JORN CAMPBELL

H\ISI
APP

b

el L

LS

Y

S A £ L, R

INSIDE
APPLE’S®
PRODOS ™

INSIDE
APPLE’S®
PRODOS ™

John Campbell

A Reston Computer Group Book
L ==———=1 Reston Publishing, Inc.

A Prentice-Hall Company
Reston, Virginia

Library of Congress Cataloging in Publication Data

Campbell, J. L. (John L.)
Inside Apple's ProDOS.

"A Reston Computer Group book."

Bibliography: p.

Includes index.

1. ProDOS (Computer operating system) 2. Apple II
(Computer)--Programming. 3. Basic (Computer program
language) I. Title. II. Title: Inside Apple's ProD.0.S.
QAT66.C343 1984 001.64'2 84-6988
ISBN 0-8359-3078-5

The terms Apple, Apple 11, Apple II Plus, Apple Ile, Apple 111, Disk 11, DOS 3.3, ProFile, ProDOS, In-
teger BASIC, Applesoft II BASIC, The Filer, CONVERT, EXERCISER, and The APA are either
registered trademarks, trademarks, or copyrighted by Apple Computer, Inc.

Interior design and production by Carolyn Ormes

© 1984 by John L. Campbell

All rights reserved. No part of this book may be reproduced in any way or by any means, without permis-
sion in writing from the author.

10 987 65 4321

PRINTED IN THE UNITED STATES OF AMERICA

CONTENTS

Nothing is more expensive

than a start.

Nietzsche, 1888

Preface xi

CHAPTER 1: INTRODUCTION 1
1.0. Overview 1
1.1. Introducing ProDOS 3
1.1.1. What is Needed 5
1.1.2. The ProDOS Diskettes 6
1.1.3. Making a Startup Diskette 8
1.1.4. The ProDOS Programs 00
1.2. Make a ProDOS Copy 13
1.3. ProDOS Commands Described 16
1.4. Starting ProDOS 18
1.4.1. From a Cold Start 19
1.4.2. From Other Ways 20

vi / CONTENTS

1.5, The HELP Command 21
1.6. ProDOS and DOS 22
Summary 23

Questions 24

CHAPTER 2: PRODOS FILES AND COMMANDS 25
2.0. Overview 25
2.1. How ProDOS Works 26
2.1.1. A Startup Diskette 27
2.1.2. The PRODOS Program 28
2.1.3. The BASIC SYSTEM Program 29
2.1.4. The STARTUP Program 29
2.2. Volumes and Files 30
2.2.1. The Directory 31
2.2.2. The Pathname 36
2.2.3. The Prefix 38
2.3. ProDOS and Programs 39
2.3.1. The—(DASH) Command 39
2.3.2. The RUN Command 40
2.3.3, The LOAD Command 42
2.3.4. The SAVE Command 43
Summary 43
Questions 45

CHAPTER 3: HOUSEKEEPING COMMANDS 46
3.0. Overview 46
3.1. The CAT and CATALOG Commands 47
3.2. The PREFIX Command 49
3.3. The CREATE Command 52
3.4. The RENAME Command 54
3.5. The DELETE Command 55
3.6. The LOCK and UNLOCK Command 55
3.7. 1/0 from Programs 57
3.7.1. The CHAIN Command 57
3.7.2. The STORE Command 57
3.7.3. The RESTORE Command 58
3.7.4. The PR# Command 59
3.7.5. The IN# Command 60
Summary 61
Questions 62

CHAPTER 4: SEQUENTIAL-ACCESS FILES

4.0.
4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
4.7.
4.8.

Overview 63

Sequential-access Files 65

The OPEN Command 72

The READ Command 74

The WRITE Command 75
The CLOSE Command 76
The APPEND Command 76
The FLUSH Command 77
The POSITION Command 78

Summary 78
Questions 79

CHAPTER 5: RANDOM ACCESS FILES 80

5.0.
5.1.

5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.

Overview 80

Random-Access Files 81

5.1.1. The Record Length 82
5.1.2. Writing a Record 82
5.1.3. Record Character Storage 83
5.1.4. Reading from a Record 89
The OPEN Command 89

The READ Command 90

The WRITE Command 91

The CLOSE Command 92

The DELETE Command 93

The APPEND Command 93

The FLUSH Command 94

Summary 95
Questions 95

CHAPTER 6: BINARY FILES 96

6.0.
6.1.

6.2.

6.3.
6.4.
6.5.
6.6.

Overview 96

Binary Files 97

6.1.1. Binary Addresses 98

6.1.2. Command Options 98

The BLOAD Command 99

6.2.1. Installing Machine-code Routines 100
The BSAVE Command 101

The BRUN Command 102

The PR# and IN# Command 103

The Monitor and ProDOS 104

Summary 105
Questions 106

63

CONTENTS / vii

viii / CONTENTS

CHAPTER 7: EXECUTIVE FILES 107
7.0. Overview 107
7.1. EXEC Files Demonstration 108

7.2. The E

XEC Command 110

7.3. EXEC Uses 111

Summary
Questions

111
111

CHAPTER 8: THE PRODOS FILER

AND CONVERT PROGRAMS

8.0. Overview 112

8.1. Using
8.1.1.
8.1.2.
8.1.3.

8.1.4.

8.1.5.

8.1.6.
8.2. Using
8.2.1.
8.2.2.
8.2.3.
8.2.4.
8.2.5.
8.2.6.

the FILER Program 115
ProDOS FILER Menu 115
TUTOR 116
File Commands 117

LIST PRODOS DIRECTORY 117

COPY FILES 119

DELETE FILES 120

COMPARE FILES 121

ALTER WRITE-PROTECTION 121

RENAME FILES 121

MAKE DIRECTORY 121

SET PREFIX 122
Volume Commands 123

FORMAT A VOLUME 125

COPY A VOLUME 127

LIST VOLUMES 128

RENAME A VOLUME 129

DETECT BAD BLOCKS 130

BLOCK ALLOCATION 132

COMPARE VOLUMES 133
Configuration Defaults 134

SELECT DEFAULTS 134

RESTORE DEFAULTS 135
QUIT 135

the CONVERT Program 136
ProDOS CONVERT Menu 136
Reverse Transfer Direction 137
Change DOS 3.3 Slot and Drive 137
Set ProDOS Prefix 139
Set ProDOS Date 139
Transfer or List Files 139

