

..

INSIDE
APPLE'S®
PRODOST.M.

INSIDE
APPLE'S®
PRODOST.M.

A Reston Computer Group Book
Reston Publishing, Inc.
A Prentice-Hall Company
Reston, Virginia

John Campbell

Library of Congress Cataloging in Publication Data

Campbell, J. L. (John L.)
Inside Apple's ProDOS.

"A Reston Computer Group book."
Bibliography: p.
Includes index.
1. ProDOS (Computer operating system) 2. Apple II

(Computer)--Programming. 3. Basic (Computer program
language) I. Title. II. Title: Inside Apple's ProD.O.S.
QA766.C343 1984 001.64'2 84-6988
ISBN 0-8359-3078-5

The terms Apple, Apple II, Apple II Plus, Apple lie, Apple Ill, Disk II, DOS 3.3, ProFile, ProDOS, In­
teger BASIC, Applesoft II BASIC, The Filer, CONVERT, EXERCISER, and The APA are either
registered trademarks, trademarks, or copyrighted by Apple Computer, Inc.

Interior design and production by Carolyn Ormes

© 1984 by John L. Campbell

All rights reserved. No part of this book may be reproduced in any way or by any means, without permis­
sion in writing from the author.

10 9 8 7 6 5 4 3 2 I

PRINTED IN THE UNITED STATES OF AMERICA

CONTENTS

Preface xi

CHAPTER 1: INTRODUCTION 1
1. 0. Overview 1
1.1. Introducing ProDOS 3

1.1.1. What is Needed 5
1.1.2. The ProDOS Diskettes 6
1.1.3. Making a Startup Diskette 8
1.1.4. The ProDOS Programs 00

1.2. Make a ProDOS Copy 13
1.3. ProDOS Commands Described 16
1.4. Starting ProDOS 18

1.4.1. From a Cold Start 19
1.4.2. From Other Ways 20

Nothing is more expensive

than a start.

Nietzsche, 1888

vi I CONTENTS

1. 5. The HELP Command 21
1.6. ProDOS and DOS 22
Summary 23
Questions 24

CHAPTER 2: PRODOS FILES AND COMMANDS 25
2.0. Overview 25
2.1. How ProDOS Works 26

2.1.1. A Startup Diskette 27
2.1.2. The PRODOS Program 28
2.1.3. The BASIC SYSTEM Program 29
2.1.4. The STARTUP Program 29

2.2. Volumes and Files 30
2.2.1. The Directory 31
2.2.2. The Pathname 36
2.2.3. The Prefix 38

2.3. ProDOS and Programs 39
2.3.1. The-(DASH) Command 39
2.3.2. The RUN Command 40
2.3.3. The LOAD Command 42
2.3.4. The SAVE Command 43

Summary 43
Questions 45

CHAPTER 3: HOUSEKEEPING COMMANDS 46
3.0. Overview 46
3.1. The CAT and CATALOG Commands 47
3.2. The PREFIX Command 49
3.3. The CREATE Command 52
3.4. The RENAME Command 54
3.5. The DELETE Command 55
3.6. The LOCK and UNLOCK Command 55
3.7. I/0 from Programs 57

3.7.1. The CHAIN Command 57
3.7.2. The STORE Command 57
3.7.3. The RESTORE Command 58
3.7.4. The PR# Command 59
3.7.5. The IN# Command 60

Summary 61
Questions 62

CHAPTER 4: SEQUENTIAL-ACCESS FILES 63
4.0. Overview 63
4.1. Sequential-access Files 65
4.2. The OPEN Command 72
4.3. The READ Command 74
4.4. The WRITE Command 75
4.5. The CLOSE Command 76
4.6. The APPEND Command 76
4.7. The FLUSH Command 77
4.8. The POSITION Command 78
Summary 78
Questions 79

CHAPTER 5: RANDOM ACCESS FILES 80
5.0. Overview 80
5.1. Random-Access Files 81

5 .1.1. The Record Length 82
5.1.2. Writing a Record 82
5.1.3. Record Character Storage 83
5.1.4. Reading from a Record 89

5.2. The OPEN Command 89
5.3. The READ Command 90
5.4. The WRITE Command 91
5.5. The CLOSE Command 92
5.6. The DELETE Command 93
5.7. The APPEND Command 93
5.8. The FLUSH Command 94
Summary 95
Questions 95

CHAPTER 6: BINARY FILES 96
6.0. Overview 96
6.1. Binary Files 97

6.1.1. Binary Addresses 98
6.1.2. Command Options 98

6.2. The BLOAD Command 99
6.2.1. Installing Machine-code Routines 100

6.3. The BSA VE Command 101
6.4. The BRUN Command 102
6.5. The PR# and IN# Command 103
6.6. The Monitor and ProDOS 104
Summary 105
Questions 106

CONTENTS I vii

viii I CONTENTS

CHAPTER 7: EXECUTIVE FILES 107
7.0. Overview 107
7 .I. EXEC Files Demonstration 108
7.2. The EXEC Command 110
7.3. EXEC Uses 111
Summary Ill
Questions 111

CHAPTER 8: THE PRODOS FILER
AND CONVERT PROGRAMS 112

8.0. Overview 112
8.1. Using the FILER Program 115

8.1.1. ProDOS FILER Menu 115
8.1.2. TUTOR 116
8.1.3. File Commands 117

LIST PRODOS DIRECTORY 117
COPY FILES 119
DELETE FILES 120
COMPARE FILES 121
ALTER WRITE-PROTECTION 121
RENAME FILES 121
MAKE DIRECTORY 121
SET PREFIX 122

8.1.4. Volume Commands 123
FORMAT A VOLUME 125
COPY A VOLUME 127
LIST VOLUMES 128
RENAME A VOLUME 129
DETECT BAD BLOCKS 130
BLOCK ALLOCATION 132
COMPARE VOLUMES 133

8.1.5. Configuration Defaults 134
SELECT DEFAULTS 134
RESTORE DEFAULTS 135

8.1.6. QUIT 135
8.2. Using the CONVERT Program 136

8.2.1. ProDOS CONVERT Menu 136
8.2.2. Reverse Transfer Direction 137
8.2.3. Change DOS 3.3 Slot and Drive 137
8.2.4. Set ProDOS Prefix 139
8.2.5. Set ProDOS Date 139
8.2.6. Transfer or List Files 139

8.3. FILER and CONVERT Error Messages 139
Summary 139
Questions 140

CONTENTS I ix

CHAPTER 9: THE MACHINE LANGUAGE INTERFACE 141
9.0. Overview 141
9.1. Memory Usage 142

9.1.1. ProDOS Loading Sequence 142
9.1.2. Memory Maps 143

9.2. Issuing Calls 152
9.2.1. Housekeeping Calls 154
9.2.2. Filing Calls 163
9.2.3. System Calls 173
9.2.4. Direct Access Calls 174

9.3. MLI Error Codes 176
9.4. Writing a System Program 177
Summary 178
Questions 178

CHAPTER 10: BASIC PROGRAMMING SYSTEMS 180
10.0. Overview 180
10.1. Designing the Program 181
10.2. Program Modules 185

10.2.1. The Skeleton Program 185
10.2.2. Number and String Module 191
10.2.3. Pathname Determination Subroutine 194
10.2.4. Print to Screen Subroutine 196
10.2.5. Read a Record Subroutines 196
10.2.6. Write a Record Subroutines 197
1 0.2. 7. System Configuration Setup Subroutines 198
10.2.8. Thunderclock Routine 199
10.2.9. Read Current Prefix Routine 200
10.2.10. Report Heading Subroutine 200

10.3. The Program 201
Summary 227
Questions 228

APPENDICES 229
A. DOS 3.3 and ProDOS 1.0 Comparisons 229

Overview 229
The Diskettes 230
Commands no Longer Supported 231
ProDOS Commands Supported 231

xI CONTENTS

B. ProDOS 1.0 Memory Map 241
Overview 241
High Memory Considerations 242
Zero Page 242
General Memory Map 248

C. ProDOS Command Summary 250
D. Error Messages 256

Overview 256
Determining the ERROR 257
ProDOS Messages 257
FILER and CONVERT Messages 259
Applesoft 11 Messages 264

E. Miscellaneous Topics 266
Overview 266
Clock/Calendar Card 266
/RAM in the Apple Ile 268
ProFile Hard Disk Storage 270

F. ProDOS, Apple III, and SOS 271
Overview 271
ProDOS and SOS 271
File Comparisons 272
System Comparisons 272

G. The APA Program 274
Overview 27 4
Starting AP A 27 4
AUTO Command 275
MANUAL Command 276
RENUMBER Command 276
HOLD Command 277
MERGE Command 277
COMPRESS Command 278
SHOW Command 278
NOSHOW Command 279
LENGTH Command 279
XREF Command 279
CONVERTComm~d ~0

EXIT Command 280
H. ASCII Character Codes 282
I. Hexadecimal to Decimal Conversions 286

BIBLIOGRAPHY 288

GLOSSARY 292

INDEX 299

PREFACE

This book describes the new Professional Disk Operating System (ProDOS) recently in­
troduced by Apple Computer, Inc. This new operating system is more than just another new
computer disk operating program like the changes made when DOS 3.3 was introduced. Pro­
DOS is a completely new computer system operating environment. ProDOS contains new
commands, expanded and improved old commands, file management utilities, assembler,
data types, file types, and new procedures. It's a new, exciting, environment that adds
materially to the capability of the Apple 11® family of computers.

A disk operating system is a computer program or set of programs that serve as the ex­
ecutive manager for the information stored on diskettes. The operating system allows you to
store, retrieve, or rearrange information on diskettes. ProDOS allows you to organize your
information stored on all of your Apple II family of diskettes. Throughout, comparisons. will
be made to DOS 3.3 so that you will be able to make the transition to Pro DOS easily.

As you begin reading this book, you will first be introduced to the ProDOS operating
system parts in Chapter 1. This chapter outlines the conventions used throughout the book for
describing ProDOS.

xi

xii I PREFACE

To use Pro DOS you will need an Apple II family computer with a least 64K of memory,
Applesoft II BASIC® in Read Only Memory {ROM), and at least one Disk II disk drive.
More will be said about these requirements in Chapter 1.

Chapter 2 discusses the files, file types, command syntax, and your first, most often
used ProDOS commands.

The general system housekeeping commands are discussed in Chapter 3.
Chapters 4 through 7 discuss each of the major types of files you will be using. These in­

clude:

-Sequential access files
-Random access files
-Binary files
-Executive files

Chapter 8 will discuss the Filer program. This program performs a number of different
volume and file utility functions.

Chapter 9 briefly discusses the machine language interface portion of ProDOS. This
allows you to customize your systems operation.

The last chapter will put together a number of routines that you can use in your own pro­
grams. These are used in a program as the vehicle of presentation.

With this new operating system, all of the Apple computer system operating en­
vironments operate in a similar manner. I wish to thank Apple Computer, Inc. for permission
to quote directly from their many useful manuals.

I hope that you will enjoy this book.

J. L. Campbell

INSIDE
APPLE'S®
PROOOST.M.

I. INTRODUCTION

If a system injures the intelligence

it is bad. If it injures the character

it is vicious, if it injures the

conscience it is criminal.

Henri Frederic Amiel, 1852

1.0. OVERVIEW

This chapter introduces you to Apple's ProDOS T.M. (Professional Disk Operating System).
After a brief discussion of some of the conventions used throughout this book, you will

be introduced to the interrelationship of ,various software programs and how they operate to
perform all of those things that allow you to save your balanced checkbook transactions cor­
rectly. You will be given a brief description of their capabilities and functions.

Of course, you should know early on just what you need in the way of a computer
system to take advantage of ProDOS. The physical system configuration requirements for
each of the Applee II family of computers will be outlined. By "Apple II family," I mean
the Apple II, Apple e II Plus, and Apple® lie computers.

By the time you have read to Section 1.2, you should have enough information to be able
to begin exercising your system with the new operating system. The diskettes that came with
the operating system will be discussed. "Diskette" refers to a 5 V..-inch floppy disk. Then, you
will create a working diskette of your own so that, when working with the programs and pro-

2 I INTRODUCfiON

gram segments in this book, you may code them, save them, and try them out to see what
happens.

You will make backup copies of the original diskettes using the FILER program and ex­
plore some of the programs on the original diskettes. The term ''backup'' means a duplicate.
You will be told how to power up your system and get all of the pieces operating together.

You will explore one of the more interesting new capabilities of Pro DOS, called HELP.
HELP is a program that uses the text file HELPSCREENS stored on one of your original
diskettes. The HELP program is discussed in Section 1.5. It is comforting to know that there
is help when you forget just what is required.

Finally, the differences between DOS 3.3 and ProDOS will be discussed for the first
time. Throughout this book, the similarities and differences between these two operating
systems will be shown in each instance where they are applicable.

Every time the Apple II, Apple II Plus, and Apple lie computers are discussed, the term
''Apple computers'' will be used. Pro DOS applies to all of these computers equally, provided
each individual machine is configured correctly to handle ProDOS. These individual con­
figurations will be outlined in Section 1.1.

Another convention used throughout is to draw the distinction between this new
operating system (ProDOS) and the operating system program (PRO DOS). At this point you
need not know or understand the differences between these two terms. Their differences will
become clear very shortly.

When discussing a computer application or operating system program, the name of that
program will be capitalized. Further, operating system commands will be shown capitalized.

There are two Apple computer languages mentioned in this book: Integer BASIC and
Applesoft II BASIC for the Apple computers. These are Apple's dialects of the BASIC
language. The primary emphasis will be on Applesoft II BASIC, since Integer BASIC is not
supported by ProDOS.

Finally, comparisons will be made between ProDOS and DOS 3.3 pointing out the
similarities and differences. This should enable you to make the transition from DOS 3.3 to
Pro DOS easily and quickly.

There are a number of assumptions that will be made in presenting information in this
book. These are:

Your computer is connected up correctly (see Section 1.1.1).

You have a fundamental working knowledge of:
Applesoft ® II BASIC and
DOS 3.3.

I realize that this may be more than you can handle at this time. With that in mind, I will try to
explain things carefully as you proceed through this book. Further, if you feel you need more
indepth knowledge concerning these subjects, it is recommended that you acquire and use my
other books, Programming the Apple: A Structured Approach, and Programming Tips and
Techniques for the Apple II Plus/Apple lie. Besides, I need the money! So buy them, please!
Both books are published by the R. J. Brady Co.

INTRODUCING PRODOS I 3

In each chapter, where commands are introduced, there is a box that gives the command
syntax, provides command examples, and explains in which operating mode each may be
used. Syntax means the rules governing the structure of statements, instructions, and
commands.

If a command allows the use of options, the options will be shown enclosed in square
brackets. Those parts of a command that are required to be used are shown without the square
brackets.

In the particular chapter section that describes a command, the specific form, or syntax,
will be given for that command. In addition, Appendix C gives a summary of all commands
and their options. Each ProDOS command has a number of options, or additional specifica­
tions, that may be either defined or not used.

The commands introduced in this chapter are shown in the box below.

HELP e.g., HELP Immediate mode only

HELP PREFIX

NO HELP e.g., NO HELP Immediate mode only

1.1. INTRODUCING PRODOS

Before getting into this new operating system, it is necessary to understand the set of com­
puter programs involved and where they fit in the overall scheme of things. Let's look at a
computer system from the point of view of the computer programs operating during the time
you are making entries into a general ledger, writing a letter, or fighting a rousing space war
marathon. This is actually a logical computer as shown diagrammatically in Figure 1.1.

Application Programs

Language(sl

Operating System

Kernel

Figure 1.1. Logical computer.

4 I INTRODUCTION

The kernel for the Apple computers actually contains both the MONITOR and AUTO­
START programs. The kernel programs usually perform very basic operating functions. The
AUTOSTART program allows the Apple computers to "come up running" when power is
first applied to your system. A secondary, but equally important, function included in
AUTOST ART is the screen editing capability of your Apple computer. There are other
general kernel functions performed by the MONITOR set of program modules.

These are:

Character 1/0
Get character from keyboard
Get an input line of characters
Echo character to the screen
Generate a carriage return character

Low-resolution graphics plotting
Plot point
Plot line

Speaker routines
Sound bell
Beep speaker

Paddle, button, and annunciator 1/0
Sense paddle position
Sense button pushed
Sense annunciator used

Cassette tape 1/0
Load program from tape
Save program to tape

Screen commands
Clear screen
Clear screen section
Set text mode
Clear line
Set scrolling window
Set graphics mode
Set screen modes
Normal
Inverse
Flashing
Graphics

Reset machine

6502 registers
Save registers
Move memory
Restore registers
Print register contents

INTRODUCING PRODOS I S

As you can see, there are a number of very important but necessary functions that are
performed by the kernel set of program modules and routines.

The next layer or ring of programs normally resident in the computer's memory is the
operating system. In this case it will be ProDOS, which is the subject of this book.

The third layer of software activated is the computer language(s) needed by the last or
fourth layer. This is Applesoft II BASIC for Apple computers. Although Applesoft II BASIC
is not the only language available for Apple computers, it is the only one of interest here.

The outer layer of computer software operating is the application program. An applica­
tion program is any program you are currently using. It could be a checkbook balancer,
general ledger, word processor, or graphics Klingon space war.

In order the accomplish anything with a computer system, many different programs
operating on different levels must be active simultaneously. Of all of these programs, the
operating system is the only one discussed in detail in this book.

1.1.1. Wbat is needed

In order for you to install Pro DOS on your computer system you will need to configure your
particular system as follows:

Apple lie:

Computer.

Video display (this may be a TV or video monitor).

Disk II disk drive.

Applesoft II BASIC in ROM (ROM means read only memory).

ProDOS diskettes.

Apple II Plus:

Computer with 64K RAM (K stands for 1024 bytes; RAM stands for random access
memory).

48K plus 16K language card or
48K plus 16K RAM card.

Video display.

Disk II disk drive.

6 I INTRODUCTION

Applesoft II BASIC in ROM.

ProDOS diskettes.

Apple II:

Computer with 64K.
48K plus 16K language card or
48K plus 16K RAM card.

Video display.

Disk II disk drive.

Applesoft II BASIC in ROM installed on a firmware card (firmware means a program
implemented in ROM).

ProDOS diskettes.

If you have one of the early Apple II computers with the Applesoft II BASIC firmware
card installed in slot zero, it is a simple matter to exchange the Integer BASIC and MONITOR
chips on the motherboard with the Applesoft II BASIC, AUTOSTART, and MONITOR
chips on the firmware card. The motherboard is the main circuit board of your computer,
which contains the expansion slots. Once that is done, then you only need to have a 16K
memory expansion board or language board installed into the vacated slot zero. You can now
use ProDOS. Don't throw the Integer BASIC firmware card away. You may want to use it
again sometime with software that uses that language and DOS 3.3.

1.1.2. The ProDOS diskettes

This section will discuss the two diskettes that come with ProDOS. These diskettes are:

-The /PRO DOS diskette
-The /EXAMPLES diskette

The /PRO DOS diskette takes the place of the SYSTEM MASTER diskette that came with
DOS 3.3. The contents of the diskette are as shown in Figure 1.2, below.

Place the ProDOS diskette into disk drive 1 of your system. Then power up your system.
If you do not know how to power up your system, then skip to Section 1.4 for the general
power up procedure.

The contents of a diskette may be seen by using the command:

]CAT,S6,D1

Try this command now that your system is powered up.

/PRO DOS

NAME

*PRO DOS
*BASIC.SYSTEM
*STARTUP
*CONVERT
*FILER
EXERCISER
FORMATTER
EDASM.ASM
EDASM.ED
EDASM.SYSTEM
BUGBYTER

*BASIC.RUNTIME

BLOCKS FREE:

TYPE

SYS
SYS
BAS
SYS
SYS
SYS
TXT
BIN
BIN
BIN
BIN
SYS

BLOCKS USED:

BLOCKS

29
21
7

42
51
16
15
29
17
9

15
21

279

Figure 1.2. /PRODOS diskette contents.

INTRODUCING PRODOS I 7

MODIFIED

1-SEP-83
1-SEP-83
1-AUG-83
1-SEP-83
1-SEP-83

29-JUL-83
4-AUG-83

14-JUN-83
14-JUN-83
1-AUG-83
4-APR-83
1-SEP-83

The actual contents of your /PRO DOS diskette may be slightly different because the
final production diskette contents will probably change between now and the time Pro DOS is
shipped to the general buying public.

The most obvious thing to notice that ProDOS will present much more information to
you than what is presented with DOS 3.3. Each of these columns of information will be ex­
plained in detail later.

Now, let's look at the contents of the /EXAMPLES diskette. This is shown in Figure
1.3. You do this by replacing the diskette in drive 1 with the other diskette that came with
Pro DOS.

]CAT,S6,D1

/EXAMPLES

NAME TYPE BLOCKS MODIFIED

*PRO DOS SYS 29 1-SEP-83
*BASIC.SYSTEM SYS 21 1-SEP-83
STARTUP BAS 7 22-JUL-83
HELP BAS 1 1-SEP-83
HELPSCREENS TXT 60 1-SEP-83
DIRECTORY DIR 1 28-MAR-83
PRACTICE DIR 1 18-JUL-83

8 I INTRODUCTION

PROGRAMS
DATA
EXTRAS

BLOCKS FREE: 31

DIR 3
DIR 1
DIR 1

BLOCKS USED: 249

Figure 1.3. /EXAMPLES diskette contents.

5-0CT-83
29-AUG-83
6-0CT-83

Once again, notice the amount of information presented to you. This information may
also change slightly by the time you receive your Pro DOS system. For now, the only thing to
know is what has been presented. Later in this book, each column will be explained in detail.

Now that you have your system running, you are ready to make a Pro DOS diskette that
will be used to store the programs written in this book.

Search through your diskettes and find at least three that can be reinitialized and used
for ProDOS information.

1.1.3. Making a startup diskette

Chapter 8 will discuss the FILER and CONVERT programs in detail. However, this section is
going to show you how to use the FILER program to create a diskette for your own use. In
DOS 3.3 terms, you will initialize a diskette with the boot program HELLO installed. Boot
means to start up automatically. In Pro DOS terms, you must first format a diskette using the
FILER program and then install programs on that diskette. The following programs are to be
installed:

-PRO DOS
-BASIC.SYSTEM
-STARTUP

Power up your system as outlined in Section 1.4. If you are totally unfamiliar with how
to power up your system, then skip to that section, read it, and then return here.

The first thing to do is to place the /PRO DOS diskette in your boot drive and power up
your system. When the power up procedure has been completed, you will be in the immediate
mode with the Applesoft II BASIC prompt character and cursor in the bottom left portion of
the screen.

At this point, let's start to create a program diskette of your own. In the following
discussion, you will execute a number of commands not knowing the reasons why. Don't
worry, they will be explained in other sections or chapters of this book. The first command to
be executed is:

]-FILER

The- (DASH) or minus sign key is the shorthand means available in ProDOS for exe­
cuting a program regardless of program type. The - (DASH) may be used in place of RUN or

INTRODUCING PRODOS I 9

BRUN. This command is known as the intelligent run command. This command is discussed
in Section 2.3.1. This command is not a part of DOS 3.3. FILER is the name of the program
that performs a number of volume and file manipulation and utility functions. This program
allows you to perform many general system housekeeping chores . By the way, you will find
this new - (DASH) command very handy.

Once this command is executed, your boot disk drive will come on while the FILER pro­
gram is being loaded into memory. After the program is loaded, it will be automatically exe­
cuted. The first screen that will be presented will be the main FILER menu screen. This screen
is shown in Figure 1.4.

From this screen you will want to select the V (VOLUME COMMANDS) option. This is
done by pressing the V key on the keyboard without using the RETURN key. Volume com­
mands allow you to work with an entire diskette as a unit. After selecting the V option, you
will be presented with the secondary menu as shown in Figure 1.5.

In this case you will choose the F (FORMAT A VOLUME) option. This corresponds to
the INIT command in DOS 3.3.

You may want to remove the diskette in your boot drive BEFORE making this selection.

t%{tttttttttttttttttttttttttttttt tttttii

HPPLE'S PROOOS SYSTEM UTILI TIES

FILER UERS ION 1 0.1
t

-- P pI GHT APPLE COt·lF'UTER · 13:::3- :::4 *
; . . • • ; !· •. ·•· ·•· ·t· ·•· ·t· ·t· ·t· ·t· ·•· ·•· ·•· ·•· ·•· ·•· ·•· ·•· ·•· ·•· ·•· ·•· ·•· .• ·•· .• • + . • t :;: t- :. ;. ! _; t. -1- -'!'- -t- -f· .f. ·f· · · ·f· · · · · · · · · ·1'· ·f · .f . ·f · .f .. f . ·1'· ·f · ·1'· ·f· ·f· ·f · .f . -t- -t- ·f· :,_ -t- t: T· -~

· - TU TOR
F - FILE COMMANDS

1 .. 1 - '...IOLUt·1E cot·H·1At·m::;

D - CONF IGURATION DEFAULTS

0 - OUI T
:L EH~E SELECT AN OPTION =

Figure 1.4. FILER main screen.

tO I INTRODUCfiON

Figure 1.5. Volume commands screen.

By selecting the F option, you will be shown a third screen. This screen, however, is a
data entry screen. You will finally be entering the information necessary to format a diskette.
This screen is shown in Figure 1.6.

At this point, remove the boot diskette and replace it with a new blank diskette. This
new diskette is what you will use throughout this book to store programs and files.

This video screen asks you to enter the slot and drive number for the diskette to be for­
matted. You have the option of accepting the default values by typing the RETURN key for
the values presented, or you may enter your own values. A default value is the value used by
the computer program unless another value is provided by the program operator . The
defaults are slot 6 and drive 1.

The cursor will then put you in the middle of the screen, where you are to respond by
entering the name of the volume (diskette media) you want to format. Once again, you could
accept the default of / BLANKOO. For now, enter the following:

SCRATCH.DISK

after the slash mark. Notice that there is a slash mark (/) that precedes the default name for
the volume. All directory and volume names have the slash mark(/) before the title. This slash

INTRODUC ING PRODOS I II

Figure 1.6. Format data entry screen.

mark (/) acts as the delimiter or separator between names that form the pathname. A
pathname is a series of file names, preceded and separated by slashes, that indicates the entire
path from the volume directory to the file. Delimiters are used for both command structures
and pathnames in ProDOS. A great deal more will be said about paths, pathnames, and com­
mand structures in other areas of this book.

Next, notice that a period is entered between the words SCRATCH and DISK. Pro DOS
does not allow you to enter a blank character as the separator between words. Further, you
are allowed to enter only 15 characters for any volume, directory, or file name. This is impor­
tant to remember because DOS 3.3 allows blanks, special characters, and 30 characters per
file name. There are other rules to be followed, but these will be discussed later as they are
needed.

By the way, if you make a mistake anywhere along the line, you may retreat by typing the
ESCAPE key. So, you may recover easily from any errors.
Note: Remove the boot diskette NOW!

After entering the volume name, type the RETURN key. When you type that key, your
system will format the blank diskette in the disk drive selected. When the formatting is com-

12 I INTRODUCTION

plete, format two more blank diskettes with the names / PRO DOS and / EXAMPLES. Then
you should return to the FILER main menu screen by using the ESC key. Once you have the
main menu back you will want to select the F (FILES COMMANDS) selection option. The
main menu is shown again as Figure 1.7.

The F option allows you to work with individual files on a diskette rather than with the
diskette as a unit, which was enabled by the volume commands that you have just used. Figure
1.8 shows the secondary screen that you are presented. From the screen, select the C option.

At this point, make sure that you have the / SCRA TCH.DISK reinstalled in the boot
disk drive . The final screen that you will be presented is the copying files data entry screen.
This screen is shown in Figure 1.9.

Notice that this screen shows you the PREFIX currently active and stored in the Pro­
DOS image in memory . It just so happens it is probably the same as the diskette from which
the FILER program carne.

For this screen you will be entering three different sets of data that transfer the three dif­
ferent program files. The three program files to be transferred are:

/ PRODOS/ PRODOS
/ PRODOS/ BASIC.SYSTEM
/ PRODOS/ ST ARTUP

to
to
to

/ SCRATCH .DISK/ PRO DOS
/ SCRATCH.DISK/ BASIC.SYSTEM
/ SCRATCH.DISK/ ST ARTUP

ttttittttttttttttttttttttttttttttttt t *t;
t :
l H F' F' L E I ~=; p F.: 0 [I 0 ~=; ~=; \' ~=; T E t·l 1_1 T I L l T I E :::
, .. i FILE F: UERS ION 1 .0 . 1
~ -
·~• CCF'','F.:I GHT APPLE COt·lF'UTER, 19:::~;-::: 4

lttt~ttttttttttttttttttttttttttttttttttl
.- TUTOR

F - FILE COMMANDS

u - l..IOLUI'lE COt·lt·lA tlD ::;

D - CONFIGURATION DEF AULTS

0 - OU IT

PLERSE SELECT AN OPTION:

Figure 1. 7. FILER main screen.

MAKE A PROOOS COPY I 13

** 1 FILE COMMANDS 1
t t
**

7 TUTOR
L - LIST PRODOS DIRECTORY

C - COPY FILES
0 - DELETE FILES
K - COMPARE FILES
A - ALTER WRITE-PROTECTION

R - RENAME FILES
M - MAKE DIRECTORY
P - SET PREFIX

SELECT AN OPTION OR <ESC>=

Figure 1.8. File commands screen.

If you are using two disk drives connected to slot 6, then it is recommended that you
place the / PRO DOS disk in drive 1 and your new SCRATCH .DISK in drive 2. Each time you
enter a new set of program names to be transferred, your system will do all of the work.

If you are using one disk drive, the screen will prompt you when it is necessary to ex­
change diskettes in the disk drive.

1.2. MAKE A PRODOS COPY

One of the first things that you should do is to make a copy of the diskettes that came with
your ProDOS system. You will want to preserve your original diskettes and use your copy, or
backup. If anything adverse should happen, as it has a tendency to do when you are learning a
new system, it is better to have it happen to your backup and not to the original. There is a
rule, one of Murphy's, I believe, that applies: "If it can happen, it will happen to me." It
always does.

Throughout this book and those provided by Apple Computer, Inc., you will be asked
to do a number of things with both of the copies you are about to make and also with the new

14 I INTRODUCTION

Figure 1.9. Copy files data entry screen.

diskette that you created in Section 1.1.3. There are two disks supplied by Apple Computer,
Inc. with ProDOS. These are:

-The /PRO DOS disk
-The / EXAMPLES disk

These disks are write-protected. This means that you are unable to write any data or informa­
tion onto the diskettes. Since some of the programs on these diskettes require that you write
information onto the diskettes, let's make copies of these diskettes onto diskettes that are not
write-protected.

In the last section you formatted and created a diskette called / SCRATCH.DISK. In
order to do that, you used the FILER program. In this section you will use that same program
again.

So, first get your system powered up and then execute the FILER program. This may be
done using

MAKE A PRODOS COPY I 15

]-FILER

The main menu screen should look like Figure 1.10.
From the main menu screen select the V (VOLUME COMMANDS) option. This is done

by pressing the V command without using the RETURN key. The secondary screen, shown in
Figure 1.11, will again ask you to make another selection. This time select the C (COPY A
VOLUME) option.

The third screen, selected by pressing the C key, is the data entry screen. You will use
this screen to make copies of both of the original diskettes that came with your system. This
screen is shown in Figure 1.12.

When you are finished, you have made copies of all the diskettes that came with your
ProDOS system and created the SCRATCH.DISK for your own programs. It is recom­
mended that you label each of these, identifying them with the current date, the fact that they
are ProDOS diskettes, and the name of their volume, such as / PRODOS or
/ SCRATCH.DISK.

Since you probably have a number of DOS 3.3 diskettes, you should start a new filing
system just for the ProDOS diskettes. Isn't that wonderful! Now, you have two sets of
diskette filing containers .

Figure 1.10. FILER main screen.

L

16 I INTRODUCTION

I II llf jj i.lJJJJjlJJJJJJll l JJll\1\ \ ll; 1: l;

1.10L Ut·lE COt·l t·1A t1[1 ·=:.

:; ; ::: l; t :; * t j lllllllll l l ll t t I I;:::::::

TUTOF'

~ - FORMAT H ~OLUME

C - COPY A UOLUME

~ - L I ·:; T 1.1 0 L U t·l E ~:;

F:Et1HI·1E A 1.10LU1·1E

D- DET ECT 8RD BLOC~:

E: - E: L 0 C f A L L 0 C R T I 0 t 1

f - C 0 t·lF' R R E I I 0 L U 1·1 E ·:.

;ELECT AN OPTION OR ESC

Figure 1.11. Volume commands screen.

1.3. PRODOS COMMANDS DESCRIBED

In this section, you will be given the general form for the description of each command that is
described in this book. Normally, the general form of a command is known as the syntax re­
quired for the command. A command's syntax for ProDOS looks generally like this:

command [pn] [,S#] [,D#]

All of the command coding requirements shown throughout will be within boxes, as
above. The word " command" will be used to mean any of the legal Pro DOS commands
available to you to use while communicating with peripheral storage devices and the outside
world. The elements of the command's syntax that are in the square brackets-[pn], [,S#],
and [,D#]-are called the command's options. There are, of course, many other possible op­
tions available. Each will be shown and discussed in detail as it is needed. If the square
brackets are not present around a command option, that option is required to be used in the
command.

PRODOS COMMANDS DESCRIBED I 17

Figure 1.12. COPY A VOLUME display screen.

Notice that the options may have a comma (,) preceding the option. The comma (,) is
used as the delimiter between command options like the slash mark (/) delimiter is used in
pathnames. The comma is required.

The next required entry after the comma is the command option being entered. These
command options must be entered as capitalized alphabetic characters.

The options shown for the command general form are known as the pathname, slot
number, and drive number, respectively. When they are all taken together, the options form
the name and storage location of the file that is to be accessed. Any file may be accessed on
any diskette by specifying only the pathname option, only the slot-drive options, or both the
pathname and the slot-drive options.

A detailed discussion of pathnames is in Section 2.2.3. The specifying of the slot-drive
options is still provided for the purpose of maintaining compatibility with DOS 3.3. Further,
the slot-drive option capability allows for additional command control.

An example is given here to give you a feel for how to use the general form of a ProD OS
command. Power up your system using the procedure outlined in the next section with the
/PRO DOS backup diskette in drive 1. When you have the prompt character and the cursor on
the video screen, execute the command:

]CAT / PRODOS,S6,Dl

18 I INTRODUCTION

This command tells the operating system to display the flies contained on the /PRO DOS
diskette located in slot 6, drive 1. Pay close attention to the typed form of this command. The
CAT command, new in Pro DOS, is discussed in Section 3 .1. I have not used any blank spaces
within the command. Blank spaces are allowed; Pro DOS is forgiving in the case of blanks ex­
cept for commands and pathnames.

Notice that the square brackets are not used in the writing of a command. The use of the
square brackets is strictly for the purpose of separating options within a command.

The characters within the square brackets perform specific functions in each of the op­
tions when entered.

These are:

-The comma (,) separates that option from its predecessor.
-The capital letter identifies the option.

These are:
S- slot
D- drive
F- field
E- end address

A- address
B- byte
T- type ftle

R- record
P- position
L-length

$- hexadecimal
@-at line

-The characters or numbers following the capital letter represent the value assigned that op­
tion.

-The pound sign character (#) signifies the requirement to enter an integer numeric value.
-The dollar sign character ($) signifies the requirement to enter a hexadecimal address or

number.

Even though provision is made for the use and entry of hexadecimal numbers, decimal
equivalents may be used. Therefore, you are not required to use hexadecimal notation.
However, when using hexadecimal notation, use the dollar sign in front of the hex~decimal
number. For example, 255 in decimal notation is $FF in hexadecimal notation. See Appendix
J for a decimal-hexadecimal conversion table.

1.4. STARTING PRODOS

If your computer system is already turned on, turn it off completely. Wait for at least 30
seconds before you restart your system. This is to let any and all stray currents and
capacitances bleed off the system. Besides, it is hard on the power supply to reactivate power
immediately after a shutdown. In order to start up your system with ProDOS active, you
should use the following procedure:

1. Turn on your TV or monitor.
2. Turn on your ProFileT.M. hard disk. (See Appendix F.5, if applicable.)

STARTING PRODOS I 19

3. Wait for a steady READY light on ProFile. (See Appendix F.5, if applicable.)
4. Place the ProDOS diskette into disk drive 1.
5. Reach around to the left rear of your computer and turn it on.
6. The video screen will show you something like Figure 1.14.

Figure 1.13. Startup procedure.

The next two sections will describe various ways of starting up (powering up) your
system.

1.4.1. From a cold start

Turning on your Apple computer causes the system to attempt to read information from disk
drive I installed in a numbered slot (usually slot 6). When the screen of Figure 1.14 is dis­
played, you know that the PRO DOS program is now resident in memory and has been exe­
cuted. Any diskette that contains the PRODOS program will display the screen in Figure 1.14
when ProDOS is activated.

APPLE] [

PRODOS 1.0 1-0CT-1983

COPYRIGHT APPLE COMPUTER, INC., 1983

Figure 1.14. ProDOS title screen.

The screen will clear in a few seconds, and the Applesoft II BASIC prompt character
will be placed in the upper left hand corner of the video screen. A few seconds later your
screen will again fill, giving you a summary of your system's configuration and the peripheral
cards installed in the expansion slots. You are seeing the results of running the STARTUP
program. See Figure 1.15.

This second startup screen contains a lot of information. First of all, you are told that
you are using version 1.0 of the ProDOS operating system. If you have any problems with
your ProDOS, it is a good idea to remember the version number of your operating system.

The volume name of the diskette is /PRO DOS. Further, you are told that you are using
the Apple lie with 128K of memory and Applesoft II BASIC in ROM.

The last set of information you are given is a list of the peripheral circuit boards and
their slot assignments. Please remember that your particular second screen may be different
because your system may be configured differently. Also remember Pro DOS requires that
you have at least 64K of memory in your machine. This was outlined in Section 1.1.1.

20 I INTRODUCTION

ttttttttttttttttttttttttttttttttttttttx
J - P F. - -F. . t1 t I l ·~• F'F.:ODO::: E:A::: I c .:ut, .:R · 1 HG D:At·1PLE::: l
f - - l t COF''/F.: I GH T AF'PLE cut·1PUTEF.:, HlC . 19::.:3 l
* t *************************************** STARTUP DISK= / EXAMPLES/

YOUR Apple //e HAS=

]

128K OF RANDOM ACCESS MEMOF.:Y

APPLESOF T IN ROM

L
L
L
L
L
L
L

PARALLEL CARD
Et·1PT\'
:::O-COLUt·1H CARD
CLOCK
PF.:OFILE
[I I ::: K OR I I.JE
Et·1PT\'

Figure 1.15. System configuration screen.

You now have ProDOS and an Applesoft II BASIC program, called STARTUP, that
was stored on the boot diskette, memory resident. Additionally, you have 23 new Pro DOS
commands that can be used within an Applesoft II BASIC program. These commands look a
lot like the Applesoft II BASIC commands and instructions, but they act totally differently.
Further, they do not necessarily follow the same rules of construction or execution .

1.4.2. From other ways

If for some reason you find yourself in the monitor program (signified by the • prompt
character), you could try the command:

*6 (CTRL-P)

This means type a 6 on the upper row of the keyboard . Follow that by typing the CTRL
and the P simultaneously. Then release both keys at the same time. This should give you a
restart of the computer without having to turn it o ff.

If the disk controller card is in a slot other than 6, use that slot number instead of 6.

Another way to restart your system is to issue:

THE HELP COMMAND I 21

]PR# 6

from the immediate mode. This will cause your system to restart almost as if it were a cold
startup.

If you are using an Apple lie, you have an additional way to restart your machine. You
may press the OPEN APPLE, CTRL, and RESET keys simultaneously and then release them
simultaneously.

The only item of information that is necessary to remember is that any program or data
in memory will be lost. So please be careful.

1.5. THE HELP COMMAND

One of the more interesting and helpful capabilities of Pro DOS is the HELP command. Has
there ever been a time when you couldn't quite remember exactly how a particular command
needed to be written? I'd hate to tell you how many times that has happened to me. Now there
is help for us: a new command in Pro DOS called HELP.

In order to use this command while using ProDOS you can type the following from the
immediate mode:

]- /EXAMPLES/HELP

with the /EXAMPLES diskette in one of your disk drives. On your diskettes, the HELP
capability may be on another diskette. What this does is to activate the HELP and
HELPSCREENS files. Once you have activated the HELP capability, it will remain in
memory until you turn off your computer system or use some other system program, such as
FILER or CONVERT.

Once the HELP capability has been activated, you may get help with the writing of all
ProDOS commands. The syntax for this is:

I]HELP command

where the word "command" represents one of the ProDOS commands. If, however, you just
type:

]HELP

you will be shown a video screen like the one in Figure 1.16.
The column on the left of the screen lists command uses by groupings. The column on

the right lists those words that may be entered in place of the word "command" when invok­
ing the HELP capability.

In order for the HELP and HELP SCREENS to work, both of them must be on the same
diskette installed in a disk drive. You can move these files from their original diskette to your

22 I INTRODUCTION

Figure 1.16. HELP selection screen.

SCRATCH.DISK using the FILER program the same way you previously moved other pro­
grams. Refer to Sections 1.1.3 and 1.1.4 in this chapter or to Chapter 8.

If you have invoked the HELP capability and later in the session you do not need it
anymore, then type:

]NO HELP

to remove the HELP program. Notice that the NOHELP command has no options. Once
HELP has been deactivated using the NOHELP command, the HELP command will no
longer work and cannot be reinvoked without rebooting the system.

1.6. PRODOS AND DOS

There are probably more programs written for the Apple computers than for any other
machine in the marketplace today. If your library of programs is like mine, it would be a real

SUMMARY I 23

shame not to be able to move some programs into the new Pro DOS environment. In this sec­
tion the differences between Pro DOS and DOS 3.3 will be explained.

When you start up your system with a ProDOS diskette in Disk II, the /PRO DOS pro­
gram is placed into memory and executed. This allows you to read from and write to all dis­
kettes installed in all disk drives made for Apple computers. In comparison, when you start up
your system with a DOS 3.3 diskette in Disk II, the DOS 3.3 program is placed into memory
and executed. This allows you to read from and write to all diskettes installed in Disk II drives
only.

The information that ProDOS stores on a diskette cannot be read by DOS 3.3, just as
the information the DOS 3.3 stores on a diskette cannot be read by Pro DOS. Fortunately, the
program (CONVERT) on the /EXAMPLES diskette will perform the conversion from one
format to the other. This is similar to the function of the MUFFIN program on the DOS 3.3
SYSTEM MASTER diskette.

What all of this means is that your existing DOS 3.3 programs are not able to use a
diskette other than a Disk II format until you convert them from the DOS 3.3 format to the
ProDOS format.

As a general rule of thumb, the programs you write can be converted to ProDOS. The
programs you purchase from commercial software developers will not necessarily convert to
Pro DOS. If, however, a program uses only standard Applesoft II BASIC instructions and
DOS 3.3 commands, that program is a good candidate for conversion.

If programs have tricky PEEKS and POKES or use any machine-language routines,
they may not work correctly even after conversion. If DOS 3.3 file names have blanks, special
characters, or are over 15 characters long, your programs also may not work. Even with all of
these "ifs," it is worth doing the conversion. Converting programs from DOS 3.3 to Pro DOS
is explained in Chapter 8.

SUMMARY

This chapter has given you a first look into Pro DOS and how to perform some very basic file
manipulations, including making copies and making your own SCRATCH.DISK.

A number of terminology conventions were introduced in this chapter. This was done to
provide a common means of communications.

The first item was the introduction to your computer system from a logical point of
view, which is somewhat different than the normal hardware look at a computer. The rela­
tionship between the various layers of active software and the functions performed at each
level were discussed.

You were given the hardware requirements for installing and using ProDOS on your
particular system. Each version of Apple II computers was shown.

The diskette contents that came with the new ProDOS were discussed briefly and
shown.

You were shown how to make copies of your original ProDOS diskettes and how to
create a working diskette called SCRATCH.DISK of your own using the FILER program.

24 I INTRODUCTION

The general form of all of the Pro DOS commands was explained so that you will be able
to understand how to read and write the Pro DOS commands. Many of the options for com­
mands were shown along with the first detailed look at ProDOS commands.

You were also given various ways of powering up or restarting your system and having
ProDOS installed as the operating system.

A number of differences between ProDOS and DOS 3.3 were discussed as applicable.
This gives you a way to make the transition easily.

Finally, the HELP and NO HELP capability were discussed. These are very handy
added capabilities that should be very valuable to you as you develop programs requiring Pro­
DOS commands.

The commands introduced in this chapter were:

HELP

NO HELP

QUESTIONS

e.g.,

e.g.,

HELP
HELP PREFIX
NO HELP

Immediate mode only

Immediate mode only

1. Describe how you may power up or restart your particular system. Describe other methods
available.

2. Describe the layers of operating software and their relationships to each other when you
use your computer system.

3. Describe in detail what is needed to install and run ProDOS.
4. Describe how to prepare a diskette to receive files.
S. Describe how to copy files and volumes.
6. Describe the syntactic form for all Pro DOS commands. Describe how the options operate.
7. Describe how to use the HELP file. What can this file do for you?
8. Describe the differences between the INIT command in DOS 3.3 and the formatting of a

volume using the FILER program.
9. What are the results of not having an operating system resident on a formatted diskette?

2. PRODOS FILES
AND COMMANDS

2.0. OVERVIEW

If you command wisely,

you 'II be obeyed cheerfully.

Thomas Fuller, 1732

The relations among terms such as volume, pathname, filename, and files will be discussed in
this chapter. How Pro DOS arranges files on the diskette, how files are named, and what ter­
minology is required to refer to files are explained.

The term file will refer to any file stored on a diskette, regardless of its type. A file may
be an Applesoft II BASIC program file, a binary file, a random access file, or any other
named file, stored on a diskette.

The relationship between directories and file names will be shown. How ProDOS works
is the subject of Section 2.1. This section explains what is required and how to arrange there­
quired programs on a diskette.

The minimal composition of a startup diskette and the programs involved are explained.
Each of the programs required by a startup diskette, and its functions, is discussed.

The logical arrangements of volumes, directories, and files are shown and explained.
The rules for directories and volumes are shown and compared to those for DOS 3.3. This
provides for any easy transition to ProDOS.

2S

26 I PRODOS FILES AND COMMANDS

The requirements for naming files are explained in detail alongside a comparison to
DOS 3.3 file naming. Legal and illegal file names are given. The creation and uses of
pathnames and prefiXes are discussed in detail.

This chapter will introduce you to your first and probably most often used ProDOS
commands and show how they may be used in programs and from the immediate mode.

The commands introduced in this chapter are shown in the box below.

CAT e.g., CAT Immediate and deferred

CAT/PRODOS

CATALOG e.g., CATALOG Immediate and deferred

CATALOG

PREFIX e.g., PREFIX /PRODOS/STATES Immediate and deferred

RUN e.g., RUN /PRODOS/DUMMY Immediate and deferred

RUN

e.g., -DUMMY Immediate mode only

LOAD e.g., LOAD /PRODOS/VIEW Immediate and deferred

SAVE e.g., SAVE /MY.DISK/DEMO Immediate and deferred

2.1. HOW PRODOS WORKS

This section gives you an overview of ProDOS. ProDOS is an operating system that allows
you to manage many of the resources available to the Apple II computers. It functions
primarily as a disk-based set of programs that help you operate your system. However, it also

HOW PRODOS WORK I 21

will handle interrupts and perform some memory management. ProDOS also will mark files
with a date and time, if you have had a clock/calendar card installed.

All ProDOS startup diskettes will normally have certain files in common.
These are:

-PRO DOS
-BASIC. SYSTEM
-STARTUP

Some of these were mentioned in Chapter 1. In this section each of these will be dis­
cussed in more detail.

The PRO DOS file contains the ProDOS operating system program. This program per­
forms the communications required between other system programs, Applesoft II BASIC
programs, and computer hardware items.

The file BASIC.SYSTEM is a system program that will communicate between the
system user and the operating system. A ProDOS system program, such as the
BASIC.SYSTEM, FILER, or CONVERT programs supplied when you purchased ProDOS,
is an assembly-language program. Each program will accept commands from an operator,
check commands for validity, and finally take the appropriate action.

The STARTUP program is the first Applesoft II BASIC program that is executed im­
mediately after the operating system has finished booting and your system is ready to perform
useful work, such as Phasor Pilot-Maze. In DOS 3.3 you were allowed to define the boot pro­
gram to be executed. With SOS 1.1 for the Apple III, the boot program name is required to be
HELLO. With ProDOS the name STARTUP is required.

Memory in Apple II computers is divided into 256-byte segments. Each of these
segments is considered a page of memory. Pro DOS treats memory in your computer in the
same manner. For each 256-byte segment used, Pro DOS will represent that page by setting a
bit to 1 in the system bit map memory area.

When ProDOS is initialized, all memory used is marked used (set to 1) in the system bit
map. As ProDOS runs, it marks each new page used by setting the appropriate bit in the
system bit map. When a page is released, then that bit in the system bit map is reset, changed
to 0.

2.1.1. A startup diskette

ProDOS is able to support and communicate with many different types of disk drives. The
type of disk drive, whether full size, half-height, hard disk, or mini-floppy, and the particular
physical slot location of the disk drive need not be known by the system program. Instead, the
machine-language interface (MLI) has the capability to take care of the interfacing details.
The MLI is discussed in Chapter 9.

In Chapter 1 you created a startup diskette called SCRATCH.DISK. The diskettes in­
serted in the physical disk drives are known as volumes and are identified by names known as
volume names. Volumes and volume names are discussed in Section 2.2.

Today, almost every Apple II family computer system will have at least one disk drive.
That disk drive is known as the system's startup or boot drive. This drive will normally be con-

28 I PROOOS FILES AND COMMANDS

nected to the drive 1 connection on the disk controller card that is normally installed in slot 6.
For the discussion that follows, it will be assumed that:

1. The system startup drive is connected to slot 6, drive 1.
2. Your system has the AUTOSTART ROM chip installed.
3. Your system is configured to accept ProDOS as outlined in Chapter 1.

When you put a diskette, the boot or startup diskette, into the system startup drive
(,56,01) and power up your system, the AUTOSTART ROM chip program first executes.
This forces the system to boot up from the startup diskette by installing into memory and ex­
ecuting the Pro DOS operating system and by preparing your system to perform work.

The diskettes that cause your system to start up are known as startup diskettes. A
startup diskette must contain all of the information needed to bring a program from the
diskette into your system's memory and to commence executing the program. A ProDOS
startup diskette holds all of the information needed to bring the operating system into
memory and start it running.

Any ProDOS diskette can be made into a startup diskette by placing the correct files on
that diskette. You did that in Chapter 1 when you created the SCRATCH.DISK. Then, you
did it almost blindly, without explanation. In the next few paragraphs is some explanation. At
power up time, a copy of the Pro DOS program is automatically transferred from the diskette
into memory and executed.

A ProDOS startup diskette has the following characteristics:

-It was formatted using the ProDOS FILER program.
-It has the PRODOS program in its volume directory.
-It has the BASIC.SYSTEM program in its volume directory.
-It has an Applesoft II BASIC program called STARTUP in its volume directory.

2.1.2. The PRODOS program

The PRO DOS program is just what the name implies. It is a set of machine-language routines
that provide the interface to any disk drive manufactured by Apple Computer, Inc. for the
Apple II computers. PRODOS is an operating system program that allows you to manage
many of the resources available to the Apple II computers, plus handle interrupts and simple
memory management. In addition to all of the above, PRO DOS allows you to interface your
own particular routines and additions to ProDOS.

PRO DOS has a number of major modules. These are:

System program
· receives user commands

External device routines

Command Dispatcher

Machine Language Interface

Block File Manager
disk driver routine
clock/calendar routine

Interrupt Receiver /Dispatcher
interrupt handling routines

2.1.3. The BASIC.SYSTEM program

HOW PRODOS WORK I 29

This part of the Pro DOS operating system contains all of the operating system commands and
error routines that are supported by ProDOS. BASIC.SYSTEM allows the user and the
operating system to communicate.

In DOS 3.3 the entire operating system is contained in one program. In ProDOS the
operating system is divided into two parts. This arrangement allows you the ability to insert,
and, or modify your system's operation. PRODOS contains only the most essential parts of
the operating system. BASIC.SYSTEM allows you to communicate with disk drives from
within Applesoft II BASIC. You may want to install other or different system programs on a
diskette. System programs are recognizable in a CATALOG or CAT presentation by the SYS
abbreviation in the type column.

When you system boots up, the PRO DOS program is loaded into memory and then ex­
ecuted. Then the first system program stored on the diskette is loaded into memory and ex­
ecuted. Therefore, you need not have BASIC.SYSTEM as the next file to be executed. Any
file with a name XXXX.SYSTEM (where XXXX may be any combination of letters and
numbers that forms a valid name) may be loaded into memory and executed. More will be said
about this capability later and in Appendix J.

2.1.4. The STARTUP program

This program is an Applesoft II BASIC program that is run by BASIC.SYSTEM when
booting is finished. This program is comparable to the HELLO program of DOS 3.3 or SOS
1.1.

The Apple III operating system (SOS 1.1) requires that this program be called HELLO
and be written in Apple's Business BASIC. The Apple II computers operating in DOS 3.3
allow you to name this program anything you desire, provided it is memory resident when that
diskette is initialized. It may be written in either of the two BASIC languages. ProDOS re­
quires that this program be written in Applesoft II BASIC and be called STARTUP.

If BASIC.SYSTEM does not find an Applesoft II BASIC program named STARTUP,
the following message is then displayed:

PRODOS 1.0 ©1983 APPLE COMPUTER

and you are left in the immediate mode with the Applesoft II BASIC prompt character and
cursor. This means that the booting process is complete and it is up to you to command your
system for the next evolution.

30 I INTRODUCTION

2.2. VOLUMES AND FILES

A file is the basic informational storage unit. Any file may contain any set of information
such as names, numbers, letters, pictures, Applesoft II BASIC programs, lists, machine­
language programs, or graphs.

A file may be defined as a collection of related information stored on some medium
under a shared name. When a file is stored on a Pro DOS diskette, it is assigned a name and a
file type. After a file is stored, access to the information stored in that file is gained through
the use of that file's name. The file's type determines the kind and character of the informa­
tion stored in the file.

When you assign a name to a file, there are a few rules that you must follow. In the
following paragraphs, the Pro DOS file name conventions will be given, followed immediately
with the DOS 3.3 conventions. In this way you will be able to make comparisons and quickly
understand the differences.

A ProDOS file name:

-is composed of up to 15 characters.
-must have a capital letter of the alphabet the first character.
-may contain any alphabetic characters (A-Z and a-z).
-may contain any numeric digit (0-9)
-may contain the period character (.).
-automatically converts lowercase characters to uppercase.
-must be unique. This means that no two names are to be exactly the same in one directory.

Files of the same name must be in different directories or on different diskettes.
A DOS 3.3 file name:

-is composed of up to 30 characters.
-must have a capital letter of the alphabet as the first character.
-allows all typable characters except a comma(,).
-must be unique. Files of the same name must be on different diskettes.

Figure 2.1 shows a number of legal and illegal Pro DOS file names with comments con­
cerning the illegal file names.

Legal file names

TWO.NAMED.FILES
D2
A.123.FILE
FUNNY.FACE
DISESTABLISH

Illegal file names

2.NAMED.FILES
.02
A 123 FILE
FACE,FUNNY
DISESTABLISHMENT

Comments

Begins with a number
Begins with a period
Contains spaces
Contains a comma
More than 15 characters

DUMMY.DATA
Funny.file

DUMMY/DATA
funny.file

VOLUMES AND FILES I 31

Contains a slash character
First character not capital

Figure 2.1. ProDOS file names.

There are files of many types, such as program files, text files, binary files, and the most
important new type known as the directory file. The directory file is dicussed next.

2.2.1. The directory

A directory file is like any other file except that it contains only the names, locations, and
types of the files in that directory. Figure 2.2 shows two different directories.

This figure shows that the volume directory presently contains four files. These are two
additional directories or subdirectories and two other files. The additional subdirectories each
contain a number of other files. The diagram also shows that additional files and directories
may be added, up to the capacity of the diskette. In fact, Pro DOS is able to support a file or
file structure of up to 32 megabytes, not on one diskette, however.

Figure 2.2. Directory file examples.

32 I PRODOS FILES AND COMMANDS

Notice that the directories may contain any number of flles of any type. In fact, one or
more of the files in a directory may be another directory, known as a subdirectory. Pro DOS
allows you to have up to and including 64 levels of directories on any one diskette or other
storage medium. You will find that trying to handle effectively more than four or five levels of
directories is difficult. It becomes somewhat lengthy to program, to remember, and to type
correctly.

In Chapter 1, you formatted a diskette. By the way, a formatted diskette does not con­
tain the operating system. The FILER program was used to place a special directory on the
newly formatted diskette. It is called the volume directory and has the name you assigned,
known as the volume name. This is the main directory for the entire diskette. The volume
directory characteristics are shown in Figure 2.2.

A ProDOS volume directory:

-is on every ProDOS formatted diskette.
-is named when you format a diskette.
-identifies the entire contents of that diskette.
-is the diskette's name.
-may contain up to 51 files.
-may not be created using the CREATE command or the FILER command, Make Direc-

tory.
-cannot be removed using the DELETE command.
-cannot be protected using the LOCK command.
-may only be removed by reformatting the diskette.

