages, and operat­
ing procedures of a computer system.

source code. A program that is in a form that is
understandable to humans.

statement. Instructions entered into the computer
memory. In BASIC, they are numbered.

STORE. This command causes the BASIC vari­
ables currently in memory to be stored in a
variable file on the diskette.

string. A group of characters that make up a
single unit.

subroutine. A series of computer instructions that
may be branched to, executed, and know where
to return upon completion.

switch. Information that is either on (set) or off
(reset). A switch has only two allowable states.
See flag.

syntax. The correctness of the written instruction.
system. A file with a name of the form XXX.SYS­

TEM must be in the volume directory of every
boot diskette.

table. An orderly arrangement of data, usually in
two dimensions.

text file. A file whose contents are interpreted as
characters encoded using the ASCII format.

trap. To catch potential errors, usually done using
error handling routines.

TYPE. In a catalog, the column with this heading
names the type of each flle listed.

unlock. This command reverses the effect of the
LOCK command.

/UTILITIES. This disk contains utilities pro­
grams for your use.

variable. A symbolic quantity that can assume
any of a given set of values. Provides storage in
memory for either numbers or strings.

vector. A one dimensional array of numbers or
characters. A collection of pointers.

volume. A source or destination of information.

word. That group of characters in memory, op­
erated on by the computer. In the case of
microcomputers, this is usually a byte.

298 I GLOSSARY

WRITE. This command, when used after an
OPEN command, prepares a file to be written
to.

zero page. The first 256 memory locations in a
6502 processor. This area has the address range
of $0000-$00FF.

INDEX

ALLOC INTERRUPT call, for MLI 173, 174
ALTER WRITE-PROTECTION 121
APA program commands 274-281

AUTO 275
COMPRESS 278
CONVERT 280
EXIT 280-281
HOLD 277
LENGTH 279
MANUAL 276
MERGE 277-278
NOSHOW 279
RENUMBER 276-277
SHOW 278
XREF 279-280

APPEND command 64, 76-77, 81, 238, 254
used with random-access file 81, 93-94
used with sequential-access file 64, 76-77

Apple II computers, operating systems for 230
Applesoft Programmer's Assistant. See AP A

program
Applesoft II BASIC 5, 182
ASCII character codes 282-285

AUTO command 275-276
AUTOSTART 4
AUTOSTART ROM chip program 28

BASIC. SYSTEM program 27, 29
Binary addresses 98
Binary disk file 102
Binary files 96-1 OS

addresses 98
command options 98

Binary program 96
BLOAD command 97, 99-101, 239, 255
Block 126
BLOCK ALLOCATION 132
Block File Manager (BFM) 152-153
BNE 152
Boot 8
BRUN command 97, 102-103, 239, 255
BSAVE command 97, 101-102, 239, 255
BSC 152

Carriage return character 65, 66, 74, 75
CAT command 26, 32-34, 47-49, 233, 251

299

300 I INDEX

CATALOG command 26, 32-34, 47-49, 233,
251

CHAIN command 57, 235, 252
Clock/ calendar card 266-268
CLOSE command 237, 254

for MLI 167
used with random-access file 81, 89, 92
used with sequential-access file 64, 76

CNUM 152
Commands, APA program 274-280
Commands, DOS 3.3 not supported by

ProDOS 231
Commands, ProDOS

APPEND 64, 76-77, 81, 93-94, 238, 254
BLOAD 97, 99-101, 239, 255
BRUN 97, 102-103, 239, 255
BSAVE 97, 101-102, 239, 255
CAT 26, 32-34, 47-48, 233, 251
CATALOG 26, 32-34, 47-49, 233, 251
CHAIN 57, 235, 252
CLOSE 64, 70, 81, 89, 92, 167, 237, 254
CREATE 46, 47, 52-54, 154-155, 234, 252
DELETE 55, 81, 93, 234, 252
EXEC 107, 110-111, 240, 255
FLUSH 65, 77-78, 81, 89, 238, 255
HELP 21-22, 231, 250
IN# 60-61, 97, 103-104, 236, 253
LOAD 26, 42-43, 232, 251
LOCK 55-57, 234, 252
NOHELP 22, 232, 250-251
OPEN 64, 72-74, 89-90, 161-164, 236, 253
POSITION 65, 78, 238, 255
PR# 59-60, 97, 103-104, 235, 253
PREFIX 37-39, 47, 49-52, 233, 251-252
READ 64, 74-75, 81, 90-91, 165-166, 237,