112

8.3. FILER and CONVERT Error Messages 139
Summary 139
Questions 140

CONTENTS / ix

CHAPTER 9: THE MACHINE LANGUAGE INTERFACE 141

9.0. Overview 141
9.1. Memory Usage 142
9.1.1. ProDOS Loading Sequence 142
9.1.2. Memory Maps 143
9.2. Issuing Calls 152
9.2.1. Housekeeping Calls 154
9.2.2. Filing Calls 163
9.2.3. System Calls 173
9.2.4. Direct Access Calls 174
9.3. MLI Error Codes 176
9.4. Writing a System Program 177
Summary 178
Questions 178

CHAPTER 10: BASIC PROGRAMMING SYSTEMS

10.0. Overview 180

10.1. Designing the Program 181

10.2. Program Modules 185
10.2.1. The Skeleton Program 185
10.2.2. Number and String Module 191
10.2.3. Pathname Determination Subroutine
10.2.4. Print to Screen Subroutine 196
10.2.5. Read a Record Subroutines 196
10.2.6. Write a Record Subroutines 197

10.2.7. System Configuration Setup Subroutines

10.2.8. Thunderclock Routine 199
10.2.9. Read Current Prefix Routine 200
10.2.10. Report Heading Subroutine 200

10.3. The Program 201

Summary 227

Questions 228

APPENDICES 229
A. DOS 3.3 and ProDOS 1.0 Comparisons 229
Overview 229
The Diskettes 230
Commands no Longer Supported 231
ProDOS Commands Supported 231

180

x / CONTENTS

B. ProDOS 1.0 Memory Map 241
Overview 241
High Memory Considerations 242
Zero Page 242
General Memory Map 248

C. ProDOS Command Summary 250

D. Error Messages 256
Overview 256
Determining the ERROR 257
ProDOS Messages 257
FILER and CONVERT Messages 259
Applesoft 11 Messages 264

E. Miscellaneous Topics 266
Overview 266
Clock/Calendar Card 266
/RAM in the Apple lle 268
ProFile Hard Disk Storage 270

F. ProDOS, Apple 111, and SOS 271
Overview 271
ProDOS and SOS 271
File Comparisons 272
System Comparisons 272

G. The APA Program 274
Overview 274
Starting APA 274
AUTO Command 275
MANUAL Command 276
RENUMBER Command 276
HOLD Command 277
MERGE Command 277
COMPRESS Command 278
SHOW Command 278
NOSHOW Command 279
LENGTH Command 279
XREF Command 279
CONVERT Command 280
EXIT Command 280

H. ASCII Character Codes 282

I. Hexadecimal to Decimal Conversions 286

BIBLIOGRAPHY 288
GLOSSARY 292
INDEX 299

PREFACE

This book describes the new Professional Disk Operating System (ProDOS) recently in-
troduced by Apple Computer, Inc. This new operating system is more than just another new
computer disk operating program like the changes made when DOS 3.3 was introduced. Pro-
DOS is a completely new computer system operating environment. ProDOS contains new
commands, expanded and improved old commands, file management utilities, assembler,
data types, file types, and new procedures. It’s a new, exciting, environment that adds
materially to the capability of the Apple 1I1® family of computers.

A disk operating system is a computer program or set of programs that serve as the ex-
ecutive manager for the information stored on diskettes. The operating system allows you to
store, retrieve, or rearrange information on diskettes. ProDOS allows you to organize your
information stored on all of your Apple Il family of diskettes. Throughout, comparisons. will
be made to DOS 3.3 so that you will be able to make the transition to ProDOS easily.

As you begin reading this book, you will first be introduced to the ProDOS operating
system parts in Chapter 1. This chapter outlines the conventions used throughout the book for
describing ProDOS.

xi

xii / PREFACE

To use ProDOS you will need an Apple 11 family computer with a least 64K of memory,
Applesoft I1 BASIC® in Read Only Memory (ROM), and at least one Disk II disk drive.
More will be said about these requirements in Chapter 1.

Chapter 2 discusses the files, file types, command syntax, and your first, most often
used ProDOS commands.

The general system housekeeping commands are discussed in Chapter 3.

Chapters 4 through 7 discuss each of the major types of files you will be using. These in-
clude:

—Sequential access files
—Random access files
—Binary files
—Executive files

Chapter 8 will discuss the Filer program. This program performs a number of different
volume and file utility functions.

Chapter 9 briefly discusses the machine language interface portion of ProDOS. This
allows you to customize your systems operation.

The last chapter will put together a number of routines that you can use in your own pro-
grams. These are used in a program as the vehicle of presentation.

With this new operating system, all of the Apple computer system operating en-
vironments operate in a similar manner. I wish to thank Apple Computer, Inc. for permission
to quote directly from their many useful manuals.

1 hope that you will enjoy this book.

J. L. Campbell

INSIDE
APPLE'S®
PRODOS™

|. INTRODUCTION

If a system injures the intelligence
it is bad. If it injures the character
it is vicious, if it injures the

conscience it is criminal.

Henri Frederic Amiel, 1852

1.0. OVERVIEW

This chapter introduces you to Apple’s ProDOS T-M. (Professional Disk Operating System).

After a brief discussion of some of the conventions used throughout this book, you will
be introduced to the interrelationship of various software programs and how they operate to
perform all of those things that allow you to save your balanced checkbook transactions cor-
rectly. You will be given a brief description of their capabilities and functions.

Of course, you should know early on just what you need in the way of a computer
system to take advantage of ProDOS. The physical system configuration requirements for
each of the Apple® II family of computers will be outlined. By ‘“‘Apple II family,’’ I mean
the Apple II, Apple ®II Plus, and Apple® Ile computers.

By the time you have read to Section 1.2, you should have enough information to be able
to begin exercising your system with the new operating system. The diskettes that came with
the operating system will be discussed. *‘Diskette’’ refers to a 5%-inch floppy disk. Then, you
will create a working diskette of your own so that, when working with the programs and pro-

2/ INTRODUCTION

gram segments in this book, you may code them, save them, and try them out to see what
happens.

You will make backup copies of the original diskettes using the FILER program and ex-
plore some of the programs on the original diskettes. The term ‘‘backup’’ means a duplicate.
You will be told how to power up your system and get all of the pieces operating together.

You will explore one of the more interesting new capabilities of ProDOS, called HELP.
HELP is a program that uses the text file HELPSCREENS stored on one of your original
diskettes. The HELP program is discussed in Section 1.5. It is comforting to know that there
is help when you forget just what is required.