If you want to see the contents of an entire diskette, it is only necessary to use the volume
directory name coupled with the CAT or CATALOG command. These two commands are
discussed next.

Place the backup copy of the /PRODOS diskette in drive 1 and power up your system
using the procedure outlined in Section 1.4. Then try the following commands using your
backup copy of the /PRO DOS diskette:

]CAT /PRODOS

This command will give you the contents of the /PRO DOS diskette. In the 40-column format,
your screen will look similar to that shown in Figure 2.3a.

Now, if you have an SO-column board in slot 3 or an Apple lie, try the following after in­
voking the SO-column format. The SO-column format may be invoked by typing:

]PR#3

Now, you use the other cataloging command:

]CATALOG /PRODOS

Figure 2.3a. CAT files on / PRODOS.

F'''ODOS

1 FF.'O[IO::;
IE: A::; I C . ·:. 'r' ::; T E 1·1
ICOt!iJEF'T
IFILEF:
I::; T AF:TUF'
I EDA·:. i·1 ::; '1'::; TEI·l
I EDA·::n. ED
I E ['A::: fo1 ?r:; 1·1
IF:E:OO T
lF'LOAD
IE::EFC :: EF'
IE:UGE:'/ EF'
I F 0 Ffo! A T E F'
I AF'A
IE:'/E
IAE:LE

E:L OC f ·:. F ~·EE

]

TYPE BLOCKS MODIFIED

SYS 31 1-JAN-84
SYS 21 15- NOI.J- :::?;
SYS 42 1-NOU-83
SYS 51 1-JAN-84
BAS 7 16-NOU-83
SYS 9 14-0EC-83
BIN 17 14-0EC-83
BIN 29 14-0EC-83
BIN 1 14-0EC-83
BIN 7 14-0EC-83
SYS 1~ 17-0CT-83
BIN 16 15-0EC-83
TXT 7 ?A-OEf-8~
BIN 1~ Ii-N00-§j
BAS 1 16-NOU-83
BIN 4 21-NOU-83

12 BLOCKS USED· 268

Figure 2.3b. CATALOG files on / PRODOS.

33

34 I PRODOS FILES AND COMMANDS

In this case, notice that the video screen contains more information. This is shown in
Figure 2.3b.

There is a detailed discussion of the meaning of each of the columns and the specific dif­
ferences between the CAT and CATALOG commands in Section 3.1. For now, just realize
that there are differences in the commands and different information is presented to the video
screen depending upon which command is used.

Notice that some of the files are directories. These contain the names and addresses of
other files on the diskette. This can be immediately recognized by the DIR abbreviation in the
TYPE column to the right of the file name presented on the video screen.

The program that follows reads a directory and displays the contents of that directory
on your video screen in either a 40-column or an SO-column format. It assumes that your
SO-column text card is installed in slot 3 and may be activated in the normal way.

]NEW

]LIST

1 REM ***** READ.DIRECTORY *****
2 REM *
3 REM * WRITTEN BY:JL CAMPBELL
4 REM* DATED:10/10/1983
5 REM *
6 REM * COMPUTER:APPLE II+ & IIE
7 REM * LANGUAGE:APPLESOFT II
8 REM *
9 REM **************************
10 TEXT : CLEAR : ROME : POKE 216,0:0$ CRR$ (4)
15 PRINT D$;"FRE"
20 PRINT CHR$ (27); CHR$ (17);: REM FORCE 40-COLS
25 FOR I= 1 TO 39: PRINT"*";: NEXT I: PRINT
30 PRINT "* 11

;: HTAB 39: PRINT "* 11

35 PRINT"*";: HTAB 14: PRINT "READ CATALOG 11
;: HTAB 39: PRINT 11 *"

40 PRINT"*";: HTAB 39: PRINT"*"
45 FOR I= 1 TO 39: PRINT 11 * 11

;: NEXT I: PRINT
50 VTAB 7: CALL - 958: INPUT "DIRECTORY NAME = ";PR$
52 IF LEFT$ (PR$,1) ="/"THEN 56
54 PR$ = "/" + PR$
56 IF RIGHT$ (PR$,1) < >"/"THEN 60
58 PR$ = LEFT$ (PR$, LEN {PR$) - 1)
60 VTAB 9: CALL - 958: INPUT "CHOOSE: 1=40-COLS 2=80-COLS ";N
65 IF N = 1 OR N = 2 THEN 80
70 VTAB 22: RTAB 13: INVERSE : PRINT "ILLEGAL ENTRYI 11

;

CHR$ (7): NORMAL
75 FOR I = 1 TO 1000: NEXT I: GOTO 60
80 IF N = 1 THEN W = 39
85 IF N = 2 THEN W = 79: PRINT D$;"PR/I3": REM ACTIVATE 80-COLS
90 HOME
100 PRINT D$; 11 0PEN ";PR$; 11 ,TDIR"
120 PRINT D$;"READ 11 ;PR$

VOLUMES AND FILES I 35

130 INPUT N$: PRINT LEFT$ (N$,W): REM READ NAME
140 INPUT T$: PRINT LEFT$ (T$,W): REM READ TITLE
150 INPUT L$: PRINT L3$: REM READ BLANK LINE
160 INPUT NF$: PRINT LEFT$ (NF$,W): REM READ FILE NAMES
170 IF NF$ < >""THEN GOTO 160
180 INPUT B$: PRINT LEFT$ (B$,W): REM READ BLOCK COUNT
190 PRINT D$;"CLOSE ";PR$
200 END

A line-by-line explanation of the above program follows.

Line

Line 1-9
Line 10

Line 15
Line 20
Line 25
Line 30
Line 35
Line 40
Line 45
Line 50
Line 52
Line 54
Line 56
Line 58
Line 60

Line 65
Line 70
Line 75
Line 80
Line 85

Line 90

Description

Identify the program.
Set up a clean machine.
TEXT means to place your machine in the text mode and place the cursor at the

bottom of the screen.
CLEAR means to clear all variables and more importantly the processor stack.
HOME means to place the cursor at the top of the screen and clear the entire

screen.
POKE 216,0 means to turn off the disk operating system error flag.
D$ is assigned the disk operating system character.
Perform a quick ProDOS garbage collection.
Print those characters that sets your machine to a 40-column presentation.
Print a line of asterisks at the top of the screen.
Print asterisks at the left and right edge of the screen.
Print screen title.
Print asterisks at the left and right edge of the screen.
Print a line of asterisks on the screen.
Position cursor, clear the screen, and ask operator to enter the directory name.
Test the left of the pathname for a slash, "/".
If slash is not present then affix slash to the front of the name.
Test the right end of the directory name for a slash.
Take the right end slash off the name.
Position cursor to line 9.
Clear the screen.
Ask operator for the presentation required.
Test the response for a valid answer.
Error message if response is not correct.
General delay loop for error message presentation.
If 40-column presentation, then set the width, W, to 39.
If SO-column presentation, then set the width, W, to 79.
Then turn on the SO-column card in slot 3.
Clear the screen.

36 I PRODOS FILES AND COMMANDS

Line 100
Line 120
Line 130
Line 140
Line 150
Line 160
Line 170

Line 180
Line 190
Line200

Open the· directory file specified.
Read the file specified.
Input the name of the directory and print it on the screen.
Input the column titles that are to be presented.
Input the blank line.
Input the first file name in the directory specified.
Test for a null string.
If false, loop back and read another file name and data.
Input the blocks used and free count.
Close the specified file.
End the program.

Note: This program assumes you have an SO-column card installed in slot 3.
The next section talks about a pathname and how it is used.

2.2.2. The pathname

ProDOS must know how to find any ftle that you want to retrieve from a diskette. In order to
do this, you must define to ProDOS "the yellow brick road" to follow from the diskette's
volume directory to the storage location of the file you want. This road is called the
"pathname." The pathname concept is not supported in DOS 3.3.

The pathname defines to ProDOS how to proceed from the volume directory to the file
being retrieved. For example, I need to know the PROFIT information from the subdirectory
LEMONADE.ST AND in the volume directory MY. The pathname would then be:

/MY /LEMONADE.ST AND/PROFIT

Now that you know how a pathname looks, let me define how it is composed.
A ProDOS pathname:

-is a series of file names, preceded and separated by slashes.
-has a slash as the first character in the pathname.
-has a volume directory file name as its first entry.
-is less than 65 characters long, including slashes and all subdirectory names and file name.

These rules are shown diagrammatically in Figure 2.4.
Next, let us look at a typical set of files that might be stored on a diskette. The file

storage structure is shown diagrammatically in Figure 2.5.
From the diskette diagram in Figure 2.5 you can see how files are organized on a

diskette. The volume directory name is MY. This directory contains three files, BANK,
HOME, and CREDIT .CARDS. The ftles BANK and HOME are subdirectories. The BANK
subdirectory contains two files named NOTES and CASH. The NOTES file is another sub­
directory that contains the files DUE and PAID. The HOME subdirectory also contains two
files named STOCKS and BONDS. The pathnames to each of the files on the MY diskette are:

t 1 0~----•""""1 File name

Figure 2.4. ProDOS pathname structure.

/MY /BANK/NOTES/DUE
/MY/BANK/NOTES/PAID
/MY /BANK/CASH
/MY /HOME/STOCK
/MY /HOME/BONDS
/MY /CREDIT.CARDS

VOLUMES AND FILES I 31

Another view of the pathnames to the diskette contents are shown below. Notice that the
directories and subdirectories are shown with a slash character preceding the name, and no
slash character is shown for file names. The reason for this is because ProDOS allows you to
set a partial pathname known as the PREFIX. The PREFIX is discussed in Section 2.2.3.
With a properly assigned PREFIX, you need only refer to a file by its name.

/MY
/BANK

/NOTES
DUE

Figure 2.5. Typical disk file storage.

38 I PRODOS FILES AND COMMANDS

PAID
CASH

/HOME
STOCKS
BONDS

/CREDIT.CARDS

Now you know how to proceed from the volume directory to a file and how a pathname
is constructed. It would really be nice if there were a shorthand way to set or save a pathname
or partial pathname. Fortunately, there is a way to reduce your typing on the keyboard or
reduce the size of your coding requirements. It is called the PREFIX. The prefiX capability is
discussed in the next section.

2.2.3. The PREFIX

As you store new files on a diskette in different directories or subdirectories, the pathname re­
quired to reach those files could get rather long. As pathnames get longer, typing errors are
more prone to occur. Pro DOS provides you with a means of having to type a pathname or
partial pathname once. It is called PREFIX. The prefix capability is not supported by DOS
3.3.

By assigning the PREFIX variable name to the pathname or to a partial pathname, you
can refer to a particular file name without having to type in the entire pathname. A partial
pathname is actually only the pathname minus what has been assigned to the PREFIX.

The best way to understand the prefix concept is through the use of some simple ex­
amples. These are shown in Figure 2.6.

Pro DOS must find file

/DISKNAME/REALL Y /LEGAL
/DISKNAME/REALLY /LEGAL
/MY /BANK/NOTES/DUE
/MY /BANK/NOTES/DUE
/MY /BANK/NOTES/DUE
/MY /HOME/STOCK
/MY /HOME/STOCK
/MY /HOME/BONDS
/MY /CREDIT.CARDS

Current PREFIX is

/DISKNAME/
/DISKNAME/REALL Y I
/MY/
/MY/BANK/
/MY /BANK/NOTES/
/MY/
/MY/HOME/
/MY/HOME/
/MY/

Figure 2.6. Prefixes and pathnames.

You should type

REALLY /LEGAL
LEGAL
BANK/NOTES/DUE
NOTES/DUE
DUE
HOME/STOCK
STOCK
BONDS
CREDIT .CARDS

Notice that some of the examples in Figure 2.6 show the pathnames that were shown
diagrammatically in Figure 2.5. The third column entries of Figure 2.6 are partial pathnames.

VOLUMES AND FILES I 39

A full pathname is formed by concatenating the PREFIX with the partial pathname. If a
prefix does not match any portion of a pathname, then you should change the PREFIX name.

It is recommended that you thoroughly understand the pathname and partial pathname
concept because you will be using them all the time in your programming. The rules for form­
ing a partial pathname are shown below.

A ProDOS partial pathname is:

-a file name, or a series of file names separated by slashes.
-the pathname minus the current prefix.
-less than 65 characters long, including pathnames and slashes.

The PREFIX command is used to set the prefix name. This command is discussed in
detail in Section 3.2.

2.3. PRODOS AND PROGRAMS

This section describes those ProDOS commands you will need to make use of Applesoft II
BASIC programs stored on a diskette. You will find that there are some very interesting added
capabilities to these ProDOS commands as compared to DOS 3.3.

The next section introduces you to a new and very handy capability. It is the - (DASH)
command.

2.3.1. The - (DASH) command

The - (DASH) command is a new feature of ProDOS. This command allows you to bring
into memory and run an Applesoft II BASIC program, machine-language routine, an EXEC
file, or a system program. In simpler terms, the - (DASH) command allows you to run from
the disk any program regardless of which program type is supported by ProDOS. The­
(DASH) command is also known as an intelligent RUN command. This command is not sup­
ported in DOS 3.3.

To run a program using this capability you issue from the immediate mode the
command:

]- pn [,S#] [,D#]

Let's look at an example. Suppose that you want to run the FILER program on the
USERS.DISK that came with your ProDOS system. This was done in Chapter 1 when you
copied diskettes and created a diskette of your own. Place the EXAMPLES in one of your
disk drives and then type:

]- /EXAMPLES/FILER

40 I PRODOS FILES AND COMMANDS

This command, when executed, will bring the FILER program into memory and then
start execution of the program. The- (DASH) command may be used with any type of pro­
gram file. The file types are described in Chapter 3.

There is only one caution for using the- (DASH) command with a system program. As
the system program is brought into memory, everything else in memory is erased or destroyed.
If you are writing an Applesoft II BASIC program, please, make sure that the latest version
has been saved before running any system program.

Option

pn

[,S#]
[,D#]

Description

pn is the pathname or partial pathname of the file containing the program you want
to run. The file type must be BAS, BIN, TXT, or SYS. Binary files are loaded at
the address from which they were saved.

The slot option defines the disk drive slot location.
The drive option defines the disk drive location in a slot.

Examples of the - (DASH) command

-FILER
-/USERS.DISK/FILER
-EXAMPLES
-CONVERT

2.3.2. The RUN command

The RUN command is used for the purpose of loading and executing an Applesoft II BASIC
program stored on a diskette. You may use either of the two commands that are shown below:

]RUN pn [,@#] [,S#] [,D#]

]- pn [,S#] [,D#]

The RUN command is described in this section. The- (DASH) command was dis­
cussed in the previous section. The RUN command acts the same as in DOS 3.3, except for the
new @# option. This newly added option will be discussed in this and other sections of this
book.

When you use the RUN command without the @# option, ProDOS will find the pro­
gram file indicated by the pathname, LOAD the file into memory, and commence execution
of the program file from the beginning of the file.

For example, to run the program MATH.DEMO located on your /SCRATCH.DISK
diskette, use the command:

VOLUMES AND FILES I 41

]RUN /SCRATCH.DISK/MATH.DEMO

When the program is finished, you may restart it by using the command:

]RUN

without any options.
You may do this because the RUN command without the file name option present is ac­

tually an Applesoft II BASIC command instruction. Therefore, ProDOS will relinquish con­
trol of your system in favor of the Applesoft II BASIC language interpreter for further proc­
essing. You see, the RUN command without the file name option is not a valid ProDOS
command.

Option

pn

[,@#]

[,S#]
[,D#]

Description

·pn is the pathname or partial pathname of the file containing the program you
want to run. The file must be an Applesoft II BASIC program.

By using this option, an Applesoft II BASIC program will commence exe­
cution at the line number specified by the #. If this option is omitted, pro­
gram execution begins at the lowest numbered line in the program.

The slot option has its normal meaning.
The drive option has its normal meaning.

Let's create a very simple program to illustrate the RUN command. Power up your
system with the SCRATCH.DISK in the boot drive. Now enter the following program.

]NEW

]LIST

100 PRINT "LINE 100 EXECUTED"
200 PRINT "LINE 200 EXECUTED"
300 END

Now that you have entered this program, save it on your diskette using:

]SAVE /SCRATCH.DISK/EXAMPLE

Let's now RUN the program. You should see the following.

LINE 100 EXECUTED
LINE 200 EXECUTED

Clear the current program from memory by typing:

42 I PRODOS FILES AND COMMANDS

]NEW

The next thing to do is to run the EXAMPLE program from the diskette starting at line
200. This is done by typing:

]RUN EXAMPLE,@200

You should see:

LINE 200 EXECUTED

printed on the screen.
If you LIST the program, you see that the entire program is in memory.

Examples of the RUN and RUN @# commands

RUN * Applesoft II BASIC command
RUN EXAMPLE
RUN EXAMPLE,@lOO
RUN EXAMPLE,@200,S6,Dl

2.3.3. The LOAD command

If you want to move a copy of an Applesoft II BASIC program from its diskette storage loca­
tion to the memory of your system, use the LOAD command. This command works exactly as
it does in DOS 3.3. The syntax of this command is:

]LOAD pn [,S#] [,D#]

This command is used when you want to examine, modify, or list a program. When you
load a program or file into memory, you are actually loading a copy of that program or file
into memory. The diskette still contains that program or flle unchanged. There is only one
caution for loading a program: any previous program in memory is lost. So, be careful.

Once a program is loaded into memory, you may run it by typing RUN. What this
means is that a program in memory is not identified by a name.

Option

pn

[,S#]
[,D#]

Description

pn is the pathname or partial pathname of the file containing the Applesoft II
BASIC program you want to load into memory.

The slot option has its normal meaning.
The drive option has its normal meaning.

Examples of the LOAD command

LOAD EXAMPLE
LOAD EXAMPLE,S6,Dl
LOAD /SCRATCH.DISK/EXAMPLE
LOAD /SCRATCH .DISK/EXAMPLE,S6,D 1

2.3.4. The SAVE command

SUMMARY I 43

The SAVE command is for the purpose of transferring the program currently in memory to a
program file on a diskette. This command works exactly the same as in DOS 3. 3. The syntax
for this command is:

]SAVE pn [,S#] [,D#]

When the file is stored on the diskette, it is saved as an Applesoft II BASIC program
(BAS). If this ftle never existed, ProDOS will create the file.

When you save a program file using a program name that already exists on a diskette,
that file must be unlocked and be of the same type. This means that you cannot save a text
type ftle of the name DUMMY, for example, to an Applesoft II BASIC program file of the
same name.

Every file on a diskette must have a unique file name in addition to having the correct
data type match for that file name.

Option

pn

[,S#]
[,D#]

Description

pn is the pathname or partial pathname of the program file you want to save. If the
pn program file already exists, that program must be unlocked.

The slot option has its normal meaning.
The drive option has its normal meaning.

Examples of the SAVE command

SAVE EXAMPLE
SAVE EXAMPLE,S6,D 1
SAVE /SCRATCH.DISK/EXAMPLE
SAVE /SCRATCH.DISK/EXAMPLE,S6,D1

SUMMARY

The concepts of a volume and its contents, the files and other directories, were discussed. This
chapter also showed the relations among a volume, a directory, a subdirectory, and file.

44 I PRODOS FILES AND COMMANDS

ProDOS and how it works were described in some detail. You were shown how ProDOS
manages the resources available.

The requirements for creating a Pro DOS startup diskette were discussed. Each of there­
quired programs and their purposes were explained.

The rules for creating file names were outlined and defined. A comparison was made to
the rules for creating DOS 3.3 file names.

The pathnames for files and how to use pathnames and partial pathnames were dis­
cussed and examples, both legal and illegal, were given. The PREFIX capability and how it
relates to pathnames was discussed.

The following figure summarizes the pathname, slot, and drive option combinations
available in ProDOS.

[pn]

ppn
ppn
ppn
ppn
pn
pn

Notes:

[,S#]

+
+

+

+ = option used
= option not used

pn = pathname
ppn = partial pathname
vn = volume name of diskette

[,D#]

+

+

+

Pathname desired

See command description
pn = prefix + ppn*
pn = vn + ppn
pn = vn + ppn••
pn = vn + ppn•••
pn = pn
pn = pn

• = If the prefiX is empty, the last value of slot and drive is used.
•• = When only slot is given, drive 1 is assumed
••• = When only drive is given, the last slot value used is assumed.

Figure 2. 7. Pathname slot-drive summary.

In this chapter you were introduced to the following ProDOS commands:

CAT

CATALOG

PREFIX

e.g., CAT
CAT/PRODOS

e.g., CATALOG
CATALOG/PRODOS

e.g., PREFIX/PRODOS/STATES

Immediate and deferred

Immediate and deferred

Immediate and deferred

RUN

LOAD
SAVE

QUESTIONS

e.g., RUN /PRODOS/DUMMY
RUN

e.g., - DUMMY
e.g., LOAD /PRODOS/VIEW
e.g., SAVE /MY.DISK/DEMO

1. Describe the requirements for creating pathnames.
2. Discuss the PREFIX command in detail. Why is it important?
3. How are files stored on a Pro DOS diskette?
4. Compare the rules for naming files in ProDOS and DOS 3.3.
5. Describe the- (DASH) command. Explain why it is so handy.
6. Why is the new option to the RUN command so important?
7. What are the rules for volume directories and subdirectories?

QUESTIONS I 45

Immediate and deferred

Immediate mode only
Immediate and deferred
Immediate and deferred

3. HOUSEKEEPING
0

COMMANDS

Housekeeping in common for

women is the acid test.

Andre Maurois, 1924

3.0. OVERVIEW

This chapter describes those ProDOS commands that let you manipulate the files stored on
your diskettes.

In general these are called housekeeping commands. This entire chapter discusses only
these commands. Special attention should be given to the CREATE command and the accom­
panying table of flle types.

In general, these are the commands that let you do things from either the immediate or
the deferred modes to keep things neat, to see things, to get rid of things, or to create things.

This chapter will give you many examples of how to use each of these commands, along
with the syntax required by each command.

The commands introduced in this chapter are shown in the box below.

46

THE CAT AND CATALOG COMMANDS I 47

CAT e.g., CAT /PRODOS Immediate and deferred
CAT /PRODOS,S6,Dl

CATALOG e.g., CATALOG /PRODOS Immediate and deferred
CATALOG /PRODOS,S6,Dl

PREFIX e.g., PREFIX /PRODOS Immediate and deferred
PREFIX /S6,Dl

CREATE e.g., CREATE PIC4,TBIN Immediate and deferred
CREATE DIRECTORY,TDIR

RENAME e.g., RENAME STOCKS, PORTFOLIO Immediate and deferred
RENAME DEBTS,LOSSES

DELETE e.g., DELETE /MY /LOSSES Immediate and deferred
DELETE /MY /DEBTS,S6,D2

LOCK e.g., LOCK !MY /PORTFOLIO Immediate and deferred

UNLOCK e.g., UNLOCK JMY /PORTFOLIO Immediate and deferred

CHAIN e.g., CHAIN PART.TWO Immediate and deferred

STORE e.g., STORE /MY /DEBTS Immediate and deferred
STORE VAR.TABLE

RESTORE e.g., RESTORE /MY /DEBTS Immediate and deferred

PR# e.g., PR#6 Immediate and deferred
PR#O

IN# e.g., IN#2 Immediate and deferred
IN#O

3.1. THE CAT AND CATALOG COMMANDS

These two commands allow you to view the names and other characteristics of the files you
have stored on a diskette. By this time you should feel comfortable with both of these, since
you used them in Chapters 1 and 2. The syntax of these commands has the following form:

48 I HOUSEKEEPING COMMANDS

]CAT [pn] [,S#] [,D#]

]CATALOG [pn] [,S#] [,D#]

When you use the CAT or CATALOG command you will see an entirely different
screen presentation from DOS 3.3. CAT is not supported in DOS 3.3. CATALOG is the same
command for both DOS 3.3 and Pro DOS; however, this command produces a lot more infor­
mation on the video screen, especially when you are in the SO-column format under Pro DOS.

Let's look first at the CAT command. From the immediate mode type:

]CAT

You should see something like:

/PRO DOS

NAME

*PRO DOS
*BASIC. SYSTEM
*STARTUP

TYPE

SYS
SYS
BAS

BLOCKS FREE: XXX

BLOCKS MODIFIED

31 1-0CT-83
21 1-0CT-83

1 15-JUL-83

BLOCKS USED: XXX

At the top of the screen is the volume name, /PRO DOS in this case. The diskette in the
disk drive accessed will determine the volume name presented.

The next set of data is a line-by-line presentation of the files, the files in the volume
directory in this case.

The first column of data tells you if a file is locked or unlocked. If the file is locked, Pro­
nos uses the familiar asterisk (*) character. If no character is present, then the file is
unlocked.

The second column gives you the name of the file. Remember the file name rules?
The third column shows you the type of the file. All of the file type abbreviations are

shown in the next section.
The next column gives you the number of blocks of storage space required to store the

file. A block of storage is 512 bytes.
The last column gives you the last date the file was modified. If ProDOS does not know

the date the term <NO DATE> will placed in this area.

THE PREFIX COMMAND I 49

After all of the files in the directory have been listed, there is a summary line given that
tells you how many blocks have been used and how many blocks are still available.

In Chapters 1 and 2 you used these commands. If you use the CATALOG command
when in 40 columns, the information presented will occupy 2lines on your video screen, be­
cause the information will wraparound on the screen. In Chapter 2 you invoked the
SO-column board presentation and looked at the information presented. In order to invoke an
SO-column presentation, it was only necessary to address the slot that contains the board. It is
done with:

]PR#3

Once you are in the SO-column format, the CATALOG command will give you even
more information than the CAT command. The only additional information that needs to be
explained is the final column. This is the ENDFILE SUBTYPE column. This column gives
you the number of bytes of storage space required on the diskette. For most files, this is a
single number. However, in the case of a binary file, there is an address listed. This address is
where the binary file will be loaded into memory, if you do not override the loading address by
using the address option. This is explained in Chapter 6 when the BLOAD command is
discussed.

The other possible entry in this column is an R parameter. This parameter gives you the
record length of an individual record in a random-access file. Random-access files are dis­
cussed in Chapter 5.

Examples of the CAT and CATALOG commands

CAT
CATALOG
CAT,S6,D2
CATALOG,S6,D2
CAT /MY/NEW.DIR
CATALOG /MY/NEW.DIR

3.2. THE PREFIX COMMAND

There are times when you will be referring to a set of files within a single directory that have
the same pathname except for the names of the files that contain the information you wish to
retrieve. It is very tedious, cumbersome, and error prone to type the entire pathname each
time you wish to retrieve one of these files. By using the PREFIX command, you can set the
prefix to the name of the directory or a partial pathname. This will allow you to refer to files
by their name only. This command was not available in DOS 3.3.

In order to assign a new value to the prefix or display the current prefiX, use the
command:

SO I HOUSEKEEPING COMMANDS

]PREFIX [pn] [,S#] [,D#]

Let's assume that your current prefix is /PRO DOS/ and you want to load the program
EXAMPLE located on the diskette in drive 2. The volume name of that diskette is
/SCRATCH.DISK/. The entire pathname for the EXAMPLE file is /SCRATCH.DISK/
EXAMPLE. In order to load that program into memory, you would have to type the entire
pathname for that program. It would be much easier to set the prefix to a new partial path­
name: then you will need to only refer to the file name by itself. Use the command:

]PREFIX /SCRATCH.DISK

Now, you can refer to EXAMPLE by its name only.
When you first power up your system, the PREFIX variable is left blank or empty. The

slot and drive defaults are set to the slot and drive values that contain the diskette used during
the powerup phase. When the prefix is empty, Pro DOS uses the default slot-drive combina­
tion to find files stored on a diskette because no other information is available.

Option

[pn]

[,S#]
[,D#]

Description

pn must be the pathname or partial pathname of a directory file. When you assign a
prefix, your system will test all peripheral storage devices looking for a valid
match for the new PREFIX. If no match is found a FILE NOT FOUND or
FILE TYPE MISMATCH error results.

If you specify the slot and drive instead of a file name,
Then the volume name of the indicated diskette is assigned to PREFIX. On one

drive systems, refer to that drive using both the slot number and drive 1.

To determine what the current PREFIX contains, type:

]PREFIX

Let's now take a couple of examples to see how this works. Assume that the ProDOS
diskette is installed in disk drive 1. Set the prefix to indicate the volume directory. Examples
are shown in Figure 3 .1.

Setting PREFIX

]PREFIX /PRODOS
]PREFIX /PRODOS,S6,D 1
]PREFIX ,S6,D 1

PREFIX Value

/PRO DOS/
/PRO DOS/
/PRO DOS/

]PREFIX /PRODOS/DOGS
]PREFIX I

(FILE NOT FOUND)
(blank)

Figure 3.1. PREFIX examples.

THE PREFIX COMMAND I Sl

There are some things you need to notice. First, ProDOS adds a slash to your prefix if
you do not supply the ending delimiter. Second, Pro DOS will supply the volume directory
when you specify the slot and drive numbers. This is very handy when you do not remember
the prefix associated with a volume. Power up your system and try some of these options.

When you start up /PRO DOS or any other Pro DOS diskette, the value in the prefix buf­
fer is left blank. The slot and drive defaults are set to indicate the disk drive containing that
diskette. When the prefiX is blank, ProDOS will look for files located on the diskette
designated by the default slot and drive.

If you do not use the options with the PREFIX command, the current value of the prefix
is used.

In your own programs, when you use the PREFIX command with no options, the next
INPUT statement in your program expects to read the prefix. If you do specify options, then
the prefix is not displayed, but it is assigned the new value.

Assume that you have Pro DOS booted with the/SCRATCH .DISK disk in drive 1. You
now want to determine the current prefix under program control. Let's write a program to do
that.

]NEW

]LIST

100 D$ = CHR$(4): REM CHR$(4) = CTRL-D
110 PRINT D$;"PREFIX"
120 INPUT PF$
130 REM
140 REM * REST OF PROGRAM
150 REM

200 PRINT D$;"PREFIX ";PF$

210END

Lines Description

Line 100 Set CTRL-D to signify a ProDOS command.
Line 110 Pro DOS command for PREFIX.
Line 120 Read the prefiX in PF$ variable.

52 I HOUSEKEEPING COMMANDS

Lines 130-150
Line 200
Line 210

Remark statements.
Restore the prefix to the original value.
Terminate the program.

You give the prefix command without any options, as discussed above, and then INPUT
the PREFIX value into a string variable. Later in your program you may then restore the old
value before leaving the program.

3.3. THE CREATE COMMAND

The purpose of the CREATE command is to create files of all types, although its primary pur­
pose is to create directory files. ProDOS files can also be created using other commands. A
volume directory file can store the names and locations of a maximum of 51 files. It is recom­
mended that you create directories on a diskette before placing any other files on that diskette.
DOS 3.3 does not have this command. To create a file use the syntax that follows:

]CREATE pn [,Ttype] [,S#] [,D#]

Notice that the CREATE command has a new and different option from the options
shown previously in this chapter. This option is the Ttype, which determines the type of file to
be created. If the type option is left out, then a directory file is created. Therefore, if you wish
to create a file other than a directory, you must use the Ttype option.

For example, you may create a directory file named /CHECK.BOOK using the
command:

]CREATE /CHECK.BOOK

The number of files you may place into a directory is limited only by the space available
on a diskette. The size of a directory file is determined by the number of files in that directory.
The volume directory name is the only exception to this rule. The volume directory name is
created when the volume is formatted.

The first storage block (512 bytes) of diskette space used by the directory can hold a
maximum of 12 file names. After that, each additional directory block can hold 13 file names.

Option Description

pn pn is the pathname or partial pathname of the file that you are creating. Remem-
ber the file you are creating must not already exist.

[,Ttype] T defines the fact that the next three letters is the type designator for the file to be
created. The file type abbreviations are shown in Figure 3.2. The figure shows a
number of file characteristics. The only column of interest at this time is the ab­
breviation column.

THE CREATE COMMAND I S3

Values
File type Abbreviation Hex=Dec Notes

Typeless file $00= 0 (SOS and ProDOS)
Bad Block file BAD $01= 1
Pascal code file PCD *$02= 2
Pascal text file PTX *$03= 3
ASCII text file TXT $04= 4 (SOS and ProDOS)
Pascal data file PDA *$05= 5
Binary file BIN $06= 6 (SOS and ProDOS)
Font file FNT *$07= 7
Graphics screen file FOT *$08= 8
Business BASIC program BA3 *$09= 9
Business BASIC data DA3 *$0A= 10
Word processor file WPF *$0B= 11
SOS system file sos *$0C= 12
SOS reserved *$0D= 13
SOS reserved *$0E= 14
Directory file DIR $OF= 15 (SOS and ProDOS)
RPS data file RPD * $10= 16
RPS index file RPI * $11= 17
SOS reserved types * $12=$BF (reserved - SOS)
ProDOS reserved types $CO=$EF (reserved - ProDOS)
ProDOS added commands CMD $FO= 240
ProDOS user defined $F# F1-$F8 (1-8 files)
ProDOS reserved $F9=249
Integer BASIC program INT $FA=250
Integer BASIC variables IVR $FB=251
Applesoft II BASIC BAS $FC=252
Applesoft II variables VAR $FD=253
Relocatable code file REL $FE=254
ProDOS system file SYS $FF=255

Notes:

1. The * character designates Apple III SOS only.
2. The * marked file types are not used by ProDOS.
3. There are a number of values reserved for specific operating systems other than Pro DOS.
4. There are abbreviations yo~ may never come across unless you have an Apple III.

Aside: (a) Extensions to ProDOS could easily be made to include additional file types.
(b) Notice the capability for you to add file types of your own now.

[,S#]-The slot and drive options have their normal meanings.
[,D#]

54 I HOUSEKEEPING COMMANDS

The new CREATE command gives you a very handy way to test for the existence or nonex­
istence of files.

Examples for the CREATE command

CREATE /MY /BANK
CREATE /MY /BANK, TDIR
CREATE /MY /BANK/NOTES, TDIR,S6,D2
CREATE /MY /CREDIT.CARDS,TTXT
CREATE MY /TIME.SYSTEM, TSYS,D 1

DIR file created
DIR file created
DIR file created
TXT file created
SYS file created

3.4. THE RENAME COMMAND

The RENAME command is for changing the name of a file that is already stored on a diskette.
This command operates essentially the same way as the RENAME command in DOS 3.3. The
syntax of the command is:

]RENAME pn1 ,pn2 [,S#] [,D#]

The pn 1 is the pathname of a file that is to be changed to pn2. The only caution is that
pn2 must be in the same directory as pnl. Therefore you can use:

]RENAME /MY /STOCKS/PERSONAL,/MY /STOCKS/PORTFOLIO

to change the PERSONAL file's name to PORTFOLIO. However, you cannot use the
command:

RENAME /MY /PERSONAL/STOCKS,/MY /STOCKS/PORTFOLIO

If you need to move a file from one directory to another, it is usually necessary to use the
FILER capability. This is discussed in Chapter 8.

Option

pnl,pn2

[,S#]
[,D#]

Description

pnl and pn2 are the pathnames that indicate the storage location of the file. Both
of these pathnames must be unique. There are a number of possible errors that
could result from using incorrect pathnames.

Both the slot and drive options have their usual meanings.

Examples for the RENAME command

THE LOCK AND UNLOCK COMMANDS I SS

RENAME /MY /DEBTS/OWED,/MY /DEBTS/PAID
RENAME /MY /STOCKS/OWNED,/MY /STOCKS/SOLD
RENAME GAME.PROGRAM.,WORD.GAME
RENAME WORD.PUZZLE,CRYPTOGRAM

3.5. THE DELETE COMMAND

The purpose of this command is to remove a file from the diskette. This command operates
exactly the same as in DOS 3.3. The syntax of the instruction is:

]DELETE pn [,S#] [,D#]

You can remove the file /MY /RESUME from a diskette with the command:

)DELETE /MY /RESUME

Option

pn

[,S#)
[,D#]

Description

A pathname or partial pathname. The pathname must be included and the file must
exist on the diskette before you may use this command.

Both the slot and drive options have their usual meanings.

Examples for the DELETE command

DELETE /MY/DEBTS/OWED
DELETE /MY/BANK/NOTES/PAID
DELETE WORD.GAME
DELETE MATH.DEMO

3.6. THE LOCK AND UNLOCK COMMANDS

There are times when you will want to protect your files from accidently being changed,
deleted, or renamed. This can be done using the LOCK command. Then in order to make are­
vision to the locked file, you will be required to use the UNLOCK command. Both of these
commands operate exactly the same as in DOS 3.3. The syntax of these commands is:

]LOCK pn [,S#] [,D#]

]UNLOCK pn [,S#] [,D#)

56 I HOUSEKEEPING COMMANDS

For example, to lock a file use:

]LOCK /MY /XMAS.LIST

and later to unlock that same file use:

]UNLOCK /MY /XMAS.LIST

As long as a file is locked, you cannot rename, delete, or change that file in any way
without first unlocking that file.

For example, let us assume you are going to run both parts of a program.

)RUN /MY/FIRST.PART

When you are finished with this program, you need to execute the following:

]CHAIN /MY/SECOND.PART,@lOOO

Notice that the program, SECOND.PART, commences execution at line 1000. This
could be for a number of reasons. The most common might be because any chained program
may not dimension any array used in any previous part<..~ a program.

Option

pn

[,@#]

[,S#]
[,D#]

Description

pn is the pathname or partial pathname that contains the Applesoft II BASIC pro­
gram needed to be run next.

This option, when used, specifies the line number at which program execution is to
begin. If the specified line number does not exist, the next higher line number in
the program begins the execution. If this option is not used, program execution
begins with the lowest line number.

Both the slot and drive options have their usual meanings.

If you look at a catalog of the files on a directory or volume, the locked files will be
shown with an asterisk preceeding the file information presented on the screen. This is the
same as in DOS 3.3.

Option

pn

[,S#]
[,D#]

Description

pn is the pathname or partial pathname of the file that is to be either locked or
unlocked. Note: You cannot lock a volume name.

Both the slot and drive options have their usual meanings.

Examples for the LOCK and UNLOCK commands

]UNLOCK /MY/BANK/NOTES/PAID
]LOCK WORD.GAME
]UNLOCK WORD.GAME
]LOCK /MY/BANK/NOTES/PAID

3.7. 1/0 FROM PROGRAMS

THE LOCK AND UNLOCK COMMANDS I 51

In this section the commands covered are those that enable you to communicate easily with
other Applesoft II BASIC programs and peripheral devices such as printers, disk drives,
MODEMS, and clocks. When the Apple computers communicate with peripheral devices,
this is known as either the input or output of information. Generically, this is referred to in­
put/ output or just I/0.

3. 7 .1. Tbe CHAIN command

The CHAIN command is for executing separate parts of a program in sequential order. This
is very handy when a program becomes very large and will not all fit into memory. Now, you
have the capability to develop your programs in parts and then chain them at execution time.
Assume that you have a two-part program. You run the first part. Now, you need to run the
second part. The variables and files open from the first part will be preserved when you chain
the second part to the first part.

DOS 3.3 does not support this command in conjunction with Applesoft II BASIC.
However, there was a binary program on the SYSTEM MASTER diskette called CHAIN that
performed this function. This has now been incorporated into ProDOS. The syntax for the
CHAIN command is:

]CHAIN pn [,@#] [,S#] [,D#]

Examples for the CHAIN command

PRINT D$;"CHAIN SECOND.PART"
PRINT D$;"CHAIN SECOND.PART,@lOOO''
PRINT D$;"CHAIN FIRST.PART"
PRINT D$;"CHAIN FIRST.PART,@2000,S6,Dl"

3. 7 .2. Tbe STORE command

This command and its ·counterpart, RESTORE, are really one of the more exciting additions
made to this new operating system. This command allows you to store the names and values

58 I HOUSEKEEPING COMMANDS

3. 7 .3. The RESTORE command

This command allows you to bring previously STOREd names and variable values into your
current program. Only a file previously STOREd can be RESTOREd. This command is not
supported in DOS 3.3. The syntax of the command is:

]STORE pn [,S#] [,D#]

of all of the variables active in an Applesoft II BASIC program. This command is not avail­
able in DOS 3.3.

This is very handy if you wish to save the condition of a game during play, the condition
of long numerical methods calculations, or your position in a long mailing list. The syntax of
this command is:

]RESTORE pn [,S#] [,D#]

The STORE command places the variables in a file of the V AR type. When you execute
the STORE command, it may take some time before the disk drive comes on and actually
stores the variables. The reason for this is because Pro DOS is compacting the information be­
fore storing the data.

Option

pn

[,S#]
[,D#]

Description

pn is the pathname or partial pathname of the file in which the variables are to be
stored.

Both the slot and drive options have their usual meanings.

Examples for the STORE command

PRINT D$;"STORE EXAMPLE.DATA''
PRINT D$;"STORE /MY/XMAS.LIST.DATA,S6,Dl"

When you use this command, all currently defined variables are cleared from memory
before the new ones are brought into memory.

THE LOCK AND UNLOCK COMMANDS I 59

Option Description

pn
[,S#]
[,D#]

pn is the pathname or partial pathname of the file containing the program variables.
Both the slot and drive options have their usual meanings.

Examples for the RESTORE command

PRINT D$;"RESTORE EXAMPLE.DATA"
PRINT D$;"RESTORE /MY/XMAS.LIST.DATA,S6,Dl"

3. 7 .4. The PR# command

This command is used to transfer data and information from the normal video screen output
to the device connected to the peripheral slot specified in the command. This command, PR#,
is used to transfer the destination of such data or information. This command is the same as in
DOS 3.3. The syntax for this command is:

The slot specified must be in the range from 0 through 7 on the Apple II Plus and in the
range from 1 through 7 on the Apple lie.

For example, assume that your systems printer interface card is installed in slot 1. Then
the command:

]PR# 1

causes all subsequent data and information to be sent to the printer. When you wish to return
data output to the video screen, it is only necessary to issue the correct command. This com­
mand is:

]PR# 0

If you have an SO-column card installed in slot 3, then you may activate an SO-column
screen presentation by issuing:

]PR#3

from the immediate mode. Your video display will then change to the SO-column format. On
the Apple lie the Apple Computer SO-column card or extended SO-column card is installed in

60 I HOUSEKEEPING COMMANDS

the auxiliary slot. The auxiliary slot is mapped into slot 3 for purposes of activating and deac­
tivating an SO-column card. On an Apple II Plus, an SO-column card is normally installed in
slot 3.

Examples for the PR# command

PRINT D$; "PR# I''
]PR#l
PRINT D$; "PR# 2"
]PR#2
PRINT D$;"PR# 0"
]PR#O

3.7.5. The IN# command

Normally, Apple computers will receive data and information from the keyboard. The IN#
allows you to receive data and information from sources other than the keyboard. This com­
mand works the same as in DOS 3.3. The syntax of the command is:

For example, assume that you have a MODEM in slot 2 and that you are going to receive
data from your friend out of state. Your software would use the command:

]IN#2

When you are through receiving data, you can return your system to the normal or
default condition by using the command:

]IN# 0

The comments that apply to an SO-column card for the PR# command also apply to the
IN# command.

If you are going to both receive and transmit data through one particular slot, you will
need to issue both the IN# and PR# commands.

Examples for the IN# command

PRINT D$;"IN# 2"
]IN#2

PRINT D$;"IN# 0"
]IN#O

SUMMARY

SUMMARY 61

This chapter discussed housekeeping commands that are supported in ProDOS.
The main thrust of this chapter was to introduce you to the commands that you will use

frequently to manipulate or change the status of files.
Special emphasis was given to the CREATE command and all of the currently possible

file types.
Two commands that deal with peripheral devices were also shown. These two were the

IN# and PR# commands. It is through the use of these commands that Apple II computers are
able to communicate with the outside world by using Pro DOS or Applesoft II BASIC. There
are other ways of course, but they are not a part of the discussion here.

A number of examples of each command were given along with the rules for forming the
commands.

The commands introduced were:

CAT e.g., CAT/PRODOS Immediate and deferred
CAT /PRODOS,S6,Dl

CATALOG e.g., CATALOG /PRODOS Immediate and deferred
CATALOG /PRODOS,S6,Dl

PREFIX e.g., PREFIX /PRODOS Immediate and deferred
PREFIX /S6,D 1

CREATE e.g., CREATE PIC4,TBIN Immediate and deferred
CREATE DIRECTORY,TDIR

RENAME e.g., RENAME STOCKS,PORTFOLIO Immediate and deferred
DELETE e.g., DELETE /MY /LOSSES Immediate and deferred

DELETE /MY /DEBTS,S6,D2
LOCK e.g., LOCK /MY /PORTFOLIO Immediate and deferred
UNLOCK e.g., UNLOCK /MY/PORTFOLIO Immediate and deferred
CHAIN e.g., CHAIN PART.TWO Immediate and deferred
STORE e.g., STORE /MY/DEBTS Immediate and deferred
RESTORE e.g., RESTORE /MY/DEBTS Immediate and deferred
PR# e.g., PR#6 Immediate and deferred

PR#O
IN# e.g., IN#2 Immediate and deferred

IN#O

62 I HOUSEKEEPING COMMANDS

QUESTIONS

1. How do you invoke the 80-column card?
2. What is the function of the CREATE command? Explain in detail.
3. How do you retrieve, save, and later restore the current PREFIX?
4. How do you use the PR# and IN# commands? How can you communicate with the outside

world using these commands?
5. What is the difference between the CAT and CATALOG commands?

4. SEQUENTIAl­
ACCESS FilES

4.0. OVERVIEW

Have an open face, but

conceal your thoughts.

Italian Proverb

This chapter gives you your first experience with text files. You will be shown how to create,
store data into, and retrieve data from sequential text files.

In the early part of this chapter a description of a sequential-access file is given.
Throughout this chapter, programs and program segments will be given illustrating the com­
mands being described. The last sections of this chapter describe the commands needed to
operate with sequential text files.

There are many times that you may wish to store information or data that is not a pro­
gram onto a diskette. You may wish to keep track of your stock portfolio, municipal bonds,
recipes, or addesses. ProDOS allows you to do just that.

To do this, create a program that establishes a file on a diskette. That file will contain
the information you wish to keep. Next, create a program that w1il request information from
the computer user and store the data on the diskette in the file. Last, it would be nice to have a
program to recall the stored data and display it on the screen or print it on paper in a printer.

63

64 I SEQUENTIAL-ACCESS FILES

The three possible programs discussed may all be contained within one program, as major
subroutine modules. In fact there are only about seven major evolutions that need to be per­
formed on files. These are shown in Figure 4.1.

Creation program
Create file
Delete file

Processing program
Enter data
Change data
Delete data

Output program
Review file data
Report printing

Figure 4.1. File programs.

A file is like a list of items stored in some order, similar to a telephone directory or a
shopping list. This list may be of any size, up to the capacity of a diskette, and contain any in­
formation or data-even a program. Files may be created under the control of Pro DOS using
the TEXT (TXT) type files. The reason they are called TEXT files is that data is stored in the
file in essentially text form. ProDOS supports two types of TEXT files:

-sequential-access
-random-access

There is no essential difference in the form of data storage, only in the file characteris­
tics. Random-access files are covered in the next chapter.

The letters TXT in the third column of a CAT display denotes a text file.
Since text files are NOT programs, but data, you cannot RUN, SAVE, or LOAD them.

Other commands, covered later, may be used with text files.
The commands introduced in this chapter are shown in the box below.

OPEN e.g., OPEN /MY /XMAS.LIST Deferred mode only

READ e.g., READ /MY /XMAS. LIST Deferred mode only

WRITE e.g., WRITE /MY /XMAS.LIST Deferred mode only

CLOSE e.g., CLOSE Immediate and deferred
CLOSE /MY /XMAS. LIST

APPEND e.g., APPEND /MY /XMAS. LIST Deferred mode only

SEQUENTIAL-ACCESS FILES I 65

FLUSH e.g., FLUSH /MY /XMAS.LIST Immediate and deferred

POSITION e.g., POSITION /MY/XMAS.LIST,F3 Deferred mode only

4.1. SEQUENTIAL-ACCESS FILES

The sequential-access file is a linear list of items, words, or numbers in which each item is con­
sidered a record in the file. This type of file organization comes from the days when the only
auxiliary storage media available to computers were high-speed tape drives. Tape drives re­
quire you to start at the beginning of a file, read each record in sequence, and perform any
processing sequentially. The sequential-access file stored on a diskette has the same character­
istics. When you either READ or WRITE data to the diskette, it is done in sequential order.

To create the file, store data into the file on the diskette, and retrieve data from the
diskette, you must first OPEN communications between the program and ProDOS. With
communications established with ProDOS, you next have to tell ProDOS the type of com­
municatons required; whether you wish to READ or WRITE data. Once an Applesoft II
BASIC program has informed Pro DOS that you wish to communicate and the type of com­
munication desired, you may either INPUT or PRINT data respectively. Once communica­
tion is finished, you must CLOSE the communications conversation with ProDOS.

The text file commands have a number of options. A few of them you will use most of
the time. Some of the options you will use only rarely. As each command is described, ex­
amples will be given that will illustrate the command and the option.

The basic unit of a sequential-access text file is the field. A field is a series of characters
that has as its final character the carriage return (RETURN) character. In Applesoft II BASIC
you have three options when printing a line of text. These are shown in the small program
below.

The rest of this section will describe and explain a number of program examples using
the instructions introduced in the chapter. After the instructions have been used, the re­
mainder of the chapter gives you the syntax and additional information about the instructions
that have been used.

]NEW

]LIST

]100 A$ = "APPLE": B = "SOFT"
]110 PRINT A$
] 120 PRINT A$;B$
]130 PRINT A$,B$

]RUN

66 I SEQUENTIAL-ACCESS FILES

APPLE
APPLESOFT
APPLE SOFf

After you have entered this small program, RUN it and you will see the three lines of text
printed on the screen as shown above. Notice that there is a carriage return character at the
end of each Jine. It is that character that causes the cursor to return to the left margin on the
next sequential display line. The delimiters (semicolon and comma) between variables in the
print statements do not cause the termination of a line of printed text.

This same scheme is used when you print data to a text file. When you print data to a
sequential-access file using Applesoft II BASIC print statements without a semicolon or
comma, the field is terminated with a carriage return.

A carriage return character signifies the end of a field. The next print statement will
store data into the next field of the file. Each subsequent print statement ending in a carriage
return stores data into the next field in the file. In this way a sequential-access text file may
contain any number of fields.

Let's now look at how data is stored into a sequential-access file. Assume that you have
the program segment:

]NEW

]LIST

10 REM* NUMBERS PROGRAM
30 D$ = CHR$(4)

100 PRINT D$;"0PEN NUMBERS"
110 PRINT D$;"WRITE NUMBERS"
120 PRINT "ONE"
130 PRINT "TWO"
140 PRINT "THREE"
150 PRINT "FOUR"
160 PRINT D$;"CLOSE NUMBERS"
500 END

It is recommended that you power up your system with the /SCRATCH.DISK in the
boot drive. When you have the Applesoft II BASIC prompt character and cursor you are
ready to enter the above program. By the way, you will add to this program later.

Lines Description

Line 10 Remark statement identifying program.

SEQUENTIAL-ACCESS FILES I 61

Line 30 The variable D$ contains the CTRL-D ProDOS character that signifies the
following instruction is a ProDOS command.

Line 100
Line 110
Line 120
Line 130
Line 140
Line 150

OPEN communications with ProDOS. OPEN is discussed in Section 4.2.
The communications is to WRITE data to the diskette.
Store the first field to the diskette.
Store the second field to the diskette.
Store the third field to the diskette.
Store the fourth field to the diskette.

Lines 120 through 150 do not have the CTRL-D preceding the operation. This is because all
output has already been redirected to the file through the instruction in line 110.

Line 160
Line 500

Terminate communications with ProDOS. CLOSE is discussed in Section 4.5.
END the program.

When you have this program entered; SAVE it as /SCRATCH.DISK/NUMBER.PRO­
GRAM and then RUN it. The information you have stored on a diskette is stored in the
following way under the name NUMBERS. This shown in Figure 4.2.

This particular ftle has four fields that encompass 19 characters, including all of the car­
riage returns. Please notice that the first field in the file is designated 0.

The next obvious question that arises is "How can I see what has been stored in the
file?" Fair question. In the next few paragraphs more will be added to the program
/SCRATCH.DISK/NUMBER.PROGRAM.

Load the program /SCRATCH.DISK/NUMBER.PROGRAM from your disk driver
and LIST the program. Then enter the following additional code:

20 DIM A$(10)

200 PRINT D$; "OPEN NUMBERS"
210 PRINT D$;"READ NUMBERS"
220 INPUT A$(1)
230 INPUT A$(2)
240 INPUT A$(3)

Characters stored:
Field numbers:

ONE I
{0}

TWO I
{1}

THREE I
{2}

Notes: (1) The I character represents a carriage return.
(2) Numbers represent the field numbers.

Figure 4.2. Sequential file character storage.

FOUR I
{3}

68 I SEQUENTIAL-ACCESS FILES

250 INPUT A$(4)
260 PRINT D$;"CLOSE NUMBERS"
300 FOR I = 1 TO 4: PRINT A$(I): NEXT I

Lines

Line 20
Line 200
Line 210

Line 220
Line 230
Line 240
Line 250

Description

Dimension the variable A$ to handle 11 elements.
OPEN communications with ProDOS. OPEN is discussed in Section 4.2.
The communications is to READ data from the diskette. READ is discussed in

Section 4.3.
Read the first field from the diskette.
Read the second field from the diskette.
Read the third field from the diskette.
Read the fourth field from the diskette.

Lines 220 through 250 do not have the CTRL-D preceding the operation. This is because all
input has already been redirected to the file through the instruction in line 210.

Line 260 Terminate communications with ProDOS. CLOSE is discussed in Section 4.5.
Line 300 Print the contents of the A$ vector to the video screen.

When you have the additional program code entered, SAVE it as /SCRATCH.DISK/NUM­
BER.PROGRAM and then RUN it again. By the way, you will add more to this program
later. If everything goes well, you should see displayed on the screen:

ONE
TWO
THREE
FOUR

You now know that what you stored may be retrieved and seen through the mechanism
of supporting code. Also, you have now written a very simple data storage and retrieval
system. It really wasn't very difficult, was it?

Earlier in this section, three ways to print information to a screen were described. In
Figure 4.3 the same options will be shown for printing to a sequential text file. The variables
A$ and B$ are the same as before. A$= "APPLE" and B$ ="SOFT". The I character still
represents a carriage return character.

Statement

PRINT ''APPLE''
PRINT A$;

Characters

APPLE I
APPLE

Comments

Complete field.
Partially completed field.

SEQUENTIAL-ACCESS FILES I 69

PRINT B$ APPLESOFT I Completed field. Notice that there is no car-
riage return after the A$ characters in the
file.

PRINT A$,B$ APPLESOFT I Completed field. Notice that there are no
spaces placed in the field.

PRINT B$;" ";A$;"S, SOFT APPLES I Completed field. Notice how you can link
items in a file field.

Figure 4.3. Print to a text file.

The reason for showing you these options is to give you a feel for how to put characters
together to form fields in a sequential-access text file.

Each field is written or read from a sequential-access text file through the use of a single
variable. The variables shown, thus far, have been string variables. You may also use numeric
variables, either floating point or integer. Each of these may be interspersed with string
variables. The only caution is that you must know the order in which you stored data so that it
can be retrieved correctly.

Figure 4.4 shows you ways in which you may retrieve the data stored in a file.

Statement

INPUT A$
INPUT B$
INPUT A$,B$
GETC$

Characters

APPLE
SOFT
APPLE SOFT
A

Comments

Reads one complete field.
Reads one complete field from next field in the file.
Reads two complete adjacent fields from file.
Reads a single character from field in a file. If you are

going to use the GET statement, you will have to write
a loop in code that:
1. Reads and links character read to some string vari­

able.
2. Tests each character read for the field delimiter

(ASCII 13).

Figure 4.4. Retrieving from a text file.

There are several ways to retrieve data from a sequential-access text file. In most cases,
the INPUT statement is the best. However, there are times when the GET statement with sup­
porting code is required.

Up to this point, there has been one field in each record of a sequential-access text file.
There is a way to have multiple elements of data in one field. By this I mean that there is a way
to place multiple pieces of data within a single field of a sequential-access file.lt may be done
by physically placing commas between each element that makes up each field in the file. For
example, let's put three elements of information within one field using the following code:

70 I SEQUENTIAL-ACCESS FILES

]NEW

]LIST
10 REM* MULTI-ELEMENTS PROGRAM
20 DIM A$(10)
30 D$ = CHR$(4)

100 PRINT D$;"0PEN ELEMENTS.DATA"
110 HOME: PRINT TAB(10) "MULTI-ELEMENTS DEMO": PRINT
120 PRINT D$;"WRITE ELEMENTS.DATA"
130 PRINT "FIRST,SECOND,THIRD"
140 PRINT ''ELEMENTS,PER,FIELD''
150 PRINT D$;"CLOSE"
200 PRINT D$;"0PEN ELEMENTS.DATA"
210 PRINT D$;"READ ELEMENTS.DATA"
220 FOR I = 1 TO 3
230 INPUT A$(1): NEXT I
240 FOR I = 4 TO 6
250 INPUT A$(I): NEXT I
260 PRINT D$; "CLOSE"
300 FOR I = 1 TO 6 : VT AB 2 +I
310 PRINT A$(1)
320 NEXT I
500 END

Power up your system with the /SCRATCH.DISK in the boot drive. Then enter this
program from the keyboard. When it has been entered, save the program using the name
MULTI.ELEMENTS. Then RUN the program to see what happens.