254
RENAME 54-55, 156, 234, 252
RESTORE 57-59, 235, 253
RUN 26, 40-42, 232, 251
SAVE 26, 43, 233
STORE 57, 58, 234, 252
UNLOCK 55-57, 234, 252
WRITE 64, 75, 81, 91-92, 237, 254

COMPARE FILES 121
COMPARE VOLUMES 133-134
COMPRESS command 278
CONVERT command 280
CONVERT program 23, 112-115, 136-140

keystrokes for 113-114
uses 136-139

COPY FILES 119-120

COPY A VOLUME 127-128
CREATE command 46, 47, 52-54, 234, 252

for MLI 154-155
Creation program 64

- (DASH) command 8-9, 39-40
used for binary program 96

DB 152
DEALLOC INTERRUPT call, for

MLI 173-174
Debugging phase 183-184
Decimal-hexadecimal conversions 286-287
DELETE command 55, 81, 234, 252

used with random-access file 93
Delimiters 11
Designing a program 181-185

confirming correctness 183-185
defining problem 182
describing solution 183
documenting solution 184-185
finding program and language to be

used 183
requirements 182-183
sample program 201-227

DESTROY call, for MLI 155-156
DETECT BAD BLOCKS 130-132
Directory files 31-36

and CREATE command 52-54
Disk drive 27
Diskette 1

determining which operating system to
use 230-231

DOS 3.3/ProDOS formats 23, 230-231
DOS 3.3, comparisons to ProDOS 23,

229-240
Drive number 17
ow 152

Error codes, from MLI calls 176-177
Error messages 256-265

Applesoft II 264-265
determining the error 257
FILER and CONVERT 259-264
ProDOS 257-258

Escape key 11
/EXAMPLES diskette 6-8
EXEC command 107, 110-111, 240, 255

transformation of Applesoft II BASIC
program to text file by use of 111

Executive files 107-111
demonstration 108-109

Executive files (Contd.)
EXEC command 110-111

EXERCISER program 153, 156, 157, 158,
161, 163

EXIT command 280-281

Field 65, 66, 69, 86
File 25, 30-38, 194

changing name of. See RENAME command
and CREATE command 52-54
defined 30
directory 31-35
removing from disk. See DELETE command

FILER program 8-13, 14
FLUSH command 65, 77-78, 81, 238, 255

for MLI 167-168
used with random-access file 81, 89, 94
used with sequential-access file 65, 77-78

FORMAT A VOLUME 125-127

General memory map 248-249
GET BUF call, for MLI 171, 172, 173
GET EOF call, for MLI 170-171
GET FILE INFO call, for MLI 158
GET MARK call, for MLI 168, 169, 170
GET PREFIX call, for MLI 161
GET TIME call, for MLI 172
Global variables 146

HELP command 21-22, 231, 250
Hexadecimal conversions 286-287

notation 18
HOLD command 277

IN# command 60-61, 236, 253
used with binary file 97, 103-104

Intelligent RUN command. See - (DASH)
command

1/0 from programs 57-61

JSR 152

Kernel functions 4-5

LENGTH command 279
Linked list storage file 155
LIST PRODOS DIRECTORY 117-118
LIST VOLUMES 128-129
LOAD command 26,42-43, 232, 251
LOCK command 55-57, 234, 252

INDEX I 301

Machine-code routines, installation 100-101
Machine Language Interface (MLI) 27,

141-178
direct access calls 174-176
error codes 176-177
filing calls 163-173
housekeeping calls 154-162
issuing calls 152-176
memory maps 143-152
memory usage 142-152
system calls 173-174
writing a system program 177-178

MAKE DIRECTORY 121-122
MANUAL command 276
Memory, in Apple II computer 27
Memory locations in ProDOS MLI 143-152
Memory map. See ProDOS 1.0 memory map;

General memory map
Menu, advantages 185
MERGE command 277-278
MLI. See Machine Language Interface
MONITOR 4
Monitor, getting into 104-105
MUFFIN program 23