Finally, the differences between DOS 3.3 and ProDOS will be discussed for the first
time. Throughout this book, the similarities and differences between these two operating
systems will be shown in each instance where they are applicable.

Every time the Apple II, Apple II Plus, and Apple Ile computers are discussed, the term
““Apple computers’’ will be used. ProDOS applies to all of these computers equally, provided
each individual machine is configured correctly to handle ProDOS. These individual con-
figurations will be outlined in Section 1.1.

Another convention used throughout is to draw the distinction between this new
operating system (ProDOS) and the operating system program (PRODOS). At this point you
need not know or understand the differences between these two terms. Their differences will
become clear very shortly.

When discussing a computer application or operating system program, the name of that
program will be capitalized. Further, operating system commands will be shown capitalized.

There are two Apple computer languages mentioned in this book: Integer BASIC and
Applesoft II BASIC for the Apple computers. These are Apple’s dialects of the BASIC
language. The primary emphasis will be on Applesoft II BASIC, since Integer BASIC is not
supported by ProDOS.

Finally, comparisons will be made between ProDOS and DOS 3.3 pointing out the
similarities and differences. This should enable you to make the transition from DOS 3.3 to
ProDOS easily and quickly.

There are a number of assumptions that will be made in presenting information in this
book. These are:

Your computer is connected up correctly (see Section 1.1.1).

You have a fundamental working knowledge of:
Applesoft ® II BASIC and
DOS 3.3.

I realize that this may be more than you can handle at this time. With that in mind, I will try to
explain things carefully as you proceed through this book. Further, if you feel you need more
indepth knowledge concerning these subjects, it is recommended that you acquire and use my
other books, Programming the Apple: A Structured Approach, and Programming Tips and
Techniques for the Apple II Plus/Apple Ile. Besides, I need the money! So buy them, please!
Both books are published by the R. J. Brady Co.

INTRODUCING PRODOS / 3

In each chapter, where commands are introduced, there is a box that gives the command
syntax, provides command examples, and explains in which operating mode each may be
used. Syntax means the rules governing the structure of statements, instructions, and
commands.

If a command allows the use of options, the options will be shown enclosed in square
brackets. Those parts of acommand that are required to be used are shown without the square
brackets.

In the particular chapter section that describes a command, the specific form, or syntax,
will be given for that command. In addition, Appendix C gives a summary of all commands
and their options. Each ProDOS command has a number of options, or additional specifica-
tions, that may be either defined or not used.

The commands introduced in this chapter are shown in the box below.

HELP e.g., HELP Immediate mode only

HELP PREFIX

NOHELP e.g., NOHELP Immediate mode only

1.1. INTRODUCING PRODOS

Before getting into this new operating system, it is necessary to understand the set of com-
puter programs involved and where they fit in the overall scheme of things. Let’s look at a
computer system from the point of view of the computer programs operating during the time
you are making entries into a general ledger, writing a letter, or fighting a rousing space war
marathon. This is actually a logical computer as shown diagrammatically in Figure 1.1.

Application Programs

Language(s)

Operating System

Kernel

Figure 1.1. Logical computer.

4 / INTRODUCTION

The kernel for the Apple computers actually contains both the MONITOR and AUTO-
START programs. The kernel programs usually perform very basic operating functions. The
AUTOSTART program allows the Apple computers to ‘‘come up running’’ when power is
first applied to your system. A secondary, but equally important, function included in
AUTOSTART is the screen editing capability of your Apple computer. There are other
general kernel functions performed by the MONITOR set of program modules.

These are:

Character 1/0
Get character from keyboard
Get an input line of characters
Echo character to the screen
Generate a carriage return character

Low-resolution graphics plotting
Plot point
Plot line

Speaker routines
Sound bell
Beep speaker

Paddle, button, and annunciator I/0
Sense paddle position
Sense button pushed
Sense annunciator used

Cassette tape 1/0
Load program from tape
Save program to tape

Screen commands
Clear screen
Clear screen section
Set text mode
Clear line
Set scrolling window
Set graphics mode
Set screen modes
Normal
Inverse
Flashing
Graphics

Reset machine

INTRODUCING PRODOS / 5

6502 registers
Save registers
Move memory
Restore registers
Print register contents

As you can see, there are a number of very important but necessary functions that are
performed by the kernel set of program modules and routines.

The next layer or ring of programs normally resident in the computer’s memory is the
operating system. In this case it will be ProDOS, which is the subject of this book.

The third layer of software activated is the computer language(s) needed by the last or
fourth layer. This is Applesoft II BASIC for Apple computers. Although Applesoft II BASIC
is not the only language available for Apple computers, it is the only one of interest here.

The outer layer of computer software operating is the application program. An applica-
tion program is any program you are currently using. It could be a checkbook balancer,
general ledger, word processor, or graphics Klingon space war.

In order the accomplish anything with a computer system, many different programs
operating on different levels must be active simultaneously. Of all of these programs, the
operating system is the only one discussed in detail in this book.

1.1.1. What is needed

In order for you to install ProDOS on your computer system you will need to configure your
particular system as follows:
Apple Ile:

Computer.

Video display (this may be a TV or video monitor).

Disk II disk drive.

Applesoft II BASIC in ROM (ROM means read only memory).
ProDOS diskettes.

Apple II Plus:

Computer with 64K RAM (K stands for 1024 bytes; RAM stands for random access
memory).
48K plus 16K language card or
48K plus 16K RAM card.
Video display.
Disk II disk drive.

6 / INTRODUCTION

Applesoft II BASIC in ROM.
ProDOS diskettes.

Apple II:

Computer with 64K.
48K plus 16K language card or
48K plus 16K RAM card.

Video display.
Disk II disk drive.

Applesoft II BASIC in ROM installed on a firmware card (firmware means a program
implemented in ROM).

ProDOS diskettes.

If you have one of the early Apple II computers with the Applesoft II BASIC firmware
card installed in slot zero, it is a simple matter to exchange the Integer BASIC and MONITOR
chips on the motherboard with the Applesoft II BASIC, AUTOSTART, and MONITOR
chips on the firmware card. The motherboard is the main circuit board of your computer,
which contains the expansion slots. Once that is done, then you only need to have a 16K
memory expansion board or language board installed into the vacated slot zero. You can now
use ProDOS. Don’t throw the Integer BASIC firmware card away. You may want to use it
again sometime with software that uses that language and DOS 3.3.