You should get the following output:

MULTI-ELEMENTS DEMO

FIRST
SECOND
THIRD
ELEMENTS
PER
FIELD

Lines

Line 10
Line 20
Line 30

Line 100
Line 110

Description

Remark statement identifying program.
Dimension the variable A$ to handle 11 elements.

SEQUENTIAL-ACCESS FILES I 71

The variable D$ contains the CTRL-D ProDOS character that signifies the
following instruction is a ProDOS command.

OPEN communications with ProDOS. OPEN is discussed in Section 4.2.
Clears screen. HOME.
Prints screen title centered at the top.
Print a blank line on the screen. PRINT.

It is permissible to print to the screen after a file is open provided you do the printing before
the WRITE instruction to the file is executed.

Line 120
Line 130

Line 140

The communications is to WRITE data to the diskette.
Store the first field to the diskette. This field contains three elements separated by

commas within the quoted field string.
Store the second field to the diskette. This field also contains three elements

separated by commas within the quoted string.

Lines 130 and 140 do not have the CTRL-D preceding the operation. This is because all output
has already been redirected to the file through the instruction in line 120.

Line 150
Line 200
Line 210

Line 220
Line 230

Line 240
Line 250

Terminate communications with ProDOS. CLOSE is discussed in Section 4.5.
OPEN communications with ProDOS. OPEN is discussed in Section 4.2.
The communications is to READ data from the diskette. READ is discussed in

Section 4.3.
Top of FOR-NEXT I loop.
Read the first field from the diskette. This field contains three elements.
Range of the I loop. NEXT I.
Top of FOR-NEXT I loop.
Read the second field from the diskette. This field also contains three elements.
Range of the I loop. NEXT I.

Lines 230 and 250 do not have the CTRL-D preceding the operation. This is because all input
has already been redirected to the file through the instruction in line 210.

Line 260
Line 300

Terminate communications with ProDOS. CLOSE is discussed in Section 4.5.
Top of the FOR-NEXT I loop.
Position cursor on the screen. VTAB 2+1.

72 I SEQUENTIAL-ACCESS FILES

Line 310
Line 320
Line 500

Print the contents of the A$ vector to the video screen.
Range of the I loop. NEXT I.
END the program.

Notice that lines 130 and 140 from the program are actually written to the file with com­
mas embedded within the quoted string. Later in the program, you will need to retrieve the six
pieces of data. Since INPUT statements consider commas as delimiters signifying the end of
an element, it is necessary to use multiple inputs to read an entire field. This has been shown in
lines 220 through 250.

Line 230 could be replaced with:

230 INPUT A$(l),A$(2),A$(3)

and line 250 could have been written:

250 INPUT A$(4),A$(5),A$(6)

If you choose to write these lines this way, then the FOR-NEXT loop code will need to
be deleted.

At this point, it might be a good idea to look at how these two multiple element fields are
stored on a diskette. This is shown in Figure 4.5.

Now, using the information presented, how would you read only the first element of
each field? Another question could be: how could you use the GET instruction to retrieve in­
formation from the ELEMENTS. OAT A file? I am sure you can think of many other possible
iterations and questions.

4.2. THE OPEN COMMAND

The OPEN command is required as the preparatory command that tells Pro DOS to prepare
for the reading or writing of data and information from a diskette. It also prepares a file buf­
fer space in memory to hold data. This is the command that tells Pro DOS you wish to com­
municate. This command operates essentially the same as in DOS 3.3. The syntax for this
command is:

]OPEN pn [,S#] [,D#]

After you have opened communication with a flle, you are allowed to either read or
write data from or to that file. Remember that any open file should be closed before you end
the current program that is executing.

THE OPEN COMMAND I 73

Characters stored:
Field numbers:

FIRST ,SECOND, THIRD I ELEMENTS,PER,FIELDI
{ 0 }

Notes: (1) the I character represents a carriage return.
(2) Numbers represent the field numbers.

{ 1 }

Figure 4.5. Sequential file character storage.

When a program opens a text file, a number of possible things take place. These are:

1. Pro DOS will set up a file buffer space in memory.
2. Resets HIMEM just below the file buffer space.
3. Prepares your system to either read or write data starting at the beginning of the file.

Allows for eight files to be open simultaneously.
4. If the file with the pn does not exist, that file is then created and added to the appropriate

directory.
5. If the file already exists and is open, a FILE BUSY error will result when the file is

reOPENed.

Option

pn

[,S#]
[,D#]

Description

pn is the pathname or partial pathname of the file that is to be opened. If the file
does not aleady exist, a file of the text (TXT) type is created.

The slot and drive options have their normal meanings.

Examples of the OPEN command

PRINT D$; "OPEN EXAMPLE"
PRINT D$;"0PEN DEMO.DATA,S6,Dl"
PRINT D$;"0PEN /SCRATCH.DISK/DEMO.DATA"
PRINT D$;"0PEN /SCRATCH.DISK/DEMO.DATA,S6,D1"

When working with sequential-access files, one of the minor but very aggravating prob­
lems is the possibility of old information staying in the file as the total size of the file changes.
This can happen because a sequential-access file has the characteristic of expanding and con­
tracting as data within the file changes. When the file contracts, the old data is not erased as
new data is placed in the file. So, in order to prevent the retrieval of the unwanted data from
the old version of the file, it is recommended that you first delete the file before writing the
new information to the file. This is done in the following way:

100 PRINT D$;"0PEN EXAMPLE"
105 PRINT D$;"CLOSE EXAMPLE"

74 I SEQUENTIAL-ACCESS FILES

110 PRINT D$;"DELETE EXAMPLE"
115 PRINT D$;"0PEN EXAMPLE"

This code opens the EXAMPLE file and then closes the file. This assures that the file ex­
ists on the diskette. Then delete the file. Immediately thereafter, the file EXAMPLE is opened
again. This reestablishes the file on the diskette. One caution when using this code: make sure
that you have everything from the old file either in memory or stored elsewhere before you
delete the file. In that way, you will not lose any information. ·

4.3. THE READ COMMAND

After a file has been OPENed, you must further define to ProDOS the type of communica­
tion required; READ in this case. The READ command identifies to Pro DOS the file and the
position in the file from which characters are to be read and prepares Pro DOS for the INPUT
statement(s) that are to follow. Once the READ command has been executed, it remains in ef­
fect until the next ProDOS command is executed. This command operates the same as the
READ command in DOS 3.3, except for the added field numer (F#) option. The syntax for
this command is:

]READ pn [,F#] [,B#]

Every time you use the READ command, you must identify the file to be read by using
the pn.

Option Description

pn pn is the pathname or partial pathname of the file that is to be opened. This must
be identical to the pn used when you opened the file.

[,F#] #is an integer number that indicates the number of fields past the current position
that should be read and discarded. This is done by reading characters, starting
from the current position, until the specified number of carriage returns has
been read.

A carriage return character is used to separate fields in a sequential-access file.

[,B#] #is an integer number that indicates the number of bytes, or characters, to be read
and discarded. This option will change the current position in the file.

Examples of the READ command

PRINT DS;"READ EXAMPLES"
PRINT D$;"READ DEMO.DATA,F4"
PRINT DS;"READ /SCRATCH.DISK/NUMBERS"
PRINT DS;"READ /SCRATCH.DISK/NUMBERS,F2,B3"

4.4. THE WRITE COMMAND

THE WRITE COMMAND I 75

After a file has been OPENed, you must further define to ProDOS the type of communica­
tion required; WRITE in this case. The WRITE command identifies to Pro DOS the file and
the position in the file to which characters are to be written and prepares ProDOS for the
PRINT statement(s) that are to follow. Once the WRITE command has been executed, it re­
mains in effect until the next ProDOS command is executed. This command operates the
sames as the WRITE command in DOS 3.3, except for the added field number (F#) option.
The syntax for this command is:

]WRITE pn [,F#] [,B#]

Option Description

pn pn is the pathname or partial pathname of the file that is to be written. It must be
identical to the pn for the file you opened.

[,F#] #is an integer number that indicates the number of fields past the current position
that should be read and discarded. This is done by reading characters, starting
from the current position, until the specified number of carriage returns has
been read.

A carriage return character is used to separate fields in a sequential-access file.

[,B#] #is an integer number that indicates the number of bytes, or characters, to be read
and discarded. This option will change the current position in the file.

Examples of the WRITE command

PRINT D$;"WRITE EXAMPLES"
PRINT D$;"WRITE DEMO.DATA,F2,.B3"
PRINT D$;"WRITE /SCRATCH.DISK/NUMBERS,F2"
PRINT DS;"WRITE /SCRATCH.DISK.DEMO.DATA,F3,B2"

76 I SEQUENTIAL-ACCESS FILES

4.5. THE CLOSE COMMAND

When you are finished reading or writing to a file, you must close the file. It is necessary to
close the file in order to make sure that all characters are written to the file, the file buffer
memory is released to usable memory, and unwanted errors and error messages do not occur.
The CLOSE command works the same as in DOS 3.3. The syntax for the command is:

')CLOSE [pn) I

If you use the CLOSE command without any options, all OPEN files will be closed and
all file buffers will be released.

Option Description

[pn) pn is the pathname or partial pathname that indicates the file that is to be
closed.

Examples of the CLOSE command

PRINT D$;"CLOSE"
PRINT D$;"CLOSE NUMBERS"
PRINT D$; "CLOSE /SCRATCH.DISK/NUMBERS"
PRINT D$;"CLOSE /SCRATCH.DISK/DEMO.DATA''

When you are developing programs of your own, an error might occur that requires you
to change your code. If you make a mistake when a ftle or files were open, you should issue a
CLOSE without options before correcting and rerunning your program.

4.6. THE APPEND COMMAND

This command allows you. to add information to the end of a sequential-access file. This com­
mand actually is three commands in one. It opens the file, positions to the end of the file, and
then performs a write to the file. This command operates the same as in DOS 3.3. The syntax
of this command is:

]APPEND pn [,S#] [,D#]

The APPEND command performs the OPEN, POSITION, and WRITE functions. It
performs the three commands in the one statement. Once you have coded the APPEND com-

THE FLUSH COMMAND I 77

mand, you must also code a PRINT command that will actually store the data at the end of
the file.

Option Description

pn pn is the pathname or partial pathname of the file that is to be opened and written.
If the file doesn't already exist, the file is created.

[,S#]
[,D#]

The slot and drive options have their normal meanings.

Examples of the APPEND command

PRINT D$;'' APPEND EXAMPLES''
PRINT A$

PRINT D$;"APPEND /SCRATCH.DISK/DEMO.DATA,S6,D2"
PRINT A$,B$

4.7. THE FLUSH COMMAND

When writing data to a text file, ProDOS stores up a block of information (512 bytes, or
characters) before anything is placed on the diskette. The FLUSH command is for the pur­
pose of making sure that any characters left in the file buffer area are stored onto the diskette.
In this way you are assured that all characters destined to be written to a file have been stored
in that file. This command is not supported in DOS 3.3. The syntax for this command is:

]FLUSH [pn]

If you use the FLUSH command without any options, all open files will be flushed of
any leftover data, the same as with the CLOSE command.

Option Description

[pn] pn is the pathname or partial pathname that indicates the file that was opened. The
pn must be identical to the pn used to open the file.

Examples of the FLUSH command

PRINT D$;"FLUSH"
PRINT D$;"FLUSH EXAMPLES"
PRINT D$;"FLUSH /SCRATCH.DISK/DEMO.DATA"

78 I SEQUENTIAL-ACCESS FILES

When you use this command, remember it takes more than a normal amount of time
and will have a tendency to slow down your processing. Therefore, you will have to weigh the
tradeoff between data integrity and speed.

4.8. THE POSITION COMMAND

With this command, you are able to access the information in any field or byte within the file.
This command operates similar to the same command in DOS 3.3. The syntax for this com­
mand is:

]POSITION pn,F#

Notice that neither of the arguments is optional. This command starts at the current
position in the file and then reads and discards the number of fields specified in the F# argu­
ment. Remember that the file specified in pn must first be open before you may use the POSI­
TION command.

Option Description

pn pn is the pathname or partial pathname that indicates the file that was opened. It is
the pn of the file whose position is to be altered. It must be identical to the pn of
the file opened.

F# #indicates the number of fields to be read and discarded. If you try to position
beyond the end of the file, you will get an END OF DATA error message.

Examples of the POSITION command

PRINT D$;"0PEN EXAMPLES"
PRINT D$;"POSITION EXAMPLES,F3"

PRINT D$;"0PEN /SCRATCH.DISK/DEMO.DATA"
PRINT D$;''POSITION /SCRA TCH.DISK/DEMO.DISK,F4''

SUMMARY

This chapter introduced you to Pro DOS file processing. This chapter covered the first of the
two types of files supported by ProDOS. These file types are:

-Sequential-access text file
-Random-access text file

QUESTIONS I 19

The random-access text file will be covered in Chapter 5. This chapter covered the
sequential-access file.

You were given various ways of both reading and writing data to a sequential-access text
file. A number of small programs were created to illustrate how to work with this type of text
file.

The syntax was given for each of the commands introduced in this chapter. Examples
were also given for each of the commands.

The similarities and differences between these ProDOS and DOS 3.3 commands were
shown.

Remember that a sequential-access text file is very efficient in the use of diskette storage
space; however, it is not as easy to use sequential-access text files as it is to use random-access
text files. You will find that some of your files will better fit the sequential-access type while
others will better fit the random-access type.

The commands introduced in this chapter were:

OPEN e.g., OPEN /MY /XMAS.LIST Deferred mode only
READ e.g., READ /MY/XMAS.LIST Deferred mode only
WRITE e.g., WRITE /MY /XMAS.LIST Deferred mode only
CLOSE e.g., CLOSE Immediate and deferred

CLOSE /MY /XMAS.LIST
APPEND e.g., APPEND /MY/XMAS.LIST Deferred mode only
FLUSH e.g., FLUSH /MY/XMAS.LIST Immediate and deferred
POSITION e.g., POSITION /MY /XMAS.LIST ,F3 Deferred mode only

QUESTIONS

1. Describe how data is stored on a diskette in a sequential-access file.
2. Describe each of the commands required to write data to a sequential-access file.
3. Describe each of the commands required to read data from a sequential-access file.
4. Which command ensures that you have stored all of the data to a file? What tradeoffs are

to be considered?
5. Describe how to store multiple pieces of data in one field of a sequential-access text file.
6. Explain how to use the Applesoft II BASIC GET instruction to retrieve data and informa­

tion from a sequential-access text file.

5. RANDOM
ACCESS FILES

5.0. OVERVIEW

You never know till you try to

reach them how accessible men are;

but you must approach each man by

the right door.

Henry Ward Beecher, 1887

This chapter introduces you to random-access text files. You will be shown how to create
them, store information in them, and retrieve information from them. This chapter will
assume that you have read the previous chapter on sequential-access text files. There are a
number of similarities between these two types of files.

The first part of this chapter explains the structure of a random-access text file. You will
be able to see the different ways the random-access and sequential-access text files organize
data.

The last part of this chapter explains the syntax and options of each of the commands in­
troduced. It should be pointed out that even though the commands introduced seem to be like
those in the previous chapter, they really are different.

80

RANDOM-ACCESS FILES I 81

You will notice that the commands presented here are very similar to those presented in the
last chapter. However, the options for the commands are different.

The commands introduced in this chapter are shown in the box below.

OPEN e.g., OPEN EXAMPLES,L28 Deferred mode only
OPEN /MY/LIST,L200,S6,Dl

READ e.g., READ EXAMPLES Deferred mode only

WRITE e.g., WRITE EXAMPLES Deferred mode only
WRITE /MY/LIST,S6,Dl

CLOSE e.g., CLOSE Immediate and deferred
CLOSE /MY /XMAS.LIST

DELETE e.g., DELETE /MY /XMAS. LIST Immediate and deferred

APPEND e.g., APPEND EXAMPLES,L28 Deferred mode only
APPEND /MY /LIST /L200,D 1

FLUSH e.g., FLUSH /MY /XMAS.LIST Deferred mode only

5.1. RANDOM-ACCESS FILES

The random-access file is different from the sequential file in that you may access any in­
dividual record that has been written to the diskette. Further, the form of storage on the
diskette is different. The file is made up of individual records. Each record contains fields and
each field contains either characters, numbers or both. The hierarchy of this organization is
shown in Figure 5 .1.

This type of file has some other distinguishing characteristics. Each record is exactly the
same size and length, and, in general, data stored in each record is in the same order and of the
same composition. Each field of each record may be accessed randomly.

The random-access file structure is very useful, flexible, and extremely versatile.
However, it is not necessarily efficient in conserving diskette storage space. So, for the gain in
flexibility, usefulness, and power, you give up some storage space.

The random-access file structure requires that you specify additional file parameters.
The first is the length specification. Since all records in the file are the same size, ProDOS
allocates the specified record length space on the diskette each time you WRITE a new record
to the file. Second, you must specify the record in the file you wish to READ or WRITE.
When you OPEN communication with a random-access file, you specify the file length in ad­
dition to the file name. You also may specify the slot and drive; however, these are optional.

82 I RANDOM ACCESS FILES

Figure 5 .1. File hierarchy.

When you tell ProDOS what type of communication you wish to perform, either READ or
WRITE, you then must specify the file name and the record number. Other options you may
specify will be discussed later.

5.1.1. The record length

The first time you open a random-access file, you must specify the record length. The length
specification of a record represents the number of characters that may be stored in that
record.

Let's look at an example of an OPEN statement.

255 PRINT D$;"0PEN /MY /BANK/NOTES/PAID ,L44,

Notice that the length of the record was specified, but the number of records in the file
was not specified. You do not have to worry about that since Pro DOS keeps track of that item
plus the correct storage location of the records in the file.

5.1.2. Writing a record

The writing of data to a record in a random-access file requires that you specify the record
number to be written. If that record was previously written to, the data now written will over­
write all of the previous data. If the record specified has never been written to, ProDOS will
reserve sufficient space on the diskette under the file name to store the new data. So, if you are
only going to write one character to the PAID file, a total of 44 bytes of diskette storage will
be set aside as being full for each record in the file.

RANDOM-ACCESS FILES I 83

Let's look at an example of the WRITE statement.

260 PRINT D$;"WRITE /MY/BANK/NOTES/PAID,R22"

The subsequent PRINT statements will actually store data into record number 22. You
must specify a record number.

5.1.3. Record character storage

Let's now look at how data is stored into a random-access file. Assume that you have the pro­
gram segment:

]NEW

]LIST

10 REM* RANDOM.NUMBERS PROGRAM
30 D$ = CHR$(4)
40 FOR I = 1 to 4: READ A$(I): NEXT I
42 DATA ONE, TWO, THREE, FOUR

100 PRINT D$;"0PEN NUMBERS.RANDOM,L20"
110 FOR R = 1 TO 4
120 PRINT D$;"WRITE NUMBERS.RANDOM,R";R
130 PRINT A$(R)
140 NEXT R
150 PRINT D$;"CLOSE NUMBERS"
500 END

It is recommended that you power up your system with the /SCRATCH.DISK in the
boot drive. When you have the Applesoft II BASIC prompt character and cursor you are
ready to enter the program above. By the way, you will add to this program later.

Lines

Line 10
Line 30

Line 40
Line 42
Line 100
Line 110

Description

Remark statement identifying program.
The variable D$ contains the CTRL-D ProDOS character that signifies the

following instruction is a ProDOS command.
FOR-NEXT I loop to READ data into the A$ vector.
Data statement corresponding to the READ in previous program line.
OPEN communications with ProDOS. OPEN is discussed in Section 5.2.
Top of the R FOR-NEXT loop.

84 I RANDOM ACCESS FILES

Line 120

Line 130
Line 140

The communications is to WRITE data to the diskette at record number R.
WRITE is discussed in Section 5.4.

Store each data element in correct record to the diskette.
Range of the R loop. NEXT R.

Line 130 does not have the CTRL-D preceding the operation. This is because all output has
already been redirected to the file through the instruction in line 120.

Line 150
Line 500

Terminate communications with ProDOS. CLOSE is discussed in Section 5.5.
END the program.

When you have this program entered, SAVE it as /SCRATCH.DISK/RAN­
DOM.NUMBER and then RUN it. After running the program, the information you have
stored on a diskette is stored in the following way under the name NUMBERS.RANDOM.
This shown in Figure 5.2.

This particular file has four records that encompass 20 characters each for a total of 80
characters, including all of the carriage returns. Please notice that the first record in the file is
designated 1. Further, notice that records 0 and 5 are missing. That is because those records
were not written.

The next thing to realize is that the specified record length of 20 includes the final car­
riage return delimiter that separates individual records. You should take that into account
when specifying the length size of a record.

The last item concerns a little bit of poetic license that has been taken. The carriage
return character delimiters are shown at the end of each record when in reality it will be placed
immediately after the last character written to that record. This was done for the purpose of
easily visualizing how a record is stored on a diskette.

R#

1
2
3
4

Characters stored

ONE
TWO

THREE
FOUR

Notes: (l) The I character represents a carriage return.
(2) Numbers represent the record numbers.
(3) R# represents the record number column.

Figure 5.2. Random-access file storage.

RANDOM-ACCESS FILES I 85

The next obvious question that arises is: ''How can I see what has been stored in the
file?" Fair question. In the next few paragraphs more will be added to the program
/SCRA TCH.DISK/RANDOM.NUMBER.

Load the program /SCRATCH.DISK/RANDOM.NUMBER from your disk drive and
LIST the program. Then enter the following additional code:

20 DIM A$(10)

200 PRINT D$;"0PEN NUMBERS.RANDOM,L20"
210 FOR R = 1 TO 4
220 PRINT D$;"READ NUMBERS.RANDOM,R";R
230 INPUT A$(R)
240 NEXTR
260 PRINT D$;"CLOSE NUMBERS"
300 FOR I= 1 TO 4: PRINT A$(I): NEXT I

Lines

Line 20
Line 200
Line 210
Line 220

Line 230
Line 240

Description

Dimension the variable A$ to handle 11 elements.
OPEN communications with ProDOS. OPEN is discussed in Section 5.2.
Top of the R FOR-NEXT loop.
The communications is to READ data from the diskette. READ is discussed in

Section 5.3.
Read the records into the A$ vector.
Range of the R loop. NEXT R.

Line 230 does not have the CTRL-D preceding the operation. This is because all input has
already been redirected to the file through the instruction in line 220.

Line 260
Line 300

Terminate communications with ProDOS. CLOSE is discussed in Section 5.5.
Print the contents of the A$ vector to the video screen.

When you have the additional program code entered, SAVE it as /SCRATCH.DISK/
RANDOM.NUMBER and then RUN the program again. If everything goes well, you should
see displayed on the screen:

ONE
TWO
THREE
FOUR

86 I RANDOM ACCESS FILES

You now know that what you stored may be retrieved and seen through the mechanism
of supporting code that prints what has been retrieved from the diskette. Also, you have now
written a very simple data storage and retrieval system. It really wasn't very difficult, was it?

If you now go back to Chapter 4 and look through Section 4.1, you will see that the two
programs RANDOM.NUMBER and NUMBER.PROGRAM are very similar. This was done
on purpose to give you a simple but graphic comparison. When running these two programs,
the results are exactly the same, they both run in essentially the same amount of time, and oc­
cupy essentially the same space on a diskette.

So, what's the differences?
In these simple examples the differences are difficult to see immediately. The major dif­

ferences are evident in the way disk I/0 code must be written. In the next program example,
the differences will become much more dramatic.

Up to this point, there has been only one field in each record of the random-access text
file. There are usually multiple fields of data in one record. By this I mean that there are multi­
ple pieces of data within a single record of a random-access file. This is done by placing
commas between each field that makes up each record in the file. ProDOS does this for you.
For example, let's put three fields of information within one record using the following code:

]NEW

]LIST

10 REM* MULTI-FIELDS PROGRAM
20 DIM A$(10)
30 D$ = CHR$(4)

100 PRINT D$;"0PEN FIELDS.DATA,L20"
110 HOME: PRINT TAB(11) "MULTI-FIELDS DEMO": PRINT
120 PRINT D$;"WRITE FIELDS.DATA,RI"
130 PRINT "FIRST": PRINT "SECOND": PRINT "THIRD"
135 PRINT D$;"WRITE FIELDS.DATA,R2"
140 PRINT "ELEMENTS": PRINT "PER": PRINT "RECORD"
150 PRINT D$;"CLOSE"
200 PRINT D$;"0PEN FIELDS.DATA,
210 PRINT D$;"READ FIELDS.DATA,R1"
230 INPUT A$(1),A$(2),A$(3)
240 PRINT D$;"READ FIELDS.DATA,R2"
250 INPUT A$(4),A$(5),A$(6)
260 PRINT D$;"CLOSE"
300 FOR I = 1 TO 6 : VT AB 2 +I
310 PRINT A$(I)
320 NEXTI
500 END

RANDOM-ACCESS FILES I 87

Power up your system with the /SCRATCH.DISK in the boot drive. Then enter this
program from the keyboard. When it has been entered, save the program using the name
MULTI.FIELDS. Then RUN the program to see what happens.

You should get the following output:

MULTI-FIELDS DEMO

FIRST
SECOND
THIRD
ELEMENTS
PER
FIELD

Lines

Line 10
Line 20
Line 30

Line 100

Line 110

Description

Remark statement identifying program.
Dimension the variable A$ to handle 11 elements.
The variable D$ contains the CTRL-D ProDOS character that signifies the

following instruction is a ProDOS command.
OPEN communications with ProDOS. OPEN is discussed in Section 5.2. Record

length is 20.
Clear the screen. HOME.
Print screen title centered at the top.
Print a blank line on the screen. PRINT.

It is permissible to print to the screen after a file is open provided you do the printing before
the WRITE command to the file is executed.

Line 120

Line 130
Line 135

Line 140

The communications is to WRITE data to the diskette.
WRITE is discussed in Section 5 .4. WRITE record 1.
Store the first record to the diskette. This record contains three fields.
The communications is to WRITE data to the diskette.
WRITE record 2. WRITE is discussed in Section 5.4.
Store the second record to the diskette. This field also contains three fields.

Lines 130 and 140 do not have the CTRL-D preceding the operation. This is because all output
has already been redirected to the file through the instructions in lines 120 and 135.

Line 150
Line 200

Terminate communications with ProDOS. CLOSE is discussed in Section 5.5.
OPEN communications with ProDOS. OPEN is discussed in Section 5.2.

88 I RANDOM ACCESS FILES

Line 210 The communications is to READ data from the diskette.
READ is discussed in Section 5. 3. Read record 1.

Line 230 Read the first record from the diskette. This record contains three fields.
Line 240 The communications is to READ data from the diskette.

READ is discussed in Section 5.3. Read record 2.
Line 250 Read the second record from the diskette. This record also contains three fields.

Lines 230 and 250 do not have the CTRL-D preceding the operation. This is because all input
has already been redirected to the file through the instruction in lines 210 and 240.

Line 260
Line 300

Line 310
Line 320
Line 500

Terminate communications with ProDOS. CLOSE is discussed in Section 5.5.
Top of the FOR-NEXT I loop.
Position cursor on the screen. VTAB 2+ I.
Print the contents of the A$ vector to the video screen.
Range of the I loop. NEXT I.
END the program.

Notice that lines 130 and 140 of the program are actually written to the file without any
commas embedded between fields in the record. Later in the program, you will need to
retrieve the three fields of data in each record. Since INPUT statements consider commas as
delimiters signifying the end of an element of data, it is necessary to use multiple data inputs.
This has been shown in lines 230 and 250.

At this point, it might be a good idea to look at how these two multiple-field records are
stored on a diskette. This is shown in Figure 5.3.

Notice that the extra space available in each record has been shown only to help you to
visualize the structure. Notice that you should account for both the commas and the carriage
return delimiter at the end of a record. The length parameter specified was set at 20. This is ac­
tually a little small, and was done for illustration purposes.

Now, by using the information presented, how would you read only the first field of
each record? Another question could be: how could you use the GET instruction to retrieve
information from the FIELDS.DAT A file? I am sure you can think of many other possible
questions.

Again, it would be a good idea to compare this last program with its counterpart in Sec­
tion 4.1.

Characters stored: FIRST ,SECOND, THIRD I
Record numbers: { 1 }

Notes: (1) the I character represents a carriage return.
(2) Numbers represent the record numbers.

ELEMENTS,PER,FIELDI
{ 2 }

Figure 5.3. Random-access file character storage.

THE OPEN COMMAND I 89

5.1.4. Reading from a record

As you saw in the last two small programs, the READ command for a random-access file re­
quires that you specify the record number that is to be read. For example, look at line 210
from the last program example. The line is repeated here.

210 PRINT D$;"READ FIELDS.DATA,R1"

The following sections of this chapter explain each of the commands that are used with
random-access flies.

5.2. THE OPEN COMMAND

Before you are able to read or write data from or to any random-access file, you must first
open communication with that text file. The open command will also set aside file buffer
space in memory to handle temporary data storage. This command operates the same as in
DOS 3.3 except for the length option default. The syntax for this command is:

]OPEN pn [,L#] [,S#] [,D#]

The first time you open communication with a random-access file, you must supply the
length parameter option. The # in this option is the number of bytes that each record in the file
may hold. After the ftle has been opened once, the length option is no longer needed because
ProDOS assumes that the length is the same.

Opening a random-access file with a record length other than the length used to create
the file, that length will be used until the file is closed. However, the original length still re­
mains as the default record length.

When you open a text ftle, ProDOS sets aside a ftle buffer memory space that holds
file identification information. Further, the system is prepared to either read or write
data starting at the beginning of the opened file. ProDOS allows you to have 8 files open
simultaneously.

When using files, it is always a good idea to FLUSH and CLOSE all open files before
leaving the current program. It is possible you could loose data that you thought was stored to
the diskette.

Option Description

pn pn indicates the name or partial pathname of the ftle to be opened. If the file
already exists, it must not already be open. If the file does not already exist, it is
created by ProDOS.

[,L#] You are required to use the record length option the first time you open the file.
This can be as early as when the ftle is created. If, however, you create the file

90 I RANDOM ACCESS FILES

without the length option, ProDOS assigns a record length of 1 for the file. A
record length may be any positive integer in the range of 1 to 65535.

[,S#] The slot and drive options have their normal meanings.
[,D#]

Examples for the OPEN command

PRINT D$;"0PEN DUMMY.DATA,L128"
PRINT D$; "OPEN /MY /BANK/NOTES/PAID,L30,S6,D2"
PRINT D$;"0PEN PAID,L";L;" ,S";SL;" ,D";DR
PRINT D$;"0PEN ";F$;" ,L";LN

5.3. THE READ COMMAND

Before you can read any data from a file, you must identify to ProDOS that you want to read
data. The READ command tells ProDOS the file name and the record number you want to
read. This command works essentially the same as in DOS 3.3. The syntax for this command
is:

]READ pn [,R#] [,F#] [,B#]

The READ command specifies to ProDOS:

-The file pathname.
-The record number.
-The position within the record.

The READ command will remain in effect until another ProDOS command is executed.

Option

pn
[,R#]

Description

pn indicates the name or partial pathname of the file to be accessed.
#is the number of the record to which characters are to be stored. If this number

option is omitted, record 0 is assumed by ProDOS. The maximum record num­
ber is 16 megabytes divided by the file's record length, or 65535, whichever is
smaller.

If # is larger than any previous record number, the END FILE column in the
catalog changes.

THE WRITE COMMAND I 91

[,F#] # is the number of fields that ProDOS should read and discard. Reading fields is
done by starting at the current position and reading characters counting the
specified number of carriage returns. This option changes the file's current posi­
tion.

[,B#] # is the number of bytes, or characters, which ProDOS should read and discard.
This option changes the position in the file relative to the file's current position.

Examples for the READ command

PRINT D$;"READ DUMMY.DATA,R22"
PRINT D$;"READ ";F$;" ,R";R
PRINT D$;"READ DUMMY.DATA"
PRINT D$;"READ /MY /BANK/NOTES/PAID,R22"

5.4. THE WRITE COMMAND

It is necessary to tell Pro DOS you want to WRITE data to some file record before you use the
PRINT statement to put characters into a random-access file.

The WRITE command specifies to ProDOS:

-The file pathname
-The recorded number
-The position within the record

The WRITE command will remain in effect until another ProDOS command is exe­
cuted. The syntax of this command is:

]WRITE pn [,R#] [,F#] [,B#]

Each time you wish to write to a different record, you need to use the WRITE command
before writing the new data to that new record. If you use the WRITE command without
specifying a record number, record zero will be written. This command operates essentially
the same as in DOS 3.3.

Option

pn
[,R#]

Description

pn indicates the name or partial pathname of the file to be written.
#is the number of the record to which characters are to be stored. If this number

option is omitted, record 0 is assumed by ProDOS. The maximum record

92 I RANDOM ACCESS FILES

number is 16 megabytes divided by the file's record length, or· 65535, whichever
is smaller.

If # is larger than any previous record number, the END FILE column in the
catalog changes.

[,F#] # is the number of fields that ProDOS should read and discard. Reading fields is
done by starting at the current position and reading characters counting the
specified number of carriage returns. This option changes the file's current posi­
tion.

[,B#] #is the number of bytes, or characters, which ProDOS should read and discard.
This option changes the position in the file relative to the file's current position.

Examples for the WRITE command

PRINT D$;"WRITE DUMMY.DATA,R22"
PRINT D$;"WRITE ";F$;" ,R";R
PRINT D$;"WRITE DUMMY.DATA"
PRINT D$;"WRITE /MY /BANK/NOTES/PAID,R22"

5.5. THE CLOSE COMMAND

When finished with all of your disk processing, you should CLOSE all of the files that were
open. It is necessary to properly close open files in order to ensure that all data has been
written to the file and that all file buffer space is released.

]CLOSE [pn]

The CLOSE command without the pn option will close all files and release all file buffer
space. This command operates exactly as in DOS 3.3.

Option Description

pn pn indicates the name or partial pathname of the file to be closed. It must be iden-
tical to the pn that you previously opened.

Examples for the CLOSE command

PRINT D$;"CLOSE"
PRINT D$;"CLOSE DUMMY.DATA"
PRINT D$; ''CLOSE /MY/BANK/NOTES/PAID''
PRINT D$;"CLOSE ";F$

THE APPEND COMMAND I 93

5.6. THE DELETE COMMAND

The purpose of the DELETE command is to enable you to get rid of any file on a diskette ex­
cept the volume directory.

]DELETE pn [,S#] [,D#]

This command operates exactly as in DOS 3.3.

Option

pn

[,S#]
[,D#]

Description

pn indicates the name or partial pathname of the file to be opened. If the file
already exists, it must not already be open. If the file does not already exist, it is
created by ProDOS.

The slot and drive options have their normal meanings.

Examples for the DELETE command

PRINT D$;"DELETE"
PRINT D$;"DELETE DUMMY.DATA"
PRINT D$;"DELETE /MY/BANK/NOTES/PAID"
PRINT D$;"DELETE ";F$

5.7. THE APPEND COMMAND

The APPEND command is used for the purpose of writing data to the end of the present file.
This command is actually three commands in one. APPEND opens the file, positions to the
end of the file, and then writes the data to the file. The syntax of this command is:

]APPEND pn [,L#] [,S#] [,D#]

After APPEND has been executed, you just have to issue the PRINT statements needed
to store data into the file at the current end of the file. This command is not supported for
random-access files in DOS 3.3.

Option Description

pn pn indicates the name or partial pathname of the file to be accessed.

94 I RANDOM ACCESS FILES

[,L#] You are required to use the record length option the first time you open the file.
This can be as early as when the file is created. If, however, you create the file
without the length option, ProDOS assigns a record length of 1 for the file. A
record length may be any positive integer in the range of 1 to 65535.

[,S#] The slot and drive numbers have their normal meanings.
[,D#]

Examples for the APPEND command

PRINT D$;"APPEND DUMMY.DATA,R22"
PRINT D$;"APPEND ";F$;" ,R";R
PRINT D$;"APPEND DUMMY.DATA"
PRINT D$; "APPEND /MY /BANK/NOTES/P AID,R22"

5.8. THE FLUSH COMMAND

The FLUSH command is used for the purpose of ensuring that all of the data in the file buffer
area is written to the diskette. ProDOS will store up to 512 bytes of data in its file buffer
before actually writing anything to the diskette media. This command is for the purpose of
emptying the file buffer. The syntax of this command is:

]FLUSH [pn]

When you use the FLUSH command without the pathname option, all open files will be
flushed. One caution: this command takes time and will slow down processing. This com­
mand is not supported by DOS 3.3.

Option Description

pn pn indicates the name or partial pathname of the file to be accessed.

Examples for the FLUSH command

PRINT D$;"FLUSH"
PRINT D$;"FLUSH DUMMY.DATA"
PRINT D$;"FLUSH /MY/BANK/NOTES/PAID"
PRINT D$;"FLUSH ";F$

QUESTIONS I 95

SUMMARY

This chapter discussed the random-access text file. The structure of the file and the way data is
stored on a diskette were explained. Example programs were given, similar to those shown in
Chapter 4. These examples were designed to show the differences in the program code written.

The characteristics of random-access file organization were shown. The method of data
storage on a diskette within a random-access text file was also shown.

The tradeoffs between using sequential-access and random-access text files were
discussed.

For each of the instructions discussed, a comparison was made to DOS 3.3 so that you
can make the transition easily.

The commands introduced in this chapter were:

OPEN e.g., OPEN EXAMPLES,L28 Deferred mode only
OPEN /MY /LIST,L200,S6,D1

READ e.g., READ EXAMPLES Deferred mode only
WRITE e.g., WRITE EXAMPLES Deferred mode only

WRITE /MY /LIST ,S6,D 1
CLOSE e.g., CLOSE Immediate and deferred

CLOSE /MY /XMAS. LIST
DELETE e.g., DELETE /MY/XMAS.LIST Immediate and deferred
APPEND e.g., APPEND EXAMPLES,L28 Deferred mode only

APPEND /MY /LIST /L200,D 1
FLUSH e.g., FLUSH /MY /XMAS.LIST Deferred mode only

QUESTIONS

1. Describe how data is stored in a random-access file.
2. Compare sequential-access and random-access files. Account for both commands and

storage differences.
3. Discuss the F# and B# options for those commands that have them.
4. When using random-access files, are you allowed to use variables within the commands?

How do you do this?
5. What is the purpose of the APPEND command?
6. What is the purpose of the FLUSH command?

6. BINARY FILES

Drown not thyself to

save a drowning man.

Thomas Fuller, 1732

6.0. OVERVIEW

This chapter will discuss the Pro DOS commands that let you use and manipulate binary pro­
grams and files. Remember that the running of a binary program may be accomplished using
the intelligent RUN command, -(DASH). That command was discussed in both Chapters 1
and 2.

The commands discussed in this chapter allow you to:

-load, save, and run binary programs.
-use binary programs to read and write characters.

The commands introduced in this chapter are shown in the box below:

96

BINARY FILES I 91

BLOAD e.g., BLOAD PICI Immediate and deferred mode
BLOAD PICI,A$4000

BSAVE e.g., BSAVE PICI,A$2000 Immediate and deferred mode
BSAVE PICI,A8192

BRUN e.g., BRUN TONE.BEEP Immediate and deferred mode
BRUN BEEPER,
A$300
- TONE.BEEP

PR# e.g., PR#l Immediate and deferred mode
PR#O

IN# e.g., IN#2 Immediate and deferred mode
IN#O

6.1. BINARY FILES

ProDOS, like DOS 3.3, allows you to store and retrieve portions of memory either to or from
a diskette. Earlier, in Chapter 2, you were introduced to the RUN, LOAD, and SAVE com­
mands. These commands dealt with Applesoft II BASIC programs. When dealing with binary
files, the BRUN, BLOAD, and BSAVE commands perform similar functions. The major dif­
ference is that these commands deal with uninterpreted information stored in some portion of
your computer's memory.

The B letter preceding the command names signifies that the file to be manipulated is
binary in nature. Each command manipulates the information between the computer memory
and the file storage location on a byte-for-byte basis. These commands are referred to as
binary commands. Normally, these binary commands will involve a machine-language pro­
gram, a high-resolution picture for one or both of the Apple II computer graphics screens, or
any information in binary form that is in memory or stored on a diskette.

98 I BINARY FILES

6.1.1. Binary addresses

If you are only going to run machine-language programs that are already stored on a diskette,
you will not have to understand the memory organization of your computer. However, in all
likelihood, your involvement with binary files will be much more extensive.

If you are going to save binary memory information, graphics screen data, or work with
machine-language files, you will need to know how memory information is organized.

Memory is a continuous sequence of byte locations, each having a unique address. Each
address is different from all other addresses so that there is no confusion when referencing
any particular location. This is analogous to your home address. It is different from your
neighbors' addresses. The first memory location in your computer is 0 in decimal which
equals $0000 hexadecimal. The next memory location is 1 in decimal, $0001 in hexadecimal.
Therefore, a 64K Apple computer has as its highest memory location 65535 in decimal, $FFFF
in hexadecimal. Appendix J gives you a decimal to hexadecimal conversion table.

In general, when working with binary files, you must specify a number of different
memory locations to save any portion of memory to a diskette file. First of all, you need to
define the starting address of the file in memory. Next, you need to define the length of the file
to be saved. This may be done in either of two ways. You may use the length option or the end­
ing address option. Further, you have the option of specifying these options in either decimal
notation or hexadecimal notation. In fact, you may mix up these option notations. These op­
tions will be discussed in the next section.

6.1.2. Command options

When saving binary information, it is necessary to define the address of the first memory
location to be saved. This is determined by using the A# option. The number of memory loca­
tions to be saved must also be defined using the L# option.

The A# and L# options may be expressed in either decimal or hexadecimal notation.
Both of these options are the same as in DOS 3.3.

Alternatively, you may use the new E# option, which is the ending address for the binary
file to be transferred. This is a new option in ProDOS. The length of a binary file may be
calculated by subtracting the starting address from the ending address. Caution: Do not mix
notation values. Subtract decimal values from decimal values and hexadecimal values from
hexadecimal values.

All of these options are discussed in detail in Section 6.3.

THE BLOAD COMMAND I 99

6.2. THE BLOAD COMMAND

This command causes binary data to be transferred from any disk file to a specified portion of
memory. Binary data is normally a machine-language program, a picture, or other graphics
data. This command works the same as in DOS 3.3 except for the additional options.

The syntax for this command is:

]BLOAD pn [,A#] [,B#] [,L#IE#] [Ttype] [,S#] [,D#]

The vertical line signifies that either option may be used but both are not required.
The BLOAD command may be used to: ·

-transfer a machine-language program from file storage to memory.
-move a graphics image from file storage to the graphics screen.
-move any binary image from file storage to memory.

If you use this command with nothing but the pathname option, then the entire file at the
default address values will be loaded from file storage to memory.

Option

pn

[,A#]

[,E#]
[,L#]

Description

pn is the pathname or partial pathname to indicate the file desired. If this is the
only option specified, the entire file specified will be placed into memory starting
at the stored default address.

If you have the 80-column capability activated and use the CATALOG command,
the starting address is presented in hexadecimal notation with an A preceding the
address. This is shown in the SUBTYPE column.

This is the memory address at which the first byte of the file is to be loaded into
memory. The address specified must be a valid memory location.

E# is the last memory address location to be transferred.
L# is the number of bytes to be transferred.

100 I BINARY FILES

[,B#]

[Ttype]

[,S#]
[,D#]

This option designates the first byte in the file that is to be transferred from the
diskette to memory. If this option is not specified, then byte zero ($0000) starts
the transer.

Type is the three-letter abbreviation that indicates the type of file to be transferred.
If no type is specified, the file will be the BIN type. See Chapter 3 for all of the
abbreviations.

The slot and drive options have their normal meanings.

When you are storing files on a diskette using ProDOS, the command used to save the
file, SAVE or BSA VE, determines the file's storage format. An Applesoft II BASIC program
is saved by using tokens that represent the language's keywords. A token is an ASCII numeric
value that stands for a language keyword or symbol. For example, the keyword PRINT, is
represented by the token value 186 = $BA.

It is now possible to BLOAD that Applesoft II BASIC program into memory by using
BLOAD with Ttype option as BAS. You could now make changes, look at the uninterpreted
code, or do anything else. When you are finished, then BSA VE the file back onto the diskette,
if necessary.

Examples of BLOAD command

BLOAD PICTURE
BLOAD PICTURE,A8192,El6383
BLOAD PICTURE,A$2000,L$2000,S6,D2
BLOAD PICTURE,A$2000,L8192
BLOAD PICTURE,A8192,A$2000
BLOAD PICTURE,BO,BIN ,S6,D2

6.2.1. Installing machine-code routines

Because of the way Pro DOS dynamically allocates and deallocates memory for file buffers, it
is somewhat more difficult to manage memory and guarantee which parts of memory will be
free to store and protect machine-language routines.

For example, when you OPEN a file under control of ProDOS, the HIMEM pointer is
moved down in memory by lK. This lK area of memory is used as a file buffer in the area
where the old HIMEM used to be located. Further, that 1024 byte memory area, 4 pages, is
marked as used by the system bit map. More will be said about this in Chapter 9.

Therefore, in order to store a machine-language routine into memory and protect that
routine's memory area, you must also do the same as ProDOS. When moving HIMEM down,
you must move HIMEM in increments of 256 bytes, a page at a time. Then you can BLOAD
your routine into memory and, finally, mark the appropriate system bit map as used.

THE BSA VE COMMAND I 101

You should do all machine-language loading into memory BEFORE you open any files. In
this way, all file buffers will then reside below all of your own routines.

6.3. THE BSA VE COMMAND

This command causes binary data to be transferred from a specified portion of memory to
any type of diskette file. Data anywhere in the computer's memory may be transferred to a file
on a diskette. This command works the same as in DOS 3.3 except for the additional options.

The syntax for this command is:

]BSA VE pn ,A# ,L#I,E# [,B#] [,Ttype] [,S#] [,D#]

The vertical line signifies that either option may be used but both are not required.
You may use the BSAVE command to:

-transfer a machine-language program from memory to a storage file.
-move a picture from a graphics screen to a storage file.
-move any portion of memory into any type of storage file.

When using the BSA VE command, it is necessary to use the pn, A#, and either the L# or
E# options.

Option

pn

,A#

,E#
,L#
[,B#]

[Ttype]

Description

pn is the pathname or partial pathname to indicate the file desired. If this is the
only option specified, the entire file specified will be placed into memory starting
at the stored default address.

If you have the SO-column capability activated and use the CATALOG command,
the starting address is presented in hexadecimal notation with an A preceding the
address. This is shown in the SUBTYPE column.

This is the memory address at which the first byte of the file is to be saved from
memory. The address specified must be a valid memory location.

E# is the last memory address location to be transferred.
L# is the number of bytes to be transferred.
This option designates the first byte in the file that is to be transferred from the

diskette to memory. If this option is not specified, then byte zero ($0000) starts
the transfer.

Type is the three-letter abbreviation that indicates the type of file to be transferred.

102 I BINARY FILES

If no type is specified, the file will be the BIN type. See Chapter 3 for all of the
abbreviations.

[,S#] The slot and drive options have their normal meanings.
[,D#]

Examples of BSA VE command

BSAVE HR1.PIC,A8192,L8192
BSA VE HRI.PIC,A$2000,L$2000
BSA VE HR1.PIC,A8192,L$2000,BO,S6,D2
BSA VE HR l.PIC,A$2000,L$2000
BSA VE HR1.PIC,A8192,E16383
BSA VE HR1.PIC,A16384,E24576,BO,S6,D2

6.4. THE BRUN COMMAND

This command causes binary data to be transferred from a binary disk file (BIN) to a specified
portion of memory, and then executed. You will use this command to execute a binary pro­
gram stored in a binary file on a diskette. This command works the same as in DOS 3.3 except
for the added options.

The syntax for this command is:

]BRUN pn [,A#] [,B#] [,L#I ,E#] [,S#] [,D#]

When you use this ProDOS command, the binary file specified by the pn is loaded into the
memory locations specified by the options or the defaults and then commences execution of
the program. The vertical line signifies that either option may be specified if you use that op­
tion but both are not required.

There is one caution when using this command. Pro DOS does not differentiate between
binary programs and binary data. Therefore, it is recommended that you use file names that
relate to the contents of the file. For example, MUSIC.PROG to designate a binary program
that might play musical tunes or HR2.PIC to designate a high-resolution page 2 graphics pic­
ture. There is the possibility that running a binary data or graphics picture could cause
changes to Pro DOS and ruin your whole day.

As was shown in Chapter 2, you may use the- (DASH) command to run a machine-language
program.

Option

pn

[,A#]

[,E#]
[,L#]
[,B#]

[,S#]
[,D#]

THE PR# AND IN# COMMAND I 103

Description

pn is the pathname or partial pathname to indicate the file desired. If this is the
only option specified, the entire file specified will be placed into memory starting
at the stored default address.

If you have the SO-column capability activated and use the CATALOG command,
the starting address is presented in hexadecimal notation with an A preceding the
address. This is shown in the SUBTYPE column.

This is the memory address at which the first byte of the file is to be loaded into
memory. The address specified must be a valid memory location.

E# is the last memory address location to be transferred.
L# is the number of bytes to be transferred.
This option designates the first byte in the file that is to be transferred from the

diskette to memory. If this option is not specified, then byte zero ($0000) starts
the transfer.

The slot and drive options have their normal meanings.

Examples of BRUN command

BRUN MUSIC.PROG
- MUSIC.PROG
BRUN MUSIC.PROG,A$300
BRUN MUSIC.PROG,A768,BO,S6,Dl
BRUN MUSIC.PROG,A$300,BO,L30,S6,D 1

6.5. THE PR# AND IN# COMMAND

These commands normally are used to redirect your computer's output or input. This was
discussed previously in Chapter 3. These commands allow you to communicate through the
expansion slots in addition to the normal forms of communication. These commands work
the same as in DOS 3.3 except for the additional options.

The syntax for these commands is:

]PR# slot [,A#] lA#

]IN# slot [,A#]IA#

The vertical line signifies that either option may be used but both are not required.

104 I BINARY FILES

Option Description

slot This value may be any integer number from 0 through 7. If the number is zero, then
output is to the video screen. If slot is any number from 1 through 7, then input
and output are redirected to the slot specified.

[,A#] #is an address option. This is for the purpose of defining the address of the charac-
ter input or output routine you wish to use.

A# Same as above.

The A option is an added capability to the PR# and IN# commands that was not present
in DOS 3.3. This capability allows you to write your own character input routines or output
routines. Then when you reference that particular slot, the routine stored at the A option ad­
dress will actually be executed.

Another very handy capability allows you to change the physical address mapping of the
expansion slots.

For example, you could reassign slot addresses.

]PR# 1,A$C200

In this case you have reassigned slot 2 to slot 1. Since the normal slot for a printer is slot 1 and
you have a printer in slot 2, you have actually reassigned slot numbers.

Examples of PR# and IN# commands

PRINT D$; "PR#O"
PR#6
PR#l
PRINT D$;"PR#l"
IN#2,A$C200
IN# 1 ,A$C200
PRINT D$; "IN#2"
IN#O
PRINT D$;"1N#3"

6.6. THE MONITOR AND PRODOS

Since this chapter deals with binary files, now would be a good time to discuss a very in­
teresting new capability of Pro DOS. There are probably times when you will be in the monitor
and you wish to know what has been stored on a diskette. To get into the monitor, type:

SUMMARY I lOS

]CALL -151

Then you will be presented with the monitor prompt;

•

All of the Pro DOS commands will still work from within the monitor. For example, you may
wish to type:

*CAT

This will give you the normal 40-column catalog display. From here you may run an Ap­
plesoft II BASIC program, perform a warm boot, return to the BASIC prompt, or other
monitor evolutions.

Normally, you will want to return to the monitor by typing:

*CTRL-C

This means to type the CTRL key and the C key simultaneously, followed by typing the
RETURN key.

SUMMARY

This chapter explained and discussed in detail those ProDOS commands that allow you to
manipulate binary files.

The general organization of memory was discussed, and the use of the address options
used with the binary commands was shown.

The commands introduced in this chapter were:

BLOAD e.g., BLOAD PICl Immediate and deferred mode
BLOAD PICl,A$4000

BSAVE e.g., BSAVE PICl,A$2000 Immediate and deferred mode
BSAVE PIC1,A8192

BRUN e.g., BRUN TONE.BEEP Immediate and deferred mode
BRUN BEEPER,A$300
-TONE.BEEP

PR# e.g., PR#l Immediate and deferred mode
PR#O

IN# e.g., IN#2 Immediate and deferred mode
IN#O

106 I BINARY FILES

QUESTIONS

1. If you did not have the FILER program, how could you move the PRO DOS, BASIC.SYS­
TEM, and STARTUP programs to a newly formatted diskette?

2. What does theE# option mean? Where might this information be helpful? Where is this in-
formation displayed?

3. How is the Ttype option helpful? Where and when is it used?
4. How can you redirect or remap a slot assignment?
5. How do the IN# and PR# commands work?

7. EXECUTIVE FILES

Philanthropic and religious bodies do

not commonly make their executive

officers out of saints.

Emerson~ 1860

7.0. OVERVIEW

This chapter explains the EXEC command. This command allows you to have the Apple com­
puters take control of operations through the use of sequential-access text flies. The sequen­
tial-access text ftle may contain:

-ProDOS commands,
-Applesoft II BASIC program, or
-Input statements.

It is possible, through the use of the EXEC command, to:

-Convert Integer BASIC programs to Applesoft II BASIC programs.
-Repair programs.
-Insert routines into programs.

107

108 I EXECUTIVE FILES

-Renumber programs or portions of programs.
-Move code from programs to text files to an APPLEWRITER file. (See the APPLE-

WRITER EXTENDED program.)
-Create an automatic, turnkey set of routines that run without intervention by you, the

operator.

The command introduced in this chapter is shown in the box below:

EXEC e.g., EXEC DUMMY Immediate and deferred mode

7.1. EXEC FILES DEMONSTRATION

There are actually two steps involved in the creation of an EXEC file. These are:

1. Create and RUN an Applesoft II BASIC program that creates an EXEC file.
2. Use the EXEC command to perform the functions of the EXEC file commands. Com­

mands are taken from the EXEC file.

The Applesoft II BASIC program you create must do the following:

-OPEN a sequential-access text file,
-WRITE to or APPEND to a file,
-put commands into the text file using the PRINT or LIST command,
-CLOSE the sequential-access text file.

Let's create a small program to illustrate what is required to be done. Power up your sys­
tem with the SCRATCH.DISK in the boot drive and then enter the following small program.

]NEW

]LIST

10 REM * BASIC PROGRAM
100 HOME: PRINT TAB(16) "EXECS IT": PRINT
110 PRINT "ONCE UPON A TIME"
120 PRINT "THERE WAS AN EXEC"
130 PRINT "WHO RAN EVERYTHING"
140 PRINT "WITHOUT HELP FROM YOU"
150 END

EXEC FILES DEMONSTRATION I 109

Now that you have entered this program, save it as EXEC.PROG to the SCRATCH.
DISK. You could use the command:

]SAVE /SCRATCH.DISK/EXEC.PROG

Since your system is still up and running, you next write the second program that will,
when RUN, create the text file that will later be EXECuted. The program to be entered is:

]NEW

]LIST

10 D$ = CHR$ (4)
100 PRINT D$;"PREFIX /SCRATCH.DISK/"
110 PRINT D$;"0PEN DO.EXEC"
120 PRINT D$;"WRITE DO.EXEC"
130 PRINT "PREFIX /SCRATCH.DISK"
140 PRINT "CAT"
150 PRINT "RUN EXEC.PROG"
160 PRINT "LIST"
170 PRINT D$; "CLOSE DO .EXEC"
180 END

Now that you have this program entered, save it as EXEC.IT. This can be done by:

]SAVE /SCRATCH.DISK/EXEC.IT

You now have the two required programs saved on the SCRATCH.DISK. The next
thing to do is to:

]RUN /SCRATCH.DISK/EXEC.IT

which will create the sequential-access text file named DO.EXEC. Finally you are ready to use
the EXEC command. Type the command:

]EXEC DO.EXEC

This will cause the commands in the sequential-access file named DO .EXEC to be ex­
ecuted. You now have a program named EXEC.ITwhich may be used to create EXEC files of
all kinds.

The next section will discuss the details and options of the EXEC command.

110 I EXECUTIVE FILES

7.2. THE EXEC COMMAND

The EXEC command allows you to take commands and data from a sequential-access text file
instead of from the keyboard or through other text file forms. This command works essen­
tially the same as it does in DOS 3.3. The syntax for this command is:

]EXEC pn [,F#] [,S#] [,D#]

There are some interesting things that should be known when an EXEC file is actively
running. These are:

The program is not affected by either a
NEW command or
CLOSE command.

The program cannot be stopped by a CTRL-C.

Monitor commands cannot be executed from within an EXEC file.

If an EXEC file is executing:
It may execute an Applesoft II BASIC program.

Interrupting the program with CTRL-C, will usually interrupt the EXEC
file.
Subsequent INPUTted data from program will be taken from the EXEC
file.

It may execute another EXEC file.
The second EXEC file will replace the first EXEC file.

Option Description

pn
[,F#]

[,S#]
[,D#]

pn is the pathname or partial pathname that identifies the EXEC file.
#is the number of fields to skip at the beginning of the EXEC file. This is accom­

plished by counting the number of instruction delimiters passed over.
The slot and drive options have their normal meanings.