NEWLINE call, for MLI 164-165
NOHELP command 22, 232, 250-251
NOSHOW command 279
NUMBER FILER subroutine 191-193
Numeric variable 69

ON LINE call, for MLI 160-161
OPEN command 236, 253

for MLI 163-164
used with random-access files 89-90
used with sequential-access files 64, 72-74

Output program 64

Partial pathname. See PREFIX command
Pathname 17, 36-38, 194

slot-drive summary 44
Pathname determination subroutines 194-196
PLIST 152
POSITION command 65, 78, 238, 255
PR# command 59-60, 235, 253

used with binary file 97, 103-104
PREFIX command 37-39, 47, 49-52, 233,

251-252
PRINT command 77
Print to screen subroutine 196
Processing program 64

302 I INDEX

ProDOS 141
capabilities 26-27
commands 16-18, 39-43, 46-61, 231-240,

250-255
DOS 3.3 23, 229-240
files 25, J0-38
introduction to 3-13
programming with 177-178, 180-227
and SOS 271-273
starting up system with 18-21

ProDOS diskettes
copying 13-1 5
EXAMPLES 6-8, 14
PRODOS 6-8, 14

PRODOS/EXERCISER command 153-162
PRODOS file 27
ProDOS file name 30-31
PRODOS/FILER program 112-135

configuration defaults 134-135
file commands 117-122
keystrokes for 113-114
QUIT option 135
volume commands 123-134

ProDOS 1.0 memory map 241-248
PRODOS program 28-29
ProDOS startup diskette 28
ProFile 113, 123, 125

hard disk storage 270
Program

design 181-185
modules 185-201
sample 201-227

Program modules
number filter subroutine 191-193
pathname determination subroutine 194-196
print to screen subroutine 196
read a record subroutine 196-197
skeleton program 185-191
string filter subroutine 193-194
system configuration setup

subroutine 198-199
Thunderclock routine 199-200
write a record subroutine 197-198

/RAM 268-269
Random-access files 64, 80-95

data storage in 83-88
reading from a record 89
record length 82
writing a record in 82-83

READ BLOCK call, for MLI 174-175
READ command 237, 254

for MLI 165-166
used with random-access file 81, 90-91
used with sequential-access file 64, 74-75

Read current prefix routine 200
Read a record subroutine 196-197
Receiving data from sources other than

keyboard 60-61
RENAME command 54-55, 234, 252

for MLI 156
RENAME FILES 121
RENAME A VOLUME 129-130
RENUMBER command 276-277
Report heading subroutine 200-201
RESTORE command 57-59, 235, 253
RESTORE DEFAULTS 135
RUN command 26, 40-42, 232, 251

Sample program 201-227
SAVE command 26, 43, 233
SCRATCH. DISK 10, 11, 12, 14-15, 27, 28
SEC 152
SELECT DEFAULTS 134
Sequential-access files 63-79

creation of 65
defined 65
and EXEC command 107, 109
problems 73-74
retreiving data from 69-72
storing and viewing data in 66-68

SET BUF call, for MLI 171, 172
SET EOF call, for MLI 170
SET FILE INFO call, for MLI 1 57
SET MARK call, for MLI 168, 169
SET PREFIX 122
SET PREFIX call, for MLI 161
SHOW command 278
Slash mark 10
Slot number 17
sos 271-273
Startup d·iskette 28
STARTUP program 19, 27, 29
STORE command 57, 58, 234, 252
String data 191
String filter subroutine 193-194
String variable 69
Subdirectory 31, 32
System bit map 27
SYSTEM MASTER diskette 6

System program writing 177-178

Tape drive 65
Text file 64, 65

program to 111
retreiving data 69
transformation of Applesoft II BASIC pro­

gram to 111
Thunderclock routine 199-200
Transfer of data from normal video screen out-

put 59-60
Tree structure type of file 155
Ttype 52
TUTOR 113, 116, 123, 125

UNLOCK command 55-57, 234, 252
Utility programs 155

Volume 123
Volume commands 9
Volume directory 31, 32, 51

characteristics 31

WRITE BLOCK call, for MLI 175-176
WRITE command 64, 75, 81, 237, 254

used with random-access file 81, 91-92
used with sequential-access file 64, 75

Write a record subroutine 197-198

XREF command 279-280

Zero page 242-248

INDEX I 303