1.1.2. The ProDOS diskettes
This section will discuss the two diskettes that come with ProDOS. These diskettes are:

—The /PRODOS diskette
—The /EXAMPLES diskette

The /PRODOS diskette takes the place of the SYSTEM MASTER diskette that came with
DOS 3.3. The contents of the diskette are as shown in Figure 1.2, below.

Place the ProDOS diskette into disk drive 1 of your system. Then power up your system.
If you do not know how to power up your system, then skip to Section 1.4 for the general
power up procedure.

The contents of a diskette may be seen by using the command:

JCAT,S6,D1

Try this command now that your system is powered up.

INTRODUCING PRODOS /7

/PRODOS
NAME TYPE BLOCKS MODIFIED
*PRODOS SYS 29 1-SEP-83
*BASIC.SYSTEM SYS 21 1-SEP-83
*STARTUP BAS 7 1-AUG-83
*CONVERT SYS 42 1-SEP-83
*FILER SYS 51 1-SEP-83
EXERCISER SYS 16 29-JUL-83
FORMATTER TXT 15 4-AUG-83
EDASM.ASM BIN 29 14-JUN-83
EDASM.ED BIN 17 14-JUN-83
EDASM.SYSTEM BIN 9 1-AUG-83
BUGBYTER BIN 15 4-APR-83
*BASIC.RUNTIME SYS 21 1-SEP-83

BLOCKS FREE: 1 BLOCKS USED: 279
Figure 1.2. /PRODOS diskette contents.

The actual contents of your /PRODOS diskette may be slightly different because the
final production diskette contents will probably change between now and the time ProDOS is
shipped to the general buying public.

The most obvious thing to notice that ProDOS will present much more information to
you than what is presented with DOS 3.3. Each of these columns of information will be ex-
plained in detail later.

Now, let’s look at the contents of the /EXAMPLES diskette. This is shown in Figure
1.3. You do this by replacing the diskette in drive 1 with the other diskette that came with
ProDOS.

JCAT,S6,D1

/EXAMPLES
NAME TYPE BLOCKS MODIFIED

*PRODOS SYS 29 1-SEP-83

*BASIC.SYSTEM SYS 21 1-SEP-83
STARTUP BAS 7 22-JUL-83
HELP BAS 1 1-SEP-83
HELPSCREENS TXT 60 1-SEP-83
DIRECTORY DIR 1 28-MAR-83
PRACTICE DIR 1 18-JUL-83

8 / INTRODUCTION

PROGRAMS DIR 3 5-OCT-83
DATA DIR 1 29-AUG-83
EXTRAS DIR 1 6-OCT-83
BLOCKS FREE: 31 BLOCKS USED: 249

Figure 1.3. /EXAMPLES diskette contents.

Once again, notice the amount of information presented to you. This information may
also change slightly by the time you receive your ProDOS system. For now, the only thing to
know is what has been presented. Later in this book, each column will be explained in detail.

Now that you have your system running, you are ready to make a ProDOS diskette that
will be used to store the programs written in this book.

Search through your diskettes and find at least three that can be reinitialized and used
for ProDOS information.

1.1.3. Making a startup diskette

Chapter 8 will discuss the FILER and CONVERT programs in detail. However, this section is
going to show you how to use the FILER program to create a diskette for your own use. In
DOS 3.3 terms, you will initialize a diskette with the boot program HELLO installed. Boot
means to start up automatically. In ProDOS terms, you must first format a diskette using the
FILER program and then install programs on that diskette. The following programs are to be
installed:

—PRODOS
—BASIC.SYSTEM
—STARTUP

Power up your system as outlined in Section 1.4. If you are totally unfamiliar with how
to power up your system, then skip to that section, read it, and then return here.

The first thing to do is to place the /PRODOS diskette in your boot drive and power up
your system. When the power up procedure has been completed, you will be in the immediate
mode with the Applesoft II BASIC prompt character and cursor in the bottom left portion of
the screen.

At this point, let’s start to create a program diskette of your own. In the following
discussion, you will execute a number of commands not knowing the reasons why. Don’t
worry, they will be explained in other sections or chapters of this book. The first command to
be executed is:

]— FILER

The — (DASH) or minus sign key is the shorthand means available in ProDOS for exe-
cuting a program regardless of program type. The — (DASH) may be used in place of RUN or

INTRODUCING PRODOS / 9

BRUN. This command is known as the intelligent run command. This command is discussed
in Section 2.3.1. This command is not a part of DOS 3.3. FILER is the name of the program
that performs a number of volume and file manipulation and utility functions. This program
allows you to perform many general system housekeeping chores. By the way, you will find
this new — (DASH) command very handy.

Once this command is executed, your boot disk drive will come on while the FILER pro-
gram is being loaded into memory. After the program is loaded, it will be automatically exe-
cuted. The first screen that will be presented will be the main FILER menu screen. This screen
is shown in Figure 1.4,

From this screen you will want to select the V (VOLUME COMMANDS) option. This is
done by pressing the V key on the keyboard without using the RETURN key. Volume com-
mands allow you to work with an entire diskette as a unit. After selecting the V option, you
will be presented with the secondary menu as shown in Figure 1.5.

In this case you will choose the F (FORMAT A VOLUME) option. This corresponds to
the INIT command in DOS 3.3.

You may want to remove the diskette in your boot drive BEFORE making this selection.

eyt e bR
; PRODOOS
FILER WEESIOH 1.8 1
IGHT APFLE COMFUTEE.

TUTOR
FILE COMMANDS
UOLUME COMMANDS
CONFIGURATION DEFRULTS
WS =R
CT AH OFTIOH:

Figure 1.4. FILER main screen.

10 / INTRODUCTION

FEEEEEERERRR R R AR A

UALUME COMMAHDS
FESSESEEEEEEESEEESEESSES S

TUTOE

FORMAT A WOLUME

COPY & WOLUME

LIST WOLUMES
FEMAME & UOLUME
DETECT BAD ELOCES
ELOCE ALLOCATION
COMPARE WOLURMES

T AH OFTIOHN OF

Figure 1.5. Volume commands screen.

By selecting the F option, you will be shown a third screen. This screen, however, is a
data entry screen. You will finally be entering the mformahon necessary to format a diskette.
This screen is shown in Figure 1.6.