Examples for the EXEC command

EXEC DO.EXEC
EXEC DO.EXEC,F2
EXEC /SCRATCH.DISK/DO.EXEC
EXEC /SCRA TCH.DISK/DO.EXEC,S6,Dl

EXEC FILES DEMONSTRATION I Ill

7.3. EXEC USES

One of the more interesting and useful applications that the EXEC command may accomplish
is the transforming of an Applesoft II BASIC program to a text file. Why would you want to
do that? Once an Applesoft II BASIC program has been captured into a sequential-access text
file you can:

-edit the program using a word processor, such as APPLE WRITER II or APPLEWRITER
lie.

-merge parts of one program into another program, such as your favorite subroutines.
-insert subroutines from a subroutine file into a large program.
-connect two or more programs together.
-convert an Integer BASIC program to Applesoft II BASIC program.

Probably the most powerful use of the EXEC command is the combination of capturing
an Applesoft II BASIC program using EXEC and performing global edits, changes, and addi­
tions to that program using APPLEWRITER. When you have finished with the new word­
processor file and saved the latest version to diskette, then EXEC your new program.

SUMMARY

This chapter discussed only the one command, EXEC.
An entire chapter was devoted to this command because it is very powerful and allows

you to accomplish many very interesting, useful things.
A number of possible uses for the EXEC command were discussed. However, not all of

the possibilities were explained or discussed. Your imagination should provide you with many
other possibilities.

QUESTIONS

1. Discuss the requirements for creating an EXEC file.
2. Discuss various ways that you could use the EXEC command.
3. Discuss in detail how you would use EXEC operating in Pro DOS with APPLEWRITER II

operating in DOS 3.3. Include how to go from DOS 3.3 to ProDOS.
4. Discuss how to convert an Integer BASIC program to Applesoft II BASIC.
5. How would you insert a series of subroutines into an Applesoft II BASIC program using

the EXEC command?

8. THE PROOOS FilER
AND CONVERT PROGRAMS

Do we move ourselves, or are moved

by an unseen hand at a game?

A/fred Lord Tennyson, 1865

8.0. OVERVIEW

This chapter discusses the two major utility programs included in ProDOS. Their functions
are to perform many of the housekeeping, organization, conversion, and general system
operation tasks. Without these programs, the day-to-day operation of your system would be
far more ineffective and less productive. For those of you who are familiar with DOS 3.3,
there are two programs provided on the SYSTEM MASTER diskette that are direct cor­
ollaries to these two expanded utilities in ProDOS. Figure 8.1 shows these program sets:

112

ProD OS

FILER
CONVERT

DOS3.3

FID and COPY A
MUFFIN

Figure 8.1. ProDOS-DOS programs.

OVERVIEW I 113

The /PRODOS/FILER program performs all of the functions that the FID program
performed plus a number of others. The /PRO DOS/FILER program allows you to organize
the information stored on a diskette. The /PRO DOS/FILER will probably be used more than
any of the other programs on the EXAMPLES disk. This program is covered in the first part
of this chapter.

Throughout the discussion of the /PRODOS/FILER program, there are a number of
ProFile notes. ProFile is the name of Apple's hard disk mass storage device. These notes are
for the purpose of helping you use the /PRO DOS/FILER and the ProFile together.

The /CONVERT program allows you to convert all of your DOS 3.3 programs to Pro­
DOS. This is similar to the function of the MUFFIN program that converts DOS 3 .2.1 pro­
grams and files to DOS 3.3 programs and files. However, /CONVERT is much more capable
than MUFFIN.

Below are presented the keystroke menu selections for the /PRODOS/FILER and
/CONVERT programs to give you a quick summary of the keystrokes required for both the
/PRODOS/FILER and /CONVERT programs.

Those keystroke options that are defined in lowercase characters are for the
/CONVERT program and those in uppercase are for the /PRO DOS/FILER program.

? -TUTOR

A- ALTER WRITE-PROTECTION

B- BLOCK ALLOCATION

C - COPY A VOLUME

C - COPY FILES

C - CHANGE SLOT AND DRIVE

D- CONFIGURATION DEFAULTS

This keystroke gives you information about
that part of the PRODOS/FILER you are
currently using. This also explains how to
type keyboard entries.

This keystroke allows you to alter, or
change, the protection on a file.

This keystroke lets you see the total number
of blocks on a volume, how many are used,
and how many are still available for storage.

This keystroke allows you to make an exact
copy of an entire volume onto another vol­
ume.

This keystroke allows you to create an exact
duplicate of individual files from one disk­
ette to another.

This option allows you to change the slot­
drive combination for the transferring of
files.

This keystroke shows you the current de­
faults in effect.

114 I THE PRODOS FILER AND CONVERT PROGRAMS

D - DETECT BAD BLOCKS

D - DELETE FILES

D- SET PRODOS DATE

F - FILE COMMANDS

F- FORMAT A VOLUME

K- COMPARE VOLUMES

K- COMPARE FILES

L - LIST VOLUMES

L - LIST PRODOS DIRECTORY

M - MAKE DIRECTORY

P - SET PREFIX

P - SET PRODOS PREFIX

Q- QUIT

R - RENAME A VOLUME

This keystroke allows you to scan a volume
for possibly damaged blocks. Damaged
blocks could cause a loss of stored data.

This keystroke deletes files from a diskette
without affecting the rest of the files on the
volume.

This option allows you to enter a date for
date-stamping files.

This keystroke allows you to pick the file
commands from the main filer menu.

This keystroke lets you format a new blank
diskette for the storage of programs and
files.

This keystroke lets you compare two vol­
umes to determine if they are exact copies
of each other.

This keystroke gives you a byte-for-byte
comparison of any two files that are named.

This keystroke lists the volumes that are
currently active on your system.

This keystroke lists all of the files in the di­
rectory you name. You will be given the
file's:
-type - write-protect status
- file size - change date
- free blocks

This keystroke lets you create subdirectories
on a diskette.

This keystroke lets you change or designate
a pathname or partial pathname as the cur­
rently active PREFIX.

This option allows you to set a new prefiX
pathname.

This keystroke lets you terminate the oper­
ation of the PRODOS/FILER program.

This keystroke allows you to rename a vol­
ume without changing the contents.

R - RENAME FILES

R- RESTORE DEFAULTS

R - REVERSE DIRECTION

S- SELECT DEFAULTS

T - TRANSFER FILES

V - VOLUME COMMANDS

USING THE FILER PROGRAM I llS

This keystroke allows you to rename a
stored file.

This keystroke restores your system to the
predefined default values.

This option allows you to reverse the direc­
tion of the transfer when you are converting
files.

This keystroke lets you define those defaults
peculiar to your own system.

This option allows you to actually transfer
file to ProDOS.

This keystroke allows you to pick the vol­
ume subprograms menu.

8.1. USING THE FILER PROGRAM

In order to use the /PRO DOS/FILER program, it is only necessary to boot the ProDOS disk
and select the F (/PRO DOS/FILER) option from the main menu screen. Remember that you
do not need to type the RETURN key when making a selection. This will clear the screen,
bring the /PRO DOS/FILER program into memory, and automatically execute the program.

Once the program is executing, it is only necessary to follow the screen options to ac­
complish what is desired.

8.1.1. ProDOS DLER menu

The /PRO DOS/FILER program has a number of subprograms that operate either upon a
diskette as a whole or upon the individual files stored on a diskette. Collectively, these pro­
grams are normally called utility programs. Figure 8.2 shows these main program categories.

In a number of the subprogram screens, default values are shown. In those cases, you
may select the defaults by simply typing the RETURN key. If you want to change the default
value, simply type your required value.

One of the handy features of the /PRO DOS/FILER program is the use of the ESCAPE
key. You can use this key to restart a screen from the beginning, return to a previous screen, or
back out of a selection. This allows you to be able to change subprograms and screens easily.

If you make a typing error and enter a keystroke that does not correspond to one of the
legitimate commands, the /PRODOS/FILER program is very forgiving and allows you to
reenter the correct keystroke.

By selecting the ? (TUTOR) option, you will be given information about the individual
filer commands and terminology definitions that may be unfamiliar to you, at least for now.
Section 8.1.2 discusses the TUTOR.

116 I THE PRODOS FILER AND CONVERT PROGRAMS

Figure 8.2. FILER main screen.

File commands are those that will affect only an individual file. Section 8.1.3 contains
explanations of these subprograms.

Volume commands are those that affect a diskette as a whole unit. Section 8.1.4 dis­
cusses these subprograms.

Section 8.1.5 discusses the CONFIGURATION DEFAULTS option that lets you
customize the defaults to match your particular system.

The QUIT option allows you to return to the USER'S DISK main menu or any other
diskette of your choosing. This is discussed in Section 8.1.6.

8.1.2. TUTOR

The ProDOS TUTOR screens give you information quickly so that you do not have to read a
book like this one to remember what is required. The ProDOS TUTOR is entered by typing
the ? (QUESTION MARK) key on the keyboard.

As you proceed through this chapter, you will notice that every menu screen has a tutor
option. The use of the tutor is very straightforward. Make the selection using the ? (QUES­
TION MARK) key and follow the continuation prompting at the bottom line of each screen.

USING THE FILER PROGRAM I 117

8.1.3. File commands

This section will explain all of the file commands. This set of subprograms works with in­
dividual files stored on a diskette.

Your computer does not name files, you do. There are a number of rather simple rules
for creating names for files. These rules have been covered earlier.

Figure 8.3 gives the FILE COMMANDS video display screen that is first presented
when the F option is selected from the main /PRODOS/ FILER menu.

In the following subsections, each menu option display screen will be shown and
discussed.

LIST PRO DOS DIRECTORY. This option allows you to list the files stored in any directory
or on a diskette. When you select this option and enter the directory pathname, you will be
presented with the files stored in that directory plus the following information:

-the directory name
-the type of file
-the size of each file
-the write-protect status

ll±fftft ft ttltlttltlllltttttttt tJ ltlz:t

F I L E C 0 t·1 t·1 At 1 [I ·:;

::::: ; ''* l tlttltllllltllltlllll t I i::: I::
TUTOP

L - LIST PPODOS DIRECTO RY
1: - cop ·,· FILE::;

0 - DELETE FILE S
- C 0 t·1 F' A R E F I L E ·::

H - ALTER WRITE-PROTECTIO~

R - RENAME FILES

M - MAKE DIRECTORY
F' - ::;ET PF: EF I::

: t '- E : T H t l 0 F' T I 0 t l 0 R E ::: C

Figure 8.3. FILE COMMANDS screen.

118 I EXECUTIVE FILES

-modification date
-the free blocks on the diskette
-the use blocks on the diskette

This screen is shown in Figure 8.4.
The data presented to the screen contains all of the files on the level specified and below.

Notes:

I. If the prefix is set to the directory you want to list, type the = (EQUAL) and press
RETURN key.

2. If you type the? (QUESTION MARK) you will be given only the used and free blocks on
the diskette.

3. You may also get a listing of the directory on a printer by changing the display device. See
the Configuration Defaults in Section 8.1.5.

ProFile Note:

Make sure that the prefix is set to the correct device name = / PROFILE.

Figure 8.4. LIST PRODOS DIRECTORY screen.

USING THE FILER PROGRAM I 119

COPY FILES. This option allows you to copy files from one diskette to another or from one
directory to another. This screen is shown in Figure 8.5.

When the destination pathname already has an existing file stored, you will be asked:

DELETE EXISTING FILE? (YIN)

You now have three options, These are :

-answer Y to replace existing file .
-answer N to leave existing file alone.
-cancel operation by pressing ESCAPE key.

Notes:

1. If you have a one-drive system, you will be prompted each time you need to change disk­
ettes.

2. You can not copy files to a new subdirectory without first creating that directory. Use the
make directory option first.

Figure 8.5. COPY FILES screen.

120 I EXECUTIVE FILES

ProFile Note:

You are able to copy from a floppy disk to a ProFile disk, or vice versa. There is only one cau­
tion; you must have enough space to handle the copy on the destination device.

DELETE FILES. This option allows you to delete files from a diskette directory. This screen
is shown in Figure 8.6.

Notes:

1. A directory must be empty before it can be deleted.
2. A volume directory can only be deleted by reformatting the diskette.

ProFile Note:

Be absolutely sure you want to delete any file from the ProFile, if no backup exists.

Figure 8.6. DELETE FILES screen.

USING THE FILER PROGRAM I 121

COMPARE FILES. This option allows you to compare two files on a diskette to determine if
they are identical. This is a good way to validate that your backup copy is identical to the
original. This screen is shown in Figure 8. 7.

ProFile Note:

You may compare two files on a ProFile in different subdirectories.

ALTER WRITE-PROTECTION. This option allows you to change the write-protection
status of a file. This means that you may either lock or unlock a file. The screen is shown in
Figure 8.8.

RENAME FILES. This option allows you to change the name of a stored file without chang­
ing its contents. This screen is shown in Figure 8.9.

Using this option is very straightforward.

MAKE DIRECTORY. This option allows you to make a directory or subdirectory on a disk­
ette. The volume's directory is created when you first format the diskette. However, subdirec­
tories are not created through the formatting process. You must create subdirectories using

Figure 8. 7. COMPARE FILES screen.

122 I EXECUTIVE FILES

Figure 8.8. ALTER WRITE-PROTECTION screen.

either this option or the CREATE command within a program. A directory or subdirectory
must be created in some fashion before you may store files in them.

When creating a directory on a diskette, the / PRO DOS/FILER program will first check
to determine if there is enough room on the diskette to hold the directory. This does not mean
that there will be any room for the file; it just means that there is enough room for the direc­
tory file .

SET PREFIX. This option allows you to set a new prefix on a diskette. Setting a prefix means
storing a pathname or partial pathname. Once you have set the prefix, it is not necessary to
type that pathname again when accessing files . Once the prefix is set, it remains in effect until
you change it or turn off the computer.

Notice that the current PREFIX is at the top of the display.
Anytime you type a pathname that does not begirt with a slash (/) the current pathname

the prefix will be used as the first part of the pathname. If you want the entire pathname ig­
nored, then type in the full pathname. After you have finished typing the pathname, type the
RETURN key to signify the completion.

USING THE FILER PROGRAM I 123

Figure 8.9. RENAME FILES screen.

8.1.4. Volume commands

This set of commands allows you to operate with diskettes as an entire unit. The word volume
is another term for disk or diskette. In most cases volume will refer to the Apple computer
floppy or flexible diskette. However, the term applies equally to Apple's hard disk drive Pro­
File. ProFile is a 5MB mass storage media. The 5MB capacity is like having 35 floppy disk­
ettes available to you all simultaneously. Pro DOS supports both forms of disk storage. Figure
8.12 shows these commands as presented on a video screen.

The? (TUTOR) option works the same as d~cribed earlier in Section 8.1.2 and needs no
further explanation.

The F command allows you to format an entire volume, diskette. This command's cor­
rollary in DOS 3.3 is the INIT command. This is covered in Section 8.1.4.1.

Section 8.1.4.2 shows you the video screen for copying one volume to another volume.
The COPY A program on the SYSTEM MASTER DOS 3.3 diskette performs this function
for DOS 3.3 diskettes.

Figure 8.10. MAKE DIRECTORY screen.

Figure 8.11. SET PREFIX screen.

124

USING THE FILER PROGRAM I 125

ttttttttttttttrrrrrrrrrrtttttttttttttttr
i UOLUME COMMANDS t
!" t
ltt~;ttttttrrrrtttttttttttttttttttttttti

' TUTOR
F - FORMAT A UOLUME

C - COPY A UOLUME

L - LIST UOLUMES

R - RENAME A UOLUME

D - DETECT BAD BLOCKS

8 - BLOCK ALLOCATION

K - COMPARE UOLUMES

SELECT HH OPTION OR <ESC>=

Figure 8.12. VOLUME COMMANDS screen.

Listing of the files on a volume may be accomplished by using the L (LIST VOLUMES)
option. The video screen forthis is shown in Section 8.1.4.3. This subprogram has a corollary
in the FID program of DOS 3.3. Section 8.1.4.4 shows you the display that lets you RENAME
a volume.

The next section describes how to detect bad blocks that might be present on a diskette.
Section 8.1.4.6 gives you the block allocation present in a diskette.
The last section (8.1.4. 7) shows you the screen presented when you want to compare one

volume with another.

ProFile Note:

Be very careful when you format ProFile. It is a large storage device and may contain valuable
information.

FORMAT A VOLUME. This screen allows you to prepare a volume to accept programs,
files, or data. All diskettes must be formatted before you can store data on the diskette. Every
computer manufacturer uses a slightly different diskette recording scheme. The diskette
manufacturers manufacture blank diskettes. Therefore, computer manufacturers provide
either system or utility software that provides their recording scheme on the surface of the
manufacturer's blank diskette. Figure. 8.13 shows you the screen for formatting a volume.

126 I EXECUTIVE FILES

Figure 8.13 . FORMAT A VOLUME display screen .

The surface of the recording media is divided into sections called blocks. A block of data
is 512 bytes long. In DOS 3.3 terminology, this would be 2 sectors, because a sector holds 256
bytes of information. Further, there are 35 tracks of 8 blocks each where each track is marked
for recording data .

Notice that you have the capability of accepting the default volume name assigned by
the / PRO DOS/ FILER or choosing one of your own. If you accept the default, volumes will
be named as follows :

/ BLANKxx

In this case, the xx represent numbers that start with 00 and increment by one each time
you accept a default value. The range of numbers are from 00 through 99. Then the number
sequence will recycle from the beginning.

Further, you may format a volume using any legitimate slot-drive combination, includ­
ing a ProFile hard disk, if you have one. So, please be careful when making selections. Re­
member that the ESCAPE key may always be used to restart a screen or to escape that
selection.

USING THE FILER PROGRAM I 127

When you enter a slot-drive combination or a volume name of your own, all you have to
do is type over the default values or name presented on the screen.

You will probably have some diskettes that you previously formatted. Now you want to
reformat them and store new information. When ProDOS determines that the diskette
already has information stored on the diskette, you will be asked to verify that you wish to
destroy all previous information. Do not answer the question lightly, because once you re­
spond by telling the format program to destroy previous information, there is no retreating.
The stored information is gone.

After a diskette is successfully formatted, you will see the message:

FORMAT COMPLETE

Remove the formatted diskette from the disk drive and label it with the volume name,
contents, and current date, and identify it as a ProDOS diskette.

ProFile Note:

If you are going to format a mass storage disk like the ProFile, you will get the message:

WARNING:YOU ARE ABOUT TO FORMAT A LARGE DISK

If you made a mistake, use the ESC key to terminate the selection.
If it is what you want, type RETURN key.

COPY A VOLUME. In Chapter 1 you were introduced to making copies of the diskettes that
came with Pro DOS. It is always a good idea to make copies of your diskettes. Even though the
data stored on a diskette is very stable and highly reliable, disasters can happen. Murphy's law
again. So, take out "volume insurance" and make backup copies of your diskettes.

In the previous section, it was stated that you must format a diskette before you are able
to store data and information on that diskette. Now you will be given the exception to the rule.
When you copy one volume to another, the COPY A VOLUME option will first reformat the
destination diskette before copying the contents of the source diskette to the destination
diskette. If there is anything at all on the destination diskette you want to keep, PLEASE
move those files to someplace else so they won't be lost.

When making a copy of a volume, you may maintain the same name or change the name
on the new volume. Figure 8.14 shows you the screen for copying a volume.

The source (original) diskette in the above example is to be placed in slot 6, drive 1. The
destination (new or copy) diskette is to be placed in slot 6, drive 2.

If you have a single drive system, place your source volume in drive 1 and be prepared to
do a lot of diskette swapping. Fortunately, the copy program will place messages on the video
screen telling you which diskette is to be placed in the disk drive.

When all of the copying has been completed, you will be given the message:

128 I EXECUTIVE FILES

tttttttttttt****************************
J COPY A VOLUME :\:
i t ttttttttt*******************************
- - f:fiF''I'--

THE UOLUME IN SLOT: 6
DRIVE: 1

TO UOLUME IN SLOT: 6
DRIVE: (.)

tlEI·J I}OLUME NAME :

--PRESS <RET > TO ACCEPT :< ESC > TO EXIT--

Figure 8. 14. COPY A VOLUME display screen.

COPY COMPLETE

You have once again made a successful copy of a diskette.

Unless you have two volumes, this option is not of much value for the ProFile.

LIST VOLUMES. The easiest way to determine what mass storage volumes are assigned to
what expansion slots is to use this video screen command. When you select the L (LIST
VOLUMES) option from the previous screen, your system will automatically test every
peripheral storage device and determine the name of the volumes active. The list volumes
screen is shown in Figure 8.15.

The LIST VOLUMES video screen display tells you which ProDOS volumes are active
and in which expansion slot and drive they reside. If there is no volume in one of your drives ,
it will not be shown in the list. Further, if you have a DOS 3.3 diskette in one of your disk
drives, you will see the message

USING THE FILER PROGRAM I 129

rttttttttt******************************
: LIST UOLUMES t
t l

**
~:;LOT DR I UE IJOLUME NAME

3 2 /RAM
6 1 /PRODOS
5 /PROFILE

--F'F:E~:;~:; <F:ET> TO BEGIN <ESC> TO E:\IT-- '

Figure 8.15. LIST VOLUMES.

<NO DIRECTORY>

displayed on the video screen.
The / RAM volume is the 64K expansion memory resident on the extended SO-column

text card available for the Apple lie only. This card and its capabilities are covered in Section
F.4 of Appendix F. For now, just accept the fact that it has the address of slot 3, drive 2.

ProFile is installed in slot 5, drive 1. This is the recommended location. The ProFile is dis­
cussed in Section F.5 of Appendix F.

RENAME A VOLUME. As you sit at your system formatting diskettes, it is highly probable
you will think of volume names that are more interesting than / BLANK15, for example.
These names may end up being whimsical, off-color or just unwanted later on. There always
comes the time when the volume called / GOTO.JOHN really needs to be called / GL.MAY.84
for "General Ledger-May 1984."

130 I EXECUTIVE FILES

The RENAME A VOLUME option allows you to make the change. This option lets you
change the name of a volume without changing the contents of the diskette. The rename dis­
play is shown in Figure 8.16.

Place the volume you wish to rename into an available disk drive. Then select the slot
and drive designations of the volume's location. Once you have done this you need only enter
the new name for that volume. The system will do the rest.

Remember, the new name must have:

-the first character be alphabetic
-15 characters or less
- no embedded blanks
-no special characters

DETECT BAD BLOCKS. Sometimes, it is obvious when a diskette cannot be used any­
more-when it is creased in the lid of your attache case, for example, or bathed by hot coffee.
Other times, volumes will go bad in much more subtle ways. They will develop bad blocks.

Bad blocks can develop in very sneaky ways from causes such as:

Figure 8.16. RENAME A VOLUME display screen.

USING THE FILER PROGRAM I 131

-dust on the diskette
-fingerprints on the recording window
-excessive usage
-old age (like me)

If you suspect any of these things have possibly damaged a diskette volume, it is recom­
mended that you check the volume for bad blocks. Figure 8.17 shows you the screen for doing
that.

For this option all you are required to enter is the slot-drive combination that contains
the diskette to be checked.

If there are no bad blocks, you will get the message:

OBADBLOCKS

If, however, any bad blocks are discovered, these will be annotated as:

BAD BLOCK NUMBER
xxxx
yyyy
zzzz

Figure 8.17. DETECf BAD BLOCKS display screen.

132 I EXECUTIVE FILES

If you do get bad blocks detected, it is recommended that you move all of the files that
are still good. Then either discard the diskette or reformat the diskette.

Notes:

I. You may use this option to check for bad blocks on DOS 3.3 diskettes.
2. You may also get a listing of the detected bad blocks on a printer by changing the display

device. See the Configuration Defaults in Section 8.1.5.

BLOCK ALLOCATION. This command option allows you to find out how many blocks on
a volume are used by files, how many are still available, and the total number of blocks on the
volume.

This option helps a great deal when you are moving files from one volume to another.
You may want to know if there is enough space left on the destination diskette to hold more
files .

You should be able to get a feel for the space requirements of programs and files by us­
ing this command option.

Figure 8.18. BLOCK ALLOCATION screen.

USING THE FILER PROGRAM I 133

COMPARE VOLUMES. This option, as the name says, is for the purpose of comparing two
volumes for a match. This is very handy because there are times when you want to determine if
your backup really is an exact copy of the original.

After you have entered the slot-drive combinations for the two diskettes you wish to
compare, this subprogram does a byte-for-byte comparison of the two diskettes.

If the two volumes are really exact copies, you should get the message:

COMPARE COMPLETE

However, if there are any blocks that do not match, you will get the message:

BLOCK NUMBERS DO NOT MATCH
1
3
4

-PRESS <RET> TO CONTINUE: <ESC> TO EXIT

Figure 8.19. COMPARE VOLUMES display screen.

134 I EXECUTIVE FILES

Only three mismatching blocks will be shown initially. By typing the RETURN key the
remaining mismatched blocks are displayed.

Notes:

1. You may use this option to compare two DOS 3.3 diskettes.
2. You may also get a listing of the compared diskettes on a printer by changing the display

device. See the Configuration Defaults in the next section.

Some clues to possible mismatches are:

-block 2-the names are different
-block 6-the maps for the diskettes are different

Profile Note:

This option is not of much value unless you have two or more hard disks like ProFiles.

8.1.5. CONDGURATION DEFAULTS

This option allows you to customize the /PRO DOS/FILER program to your particular sys­
tem. You are allowed to either set your own system configuration or revert to the predefined
defaults. This is shown in Figure 8.20.

When you select defaults for your system configuration, the selected values will be writ­
ten to the diskette so the program must be in drive 1 of the boot drive throughout the
operation.

After you have selected the S option, you will be given a secondary screen shown in the
next section.

SELECT DEFAULTS. The SELECT DEFAULTS option will present the following screen.
If you do not remember the slot assignments for your disk drives and printer then use the ESC
key to return to the main menu and ask the program to display the slot assignments. See
Figure 8.21. Then teturn to here for any re@ssignments yo.u wish to make.

If you use the RETURN key on ~y of the values presented, then you are accepting the
default value. At any time you make a m!stake you may use the ESC key to return you to the
top of the selections and reenter the selections.

The output device is where the FILER PfQgram will display information. If you select
the printer, then all subsequent output will be se.nt to your printer, Make sure that your printer
is turned on and is in the ON-LINE or SELECTED condition. Of course, paper in the printer
will also help.

The other screen possible is tQ be able to restpre defaults.· That screen is shown in the
next section. ,

USING THE FILER PROGRAM I 135

:lttttttttttttttttttttttttttttttttttljt

CON FIGURATION DEFAULT S

;l:ttttttttt*********************tttt lj
~ - TUTOR
S - SELECT DEFAULTS

R - RESTORE DEFAULTS

SELECT ~N OPTION OR <ESC >=

Figure 8.20. CONFIGURATION DEFAULTS screen.

RESTORE DEFAULTS. By selecting the RESTORE DEFAULTS option, the FILER pro­
gram will restore all options to the standard or defaulted values. The screen presented is
shown in Figure 8.22.

Notice that this screen shows that the disk drives are installed in slot 6 and the normal
output is to be to the video display. If you wish to accept the defaults as displayed, you need
only press the RETURN key.

If you decide to keep the customized values then press the ESC key and go back to where
you started.

8.1.6. QUIT

This option is for the purpose of leaving the / PRODOS/ FILER program and being able to
execute any other program or system of programs .

Notice that the video screen shows that the system program, / BASIC. SYSTEM, will be
executed if you accept that pathname. If you do not want to accept, simply type in the path­
name of the program you want to execute .

136 I EXECUTIVE FILES

Figure 8.21. SELECf DEFAULTS screen.

8.2. USING THE CONVERT PROGRAM

The /CONVERT program has been included in ProDOS for the purpose of being able to con­
vert DOS 3.3 programs and files to the new ProDOS environment. This program performs a
similar function to the MUFFIN program provided when the transition was made from DOS
3.2.1 to DOS 3.3. ,

Because of the formatting differences between DOS 3.3 and ProDOS, you will have to
convert all DOS 3.3 diskettes to ProDOS.

There are a few cautions, however. The CONVERT program will not transfer DOS 3.3
or ProDOS random-access files . You will have to find some other way to transfer these files.

8.2.1. ProDOS CONVERT menu

The main menu gives you the ability to choose any of the capabilities of the CONVERT pro­
gram. If you do not understand how to use the program then select the TUTOR option first by
typing a question mark on the keyboard .

USING THE CONVERT PROGRAM I 137

Figure 8.22. RESTORE DEFAULTS screen.

It is recommended that you set the date first if there is no date showing. This will give
you the created date on your ProDOS diskette when you transfer files.

8.2.2. Reverse transfer direction

This option allows you to change the direction of the transfer. When you select this option,
the screen will only change in the direction line. This direction display actually wraps around
in this area.

8.2.3. Change DOS 3.3 slot and drive

This option lets you adjust the slot-drive combination to suit your particular system. When
selecting this option, you may either enter new information, enter partial information or ac­
cept defaults by simply typing the RETURN key.

Profile Note:

When transferring files from ProFile to DOS 3.3, change the slot-drive combination first .

Figure 8.23. QUIT screen.

Figure 8.24. CONVERT main menu.

138

FILER AND CONVERT ERROR MESSAGES I 139

8.2.4. Set ProDOS prefix

This option allows you to change the Pro DOS prefix for the purpose of converting programs
and files from many different diskettes to many different diskettes. Make sure that you have
entered the correct prefix before attempting to transfer any files.

8.2.5. Set ProDOS date

Since there is a place for the modification and creation date when you place files on a diskette,
you need to have a way to date-stamp your files.

8.2.6. Transfer or list flles

This option is probably the one that you will use the most. This option allows you to list the
files on the DOS 3.3 diskette, and then from that presented list move the files to the ProDOS
diskette.

8.3. FILER AND CONVERT ERROR MESSAGES

Appendix D gives you a list of the possible error messages provided by both
/PRO DOS/FILER and /CONVERT.

SUMMARY

This chapter discussed the two major utility software programs: /PRODOS/FILER and
/CONVERT. You were shown how each option worked and what each accomplished.

The /PRODOS/FILER program includes the following subprograms:

?-TUTOR

F-FILE COMMANDS
? -TUTOR
L -LIST PRODOS DIRECTORY
C -COPY FILES
D-DELETE FILES
K-COMPARE FILES
A-ALTER WRITE-PROTECTION
R-RENAME FILES
M-MAKE DIRECTORY
P -SET PREFIX

V-VOLUME COMMANDS
? -TUTOR
F-FORMAT A VOLUME
C -COPY A VOLUME
L -LIST VOLUMES

140 I EXECUTIVE FILES

R -RENAME A VOLUME
D-DETECT BAD BLOCKS
B -BLOCK ALLOCATION
K-COMPARE VOLUMES

D-CONFIGURATION DEFAULTS
?-TUTOR
S -SELECT DEFAULTS
R-RESTORE DEFAULTS

Q-QUIT

The /CONVERT program includes the following subprograms:

R Reverse Direction of Transfer
C Change DOS 3.3 Slot and Drive
D Set ProDOS Date
P Set ProDOS Prefix
T Transfer (or List) Files

? Tutor
Q Quit

The major emphasis in this chapter was the description of how to operate the
/PRODOS/FILER and /CONVERT programs.

QUESTIONS

1. How do you get the /PRODOS/FILER and /CONVERT programs to execute?
2. Describe the functions of /PRODOS/FILER in detail.
3. Describe each of the volume commands used in the /PRODOS/FILER program.
4. Describe each of the file commands used in the /PRO DOS/FILER program.
S. Describe the cautions and considerations when using the ProFile.
6. Discuss how to customize the /PRODOS/FILER program to your own system.
7. What options do you have available when you quit the /PRODOS/FILER program?

9. THE MACHINE
lANGUAGE INTERFACE

9.0. OVERVIEW

If it (automation) keeps up, man will

atrophy all his limbs but the

push-button finger.

Frank Lloyd Wright, 1955

This chapter assumes that you have had some experience with 6502 assembly language and the
internal structure of the Apple II family of computers. The intent of this book is to explain
ProDOS in enough depth to allow you to take advantage of this new operating system. It is
recommended that you refer to any of the numerous excellent books on 6502 assembly
language to give you additional information. Further, you may need to study the Pro DOS
technical manual, if you need more in-depth information.

ProDOS, in addition to being an operating system, also handles interrupts, provides
memory management, and time-date stamps files from a clock/calendar card, if you have one
installed in your computer.

There is a new mechanism in ProDOS called the Machine Language Interface (MLI).
This mechanism allows you to make calls to the operating system, validates them, and issues

141

142 I THE MACHINE LANGUAGE INTERFACE

operating system commands. Calls to the MLI give you control over certain hardware. MLI
calls may be categorized into housekeeping, memory, and interrupt calls. This chapter will
discuss these mechanisms.

In this chapter and in others, the term system program has been used. This term as used
here and by Apple Computer, Inc. in their ProDOS manuals may be a bit confusing, espe­
cially if you are familiar with system programs on large computer systems. A system program
on large computer systems is neither an applications program (for instance general ledger or
financial planner) nor an operating system (for example OS 360/370 or OS/VMS). It nor­
mally provides a means of making operating system calls from an application program (for in­
stance a sorting module or file management module).

Under ProDOS, a system program refers to any program written in assembly language
that makes calls to the Machine Language Interface (MLI), and follows those protocols or
conventions. System programs may be identified by their file type or by their name, of the
form ---.SYSTEM. In general, it is the structure of a program, not its function, that makes a
program a Pro DOS system program.

9.1. MEMORY USAGE

This section discusses the way the Machine Language Interface uses memory and various
memory areas within ProDOS. ProDOS treats memory in the same way the 6502
microprocessor treats memory: as a sequence of 256-byte pages. These pages are numbered
$00=0 through $FF=255 for every 64K=65536 memory space.

Section 9.1.1 gives the booting and loading sequence required to install ProDOS into
memory and activate the operating system.

Section 9 .1.2 gives a number of memory locations and their translations. Pro DOS main­
tains a system bit map that keeps track of the usage status of every page of memory. More will
be said about this later in this section.

9.1.1. ProDOS loading sequence

When you first boot up your system with a startup diskette, a reasonably complex loading
procedure is set into motion. This loading procedure is set into motion any of a number of
ways. These are:

1. Applying power to a turned off machine with a ProDOS diskette installed in your boot
drive.

2. Issuing a PR# or IN# command from the Applesoft II BASIC immediate mode.
3. Issuing a 6-(CTRL)-P from the monitor prompt.

Any of the above causes a transfer of control to the onboard ROM located on the disk
controller card. As this transfer takes place, the following procedure will begin:

1. The disk drive ROM program is executed, which causes blocks 0 and 1 from the diskette to
be loaded into memory at $800 = 2048, and then that program is executed.

MEMORY USAGE I 143

2. The loader program attempts to find the file named PRO DOS with the file type $FF = 255
in the volume directory of the startup diskette. The $FF file type is a ProDOS system file.
The PRODOS file is loaded into memory at location $2000=8192. After the program is
loaded, then this program is executed.

3. Then the MLI determines your computer's memory size and relocates itself to its final
location. The program then determines the devices installed and their slot locations. Fi­
nally, the system global page in memory is set up.

4. The last procedure accomplished is a search made of the volume directory for the first file
with the name ---.SYSTEM and a type $FF = 255 file. Once this is loaded and relocated it is
executed.

If either the PRO DOS or ---.SYSTEM program files are missing, your system will report
to you that it is unable to load ProDOS. The memory map for ProDOS and those for other
memory areas are shown in Appendix B.

Once you have ProDOS installed, the search order for files is:

-slot 6, drive 1
-slot 6, drive 2
-slot 7
-slot 5, drive 1
-slot 5, drive 2

9.1.2. Memory maps

The following memory sections and their translations show you a number of places within
ProDOS that you may find interesting or helpful. These, along with numerous subroutines,
should help you understand the makeup of ProDOS.

The Pro DOS MLI uses locations $40 through $4E on page zero during calls. These loca­
tion values are saved before an MLI call and then restored before exiting that call. The page
zero locations $3A through $3F are used for disk-driver routines. These are not restored after
usage.

A series of constants held in memory are shown below.

B898-. AEAFBO /0
B8AO- B 1 B2 B3 B4 B5 B6 B7 B8 1 2 3 4 5 6 7 8
B8A8-B9. . 9

The memory locations $B8CD through $B93A contain the ProDOS command table.
There are some very interesting things to be noticed from this table. First, the DOS 3.3 com­
mand table set the high bit on the last character of each particular command. In Pro DOS, that
feature has been eliminated. Second, each command was listed separately. In ProDOS, the
commands have been run together, bunched up, and have no separators. This means that the
command table takes less space and implies a very different means of parsing for legal
commands.

144 I THE MACHINE LANGUAGE INTERFACE

B8C8- 425341 BSA
B8DO- 56 45 52 49 46 59 42 4C V E R I F Y B L
B8D8- 4F 41 44 45 4C 45 54 45 0 A D E L E T E
B8E0-43 4154414C4F47 4F CAT A LOGO
B8E8- 50 45 4E 57 52 49 54 45 P E N W R I T E
B8FO- 58 45 43 52 45 41 54 45 X E CREATE
B8F8- 46 52 45 53 54 4F 52 45 F R E S T 0 R E
B900-4E414D45 425255 4E NAMEBR UN
B908- 4C 4F 43 4B 43 48 41 49 L 0 C K C H A I
B910- 4E 23 46 4C 55 53 48 52 N # F L US H R
B918- 45 41 44 50 4F 53 49 54 E AD P 0 S IT
B920- 49 4F 4E 4F 40 4F 4E 50 I 0 N 0 M 0 N P
B928- 52 23 50 52 45 46 49 58 R # P R E F I X
B930- 43 4C 4F 53 45 41 50 50 C L 0 S E A P P
B938-454E44. END

The next memory locations show the ProDOS command modifier translations.

B9B8-. 41 42 45 4C 53 44 46 .ABELSDF
B9C0-5256. . R V

The following memory locations show the translations for the various file type ab­
breviations as they are displayed when you use the CAT or CATALOG commands.

B9EO-. . C1 C4C2 ADB
B9E8- C1 D3 DO C1 D7 DO DO C1 ASP A WP P A
B9FO- D3 D4 D8 D4 C2 C9 CE C4 S T X T B I N D
B9F8- C9D2C3 CDC4C9CED4 I R C MD I NT
BAOO- C9 D6 D2 C2 C1 03 D6 C 1 I V R B AS VA
BA08- D2 D2 CS CC D3 D9 D3 . R R E L S Y S .

The following memory locations show a series of month names that are used to display
dates when ProDOS needs to display the date.

BAOF-........ CA . J
BA10-C1 CEC6C5 C2CDC1D2 ANFEBMAR
BA18-C1DOD2CDCID9CAD5 APRMAYJU
BA20-CECAD5CCC1 D5C7D3 N JU LAU GS
BA28- C5 DO CF C3 D4 CE CF D6 E P 0 C TN 0 V
BA30-C4C5C3BCCECFAOC4 DEC<NO D
BA38- C1 D4 CS BE 28 AB 40 41 A T E >

BA3C-. . 28AB4041 (+@A
BA40- 42 43 44 45 46 47 48 49 B C D E F G H I
BA48- 4B 4C 4D 4E 50 53 56 • K L M N P S V .

MEMORY USAGE I 145

The next few memory locations show a prompting message that may be placed upon a
video screen when for any reason you are left in the monitor.

BB98-. DOCCC5C1D3 ... PLEAS
BBAO-C5AODOD2C5D3D3AO E PRESS
BBA8- 03 DO C1 C3 C5 AO C2 C1 S P A C E B A
BBBO- D2 AO 00 00 00 00 00 00 R

BCCO- 30 2E 42 45 30 2E 44 49 0 . B E 0 . D I
BCC8- 53 4B 2F 53 54 41 52 54 S K I S T A R T
BCD0-55 50. . UP

The $BE54 and $BE55 memory locations are used to handle the parsing of any com­
mand string parameters. The various bit positions within these bytes have distinct hex­
adecimal values. Each of these values has a distinct meaning. These meanings are shown
below.

The memory locations $BDOO through $BDFF have uses that are unknown at this time.
The memory locations $BE54 and $BE55 contain the modifier values allowed for a

specific ProDOS command.

BE54 = $80 Need a prefix, pathname is optional
40 No parameters needed to be processed
20 Deferred mode command only
10 Filename is optional
08 CREATE command allowed
04 File type optional
02 Second filename required for RENAME command
01 A filename is expected

BE55 = $80 Address allowed
40 Byte allowed
20 End address allowed
10 Length value allowed
08 @line number allowed
·04 Slot and drive numbers allowed
02 Field
01 Record
00 Volume number ignored

146 I THE MACHINE LANGUAGE INTERFACE

The following memory locations are a series of bytes with the high bit set to 1, and
translate to the copyright message sometimes displayed by ProDOS on a video screen.

BEEOw C3 CF DO D9 02 C9 C7 CS C 0 P Y RIG H
BEE8-D4AOC1 DODOCCC5AC T APPLE,
BEFO-AOB1 B9B8B3. 1 9 8 3

The $BF= 191 page of memory contains the system's global variables. This includes the
addresses $BFOO through $BFFF. This section of memory is inviolate. Because of this, this
page serves as the communication link between system programs and the operating system.
The MLI places all information that is helpful or useful to a system program into these
memory locations.

BFOO- 4C B7 BF JMP $BFB7
BF03- 4C BD EE JMP $EEBD
BF06- 4C 42 F1 JMP $ F 142
BF09-4CDAD1 JMP $D1DA
BFOC-4CE6D1 JMP $D1E6
BFOF- 00

;MLI call entry point
;Spare. Reserved for future use.
;Clock/Calendar routine, user installed
;Error reporting vector.
;System failure vector.
;Error code. 0 = No error.

In the next memory locations are a series of two-byte addresses starting at $BF10. Each
of these addresses contains information about specific devices. The range of memory from
BF10 through BF2F contains information defined as follows:

BF10: Slot zero reserved
BF12: Slot 1, drive 1
BF14: Slot 2, drive 1
BF16: Slot 3, drive 1
BF18: Slot 4, drive 1
BF1A: Slot 5, drive 1
BF1C: Slot 6, drive 1
BF1E: Slot 7, drive 1

BF20: Slot zero reserved
BF22: Slot 1, drive 2
BF24: Slot 2, drive 2
BF26: Slot 3, drive 2 = I RAM, reserved
BF28: Slot 4, drive 2
BF2A: Slot 5, drive 2
BF2C: Slot 6, drive 2
BF2E: Slot 7, drive 2

If one of these addresses carries the value DOA2, that slot is currently empty and does
not contain and interface card. Listed below are possible entries for a system.

BF10- A2 DO A2 DO A2 DO A2 DO
BF18- A2 DO EA C5 00 FB A2 DO
BF20- A2 DO A2 DO A2 DO 00 FF
BF28- A2 DO A2 DO 00 FS A2 DO

Notes

1. Slot 5, drive 1 (BF1A-BF1B) contains a disk drive. In this case a ProFile hard disk.
2. Slot 6, drive 1 (BF1C-BF1D) contains a Disk II drive.

3. Slot 3, drive 2 (BF26-BF27) contains /RAM as a memory disk drive.
4. Slot 6, drive 2 (BF2C-BF2D) contains a Disk II drive.

BF30- 60 03 54 EO 60 BF 00 00

~ The sea•ch Ust of ,..;,e dev;c ..

'-------.....,.. Number of active devices minus 1.

'--------...,._ The last device (slot and drive) used,

BF38- 00 00 00 00 00 00 00 00 ~ Extra space for active devices.

MEMORY USAGE I 147

The following memory locations are for the purpose of putting a message on the video
screen.

BF40- 43 4F 50 52 2E 20 41 50 COP R. AP
BF48- 50 4C 45 2C 31 39 38 33 P L E , 1 9 8 3

The purpose of the following eight memory locations is not known at this time.

BF50- 80 8B CO 4C DB FF 00 00

The following addresses are the memory map of the lower 48K. Each bit that is set
represents one page of memory (256 bytes) that is currently in use. Those pages that are in use
(protected) are marked with a I (set). Those that are not in use (unprotected) are marked with
a 0 (reset). ProDOS will not allow you to write file buffer information into protected areas.
This area is known as the system bit map. There are 24 bytes set aside for the system bit map.
Each byte represents a 2K block of memory. Therefore, 8 bytes represents 16K of memory.
The 24-byte system bit map represents 48K of memory. How each 256 bytes of memory is
represented is shown below.

BF58- 00-07 08-0F 10-17 18-1F 20-27 28-2F 30-37 38-3F

Addresses

'---~ $0700-07F F

'---~~ $0600-0SFF

$0500-0SFF

$0400-04FF

$0300-03FF

._Pages

._Value

148 I THE MACHINE LANGUAGE INTERFACE

I ~------~ $0200-02FF
- $0100-0lFF

'---------~ $0000-00FF

The next 16K of memory is shown as being unused.

BF60- 40-47 48-4F 50-57 58-5F 60-67 68-6F 70-77 78-7F

00 00 00 00 00 00 00 00

BF68- 80-87 88-8F 90-97 98-9F AO-A7 A8-AF BO-B7 B8-BF

+-Pages

+-Value

+- Pages

00 00 00 3F I FF I FF I FF I C3 I +- Value

l 0 j 0 11 11 1 11 J 1 J 1j --··Bits set= pages used

I $9F00-9FFF

S9E00-9EFF

$9D00-9DFF

$9C00-9CFF

$9800-9BFF

'-------~ $9A00-9AFF

$9900-99FF

'--------._ $9800-98FF

The following eight memory locations are used to hold the addresses of the allowable
file buffer starting addresses. These are for the open files only. They should not be changed
when activated. None are active at this time.

BF70- 00 00 00 00 00 00 00 00
BF78- 00 00 00 00 00 00 00 00

The next eight memory locations are for the purpose of holding the addresses of the
allowable four interrupt vectors. Again, these should not be changed.

BF80- 00 00 00 00 00 00 00 00

The memory addresses BF88 through BF8F are for the purpose of holding the values
and status of various 6502 processor and memory areas.

BF88- 00 00 00 00 00 00 00 00

E Interrupted address/return address

ROM, RAM

Status register (processor)

'-------~ Stack register

'----------4~ Y register

----------!~ X register

'-----------~ A register

MEMORY USAGE I 149

The bytes BF90 through BF91 hold the current date and BF92 through BF93 hold the
current time, provided you have a clock/calendar card installed in your system that is sup­
ported by Pro DOS. Note that it is necessary to reverse the bytes for the purpose of figuring the
current date and time. This is done below.

BF90- 92 A 7 - These two bytes hold the date.
A7 92

I I

F E D C B A 9 8 7 6 5 4 3 2 1 0 1-- Bit positions for reversed word.

11 I 0 11 I 0 I 0 11 11 11 11 I 0 I 0 11 I 0 I 0 11 I 0 11-- Bit values within word.

I I
Year

83

Month

12

Day

18

BF92- 2B 10 - These two bytes hold the time.

10 2B

I I

F E D C B A 9 8 7 6 5 4 3 2 1 0 -+- Bit positions for reversed word.

Hours Minutes
-+- It is 4:44pm

16 44

ISO I THE MACHINE LANGUAGE INTERFACE

Both the date and time bytes are used when writing call to the MLI discussed in the next
section.

BF94- File level number. Used during OPEN, FLUSH, and CLOSE. When a file is opened
it is assigned a level from 0 through 4 depending upon the value in this location.

BF95- Backup byte.

The next two bytes are reserved for future use.

BF96-
BF97-

The location $BF98 is the machine identification byte. Each of the bits within the byte
have special meanings. For example:

7 6 5 4 3 2 1 0 -+- bit positions

translation - meanings

1 = Thunderclock

0 =no clock

1 = SO-column card

0 =no card

..__ __,._ reserved for future use.

11 .. 128 I(

10"' 64 I(

01 = 48 I(

00 .. unused

11 "' Apple III emulation

10 .. Apple Jle

01 .. Apple II Plus

00,. Apple II

From the bit pattern above, the computer is an Apple lie with 128K of memory that also
has an SO-column card and a Thunderclock card. From this byte you have a great deal of
information.

The next byte will tell you which slots are occupied with ROM installed. For example:

BF99-

7 6 5 4 3 2 1 0 ~ bit positions (slots)

translation - meanings

unused

.__ __,. unused - MODEM card •

..._ __ _,~ used - SO-column card.

L------.,.... used - hard disk card •

.__ _____ .,._ used- floppy disk card.

L..-------..... unused- zao card.

MEMORY USAGE I 151

For the example, slots 2 and 7 are not used. To the right of the diagram are listed the nor­
mal or default cards that may be installed in the individual slots. Most manufacturers design
their products to be slot independent. However, over the past 6 years, certain slots have taken
on specific peripherals. Those are the ones listed.

BF9A- This byte is for the purpose of storing whether a prefix is active or not. A 0 means
that no prefix is active.

BF9B- This byte shows whether the MLI is active or not. If bit 7 is turned on ($80) then the
MLI is active.

BF9C- These two bytes carry the return address of the last MLI call.
BF9D-

BF9E- This byte carries the X register value on entry to the MLI.

BF9F- This byte carries theY register value on entry to the MLI.

The memory areas $BF AO through $BFFB contain a series of routines for the language
card bank-switching. These addresses are subject to change.

BFFC- 00 The earliest version of the MLI with which your system program will work. In this
case zero (00).

BFFD- 00 The version number of your system program. In this case also a zero (00).

152 I THE MACHINE LANGUAGE INTERFACE

BFFE- 00 This byte carries the minimum compatibility version.

BFFF- 00 This byte carries the latest version number of ProDOS.

9.2. ISSUING CALLS

The MLI provides a very handy interface between the machine-language programmer and
files stored on a diskette. The MLI is totally independent of the BASIC.SYSTEM program.
The MLI consists of:

-The command dispatcher
-The block file manager
-Disk driver routines
-The interrupt handler

In order to use the MLI there are a couple of very simple requirements that need to be
followed. The following machine-language routine is actually about all that is required.

JSR MLI ;Call command dispatcher located at address $BFOO
DB CNUM ;This byte defines which call is being made
DW PLIST ;A two-byte address pointer to the parameter list
BNE ERROR ;Branch to error routine if accumulator is nonzero

The JSR is a Jump to SubRoutine located at the MLI address. This address is $BFOO.
The DB means Define Byte. The value placed there is the call number (CNUM). The DW
means Define Word. This is a 2-byte field that carries the address pointer to the parameter list
allowed for this call. PLIST means Parameter LIST. The last line of code is BNE, Branch if
accumulator is Not Equal to zero. This implies that the accumulator of the 6502 processor
must be set to a zero value provided the call terminates successfully. Another instruction that
may be used is the BCS (Branch if Carry is Set). This implies that you must set the carry flag to
zero (CLear the Carry, CLC) if the call terminates successfully, and make sure the ac­
cumulator is zero. If a call is to terminate in an error then you should SEC (SEt the Carry) and
load the accumulator with the error code value before returning from the subroutine.

By the way, a call to the MLI will return to the JSR + 3 bytes. This means that you will be
returned to the BNE instruction. The only 6502 processor flags that are affected are the Z-flag
and the C-flag. The Z-flag is set to 1 if the accumulator is zero. You have to set the C-flag if an
error is returned in the accumulator. Further, you should make arrangements in your code to
preserve the X andY register and the SP (stack pointer).

The parameter list defined by the PLIST pointer will contain information to be used by
the MLI call. There are three types of elements used in a parameter list. These are values,
results, and pointers.

A value is a byte or bytes that carry quantities used by the MLI routine or the Block File
Manager (BFM).

ISSUING CALLS I 153

A result is a byte or bytes in the parameter list where the BFM will place values. From
these values, programs can get information about the results of performing the MLI call.

A pointer is normally a 2-byte memory address that will indicate a location in memory
where data, code, or space is available for the storage of information.

Finally, the first element in the parameter list is the parameter count. This is a !-byte
value that tells you the number of parameters in the list to be used by the MLI call. This value
does not include the parameter count byte.

MLI calls are divided into three distinct groups. Each of these groups is discussed in one
of the next three sections.

Fortunately, there is a program called EXERCISER supplied with ProDOS. This pro­
gram will help you learn how to use the MLI. It allows you to execute MLI calls from a menu .
You will use this exerciser program just as if you were writing a call of your own. You specify
the call by its command number, the parameter list, and then execute the MLI call by typing a
carriage RETURN.

When you run this program you use the command:

]- / PRODOS/ EXERCISER

The screen you are presented is shown in Figure 9 .1.

Figure 9.1. EXERCISER main menu.

154 I THE MACHINE LANGUAGE INTERFACE

At this point you can exercise each of the commands in the list presented and gain con­
fidence that writing calls to the MLI is not difficult.

The next sections will describe the above calls. After a description of the call there is a
screen presentation of the requirements for that call as presented by the EXERCISER. By us­
ing the EXERCISER along with the explanations of the MLI calls, you will quickly become
familiar with this capability.

9.2.1. Housekeeping calls

This section discusses calls akin to the housekeeping commands of ProDOS. In most cases,
these commands involve the status of a file or volume but not necessarily the contents of the
file.

CREATE: ($CO)

This command creates either a standard file or a directory file . A single block of disk
space is allocated when using this call .

Y oil must use this call to create every file except the volume directory. In doing that
there are two distinct types of file storage. These are:

Figure 9.2. CREATE call.

-Tree structure
-Linked list

type = $01
type= $00

ISSUING CALLS I ISS

The tree structure storage type of file is used for all standard files, such as text and pro­
gram files. The linked list storage type is used for all directory files.

The PARAMETER COUNT entry for this call is 7.
For the P A THNAME enter the complete pathname for the file or subdirectory. When

using this call, enter a 2-byte address that points to an ASCII string that contains the
path name. This string contains a count byte plus a string of up to 64 characters. If you enter a
complete pathname, make sure it starts with a slash, "/", character. If not, the string is
treated as a partial pathname and the current prefix is attached to the front of the file name.

The ACCESS byte defines how the file will be accessible. The bit meanings are as shown
below:

7 6 5 4 3 2 1 0 ~ bit positions

translation - meaning

Read enable bit

..__ ___ .,_ Reserved for future use

'------...,.. Backup needed bit

....... _____ ...,.. Rename enable bit

....... _____ ___...,... Destroy enable bit

A value of 1 in a bit position indicates that access is enabled. Therefore, a zero means
that access is disabled. In general, it is recommended that you use $C3 for the access byte.

The FILE TYPE and AUXILIARY TYPE entries may be anything you desire, however,
it is recommended that you use the standard types. See Section 3.3 for file type designation
numbers. The AUXILIARY TYPE field is used for other purposes. BASIC.SYSTEM uses it
to store a text file record size or, in the case of a binary file, the load address.

The STORAGE TYPE byte is used to store the storage type for the file. This may be
either a $01 or a $00 as in the FILE TYPE byte.

The CREATE DATE and CREATE TIME 2-byte word is to contain the date and time
in the format shown in memory location $BF90 through $BF93 in Section 10.1.

DESTROY: ($Cl)

This call will remove a standard file or directory from the diskette. In order to destroy a
directory is must be empty of all files. The only exception is a volume directory, which may
only be destroyed by reformatting the diskette medium. When you destroy a file, the file's
name is removed from the directory and the file space is released.

156 I THE MACHINE LANGUAGE INTERFACE

Figure 9.3. DESTROY call.

The parameter count for this call is 1.
For the EXERCISER program you enter the pathname for the file you wish to destroy.

For a call that you write, enter an address pointer to the ASCII string that contains the
pathname. The string contains a count byte followed by the string itself. If the pathname
begins with a slash, " / ",character, it is treated as a complete pathname of 64 characters or
less. If not, it is treated as a partial path name and the prefix is placed in front of the file name.

RENAME: ($C2)

This call changes the name of a file. The new name must be in the same directory and be
unique for that directory.

The parameter count for this call is 2.
For the EXERCISER program you enter the path name for the file you wish to destroy.

For a call that you write, enter an address pointer to the ASCII string that contains the
pathname. The string contains a count byte followed by the string itself. If the pathname
begins with a slash, " I '', character it is treated as a complete pathname of 64 characters or
less. If not, it is treated as a partial pathname and the prefix is placed in front of the file name.

The second pathname must follow the same rules as the first pathname. For the EXER­
CISER program use the pathname. For the call you write, use the address of the pathname
string.

ISSUING CALLS I 157

Figure 9.4. RENAME call.

SET_FILE_INFO: ($C3)

This call sets the file's type, its modification date and time, and the way it may be
accessed.

This call modifies information in a file's entry field. This call may be performed when a
file is either open or closed. When a file is open, any change will not take effect until the file is
closed and reopened.

The parameter count for this call is 7.
For the EXERCISER program you enter the path name for the file you wish to destroy.

For a call that you write, enter an address pointer to the ASCII string that contains the
pathname. The string contains a count byte followed by the string itself. If the pathname
begins with a slash, " / ", character it is treated as a complete pathname of 64 characters or
less . If not, it is treated as a partial path name and the prefix is placed in front of the file name.

The ACCESS, FILE TYPE, and AUXILIARY TYPE are the same as with the
CREATE call.

The 3-byte NULL FIELD is for the purpose of providing symmetry only with the
GET_FILE_ INFO call, discussed next.

The MOD DATE and MOD TIME are entered in the same form as shown for memory
locations $BF90 through $BF93 as shown in Section 10.1.

158 I THE MACHINE LANGUAGE INTERFACE

Figure 9.5. SET FILE INFO call.

GET _FILE_INFO: ($C4)

This call is just the opposite of the previous one. This call will retrieve the file's type, its
access method, the modification date and time, its size in blocks, and the way it is stored on a
diskette.