At this point, remove the boot diskette and replace it with a new blank diskette. This
new diskette is what you will use throughout this book to store programs and files.

This video screen asks you to enter the slot and drive number for the diskette to be for-
matted. You have the option of accepting the default values by typing the RETURN key for
the values presented, or you may enter your own values. A default value is the value used by
the computer program unless another value is provided by the program operator. The
defaults are slot 6 and drive 1.

The cursor will then put you in the middle of the screen, where you are to respond by
entering the name of the volume (diskette media) you want to format. Once again, you could
accept the default of /BLANKO00. For now, enter the following:

SCRATCH.DISK

after the slash mark. Notice that there is a slash mark (/) that precedes the default name for
the volume. All directory and volume names have the slash mark (/) before the title. This slash

INTRODUCING PRODOS / 11

N s it esse0es e esR e s R FE LS TETTTT]
: *
f FORMAT A VOLUME ¥
' ¥
:f 3000200380000 et o008 PSP oS eerT Rt

--FORMAT--
UOLUME IN SLOT:
THE RTUE :

L
DRI

HEW UOLUME NAME: ¢(~/BLANKSG

> TO ACCEPT:<ESC» TQ ENIT--

Figure 1.6. Format data entry screen.

mark (/) acts as the delimiter or separator between names that form the pathname. A
pathname is a series of file names, preceded and separated by slashes, that indicates the entire
path from the volume directory to the file. Delimiters are used for both command structures
and pathnames in ProDOS. A great deal more will be said about paths, pathnames, and com-
mand structures in other areas of this book.

Next, notice that a period is entered between the words SCRATCH and DISK. ProDOS
does not allow you to enter a blank character as the separator between words. Further, you
are allowed to enter only 15 characters for any volume, directory, or file name. This is impor-
tant to remember because DOS 3.3 allows blanks, special characters, and 30 characters per
file name. There are other rules to be followed, but these will be discussed later as they are
needed.

By the way, if you make a mistake anywhere along the line, you may retreat by typing the
ESCAPE key. So, you may recover easily from any errors.
Note: Remove the boot diskette NOW!

After entering the volume name, type the RETURN key. When you type that key, your
system will format the blank diskette in the disk drive selected. When the formatting is com-

12/ INTRODUCTION

plete, format two more blank diskettes with the names /PRODOS and /EXAMPLES. Then
you should return to the FILER main menu screen by using the ESC key. Once you have the
main menu back you will want to select the F (FILES COMMANDS) selection option. The
main menu is shown again as Figure 1.7.

The F option allows you to work with individual files on a diskette rather than with the
diskette as a unit, which was enabled by the volume commands that you have just used. Figure
1.8 shows the secondary screen that you are presented. From the screen, select the C option.

At this point, make sure that you have the /SCRATCH.DISK reinstalled in the boot
disk drive. The final screen that you will be presented is the copying files data entry screen.
This screen is shown in Figure 1.9,

Notice that this screen shows you the PREFIX currently active and stored in the Pro-
DOS image in memory. It just so happens it is probably the same as the diskette from which
the FILER program came.

For this screen you will be entering three different sets of data that transfer the three dif-
ferent program files. The three program files to be transferred are:

/PRODOS/PRODOS to /SCRATCH.DISK/PRODOS
/PRODOS/BASIC.SYSTEM to /SCRATCH.DISK/BASIC.SYSTEM
/PRODOS/STARTUP to /SCRATCH.DISK/STARTUP

AFPLE'S FRODOS ¢
FILER MERSIOH 1.
'RIGHT GFPPFLE COMFUTEE.
FREEEEERR R R R R R R R AR
TUTOR

FILE COMMANDS

UOLUME COMMAMDE
O - CONFIGURATION DEFAULTS
4 o- BUIT

ASE SELECT AW OFTIOH:

Figure 1.7. FILER main screen.

MAKE A PRODOS COPY / 13

eSS ererts ES S S EPES LTI ILFISS LSS ST E ST S
; >

FILE COMMAHDS %
H¥ ---;;::#::;::#::t:xx1:#:x#‘tx'#:'*:H:'#ILt::#:'#::t:t:‘#::#::t:i:::i:t#::.;
TUTOR
LIST PRODOS DIRECTORY
COPY FILES
DELETE FILES
COMPARE FILES
GLTER WRITE-FROTECTIOHN
E - REHAME FILES
il - MAKE DIEECTORY

v F - SET PREF
SELECT AH OPTIOHN QR <

¥
¥
i

Figure 1.8. File commands screen.

If you are using two disk drives connected to slot 6, then it is recommended that you
place the /PRODOS disk in drive 1 and your new SCRATCH.DISK in drive 2. Each time you
enter a new set of program names to be transferred, your system will do all of the work.

If you are using one disk drive, the screen will prompt you when it is necessary to ex-
change diskettes in the disk drive.

1.2. MAKE A PRODOS COPY

One of the first things that you should do is to make a copy of the diskettes that came with
your ProDOS system. You will want to preserve your original diskettes and use your copy, or
backup. If anything adverse should happen, as it has a tendency to do when you are learning a
new system, it is better to have it happen to your backup and not to the original. There is a
rule, one of Murphy’s, I believe, that applies: “‘If it can happen, it will happen to me.”’ It
always does.

Throughout this book and those provided by Apple Computer, Inc., you will be asked
to do a number of things with both of the copies you are about to make and also with the new

14 / INTRODUCTION

SIILL RIS SR T LIS S S S E
COPY FILES
CEPRODDS %3338 3838 e3840

sPRODOS-PRODOS

PATHHAME : ¢ #SCRATCH.DISE PRODOS

--EHTER FATHWAME AHD PRESS <{RET>--

Figure 1.9. Copy files data entry screen.

diskette that you created in Section 1.1.3. There are two disks supplied by Apple Computer,
Inc. with ProDOS. These are:

—The /PRODOS disk
—The /EXAMPLES disk

These disks are write-protected. This means that you are unable to write any data or informa-
tion onto the diskettes. Since some of the programs on these diskettes require that you write
information onto the diskettes, let’s make copies of these diskettes onto diskettes that are not
write-protected.

In the last section you formatted and created a diskette called /SCRATCH.DISK. In
order to do that, you used the FILER program. In this section you will use that same program
again.

So, first get your system powered up and then execute the FILER program. This may be
done using

MAKE A PRODOS COPY / 15

]— FILER

The main menu screen should look like Figure 1.10.

From the main menu screen select the V(VOLUME COMMANDS) option. This is done
by pressing the V command without using the RETURN key. The secondary screen, shown in
Figure 1.11, will again ask you to make another selection. This time select the C (COPY A
VOLUME) option.

The third screen, selected by pressing the C key, is the data entry screen. You will use
this screen to make copies of both of the original diskettes that came with your system. This
screen is shown in Figure 1.12,

When you are finished, you have made copies of all the diskettes that came with your
ProDOS system and created the SCRATCH.DISK for your own programs. It is recom-
mended that you label each of these, identifying them with the current date, the fact that they
are ProDOS diskettes, and the name of their volume, such as /PRODOS or
/SCRATCH.DISK.

Since you probably have a number of DOS 3.3 diskettes, you should start a new filing
system just for the ProDOS diskettes. Isn’t that wonderful! Now, you have two sets of
diskette filing containers.

i 4 ; o e 2 4 G - Ao o
PROODOS SYSTEM UTILIY
FILER ~ UERSIOM 1.8.1
HT AFFLE COMFUTEE. L,
el b bl ok ok kb ey
F — TUTOR

- FILE COMMAHDS
i - UOLUME COMMARDS
| - COMFIGUEATION DEFS
o= QUIT
ECT AH OPTIOH:

Figure 1.10. FILER main screen.

16 / INTRODUCTION

pribEb i bEEREEY FEREEREREERRRRRED S 54 4 44
; JOLUME COMMANDS
PEEEERRERERER R A
TUTOF
FORMAT & WOLUME
Ccopy A WOLUME

LIST UOLUMES
FEHAME A UWOLURE
DETECT EAD EBLOCESD
BELOCK ALLOCATION
K - COMPARE UOLUMES
M OFTIOW OF <ESC::

Figure 1.11. Volume commands screen.

1.3. PRODOS COMMANDS DESCRIBED

In this section, you will be given the general form for the description of each command that is
described in this book. Normally, the general form of a command is known as the syntax re-
quired for the command. A command’s syntax for ProDOS looks generally like this:

command [pn] [,S#] [,D#]

All of the command coding requirements shown throughout will be within boxes, as
above. The word ‘‘command’’ will be used to mean any of the legal ProDOS commands
available to you to use while communicating with peripheral storage devices and the outside
world. The elements of the command’s syntax that are in the square brackets—[pn], [,S#],
and [,D#]—are called the command’s options. There are, of course, many other possible op-
tions available. Each will be shown and discussed in detail as it is needed. If the square
brackets are not present around a command option, that option is required to be used in the
command.

PRODOS COMMANDS DESCRIBED / 17

R A A e A A
COPY @ UVOLUME
AP EEEREEERERR R RN by

TO O UOoLUME IH I

ILUME HAME

e EREES BTN T AP EERT B e ER T ESS

Figure 1.12. COPY A VOLUME display screen.

Notice that the options may have a comma (,) preceding the option. The comma (,) is
used as the delimiter between command options like the slash mark (/) delimiter is used in
pathnames. The comma is required.

The next required entry after the comma is the command option being entered. These
command options must be entered as capitalized alphabetic characters.

The options shown for the command general form are known as the pathname, slot
number, and drive number, respectively. When they are all taken together, the options form
the name and storage location of the file that is to be accessed. Any file may be accessed on
any diskette by specifying only the pathname option, only the slot-drive options, or both the
pathname and the slot-drive options.

A detailed discussion of pathnames is in Section 2.2.3. The specifying of the slot-drive
options is still provided for the purpose of maintaining compatibility with DOS 3.3. Further,
the slot-drive option capability allows for additional command control.

An example is given here to give you a feel for how to use the general form of a ProDOS
command. Power up your system using the procedure outlined in the next section with the
/PRODOS backup diskette in drive 1. When you have the prompt character and the cursor on
the video screen, execute the command:

]CAT /PRODOS,56,D1

18 / INTRODUCTION

This command tells the operating system to display the files contained on the /PRODOS
diskette located in slot 6, drive 1. Pay close attention to the typed form of this command. The
CAT command, new in ProDOS, is discussed in Section 3.1. I have not used any blank spaces
within the command. Blank spaces are allowed; ProDOS is forgiving in the case of blanks ex-
cept for commands and pathnames.

Notice that the square brackets are not used in the writing of a command. The use of the
square brackets is strictly for the purpose of separating options within a command.

The characters within the square brackets perform specific functions in each of the op-
tions when entered.
These are:

—The comma (,) separates that option from its predecessor.
—The capital letter identifies the option.

These are:

S— slot A— address R— record $— hexadecimal
D— drive B— byte P— position @— at line

F— field T— type file L— length

E— end address

—The characters or numbers following the capital letter represent the value assigned that op-
tion.

—The pound sign character (#) signifies the requirement to enter an integer numeric value.

—The dollar sign character ($) signifies the requirement to enter a hexadecimal address or
number.

Even though provision is made for the use and entry of hexadecimal numbers, decimal
equivalents may be used. Therefore, you are not required to use hexadecimal notation.
However, when using hexadecimal notation, use the dollar sign in front of the hexadecimal
number, For example, 255 in decimal notation is $FF in hexadecimal notation. See Appendix
J for a decimal-hexadecimal conversion table.

1.4. STARTING PRODOS

If your computer system is already turned on, turn it off completely. Wait for at least 30
seconds before you restart your system. This is to let any and all stray currents and
capacitances bleed off the system. Besides, it is hard on the power supply to reactivate power
immediately after a shutdown. In order to start up your system with ProDOS active, you
should use the following procedure:

1. Turn on your TV or monitor.
2. Turn on your ProFileT-M. hard disk. (See Appendix F.5, if applicable.)

STARTING PRODOS / 19

3. Wait for a steady READY light on ProFile. (See Appendix F.$5, if applicable.)
4. Place the ProDOS diskette into disk drive 1.

5. Reach around to the left rear of your computer and turn it on.

6. The video screen will show you something like Figure 1.14.

Figure 1.13. Startup procedure.

The next two sections will describe various ways of starting up (powering up) your
system.

1.4.1. From a cold start

Turning on your Apple computer causes the system to attempt to read information from disk
drive 1 installed in a numbered slot (usually slot 6). When the screen of Figure 1.14 is dis-
played, you know that the PRODOS program is now resident in memory and has been exe-
cuted. Any diskette that contains the PRODOS program will display the screen in Figure 1.14
when ProDOS is activated.