The parameter count for this call is 10.
For the EXERCISER program you enter the path name for the file you wish to destroy.

For a call that you write, enter an address pointer to the ASCII string that contains the
pathname. The string contains a count byte followed by the string itself. If the pathname
begins with a slash, " / ", character it is treated as a complete pathname of 64 characters or
less. If not, it is treated as a partial pathname and the prefix is placed in front of the file name.

The ACCESS, FILE TYPE, and AUXILIARY TYPE are the same as with the
CREATE call.

The MOD DATE and MOD TIME are entered in the same form as shown for memory
locations $BF90 through $BF93 as shown in Section 10. 1.

The CREATE DATE and CREATE TIME are entered in the same form as shown for
memory locations $BF90 through $BF93 as shown in Section 10.1.

ON_LINE: ($C5)

Figure 9.6. GET FILE INFO call.

Figure 9.7. ON LINE call.

!59

160 I THE MACHINE LANGUAGE INTERFACE

This call returns the slot number, drive number, and the volume names of all mounted
volumes. This information is then placed in a user-defined and -supplied buffer.

The call is used to determine the names of all of the volumes that are currently active on
your system or the name of a diskette in a particular slot and drive.

The parameter count for this call is 2.
The UNIT NUMBER byte specifies the slot of a disk drive device. The format of this

byte is:

1 6 5 4 3 2 1 0 -- Bit positions

-Bit values

Translation - meaning

......_ _ ___,~ Unused bits

L------~ Slot installed

111 =slot 7

110 =slot 6

101 =slot 5

L--------~ Drive installed

0 =drive 1

1 .. drive 2

For example, the possible values for this byte are:

Slot

7
6
5
4
3
2
1

Drive 1

$70
$60
$50
$40
$30
$20
$10

Drive2

$FO
$EO
$DO
$CO
$BO
$AO
$90

Note: These values may be easily verified from the above explanation.
The DATA BUFFER is a 2-byte pointer address, with low byte first, and gives the ad­

dress of a buffer for returned data. This is organized into 16-byte records. If the UNIT
NUMBER is zero then the buffer should be 256 bytes long. The first byte of a record is used to
identify the length of the volume name and the device where it is stored. For example:

7 6 5 4 3 2 1 0 ~ Bit positions

~Bit values

Translation - meaning

a.-----1~ Name length

1111 = length is 15

1100 =length is 12

--------t~ Slot number

111 =slot 7

110 =slot 6

101 =slot 5

-------~ Drive number

0 =drive 1

1 =drive 2

After this byte, the volume name is stored in the next 15 bytes.

ISSUING CALLS I 161

The ON_LINE call will return volume names that are not preceded by slashes.
Therefore you must remember to place a slash character in front of the volume name before
you can use it as a pathname.

SET _FREFIX: ($C6)

This call sets the pathname that is used by the operating system as the prefix. This prefix
must include the volume directory name.

The parameter count for this call is 1.
For the EXERCISER program, you enter the pathname for the file you wish to destroy.

For a call that you write, enter an address pointer to the ASCII string that contains the
pathname. The string contains a count byte followed by the string itself. If the pathname
begins with a slash, "/", character it is treated as a complete pathname of 64 characters or
less. If not, it is treated as a partial pathname and the prefix is placed in front of the file name.

GET _FREFIX: ($C7)

This call returns the value of the current system prefix.
This call will return the current system prefix.
The parameter count for this call is 1.
When writing your own call, you enter the address of the data buffer that is to contain

the pathname. This buffer should be at least 128 bytes long.

Figure 9.8. SET PREFIX call.

Figure 9.9. GET PREFIX call.

162

ISSUING CALLS I 163

9.2.2. Filing calls

This section discusses calls that cause the transfer of data to or from files . In order to do this
you must first OPEN communications with the operating system and the file.

OPEN: ($C8)

This call prepares a file to be accessed. This call specifies the file name by its pathname
that is to be opened. When this call is used, a reference number is returned by the call. The
reference number is used with other calls to reference that file name. Further, there is a buffer
allocated (IO-BUFFER) for the open file.

The parameter for this call is 3.
For the EXERCISER program you enter the path name for the file you wish to destroy.

For a call that you write, enter an address pointer to the ASCII string that contains the
pathname. The string contains a count byte followed by the string itself. If the pathname
begins with a slash character, " ! ", it is treated as a complete path name of 64 characters or
less . If not, it is treated as a partial path name and the prefix is placed in front of the file name.

The IO BUFFER entry is a 2-byte address pointer that indicates the start of the
1024-byte area in memory for the storage of all I/ 0 that is to be done by the file indicated by

Figure 9.10. OPEN call.

164 I THE MACHINE LANGUAGE INTERFACE

the pathname. An 1/0 buffer address must start on a page boundary (i.e., multiples of $100)
that is not marked as in use by the system bit map.

The REFERENCE NUMBER is a !-byte value assigned at the time of opening a file.
You may use any number you choose, however, you must keep that number consistent when
referencing the file that is open.

NEWLINE: ($C9)

This call sets up the conditions necessary to read requests from users and to terminate
those requests by typing a carriage RETURN.

This call allows you to either enable or disable the newline mode when working with an
open file.

The parameter count for this call is 3.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.
The ENABLE MASK is a ! -byte value that has the following meanings:

Figure 9 .11. NEWLINE call.

Byte

$00
$xx

ISSUING CALLS I 165

Meaning

Disables the newline mode.
Nonzero value enables newline mode.

The NEWLINE CHAR is a character that causes a read request to terminate when the
NEWLINE mode is enabled and a match is found during the inputting of a character.

READ: ($CA)

This call reads the specified number of characters from a file. Actually, this call does the
actual transfer of the requested characters from the diskette to the memory buffer and then
updates the current position of the mark in the file .

The parameter count for this call is 4.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.
The DATA BUFFER is a 2-byte address pointer that points to the destination storage

address for the data that is to be read from the opened file .

Figure 9.12. READ call.

166 I THE MACHINE LANGUAGE INTERFACE

The REQUEST COUNT is a 2-byte value that specifies the maximum number of bytes
that are to be transferred from the file stored on a diskette to the area of memory pointed to by
the DATA BUFFER address. This value is only limited by the amount of space from the
DATA BUFFER address to the next page of memory shown in use by the system bit map.

The TRANSFER COUNT is a 2-byte value that tells you just how many bytes were ac­
tually transferred during the read operation. This value should equal the REQUEST COUNT
or less if either the end-of-file marker was reached or if some other condition terminated the
read operation.

WRITE: ($CB)

This call writes the specified number of characters to the file . This call is the opposite of
the READ call. This call will transfer characters from the file buffer to the diskette, update
the current position mark in the file, and the end-of-file (EOF) marker, if it is required.

The parameter count for this call is 4.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.
The DATA BUFFER is a 2-byte address pointer that points to the source storage ad-

dress for the data that is to be written to the opened file .

Figure 9.13 . WRITE call.

ISSUING CALLS I 167

The REQUEST COUNT is a 2-byte value that specifies the maximum number of bytes
that are to be transferred to the file stored on a diskette from the area of memory pointed to by
the DATA BUFFER address.

The TRANSFER COUNT is a 2-byte value that tells you just how many bytes were ac­
tually transferred during the write operation. This value should equal the REQUEST COUNT
if no error occurs .

CLOSE: ($CC)

This call closes the specified file . Any unwritten data from the file's buffer (10-
BUFFER) is transferred, the file's memory buffer (10-BUFFER) is released, and the file's
directory is updated, if that is necessary.

The parameter count for this call is 1.
The REFERENCE NUMBER is the one assigned during the open call to the MLI. If the

REFERENCE NUMBER is zero, all open files at or above the current level number are
closed .

FLUSH: ($CD)

Figure 9.14. CLOSE call .

168 I THE MACHINE LANGUAGE INTERFACE

This call transfers any unwritten data from the file buffer to the ftle on a diskette of the
open file.

The parameter count for this call is 1.
The REFERENCE number is the one assigned during the open call to the MLI. If the

REFERENCE NUMBER is set to zero, then all open files at or above the current level will be
flushed.

SET _MARK: ($CE)

This call changes the current position in the file. Current position means the place or
position in the file where the next character will be either read from the file or written to the
file.

The parameter count for this call is 2.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.
The POSITION entry is a 3-byte value that specifies the absolute position in the file

where the next read or write is to take place. The POSITION marker may not exceed the end­
of-file marker.

GET _MARK: ($CF)

Figure 9.15. FLUSH call.

Figure 9.16. SET MARK call.

Figure 9.17. GET MARK call.

169

170 I THE MACHINE LANGUAGE INTERFACE

file.
This call returns the current position in the file. This call tells you where you are in the

The parameter count for this call is 2.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.
The POSITION entry is a 3-byte value that specifies the absolute position in the file

where the next read or write is to take place unless it is changed by a SET _MARK call. The
POSITION marker may not exceed the end-of-file marker.

SET_EOF: ($DO)

This call will cause a change in the logical size of a file. The end of the file is changed.
The parameter count for this call is 2.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.
The END OF FILE entry is a 3-byte entry that specifies where the logical end of the file

is to be placed. If may be either greater than or less than the current end-of-file position. If it is
greater, then the additional pages are marked as in use. If it is less, then the extra pages are
released to the system.

GET_EOF: ($Dl)

Figure 9.18. SET EOF call.

ISSUING CALLS I 171

Figure 9.19. GET EOF call.

This call will tell you the logical size of the file.
The parameter count for this call is 2.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.
The END OF FILE entry is a 3-byte entry that specifies where the logical end of the file

is located. This value tells you the number of bytes that might be read from the open file.

SET _BUF: ($D2)

This call assigns a new place in memory for the file buffer.
The parameter count for this call is 2.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.
The 10 BUFFER is a 2-byte address pointer to the 1024-byte buffer. This buffer must

start at a page boundary (multiples of $100) and must not be marked as in use.

GET_BUF: ($D3)

This call will tell you the current location of the file memory buffer for an open file .
The parameter count for this call is 2.
The REFERENCE NUMBER is the one assigned during the open call to the MLI.

Figure 9.20. SET BUF call.

Figure 9.21. GET BUF call.

172

ISSUING CALLS I 173

The 10 BUFFER is a 2-byte address pointer to the 1024-byte buffer. This buffer must
start at a page boundary (multiples of $100) and must not be marked as in use.

9 .2.3. System calls

This section discusses the calls that have to do with the system as a whole.

GET_TIME: ($82)

This call places the date and time data in the system date and time locations ($BF90
through $BF93). Of course you must have a clock/calendar card installed in your system and
have the proper routine installed. If you have a Thunderclock installed in the recommended
slot 4 then this call will work without you having to do anything but call it.

This call has no parameter list and is not in the EXERCISER program.
Since this call has no parameter list, it cannot generate an error. This call returns to

memory location $BF90 through $BF93 the date and time as generated by the clock/ calendar
card, if one is installed in your system. The format of this information was shown earlier in
the chapter.

When you power up your system with ProDOS, the clock/calendar card is looked for
and the routine is installed. The recommended slot for the clock/calendar card is slot 4.

ALLOC_INTERRUPT: ($40)

This call places a pointer (address) to the interrupt-handling routine into the system in-
terrupt vector table.

This call is not in the EXERCISER program.
The parameter count for this call is 2.
The INTERRUPT NUMBER may be any value from 1 through 4 as you assign. This

number, like the REFERENCE NUMBER, is constant during the time when the interrupt is
active.

The INTERRUPT CODE entry is a 2-byte address pointer to the first byte of the routine
called when the system is polling in response to the activation of the interrupt.

DEALLOC_INTERRUPT: ($41)

$82-GET TIME ESC: MAIN MENU

Figure 9.22. GET TIME call.

174 I THE MACHINE LANGUAGE INTERFACE

$~-ALLOCINTERRUPT ESC: MAIN MENU

PARAMETER COUNT: $02
INTERRUPTNUMBER: $00

INTERRUPT CODE: $00
: $00

Figure 9.23. ALLOC INTERRUPT call.

This call removes the pointer (address) to the interrupt-handling routine from the
system interrupt vector table.

This call is not in the EXERCISER program.
The parameter count for this call is 1.
The INTERRUPT NUMBER may be any value from 1 through 4 as you assign. This

number, like the REFERENCE NUMBER, is constant during the time when the interrupt is
active. This is the same number as when the interrupt was activated.

9.2.4. Direct access calls

With the MLI, you have the ability to read and write blocks of data on a diskette directly.
These are for the purpose of performing diagnostics, repairs, and utilities directly on a
diskette. These calls are not for the purpose of working with track and sectors as in DOS 3.3.

READ_BLOCK: ($80)

This call will read a specific block of 512 bytes of information from a diskette into a
specified data buffer. This is different from the READ call.

$41-DEALLOC INTERRUPT

PARAMTERCOUNT: $01
INTERRUPTNUMBER: $00

ESC: MAIN MENU

Figure 9.24. DEALLOC INTERRUPT call.

MEMORY USAGE I 175

Figure 9.25. READ BLOCK call.

The parameter count for this call is 3.
The UNIT NUMBER byte specifies the slot of a disk drive device. The format of this

byte was shown in the ON LINE call.
The DATA BUFFER is a 2-byte address pointer that points to the destination storage

address for the data that is to be read from the diskette. The buffer must be at least 512 bytes
long.

The BLOCK NUMBER is a 2-byte value that specifies the logical address on the diskette
that is to be read. As it turns out, there is no general direct connection between tracks and sec­
tors on a diskette and the logical block you are going to read. The translation between the two
is done by the device driver for the device that is going to be read.

WRITE_BLOCK: ($81)

This call will write a specific block of 512 bytes of information to a diskette from a
specified data buffer. This is different from the WRITE call.

The parameter count for this call is 3.
The UNIT NUMBER byte specifies the slot of a disk drive device. The format of this

byte was shown in the ON LINE call.

176 I THE MACHINE LANGUAGE INTERFACE

Figure 9.26. WRITE BLOCK call.

The DATA BUFFER is a 2-byte address pointer that points to the destination storage
address for the data that is to be transferred to the diskette. The buffer must be at least 512
bytes long.

The BLOCK NUMBER is a 2-byte value that specifies the logical address on the diskette
that is to be read. As it turns out, there is no general direct connection between tracks and sec­
tors on a diskette and the logical block you are going to write. The translation between the two
is done by the device driver for the device that is going to be doing the writing.

9.3. MLI ERROR CODES

The next tabular information lists all of the MLI error codes that could be returned from MLI
calls.

0
1

Hex

$00
$01

Description

No error present.
A non-existent command was issued. Bad system call number.

WRITING A SYSTEM PROGRAM I 171

4 $04 Bad system call parameter count. This error occurs only if the parameter list is
not constructed properly.

37 $25 Interrupt vector table full. Only four are allowed to be active for interrupt
processing simultaneously.

39 $27 1/0 error. General error number.
40 $28 No device detected or connected.
43 $2B Diskette is write-protected.
46 $2E Disk switched while file on previous diskette was OPEN.
64 $40 Invalid pathname syntax.
66 $42 File Control Block table full. Only eight files may be open at one time.
67 $43 Invalid reference number. The value parameter does not match the reference

number of any open file.
68 $44 Path not found.
69 $45 Volume directory not found.
70 $46 File not found.
71 $47 Duplicate filename encountered.
72 $48 Overrun error.
73 $49 Volume directory full.
74 $4A Incompatible file format.
75 $4B Unsupported storage_type.
76 $4C End of file has been encountered.
77 $4D Position out of range.
78 $4E Access error.
80 $50 File is open.
81 $51 Directory count error.
82 $52 Not a ProDOS disk.
83 $53 Invalid parameter.
85 $55 Volume Control Block table error.
86 $56 Bad buffer address.
87 $57 Duplicate volume.
90 $5A Bit map disk address impossible.

9.4. WRITING A SYSTEM PROGRAM

This section will discuss how to go about writing a system program. It is not meant to be ex­
haustive, but is meant to give you a reasonably good starting place.

First of all, a system program is any program that uses the Pro DOS MLI and follows the
standard system program rules. Each program must:

-contain code to move the program from its loaded position in memory to its final location
for execution. This, of course, may not be necessary.

178 I THE MACHINE LANGUAGE INTERFACE

-contain code that places the version number in the system global page.
-contain code to perform a quit and possibly switch to another program.

A system program always loads into memory at location $2000. When your system pro­
gram is first started, this program must be the first file of the startup diskette with the name
xxx.SYSTEM. This program will have a file type of $FF (SYS).

It is recommended that you look carefully over the system global page, $BF, locations
$BFOO through $BFFF, for other information and values that you may use to advantage.

When you have finished executing the current system program, you will want to provide
code to execute possibly another system program. It is recommended that you use the follow­
ing method for switching:

1. Close all open files.
2. Prompt the operator for the name of the next system program or hard code the new name.
3. Open the new file containing the system file.
4. Find the length of the new file using the GET EOF call.
5. Release the memory used by your current system program.
6. Load into memory the entire file length, starting at location $2000.
7. Close the system program file.
8. Store the pathname or partial pathname starting at memory location $280. Remember to

place the count byte in front of the name.
9. Execute a JMP (jump) to location $2000.

SUMMARY

This chapter showed you some of the inner workings of ProDOS. A number of useful
memory locations were shown, along with their translations. This was done to give you a bet­
ter feel for this new operating system and how things are done inside the code.

The next major section introduced you to the Machine Language Interface (MLI). As
you can see from the numerous calls available, you have almost complete control over your
system through the use of this mechanism. You should be able to write calls in assembly
language to go with your assembly language applications.

Through the use of the EXERCISER program, you should be able to gain competence
with the powerful MLI capability.

The last section of this chapter discussed writing a ProDOS system program.

QUESTIONS

1. Describe the differences between the command tables for DOS 3.3 and ProDOS.
2. How can the EXERCISER program help you?
3. How are the date and time stored in memory?

QUESTIONS I 179

4. Describe how the system bit map works. Why is it important that you understand this?
5. Describe how the CREATE call works.
6. Describe the major parts of the MLI.
7. What code is required to make an MLI call?
8. Describe how to use the machine identification byte in an Applesoft II BASIC program.
9. Describe the GET _FILE_INFO call.

I 0. BASIC
PROGRAMMING
SYSTEM

10.0. OVERVIEW

Top-down segmented programming

is one way to make programming

the enjoyable activity it

should be.

McGowan and Kelly, 1975

This chapter will discuss the creation of a small management information system designed pri­
marily to handle only one type of information. In this case, your Christmas card mailing list.

Section 10.1 discusses the requirements to be met in designing any program and this pro­
gram in particular.

Section 10.2 outlines the major program modules to be included either as in-line main
driver code or as subroutine modules.

Section 10.3 gives you the completed program listing along with a line-by-line descrip­
tion of the code.

A number of programming principles and techniques will be discussed without giving
you all of the motivations for using them. These were covered in detail in my previous books,
as mentioned in Chapter 1.

The primary purpose of this chapter is to show you how to use ProDOS within pro­
grams, dynamically configure screen presentations to your system, intelligently determine

180

DESIGNING THE PROGRAM I 181

your system configuration, and create a well-structured program as well as to provide you
with a reasonably pragmatic program.

Since the program given in this chapter seems very long and complex, each of the major
sections will be discussed individually. You will be asked to enter the code discussed in that
section. In this way, entering the entire program becomes rather painless. The program is
complete; however, there are a number of places that additional code could be written.

This is especially true of the disk error trapping. The error trapping codes and messages
have been placed in the code, but not all possible errors have been accounted for. The rest of
the job is left up to you.

Furthermore, there are a couple of areas where the code could be improved. That task is
also left up to you. It is good practice. ·

10.1. DESIGNING THE PROGRAM

This section discusses the process by which a digital computer solves, or rather, aids in the
solution of a problem. For the programmer, this involves the following:

1. Select problems that are appropriate to the ability and computing power of the computer
system.

2. Describe the problem requirements precisely.
3. Design a solution to the problem.
4. Describe the problem solution in a language intelligible to the computer system.
5. Confirm the correctness of the program solution.
6. Document the program completely.

The appropriate problem selection for solution on a microcomputer is as important and
as difficult as the problem description and analysis because this involves knowledge of the
particular computer system, its abilities, peculiarities, and capabilities. However, two facts
are immediately apparent and helpful.

First, the problem is of sufficient magnitude that manual solution is time-consuming
and is one that recurs often. If the problem is simple and nonrepetitive, then a computer solu­
tion may cost more than it is worth. The problems given in this text for solution and instruc­
tion are, for the most part, reasonably simple, so that you may develop competence in pro­
gramming, and acquire confidence in your ability to program.

Second, the computer can only assist in the solution of problems for which a precise and
detailed definition exists. If the designer of a problem does not define precisely the problem
and instructional details to the computer, there is no chance that a precise and reliable solu­
tion will be realized.

The classic example of this is the game of chess. The computer is asked to "play chess"
against a human opponent. Over the years, these computer programs have become better and
more comprehensive as the abilities of the programmers have become better, the problem
definition has become more precise, computer capability to symbolically manipulate the
"data" has increased, and the computer software "intelligence" level has matured.

182 I BASIC PROGRAMMING SYSTEM

To describe the problem requirements precisely, all inputs, all outputs, files, file struc­
tures, interactions of files, correlation of data, intermediate and final calculations, all reports,
screen formats, error conditions, and trapping MUST be defined in detail. This activity is
paramount, because if it is not done correctly, the remainder of the problem solution im­
plementation will not be correct.

From the analysis done in the above paragraph, design of the problem solution may be
accomplished precisely, correctly, and in detail. The steps necessary for solution, their order
of accomplishment, and the expected results may now be described in terms necessary for
problem solution in the form of a computer program, and implemented using any one of a
number of languages recognized by the chosen computer. You will use Apple's Applesoft II
BASIC language for problem solution since that is the language supported by ProDOS.

After coding the program, it is necessary to confirm the correctness of the solution. This
entails more than just debugging the syntactic, semantic, and logic errors. It als·o entails
checking ranges of inputs, correctness of responses, and routines, subroutines, and coding
modules. Checking correctness is time-consuming, tedious, and exhausting.

Finally, you are ready to write down the problem documentation and your implementa­
tion of the solution. This usually requires two documents: the run book and the program
documentation. At this point, you put all the descriptions, analyses, program hard copy, ex­
ample reports, and a detailed narrative of how to run the program together, in an organized
manner. Other individuals may use your problem solution with confidence now.

Assuming that you do all the above formally, you will find that the actual amount of
time spent coding the problem is less and the task is much less frustrating.

At this point, let's define the problem to be accomplished.

A Problem. You are to write a computer program that will provide you with a Christmas
card mailing list saved on a diskette. It should keep track of the names and addresses for
the cards you mail and the years you receive cards from the members of the list.

B Requirements.

Allow for differing system configurations
Create a Christmas card mailing list
Delete outdated card files
Save to a diskette the individual;

Name
Address
Telephone number
Past card receptions

Print mailing labels on printer
Print list contents o~ printer
Add new records
Delete old records
Review list records on video screen
Change a record contents

End the program
Check for correctness
Document the solution

DESIGNING THE PROGRAM I 183

C Describe solution. The program written will meet all of the requirements by being able to
operate upon one record at a time and by allowing the operator to manipulate each record
completely. Top-down structured programming techniques will be used, along with im­
plementation of routines required multiple times as subroutines.

D Program and language. The Christmas card list program will use the ProDOS operating
system and the Applesoft II BASIC language. The listing of this program is shown in Sec­
tion 10.3.

E Confirm correctness. Trying to determine that a program, especially a large one, is correct
for all data is very difficult and time-consuming, and is an often neglected area.

This phase of the computing process seems to be neglected by almost everyone-in their
writings, in program development, and in documentation. In all but the most simple pro­
grams, many errors will be made in each phase of the program's development. Anyone who
intends to use a computer will just have to accept this as a fact.

Typically, more than half of the total time, effort, and expense of any program develop­
ment is spent tracking down errors, flaws, or mistakes. This activity is done during the testing
(debugging) phase. Even with all the effort that is expended in the testing phase, undiscovered
flaws will still crop up, perhaps years later. This is so serious that large portions of our society
today have very little confidence in computers and the computing process.

Articles appear daily in newspapers, on television, and in magazines extolling the ap­
parent inadequacy of computers. However, in almost all cases, the fault lies not with the com­
puter, but with a program that was improperly designed or inadequately tested.

There are a number of levels of correctness that the developer of a program may
observe. These are shown below:

1. There are no syntax errors in the code.
2. There are no semantic errors in the code.
3. The program works correctly for the test data.
4. The program works correctly for all valid test data.
S. The program works correctly for all possible sets of data that meet problem specifica­

tions.
6. The program works for all possible data, rejecting invalid data, and giving accurate

answers.

Almost all programs can gain the fourth level of correctness. Today we are seeing pro­
grams that have reached the fifth level of correctness. This was not true just a couple of years
ago. All programs on the market should operate with top-level correctness. However,
especially with microcomputers, that is extremely difficult to achieve because of:

184 I BASIC PROGRAMMING SYSTEM

-the physical limitations of the microcomputer, in memory size and language inadequacy.
-the reluctance of programmers to spend the time, effort, and money to account for error-

free code.

It seems obvious that the first limitation really is not a valid argument, because of the in­
creased memory sizes available today and the proliferation of languages for microcomputers.
The second reason is really the crux of the problem.

Once programmers and manufacturers spend the time, effort, and money, top-level
programs will, in fact, be seen in the marketplace.

This next paragraph promulgates a set of principles that, if followed, should help all
writers of programs to produce programs that are aesthetically satisfying and help produce
correct results.

"Now hear this . .. "

Do NOT panic at any time.
Define the problem completely.
Proceed in a top-down manner.
Structure all code.
Write correct syntax.
Start the documentation early.
Forsake all other approaches.
Code in logical units.
Use GOTOs sparingly.
Use GOSUBs liberally.
Make all output pleasant.
Do NOT violate any of these principles.

F Document solution. It is always a good idea to document your programs, because two
years from now you probably will not remember what you wrote or how to operate that
program. You should explain minimally how to operate each major module of any
program.

For the program you are about to enter and run, there are a few very simple conventions
that are to be followed when you operate the finished program. When you are answering a
question or making a selection you will have a normal cursor presented on the video screen. In
all of those cases it will only take a single keystroke as a response.

In those cases where you are presented with a blinking cursor that is either a plus sign,
"+ ", or an asterisk, "*", you will make your entry followed by a carriage return character,
RETURN.

As you are operating this program, you will notice that the upper left hand corner of the
screen states that the typing of an ESC key allows you to back out of the present evolution you
are performing. The typing of an ESC key effectively nullifies the present operation. You are
allowed to use the ESC key to back up or cancel the operation in most cases.

PROGRAM MODULES I 185

The only major exception to this general rule is when you are configuring your system
(menu selection 1). When you are configuring your system, typing the RETURN key for each
entry selects the default value as shown on the screen.

For each selection made from the main menu, you are asked to enter or verify the cor­
rectness of the prefiX as shown on the screen. Then you are asked to enter the file name for the
file with which you wish to work.

10.2. PROGRAM MODULES

There are, in any program, a number of evolutions that need to be performed at different
times, under different conditions, within the program. Normally, these items are im­
plemented as subroutines placed in the program outside of the main driver line of code. It then
becomes a simple matter to call (GOSUB) the subroutine to accomplish what is required.

This section discusses a number of these routines and subroutines, what they ac­
complish, and how they add capability to your program.

10.2.1. The skeleton program

One of the primary concerns of programmers developing programs for the commercial
market is to make their programs user-oriented. This means that the program should lead the
user through the program with prompting. Further, the program should be easy for the user
to operate.

In attempting to get the operator to make correct selections, a MENU should be pro­
vided from which the user will select the processing desired. A number of advantages are
gained by using a menu:

-Convenient for the operator.
-User oriented.
-Easy to program.
-Operator training is easy.
-Error trapping is simple.
-Easy to implement in code.

Programs that have a menu from which to make selections should place the menu in the
main driver logic as the controlling force in the program.

Since the menu takes on such importance, it should be well trapped so that any selection
made is legal and valid. Further, make sure that the operator really wants to accomplish that
particular evolution. In this way the programmer can be fairly well assured that his major
selection process will provide for correct initial processing selection. If the program goes
wrong here, the operator gets a very bad initial impression.

The SKELETON (XMAS. PROG) program in Figure 10.2 shows the general organiza­
tion of a BASIC program that takes advantage of the characteristics of the Applesoft II
BASIC interpreter as implemented on the Apple II Plus and Apple lie, and the supported
constructs. The major logic flow of the program is shown below:

186 I BASIC PROGRAMMING SYSTEM

MAIN
MENU

END

Figure 10.1. Skeleton logic flow.

Please refer to the XMAS.PROG program for the following discussion. Specific line
numbers have been used for the placing of code. In this way your program takes on a clean
organization.

Lines

Lines 1-9

Line 10
Line 15
Lines 20-490
Line 495
Lines 500-8995

Lines 9000-9999

Lines 10000 +

Lines 60000 +

Description

Identifies the program as to the author, date, program name, language,
and computer.

Sets up a clean machine.
Free up all unused memory space.
DIMension statements, for defining variables, etc.
Provides a hard branch to the main driver.
Reserved for holding general subroutines that are called often during the

execution of the program.
Holds the main driver code. This includes menus, menu trapping, and

returns for further calculations, etc.
Holds the major subroutine blocks where programs will spend a large

portion of time.
Holds all of the disk and language error trapping that is to be done.

PROGRAM MODULES I 187

This general arrangement for a program takes advantage of the best characteristics
of modularity, speed, construction, etc. It further illustrates a program that is organized
in a structured manner, using various constructs, and above all is easy to change, maintain,
and "debug." It is felt that this type of organization has many more advantages than
shortcomings.

Please realize that the line numbers assigned are NOT sacred. The point is that some
thought concerning the physical arrangement of a program can and will pay big dividends in
coding, running, and debugging the program.

You now should power up your system with the SCRATCH.DISK you made earlier.
Type in this program segment and save it with the name XMAS.PROG:

]NEW

]LIST

1 REM ***** XMAS.PROG *****
2 REM *
3 REM * WRITTEN BY:JL CAMPBELL
4 REM * DATED:MM/DD/YY
5 REM *
6 REM * LANGUAGE:APPLESOFT II
7 REM * COMPUTER:APPLE II
8 REM *
9 REM ********************
10 TEXT : CLEAR : HOME : POKE 216,0:D$~CHR$(4)
15 PRINT D$;"FRE"
20 DIM M$(10) :REM * DIM STMTS & VAR. DEF.
80 FOR I 3 1 TO 9: READ M$(I): NEXT I
82 DATA 1 -System set-up,2 -Create a file,3 -Delete a

file
84 DATA 4 -Adds a record,5 -Edit a record,6 -Delete re

cord
86 DATA 7 -Review record,8 -Prints report,9 -Prints lab

440
495
497
498
499
500

510

520
530
540
550
560

570
580

els
REM *
GOTO 9000
REM **************
REM * GEN'L SUBR *
REM **************
INPUT "Which one?=~>";: GET N$: PRINT N$:N ~VAL (N$):NA

N$): RETURN
VTAB 22 : CALL - 958 HTAB 13: INVERSE : PRINT

"ILLEGAL ENTRY!"; CHR$ (7): NORMAL
FOR L ::: 1 TO 1000: NEXT L : RETURN

VTAB V: HTAB H: PRINT "Date: "; LEFT$ (T$,5): RETURN
VTAB V: PRINT "*CURRENT PREFIX~ ";PR$: RETURN
PRINT "Is that correct? (Y/N}";: GET Q$: PRINT Q$: RETURN
PRINT "Press any key to continue ••• ";: GET Q$: PRINT

RETURN
VTAB V: PRINT "*ESC:::ESCAPE": RETURN
VTAB V: PRINT "DO YOU WANT THAT? (Y/N) ": RETURN

ASC (

188 I BASIC PROGRAMMING SYSTEM

590
600

PRINT "Any changes? (Y/N) ";: GET Q$: PRINT Q$: RETURN
PRINT "Another entry? (Y/N) ";: GET Q$: PRINT Q$:

8950
8960
8999
9000

RETURN
FOR I= 1 TO 39: PRINT"*";: NEXT I: PRINT : RETURN
PRINT"*";: HTAB 39: PRINT"*": RETURN
REM * MAIN DRIVER
HOME : PRINT : PRINT TAB(11)"*** XMAS LIST***":
PRINT

9010 VTAB 4: PRINT "Main menu:";: HTAB 29: PRINT "Date: ";
LEFT$ (T$,5): PRINT "---- ----";: HTAB 29: PRINT "--

--- -----"
9015 FOR I; 1 TO 9: VTAB 5 + 1: PRINT TAB(11)M$(I): NEXT

1
9020
9025
9030
9040
9050
9060
9100

VTAB 16: PRINT TAB(11) 11 0 -Exit
IF TF = 1 THEN VTAB 6: PRINT 11 00
VTAB 18: CALL - 958: GOSUB 500
IF N) 0 AND N < 10 THEN 9100
IF NA = 48 THEN 9990
GOSUB 510: GOTO 9030
VTAB 5 + N: HTAB 5: PRINT " ==>

=="
VTAB 20: CALL - 958: GOSUB 550
IF Q$ = "Y" OR Q$ = "y" THEN 9200
IF Q$ = "N" OR Q$ = "n" THEN 9150

program"
THIS"

It •• , . PRINT M$(N);"

GOSUB 510: GOTO 9110
VTAB 5 + N: PRINT " ";M$(N);" "
GOTO 9030

<
9110
9120
9130
9140
9150
9160
9200 ON N GOSUB 10000,15000,20000,25000,30000,35000,40000,

9210
9990
9995
10000
10010

45000,50000
GOTO 9000
HOME : VTAB 10: PRINT "GOODBYE FOR NOW ••• "
END

HOME : GOSUB 8950: GOSUB 8960
PRINT"*";: HTAB 13: PRINT "SYSTEM SET-UP";: HTAB 39
PRINT "*"

14995 SW = O:RETURN
15000 HOME : GOSUB 8950: GOSUB 8960
15010 PRINT"*";: HTAB 13: PRINT "CREATE A FILE";: HTAB 39

: PRINT "*"
19995 SW ~ O:RETURN
20000 HOME : GOSUB 8950: GOSUB 8960
20010 PRINT"*";: HTAB 13: PRINT "DELETE A FILE";: HTAB 39

: PRINT "*"
24995 SW = O:RETURN
25000 HOME : GOSUB 8950: GOSUB 8960
25010 PRINT"*";: HTAB 13: PRINT 11 ADDS A RECORD";: HTAB 39

PRINT 11 *"
29995 SW = O:RETURN
30000 HOME : GOSUB 8950: GOSUB 8960
30010 PRINT"*";: HTAB 13: PRINT "EDIT A RECORD";: HTAB 39

PRINT "* 11

34995 SW = O:RETURN
35000 HOME : GOSUB 8950: GOSUB 8960

PROGRAM MODULES I 189

35010 PRINT"*";: HTAB 13: PRINT "DELETE RECORD";: HTAB 39
PRINT "*"

39995 SW = O:RETURN
40000 HOME : GOSUB 8950: GOSUB 8960
40010 PRINT "*";: HTAB 13: PRINT "REVIEW RECORD";: HTAB 39

: PRINT "*"
44995 SW = O:RETURN
45000 HOME : GOSUB 8950: GOSUB 8960
45010 PRINT"*";: HTAB 13: PRINT "PRINTS REPORT";: HTAB 39

PRINT "*"
49995 SW = O:RETURN
50000 HOME : GOSUB 8950: GOSUB 8960
50010 PRINT '"*";: HTAB 13: PRINT "PRINTS LABELS";: HTAB 39

: PRINT "*"
54995 SW = O:RETURN

Figure 10.2. Skeleton program.

The following is a line-by-line description of the code shown in Figure 10.2.

Line

Line 1-9
Line 10

Line 15
Line 20
Line 80
Lines 82-86
Line 495
Line 500
Line 510
Line 520
Line 530

Line 540
Line 550
Line 560

Description

Identifies the program.
Sets up a clean machine.

TEXT = Places your computer into the text mode. The cursor is placed at
the bottom of the screen.

CLEAR = Clears all variables and the processor stack.
HOME = Places the cursor at the upper left corner of the screen.
POKE 216,0 = Turns off the ONERR flag.
D$ = CHR$(4) = Set up the disk command identifier character.

Performs a fast garbage collection on memory.
Dimension statement that sets aside memory storage locations for variables.
Menu READ statement that reads and stores the main menu.
Main menu data that is to be read.
Hard branch to the main driver code.
General prompting subroutine for operator response.
General error handler for operator entry errors.
General delay loop.
Routine to print the date. Notice that by defining the V and H values before

entry into routine, you may place the date anywhere on the video screen.
Print the current prefix on the video screen.
General prompting to verify the correctness of an operator response.
General instruction for the purpose of holding a screen and requesting opera-

tor to type any key.

190 I BASIC PROGRAMMING SYSTEM

Line 570
Line 580
Line 590
Line 600
Line 8950
Line 8960
Line 9000
Line 9010
Line 9015
Line 9020
Line 9030
Line 9040
Line 9050

Print the ESC capability of the program.
Request verification of the performance of an evolution.
Request the verification of any changes to be performed.

Line 9060
Line 9100
Line 9110
Line 9120

Line 9130

Line 9140
Line 9150
Line 9160
Line 9200

Line 9210
Line 9990
Line 9995
Lines 10000-14995
Lines 15000-19995
Lines 20000-24995
Lines 25000-29995
Lines30000-34995
Lines 35000-39995
Lines40000-44995
Lines 45000-49995
Lines 50000-54995

Request to operator for another entry.
Print a line of asterisks across screen.
Print asterisks at each edge of screen.
Clear the screen and print main menu title on screen.
Print "Main menu" and the date at top of the screen.
Print the main menu selections on the screen.
Print program exiting selection.
Locate and print the general prompting question.
Test operator's response for a valid selection value.
Test response for an exiting request.
If true, exit the program.
Activate error message and then branch to line 9030.
Prompt operator to validate correctness of selection.
Locate cursor and ask operator to validate selection made.
Test for a Y answer.
If true, branch to line 9200.
Test for anN answer.
If true, branch to line 9150.
Activate error message and then branch to line 9110.
Reprint menu selection after clearing previous selection.
Make a hard branch to line 9030.
Depending upon the selection made, branch to the appropriate code

section.
Make a hard branch to the start of the main driver code.
Clear the screen and print ending message on screen.
End the program.
Code secton to set up your system.
Code section to create a new file on a diskette.
Code section to delete a file from a diskette.
Code section to add a new record to the file.
Code section to edit a record in a file.
Code section to delete a record in the file.
Code section to review individual records in the file.
Code section to print list contents.
Code section to print labels.

The code you have seen is the main driver code and a number of single line subroutines
that support the main driver and other code in the XMAS.PROG shown completely in
Section 10.3.

PROGRAM MODULES I 191

10.2.2. Number and string module

The number filter is probably the more important of the next two routines because entering
numbers into any program is done much more often than the entry of string data. Therefore,
it becomes necessary and important that numeric data be accurate, correct in form, and not
contain alphabetic characters. If the person entering data is used to typing on a standard
typewriter, one of the more prevalent errors committed is to type an ''0'' instead of a numeric
zero and to type an "1" in place of a numeric one. These mistakes can cause horrible results
when trying to do mathematics on data. Type in the Number Filter routine and save it on a
diskette as NUMBER.FILTER and then place it into your XMAS.PROG.

1495
1500
1 505
1 510
1 515
1 5 20
1 52 5
1 530
1 535
1 540
1545
1550
1555
1560
1565
15 70
1 57 5
1 580
1585
1590
1 59 5
1600

REM * NUMBER FILTER
IX""' 1:8$ = "":SW = 0

VTAB V: HTAB H + IX
PRINT "+";
VTAB V: HTAB H + IX
GET X$
IF ASC (X$) 13 THEN 1590
IF ASC (X$) 8 THEN 1565
IF IX) 1 THEN 1545
IF ASC (X$) ~ 45 THEN 1555
IF ASC (X$) = 46 AND SW = 0 THEN SW = 1: GOTO
IF ASC (X$) < 48 OR ASC (X$) > 57 THEN 1515

B$ = B$ + X$: PRINT X$
IX= IX+ 1: GOTO 1505

IF IX = 1 THEN 1505
HTAB H +IX: PRINT" ";: HTAB H +IX- 1
IF MID$ (B$, LEN (B$),1) "•" THEN SW = 0

B$ = MID$ (B$,1, LEN (B$) - 1)
IX= IX- 1: GOTO 1505

CALL - 868
VTAB V: HTAB H + 1: PRINT B$
RETURN

Figure 10.3. Number fllter subroutine.

In order to use the above subroutine, the calling code is as follows:

30380 V = 9: H = 21: GO SUB 1500: R = VAL (B$)

1555

Line 30380 defines the variables, Vand H, to be used by the subroutine at line 1500. B$
is the variable that is returned from the subroutine. B$ contains a number, in string form, that
can be recovered by taking the VALue of the string.

192 I BASIC PROGRAMMING SYSTEM

Line

Line 1500

Line 1505

Line 1510

Line 1515
Line 1520

Line 1525
Line 1530
Line 1535
Line 1540

Line 1545

Line 1550

Line 1555

Line 1560

Line 1565

Line 1570
Line 1575

Line 1580
Line 1585

Description

Subroutine setup.
Index set to one. IX = 1
N$ set to the null string. N$ = ""
Switch set to zero. SW = 0
Position the cursor.
Vertically tab to the V value. VTAB V.
Horizontally tab to the H value plus index. HT AB H + IX.
Print the " + " sign in the cursor position.
NOTE: You may use the prompt character of your own choosing.
Reposition the cursor on the screen.
Get the first character from the keyboard.
GETX$.
NOTE: Lines 1525-1545 constitute the command table of acceptable com-

mands (keystrokes) allowed.
Test for a carriage return. 13 =CR.
Test for a backspace character. 8 = BS.
Test index for value greater than one.
Test for a minus sign. 45 = "- ".
Minus sign allowed only in position one.
Test for decimal point. 46 = ".".
SW also must be a zero. Signifies no decimal point has been entered.
Set the switch to one.
Test range of character entered.
If character is outside the range of allowed numbers, ignore. Numbers are in the

collating sequence of 48 through 57 decimal, which is the range of decimal
numbers from 0-9.

Legal character entered.
Add character to the output string. B$ = B$ + X$.
Print character entered. PRINT X$.
Increment and loop.
Increment index. IX = IX + 1.
Loop back for next character. GOTO 1505.
Text IX for a value of one.
If true then branch to line 1505.
Reposition cursor and print a blank space.
Test for decimal point in last position of string.
If "." then reset switch to zero. SW = 0.
Erase the last character from B$.
Decrement index. IX = IX - 1.
Loop back. GOTO 1505.

Line 1590
Line 1595
Line 1600

Clear current line to the end.
Reposition cursor and print B$.
RETURN from subroutine.

PROGRAM MODULES I 193

The string filter routine below allows a much broader range of characters to be entered.
This is to accommodate the entry of a name, address, etc. Type in this routine and save it on
your library diskette.

1395 REM * STRING FILTER
1400 IX= l:B$ = ""
1405 VTAB V: HTAB H + IX
1410 PRINT"*"
1415 VTAB V: HTAB H + IX
1420 GET X$
1422 IF ASC (X$) 27 THEN 1490
1425 IF ASC (X$) 13 THEN 1480
1430 IF ASC (X$) = 8 THEN 1460
1435 IF ASC (X$) 32 THEN 1450
1440 IF ASC (X$)) 45 AND ASC (X$) < 58 THEN 1450
1442 IF ASC (X$)) 57 AND ASC (X$) < 65 THEN 1415
1445 IF ASC (X$) < 65 OR ASC (X$)) 90 THEN 1415
1450 B$ = B$ + X$: PRINT X$
1455 IX= IX+ 1: GOTO 1405
1460 IF IX = 1 THEN 1405
1465 HTAB H +IX: PRINT 11

";: HTAB H +IX- 1
1470 B$ = MID$ (B$,1, LEN (B$) - 1)
1475 IX= IX- 1: GOTO 1405
1480 CALL - 868
1485 VTAB V: HTAB H + 1: PRINT B$
1490 RETURN

Figure 10.4. String filter subroutine.

The driving code for the above subroutine is as follows:

30520 V = 8 + N:H = 13: GOSUB 1400
30530 L$(N) = B$

The V sets the vertical position of the cursor from the top of the screen. The H sets the
horizontal position of the cursor from the left edge of a line. The subroutine is called with
GOSUB 1400. In general, this routine is the same as Figure 10.3, but this routine allows a
much broader list of characters to be accepted into the program. The list of acceptable, al­
lowed characters (command table) is shown in lines 1425-1445. If you have an Apple lie, you
may want to allow for lowercase characters. If so, you will need to add to the range of allowed
characters.

194 I BASIC PROGRAMMING SYSTEM

This subroutine is used to enter names, addresses, etc., into a program and at the same
time eliminate special characters, control characters, and the like. You may want to enter this
routine separately and save it as STRING.FILTER and then merge it into XMAS.PROG.

You should be able to analyze this routine to determine what it accomplishes. If you do
not know the ASCII character set, we refer you to pages 138 and 139 of the Applesoft II
BASIC manual or page 241 to 244 in the Apple lie reference manual or Appendix I of this
book. From the approach taken in Figures 10.3 and 10.4, you will be able to test each char­
acter as it is entered and before it is assigned to the final output string. In this manner, you can
create any number of routines to be used for specific purposes just by changing the allow­
able character set. You should find a number of applications for these routines or their
modifications.

10.2.3. Pathname determination subroutine

Since Pro DOS has the capability to find diskette files through the use of pathnames only, it is
extremely important that you have a correct file pathname and file name. With that in mind, it
is necessary that you determine the pathname and file name correctly. The following code
should help you do just that. In this case, the program must be located within the diskette
directory. If you locate this program within another a subdirectory, the code will have to be
modified to accommodate that structure.

5000 VTAB 7: CALL - 958:SW = 0: PRINT "Is PREFIX correct?
(YIN) ";: GET Q$: PRINT Q$

5010 IF ASC (LEFT$ (Q$,1)) = 27 THEN SW = 1: GOTO 5295
5020 IF LEFT$ (Q$,1) "Y" OR LEFT$ (Q$,1) "y" THEN

5100
5030 IF LEFT$ (Q$,1) = "N" OR LEFT$ (Q$,1) "n" THEN

5200
5040 GOSUB 510: GOTO 5000
5100 VTAB 9: CALL - 958: PRINT "New file name "; :V 9:

H = 16: GOSUB 1400:L = LEN (B$)
5102 IF ASC (X$) = 27 THEN PRINT : GOTO 5000
5105 IF L > 15 THEN GOSUB 510: GOTO 5100
5110 F$ = B$:PN$ = PR$ + F$
5120 VTAB 7: CALL - 958: PRINT "PATHNAME = ";PN$
5130 VTAB 9: CALL - 958: GOSUB 550
5135 IF ASC (LEFT$ (Q$,1)) = 27 THEN 5000
5140 IF LEFT$ (Q$,1) "Y" OR LEFT$ (Q$,1) "y" THEN

5295
5150 IF LEFT$ (Q$,1) = "N" OR LEFT$ (Q$,1) "n" THEN

5000
5160 GOSUB 510: GOTO 5130
5200 VTAB 9: CALL - 958: PRINT "Enter new PREFIX ";:V

9:H = 19: GOSUB 1400
5205 IF ASC (X$) = 27 THEN PRINT : GOTO 5000
5 21 0 IF LEFT$ (B $' 1) < > II I,, THEN B $ = II I II + B $

PROGRAM MODULES I 195

5220 L = LEN (B$): IF L) 15 THEN GOSUB 510: GOTO 5200
5230 IF RIGHT$ (B$,1) <) "/"THEN B$ = B$ + "/"
5240 VTAB 5: GOSUB 8950:PR$ = B$:V = 5: GOSUB 540
5250 GOTO 5000
5295 RETURN

Figure 10.5. Pathname subroutine.

Following is a description of the above code.

Line

Line 5000
Line 5010

Line 5020

Line 5030

Line 5040
Line 5100
Line 5102

Line 5105

Line 5110

Line 5120
Line 5130
Line 5135

Line 5140

Line 5150

Line 5160
Line 5200
Line 5205

Line 5210

Line 5220

Description

Prompt operator for the correct PREFIX.
Test last character entered for an ESC key entry.
If ESC key was entered then branch to line 5295.
Test for a Y answer.
If true branch to line 5100.
Test for an N answer.
If true branch to line 5200 I
Activate the general error routine and then go to line 5000.
Enter the new file name.
Test last character entered for an ESC key entry.
If ESC key was entered then branch to line 5000.
Test length of entry I
If greater than 15 characters then do not accept I
Make assignment to the file name variable, F$.
Make assignment to the pathname variable, PN$.
Enter the new pathname.
Position cursor and ask operator to validate correctness of entry.
Test last character entered for an ESC key entry.
If ESC key was entered then branch to line 5000.
Test for a Y answer.
If true then set the RF variable to 1 and go to line 5100.
Test for anN answer.
If true then go to line 5200.
Activate general error message and then branch to line 5130.
Prompt operator for the entry of a new prefix name.
Test last character entered for an ESC key entry.
If ESC key was entered then branch to line 5000.
Test for the entry of a"/" at the beginning of the partial pathname.
If not entered then add"/" to the pathname.
Test length of pathname entry.
If length is greater than 15 characters, entry will not be accepted.

196 I BASIC PROGRAMMING SYSTEM

Line 5230

Line 5240

Line 5250
Line 5295

Test for the entry of a"/" at the end of partial pathname.
If not entered then add"/" to pathname.
Print a row of asterisks.
Print the current prefiX on the video screen.
Make a hard branch to line 5000.
Return from subroutine.

10.2.4. Print to screen subroutine

The following small code section is for the purpose of printing to the screen the data
elements needed to be entered for each record in the file. This routine is used in a number of
major subroutines.

2999 REM * PRINt SCREEN
3000 PRINt "1- NAME :"
3010 PRINT "2- ADDRESS :"
3020 PRINt "3- CITY : n

3030 PRINt "4- STATE :"
3040 PRINT "5- ZIP CODE :"
3050 PRINT "6- AREA CODE:"
3060 PRINT "7- PHONE II : "
3070 REtURN

Figure 10.6. Screen data entry.

The description of the code is shown below.

Line Description

Line 3000
Line 3010
Line 3020
Line 3030
Line 3040
Line 3050
Line 3060
Line 3070

Print NAME on screen.
Print ADDRESS on screen.
Print CITY on screen.
Print STATE on screen.
Print ZIP CODE on screen.
Print AREA CODE on screen.
Print PHONE # on screen.
RETURN from subroutine.

10.2.5. Read a record subroutines

The following two subroutines are for the purpose of reading any record in the file and
reading record zero.

PROGRAM MODULES I 197

1999 REM * READ RECORD R
2000 PRINT D$;"0PEN ";PN$;",L128,S";SY(2);",D";SY(4)
2010 PRINT D$;"READ ";PN$;",R";R
2020 INPUT L$(1),L$(2),L$(3),L$(4),L$(5),L$(6),L$(7)
2025 INPUT YR$(0),YR$(1),YR$(2),YR$(3),YR$(4),YR$(5),YR$(6

),YR$(7),YR$(8),YR$(9)
2030 PRINT D$;"CLOSE"
2040 RETURN

2099 REM * READ RECORD 0
2100 PRINT D$;"0PEN ";PN$; 11 ,L128,S 11 ;SY(2);",D";SY(4)
2110 PRINT D$; 11 READ ";PN$;",RO"
2120 INPUT TR,NR
2130 PRINT D$;"CLOSE"
2140 RETURN

Line

Line 2000

Line 2010
Line 2020
Line 2025
Line 2030
Line 2040
Line 2100

Line 2110
Line 2120
Line 2130
Line 2140

Figure 10.7. Read record subroutines.

Description

Open communications with the file PN$.
Record length is 128 bytes.
File is located in slot SY(2) on drive SY(4).
Communications is to read data from record R.
Input the name and address data.
Input the year data.
Close communications with the disk operating system.
Return from the subroutine.
Open communications with the file PN$.
Record length is 128 bytes
File is located in slot SY(2) on drive SY(4).
Read record zero from the file.
Input the variables TR and NR from the diskette.
Close communication with the disk operating system.
Return from the subroutine.

10.2.6. Write a record subroutines

The following two subroutines are for the purpose of writing to any record in the file and
writing to record zero.

198 I BASIC PROGRAMMING SYSTEM

2499 REM * WRITE RECORD R
2500 PRINT D$;"0PEN ";PN$; 11 ,Ll28,S";SY(2);",D";SY(4)
2510 PRINT D$;"WRITE ";PN$;",R11 ;R
2520 FOR I ; l TO 7: PRINT L$(I): NEXT I
2525 FOR I ; 0 TO 9: PRINT YR$(I): NEXT I
2530 PRINT D$;"CLOSE"
2540 RETURN

2599 REM * WRITE RECORD 0
2600 PRINT D$;"0PEN ";PN$;",Ll28,S";SY(2);",D";SY(4)
2610 PRINT D$;"WRITE ";PN$;",RO"
2620 PRINT TR: PRINT NR
2630 PRINT D$;"CLOSE"
2640 RETURN

Figure 10.8. Write record subroutine.

A description of what each line of code accomplishes is shown below.

Line

Line 2500

Line 2510

Line 2520
Line 2525
Line 2530
Line 2540
Line 2600

Line 2610

Line 2620
Line 2630
Line 2640

Description

Open communications with the file whose pathname is defined by PN$.
The record length is 128 bytes.
The flle is located on the diskette in slot SY(2), drive SY(4).
Communications with the diskette is to write to the file.
Routine will write to record number R.
Note: It is necessary that you define the record to be written before calling this

subroutine.
Print all of the name and address information to the diskette.
Print all of the year data to the diskette.
Close communication with the disk operating system.
Return from subroutine.
Open communications with the file whose name is defined by PN$.
Record length is 128 bytes.
The file is located in slot SY(2) on drive SY(4).
The communications is to write to the file.
Record 0 will be written.
Print the two record pointers, TR and NR.
Close communications with the disk operating system.
Return from subroutine.

10.2. 7. System configuration setup subroutine

The following code is for the purpose of prompting the operator to either accept the default
values or entering your own configuration for the items specified.

3100 PRINT "DISKS:"
3110 PRINT TAB(6)"BOOT SLOT:"
3120 PRINT TAB(6)"DATA SLOT:"
3130 PRINT
3140 PRINT TAB(5)"BOOT DRIVE:"
3150 PRINT TAB(5)"DATA DRIVE:"
3160 PRINT
3170 PRINT "PRINTER:"
3180 PRINT TAB(ll)"SLO'l':"
3190 PRINT TAB(11)"TYPE:"
3200 VTAB 15: HTAB 25: PRINT "1:::aSERIAL"
3210 VTAB 16: HTAB 25: PRINT "2""PARALLEL"
3250 RETURN

Figure 10.9. System configuration subroutine.

The system configuration code is described below.

Line

Line 3100
Line 3110
Line 3120
Line 3130
Line 3140
Line 3150
Line 3160
Line 3170
Line 3180
Line 3190
Line 3200
Line 3210
Line 3250

Description

Print the subtitle on the screen.
Print the boot slot prompt.
Print the data slot prompt.
Print a blank line.
Print the boot drive prompt.
Print the data drive prompt.
Print a blank line.
Print the printer subtitle.
Print the slot prompt.
Print the printer type prompt.
Print the type number for a serial printer.
Print the type number for a parallel printer.
Return from the subroutine.

10.2.8. Thunderclock routine

PROGRAM MODULES I 199

The following three lines of code are for the purpose of reading the current time and date from
the Thunderclock installed in slot 4. Slot 4 is the recommended slot for any clock/calendar
card.

60 PRINT D$;"IN#4"
62 INPUT "0/o" ;T$
64 PRINT D$;"IN#O"

Figure 10.10. Thunderclock routine.

A line-by-line description of the above code is shown below.

200 I BASic PROGRAMMING SYSTEM

Line

Line 60
Line 62
Line 64

Description

Activate slot 4.
Input date/time.
Deactivate clock/calendar slot.

10.2.9. Read current prefix routine

The following two lines of code are for the purpose of capturing the current prefix.

400 PRINT D$;"PREFIX"
405 INPUT PR$

Figure 1 0.11. Read prefix routine.

A description of this code is shown below.

Line

Line 400
Line 405

Description

Access the prefix on the boot drive.
Capture the prefiX into the variable PR$.

10.2.10. Report heading subroutine

The following code is for the purpose of providing each printed page a heading so that the
report looks reasonably nice.

8899
8900
8905
8907
8910
8915
8920
8925

REM * REPORT HEADING
POKE 36,60: PRINT "Page: ";PG
POKE 36,34: PRINT "List Report"
POKE 36,5: PRINT "Name & Address";
POKE 36,60: PRINT "Date: "; LEFT$ (T$,5)
FOR I = 1 TO 79: PRINT "=";: NEXT I: PRINT

PG = PG + 1:LN = 4
RETURN

Figure 10.12. Report heading subroutine.

Below is a line-by-line description of the above code.

II II

Line Description

Line 8900 Move cursor to position 60. POKE 36,60.
Print page number.
Note: The instruction POKE 36,x is recommended since TAB, SPC, and HT AB

may not work correctly.

Line 8905

Line 8907

Line 8910

Line 8915
Line 8920

Line 8925

Move cursor to position 34 on paper.
Print report title on paper.
Move cursor to position 5 on paper .
Print "Name & Address".
Move cursor to position 60 on paper .
Print the date.
Print an equal sign, " = ", across paper.
Increment page number.
Set the line count to 4. LN = 4.

THE PROGRAM I 201

Notes: (1) The main subroutine that called this subroutine counts lines that are
printed so that the next heading will be placed at the proper location
on the next page.

(2) Each page is numbered sequentially. Therefore the subroutine keeps
track of the next page number that needs to be printed.

Return from subroutine.

10.3. THE PROGRAM

This section is devoted to giving you a complete listing of the program that has been discussed
in the previous sections of this chapter. Now would be a good time to power up your system

202 I BASIC PROGRAMMING SYSTEM

and then load the program, XMAS.PROG. Then fill in the missing code from what you have
previously entered.

This program was written to operate with an Apple lie with ProDOS installed. If you
are operating an Apple II Plus without lowercase capability then change the lowercase charac­
ter strings to uppercase.

The program is called XMAS.PROG and I used a file name of XMAS.LIST. The total
pathname is /SCRATCH.DISK/XMAS.LIST for that file.

]NEW

]LIST

1 REM ***** XMAS.PROG *****
2 REM *
3 REM * WRITTEN BY:JL CAMPBELL
4 REM * DATED:l2/10/1983
5 REM *
7 REM * COMPUTER:AII+ OR AilE
8 REM *
9 REM ************************
10 TEXT : CLEAR : HOME : POKE 216,0:D$ CHR$ (4)
15 PRINT D$;"FRE"
20 DIM M$(10),TI$(5),TI(5),SL$(7),SL(7)
30 DIM L${10),YR$(10),CD$(10),SY(l0)
60 PRINT D$;"IN/14"
62 INPUT "%";T$
64 PRINT D$;"INIIO"
70 FOR I 0 TO 7:SL$(I) "" "EMPTY":SL(I) = 0: NEXT I
80 FOR I 1 TO 9: READ M$(I): NEXT I
82 DATA -System set-up,2 -Create

file
84 DATA 4 -Adds a record, 5 -Edit a

cord
86 DATA 7 -Review record, 8 -Prints

els
90 FOR I = 1 TO 6: READ SY(I): NEXT I
92 DATA 6,6,1 ,1 ,1 ,2
94 TF = O:RF = 0
400 PRINT D$; "PREFIX"
405 INPUT PR$
415 F$ = PR$ + "SYSTEM"
420 EP = 11: ONERR GOTO 60000
425 PRINT D$;"0PEN ";F$
430 PRINT D$;"READ ";F$

a file,3

record,6

report,9

435 INPUT SY(l),SY(2),SY(3),SY(4),SY(5),SY(6)
440 PRINT D$;"CLOSE"
490 GOSUB 55000
495 GOTO 9000
497 REM **************
498 REM * GEN'L SUBR *

-Delete

-Delete

-Prints

a

re

lab

THE PROGRAM I 203

499 REM **************
500 PRINT "Which one? ==> ";: GET N$: PRINT N$:N = VAL (N$):NA
ASC (

N$): RETURN
510 VTAB 22: CALL - 958: HTAB 13: INVERSE : PRINT "ILLEGA

L ENTRY!"; CHR$ (7): NORMAL
520 FOR L = 1 TO 1000: NEXT L: RETURN
530 VTAB V: HTAB H: PRINT "Date: "; LEFT$ (T$,5): RETURN
540 VTAB V: PRINT "*CURRENT PREFIX = ";PR$: RETURN
550 PRINT "Is that correct? (Y/N) ";: GET Q$: PRINT Q$: RETURN
560 PRINT "Press any key to continue ••• ";: GET Q$: PRINT

RETURN
570 VTAB V: PRINT "*ESC=ESCAPE": RETURN
580 VTAB V: PRINT "DO YOU WANT THAT? (Y/N) ": RETURN
590 PRINT "Any changes? (Y/N) ";: GET Q$: PRINT Q$: RETURN
600 PRINT "Another entry? (Y/N) ";: GET Q$: PRINT Q$:

1395
1400
1405
1410
1415
1420
1422
1425
1430
1435
1440
1442
1445
1450
14 55
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1 510
1 51 5
1 5 20
1 5 25
1 5 30
1 5 35
1540
1 545
15 so
1555
1 560

RETURN
REM * STRING FILTER

IX = l : B $ = '"'
VTAB V: HTAB H + IX
PRINT "*"
VTAB V: HTAB H + IX
GET X$
IF ASC (X$) 27 THEN 1490
IF ASC (X$) 13 THEN 1480
IF ASC (X$) 8 THEN 1460
IF ASC (X$) 32 THEN 1450
IF ASC (X$)) 45 AND ASC (X$) < 58 THEN 1450
IF ASC (X$)) 57 AND ASC (X$) < 65 THEN 1415
IF ASC (X$) < 65 OR ASC (X$)) 90 THEN l415

B$ = B$ + X$: PRINT X$
IX= IX+ 1: GOTO 1405

IF IX = 1 THEN 1405
HTAB H + IX: PRINT " ";: HTAB H + IX - 1

B$ = MID$ (B$,1, LEN (B$) - 1)
IX= IX- 1: GOTO 1405

CALL - 868
VTAB V: HTAB H + 1: PRINT B$
RETURN
REM * NUMBER FILTER

IX= 1:8$ = "":SW = 0
VTAB V: HTAB H +IX
PRINT "+";
VTAB V: HTAB H + IX
GET X$
IF ASC (X$) 13 THEN 1590
IF ASC (X$) 8 THEN 1565
IF IX > 1 THEN 1545
IF ASC (X$) 45 THEN 1555
IF ASC (X$) = 46 AND SW = 0 THEN SW = 1: GOTO
IF ASC (X$) < 48 OR ASC (X$) > 57 THEN 1515

B$ B$ + X$: PRINT X$
IX= IX+ 1: GOTO 1505

1555

204 I BASIC PROGRAMMING SYSTEM

1 565
1 5 70
1 57 5
1 580
1 585
1 590
1 59 5
1600
1 999
2000
2010
2020
2025

2030
2040
2099
2100
2110
2120
2130
2140
2499
2500
2510
2520
2525
2530
2540
2599
2600
2610
2620
2630
2640
2999
3000
3010
3020
3030
3040
3050
3060
3070
3100
3110
3120
3130
3140
3150
3160
3170
3180

IF IX = 1 THEN 1505
HTAB H + IX: pRINT II II; : HTAB H + IX - 1
IF MID$ (B$, LEN (B$),1) = "•" THEN SW = 0

B$ = MID$ (B$,1, LEN (B$) - 1)
IX= IX- 1: GOTO 1505

CALL - 868
VTAB V: HTAB H + 1: PRINT B$
RETURN
REM * READ RECORD R
PRINT D$;"0PEN ";PN$;",Ll28,S";SY(2);",D";SY(4)
PRINT D$;"READ ";PN$;",R";R
INPUT L$(l),L$(2),L$(3),L$(4),L$(5),L$(6),L$(7)
INPUT YR$(0),YR$(l),YR$(2),YR$(3),YR$(4),YR$(5),YR$(6

),YR$(7),YR$(8),YR$(9)
PRINT D$;"CLOSE"
RETURN
REM * READ RECORD 0
PRINT D$;"0PEN ";PN$;",L128,S";SY(2);",D";SY(4)
PRINT D$;"READ ";PN$;",RO"
INPUT TR,NR
PRINT D$;"CLOSE"
RETURN
REM * WRITE RECORD R
PRINT D$;"0PEN 11 ;PN$; 11 ,L128,S 11 ;SY(2); 11 ,D";SY(4)
PRINT D$;"WRITE ";PN$;",R 11 ;R
FOR I = 1 TO 7: PRINT L$(1): NEXT I
FOR I = 0 TO 9: PRINT YR$(I): NEXT I
PRINT D$;"CLOSE"
RETURN
REM * WRITE RECORD 0
PRINT D$; 11 0PEN ";PN$;",L128,S";SY(2);",D";SY(4)
p R IN T D $; II wRITE II ; p N $; ti ' R 0"
PRINT TR: PRINT NR
PRINT D$;"CLOSE"
RETURN
REM * PRINT SCREEN
PRINT "1- NAME :"
PRINT "2- ADDRESS :"
PRINT "3- CITY :"
PRINT "4- STATE :"
PRINT "5- ZIP CODE :"
PRINT "6- AREA CODE:"
PRINT "7- PHONE fl :"
RETURN
PRINT "DISKS:"
PRINT TAB(6)"BOOT SLOT:"
PRINT TAB(6)"DATA SLOT:"
PRINT
PRINT TAB(S)"BOOT DRIVE:"
PRINT TAB(S)"DATA DRIVE:"
PRINT
PRINT "PRINTER:"
PRINT TAB(11)"SLOT:"

3190
3200
3210
3250
5000

5010
5020

5030

5040
5100

5102
5105
5110
5120
5130
5135
5140

5150

5160
5200

5205
5210
5220
5230
5240
5250
5295
5299
5300
5310
5320
5330
5340
5350
5360
8899
8900
8905
8907
8910
8915
8920
8925
8950
8960
8970

PRINT TAB(11)"TYPE:"
VTAB 15: HTAB 25: PRINT "1=SERIAL"
VTAB 16: HTAB 25: PRINT "2=PARALLEL"
RETURN

THE PROGRAM I 205

VTAB 7: CALL - 958:SW = 0: PRINT "Is PREFIX correct?
(Y/N) ";: GET Q$: PRINT Q$

IF ASC (LEFT$ {Q$,1)) = 27 THEN SW = 1: GOTO 5295
IF LEFT$ (Q $, 1) = "Y" OR LEFT$ {Q $,1) "y" THEN
5100

IF LEFT$ {Q$,1) "N" OR LEFT$ {Q$,1) "n" THEN
5200

GOSUB 510: GOTO 5000
VTAB 9: CALL - 958: PRINT "New file name "; :V 9:

H = 16: GOSUB 1400:L = LEN (B$)
IF ASC (X$) = 27 THEN PRINT : GOTO 5000
IF L > 15 THEN GOSUB 510: GOTO 5100

F$ = B$:PN$ = PR$ + F$
VTAB 7: CALL - 9 58: PRINT "PATHNAME ""' "; P N$
VTAB 9: CALL - 958: GOSUB 550
IF ASC (LEFT~ (Q$,1)) = 27 THEN 5000
IF LEFT$ {Q$,.t) = "Y" OR LEFT$ {Q$,1) = "y" THEN

RF = 1:GOTO 5295
IF LEFT$ {Q$,1) = "N" OR LEFT$ {Q$,1) .. "n" THEN

5000
GOSUB 510: GOTO 5130
VTAB 9: CALL - 958: PRINT "Enter new PREFIX ";:V

9:H = 19: GOSUB 1400
IF ASC (X$) = 27 THEN PRINT : GOTO 5000
IF LEFT$ (B$,1) < >"/"THEN 8$.,. "/" + B$

L = LEN (B$): IF L) 15 THEN GOSUB 510: GOTO 5200
IF RIGHT$ (B$,1) < >"/"THEN B$ = B$ + "/"
VTAB 5: GOSUB 8950:PR$ = B$:V = 5: GOSUB 540
GOTO 5000
RETURN
REM * PRINTER SET-UP
VTAB 9: CALL - 958
PRINT "Do the following:"
PRINT TAB(17)"1- LOAD printer paper"
PRINT TAB(17)"2- Set TOP-OF-FORM"
PRINT TAB(1.7)"3- Turn ON printer"
PRINT TAB(17)"4- Printer ON-LINE"
RETURN
REM * REPORT HEADING
POKE 3 6 , 6 0 : PRINT "Page : " ; P G
POKE 36,34: PRINT "List Repore'
POKE 36,5: PRINT "Name & Address";
POKE 36,60: PRINT "Date: "; LEFT$ (T$,5)
FOR L = 1 TO 79: PRINT"=";: NEXT L: PRINT

PG = PG + 1:LN = 4
RETURN
FOR I = 1 TO 39: PRINT "*";: NEXT 1: PRINT
PRINT"*";: HTAB 39: PRINT"*": RETURN
FOR I= 1 TO 39: PRINT"-";: NEXT I: PRINT

II II

RETURN

RETURN

206 I BASIC PROGRAMMING SYSTEM

8999 REM * MAIN DRIVER
9000 HOME : PRINT : PRINT TAB(11)"*** XMAS LIST***":

PRINT
9010 VTAB 4: PRINT "Main menu:";: HTAB 29: PRINT "Date: ";

LEFT$ (T$,5): PRINT"--------";: HTAB 29: PRINT"--
--- -----"

9015 FOR I ; 1 TO 9: VTAB 5 + I: PRINT TAB(11)M$(I): NEXT
I

9020
9025
9030
9040
9050
9060
9100

9110
9120
9130

VTAB 16: PRINT TAB(11)"0 -Exit program"
IF TF ; 1 THEN VTAB 6: PRINT "DO THIS"
VTAB 18: CALL - 958: GOSUB 500
IF N) 0 AND N < 10 THEN 9100
IF NA = 48 THEN 9990
GOSUB 510: GOTO 9030
VTAB 5 + N: HTAB 5: PRINT"==) ";:PRINT M$(N);"

::::;"

VTAB 20: CALL - 958: PRINT QA$;: GET Q$: PRINT Q$
IF Q$ = "Y" OR Q$ = "y" THEN 9200
IF Q$ = "N" OR Q$ = "n" THEN 9150
GOSUB 510: GOTO 9110
VTAB 5 + N: PRINT II

GOTO 9030
";M$(N);" "

<

9140
9150
9160
9200 ON N GOSUB 10000,15000,20000,25000,30000,35000,40000,

45000,50000
9210
9990
9995
10000
10010

GOTO 9000
HOME : VTAB 10: PRINT uGOODBYE FOR NOW ••• "
END

HOME : GOSUB 8950: GOSUB 8960
PRINT"*";: HTAB 13: PRINT "SYSTEM SET-UP";: HTAB 39

: PRINT "*"
10020 GOSUB 8960: GOSUB 8950
10030 V 1:H = 28: GOSUB 530
10040 V = 5: GOSUB 540
10050 V = 1: GOSUB 570
10055 IF RF ; 1 THEN 10100
10060 GOSUB 5000
10070 IF SW 1 THEN 14995
10100 VTAB 1: PRINT "*RETURN;ACCEPT"
10110 VTAB 7: CALL - 958
10120 GOSUB 3100
10199 REM * ID SYSTEM
10200 FOR I = 1 TO 2: VTAB 7 +I: HTAB 17
10210 PRINT SY(I)
10220 VTAB 7 +I: HTAB 17: GET X$
10230 IF ASC (X$) = 13 THEN PRINT SY(I): GOTO 10250
10232 IF VAL (X$)) 0 AND VAL (X$) < 8 THEN 10240
10235 GOSUB 510: GOTO 10220
10240 SY{I) = VAL {X$): PRINT SY(I)
10250 NEXT I
10300 FOR I = 3 TO 4: VTAB 8 + I: HTAB 17
10310 PRINT SY(I)
10320 VTAB 8 +I: HTAB 17: GET X$
10330 IF ASC (X$) = 13 THEN PRINT SY(I): GOTO 10350

10332 IF VAL (X$)) 0 AND VAL (X$) < 8 THEN 10340
10335 GOSUB 510: GOTO 10320
10340 SY(I) = VAL (X$): PRINT SY(I)
10350 NEXT I
10400 FOR I; 5 TO 6: VTAB 10 +I: HTAB 17
10410 PRINT SY(I)
10420 VTAB 10 +I: HTAB 17: GET X$

THE PROGRAM I 207

10430 IF ASC (X$) = 13 THEN PRINT SY(I): GOTO 10450
10432 IF VAL (X$) = 1 OR VAL (X$) = 2 THEN 10440
10435 GOSUB 510: GOTO 10420
10440 SY(I) = VAL (X$): PRINT SY(I)
10450 NEXT I
10500 VTAB 18: CALL - 958: GOSUB 590
10510 IF ASC (LEFT$ (Q$,1)) = 27 THEN 14995
10520 IF LEFT$ (Q $,1) "Y" OR LEFT$ (Q $,1) = "y" THEN

1 0110
10530 IF LEFT$ (Q$,1) = "N" OR LEFT$ (Q$,1) "n" THEN

10600
10540 GOSUB 510: GOTO 10500
10600 VTAB 18: CALl - 958: PRINT "Saving system configura

tion."
10610 EP = 10: ONERR GOTO 60000
10615 F$ = PR$ + "SYSTEM"
10620 PRINT D$;"CREATE ";F$;",TTXT,S";SY(1);",D 11 ;SY(3)
10630 PRINT D$;"DELETE ";F$;",S";SY(1);",D";SY(3)
10640 PRINT D$;"0PEN ";F$;",S";SY(l);",D";SY(3)
10650 PRINT D$;"WRITE ";F$
10660 FOR I = 1 TO 6
10670 PRINT SY(I)
1 0680 NEXT I
10690 PRINT D$;"CLOSE"
10700 TF = 0
14995 SW = 0: RETURN
15000 HOME : GOSUB 8950: GOSUB 8960
15010 PRINT"*";: HTAB 13: PRINT "CREATE A FILE";: HTAB 39

: PRINT "*"
15020 GOSUB 8960: GOSUB 8950
15030 V 1:H = 28: GOSUB 530
15040 V = 5: GOSUB 540
15050 V = 1: GOSUB 570
15060 GOSUB 5000
15070 IF SW = 1 THEN 19995
15300 VTAB 9: CALL - 958
15310 SW = O:EP = 1: ONERR GOTO 60000
15330 TR = O:NR = 1
15340 PRINT D$;"CREATE ";PN$;",TTXT"
15360 PRINT D$; "DELETE II ;PN$
15380 GOSUB 2600
15420 POKE 216,0
15430 IF SW = 0 THEN 19995
15500 SW = 0: GOTO 9000
19995 SW = 0: RETURN
20000 HOME : GOSUB 8950: GOSUB 8960

208 I BASIC PROGRAMMING SYSTEM

20010 PRINT"*";: HTAB 13: PRINT "DELETE A FILE";: HTAB 39
PRINT "*"

20020 GOSUB 8960: GOSUB 8950
20030 V 1:H = 28: GOSUB 530
20040 V = 5: GOSUB 540
20050 V = 1: GOSUB 570
20055 IF RF = 1 THEN 20100
20060 GOSUB 5000
20070 IF SW = 1 THEN 24995
20100 VTAB 9: CALL - 958
20110 PRINT "Do you REALLY want to delete "
20120 VTAB 11: PRINT PN$
20130 VTAB 13: CALL - 958
20140 PRINT "Answer with (Y/N). ";: GET Q$: PRINT Q$
20150 IF ASC (LEFT$ (Q$,1)) = 27 THEN 20000
20160 IF LEFT$ (Q$,1) "Y" OR LEFT$ (Q$,1) "y" THEN

20200
20170 IF LEFT$ (Q$,1) "N" OR LEFT$ (Q$,1) "n" THEN

24995
20180 GOSUB 510: GOTO 20140
20200 PRINT D$;"DELETE ";PN$
24995 SW = 0: RETURN
25000 HOME : GOSUB 8950: GOSUB 8960
25010 PRINT"*";: HTAB 13: PRINT "ADDS A RECORD";: HTAB 39: PRINT"*"
25020 GOSUB 8960: GOSUB 8950
25030 V 1:H = 28: GOSUB 530
25040 V = 5: GOSUB 540
25050 V = 1: GOSUB 570
25055 IF RF = 1 THEN 25300
25060 GOSUB 5000
25070 IF SW = 1 THEN 29995
25300 VTAB 7: CALL - 958
25305 EP = 3; ONERR GOTO 60000
25310 GOSUB 2100
25315 POKE 216,0
25350 L; LEN (F$):H = 36- L
25360 PRINT"--> RECORD:";NR;: HTAB H: PRINT F$;" <--"
25370 VTAB 9: CALL - 958: GOSUB 3000
25380 FOR I = 1 TO 7:SW = 0
25390 V = 8 + I:H = 13: GOSUB 1400
25395 IF ASC (X$) 27 THEN I = 8:SW = 1
25400 L$(1) = B$
25410 NEXT I
25415 IF SW ~ 1 THEN PRINT : GOTO 25060
25420 VTAB 17: CALL - 958: GOSUB 590
25425 IF ASC (LEFT$ (Q$,1)) = 27 THEN 25300
25430 IF LEFT$ (Q$,1) "Y" OR LEFT$ (Q$,1) "y" THEN

25500
25440 IF LEFT$ (Q$,1) "N" OR LEFT$ (Q$,1) "n" THEN

25600
25450 GOSUB 510: GOTO 25420
25500 VTAB 17: CALL - 958: GOSUB 500
25502 IF NA ~ 27 THEN 25420

25505 IF N) 0 AND N < 8 THEN 25520
25510 GOSUB 510: GOTO 25500
25520 V = N + 8:H = 13: GOSUB 1400
25530 L$(N) = B$
25540 GOTO 25420
25600 VTAB 17: CALL - 958
25610 FOR I = 0 TO 9: HTAB I * 4 + 1
25620 PRINT I+ 80;: NEXT I: PRINT

THE PROGRAM I 209

25630 FOR I= 0 TO 9: VTAB 18: HTAB I* 4 + 1: PRINT "N";:
YR$(I) = "N": NEXT I: PRINT

25700 I = 0
25710 VTAB 18: HTAB I * 4 + 1
25720 GET X$
25722 IF ASC (X$) 27 THEN PRINT : GOTO 25420
25725 IF ASC (X$) 13 THEN 25840
25730 IF ASC (X$) 21 OR ASC (X$) = 10 THEN 25800
25740 IF ASC (X$) 8 OR ASC (X$) = 11 THEN 25810
25750 IF ASC (X$) 89 THEN 25790
25760 GOTO 25710
25790 YR$(I) = "Y": PRINT "Y":I =I+ 1: IF I) 9 THEN 1

0
25795 GOTO 25710
25800 I= I+ 1: IF I> 9 THEN I 0
25805 GOTO 25710
25810 I= I- 1: IF I< 0 THEN I= 9
25815 GOTO 25710
25840 PRINT
25850 VTAB 19: CALL - 958: GOSUB 590
25855 IF ASC (LEFTS (Q$,1)) = 27 THEN 25700
25860 IF LEFT$ (Q$,1) = "Y" OR LEFT$ {Q$,1) "y" THEN VTAB

19: CALL - 958: GOTO 25700
25870 IF LEFT$ {Q$,1) = "N" OR LEFT$ {Q$,1) "n" THEN

25900
25880 GOSUB 510: GOTO 25850
25900 VTAB 19: CALL - 958
25905 EP = 2: ONERR GOTO 60000
25910 R = NR: GOSUB 2500
25915 POKE 216,0
25920 EP = 3: ONERR GOTO 60000
25925 TR = NR:NR = NR + 1: GOSUB 2600
25930 POKE 216,0
25950 VTAB 20: CALL - 958: GOSUB 600
25955 IF ASC { LEFT$ {Q$,1)) = 27 THEN 25060
25960 IF LEFT$ {Q$,1) "Y" OR LEFT$ {Q$,1) "y" THEN

25300
25965 IF LEFT$ (Q$,1) = "N" OR LEFT$ (Q$,1) "n" THEN

29995
25970 GOSUB 510: GOTO 25950
29995 SW = 0: RETURN
30000 HOME : GOSUB 8950: GOSUB 8960
30010 PRINT"*";: HTAB 13: PRINT "EDIT A RECORD";: HTAB 39

PRINT "*"
30020 GOSUB 8960: GOSUB 8950

210 I BASIC PROGRAMMING SYSTEM

30030
30040
30050
30055
30060

V = 1:H = 28: GOSU8 530
V = 5: GOSUB 540
V = 1: GOSUB 570

IF RF = 1 THEN 30300
GOSU8 5000
IF SW = 1 THEN 34995
VTA8 7: CALL - 958

EP = 4: ONERR GOTO 60000
GOSU8 2100
POKE 216,0

L = LEN (F$):H = 36 - L

30070
30300
30305
30310
30315
30350
30360
30370
30380
30382
30385
30390
30395

PRINT "--> RECORD:";TR;: HTA8 H: PRINT F$;" <--"
VTA8 9: CALL - 958: PRINT "Edit which record? = "

V = 9:H = 21: GOSUB 1500:R = VAL (8$)
IF ASC (X$) = 27 THEN 30060
IF R > = NR OR R (1 THEN GOSU8 510: GOTO 30370

L = LEN (F$):H = 36- L
VTA8 7: CALL - 958: PRINT"--> EDIT:";R;: HTA8 H: PRINT

F$;u <--"
30400 GOSU8 2000
30410 VTAB 9: CALL - 958
30420 GOSU8 3000
30430 FOR I = 1 TO 7: VTAB 8 + I: HTA8 14: PRINT L$(I): NEXT

l
30440 VTA8 18: CALL - 958: GOSU8 590
30450 IF ASC (LEFT$ (Q$,1)) = 27 THEN 30060
30460 IF LEFT$ (Q$,1) "Y" OR LEFT$ (Q$,1)

30500
30470 IF LEFT$ (Q$,1) = "N" OR LEFT$ (Q$,1)

30600
30480 GOSU8 510: GOTO 30440
30500 VTAB 18: CALL - 958: GOSU8 500
30502 IF NA = 27 THEN 30440
30505 IF N > 0 AND N < 8 THEN 30520
30510 GOSU8 510: GOTO 30500
30520 V = N + 8:H = 13: GOSUB 1400
30530 L$(N) = 8$
30540 GOTO 30440
30600 VTA8 17: CALL - 958
30610 FOR I 0 TO 9: HTA8 I * 4 + 1
30620 PRINT I+ 80;: NEXT I: PRINT

"y" THEN

"n" THEN

30630 FOR I= 0 TO 9: VTA8 18: HTAB I* 4 + 1: PRINT YR$(I
);: NEXT I: PRINT

30700 I = 0
30710 VTAB 18: HTAB I * 4 + 1
30720 GET X$
30722 IF ASC (X$)
30725 IF ASC (X$)
30730 IF ASC (X$)
30740 IF ASC (X$)
30750 IF ASC (X$)
30760 IF ASC (X$)
30770 GOTO 30710

27 THEN PRINT : GOTO 30440
13 THEN 30840
21 OR ASC (X$) = 10 THEN 30800
8 OR ASC (X$) = 11 THEN 30810
89 THEN 30790
78 THEN 30780

THE PROGRAM I 211

30780 YR$(I) = "N": PRINT "N":I I+ 1: IF I) 9 THEN I
0

30785 GOTO 30710
3 0 7 9 0 y R $ (I) = II y ,, : p R IN T II y II : I = I + 1 : IF I > 9 THEN I ::z

0
30795 GOTO 30710
30800 I~ I+ 1: IF I > 9 THEN I = 0
30805 GOTO 30710
30810 I~ I- 1: IF I< 0 THEN I= 9
30815 GOTO 30710
30840 PRINT
30850 VTAB 19: CALL - 958: GOSUB 590
30855 IF ASC (LEFT$ (Q$,1)) = 27 THEN 30700
30860 IF LEFT$ (Q$,1) .,. "Y" OR LEFT$ (Q$,1) "y" THEN VTAB

19: CALL - 958: GOTO 30700
30870 IF LEFT$ (Q$,1) = "N" OR LEFT$ (Q$,1) "n" THEN

30900
30880 GOSUB 510: GOTO 30850
30900 VTAB 19: CALL - 958
30910 GOSUB 2500
30950 VTAB 20: CALL - 958: GOSUB 600
30955 IF LEFT$ (Q$,1) "Y" OR LEFT$ (Q$,1) "y" THEN

30300
30960 IF LEFT$ (Q$,1) "N" OR LEFT$ (Q$,1) "n" THEN

34995
30970 GOSUB 510: GOTO 30950
34995 SW = 0: RETURN
35000 HOME : GOSUB 8950: GOSUB 8960
35010 PRINT"*";: HTAB 13: PRINT "DELETE RECORD";: HTAB 39

: PRINT "*"
35020 GOSUB 8960: GOSUB 8950
35030 V 1:H = 28: GOSUB 530
35040 V = 5: GOSUB 540
35050 V = 1: GOSUB 570
35055 IF RF = 1 THEN 35300
35060 GOSUB 5000
35070 IF SW = 1 THEN 39995
35300 VTAB 7: CALL - 958
35305 EP = 5: ONERR GOTO 60000
35310 GOSUB 2100
35315 POKE 216,0
35350 L = LEN (F$):H = 36 - L
35360 VTAB 7: CALL - 958: PRINT"--> RECORD:";TR;: HTAB H

: PRINT F$;" <--"
35370 VTAB 9: CALL - 958: PRINT "Delete which record? = 11

35380 V = 9:H = 23: GOSUB 1500:R = VAL (8$)
35385 IF R > = NR OR R < 1 THEN GOSUB 510: GOTO 35370
35390 L = LEN (F$):H = 36 - L
35395 VTAB 7: CALL - 958: PRINT"--> DELETE:";R;: HTAB H:

PRINT F$;" <--"
35400 GOSUB 2000
35410 VTAB 9: CALL - 958
35420 GOSUB 3000

212 I BASIC PROGRAMMING SYSTEM

35430 FOR I = l TO 7: VTAB 8 + I: HTAB 14: PRINT L$(I): NEXT
I

35440 VTAB 17: CALL - 958
35450 FOR I = 0 TO 9: HTAB I * 4 + 1
35460 PRINT I+ 80;: NEXT I: PRINT
35470 FOR I= 0 TO 9: VTAB 18: HTAB I* 4 + 1: PRINT YR$(1

);: NEXT I: PRINT
35480 VTAB 20: CALL - 958: PRINT "Delete t"ecor.d? (Y/N) ";

: GET Q$: PRINT Q$
35490 IF ASC (LEFT$ (Q$,1)) = 27 THEN 35000
35495 IF LEFT$ {Q$,1) "Y" OR LEFT$ (Q$,1) "y" THEN

35600
35500 IF LEFT$ (Q$,1) = "N" OR LEFT$ {Q$,1) "n 11 THEN

39995
35510 GOSUB 510: GOTO 35480
35600 L$(1) = "??????????":L$(2) = "??????????":L$(5) 11 ??

???":L$(6) = "???":L$(7) "??? ????"
35610 VTAB 9: CALL - 958
35620 GOSUB 3000
35630 FOR I = 1 TO 7: VTAB 8 +I: HTAB 14: PRINT L$(1): NEXT

I
35640 VTAB 17: CALL - 958: PRINT "Deleting record ••••• "
35645 GOSUB 2500
35650 VTAB 19: CALL - 958: GOSUB 600
35660 IF ASC (LEFT$ (Q$,1)) = 27 THEN 35000
35670 IF LEFT$ (Q$,1) = "Y" OR LEFT$ (Q$,1) "y 11 THEN

35700
35680 IF LEFT$ (Q$,1) = "N" OR LEFT$ (Q$,1) "n" THEN

39995
35690 GOSUB 510: GOTO 35650
39995 SW = 0: RETURN
40000 HOME : GOSUB 8950: GOSUB 8960
40010 PRINT"*";: HTAB 13: PRINT "REVIEW RECORD";: HTAB 39

: PRINT "* 11

40020 GOSUB 8960: GOSUB 8950
40030 V 1:H = 28: GOSUB 530
40040 V = 5: GOSUB 540
40050 V = 1: GOSUB 570
40055 IF RF = 1 THEN 40300
40060 GOSUB 5000
40070 IF SW = 1 THEN 44995
40300 VTAB 7: CALL - 958
40305 EP = 6: ONERR GOTO 60000
40310 GOSUB 2100
40315 POKE 216,0
40350 L = LEN (F$):H = 36 - L
40360 VTAB 7: CALL - 958: PRINT "--> RECORD:";TR;: HTAB H

: PRINT F$;" <--"
40370 VTAB 9: CALL - 958: PRINT "Review which r.ecord? = "
40380 V = 9:H = 23: GOSUB 1500:R = VAL (B$)
40385 IF R > = NR OR R < 1 THEN GOSUB 510: GOTO 40370
40390 L = LEN (F$):H = 36- L

THE PROGRAM I 213

40395 VTAB 7: CALL - 958: PRINT"--> REVIEW:";R;: HTAB H:
PRINT F$;" <--"

40400 GOSUB 2000
40410 VTAB 9: CALL - 958
40420 GOSUB 3000
40430 FOR I ~ 1 TO 7: VTAB 8 + I: HTAB 14: PRINT L$(1): NEXT

I
40440 VTAB 17: CALL - 958
40450 FOR I 0 TO 9: HTAB I * 4 + 1
40460 PRINT I+ 80;: NEXT I: PRINT
40470 FOR I= 0 TO 9: VTAB 18: HTAB I* 4 + 1: PRINT YR$(I

); : NEXT I: PRINT
40480 VTAB 20: CALL - 958: PRINT "Another record? (Y/N) "

;: GET Q$: PRINT Q$
40490 IF ASC (LEFT$ (Q$,1)) = 27 THEN 40000
40495 IF LEFT$ (Q$,1) = "Y" OR LEFT$ (Q$,1)

40370
40500 IF LEFT$ (Q$,1) 11 N 11 OR LEFT$ (Q$,1)

44995
40510 GOSUB 510: GOTO 40480
44995 SW ; 0: RETURN
45000 HOME : GOSUB 8950: GOSUB 8960

"yll THEN

lin" THEN

45010 PRINT"*";: HTAB 13: PRINT "PRINTS REPORT";: HTAB 39
PRINT "*"

45020
45030
45040
45050
45055
45060
45070
45100
45160
45170
45180
45200
45210
45300
45310
45315
45320
45325
45330
45340
45350
45360
45370
45380
45390
45400
45410
45420

GOSUB 8960: GOSUB 8950
V c 1:H; 28: GOSUB 530
V = 5: GOSUB 540
V = 1: GOSUB 570

IF RF = 1 THEN 45100
GOSUB 5000
IF SW = 1 THEN 49995
GOSUB 5300
VTAB 15: CALL - 958: GOSUB 560
GOSUB 2100
VTAB 17: PRINT "Ther.e are ";TR;" records in file."
PRINT D$;"PRII";SY(5)
IF SY(6) = 2 THEN PRINT CHR$ (9);"80N"

PG = 1: GOSUB 8900
FOR I ~ 1 TO TR

EP = 7: ONERR GOTO 60000
R c I: GOSUB 2000

POKE 216,0
PRINT I ; " - 11

; : P OK E 3 6 , 5 : P R IN T L $ (1)
POKE 36,5: PRINT L$(2)
POKE 36,5: PRINT L$(3); 11

, ";L$(4); 11 ";L$(5);
POKE 36,50: PRINT "Phone: 1+(";L$(6);") ";L$(7)
PRINT II "

FOR L = 0 TO 9: POKE 36,L * 4 + 1
PRINT L + 80;: NEXT L: PRINT II II

FOR L = 0 TO 9: POKE 36,L * 4 + 1
PRINT YR$(L);: NEXT L: PRINT " "
PRINT II II

214 I BASIC PROGRAMMING SYSTEM

45430
45440
45450
45460
45480
45485
45490
45495
49995
50000
50010

50020
50030
50040
50050
50055
50060
50070
50100
50160
50165
50170
50180
50200
50210
50300
50310
50320
50325
50330
50340
50350
50360
50370
50400
50410
50420
54995
55000
55005

LN = LN + 7
IF LN < 50 THEN 45480
FOR L :z LN + 1 TO 66: PRINT II

11
: NEXT L

GOSUB 8900
NEXT I
FOR L = LN + 1 TO 66: PRINT 11

": NEXT L
PRINT CHR$ (9);"40N"
PRINT D$; "PR/10"

SW = 0: RETURN
HOME : GOSUB 8950: GOSUB 8960
PRINT"*";: HTAB 13: PRINT "PRINTS LABELS";: HTAB 39
PRINT "*"
GOSUB 8960: GOSUB 8950

V ~ 1:H = 28: GOSUB 530
V = 5: GOSUB 540
V = 1: GOSUB 570

IF RF = 1 THEN 50100
GOSUB 5000
IF SW = 1 THEN 54995
GOSUB 5300
VTAB 15: CALL - 958: GOSUB 560
POKE 216,0
GOSUB 2100
VTAB 17: PRINT "There are ";TR;" records in file."
PRINT D$;"PRII";SY(5)
IF SY(6) = 2 THEN PRINT CHR$ (9);"80N"
REM * LABELS
FOR I "" 1 TO TR

R = I: GOSUB 2000
PRINT " "
POKE 36,5: PRINT L$(1)
POKE 36,5: PRINT L$(2)
POKE 36, 5: PRINT L$ (3);", "; L$ (4);" "; L$ (5)
PRINT " "
PRINT " II

NEXT I
IF SY(6) = 2 THEN PRINT CHR$ {9);"40N"
PRINT D$;"PRIIO"

SW = 0: RETURN
HOME : GOSUB 8950: GOSUB 8960
PRINT "*";: HTAB 13: PRINT "COMPUTER TYPE";: HTAB 39
PRINT "*"

55010 GOSUB 8960: GOSUB 8950
55012 V = 1:H = 28: GOSUB 530
55014 V = 5: GOSUB 540
55015 ID ~ PEEK (49048)
55020 REM * ID COMPUTER TYPE
55025 IF ID) = 192 THEN TI$(1)

192:TI(1) = 3: GOTO 55060
55030 If IO > = 128 THEN TI$(1)

128:TI(1) ~ 2: GOTO 55060
55040 IF ID > = 64 THEN TI$(1)

:TI{l) = 1: GOTO 55060

"APPLE III":ID = ID -

"AP P L E I I e" : I 0 I D -

= "APPLE II+":ID = ID - 64

5 50 50 T I$ = "APPLE II ": T I (1) = 0
55060 REM * ID MEMORY SIZE

THE PROGRAM I 21S

55070 IF ID) :a 48 THEN TI$(2) "128K":TI(2) = 3:10 = ID
- 48: GOTO 55110

55080 IF ID > "" 32 THEN TI$(2) "64K":TI(2) 2:10 ID
- 32: GOTO 55110

55090 IF ID > = 16 THEN TI$(2) "48K":TI(2) 1:l.D ID-
16: GOTO 55110

55100 TI$(2) = "UNKN":TI(2) = 0
55110 REM * 80-COL & TCP
55120 IF ID) = 8 THEN TI$(3) "UNKN":TI(3) 3:ID ID-

8: GOTO 55150
55130 IF ID) = 4 THEN TI${3) "" "UNKN":TI(3) 2:10 ID -

4: GOTO 55150
55140 IF ID) = 2 THEN TI$(3) "80-Column card":Tl(3)

1:SL$(3) = TI$(3):SL(3) = TI(3):ID = ID- 2
55150 IF ID > = 1 THEN TI$(4) = "CLOCK":TI(4) = 1:ID = ID

- 1
55160 VTAB 7: CALL - 958: PRINT "You have an ";TI$(1);" w

ith ";Tl$(2);"."
55185 REM* ID SLOTS
55190 CD$(0) = "Used":CD$(1) = "Printer":CD$(2) = "Joystick"

:CD$(3) = "I/0 card"
55195 CD$(4) "" "MODEM":CD$(5) = "Audio car.d":CD$(6) = "Cloc

k":CD$(7) = "Mass storage"
55200 CD$(8) = "SO-Column card":CD$(9) = "Network card"
55210 ID = PEEK (49049):IX = 128
55220 FOR I = 1 TO 7
55230 SL "" - 16384 + 256 * I
55240 IF PEEK (SL + 23) = 201 AND PEEK (SL + 55) = 207 AND

PEEK (SL + 76) = 234 THEN SL$(1) = "Silentype":SL(I) =
I: GOTO 55300

55250 IF PEEK (SL) = 8 AND PEEK (SL + 2) = 40 AND PEEK
(SL + 4) "" 88 AND PEEK (SL + 6) = 112 THEN SL$(I) = "
Clock":SL(I) = I: GOTO 55300

55260 IF PEEK (SL + 5) = 24 AND PEEK (SL + 7) 56 THEN
SL$(I) = "Comm. card":SL(I) = I: GOTO 55300

55270 IF PEEK {SL + 5) = 56 AND PEEK (SL + 7) 24 THEN
55274

55272 GOTO 55280
55274 IF TI(3) = 1 AND LEFT$ (TI$(3),2) = "80" THEN SL$(I

) = TI$(3):SL(I) = I: GOTO 55300
55276 SL$(I) = "Serial card":SL(I) = I
55280 IF PEEK (SL + 11) = 1 THEN IF INT (PEEK (SL + 12

) / 16) < 10 THEN SL$(I) =CD$(INT (PEEK (SL + 12) I
16)):SL(I) = I: GOTO 55300

55290 IF PEEK (SL + 5) = 72 AND PEEK (SL + 7) = 72 tHEN
S L $ (I) = "Para 11 e 1 card": S L (I) =- I

55300 NEXT I
55302 REM * ID DRIVES
55305 FOR I = 48946 TO 48946 + PEEK (48945)
55310 DD PEEK (I): IF DD.) 128 THEN DO= DO- 128
55315 SL = 7

216 I BASIC PROGRAMMING SYSTEM

55320 IF DD) = 16 * SL THEN DD = DD- (16 * SL): GOTO
55335

55325 SL = SL- 1: IF SL) 0 THEN 55320
55330 GOTO 55350
55335 IF DD c 4 THEN SL$(SL) "ProFile":SL(SL) ,.. SL
55340 IF DD ,.. 0 THEN SL$(SL) ,.. "Disk drive":SL(SL) = SL
55350 NEXT I
55400 PRINT
55405 PRINT "SLOT II";: HTAB 9: PRINT "Description";: HTAB

29: PRINT "Slot"
55407 PRINT"------";: HTAB 9: PRINT"-----------";: HTAB

29: PRINT "----"
55410 FOR I = 1 TO 7
55420 PRINT "Slot ";I;":";: HTAB 9: PRINT SL$(l);: HTAB 29

55430
55450
59995
60000
60010

PRINT SL(I)
NEXT I
VTAB 20: HTAB 11: GOSUB 560
RETURN

ER = PEEK (222): POKE 216,0:SW = 1
VTAB 18: GOSUB 8970: VTAB 20: PRINT "Error <";ER;">

occured: ";
60020 ON ER GOTO 60100,60200,60300,60400,60500,60600,60100

,60800,60900,61000,61100,61200,61300,61400,61500,61600
,61700,61800,61900,62000,62100

60030 END
60100 PRINT "ERROR UNKNOWN."
60195 END
60200 PRINT ''RANGE ERROR."
60295 END
60300 PRINT "NO DEVICE CONNECTED."
60395 END
60400 PRINT "WRITE PROTECTED."
60495 END
60500 PRINT "END OF DATA."
60510 VTAB 21: HTAB 11: GOSUB 560
60520 IF EP = 11 THEN CALL - 3288:TF 1: PRINT D$;"CLOS

E": PRINT D$;"DELETE ";F$: GOTO 490
60595 END
60600 PRINT "PATH NOT FOUND."
60610 VTAB 21: HTAB 11: GOSUB 560
60620 IF EP 1 THEN CALL - 3288: GOTO 15060
60622 IF EP 2 OR EP = 3 THEN CALL - 3288: GOTO 25060
60624 IF EP 4 THEN CALL - 3288: GOTO 30060
60626 IF EP 5 THEN CALL - 3288: GOTO 35060
60628 IF EP = 6 THEN CALL - 3288: GOTO 40060
60630 IF EP 7 THEN CALL - 3288: GOTO 45060
60632 IF EP = 8 THEN CALL - 3288: GOTO 50060
60640 IF EP 10 THEN CALL - 3288: GOTO 10000
60695 END
60700 PRINT "ERROR UNKNOWN."
60710 VTAB 21: HTAB 11: GOSUB 560
60720 CALL - 3288: GOTO 9000
60795 END

60800 PRINT "I/0 ERROR."
60810 VTAB 21: HTAB 11: GOSUB 560
60820 CALL - 3288: GOTO 9000
60895 END
60900 PRINT "DISK FULL."
60910 VTAB 21: HTAB 11: GOSUB 560
60920 CALL - 3288: GOTO 9000
60995 END
61000 PRINT "FILE LOCKED."
61095 END
61100 PRINT "INVALID OPTION."
61195 END
61200 PRINT "NO BUFFERS AVAILABLE."
61295 END
61300 PRINT "FILE TYPE MISMATCH."
61395 END
61400 PRINT "PROGRAM TOO LARGE."
61495 END
61500 PRINT "NOT DIRECT COMMAND."
61595 END
61600 PRINT "SYNTAX ERROR."
61695 END
61700 PRINT "DIRECTORY FULL."
61795 END
61800 PRINT "FILE NOT OPEN."
61895 END
61 900 PRINT "DUP·LICATE FILE NAME."
61905 VTAB 21: PRINT "You WILL destroy old ";F$
61910 V = 22: GOSUB 580

THE PROGRAM I 217

61915 VTAB 22: HTAB 25: CALL - 958: GET Q$: PRINT Q$
61920 IF LEFT$ (Q$,1) "Y" OR LEFT$ (Q$,1) "y" THEN

61950
61925 IF LEFT$ (Q$,1) "N" OR LEFT$ (Q $, 1)

61940
61930 GOSUB
61940 IF EP
61942 IF EP
61950 IF EP
61952 IF EP
61995 END

520: GOTO 61915
1 THEN CALL
10 THEN CALL
1 THEN CALL
10 THEN CALL

62000 PRINT "FILE BUSY."
62095 END

- 3288: GOTO 9000
- 3288: GOTO 9000

- 3288: GOTO 15360

- 3288: GOTO 10630

62100 PRINT "FILE(S) STILL OPEN."
62195 END

Figure 10.13. XMAS.PROG program.

"n" THEN

218 I BASIC PROGRAMMING SYSTEM

The rest of this section contains explanations of the program code.

Line

Line 1-9
Line 10
Line 15
Line 20
Line 30
Line 70
Line 80
Line 82-88
Line 90
Line 92
Line 94
Line 400-405
Line 415-440
Line 490
Line 495

Description

Explained earlier.
Explained earlier.
Explained earlier.
Dimension statements.
Dimension statements.
Mark all of the slot data as empty.
Read all of the menu data.
Data statements.
Read system configuration default data.
Default system data.
True-False variable and Read-File variable set to zero.
Read the current prefiX.
Read system file if it already exists.
Activate the subroutine at line 5SOOO.
Make a hard branch to the main driver.

The following code descriptions are for the general and specific subroutines in the
XMAS.PROG.

Line

Line 500
Line 510
Line 520
Line 530
Line 540
Line 550
Line 560
Line 570
Line 580
Line 590
Line 600
Line 1395-1490
Line 1495-1600
Line 1999-2140
Line 2495-2640
Line 2999-3070
Line 3100-3250
Line 5000-5295

Description

General prompting subroutine.
General error message subroutine.
General delay loop subroutine.
Print the date subroutine.
Print the current prefix subroutine.
General "correct entry?" prompt subroutine.
General prompt to continue subroutine.
Escape key capability subroutine.
Delete prompt subroutine.
General "any changes?" prompt subroutine.
Another entry prompting subroutine.
String filter subroutine.
Number filter subroutine.
Read records subroutine.
Write records subroutine.
Print screen subroutine.
System configuration subroutine.
Pathname validation subroutine.

Line 5300-5360
Line 8899-8925
Line 8950-8960
Line 8970

"Printer set up?" prompting subroutine.
Report heading subroutine.
Print screen title subroutine.
Print a line of dashes across screen subroutine.

THE PROGRAM I 219

The main driver code was explained in detail earlier.
The following code is for the purpose of specifying your system configuration.

Line

Line 10000

Line 10010
Line 10020
Line 10030
Line 10040
Line 10050
Line 10055

Line 10060
Line 10070

Line 10100
Line 10110
Line 10120
Line 10200-10250

Line 10300-10350

Line 10400-10450

Line 10500
Line 10510

Description

Clear the screen.
Print the top two lines of the screen.
Print the title line on the screen.
Complete printing the title area on the screen.
Print the date on the screen.
Print the current prefix on the screen.
Print the ESC key capability on the screen.
Test RF value for a value of one.
If true go to line 10100.
Invoke the pathname subroutine.
Test the return from the pathname subroutine to determine if an ESC

key was typed.
Note: The code lines from 10000 through 10070 are the same code as is

used for each major subroutine. The only difference is line xxx10
for each menu selection. You can see this with the lines of code
that start at lines 15000, 20000, 25000, 30000, 35000, 40000,
45000, and 50000. Since the code is the same for all of these areas
except one line each, none of these will be further explained.

Print the RETURN key for the acceptance of default values.
Position cursor and clear the screen.
Invoke the subroutine at line 3100.
Present the default boot and data drive values on the screen and wait for

operator response. Then test the response for a value different from
the default.

Present the default boot and data slot values on the screen and wait for
operator response. Then test the response for a value different from
the default.

Present the default printer slot and type values on the screen and wait
for operator response. Then test the response for a value different
from the default.

Prompt operator for any changes to the selections just made.
Test for an ESC key character having been typed.
If ESC key was typed go to line 14995 (end of subroutine).

220 I BASIC PROGRAMMING SYSTEM

Line 10520-10540

Line 10600

Line 10610-10690

Line 10700
Line 14995

Test for legal Y or N answers. If responses are not valid, trap response,
inform operator, and then give operator another chance.

Position cursor and inform operator that screen information is being
saved.

Set up error handler flag and save system default values as a sequential
text file named SYSTEM to the diskette.

Set TF variable (True-False) to a zero.
Reset switch and return from subroutine.

The following section of code is for the purpose of creating a file.

Line

Line 15000-15070
Line 15300
Line 15310
Line 15330
Line 15340

Line 15360
Line 15380
Line 15420
Line 15430
Line 15500
Line 19995

Description

Set up the file and prompt for the file pathname.
Clear screen from line 9 down.
Set up error handler routine.
Define record pointer values.
Create the specified text file.
Note: When you use the CREATE command there will be no record

length stored on the diskette. Therefore, the create command was
used to determine whether the file had been created before. This
is similar to the VERIFY command except CREATE works with
positive logic, whereas VERIFY requires negative logic for the
determination of duplicate files.

Delete the file just created.
Write record zero for the file just specified.
Turn off error flag.
Test value of switch. Go to line 19995.
Set switch and go to line 9000.
Return from subroutine.

The following code is for the purpose of deleting an entire file.

Line

Line 20000-20070
Line 20100
Line 20110-20140

Line 20150-20180

Line 20200
Line 24995

Description

Set up the screen and prompt for the file pathname.
Clear screen from line 9 down.
Ask operator if deleting the specified file is really what is wanted.
Prompt operator to answer with a Y or N.
Test for an ESC key having been typed.
Test for a Y or N answer.
Trap out all other answers.
Actually delete the file specified.
Return from subroutine.

THE PROGRAM I 221

The following code is for the purpose of adding a new record.

Line

Line 25000-25070
Line 25300
Line 25305
Line 25310
Line 25315
Line 25350-25360

Line 25370
Line 25380-25410

Line 25415
Line 25420

Line 25425-25450

Line 25500
Line 25502-25510

Line 25520-25540

Line 25600-25630
Line 25700
Line 25710-25815
Line 25815
Line 25840

Line 25850-25880

Line 25900-25915

Line 25920
Line 25925

Line 25930
Line 25950-25970

Description

Set up the screen and prompt for the file pathname.
Clear the screen from line 7 down.
Set entry point to 3. Set error flag.
Read record zero of specified file.
Clear the error flag.
Determine length of the file name.
Format the screen with file name data.
Clear the screen and present required file information on the screen.
FOR-NEXT I loop that cycles through all required data for the

specified file.
Position cursor for each piece of file information.
Assign entered data to the correct variable.
On each cycle test for an ESC key typed.
Test switch, SW, for the ESC key typed.
Clear bottom of the screen.
Ask operator if there are any changes to be made.
Test response for an ESC key, Y key, or N key.
Trap out all other keys on the keyboard.
Clear bottom of screen and ask operator which item is to be changed.
Test the response.
Validate for a correct answer.
Position cursor.
Capture entry made.
Branch back and ask if there are any other changes.
Position cursor and fill screen for the entry of card receptions.
Set index to zero.
Response filter that accepts only a Y or N for data input.
Branch to line 25710.
Print a blank line to complete line of text and reposition cursor to the

left margin on the screen.
Position cursor and ask operator for any changes.
Test for all valid answers and trap out invalid responses.
Set up error handler.
Write a record to the end of the file.
Clear error flag.
Set up error handler.
Reset record zero pointer values.
Write record zero values.
Turn off error flag.
Position cursor.

222 I BASIC PROGRAMMING SYSTEM

Line 29995

Ask operator if there is another entry.
Trap all but valid answers.
Return from subroutine.

The next section of code is for the editing of a record.

Line

Line 30000-30070
Line 30300
Line 30305
Line 30310
Line 30315
Line 30350-30360
Line 30370-30380
Line 30382-30385

Line 30390-30395
Line 30400
Line 30410
Line 30420-30440

Line 30450-30480

Line 30500
Line 30502
Line 30505-30540

Line 30600-30815
Line 30840
Line 30850
Line 30855-30880
Line 30900
Line 30910
Line 30950
Line 30955-30970
Line 34995

Description

Set up screen and prompt for the file pathname.
Clear the screen from line 7 down.
Set entry point to 4. Set error flag.
Read record zero of specified file.
Clear the error flag.
Present file information onto the video screen.
Ask operator to enter the record to be edited.
Test for the ESC key being pressed.
Test and trap the range of the number entered.
Reformat the screen with the new information.
Read the specified record.
Clear the screen from line 9.
Format the screen with the information that needs to be edited.
Ask the operator if there are changes to be made.
Test answer for the ESC key for backup.
Test for the Y or N answer.
Ask operator which item is to be changed.
Test for the ESC key backup.
Enter the new data and test for its validity.
Note: When entering or changing the years when cards are received,

you simple position the cursor, type a Y or N, and then go on to
the next item. Use the arrow keys to move the cursor. When you
type a carriage return, the routine will be exited.

Enter the years when Christmas cards were received.
Print a blank line to reset the cursor back to the left margin.
Prompt the operator for a response.
Test and trap for a valid answer.
Clear the bottom of the screen.
Rewrite the record to the file.
Ask the operator if there is another entry.
Test and trap the answer for a valid and correct answer.
Return from subroutine.

THE PROGRAM I 223

The next code is for the purpose of deleting a record.

Line 35000-35070
Line 35300
Line 35305
Line 35310
Line 35315
Line 35350-35395

Line 35400
Line 35410
Line 35420-35470
Line 35480
Line 35490-35510

Line 35600
Line 35610-35630
Line 35640
Line 35645
Line 35650
Line 35660-35690

Line 39995

Line

Line 40000-40070
Line 40300
Line 40305
Line 40310
Line 40315
Line 40350-40380

Line 40385
Line 40390-40395
Line 40400
Line 40410

Set up the screen and prompt for the file pathname.
Clear the screen from line 7 down.
Set entry point to 5. Set error flag.
Read record zero of specified file.
Clear the error flag.
Reformat screen and ask operator for the record to be deleted.
Ask for the record to be deleted.
Test the record number entered for a valid record.
Finally, reformat the screen with the new information.
Read the specified record.
Clear the screen.
Present record information on the screen.
Ask operator if record is to be deleted.
Test to determine if ESC key was typed.
Test for a Y or N answer.
Trap out all other keys.
Set record fields to question marks to signify deletion.
Reformat screen with deleted field data and print on the screen.
Inform operator that record is being deleted.
Rewrite specified record.
Ask operator if there is to be another record deleted.
Test for an ESC key typed.
Test for a Y or N answer.
Trap out all other responses.
Return from subroutine.

Description

Set up the screen and prompt for the file pathname.
Clear the screen from line 7 down.
Set entry point to 6. Set error flag.
Read record zero of specified file.
Clear the error flag.
Clear screen and print record data to be reviewed.
Ask operator which record is to be reviewed.
Test request for a valid record number.
Reformat the screen with the new information.
Read the specified record.
Clear the screen from line 9 down.

224 I BASIC PROGRAMMING SYSTEM

Line 40420
Line 40430
Line 40440
Line 40450-40470
Line 40480
Line 40490-40510

Line 44995

Line

Line 45000-45070
Line 45100
Line 45160
Line 45170
Line 45180
Line 45200
Line 45210
Line 45300

Line 45310
Line 45315

Line 45320

Line 45325
Line 45330-45420
Line 45430
Line 45440
Line 45450
Line 45460
Line 45480
Line 45485
Line 45490
Line 45495
Line 49995

Line

Line 50000-50070
Line 50100
Line 50160

Present screen information on the screen.
Print the record information.
Clear the bottom portion of the screen.
Format and print card reception information on the screen.
Ask if another record is to be reviewed.
Test for ESC key being typed.
Test for a Y or N answer.
Trap out all other responses.
Return from subroutine.

Description

Set up the screen and prompt for the file pathname.
Printer set-up subroutine.
Clear screen and ask operator to press any key.
Read record zero of specified file.
Print the number of records in the file.
Activate printer slot.
If printer type is parallel, set up printer buffer.
Assign page value to 1.
Print report header to the printer.
Top of printing FOR-NEXT I loop.
Set up entry point.
Set error flag.
Set record number value.
Read record from the diskette.
Turn off error flag.
Print report item to the printer.
Increment line count.
Test line count for 50.
Print blank lines to the top of next page.
Print report header.
Range of the I FOR-NEXT loop.
Print blank lines to the top of next page.
Reset output to the video screen.
Turn off printer slot.
Return from subroutine.

Description

Set up the screen and prompt for the file pathname.
Printer set-up subroutine.
Prompt operator to press any key.