APPLE][

PRODOS 1.0 1-OCT-1983

COPYRIGHT APPLE COMPUTER, INC., 1983

Figure 1.14. ProDOS title screen.

The screen will clear in a few seconds, and the Applesoft II BASIC prompt character
will be placed in the upper left hand corner of the video screen. A few seconds later your
screen will again fill, giving you a summary of your system’s configuration and the peripheral
cards installed in the expansion slots. You are seeing the results of running the STARTUP
program. See Figure 1.15.

This second startup screen contains a lot of information. First of all, you are told that
you are using version 1.0 of the ProDOS operating system. If you have any problems with
your ProDOS, it is a good idea to remember the version number of your operating system.

The volume name of the diskette is /PRODOS. Further, you are told that you are using
the Apple Ile with 128K of memory and Applesoft II BASIC in ROM.

The last set of information you are given is a list of the peripheral circuit boards and
their slot assignments. Please remember that your particular second screen may be different
because your system may be configured differently. Also remember ProDOS requires that
you have at least 64K of memory in your machine. This was outlined in Section 1.1.1.

20 / INTRODUCTION

C PROGEAMMIHG EZAMP
COMFUTER. IHC.
SEESEEESS S

F RAHDOM ACCESS HMEMORY
OFT IH ROM

Figure 1.15. System configuration screen.

You now have ProDOS and an Applesoft II BASIC program, called STARTUP, that
was stored on the boot diskette, memory resident. Additionally, you have 23 new ProDOS
commands that can be used within an Applesoft ITI BASIC program. These commands look a
lot like the Applesoft II BASIC commands and instructions, but they act totally differently.
Further, they do not necessarily follow the same rules of construction or execution.

1.4.2. From other ways

If for some reason you find yourself in the monitor program (signified by the * prompt
character), you could try the command:

*6 (CTRL-P)

This means type a 6 on the upper row of the keyboard. Follow that by typing the CTRL
and the P simultaneously. Then release both keys at the same time. This should give you a
restart of the computer without having to turn it off.

If the disk controller card is in a slot other than 6, use that slot number instead of 6.

Another way to restart your system is to issue:

THE HELP COMMAND / 21

IPR# 6

from the immediate mode. This will cause your system to restart almost as if it were a cold
startup.

If you are using an Apple Ile, you have an additional way to restart your machine. You
may press the OPEN APPLE, CTRL, and RESET keys simultaneously and then release them
simultaneously.

The only item of information that is necessary to remember is that any program or data
in memory will be lost. So please be careful.

1.5. THE HELP COMMAND

One of the more interesting and helpful capabilities of ProDOS is the HELP command. Has
there ever been a time when you couldn’t quite remember exactly how a particular command
needed to be written? I’d hate to tell you how many times that has happened to me. Now there
is help for us: a new command in ProDOS called HELP.

In order to use this command while using ProDOS you can type the following from the
immediate mode:

]— /EXAMPLES/HELP

with the /EXAMPLES diskette in one of your disk drives. On your diskettes, the HELP
capability may be on another diskette. What this does is to activate the HELP and
HELPSCREENS files. Once you have activated the HELP capability, it will remain in
memory until you turn off your computer system or use some other system program, such as
FILER or CONVERT.

Once the HELP capability has been activated, you may get help with the writing of all
ProDOS commands. The syntax for this is:

JHELP command

where the word ‘‘command’’ represents one of the ProDOS commands. If, however, you just
type:

JHELP

you will be shown a video screen like the one in Figure 1.16.

The column on the left of the screen lists command uses by groupings. The column on
the right lists those words that may be entered in place of the word ‘‘command’’ when invok-
ing the HELP capability.

In order for the HELP and HELPSCREENS to work, both of them must be on the same
diskette installed in a disk drive. You can move these files from their original diskette to your

22/ INTRODUCTION

. _CATALOG, FR
4TE, REHAME.

Figure 1.16. HELP selection screen.

SCRATCH.DISK using the FILER program the same way you previously moved other pro-
grams. Refer to Sections 1.1.3 and 1.1.4 in this chapter or to Chapter 8.

If you have invoked the HELP capability and later in the session you do not need it
anymore, then type:

INOHELP

to remove the HELP program. Notice that the NOHELP command has no options. Once
HELP has been deactivated using the NOHELP command, the HELP command will no
longer work and cannot be reinvoked without rebooting the system.

1.6. PRODOS AND DOS

There are probably more programs written for the Apple computers than for any other
machine in the marketplace today. If your library of programs is like mine, it would be a real

SUMMARY / 23

shame not to be able to move some programs into the new ProDOS environment. In this sec-
tion the differences between ProDOS and DOS 3.3 will be explained.

When you start up your system with a ProDOS diskette in Disk II, the /PRODOS pro-
gram is placed into memory and executed. This allows you to read from and write to all dis-
kettes installed in all disk drives made for Apple computers. In comparison, when you start up
your system with a DOS 3.3 diskette in Disk II, the DOS 3.3 program is placed into memory
and executed. This allows you to read from and write to all diskettes installed in Disk II drives
only.

The information that ProDOS stores on a diskette cannot be read by DOS 3.3, just as
the information the DOS 3.3 stores on a diskette cannot be read by ProDOS. Fortunately, the
program (CONVERT) on the /EXAMPLES diskette will perform the conversion from one
format to the other. This is similar to the function of the MUFFIN program on the DOS 3.3
SYSTEM MASTER diskette.

What all of this means is that your existing DOS 3.3 programs are not able to use a
diskette other than a Disk II format until you convert them from the DOS 3.3 format to the
ProDOS format.

As a general rule of thumb, the programs you write can be converted to ProDOS. The
programs you purchase from commercial software developers will not necessarily convert to
ProDOS. If, however, a program uses only standard Applesoft II BASIC instructions and
DOS 3.3 commands, that program is a good candidate for conversion.

If programs have tricky PEEKS and POKES or use any machine-language routines,
they may not work correctly even after conversion. If DOS 3.3 file names have blanks, special
characters, or are over 15 characters long, your programs also may not work. Even with all of
these ““ifs,”’ it is worth doing the conversion. Converting programs from DOS 3.3 to ProDOS
is explained in Chapter 8.

SUMMARY

This chapter has given you a first look into ProDOS and how to perform some very basic file
manipulations, including making copies and making your own SCRATCH.DISK.