Line 50165
Line 50170
Line 50180
Line 50200
Line 50210
Line 50310
Line 50320

Line 50325-50370
Line 50400
Line 50410
Line 50420
Line 54995

THE PROGRAM I 22S

Turn off error flag.
Read record zero from diskette.
Inform operator of the number of records in the file.
Activate printer slot.
If printer type is parallel, set up printer buffer.
Top of the FOR-NEXT I printer loop.
Assign record number.
Read record from diskette.
Print mailing label.
Range of the I loop.
Reset output to the video screen.
Turn off printer slot.
Return from subroutine.

The following code informs you of your systems resources.

Line

Line 53000-53014
Line 55015
Line 55020-55050
Line 55060-55100
Line 55110-55160
Line 55185-55300
Line 55302-55350
Line 55400-55430
Line 55450
Line 59995

Description

Set up the screen and prompt for the file pathname.
Capture machine ID byte.
Determine computer type.
Determine memory size.
Determine SO-column card and clock/calendar card.
Determine slot occupancy.
Identify the disk drives installed.
Print the results on the video screen.
Prompt operator to press any key.
Return from subroutine.

In the next major area of code is the error handler routines. The driver routine for the er­
ror handler is located in lines 60000 through 60030. Line 60020 uses the ON-GOTO (CASE)
construct to branch to the error condition that occurred. You will notice that many of the
error routines have nothing in them except the printing of the error message. This was done on
purpose to give you the opportunity to enter your own error handling.

You will notice that the code in lines 60600 through 60695 has been written to show you
one way of handling errors. The variable EP (Entry Point) provides a very convenient way of
determining the area where an error occurred. By setting the entry point to various values
before setting the ONERR flag, you will have complete control of your program at all times.

You will also notice that extensive use of the CALL -3288 has been made. This is
because it is recommended that the processor stack be cleared when you branch out of a sub­
routine to handle an error or other evolution. By using this call, you can prevent the embar­
rassment of losing control of your program.

226 I BASIC PROGRAMMING SYSTEM

Line

Line 60000

Line 60010
Line 60020

Description

Capture the error that has occurred.
Clear the error flag.
Set the switch.
Print the error number that has occurred.
Branch to the correct error handler based upon the error that occurred.

Only a few of the error handler routines are explained here.

Line

Line 60500
Line 60510
Line 60520

Line 60595

Line 60600
Line 60610
Line 60620
Line 60622
Line 60624
Line 60626
Line 60628
Line 60630
Line 60632
Line 60640
Line 60695

Line 60700
Line 60710
Line 60795
Line 60800
Line 60810
Line 60895

Description

Print error message.
Prompt operator to press a key to continue.
Test the entry point.
Perform clean-up of stack.
Set TF variable.
Close all files.
Delete specified file.
Branch to top of program.
End the program.

Print error message.
Prompt operator to press a key to continue.
Is the entry point 1?
Is the entry point 2 or 3?
Is the entry point 4?
Is the entry point 5?
Is the entry point 6?
Is the entry point 7?
Is the entry point 8?
Is the entry point 1 0?
End the program.

Print error message.
Prompt operator to press any key to continue.
End the program.

Print error message.
Prompt operator to press any key to continue.
End the program.

Line 60900
Line 60910
Line 60995

Line 61900
Line 61905
Line 61910
Line 61915-60930
Line 61940
Line 61942
Line 61950
Line 61952
Line 61995

Print error message.
Prompt operator to press any key to continue.
End the program.

Print error message.
Inform operator that the old file will be destroyed.
Ask if that is what is wanted.
Trap the answer for correctness.
Is entry point 1?
Is entry point 1 0?
Is entry point 1?
Is entry point 1 0?
End the message.

This concludes the explanation of the XMAS.PROG.

63000
63010
63020
63030
63040
63050

D$ = CHR$ (4)
PRINT D$;"0PEN MAIL.PROG"
PRINT D$;"WRITE MAIL.PROG"
LIST
PRINT D$;"CLOSE"
END

Figure 10.14. EXEC file code.

SUMMARY I 221

The small segment of code shown in Figure 10.14 is the code necessary to turn
XMAS.PROG into a text file. This was done for the purpose of allowing me to add, edit, and
move code around easily through the use of a word processor. This way, the program could be
written quickly using the word processor. Then the text file was EXECuted. This left me with
a program that could be exercised and debugged, if necessary. Further, it allowed for easy re­
numbering of code and adding additional code. You may want to try to write programs this
way.

SUMMARY

This chapter has been primarily devoted to the program XMAS.PROG. This program is ac­
tually a small management information system that provides you with a way of managing
your Christmas card list.

Early in the chapter, you were given some of the principles of good program design and
general rules for selecting a problem for computer solution. Even though very little time was

228 I BASIC PROGRAMMING SYSTEM

spent discussing what goes into good program design, the principles involved and the pro­
cedures to be followed are very sound, easy to follow, and provide help in developing pro­
grams regardless of their physical size.

A number of levels of correctness for a program were given. These were shown for the
purpose of giving you a way of determining how well your programs may perform under vary­
ing conditions and operators.

A short discussion of menus with their advantages were given to show you why they are
being used so often in programs.

The next section showed you the general logic flow for the organization of the
XMAS.PROG. The interesting thing with this arrangement of code is that it applies to almost
every program that you might develop.

The last two sections of this chapter were devoted to presenting code and code segments
that were used to implement the XMAS.PROG program. Section 10.3 was nothing but the
code for the program, along with explanations of what the code does.

QUESTIONS

l. What are the requirements for selecting a problem for computer solution?
2. What are the levels of correctness and how may they be achieved?
3. Diagram the general logic flow of any program.
4. What are the advantages of using the arrangement of code as shown in this chapter?
5. What are the advantages of using menus to control a program?
6. Why was XMAS.PROG implemented using subroutines so heavily?
7. Looking at the XMAS.PROG, how could you improve the program?
8. If you improve the program, what price do you pay for the improvement in the way of code

and operation?
9. The XMAS.PROG was written primarily using a word processor. Do you have any ideas

on why this was done?

APPENDIX A. DOS
AND PRODOS
COMPARISONS

OVERVIEW

I distrust all systematisers,

and avoid them. The will to a

system shows lack of honesty.

Nietzsche, 1888

This appendix will summarize the differences between DOS 3.3 and ProDOS.
First of all, the various diskette formats are discussed briefly from the point of view

of the different diskette formats you might have available. A procedure is given for deter­
mining the format of an unknown diskette.

The next section of this appendix discusses those DOS 3.3 commands that are no longer
supported by ProDOS.

229

230 I DOS AND PRODOS COMPARISONS

The last section of this appendix shows the ProDOS commands in ProDOS. Each
command is shown with the options allowed, command examples, and a statement com­
paring the command to DOS 3.3

THE DISKETTES

When a diskette is formatted using the DOS 3.3 command INIT, the programs and files on
that diskette will use DOS 3.3 and can only use Apple Disk II drives.

When a diskette is formatted using the Pro DOS FILER utility, the programs and files
on that diskette will use Pro DOS and can use all disk drives made by Apple Computer, Inc.
for the Apple II family.

One of the more interesting problems that immediately arises is, "Which operating
system is required by this disk?" There are a number of possibilities that exist. These are
for the Apple II computers:

-ProDOS 1.0
-DOS 3.3
-DOS 3.2.1
-DOS 3.2
-PASCAL

and for the Apple III computer
-SOS 1.1

If the diskette has a well-annotated diskette label, then your problem is probably solved.
However, there are always those diskettes that you forgot to label or labeled incorrectly or
inadequately.

So, let's go through a possible procedure to determine the formatting and operating
system of the diskette.

Start by booting up your system with a ProDOS diskette installed in the boot drive
that has the FILER program on the diskette. Then using the intelligent RUN command
execute the FILER program. If you can read the contents of any diskette placed into a disk
drive, it is a Pro DOS diskette. Label this diskette so that you will not have to guess later.

If, however, you cannot read the diskette contents, then you will need to perform a
warm start with DOS 3.3 installed in your boot drive. For example, PR#6. When you have
booted DOS 3.3, try the CATALOG command to view the contents of the unknown disk­
ette. If you can view the contents, you have a DOS 3.3 diskette that probably can be con­
verted to ProDOS. Place a label on the diskette so it may be identified easily later. If this
does not work, then you have one more option.

At this point, you will have to restart your system with the DOS 3.3 BASIC diskette
installed into your boot drive. This diskette will tell you to install your DOS 3.2.1 diskette
in order to complete the booting procedure. If your unknown diskette will finish the booting
process, then you have a DOS 3.2 or DOS 3.2.1 diskette. This diskette will have to be

PRODOS COMMANDS SUPPORTED I 231

MUFFINed to DOS 3.3 and then converted to ProDOS. Place a label on the diskette stating
it is a DOS 3.2 diskette.

If you are still unable to read the contents of the unknown diskette, then you probably
have a PASCAL diskette, Apple III SOS 1.3, or a protected diskette that cannot be con­
verted to ProDOS.

This gives you a simple, straightforward procedure for determining the recording for­
mat of a diskette.

COMMANDS NO LONGER SUPPORTED

There are a number of DOS 3.3 commands that are no longer supported. These are:

-FP
-INT
-INIT
-MAXFILES
-MON
-NOMON

Since these commands are no longer valid, they will not be discussed.
There is one command that you may still use, but is really not supported. That com­

mand is the VERIFY command. You may still use this command without causing an error
to occur.

PRODOSCO~ANDSSUPPORTED

In this section, you will be given the general form for the description of each command that
is described in this book. Normally, the general form of a command is known as the syntax
required for the command. A command's syntax for ProDOS looks generally like the
following:

command [pn] [,S#] [,D#]

In general, you enter the command, followed normally with a pathname and then
possibly with a series of options.

In all of the commands summarized below, this general form will be followed. For
commands that are different for different file types, both syntactical forms are given.

HELP

NO HELP

232/ DOS AND PRODOS COMPARISONS

HELP e.g.,

NO HELP e.g.,

HELP
HELP PREFIX
NO HELP

Immediate mode only

Immediate mode only

The HELP command gives you an on-line way of getting help with ProDOS com­
mands, provided you have the HELP file and HELPSCREENS file installed on a currently
active diskette.

Once the HELP command has been activated, you may deactivate that capability with
the NOHELP command.

1- pn [,S#1 [,D#1

e.g., -DUMMY Immediate mode only
- /PRODOS/DUMMY

This new command is very handy; it is the intelligent RUN command. By using
this command, you no longer need to know the type of program file you are executing. This
command will determine the file type and automatically perform the proper RUN or BRUN
command.

RUN e.g.,

]RUN pn [,@#1 [,S#1 [,D#1

1- pn [,S#1 [,D#]

RUN /PRODOS/DUMMY
RUN
- /PRODOS/DUMMY

Immediate and deferred

The ProDOS version RUN has only one added capability, which is that you may spec­
ify the line number at which execution is to take place. Notice that you may alternatively
use the intelligent RUN command.

This command operates the same as in DOS 3.3 except for the added option.

]LOAD pn [,S#] [,D#]

LOAD e.g., LOAD /PRODOS/VIEW Immediate and deferred

This command allows you to LOAD an Applesoft II BASIC program file into
memory.

PRODOS COMMANDS SUPPORTED I 233

This command operates the same as in DOS 3.3.

]SAVE pn [,S#] [,D#]

SAVE e.g., SAVE /MY.DISK/DEMO Immediate and deferred

CAT

This command allows you to SAVE an Applesoft II BASIC program to a diskette file.
This command operates the same as in DOS 3.3.

]CAT [pn] [,S#] [,D#]

e.g., CAT /PRODOS Immediate and deferred
CAT /PRODOS,S6,Dl

This command will present an abbreviated set of information to your video screen in
a 40-column format. This command and the CATALOG command will display the contents
of a single directory. It is necessary that you specify the name of the directory whose contents
you want displayed.

If you do not specify a directory name, then the prefix directory will be displayed.

CATALOG e.g.,

]CATALOG [pn] [,S#] [,D#]

CATALOG /PRODOS
CATALOG /PRODOS,S6,Dl

Immediate and deferred

If you have an SO-column format video screen selected, then this command will display
the maximum normal information available through ProDOS.

This command will display the logical end of a file, the load address of a binary file,
or the file's record length in the case of a random-access file.

This command operates the same as in DOS 3.3 except for the added capabilities.

PREFIX
PREFIX

e.g.,
e.g.,

]PREFIX [pn] [,S#] [,D#]

PREFIX /PRODOS/STATES
PREFIX /PRODOS
PREFIX /S6,Dl

Immediate and deferred
Immediate and deferred

234 I DOS AND PRODOS COMPARISONS

This command allows you to set the name of the directory that contains the files that
you wish to access. Once you have set the prefix, all files accessed must be stored in that
directory.

If the prefix variable is empty, the files accessed will be those located in the main
directory of the last referenced drive and slot. This is exactly the same as with DOS 3.3.

CREATE e.g.,

]CREATE pn [,Ttype) [,S#] [,D#]

CREATE PIC4,TBIN
CREATE DIRECTORY,TDIR

Immediate and deferred

This command is for the purpose of creating files. However, it will be used primarily
for the purpose of creating directories. The BAS, TXT, BIN type file are automatically
created when you use the SAVE, OPEN, and BSA VE commands, respectively. The V AR
file type is created when using the STORE command. Text files may also be created by using
the APPEND command.

]RENAME pnl ,pn2 [,S#] [,D#]

RENAME e.g., RENAME STOCKS,PORTFOLIO Immediate and deferred

This command allows you to change the name of a file stored on a diskette.
This command operates the same as in DOS 3.3.

DELETE e.g.,

]DELETE pn [,S#] [,D#]

DELETE /MY /LOSSES
DELETE /MY /DEBTS,S6,D2

Immediate and deferred

This command allows you to DELETE any file stored on a diskette.
This command operates the same as in DOS 3.3.

LOCK
UNLOCK

e.g.,
e.g.,

]LOCK pn [,S#] [,D#]

]UNLOCK pn [,S#] [,D#]

LOCK /MY /PORTFOLIO
UNLOCK /MY /PORTFOLIO

Immediate and deferred
Immediate and deferred

PRODOS COMMANDS SUPPORTED I 235

These commands allow you to change the protection status of files stored on a diskette.
These commands operate the same as in DOS 3.3.

]CHAIN pn [,@#] [,S#] [,D#]

CHAIN e.g., CHAIN PART.TWO Immediate and deferred

You are now able to CHAIN one program to any line number of another program.
This command operates the same as in DOS 3.3, except that now it works with Ap­

plesoft II BASIC.

]STORE pn [,S#] [,D#]

STORE e.g., STORE /MY /DEBTS Immediate and deferred

The STORE command is used to store all of the current program's variables into a
file on a diskette.

This command is not supported in DOS 3.3.

]RESTORE pn [,S#] [,D#]

RESTORE e.g., RESTORE /MY /DEBTS Immediate and deferred

This command will add the contents of the STOREd file to the variables of the current
program.

PR#

PR#

This command is not supported in DOS 3.3.

]PR# slot [,A#] lA#

e.g.,

e.g.,

PR#6
PR#O
PR#l
PR#O

Immediate and deferred mode

Immediate and deferred mode

236 I DOS AND PROOOS COMPARISONS

This command allows you to control the slot to which characters are to be transferred
and/ or stored.

IN#
IN#

This command operates the same as in DOS 3.3.

8
]IN# slot [,A#] lA#

e.g.,
e.g.,

IN#2
IN#3
IN#O

Immediate and deferred mode
Immediate and deferred mode

This command allows you to control the slot from which characters are to be received.
This command operates the same as in DOS 3.3.

]OPEN pn [,S#] [,D#]

]OPEN pn [,L#] [,S#] [,D#]

OPEN e.g., OPEN /MY /XMAS.LIST
OPEN /MY /XMAS.LIST ,S6,D2
OPEN EXAMPLES,L28

Deferred mode only

OPEN e.g.,
OPEN /MY /LIST, L200,S6,D 1

The OPEN command may now be used to open any type of file for access.
File buffers are now allocated and deallocated dynamically when a file is opened and

closed, respectively.
This command operates the same as in DOS 3.3.

]READ pn [,F#] [,B#]

]READ pn [,R#] [,F#] [,B#]

READ e.g.,
e.g.,
e.g.,
e.g.,

PROOOS COMMANDS SUPPORTED I 237

READ /MY/XMAS.LIST
READ EXAMPLES,F4
READ /MY/ADDRESS.LIST,R5
READ LEDGER,R22,F3

Deferred mode only

In DOS 3.3 the READ command only allowed you to use the B# option. In the ProDOS
version you are allowed to use both the F# and B# options. So you may now pass over a
specified number of fields plus the specified number of bytes BEFORE the READ actually
takes place. This essentially makes the POSITION command obsolete when reading flies.

This command operates the same as in DOS 3.3, except for the added capability.

WRITE e.g.,
e.g.,
e.g.,
e.g.,

]WRITE pn [,F#] [,B#]

]WRITE pn [,R#] [,F#] [,B#]

WRITE /MY /XMAS.LIST
WRITE /MY/XMAS.LIST,F3
WRITE EXAMPLES
WRITE /MY /LIST ,S6,D 1

Deferred mode only

In DOS 3.3 the WRITE command only allowed you to use the B# option. In the
ProDOS version you are allowed to use both the F# and B# options. So you may now pass
over a specified number of fields plus the specified number of bytes BEFORE the WRITE
actually takes place. This essentially makes the POSITION command obsolete when writing
files.

This command operates the same as in DOS 3.3, except for the added capability.

]CLOSE [pn]

CLOSE e.g., CLOSE Immediate and deferred
CLOSE /MY/XMAS.LIST

The CLOSE command still closes files; however, it is more important that a CLOSE
command be executed before leaving a program because of the possibility that data may be
lost.

This command operates the same as in DOS 3.3.

238 I DOS AND PRODOS COMPARISONS

APPEND

]APPEND pn [,S#] [,D#]

]APPEND pn [,L#] [,S#] [,D#]

e.g.,
e.g.,

APPEND /MY /XMAS.LIST
APPEND /MY /LIST /L200,Dl
APPEND EXAMPLES,L28

Deferred mode only

The APPEND command has two new capabilities. You can use this command to add
data to the end of any type of file. Further, APPEND may be used to add data starting at
the beginning of the record immediately following the last logical record in a random-access
text file.

This command operates the same as in DOS 3.3, except for the added options.

FLUSH e.g.,

]FLUSH [pn]

FLUSH /MY /XMAS.LIST
FLUSH MY /EXAMPLES

Immediate and deferred

The use of this command allows you to completely empty the file buffer in memory.
This assures that you have written all data to a file. If you use the command frequently,
your program execution will slow down; however, you will be assured that all data has been
saved to the diskette media.

]POSITION pn,F#

POSITION e.g., POSITION /MY /XMAS.LIST ,F3 Deferred mode only

The READ and WRITE commands under ProDOS allow you to specify the number
of fields and bytes to be read and skipped over or discarded. Therefore, the POSITION
command is not required to be used by ProDOS. It was retained to provide compatibility
with DOS 3.3.

This command works the same as in DOS 3.3.

]BLOAD pn [,A#] [,B#] [,L#IE#] [Ttype] [,S#] [,D#]

BLOAD e.g., BLOAD PICI
BLOAD PICI ,A$4000
BLOAD PICI ,A$4000,L$2000
BLOAD PICI ,Al6384,E$24575

PRODOS COMMANDS SUPPORTED I 239

Immediate and deferred mode

The BLOAD command has three new capabilities. This command may now be used
to load the binary image of any type of file, not just binary files. You may now load any
portion of a file, any specified number of bytes expressed either as a length option or be­
ginning and ending address, into memory.

This command operates the same as in DOS 3.3, except for the added options.

BSAVE e.g.,

]BSAVE pn ,A# ,L#I,E# [,B#] [,Ttype] [,S#] [,D#]

BSAVE PICI,A$2000
BSAVE PICI,A8192
BSA VE PICI ,A$2000,L$2000
BSAVE PICI,A8192,E$4000

Immediate and deferred mode

This command stores the contents of memory specified. The number of bytes that are
to be saved may be specified either by specifying a starting address and ending address or
by specifying a starting address and the number of bytes to be transferred.

This command operates the same as in DOS 3.3, except for the added options.

BRUN e.g.,

]BRUN pn [,A#] [,B#] [,L#I ,E#] [,S#] [,D#]

] - pn [,S#] [,D#]

BRUN TONE.BEEP
BRUN BEEPER,A$300
- TONE.BEEP

Immediate and deferred mode

There are new capabilities added to this command. You now are able to load into
memory any portion of a binary file and run that code. The number of bytes may be spec­
ified either by specifying the starting address and the number of bytes or the starting address
and ending address. As an alternative, you may use the intelligent RUN command.

This command operates the same as in DOS 3.3, except for the added options.

]EXEC pn [,F#] [,S#] [,D#]

240 I DOS AND PRODOS COMPARISONS

EXEC e.g., EXEC DUMMY Immediate and deferred mode

This command is very useful in a number of instances. The possible uses were discussed
in Chapter 7 .>

This command works the same as it does in DOS 3.3.

APPENDIX B.
PROOOS 1.0
MEMORY MAP

OVERVIEW

This appendix shows the memory map for ProDOS 1.0.

Memory is the diary that we

all carry about with us.

Oscar Wilde, 1895

Further, there is a discussion and explanation of page zero memory locations, along
with a general explanation of the main memory usage on a page basis.

There is also a discussion of the high memory considerations when using your own
machine-language routines.

Finally, a memory map for an Apple lie is shown.

241

242 I PRODOS 1.0 MEMORY MAP

HIGH MEMORY CONSIDERATIONS

When Pro DOS boots, a 1K ($0400) buffer is set aside for a temporary file buffer and then sets
HIMEM. This buffer starts at the highest 1K memory boundary. Once this buffer has been
established, the HIMEM value is set. This initial file buffer is used for those commands that
perform an OPEN and CLOSE that is transparent to the operator. TheCA T ALOG and CAT
commands are typical examples. See Figure B.2.

Typically, HIMEM is set to 38912:::$9600 for an Apple II Plus with 64K of memory.
When an Applesoft II BASIC program is running, the HIMEM setting is changed each

time a new file is OPENed. ProDOS will lower HIMEM by 1K ($0400). When the flle is
CLOSEd, ProDOS releases that file's buffer memory and then raises the HIMEM setting.

If machine-language programs are to work with ProDOS, you must move HIMEM only in
256 ($0100) byte increments. You should do this only when there are no files open and no
string variables declared. This means you do it early in a program.

If you want machine-language routines to be memory resident with Pro DOS and an Ap­
plesoft II BASIC program, these routines should be added to the BASIC system program.

The only safe area in memory is the $0300 through $03CF. There are no other safe memory
areas.

In general, before a program is run, HIMEM is set to the highest value that the system
bit map will allow. All unmarked blocks in the system bit map are available to Applesoft II
BASIC. Assume now that you want a machine-language routine to remain in memory for
more than a single program execution. You must have your program mark the appropriate
256-byte pages used in the system bit map. Machine-language routines that are protected in
this way may remain in memory and active until you reboot your system.

ZERO PAGE

This section will discuss some of the useful places in the zero page of memory that you may
use to great effectiveness.

However, before getting into the individual memory locations, it seems only logical to
talk briefly about the general organization of memory in the Apple II Plus or Apple lie on a
page basis. A page of memory is a grouping of 256, $00-$FF, memory locations.

Page 0 ($0000-SOOFF): For the 6502 microprocessor, page 0 is very important. Stored
on this page are those values, hooks, parameters, etc, that are to be used frequently by other
software, such as Applesoft II BASIC, DOS 3.3, Integer BASIC, miniassembler, etc. This is
because the 6502 has, as one of its addressing modes, one that uses page 0. By using page 0, a
great speed advantage may be realized.

Page 1 ($0100-$01FF): This page is used primarily by the processor for its stack. This
area is used by the 6502 for subroutine returns, interrupts, reentrant code, and temporary
parameters. This area of memory should only be used by a very experienced programmer.

ZERO PAGE I 243

Page 2 ($0200-$02FF): Page 2 is used by the keyboard and for a general input buffer.
Characters inputted from the keyboard are normally stored in page 2. It is from this area that
they are made available to other routines.

Page 3 ($0300-$03FF): This is the first page of memory that may be used by program­
mers without fear of interfering with other absolutely needed machine code. Now that I have
said that, I am going to take away the top portion of this page of memory. That is because the
area from $0300 to $03FF is used for jump commands and linkage vectors to other parts of
memory and programs.

The addresses 1008 = $03FO through 1023 = $03FF, 16 bytes, are used by the monitor
and AUTOST ART ROM to provide vectors to other monitor routines and storage locations
for user-defined functions. The memory locations, $03D0-$03EF, 32 bytes, are used by DOS
3.3.

The rest of page 3 is available to the user for machine language instructions of his own
choosing.

The top 16 memory locations are really quite useful. Each of these are defmed as
follows:

Decimal Hexadecimal Meaning

1008-1009 $03F0-$03F1

1010-1011 $03F2-$03F3

1012 $03F4

1013-1015 $03FS-$03F7
1016-1018 $03F8-$03FA
1019-1021 $03FB-$03FD

1022-1023 $03FE-$03FF

Used by the AUTOST ART ROM monitor as the interupt,
BRK, instruction vector, address.

These addresses are for the RESET (soft entry) vector used by
the AUTOST ART monitor.

Power up indicator. If the logical exclusive or of 165 = $AS
with the contents of 1011 = $03F3 is equal to the contents of
1012 = $03F4, the RESET (soft entry) vector is considered
valid. If this condition does not exist, the monitor will go
through a complete powerup cycle, as if it were a cold start.

Reserved for Applesoft II BASIC ampersand (&) instruction.
Reserved for the CTRL-Y instruction.
The storage location for the nonmaskable interrupt vector in­

struction.
The storage for the IRQ, interrupt vector.

You can take advantage of these locations to help control a program, especially the typ­
ing of the RESET key. If you want the computer to boot, as if the machine were just started
every time the RESET key were typed, you could embed into a program the following line of
code:

0 POKE 1011,224

If, however, you only want the computer to RUN the program over from the beginning
again when RESET is typed, you can use the following code:

12 POKE 1010,102: POKE 1011,213: CALL -1169

244 I PRODOS 1.0 MEMORY MAP

This line of code will trap the typing of the RESET key and allow you to run your pro­
gram over again automatically. CALL -1169 is explained later. You should also provide for
setting your computer back to its normal condition. This can be accomplished with:

43255 POKE 1010,191 :POKE 1011,157: CALL -1169

Your system is now back to its normal condition.
Pages 4-7 ($0400-$07FF): In these four pages there are 1024 memory locations. 960 of

these are used for text and/ or low resolution graphics. A normal screen uses a 40 x 24 byte
area. This corresponds to 960 spaces. This area contains eight triple lines. Each triple line is
128 bytes long.

To make things worse, each 1/3 of the triple line is in one of the thirds of the screen. For
example, the first line is in the upper third of the screen. The second third of the triple-line is in
the second third of the screen. The last third of the triple line is in the last third of the screen.
When you are in the text mode, each character is made up of a 7-bit wide by 8-bit high area on
the screen. Each character has one embedded blank column.

Pages 8-11 ($0800-$0BFF): This is the start of memory for an Applesoft II BASIC pro­
gram and can be used as the secondary text page. However, it is rare that this is done, because
each character MUST be poked into the proper memory location.

Pages 32-63 ($2000-$3FFF): This is the beginning of the high-resolution page 1. This
area maps bits in essentially the same manner that the low-resolution screen maps bytes; with
a triple line.

Pages 64-95 ($4000-$5FFF): This area is the high-resolution graphics page 2. Once
again the layout of this page is the same as described before.

Pages 150-191 ($9600-$BFFF): This area is used for the Disk Operating System on a
48K Apple II Plus or Apple lie.

Pages 192-207 ($COOO-$CFFF): This memory area is used for the hardware 1/0 area.
Pages 208-255 ($DOOO-$FFFF): These are used by the Apple II Plus or Apple lie

monitor and Applesoft II BASIC interpreter.
The following group of useful memory locations is that located on what is known as

page 0 of memory. Page 0 of memory contains those locations with numbers from 0 to 255 in
decimal or $0000 to $00FF in hexadecimal. These locations have very special meaning for the
6502 microprocessor, because it can address them directly with a two-byte machine
instruction.

Decimal

0- 2

3- 5
6- 9

10- 12
13- 19

Hex

$00-$02

$03-$05
$06-$09
$0A-$0C
$0B-$13

Meaning

Applesoft II BASIC soft entry. OG is equivalent to CTRL-C.
(A&D)

Jump to $F128. (A)
Undefined memory space.
Address of USR jump instruction. (A)
Applesoft II BASIC. (A)

ZERO PAGE I 245

20 $14 Subscript flag. (A)
$00 = subscripts allowed
$80 = subscripts not allowed

21 $15 General purpose counter or flag. (A)
22 $16 Comparison type flag byte. (A)

1= >;2= =;3= > =;4= <;5= <>;6= <
Used by the routine at $DF6A in the interpreter.

23- 24 $17-$18 Applesoft II BASIC general usage. (A)
25- 27 $19-$1B Undefined memory space.
28 $1C HCOLOR byte. High-resolution color mask. (A)
31 $1F Monitor usage. (M)
32 $20 Left edge text window. Range 0-39. (A & M)
33 $21 Width of text window. Range 1-40. (A & M)
34 $22 Top edge of text window. Range 0-22. (A & M)
35 $23 Bottom of text window. Range 1-24 (A & M)
36 $24 Horizontal cursor position. (A, M, and P)
37 $25 Vertical cursor position. (A & M)
38 $26 Used by ProDOS. Sector read buffer address. (M)
39 $27 Scratch space. (RWTS in P & M)
40 $28 Monitor pointer to current screen line. (M)
40- 41 $28-$29 BASL/BASH. (P & M)
42 $2A Segment merge counter. (P & M)

Scratch space. (R WTS in P & M)
43 $2B Boot slot x 16. Only after initial boot. (M)

Scratch space. (RWTS in P & M)
44 $2C End point of last HLIN, VLIN, or PLOT. (A, M, and I)

Checksum from sector head. (P & M)
45 $20 End point of last VLIN or PLOT. (A, M, and I)

Sector number. (P & M)
46 $2E Track number from sector header. (P & M)
47 $2F Volume number from sector header. (P & M)
48 $30 Low-resolution COLOR value x 17. (A, M, and I)
49 $31 Screen mode. (M)
so $32 Text output format. (M)

63 = $3F -INVERSE 255 = $FF -NORMAL
127 = $7F -FLASH (243 = $F3 must be set to 64 = $40)

51 $33 Prompt character. (A, I, M, and P)
> = Integer 1 = Applesoft
• = monitor ! = mini-assembler

53 $35 Drive number in high bit. (RWTS in P & M)
54 $36 CSW address - low byte. (M)
ss $37 CSW address- high byte. (M)
56 $38 KSW address - low byte. (M)

246 I PRODOS 1.0 MEMORY MAP

57
58- 59
60
61
60- 61
62- 63

64- 65

66- 67

68- 69
68
69
70
71
70- 71
72
73
72- 73
74
74- 75
76- 77
78
78- 79
80

$39
$3A-$3B
$3C
$3D
$3C-$3D
$3E-$3F

$40-$41

$42-$43

$44-$45
$44
$45
$46
$47
$46-$47
$48
$49
$48-$49
$4A
$4A-$4B
$4C-$4D
$4E
$4E-$4F
$50

KSW address- high byte. (M)
Program counter save and control area. (A, D, & M)
Workbyte. (RWTS in P, D, & M)
Sector number. (ROM) (P, D, & M)
Old memory move start location. (M. D, & P)
Old memory move end location. (M, D, & P)
Address of ROM sector read subroutine. (P, D, & M)
New memory move start location. (M, D, & P)
ProDOS image address. (on BOOT P)
New memory move end location. (M, D, & P)
Buffer address. (P & M)
Numeric operand. (P, D, & M)
ProDOS usage. (M, D, & P)
Save accumulator. (M, D, & P)
Save X register. (M, D, & P)
Save Y register. (M, D, & P)
Scratch space. (P & M)
Save P, processor status register. (M & P)
Save S, processor stack. (M & P)
lOB address. (P)
ProDOS usage .. (P)
LOMEN address for Integer BASIC. (I & P)
HIMEN address for Integer BASIC. (I & P)
Random number location. (M & P)
Random number storage field. (A & M)
High-resolution graphics shape temporary. (A & M)

80-249 $50-$F9 -Applesoft II BASIC storage locations. (A)

80- 81 $50-$51
82-102 $52-$66

103-104 $67-$68

105-106
107-108
109-110
111-112
113-114
115-116
117-118
119-120

$69-$6A
$6B-$6C
$6D-$6E
$6F-$70
$71-$72
$73-$74
$75-$76
$77-$78

High-resolution delta X for HLIN shape. (A & M)
Applesoft II BASIC and monitor. (A & M)
Start of program for Applesoft II BASIC. (A) Usually 2049 =

$0801
Start of variable table address space. (A)
Start of array address space. (A)
End of variable table address space. (A)
Start of free string storage space. (A)
General pointer. (A)
HIMEM address location. (A)
Line number being executed. (A)
Line where program terminated. (A)

121-122
123-124
125-126
127-128
129-130
131-132
133-171
172-174
175-176
177-183
184-185

202-203
204-205
214

215
216

217
216-217

218-219
220-221
222
223
224-225
226

227
228

229
230

231
232-233
234
235-239
241
242
243

$79-$7A
$7B-$7C
$7D-$7E
$7F-$80
$81-$82
$83-$84
$85-$AB
$AC-$AE
$AF-$BO
$B1-$B7
$B8-$B9

$CA-$CB
$CC-$CD
$D6

$D7
$D8

$D9
$D8-$D9

$DA-$DB
$DC-$DD
$DE
$DF
$EO-$E1
$E2

$E3
$E4

$E5
$E6

$E7
$E8-$E9
$F1
$EB-$EF
$F1
$F2
$F3

Line currently being executed. (A)
Line number where DATA is being READ. (A)
Current DATA address location. (A)
Current INPUT or DATA address. (A)
Last used variable name. (A)
Last used variable address. (A)
Applesoft II BASIC. (A)
General use flags/pointers. (A)
Address of end program. (A)
Applesoft II BASIC. (A)

ZERO PAGE I 241

Pointer to last character obtained through the character input
routine. (A)

Start of INTEGER BASIC program. (I & A)
End of INTEGER variable storage. (I & A)
RUN flag. (A)

if > 127 = AUTO RUN.
Undefmed memory space.
ONERR flag. (A)

0 = not set.
ProDOS usage for the direct-deferred mode usage. (P)
INTEGER line number. (I & A)
ONERR flag (A)
Line where ONERR occurred. (A)
Text pointer for error handler subroutine. (A)
ONERR error code storage. (A)
Stack pointer value before an error occurs. (A)
X coordinate of last HPLOT. (A)
Y coordinate of last HPLOT. (A) (See 224-225 for X coordinate.

(A))
Undefmed memory space. (A)
HCOLOR value. (A)

0 = 0 1 = 42 2 = 85 3 = 127
4 = 128 5 = 170 6 = 213 7 = 255

General purpose high resolution usage. (A)
High resolution plotting page. (A)

1 = 32 2 = 64 3 = 96
SCALE value in high resolution. (A)
Start of shape table address. (A)
High resolution collision counter. (A)
Undefined memory space.
SPEED value. 256 - SPEED. (A)
Applesoft II BASIC. (A)
FLASH mask. (A)

248 I PRODOS 1.0 MEMORY MAP

244-247
248
249
250-255

$F4-$F7
$F8
$F9
$FA-$FF

64 = FLASH (with 50 set to 127)
Applesoft II BASIC. (A)
Stack pointer saved here before each statement. (A)
ROT value in high-resolution graphics. (A)
Undefined memory space.

Legend: (A) = Applesoft II BASIC
(D) = Disk Drivers
(P) = ProDOS

(M) = Monitor
(I) = Integer BASIC

Figure B.l. Zero page usage.

Thus far a number of page 0 locations and their usage have been shown. I don't claim
that you have all of them. In fact there are a number of blank spaces shown.

You can always find the value, in decimal notation, stored in any two-byte address loca­
tion by executing the following code:

]PRINT PEEK(low byte) + PEEK(high byte)* 256

Since this is in the immediate mode, the calculated value will be presented to the screen
in decimal form.

If you need to use zero-page memory locations for your routines, try to pick unused lo­
cations. However, if that is not possible, then pick an area on page zero, save the contents
somewhere, load your routine or values, execute it, and finally restore the original contents.

GENERAL MEMORY MAP

How memory is arranged when ProDOS is booted at startup time is shown for the Apple lie
with 128K of memory in the following table. The way your system memory is configured
depends upon the physical memory available. If you have a 48K Apple computer with a 16K
language card installed, memory allocation is different than it would be if you have an Apple
lie with 128K of total memory. This is shown in Figure B.2.

SFFFF

SF BOO
$F7FF

$0000
$0FFF

$0400

SOJFF

$0100

$0000
$CFFF

scooo
$BFFF

SBFOO

$9600

$6000

$4000

$2000
$1FFF

$0800
$07FF

$0400

SOJFF

$0300
$02FF

$0200

Main
Memory

$0100 ~ SOOFF

$0000

Monitor Routines

Applesoft II BASIC
Language

PROOOS

ProOOS Reserved

PROOOS

Hardware I/0

PROOOS

BASIC.SYSTEM
Locations

Free string space

H ig h-resolu ti on
Page2

High-resolution
Page 1

Applesoft II BASIC
program

Text Page

Shared Usagl!
and Free Usage

Keyboard buffer

Zero Page

Aux.
Memory

$FFFF

$0400
$03FF

$0100

$0000

SBFFF

SBFOO

$0800
$07FF

$0400
$03FF

$0200

$00FF B
$0080

$0000

Figure B.2. Apple lie memory map.

ZERO PAGE I 249

Reserved memory
Future Use

Reserved memory

Free memory

Reserved memory

Free memory

Text screen

Reserved memory
Future Use

Reserved memory

Free memory

APPENDIX C. PRODOS
COMMAND SUMMARY

New faces have more authority

HELP

NO HELP

2SO

command [pn] [,S#] [,D#]

B
NOHELP I
e.g.,

e.g.,

HELP
HELP PREFIX
NO HELP

than accustomed ones.

Euripides, 426 B. C.

Immediate mode only

Immediate mode only

RUN

LOAD e.g.,

CAT e.g.,

CATALOG e.g.,

PREFIX e.g.,

PRODOS COMMAND SUMMARY I 251

]- pn [,S#] [,D#]

e.g., - DUMMY Immediate mode only
- /PRODOS/DUMMY

]RUN pn [,@#] [,S#] [,D#]

]- pn [,S#] [,D#]

e.g., RUN /PRODOS/DUMMY Immediate and deferred
RUN Applesoft II BASIC
- /PRODOS/DUMMY

]LOAD pn [,S#] [,D#]

LOAD /PRODOS/VIEW Immediate and deferred

]SAVE pn [,S#] [,D#]

]CAT [pn] [,S#] [,D#]

CAT/PRODOS Immediate and deferred
CAT /PRODOS,S6,D 1

]CATALOG [I'll] [,S#] [,D#]

CATALOG/PRODOS Immediate and deferred
CATALOG /PRODOS,S6,Dl

]PREFIX [pn] [,S#] [,D#]

PREFIX /PRODOS/ST A TES Immediate and deferred

2S2 I PRODOS COMMAND SUMMARY

PREFIX e.g.,

CREATE e.g.,

RENAME e.g.,

DELETE e.g.,

LOCK e.g.,
UNLOCK e.g.,

CHAIN e.g.,

STORE e.g.,

PREFIX /PRODOS
PREFIX /S6,D 1

]CREATE pn [, Ttype] [,S#] [,D#]

CREATE PIC4,TBIN
CREATE DIRECTORY,TDIR

]RENAME pnl,pn2 [,S#] [,D#]

RENAME STOCKS,PORTFOLIO

]DELETE pn [,S#] [,D#]

DELETE /MY /LOSSES
DELETE /MY /DEBTS,S6,D2

]LOCK pn [,S#] [,D#]

]UNLOCK pn [,S#] [,D#]

LOCK /MY /PORTFOLIO
UNLOCK /MY /PORTFOLIO

]CHAIN pn [,@#] [,S#] [,D#]

CHAIN PART.TWO

]STORE pn [,S#] [,D#]

STORE /MY /DEBTS

Immediate and deferred

Immediate and deferred

Immediate and deferred

Immediate and deferred

Immediate and deferred
Immediate and deferred

Immediate and deferred

Immediate and deferred

RESTORE e.g.,

PR# e.g.,

PR# e.g.,

IN# e.g.,
IN# e.g.,

OPEN e.g.,

OPEN e.g.,

]RESTORE pn [,S#] [,D#]

RESTORE /MY /DEBTS

I)PR# slot I

]PR# slot [,A#JIA#

PR#6
PR#O
PR#l
PR#O

B
]IN# slot [,A#] lA#

IN#2
IN#3
IN#O

]OPEN pn [,S#] [,D#]

]OPEN pn [,L#] [,S#] [,D#]

PROOOS COMMAND SUMMARY I 2S3

Immediate and deferred

Immediate and deferred mode

Immediate and deferred mode

Immediate and deferred mode
Immediate and deferred mode

OPEN /MY /XMAS.LIST
OPEN /MY /XMAS.LIST ,86,02
OPEN EXAMPLES,L28

Deferred mode only

OPEN /MY /LIST ,L200,S6,D 1

2S4 I PROOOS COMMAND SUMMARY

READ

WRITE

CLOSE

APPEND

e.g.,
e.g.,
e.g.,
e.g.,

e.g.,
e.g.,
e.g.,
e.g.,

e.g.,

e.g.,
e.g.,

]READ pn [,F#] [,B#]

]READ pn [,R#] [,F#] [,B#]

READ /MY /XMAS.LIST
READ EXAMPLES,F4
READ /MY I ADDRESS.LIST ,RS
READ LEDGER,R22,F3

]WRITE pn [,F#] [,B#]

]WRITE pn [,R#] [,F#] [,B#]

WRITE /MY/XMAS.LIST
WRITE /MY/XMAS.LIST,F3
WRITE EXAMPLES
WRITE /MY /LIST ,S6,D 1

]CLOSE [pn]

CLOSE
CLOSE /MY /XMAS.LIST

]APPEND pn [,S#] [,D#]

]APPEND pn [,L#] [,S#] [,D#]

APPEND /MY/XMAS.LIST
APPEND /MY /LIST /L200,D1
APPEND EXAMPLES,L28

Deferred mode only

Deferred mode only

Immediate and deferred

Deferred mode only

FLUSH

POSITION

BLOAD

BSAVE

BRUN

EXEC

e.g.,

e.g.,

]FLUSH [pn]

FLUSH /MY /XMAS.LIST
FLUSH MY /EXAMPLES

]POSITION pn,F#

PRODOS COMMAND SUMMARY I 2SS

Immediate and deferred

POSITION /MY /XMAS.LIST,F3 Deferred mode only

]BLOAD pn [,A#] [,B#] [,L#IE#] [Ttype] [,S#] [,D#]

e.g., BLOAD PICI
BLOAD PIC I ,A$4000
BLOAD PIC I ,A$4000,L$2000
BLOAD PICI,A16384,E$24575

Immediate and deferred mode

]BSA VE pn ,A# ,L#I ,E# [,B#] [, Ttype] [,S#] [,D#]

e.g.,

e.g.,

e.g.,

BSAVE PICI,A$2000
BSAVE PICI,A8192
BSAVE PICI,A$2000,L$2000
BSAVE PICI,A8192,E$4000

Immediate and deferred mode

]BRUN pn [,A#] [,B#] [,L#I ,E#] [,S#] [,D#]

]- pn [,S#] [,D#]

BRUN TONE.BEEP
BRUN BEEPER,A$300
-TONE.BEEP

]EXEC pn [,F#] [,S#] [,D#]

EXEC DUMMY

Immediate and deferred mode

Immediate and deferred mode

APPENDIX D.
ERROR MESSAGES

OVERVIEW

Every great mistake has a halfway

moment, a split second when it can

be recalled and perhaps remedied.

Pearl S. Buck, 1943

The purpose of this appendix is to gather error messages from all sources together in one area
so that they may be easily referenced.

When an error of any kind is detected by either Applesoft II BASIC, FILER, CON­
VERT, or ProDOS, the executing program is normally interrupted and the error message is
displayed on the video display screen. The source of error messages may be determined by the
format displayed. These are shown in Figure D.l.

Source

Monitor
Integer BASIC

256

Format

ERR
***SYNTAX ERROR

Applesoft II BASIC
Pro DOS

?SYNTAX ERROR
SYNTAX ERROR

Figure D.l. ERROR formats.

PROOOS MESSAGES I 2S1

Notice that the source of error messages is indicated by the character, lack of characters,
or multiple characters preceding the actual message.

DETERMINING THE ERROR

When developing programs, errors may be handled in at least two different ways. First, it is
recommended that during the actual development of programs you do no error trapping in
code and let either Applesoft II BASIC or Pro DOS intercept errors as they occur. In this way
you will be able to identify and handle errors easily, making corrections as needed. The sec­
ond way errors may be handled is through the ONERR GOTO or ONERR GOSUB capability
of Applesoft II BASIC. These instructions allow you to write your own error-handling
routines. Once you have committed yourself to handling your own errors, you must be
prepared to handle all possible Applesoft II BASIC and ProDOS errors.

When an error does occur during program execution, the number of that error is stored
in memory location 222 =$DE. Therefore, you may use the following code to retrieve that er­
ror number.

]E = PEEK(222)

In this case, the variable E is assigned the value of the error that was stored in memory
location 222.

Further, you may also determine the line of Applesoft II BASIC code being executed
when the error occurred. This can be done using the code:

]LN = PEEK(218) + PEEK(219) * 256

This code will set the variable LN to the line number where the error occurred. By using
the E and LN variables you are able to pinpoint errors quickly. By the way, the variables are
not sacred; you may use any variable you choose.

PRODOS MESSAGES

Figure 0.2 shows you both the DOS 3.3 and ProDOS error code numbers, their meanings,
and the possible causes.

258 I ERROR MESSAGES

Code# Message Possible Causes

1 LANGUAGE NOT AVAILABLE Requested language not available (ProDOS
only)

2 2 RANGE ERROR Command option too small or too large
3 NO DEVICE CONNECTED No device connected to the specified slot

(ProDOS only)
4 4 WRITE PROTECTED Write-protected tab on diskette
5 5 END OF DATA Attempted to read beyond end of file or

record
6 6 PATH NOT FOUND No file with the indicated name
7 VOLUME MISMATCH Wrong volume parameter (DOS only)
8 8 I/0 ERROR Disk drive door open, diskette not format-

ted, or wrong DOS
9 9 DISK FULL Too many files on a diskette

10 10 FILE LOCKED Attempt to write to a locked file
11 INVALID OPTION Illegal option used with command (Pro-

DOS only)
12 12 NO BUFFERS AVAILABLE Memory is full, file cannot be opened
13 13 FILE TYPE MISMATCH Wrong ftle type for the command being

used or accessed
14 14 PROGRAM TOO LARGE Program too large for the memory in your

system
15 15 NOT DIRECT COMMAND Illegal use of a command from the im-

mediate mode
II 16 SYNTAX ERROR Incorrect file name, option, comma, or

path name
17 DIRECTORY FULL Directory already has 51 files recorded

(ProDOS only)
18 FILE NOT OPEN Attempted to access a closed file (ProDOS

only)
19 DUPLICATE FILE NAME File name already used with RENAME or

CREATE command (Pro DOS only)
20 FILE BUSY File(s) already open (ProDOS only)
21 FILE(S) STILL OPEN Previous program did not close file(s) (Pro-

DOS only)

Figure 0.2. DOS-ProDOS error codes.

The first two columns indicate the DOS 3.3 and ProDOS error numbers respectively.

PRODOS MESSAGES I 259

FILER AND CONVERT MESSAGES

This section lists the error messages presented by the FILER and CONVERT programs. The
form of these messages is different from the Monitor, Pro DOS, and Applesoft II BASIC ver­
sions. They are generated through the error trapping mechanism built into the programs by
the programmer and not handled through the Monitor, Applesoft II BASIC, or ProDOS.

Error message
FILER and
CONVERT module

CAN'T DELETE DIRECTORY Transfer (or List) Files
FILE

CAN'T TRANSFER DIRECTORY Transfer (or List) Files
FILE

DIRECTORY ALREADY EXISTS Copy Files
Make Directory

DIRECTORY EXPECTED

DIRECTORY NOT EMPTY

DIRECTORY NOT FOUND

List ProDOS Direc­
tory

Set Prefix
DELETE FILES

List ProDOS Direc-
tory

Copy Files
Delete Files
Compare Files
Alter Write-Protec-

tion
Rename Files
Make Directory
Set Preftx

Comment

The name of the DOS 3.3
flle you tried to transfer
is also the name of a Pro­
nos directory flle.

This program does not
allow directory files to be
transferred.

You tried to copy to a direc­
tory instead of a file, or
you tried to create a
directory with a name
already present in the
subdirectory or volume
directory.

You entered a file name in­
stead of a directory
name.

You can only delete files,
not directories that con­
tain other files.

The program cannot find
the subdirectory you
specified.

260 I ERROR MESSAGES

DISK II DRIVE TOO FAST Copy a Volume Your disk drive speed is too
Format a Volume fast.

DISK II DRIVE TOO SLOW Copy a Volume Your disk drive speed is too
Format a Volume slow.

DISK WRITE-PROTECTED Copy a Volume You need to write some-
Format a Volume thing to the disk, but the
Rename a Volume disk has the write-pro-
Copy Files tection notch covered. Be
Delete Files very careful when remov-
Alter Write-Protec- ing the tab.

tion
Rename Files
Make Directory
Select Configuration

Defaults
Restore Configura-

tion Defaults
Transfer (or List)

Files
DUPLICATE FILE NAME Rename Files You have tried to use a

Transfer (or List) name that already exists
Files or to transfer a file that

already exists.
DUPLICATE VOLUME Compare Volumes Two diskette volumes have

Copy Volumes the same name
ERROR CODE= xxx where xxx is any This error could happen

code anytime, but probably
will not due to the pro-
gram error trapping
routines.

FILES DO NOT MATCH Compare Volumes One or more of the bytes on
the two volumes being
compared do not match.

FILE EXPECTED Delete Files You entered a volume di-
Alter Write-Protec- rectory instead of a file

tion name or subdirectory.
FILE LOCKED Delete Files You have tried to delete or

Rename Files rename a file that is
write-protected.

FILE NOT FOUND Copy Files The file does not exist in the
Delete Files directory specified.
Compare Files
Alter Write-Protec-

tion

PROOOS MESSAGES I 261

Rename Files
Set Prefix
Transfer (or List) Files
Quit

FILE TOO LARGE Copy Files Not enough room exists on
the diskette for the file
you want to copy.

I/O ERROR Trapped in all mod- This error alerts you to the
ules. fact that you have an

open drive door, empty
disk drive, unformatted
diskette, misaligned
diskette, or bad blocks
on the destination
diskette.

ILLEGAL CHARACTER Set PrefiX You used an illegal charac-
Transfer (or List) Files ter in a pathname or file

name.
ILLEGAL WILDCARD Copy Files You tried to use more than

Delete Files one wildcard per path-
Alter Write-Protec- name

tion
Rename Files
List ProDOS Direc-

tory
INSUFFICIENT MEMORY During startup Your system does not have

64K.
INVALID DATE Set ProDOS Date You entered an invalid

date
INVALID DRIVE Copy a Volume When you supply drive

Format a Volume numbers, you may only
Rename a Volume use a 1 or 2. You en-
Detect Bad Blocks tered an illegal drive
Display Block Alloca- number.

tion
Compare Volumes
Select Configuration

Defaults
Change DOS 3.3 Slot

and Drive
Set Prefix

INVALID PATHNAME Copy Files You used an illegal charac-
Delete Files ter in a pathname. The

262 I ERROR MESSAGES

INVALID SLOT

NAME TOO LONG

NO DATA IN FILE

NO DEVICE CONNECTED

Alter Write-Protec­
tion

Rename Files
List ProDOS Direc-

tory
Set Prefix
Compare Files
Select Configuration

Defaults
Restore Configura-

tion Defaults
Copy a Volume
Format a Volume
Rename a Volume
Detect Bad Blocks
Display Block Alloca-

tion
Compare Volumes
Select Configuration

Defaults
Change DOS 3.3 Slot

and Drive
Set PrefiX
Set Prefix
Transfer (or List) Files

Transfer (or List) Files

Format a Volume
Copy a Vohime
Rename a Volume
Detect Bad Blocks
Display Block Alloca-

tion
Compare Volumes
Select Configuration

Defaults
Restore Configura­

tion Defaults
Change DOS 3.3 Slot

and Drive
Set PrefiX

prefiX may not be set
correctly.

You selected a drive outside
the allowable range of
(1-7).

The name you entered is
longer than 15 charac­
ters.

There is no data in the file
being transferred.

Disk drive is not connected
to the slot specified or is
not turned on.

PRODOS MESSAGES I 263

NO DIRECTORY List Volumes The program did not find
the volume specified.

NO PRINTER CONNECTED List Volumes You directed output to a
Detect Bad Blocks printer, but the printer
Compare Volumes is not connected.
List ProDOS Direc-

tory
NO ROOM ON VOLUME Transfer (or List) Files The volume is full.
NOT A DOS 3.3 VOLUME Transfer (or List) Files The diskette specified with

a slot-drive combination
is not a DOS 3.3 disk-
ette.

NOT A PRODOS DIRECTORY Set PrefiX You did not specify a Pro-
DOS directory.

NOT A PRODOS INTERPRETER Quit You did not enter a SYS-
TEM file name.

NOT A PRODOS VOLUME Rename a Volume You tried to use a Pro-
Display Block Alloca- DOS command with a

tion non-ProDOS diskette.
NOT THE SAME DEVICE TYPE Copy a Volume

Compare Volumes
Select Configuration

Defaults
NOT THE SAME DIRECTORY Rename Files You tried to name or re-

name a file or files into
a new directory.

PATH NOT FOUND Set Prefix The volume was found, but
the subdirectory was not
found.

PATHNAME TOO LONG Transfer (or List) Files Pathname is either longer
Set Prefix than 128 or 64 charac-

ters.
PATHNAMES INDICATE SAME Copy Files Source and destination

FILE pathnames are the same.
PREFIX NOT SET Transfer (or List) Files You did not specify the

proper prefix for the
transfer.

SAME FIXED DISK Copy a Volume You tried to copy a ProFile
Compare Volumes volume onto itself or

compare it with itself.
VOLUME DIRECTORY FULL Copy Files There is no more room in

Make Directory the directory for the
files you want to add.

264 I ERROR MESSAGES

VOLUME FULL

VOLUME NOT FOUND

WILDCARD MUST BE FINAL
NAME

WILDCARD NOT ALLOWED

WILDCARD NOT PROCESSED

WILDCARD USE INCONSIS­
TENT

Make Directory
Copy Files

Applies to almost all
modules.

Transfer (or List) Files

Compare Files
Make Directory
Set Prefix

Rename Files

Copy Files
Rename Files

There is not enough room
left on the diskette for
the directory or file you
want to add.

The program cannot find
the specified volume
name.

You entered a character
after using the wildcard
character.

You used a wildcard char­
acter in a command that
does not allow wild­
cards.

Pathname became too large
when wildcard charac­
ters were substituted.

You did not use the wild­
card in both source and
destination pathnames.

Figure 0.3. FILER and CONVERT error messages.

APPLESOFT II MESSAGES

Applesoft II BASIC error messages are included here because these will also be seen when
developing programs. It is very difficult to separate them and treat them individually, since
both will occur as you develop your programs and program packages. However, your pro­
grams will treat them separately. They are here for your convenience.

Code# Message Possible Causes

0 NEXT WITHOUT FOR Encountered a NEXT without first having
executed a FOR statement.

16 SYNTAX ERROR Instruction constructed incorrectly. Syntax is
incorrect.

22 RETURN WITHOUT GOSUB Encountered a GOSUB without first having
executed a GOSUB statement.

42 OUT OF DATA Attempted to READ beyond the end of
available DATA.

53 ILLEGAL QUANTITY Attempted to store information in an array
beyond DIMension limits.

69 OVERFLOW Number too large to be handled.

77

90

107

120

133

163

176
191

224
254

255

OUT OF MEMORY

UNDEFINED STATEMENT

BAD SUBSCRIPT

REDIMENSIONED ARRAY

DIVISION BY ZERO

TYPE MISMATCH

STRING TOO LONG
FORMULA TOO COMPLEX

UNDEFINED FUNCTION
BAD RESPONSE TO INPUT

STATEMENT
CTRL-C INTERRUPT

ATTEMPTED
CAN'T CONTINUE

ILLEGAL DIRECT
COMMAND

PRODOS MESSAGES I 265

Program and data are too large for the memory
available.

Attempted to execute a statement that does not
exist.

Attempted to reference an element in an array
that does not exist.

Tried to dimension an array for the second
time.

Tried to divide a number by the value of 0 or
variable whose value is 0.

Tried to assign a string to a number or vice
versa.

String length is greater than 255 characters.
Formula involves more than can be handled by

language
Tried to execute a function that does not exist.
Entered the wrong response to the INPUT

statement.
Entered to a CTRL-C to interrupt the currently

executing program.
Program cannot continue because an error has

occurred. Language cannot identify error.
Command cannot be used in the immediate

mode

Figure 0.4. Applesoft II BASIC messages.

APPENDIX E.
MISCELLANEOUS
TOPICS

OVERVIEW

Titles are but nicknames,

and every nickname is a title.

Thomas Paine, 1791

The appendix provides a discussion of a number of miscellaneous topics that didn't seem to fit
neatly elsewhere. There really isn't anything special about these topics, except that they may
come in handy when you write your programs.

The topics covered briefly here are the clock/calendar card, the /RAM capability, and
the ProFile hard disk.

CLOCK/CALENDAR CARD
Pro DOS has the capability of being able to support a clock/calendar card. This capability was
not supported by DOS 3.3 directly. Now ProDOS directly supports a number of clock/calen­
dar cards. In general, the following Applesoft II BASIC code may be used to activate and pre­
sent the time on the video screen. Type in the following:

266

]NEW
)LIST

CLOCK/CALENDAR CARD I 261

100 PRINT PR# 4: IN# 4
110 INPUT "OJo" :T$
120 PR# 0: IN# 0
130 VT AB 2: HT AB 30: PRINT T$
140 END

Lines

Line 100

Line 110

Line 120
Line 130

Line 140

Description

Activate the Clock/Calendar card located in slot 4.
Allow for reading and writing to slot 4.
Input the time.
The OJo character signifies that you are using Applesoft II BASIC.
Notes: (1) The particular brand of clock/calendar card being used here uses the

following special characters to determine the format of the time to be
presented. These are:
"OJo" = Applesoft II BASIC
"&" = 24-hour clock display
"#" = Returns time in numeric format
"> " = Integer BASIC
'' < '' = 24 hour clock display
"," = Interrupt rate is 64 Hz
" " = Interrupt rate is 256 Hz
"I" = Interrupt rate is 2048Hz

(2) Please see your particular owners manual fpr specific code re-
quirements.

Return input and output to the video screen.
Position the cursor and print the time.
Position to line 2 on the video screen.
Move to horizontal position 30 on line 2.
Print the time.
END the program.

With a clock/calendar card installed you are able to time-date stamp a file for every up­
date that is made and when a file is created. ProDOS will JSR= $20 Gump to subroutine) to
memory location 48902 = $BF06 in hexadecimal. That memory location is the entry point to
the DATETIME routine. If there is no routine installed then an RTS = $60 will be stored at
this location.

268 I MISCELLANEOUS TOPICS

If you are using one of the Apple recommended clock/calendar cards, then when Pro­
nos finds the clock, it will set up the routine for you and place the correct jump address into
the routine for you. If you are using some other clock/ calendar card or one of your own mak­
ing, you must write your own routines.

The routine should read the date and time from the card and place it in bytes 49040
through 49043 in the format shown in Figure E.l.

At this point, you have all that is necessary to write your own routine. Just make sure
that the entry point and storage locations are maintained.

/RAM IN THE APPLE

This capability was not supported by DOS 3.3. Now you are able to fully use a 16K add-on
memory in slot 0 of Apple II and Apple II Plus. In addition, you may add an additional64K to
slot 0 for Apple II and Apple II Plus computers or an extended SO-column text card to the aux­
iliary slot of an Apple He.

When you boot up a ProDOS diskette, a check is made to determine the configuration
of your particular system. If a 128K computer system is found, then the additional64K bank
of memory is designated as a RAM disk, /RAM, that is mapped physically as slot 3, drive 2.
The reason for this is because normally an SO-column text card or any SO-column card resides
in slot 3, drive 1. If you intend to use the additional64K for any other purpose than a RAM
diskette, you must be very careful and protect yourself from any possible data destructions.

For example, assume that you save the two high-resolution pages of auxiliary memory
as /RAM/PAGE.l and /RAM/P AGE.2. If this is done as the first two entries in the /RAM
memory disk then PAGE. I will be saved at memory locations $2000 through $3FFF and
PAGE.2 will be saved at $4000 through $5FFF in the auxiliary memory space. These are ac­
tually "dummy" areas to be that you will use later.

However, there is really no specific formula for determining exactly where the blocks of
/RAM will physically reside in the auxiliary memory. In addition, the logical blocks stored are
not necessarily physically contiguous. As a result, there is not any guaranteed way to save
specific fiXed portions of any auxiliary memory space except through the procedure outlined
above.

If you do wish to protect all of auxiliary memory that is not reserved by Apple Com­
puter, Inc., then you will have to disconnect /RAM. In order to do that, there are three areas
of main memory within the ProDOS image system global page that may be affected. These
are:

$BF10-$BF2F
$BF31
$BF32-$BF3F

These locations contain the disk device driver addresses.
This location contains the number of devices minus 1.
These locations contain the list of disk device numbers.

These locations were shown and explained in Chapter 9.
In order to disconnect /RAM, the following steps need to be accomplished:

/RAM IN THE APPLE I 269

49041 = SBF91 49040 = $BF90

7654321076543210

I : : : : : : I ~onl~ I : : ~·< : I Dalu

7654321076543210

49043 = SBF93 49042 = SBF92

Figure E. I. Date and time locations.

1. Check the machine identification byte, $BF98, to determine if you are operating a
128K system.

2. If you have a 128K system, then check:
a) Slot 3, drive 1 vector, $BF16-$BF17, to determine if "No Device Connected".
b) Slot 3, drive 2 vector, $BF26-$BF27, to determine if "No Device Connected".

If true and equal to $DOA2, then /RAM is already disconnected.

3. If you have determined that /RAM is on line, then you are ready to disconnect
/RAM.

a) Retrieve the slot 3 device number. This is found in memory location $BF26-
$BF27 or in the device list bytes starting at location $BF32. You are looking for
a $FF= 255 value. You will want to save this value.

b) Remove the $FF number from the device list.
c) Move any remaining device numbers up in the list.
d) Retrieve the slot 3, drive 2 device driver vector and save it for later re­

installation.
e) Place the "No Device Connected" bytes, $DOA2, in that vector location.
f) Decrement the device number count by one. This is the memory location

$BF31.

/RAM is now disconnected and you are free to use the unreserved areas for your
own use.

If you are going to re-install/RAM, then you will have to essentially reverse the above
procedure. After you have re-installed /RAM you will have to further re-install the /RAM
directory.

270 I MISCELLANEOUS TOPICS

PROFILE HARD DISK STORAGE

With Pro DOS you are now able to use the ProFile hard disk drive from Apple Computer, Inc.
This gives you the ability to store up to an additional 5MB of auxiliary file storage.

One of the major problem areas encountered in providing an easily installed hard disk
was the disparity between storage formats between DOS 3.3 with Applesoft II BASIC and
Pascal with its storage format. ProDOS solves this disparity by making both storage media
formats more consistent.

Therefore, you now have the ability to store Applesoft II BASIC programs, Pascal pro­
grams, binary programs, high-resolution memory pages, text files, Pascal data files, and
other language files and data on the same media. In fact, you may intermix these various file
types on the same directory or subdirectory.

Normally, the default slot for your hard disk is slot 5. This does not mean that it will not
work in any other slot, but slot 5 is the recommended location for the ProFile hard disk.

Once you have your hard disk installed correctly, it may be referred to by slot 5, drive 1
or as the volume directory name, /PROFILE, pathname. With ProDOS, the ProFile may be
addressed like any other disk storage device. Since you have 5 million bytes of storage, it is
strongly recommended that you create a number of subdirectories for the storage of data.

The only real caution when working with ProFile is that you need to power up the Pro­
File first and wait until the READY light bums steady before powering up the rest of your
system. This will take between 20 to 30 seconds before the ProFile is ready.

Once your ProFile is powered up and READY, power up the rest of your system with
the ProDOS operating system. You are now ready to use pathnames to access files stored on
ProFile. All commands and instructions for accessing files will now work correctly.

APPENDIX F.
PROOOS, APPLE Ill,
AND SOS

OVERVIEW

There's no sauce in the world

like hunger.

Cervantes, 1610

This appendix discusses the relationship of ProDOS and SOS, the operating system for the
Apple III. SOS is pronounced "sauce." The abbreviation stands for sophisticated operating
system. This discussion should be helpful to those owning an Apple III, those contemplating
upgrading their system to an Apple Ill, or software developers writing assembly-language
programs for both machines.

PRODOS AND SOS

In Chapter 9 it was explained that blocks 0 and 1 on a ProDOS diskette store the boot code.
This code reads the operating system software and executes that code. What was not men­
tioned was that this boot code will run on either the Apple II computers or an Apple III.

As you power up either an Apple II or an Apple III computer system with a ProDOS
diskette installed, the boot code read into memory and executed is loaded at 2048 = $800.

271

272 I PRODOS, APPLE III, AND SOS

The first item of business for this boot code is to determine whether the software is run­
ning on an Apple II or an Apple III computer system. Once this code makes that determina­
tion, then either:

-PRODOS, for the Apple II family
-SOS KERNEL, for the Apple III computer

will be loaded. If the correct file is not found for the computer being used, an error message is
displayed.

The implication of this is that a single application may be written and placed on a single
diskette that could be run on either computer. This single diskette could then be sold to
owners of either Apple II computers or Apple III computers.

FILE COMPARISONS

ProDOS and SOS use exactly the same directory structure on a diskette. Therefore, every file
on a ProDOS diskette can be read by a SOS program and vice versa.

This means that you would have to use file types that are shared between the two
systems. Look at the file type delineation in Section 3.3. Probably, there are only three file
types that you will absolutely need. These are the directory (DIR), text (TXT), and binary
(BIN). All of these are then able to share data between the two operating systems.

When you come across file types intended for the exclusive use of one particular system,
but encountered on the other system, such as the CATALOG or CAT command, those file
types are displayed with numbers rather than their type abbreviations. The FILER and CON­
VERT programs from Pro DOS will recognize and display the names for all currently defined
file types including SOS file types. Pro DOS will display the file types in hexadecimal notation.

SYSTEM COMPARISONS

The Apple III computers have a great deal more memory available than the Apple II com­
puters. Because of this one overriding reason, the Apple III is able to have a much more com­
plete and powerful operating system (SOS). SOS has very well defined and implemented:

-File Manager
-Device Manager
-Memory Manager
-Interrupt Handler
-Event Handler

ProDOS has the following:

SYSTEM COMPARISONS I 213

-File Manager
-Memory Manager (Simplified)
-Memory Calls

The Apple III operating system has the ability to communicate with all peripheral
devices such as consoles, printers, disk drives, or MODEMs. This is done by using the open,
read, write, and close commands with the appropriate peripheral device. ProDOS only has
the ability to manipulate files. ProDOS communicates with hardware devices through firm­
ware driver code in ROM installed on the interface card in a slot. As it turns out, there is very
little consistency in the way the communications protocols have been implemented.

The calls to Pro DOS that were discussed in Chapter 9 are only a part of the calls that
may be made to SOS. The calls that involve files are essentially the same. However, some of
the differences are:

-ProDOS does not require that you specify the file size when you create the file, SOS does.
-SOS allows you to retrieve the file size in bytes. In Pro DOS you must open the file and then

issue a call in order to retrieve the file size.
-SOS uses a relative positioning in a file. ProDOS uses absolute positioning.

SOS has a very nice memory manager. When more memory is needed, SOS allocates the
memory if more memory is available. When that requested memory is no longer needed, it is
released to be used for the next request.

Pro DOS allocates memory through its own memory manager. It finds memory by look­
ing in the memory bit map. If a particular page is unmarked, then it may be allocated. When
that page is no longer needed, it is released and the memory bit map is reset. In this way, pro­
tected areas of memory may be preserved.

SOS is able to honor interrupts from any device provided that particular device driver is
installed and able to handle interrupts. By the way, the device driver and the interrupt handler
are inseparable. Pro DOS does not have device drivers. Interrupt handling routines must be in­
stalled separately. Further, SOS has an interrupt priority capability for each device in the
system. ProDOS must poll the driver routines one by one until an interrupt is claimed.

APPENDIX G. THE APA PROGRAM

It is one of the beautiful compensations

of this life that no one can sincerely try

to help another without helping himself.

Charles Dudley Warner, 1873

OVERVIEW

The AP A, Applesoft Programmer's Assistant, program is a binary program provided with
your ProDOS diskettes to help you write programs. This program is a greatly expanded
version of the RENUMBER program provided in DOS 3.3.

This appendix outlines the commands available with this program so that you will be
able to take advantage of the program.

STARTING APA

If you have your system already powered up then from the immediate mode type in the
following command with the /EXAMPLES diskette in one of your disk drives.

274

AUTO COMMAND I 215

] - /EXAMPLES/EXTRAS/APA

If your system is not powered up, then power up your system with any startup diskette.
When you have your system up and running, then run the AP A program using the - (DASH)
command.

After APA has been loaded and executed, the following screen will be presented:

APPLESOFT PROGRAMMER'S ASSISTANT
VERSION 1.2
COPYRIGHT APPLE COMPUTER, 1979-83

When you have the Applesoft II BASIC prompt on the screen you are able to use any
of the AP A commands, write a program, run a program, or do anything else you want to
do.

The next sections in this appendix list and explain the AP A commands. The commands
shown are shown in the same format as other commands were shown.

AUTO COMMAND

This command allows you to enter programs faster and easier. It allows you to:

-Specify the starting line number.
-Specify the increment between line numbers.

The form of this command is:

Option

[st]
[,inc]

]AUTO [st] [,inc]

Description

-This option specifies the starting number for code entry in a program.
-This option specifies the increment to be used bet ween line numbers.

When you specify an increment with this command, that increment is activated by
typing a carriage return followed by typing the space bar. For example, enter a line number
followed by the program line. Then press the RETURN key and the space bar. This will
give you the next incremented line number.

If you want a line number not in the increment sequence, just type the number you
want in place of pressing the space bar.

276 I THE APA PROGRAM

Examples of the AUTO Command

Start with line number 100.
Line increment is 10.

AUTO 100
AUTO ,10
AUTO 1000,10 Start with line 1000 and increment by 10.

MANUAL COMMAND

If you want to leave the automatic line numbering mode, just execute the manual capability.
The form of this command is:

I]MANUAL I

All you need to do is type the command and you are returned to entering line numbers
on your own.

RENUMBER COMMAND

This command is for the purpose of renumbering a portion or all of a program.
The form of this command is:

]RENUMBER st,inc,first,last

The RENUMBER capability is probably the most useful and powerful command in
the APA program.

Option Description

st This is the starting line number of the code you want renumbered.
inc This is the increment you want between line numbers.
first This is the first line number of the present code that is to be renumbered.
last This is the last line number of the present code that is to be renumbered.

Notice that there are no options in this command. They are all required in the com­
mand either by specifying them explicitly or by using the default values by using a comma.
If any of the options are left out by using only a comma, then certain defaults are assumed
by the RENUMBER command. These default values are:

starting line number
increment

100
10

first
last

0
63999

MERGE COMMAND I 211

The RENUMBER command will not let you place one line number on top of another
line number within any program.

Examples of the RENUMBER Command

RENUMBER
RENUMBER
RENUMBER
RENUMBER
RENUMBER

3000,10,300,400
30000,,300,400
10,,
,300,

""

HOLD COMMAND

The HOLD command is for the purpose of placing a program in memory on hold above
HIMEM where it cannot be erased by loading another program into memory. In this way
you may load a second program and then merge the two programs.

The form of this command is:

When this command is executed, the message "PROGRAM ON HOLD" is presented
to you on the screen.

MERGE COMMAND

This command is for the purpose of putting two programs or program segments together.
The form of this command is:

The general plan of attack in using this command is the following:

-First, load a program into memory.

]LOAD PROGRAM.!

-Now, place this program on hold.

278 I THE APA PROGRAM

]HOLD

-Next, load a second program into memory.

]LOAD PROGRAM.2

-At this point, you may renumber, edit, or anything else except run the second program.
When you are ready, then merge the two programs.

]MERGE

-At this point, both programs are put together into one program. You can now continue
with the development of the program. By the way, this is exactly the way the XMAS.PROG
in Chapter 10 was built, from numerous general subroutines stored on a subroutine
diskette.

COMPRESS COMMAND

This command is for the purpose of removing embedded remark statements from a
program.

The form of this command is:

']COMPRESS

It is recommended that you save two versions of a program, the original with all of
the remark statements and the compressed version with all of the remark statements re­
moved. Aside: Before compressing a program, make sure your program does not branch to
any statement that starts with REM.

SHOW COMMAND

This command is for the purpose of displaying embedded control characters in a program.
The form of this command is: ·

Any control characters in a program will be displayed in a listing in inverse video.

XREF COMMAND I 219

NOSHOW COMMAND

This command is for the purpose of turning off the SHOW capability. The form of this
command is:

I]NOSHOW I

After using this command, any control characters will once again be invisible.

LENGTH COMMAND

The purpose of this command is to calculate the current length of a program in memory.
The form of this command is:

]LENGTH I

When this command is executed, the length of a program is presented on the video
screen in both decimal and hexadecimal.

XREF COMMAND

This command will produce a cross-reference listing of the variables used in the Applesoft
II BASIC program currently in memory.

The form of this command is:

I]XREF I
Once you execute this command, there will be a delay before you will actually get the

cross-reference listing. The delay depends upon the length of the program in memory. All
variables will be listed in alphabetical order with only the first two characters of the variable
presented.

Type

$
(

There are five kinds of variables identified in the cross-reference listing. These are:

Description

Represents a string variable.
Represents a real variable array.

280 I THE APA PROGRAM

$(
OJo
OJo(

Represents a string variable array.
Represents an integer variable.
Represents an integer variable array.

If your program is very long, then you may interrupt the listing by pressing the CTRL­
S. To resume the listing use the CTRL-S again. The CTRL-S notation means to type the
CTRL key and the S key together.

CONVERT COMMAND

This command is for the purpose of converting a number from one form to another form.
This command converts numbers from decimal notation to hexadecimal notation or vice
versa.

The form of this command is:

]CONVERT

To use this command, use the following procedure:

]CONVERT 255

This will present the conversion on the screen:

255 ($00FF)

In order to convert hexadecimal numbers, type:

]CONVERT $20

This will return on the screen:

32 ($0020)

EXIT COMMAND

This command is for the purpose of exiting from the APA program.
The form of this command is:

EXIT COMMAND I 281

This causes your system to exit from the AP A program and release all of the memory
used by the program. If you want to use any of the AP A commands later you will have to
load and execute the program again.

APPENDIX H.
ASOI CHARACTER CODES

DEC = ASCII decimal code
HEX = ASCII hexadecimal code

CHAR = ASCII character name
n I a not applicable

Apple II Plus and Apple lie

DEC HEX CHAR WHAT TO TYPE

0 00 NULL ctrl@
1 01 SOH CTRLA
2 02 STX CTRLB
3 03 ETX CTRLC
4 04 EOT CTRLD
5 05 ENQ CTRLE
6 06 ACK CTRLF

282

I know sage, wormwood, and

hyssop, but I can't smell

character unless it stinks.

Edward Dahlberg, 1965

Meaning

Null character
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge

ASCll CHARACTER CODES I 283

Apple II Plus and Apple lie

DEC HEX CHAR WHAT TO TYPE

7 07 BEL CTRLG Bell
8 08 BS CTRL H or<-- Back space
9 09 HT CTRLI Horizontal tab

10 OA LF CTRLJ Line feed
11 OB VT CTRLK Vertical tab
12 oc FF CTRLL Form feed
13 OD CR CTRL M or RETURN Carriage return
14 OE so CTRLN Shift out
15 OF SI CTRLO Shift in
16 10 DLE CTRLP Data link escape
17 11 DCI CTRLP Device control 1
18 12 DC2 CTRLR Device control 2
19 13 DC3 CTRLS Device control 3
20 14 DC4 CTRLT Device control 4
21 15 NAK CTRL U or--> Negative acknowledgment
22 16 SYN CTRLV Synchronous idle
23 17 ETB CTRLW End of transmission block
24 18 CAN CTRLX Cancel
25 19 EM CTRLY End of medium
26 lA SUB CTRLZ Substitute
27 IB ESC ESCAPE Escape
28 IC FS n/a File separator
29 ID GS CTRL-SHIFT -M Apple II+ Group separator
30 IE RS CTRL" Record separator
31 IF us n/a Unit separator
32 20 SPACE
33 21
34 22 " "
35 23 # #
36 24 $ $
37 25 OJo 0/o
38 26 & &
39 27

,. ,.

40 28 ((
41 29))
42 2A • •
43 2B + +
44 2C
45 2D
46 2E

284 I ASCII CHARACI"ER CODES

Apple II Plus and Apple He

DEC HEX CHAR WHAT TO TYPE

47 2F I I
48 30 0 0
49 31 I 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5
54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A
59 3B
60 3C < <
61 30 =
62 3E > >
63 3F ? ?
64 40 @ @
65 41 A A
66 42 B B
67 43 c c
68 44 D D
69 45 E E
70 46 F F
71 47 G G
72 48 H H
73 49 I I
74 4A J J
75 4B K K
76 4C L L
77 40 M M
78 4E N N
79 4F 0 0
80 50 p p
81 51 Q Q
82 52 R R
83 53 s s
84 54 T T
85 55 u u
86 56 v v
87 57 w w

ASCII CHARACTER CODES I 285

88 58 X X
89 59 y y
90 ~A z z
91 5B [[Apple lie only
92 5C Apple lie only
93 50] Shift M Apple II +
94 SE
95 SF _ n/a Apple II+

Apple lie only

DEC HEX CHAR WHAT TO TYPE

96 60
97 61 a a
98 62 b b
99 63 c c

100 64 d d
101 65 e e
102 66 f f
103 67 g g
104 68 h h
105 69
106 6A j j
107 6B k k
108 6C l 1
109 60 m m
110 6E n n
111 6F 0 0

112 70 p p
113 71 q q
114 72 r r
115 73 s s
116 74 t t
117 75 u u
118 76 v v
119 77 w w

120 78 X X

121 79 y y
122 7A z z
123 7B
124 7C
125 70
126 7E
127 7F DEL DEL

APPENDIX I. DEOMAL TO
HEXADEOMAL CONVERSIONS

A wise man changes his mind,

a fool never will.

Spanish Proverb

The top row represents the decimal digits from 0 through 9 with a unit's value.
The left column of numbers represents the decimal digits zero through 25 with a tO's

value.

286

DECIMAL TO HEXADECIMAL CONVERSIONS I 281

0 1 2 3 4 5 6 7 8 9

0 00 01 02 03 04 05 06 07 08 09
1 OA OB oc OD OE OF 10 11 12 13
2 14 15 16 17 18 19 lA lB lC lD
3 IE IF 20 21 22 23 24 25 26 27
4 28 29 2A 2B 2C 2D 2E 2F 30 31
5 32 33 34 35 36 37 38 39 3A 3B
6 3C 3D 3E 3F 40 41 42 43 44 45
7 46 47 48 49 4A 4B 4C 4D 4E 4F
8 50 51 52 53 54 55 56 57 58 59
9 SA SB sc SD SE SF 60 61 62 63

10 64 65 66 67 68 69 6A 6B 6C 6D
11 6E 6F 70 71 72 73 74 75 76 77
12 78 79 7A 7B 7C 7D 7E 7F 80 81
13 82 83 84 85 86 87 88 89 SA SB
14 sc SD SE SF 90 91 92 93 94 95
15 96 97 98 99 9A 9B 9C 9D 9E 9F
16 AO AI A2 A3 A4 AS A6 A7 AS A9
17 AA AB AC AD AE AF BO B1 B2 B3
18 B4 BS B6 B7 BS B9 BA BB BC BD
19 BE BF co Cl C2 C3 C4 C5 C6 C7
20 cs C9 CA CB cc CD CE CF DO Dl
21 D2 D3 D4 DS D6 07 DS 09 DA DB
22 DC DD DE DF EO El E2 E3 E4 ES
23 E6 E7 ES E9 EA EB EC ED EE EF
24 FO Fl F2 F3 F4 FS F6 F7 FS F9
25 FA FB FC FD FE FF 100

This means that the hexadecimal equivalent of the decimal value of 32 can be found in
the fourth row, 3 x 10 = 30, plus the third column, 2 x 1 = 2. This is a 32 decimal, which
equals a $20 hexadecimal.

BIBLIOGRAPHY

A sick man that gets talking about himself,

a woman that gets talking about her baby,

and an author that begins reading out of

his own book never knows when to stop.

Oliver Wendell Holmes, 1872

A

Ahl, David H., 101 Basic Computer Programs (Digital Equipment Corporation, 1974).

Apple Computer, Inc. Publications (Apple Computer, Inc., 1977-1981).
Apple II Monitors Peeled D2L0013
Apple II Reference Manual A2L0001A
Applesoft II Manual A2L0006
Autostart ROM A2L0022
Programmer's Aid A2L0011
The Applesoft Tutorial A2L0018
Parallel Printer Manual A2L0004
Apple II Basic Manual A2L0005
Communications Manual A2L0007
The DOS Manual (DOS 3.2) A2L0012
The DOS Manual (DOS 3.3) A2L0036
Si/entype Printer Manual A2L0034

288

Graphics Tablet Manual
Apple 6502 Assembler/Editor
Applesoft Tool Kit
Apple lie Owner's Manual
Apple lie Applesoft Tutorial
Applesoft Reference Manual

Volume 1
Volume 2

Apple lie 80-column Text Card
ProDOS USER'S Manual
ProDOS Technical Reference Manual
Basic Programming with ProDOS

Apple Orchard (Dilithium Press, 1981).

A2L0033
A2L0039
A2L0038
A2L2001
A2L2003

A2L2005
A2L2005
A2L2006

A2L2015

Artwick, Bruce, Microcomputer Interfacing (Prentice-Hall, Inc. 1980).

B

BIBLIOGRAPHY I 289

Blackwood, Brian D. and Blackwood, George H., Applesoft Language (Howard Sams & Co., Inc.
1981).

Bryan, Paul, Programming Your Apple II Computer (Tab Books, Inc. 1982).

BYTE Magazine (Various Issues)

c

CALL A.P.P.L.E. Magazine

Campbell, J. L. and Zimmerman, Lance, PROGRAMMING the APPLE: A Structured Approach
(Robert J. Brady Co., 1982).

Campbell, J. L., Tips and Techniques for the Apple II Plus/Apple Ile (Robert J. Brady Co., 1984).

Carnahan, Luther and Wilkes, Applied Numerical Methods (John Wiley & Sons, 1969).

Coan, James S., Advanced Basic (Hayden Book Company, Inc. 1977).

Coan, James S., Basic Basic (Hayden Book Company, Inc. 1978).

Conte & DeBoor, Elementary Numerical Analysis: An Algorithmic Approach (McGraw-Hill Book
Company, 1965).

Conway, Richard and Gries, David, An Introduction to Programming (Winthrop Publishers, Inc. 1975).

D

Donovan, John J., Systems Programming (McGraw-Hill publishers, 1972).

Dyckman, Thomas R. and Thomas, Joseph L., Algebra and Calculus/or Business (Prentice-Hall, Inc.,
1974).

E

Espinoza, Christopher, Apple II Reference Manual (Apple Computer, Inc., 1979).

290 I BIBLIOGRAPHY

F

Findley, Robert, 6502 Software Cookbook (Scelbi Publications, 1979).

Finkel, LeRoy and Brown, Jerald R., Apple BASIC: Data File Programming (John Wiley & Sons, Inc.,
1982).

G

Gilder, Jules, Basic Computer Programs in Science and Engineering (Hayden Book Company, 1980).

Gildersleeve, Thomas R., Organizing and Documenting Data Processing Information (Hayden Book
Company, 1977).

Goldsmith, W. B., Jr., BASIC Programs/or Home Financial Management (Prentice-Hall, Inc., 1981).

Grillo, John P ., Introduction to Graphics (William C. Brown Publishers, 1981).

H

Hornbeck, R. W., Numerical Methods (Quantum Publishers, Inc., 1975).

Hyde, Randy, Using 6502 Assembly Language (DATAMOST Inc., 1981).

I

Inman, Don and Inman, Kurt, Apple Machine Language (Reston Publishing Company, Inc., 1981).

Interface Age Magazine (Various Issues).

K

Kemeny, J. G. and Kurtz, T. E., BASIC Programming (John Wiley & Sons, Inc., 1980).

Ketter & Prawel, Modern Methods of Engineering Computation (McGraw-Hill Book Company, 1969).

KILOBAUD Magazine (Various Issues).

Knuth, Donald E., The Art of Computer Programming, Vol. 1 (Addison Wesley, 1968).

Knuth, Donald E., The Art of Computer Programming, Vol. 2 (Addison Wesley, 1969).

Knuth, Donald E., The Art of Computer Programming, Vol. 3 (Addison Wesley, 1973).

L

Lien, David A., The Basic Handbook (COMPUSOFT PUBLISHING, 1979).

Luebbert, William F., What's Where in the APPLE? (MICRO INK, Inc., 1981).

M

McGowan, Cement L. and Kelly, John R., Top-Down Structured Programming Techniques (Petro­
celli/ Charter Publishing, 1976).

MICRO Magazine (Various Issues).

BIBLIOGRAPHY I 291

N

Nagrin, Paul and Ledgard, Henry F., BASIC with Style (Hayden Book Company, Inc., 1978).

Nazem, S. G., The Folks Who Brought You Apple, (FORTUNE Magazine, January 1981).

NIBBLE Magazine (Various Issues).

p

PEEKing at Call A.P.P.L.E. (Apple Pugetsound Library Exchange, 1979).

PEELINGS Magazine (Various Issues).

Perles, Benjamin and Sullivan, Charles, Modern Business Statistics (Prentice-Hall, Inc.).

Personal Computing Magazine (Various Issues).

Pooch, Udo W. and Chattergy, Rahul, Designing Microcomputer Systems (Hayden Book Company,
Inc., 1979).

Poole, Lon and Borchers, Mary, Some Common Basic Programs (OSBORNE/McGraw-Hill, 1979).

Poole, Lon and McNiff, Martin, and Cook, Steven, Apple II User's Guide (OSBORNE/McGraw-Hill,
1981).

R

Raskin, Jeff, Apple II Basic Programming Manual (Apple Computer, Inc., 1978).

Richardson, Caryl, The Applesoft Tutorial (Apple Computer, Inc., 1979).

s

Simon, David E., BASIC from the Ground Up (Hayden Book Company, 1978).

Sippi, Charles J., Microcomputer Dictionary and Guide (MATRIX Publishers Inc., 1976).

Spencer, Donald D., Game Playing with BASIC (Hayden Book Company, Inc., 1975).

Stanton, Jeffrey, Apple Graphics & Arcade Game Design (The Book Co., 1982).

Sternberg, Charles D., BASIC Computer Programs for the Home (Hayden Book Company, Inc., 1980).

Sternberg, Charles D., BASIC Computer Programs for Business (Hayden Book Company, 1980).

w

Wadsworth, Nat, Introduction to Low Resolution GRAPHICS (Scelbi Publications, 1979).

Wadsworth, Nat, Graphics Cookbook for the Apple Computer (Scelbi Publications, 1980).

Wagner, Roger, Assembly Lines: The Book (A SOFTALK BOOK, 1982).

Weston, J. F., Managerial Finance (The Dryden Press, 1972).

Worth, Don and Lechner, Pieter, Beneath Apple DOS (Quality Software, 1981).

GLOSSARY

access time. The time required to locate and read
or write data on a direct access storage device,
such as the disk drive.

acoustic coupler. Hardware designed to connect a
telephone handset to a computer system.

address. 1. A numeric location of data, usually in
memory. This is normally expressed as a hex­
adecimal number. 2. A diskette address is ·
normally expressed in terms of the track and sec­
tor numbers.

algorithm. A prescribed set of rules or processes
for the solution of a problem in a finite number
of steps.

alphanumeric. A term that refers to the class of
characters that includes all of the characters of
the alphabet and arabic numerals.

Apple De. A personal computer in the Apple II
family, manufactured and sold by Apple Com­
puter, Inc.

292

Words in their primary or immediate

signification, stand for nothing but the

ideas in the mind of who uses them.

John Locke, 1690

Applesoft II BASIC. An extended version of the
BASIC programming language used with the
Apple II Plus or Apple lie computer. An inter­
preter for creating and executing programs.

AND. The logical operator that describes the in­
clusive set.

APPEND. Attach to the end of. The APPEND
command is used to write new data to the end of
an existing file.

argument. An independent variable.
array. An orderly arrangement of storage ele­

ments having both dimension and value.
ASCII. An acronym for the American Standard

Code for Information Interchange. This is nor­
mally the hexadecimal-to-character conversion
code.

assembly language. This refers to a language that
uses mnemonic symbols that relate on a nearly
one-to-one correlation to the native symbols of
the individual computer.

asynchronous. Signals or device actions that are
not synchronized to a master clock frequency.

auxiliary slot. The special expansion slot inside
the Apple lie used for the 80-column card and
the memory extension.

back up. Make a copy of a program, data, or
diskette.

BASIC. Beginners All-purpose Symbolic Instruc­
tion Code. A common, high-level programming
language. It was developed by Kurtz and
Kemeny at Dartmouth College in 1963 and has
become the most popular microcomputer
language.

binary. The represenation of numbers in terms of
powers of two. A term used to describe the base
two number system.

binary file. 1. A file whose data is to be inter­
preted in its binary form. l. A file of the BIN
type.

bit. A binary digit in the binary number system.
This is the smallest possible unit of information
consisting of a simple two-way choice.

BLOAD. Binary load.
block. S 12 bytes of data. This is the unit of storage

used by ProDOS.
BLOCKS. When you use the CAT or CATALOG

command, the column on the screen labeled
BLOCKS lists the number of blocks of disk
space occupied by the file in that directory.

boot. The process of getting a computer system
powered up and running.

boot disk. A disk that contains all of the informa­
tion needed to get the computer system running.

BPS. Bits Per Second. A common measure of the
rate of flow of information between digital
systems.

branch. This refers to a departure from the nor­
mal sequential order of processing.

BRUN. Binary run. The BRUN command causes
a binary program to be loaded into memory and
run.

BSA VE. Binary save. The BSA VE command
causes the binary data in some portion of
memory to be saved as a disk file.

buffer. An area in memory that stores data tem­
porarily.

293

bug. A man-made error in hardware or software.
An error in a program that causes the program
not to work as intended.

byte. That 8-bit unit of data or information con­
sidered a word in microcomputers. This is the
smallest unit of information in memory that
may be addressed.

caD. A BASIC instruction on the Apple II Plus or
Apple lie that invokes a machine-language
subroutine.

CAT. This command causes a list of the names
and characteristics of all files in a directory to be
displayed.

CATALOG. A list of all files stored on a diskette.
See CAT.

CHAIN. The CHAIN command runs a BASIC
program without first erasing the variables in
memory.

character. Any symbol that has meaning to peo­
ple. Normally thought of as being one of the
ASCII set of characters.

checksum. A character residing at the end of a
data block. Used for error checking.

clock. The most basic source of synchronizing
signals in electronic equipment. The generator
of periodic electrical pulses that control the tim­
ing of switching circuits in microprocessors.

CLOSE. This command is issued when you have
finished using a file.

code. 1. A method of representing something in
terms of something else; e.g., the code used to
program in the BASIC language. 2. Anum­
ber or symbol used to represent some piece of in­
formation in a compact or easily processed
form. 3. The statements or instructions mak­
ing up a program.

coding. The conversion of flowcharts into a par­
ticular computer language.

command. 1. The portion of an instruction that
specifies the operation to be performed. l. A
communication from the user to a computer
system directing it to perform some immediate
action.

compiler. A program that translates a high-level
language into machine-readable code.

computer. 1. That arrangement of electronic
elements necessary to solve problems. l. An

294 I GLOSSARY

electronic device for performing predefmed
computations at high speed and with great ac­
curacy.

constant. A data item that remains unchanged
during the running of a program.

CPU. Central Processing Unit.
CREATE. This command creates a new flle. It

places a new file of a designated type into a
designated directory.

CRT. Cathode Ray Tube.
cursor. 1. A marker or symbol that delineates

where the next action will take place. 1. The
blinking square of white on a black screen when
in the NORMAL mode on an Apple II Plus.
3. The blinking checkerboard square of white
on a black screen on an Apple lie.

DASH(-). This command runs a basic, machine
language, EXEC, or interpreter program.

data. A general term that is used to denote any or
all information, facts, numbers, letters, or sym­
bols, which can be processed or produced by a
computer.

DCT. Device Characteristics Table; describes the
hardware characteristics of the disk drive.

debug. To detect, locate, and correct errors in a
program.

decision. The operation performed by the com­
puter that enables it to choose between alter­
natives.

decrement: The fixed amount that is subtracted
from another quantity.

DELETE. The command that removes a flle from
its directory.

delimiters. Characters that limit the size, range, or
limits of some physical or logical element of a
computer system.

directory file. A file that contains the names and
locations on the disk of other flies.

disk. Name of a magnetic storage peripheral
device.

diskette. Magnetic storage media of varying size
used with disk drives.

DMA. Direct Memory Access. The procedure of
bypassing the CPU and moving data directly to
or from memory.

documentation. The written explanation of a pro­
gram.

driver. The program or program segment that
controls the execution of other program
modules.

ENDFILE. End of flle.
EOF. End Of File.
EPROM. Electrically Programmable Read Only

Memory.
error. A mistake.
EXEC. This command causes input to be taken

from a sequential text me rather than from the
keyboard.

execution time. Time required by a micro­
processor to execute an instruction in a high­
level language, a program, or a machine
language instruction.

field. In a me, a string of characters preceded by a
carriage return character and terminated by a
carriage return character.

file. A named collection of data or a program nor­
mally stored on a mass media, usually a disk
drive.

file name. The name that identifies a file.
file type. The type of data that is stored in the file.
firmware. Programs stored in a ROM chip or

chips.
flag. Information that indicates whether a par­

ticular condition is present or not. See switch.
FLUSH. Send unwritten data to its me.
format. 1. A predetermined arrangement of

data. 1. The form in which information is
organized or presented. 3. To prepare a blank
diskette to receive information by dividing its
surface into tracks and sectors.

full duplex. The ability to communicate in two
directions simultaneously.

graphics. 1. A system that displays characters or
figures in some form on a display tube. 1. In­
formation presented in the form of pictures or
images. 3. The display of pictures or images
on a computer display screen.

half duplex. Bidirectional communications in
which data flows in one direction only at any
one time.

handshake. Exchange of predetermined signals
when a connection is established between two
data set devices.

hard copy. Typewritten or printed characters pro­
duced on paper by a computer.

hardware. The metallic, plastic, or other "hard"
components of a computer system.

HELPSCREENS. A file, stored on the
/PRODOS diskette, which contains all of the
help screens.

hertz. A unit of frequency equal to one cycle per
second.

hexadecimal. A numbering system that is based
on the powers, radix, of 16. It uses the symbols
0-9 and A-F.

high-level language. A problem-oriented pro­
gramming language (e.g., BASIC), closely
related to a natural language such as English,
that does not reflect the nature of machine
language.

high order. The most significant bit in a byte or
the most significant byte in a word.

HLL. High-Level Language.

IN#. This command designates the source of
subsequent input characters.

increment. The fiXed amount that is added to
another quantity.

input. 1. A device used for bringing data into
another device. 2. In the English language,
the "input" may be used as a noun instead of
"input data," "input signal," etc., when the
usage is clear. 3. In a computer language, "in­
put'' refers to the command for the collection of
data from some input device.

instruction. The statement written to the com­
puter.

integer. A number that does not have a decimal
point.

integration. In computer terminology, the ac­
cumulation of a large number of circuits (say
1,000 or more) on a single chip or substrate.

interactive. The condition in which the operator
and the computer are in direct communication
during the execution of a program.

interface. 1. The common boundary that
matches adjacent components in a computer
system. 2. The devices, rules, or conventions

295

by which one component of a system com­
municates with another.

interpreter. A program that operates directly on a
source program in memory. The interpreter
translates the instructions of the source program
one by one and executes them immediately.

jump. Analogous to the GOTO statement in an
HLL. Perform a hard branch.

K. Abbreviation for kilo.
kilo. In engineering, 1 ,000. In computer ter­

minology, 1024.
kilobyte. 1024 bytes.

language. The set of rules or conventions required
to write computer programs.

language card. An Apple computer interface card
which, when placed in slot zero of an Apple II or
Apple II Plus with 48K memory, adds 16K more
memory to the computer.

Hne number. The positive integer that will begin
each BASIC program statement.

link. An address pointer as an element of a linked
list of data.

list. A one-dimensional sequential array of data
items.

Hteral. The sequence of characters enclosed
within quotation marks. See string.

LOAD. This command brings a BASIC program
into memory from a file.

LOCK. This command protects a file from being
accidentally renamed, deleted, or altered.

logic. In a computer program, the systematic
scheme that defines the interactions of various
components of a computer program.

loop. A sequence of instructions cyclically
repeated a number of times. This is normally a
construction in code.

lsb. Least significant bit.
LSB. Least Significant Byte.
LSI. Large-Scale Integration, a component den­

sity of more than 100 per chip.

M. Mega or million.
machine language interface. The set of machine

language routines, stored in the file named

296 I GLOSSARY

/PRODOS, with which ProDOS talks to disk
drives.

memory. 1. One of the basic components of a
computer. 2. The main storage unit of the com­

puter system.
menu. 1. A table of items from which selections

are made that determine the order of execution
of program components. 2. A list of choices
presented by a program.

micro. A small, usually 8-bit machine. Slang
for microcomputer.

microcomputer. Complete computer of the micro
size.

microprocessor. CPU built into chips by means of
LSI technology.

MODEM. MODulator-DEModulator.
module. A section of code that performs only a

single function or set of functions.
monitor. 1. A CRT that does not contain an RF

section. 2. A machine language program that
resides in memory and performs basic func­
tions.

motherboard. Name for the main board on the
Apple.

msb. Most significant bit.
MSB. Most Significant Byte.

NAME. When a catalog of files is displayed on
the screen, the NAME column contains the
names of the files in the listed directory.

NMOS. N-channel MOS circuit.
numeric. A data type that is numeric in nature.

Refers to numbers.
Nybble. Name given to one-half of a byte.

OPEN. This command allocates space in memory
for a ftle's buffers, and sets the me position
pointer to the beginning of the file.

operand. This is a data item on which some opera­
tion is performed.

operating system. A machine language program
that manages a multiplicity of functions in a
computer system, including peripherals.

operator. 1. The action taken upon an operand.
2. The person operating the computer.

option. An item in the syntax of a Pro DOS com­
mand that determines a single aspect of the com­
puter's action.

OR. A logical operator.
output. 1. The display of the final computer solu­

tion on some visual display; e.g., CRT or
printer. 2. Information transferred from a
computer to some external destination.

page. A group of 256 bytes of memory that shares
the same high order address byte.

pagination. Page numbering and page formatting
in a report.

parallel. The simultaneous transmission of,
storage of, or logical operation on, a word in the
computer memory.

parameter. Variable that can take the place of one
or more other variables in mathematics.

parity. The odd-even characteristic of l's in a
byte. This scheme allows for the detection of er­
rors.

parse. To take apart and analyze a word,
sentence, instruction, etc.

pathname. A series of file names, preceded and
separated by slashes, that indicates the entire
path from the volume directory to the file.

peripheral. Auxiliary equipment used in the com­
puter system that is external to the computer
itself.

pixel. The smallest addressable picture element
that may be displayed on a video screen.

pointer. An address or number of a block of data.
The address "points" to the data.

POSITION. This command causes a specified
number of fields to be read and discarded from
an open file.

PR#. This command sends output to the slot
specified.

prefax. A settable pathname that indicates a direc­
tory file.

/PRODOS. The volume name of the disk that
contains the ProDOS program.

Pro DOS command. Any one of the 28 commands
recognized by ProDOS.

program. 1. The set of statements or instructions
that tells the computer how to solve a particular
problem. The program MUST be stored in
memory. 2. A set of instructions describing
the actions for a computer to perform.

PROM. Programmable Read Only Memory.

prompt. An output string that lets the operator
know what is required. A character that informs
the operator that some input is required.

RAM. Random Access Memory. Access time is
time independent of the physical location of
memory accessed.

/RAM. The volume name of a small volume
automatically placed by ProDOS in the alter­
nate 64K of an Apple lie when the SO-column
extended text card is installed.

READ. This command, when used with the
OPEN command, prepares a file to be read.

record. A collection of associated data items or
fields.

register. Fast temporary-storage locations, usu­
ally inside the microprocessor itself.

RENAME. This command allows you to change
the name in the file.

resolution. Refers to the size of a picture element
(pixel) displayed on a video screen.

RESTORE. This command clears the BASIC
variables currently in memory, and it then reads
in a new set of variables from a variable file.

ROM. Read Only Memory. This information
may be accessed by the microprocessor, but may
not be changed.

RUN. 1. Toexecuteaprogram. 2. Toloadand
execute a program from some external device.

RWTS. Read/Write/Track/Sector. A collection
of subroutines that allows access to the diskette
at the track/sector level.

SAVE. This command lets you save the BASIC
currently in memory.

scroll. The act of moving the text display, usually
upward, to make room for information to be
displayed on the screen.

sector. The smallest addressable unit on a diskette
track that may be changed.

semantic. The meaning of an instruction.
serial. The time-sequential transmission of,

storage of, or logical operations on, a word in a
computer.

sequential. A mode of data retrieval in which each
data element is read in exactly the same order in
which it was written.

297

simplex. Ability to communicate in one direction
only.

software. The programs, languages, and operat­
ing procedures of a computer system.

source code. A program that is in a form that is
understandable to humans.

statement. Instructions entered into the computer
memory. In BASIC, they are numbered.

STORE. This command causes the BASIC vari­
ables currently in memory to be stored in a
variable file on the diskette.

string. A group of characters that make up a
single unit.

subroutine. A series of computer instructions that
may be branched to, executed, and know where
to return upon completion.

switch. Information that is either on (set) or off
(reset). A switch has only two allowable states.
See flag.

syntax. The correctness of the written instruction.
system. A file with a name of the form XXX.SYS­

TEM must be in the volume directory of every
boot diskette.

table. An orderly arrangement of data, usually in
two dimensions.

text file. A file whose contents are interpreted as
characters encoded using the ASCII format.

trap. To catch potential errors, usually done using
error handling routines.

TYPE. In a catalog, the column with this heading
names the type of each flle listed.

unlock. This command reverses the effect of the
LOCK command.

/UTILITIES. This disk contains utilities pro­
grams for your use.

variable. A symbolic quantity that can assume
any of a given set of values. Provides storage in
memory for either numbers or strings.

vector. A one dimensional array of numbers or
characters. A collection of pointers.

volume. A source or destination of information.

word. That group of characters in memory, op­
erated on by the computer. In the case of
microcomputers, this is usually a byte.

298 I GLOSSARY

WRITE. This command, when used after an
OPEN command, prepares a file to be written
to.

zero page. The first 256 memory locations in a
6502 processor. This area has the address range
of $0000-$00FF.

INDEX

ALLOC INTERRUPT call, for MLI 173, 174
ALTER WRITE-PROTECTION 121
APA program commands 274-281

AUTO 275
COMPRESS 278
CONVERT 280
EXIT 280-281
HOLD 277
LENGTH 279
MANUAL 276
MERGE 277-278
NOSHOW 279
RENUMBER 276-277
SHOW 278
XREF 279-280

APPEND command 64, 76-77, 81, 238, 254
used with random-access file 81, 93-94
used with sequential-access file 64, 76-77

Apple II computers, operating systems for 230
Applesoft Programmer's Assistant. See AP A

program
Applesoft II BASIC 5, 182
ASCII character codes 282-285

AUTO command 275-276
AUTOSTART 4
AUTOSTART ROM chip program 28

BASIC. SYSTEM program 27, 29
Binary addresses 98
Binary disk file 102
Binary files 96-1 OS

addresses 98
command options 98

Binary program 96
BLOAD command 97, 99-101, 239, 255
Block 126
BLOCK ALLOCATION 132
Block File Manager (BFM) 152-153
BNE 152
Boot 8
BRUN command 97, 102-103, 239, 255
BSAVE command 97, 101-102, 239, 255
BSC 152

Carriage return character 65, 66, 74, 75
CAT command 26, 32-34, 47-49, 233, 251

299

300 I INDEX

CATALOG command 26, 32-34, 47-49, 233,
251

CHAIN command 57, 235, 252
Clock/ calendar card 266-268
CLOSE command 237, 254

for MLI 167
used with random-access file 81, 89, 92
used with sequential-access file 64, 76

CNUM 152
Commands, APA program 274-280
Commands, DOS 3.3 not supported by

ProDOS 231
Commands, ProDOS

APPEND 64, 76-77, 81, 93-94, 238, 254
BLOAD 97, 99-101, 239, 255
BRUN 97, 102-103, 239, 255
BSAVE 97, 101-102, 239, 255
CAT 26, 32-34, 47-48, 233, 251
CATALOG 26, 32-34, 47-49, 233, 251
CHAIN 57, 235, 252
CLOSE 64, 70, 81, 89, 92, 167, 237, 254
CREATE 46, 47, 52-54, 154-155, 234, 252
DELETE 55, 81, 93, 234, 252
EXEC 107, 110-111, 240, 255
FLUSH 65, 77-78, 81, 89, 238, 255
HELP 21-22, 231, 250
IN# 60-61, 97, 103-104, 236, 253
LOAD 26, 42-43, 232, 251
LOCK 55-57, 234, 252
NOHELP 22, 232, 250-251
OPEN 64, 72-74, 89-90, 161-164, 236, 253
POSITION 65, 78, 238, 255
PR# 59-60, 97, 103-104, 235, 253
PREFIX 37-39, 47, 49-52, 233, 251-252
READ 64, 74-75, 81, 90-91, 165-166, 237,

254
RENAME 54-55, 156, 234, 252
RESTORE 57-59, 235, 253
RUN 26, 40-42, 232, 251
SAVE 26, 43, 233
STORE 57, 58, 234, 252
UNLOCK 55-57, 234, 252
WRITE 64, 75, 81, 91-92, 237, 254

COMPARE FILES 121
COMPARE VOLUMES 133-134
COMPRESS command 278
CONVERT command 280
CONVERT program 23, 112-115, 136-140

keystrokes for 113-114
uses 136-139

COPY FILES 119-120

COPY A VOLUME 127-128
CREATE command 46, 47, 52-54, 234, 252

for MLI 154-155
Creation program 64

- (DASH) command 8-9, 39-40
used for binary program 96

DB 152
DEALLOC INTERRUPT call, for

MLI 173-174
Debugging phase 183-184
Decimal-hexadecimal conversions 286-287
DELETE command 55, 81, 234, 252

used with random-access file 93
Delimiters 11
Designing a program 181-185

confirming correctness 183-185
defining problem 182
describing solution 183
documenting solution 184-185
finding program and language to be

used 183
requirements 182-183
sample program 201-227

DESTROY call, for MLI 155-156
DETECT BAD BLOCKS 130-132
Directory files 31-36

and CREATE command 52-54
Disk drive 27
Diskette 1

determining which operating system to
use 230-231

DOS 3.3/ProDOS formats 23, 230-231
DOS 3.3, comparisons to ProDOS 23,

229-240
Drive number 17
ow 152

Error codes, from MLI calls 176-177
Error messages 256-265

Applesoft II 264-265
determining the error 257
FILER and CONVERT 259-264
ProDOS 257-258

Escape key 11
/EXAMPLES diskette 6-8
EXEC command 107, 110-111, 240, 255

transformation of Applesoft II BASIC
program to text file by use of 111

Executive files 107-111
demonstration 108-109

Executive files (Contd.)
EXEC command 110-111

EXERCISER program 153, 156, 157, 158,
161, 163

EXIT command 280-281

Field 65, 66, 69, 86
File 25, 30-38, 194

changing name of. See RENAME command
and CREATE command 52-54
defined 30
directory 31-35
removing from disk. See DELETE command

FILER program 8-13, 14
FLUSH command 65, 77-78, 81, 238, 255

for MLI 167-168
used with random-access file 81, 89, 94
used with sequential-access file 65, 77-78

FORMAT A VOLUME 125-127

General memory map 248-249
GET BUF call, for MLI 171, 172, 173
GET EOF call, for MLI 170-171
GET FILE INFO call, for MLI 158
GET MARK call, for MLI 168, 169, 170
GET PREFIX call, for MLI 161
GET TIME call, for MLI 172
Global variables 146

HELP command 21-22, 231, 250
Hexadecimal conversions 286-287

notation 18
HOLD command 277

IN# command 60-61, 236, 253
used with binary file 97, 103-104

Intelligent RUN command. See - (DASH)
command

1/0 from programs 57-61

JSR 152

Kernel functions 4-5

LENGTH command 279
Linked list storage file 155
LIST PRODOS DIRECTORY 117-118
LIST VOLUMES 128-129
LOAD command 26,42-43, 232, 251
LOCK command 55-57, 234, 252

INDEX I 301

Machine-code routines, installation 100-101
Machine Language Interface (MLI) 27,

141-178
direct access calls 174-176
error codes 176-177
filing calls 163-173
housekeeping calls 154-162
issuing calls 152-176
memory maps 143-152
memory usage 142-152
system calls 173-174
writing a system program 177-178

MAKE DIRECTORY 121-122
MANUAL command 276
Memory, in Apple II computer 27
Memory locations in ProDOS MLI 143-152
Memory map. See ProDOS 1.0 memory map;

General memory map
Menu, advantages 185
MERGE command 277-278
MLI. See Machine Language Interface
MONITOR 4
Monitor, getting into 104-105
MUFFIN program 23

NEWLINE call, for MLI 164-165
NOHELP command 22, 232, 250-251
NOSHOW command 279
NUMBER FILER subroutine 191-193
Numeric variable 69

ON LINE call, for MLI 160-161
OPEN command 236, 253

for MLI 163-164
used with random-access files 89-90
used with sequential-access files 64, 72-74

Output program 64

Partial pathname. See PREFIX command
Pathname 17, 36-38, 194

slot-drive summary 44
Pathname determination subroutines 194-196
PLIST 152
POSITION command 65, 78, 238, 255
PR# command 59-60, 235, 253

used with binary file 97, 103-104
PREFIX command 37-39, 47, 49-52, 233,

251-252
PRINT command 77
Print to screen subroutine 196
Processing program 64

302 I INDEX

ProDOS 141
capabilities 26-27
commands 16-18, 39-43, 46-61, 231-240,

250-255
DOS 3.3 23, 229-240
files 25, J0-38
introduction to 3-13
programming with 177-178, 180-227
and SOS 271-273
starting up system with 18-21

ProDOS diskettes
copying 13-1 5
EXAMPLES 6-8, 14
PRODOS 6-8, 14

PRODOS/EXERCISER command 153-162
PRODOS file 27
ProDOS file name 30-31
PRODOS/FILER program 112-135

configuration defaults 134-135
file commands 117-122
keystrokes for 113-114
QUIT option 135
volume commands 123-134

ProDOS 1.0 memory map 241-248
PRODOS program 28-29
ProDOS startup diskette 28
ProFile 113, 123, 125

hard disk storage 270
Program

design 181-185
modules 185-201
sample 201-227

Program modules
number filter subroutine 191-193
pathname determination subroutine 194-196
print to screen subroutine 196
read a record subroutine 196-197
skeleton program 185-191
string filter subroutine 193-194
system configuration setup

subroutine 198-199
Thunderclock routine 199-200
write a record subroutine 197-198

/RAM 268-269
Random-access files 64, 80-95

data storage in 83-88
reading from a record 89
record length 82
writing a record in 82-83

READ BLOCK call, for MLI 174-175
READ command 237, 254

for MLI 165-166
used with random-access file 81, 90-91
used with sequential-access file 64, 74-75

Read current prefix routine 200
Read a record subroutine 196-197
Receiving data from sources other than

keyboard 60-61
RENAME command 54-55, 234, 252

for MLI 156
RENAME FILES 121
RENAME A VOLUME 129-130
RENUMBER command 276-277
Report heading subroutine 200-201
RESTORE command 57-59, 235, 253
RESTORE DEFAULTS 135
RUN command 26, 40-42, 232, 251

Sample program 201-227
SAVE command 26, 43, 233
SCRATCH. DISK 10, 11, 12, 14-15, 27, 28
SEC 152
SELECT DEFAULTS 134
Sequential-access files 63-79

creation of 65
defined 65
and EXEC command 107, 109
problems 73-74
retreiving data from 69-72
storing and viewing data in 66-68

SET BUF call, for MLI 171, 172
SET EOF call, for MLI 170
SET FILE INFO call, for MLI 1 57
SET MARK call, for MLI 168, 169
SET PREFIX 122
SET PREFIX call, for MLI 161
SHOW command 278
Slash mark 10
Slot number 17
sos 271-273
Startup d·iskette 28
STARTUP program 19, 27, 29
STORE command 57, 58, 234, 252
String data 191
String filter subroutine 193-194
String variable 69
Subdirectory 31, 32
System bit map 27
SYSTEM MASTER diskette 6

System program writing 177-178

Tape drive 65
Text file 64, 65

program to 111
retreiving data 69
transformation of Applesoft II BASIC pro­

gram to 111
Thunderclock routine 199-200
Transfer of data from normal video screen out-

put 59-60
Tree structure type of file 155
Ttype 52
TUTOR 113, 116, 123, 125

UNLOCK command 55-57, 234, 252
Utility programs 155

Volume 123
Volume commands 9
Volume directory 31, 32, 51

characteristics 31

WRITE BLOCK call, for MLI 175-176
WRITE command 64, 75, 81, 237, 254

used with random-access file 81, 91-92
used with sequential-access file 64, 75

Write a record subroutine 197-198

XREF command 279-280

Zero page 242-248

INDEX I 303