A number of terminology conventions were introduced in this chapter. This was done to
provide a common means of communications.

The first item was the introduction to your computer system from a logical point of
view, which is somewhat different than the normal hardware look at a computer. The rela-
tionship between the various layers of active software and the functions performed at each
level were discussed.

You were given the hardware requirements for installing and using ProDOS on your
particular system. Each version of Apple II computers was shown.

The diskette contents that came with the new ProDOS were discussed briefly and
shown.

You were shown how to make copies of your original ProDOS diskettes and how to
create a working diskette called SCRATCH.DISK of your own using the FILER program.

24 / INTRODUCTION

The general form of all of the ProDOS commands was explained so that you will be able
to understand how to read and write the ProDOS commands. Many of the options for com-
mands were shown along with the first detailed look at ProDOS commands.

You were also given various ways of powering up or restarting your system and having
ProDOS installed as the operating system.

A number of differences between ProDOS and DOS 3.3 were discussed as applicable.
This gives you a way to make the transition easily.

Finally, the HELP and NOHELP capability were discussed. These are very handy
added capabilities that should be very valuable to you as you develop programs requiring Pro-
DOS commands.

The commands introduced in this chapter were:

HELP e.g., HELP Immediate mode only
HELP PREFIX
NOHELP e.g., NOHELP Immediate mode only
QUESTIONS

1. Describe how you may power up or restart your particular system. Describe other methods
available.

Describe the layers of operating software and their relationships to each other when you
use your computer system.

Describe in detail what is needed to install and run ProDOS.

Describe how to prepare a diskette to receive files.

Describe how to copy files and volumes.

Describe the syntactic form for all ProDOS commands. Describe how the options operate.
Describe how to use the HELP file. What can this file do for you?

Describe the differences between the INIT command in DOS 3.3 and the formatting of a
volume using the FILER program.

9. What are the results of not having an operating system resident on a formatted diskette?

»

PN

2. PRODOS HLES
AND COMMANDS

If you command wisely,

you'll be obeyed cheerfully.

Thomas Fuller, 1732

2.0. OVERVIEW

The relations among terms such as volume, pathname, filename, and files will be discussed in
this chapter. How ProDOS arranges files on the diskette, how files are named, and what ter-
minology is required to refer to files are explained.

The term file will refer to any file stored on a diskette, regardless of its type. A file may
be an Applesoft II BASIC program file, a binary file, a random access file, or any other
named file, stored on a diskette.

The relationship between directories and file names will be shown. How ProDOS works
is the subject of Section 2.1. This section explains what is required and how to arrange the re-
quired programs on a diskette,

The minimal composition of a startup diskette and the programs involved are explained.
Each of the programs required by a startup diskette, and its functions, is discussed.

The logical arrangements of volumes, directories, and files are shown and explained.
The rules for directories and volumes are shown and compared to those for DOS 3.3. This
provides for any easy transition to ProDOS.

25

26 / PRODOS FILES AND COMMANDS

The requirements for naming files are explained in detail alongside a comparison to
DOS 3.3 file naming. Legal and illegal file names are given. The creation and uses of

pathnames and prefixes are discussed in detail.

This chapter will introduce you to your first and probably most often used ProDOS

commands and show how they may be used in programs and from the immediate mode.

The commands introduced in this chapter are shown in the box below.

CAT e.g.,

CATALOG e.g.,

PREFIX e.g.,
RUN e.g.,
— e.g.,
LOAD e.g.,
SAVE e.g.,

CAT

CAT /PRODOS

CATALOG

CATALOG

PREFIX /PRODOS/STATES

RUN /PRODOS/DUMMY

RUN

— DUMMY

LOAD /PRODOS/VIEW

SAVE /MY.DISK/DEMO

Immediate and deferred

Immediate and deferred

Immediate and deferred

Immediate and deferred

Immediate mode only

Immediate and deferred

Immediate and deferred

2.1. HOW PRODOS WORKS

This section gives you an overview of ProDOS. ProDOS is an operating system that allows
you to manage many of the resources available to the Apple II computers. It functions
primarily as a disk-based set of programs that help you operate your system. However, it also

HOW PRODOS WORK 7/ 27

will handle interrupts and perform some memory management. ProDOS also will mark files
with a date and time, if you have had a clock/calendar card installed.

All ProDOS startup diskettes will normally have certain files in common.

These are:

—PRODOS
—BASIC.SYSTEM
—STARTUP

Some of these were mentioned in Chapter 1. In this section each of these will be dis-
cussed in more detail.

The PRODOS file contains the ProDOS operating system program. This program per-
forms the communications required between other system programs, Applesoft II BASIC
programs, and computer hardware items.

The file BASIC.SYSTEM is a system program that will communicate between the
system user and the operating system. A ProDOS system program, such as the
BASIC.SYSTEM, FILER, or CONVERT programs supplied when you purchased ProDOS,
is an assembly-language program. Each program will accept commands from an operator,
check commands for validity, and finally take the appropriate action.

The STARTUP program is the first Applesoft II BASIC program that is executed im-
mediately after the operating system has finished booting and your system is ready to perform
useful work, such as Phasor Pilot-Maze. In DOS 3.3 you were allowed to define the boot pro-
gram to be executed. With SOS 1.1 for the Apple I1I, the boot program name is required to be
HELLO. With ProDOS the name STARTUP is required.

Memory in Apple II computers is divided into 256-byte segments. Each of these
segments is considered a page of memory. ProDOS treats memory in your computer in the
same manner. For each 256-byte segment used, ProDOS will represent that page by setting a
bit to 1 in the system bit map memory area.

When ProDOS is initialized, all memory used is marked used (set to 1) in the system bit
map. As ProDOS runs, it marks each new page used by setting the appropriate bit in the
system bit map. When a page is released, then that bit in the system bit map is reset, changed
to 0.

2.1.1. A startup diskette

ProDOS is able to support and communicate with many different types of disk drives. The
type of disk drive, whether full size, half-height, hard disk, or mini-floppy, and the particular
physical slot location of the disk drive need not be known by the system program. Instead, the
machine-language interface (MLI) has the capability to take care of the interfacing details.
The MLI is discussed in Chapter 9.

In Chapter 1 you created a startup diskette called SCRATCH.DISK. The diskettes in-
serted in the physical disk drives are known as volumes and are identified by names known as
volume names. Volumes and volume names are discussed in Section 2.2.

Today, almost every Apple 11 family computer system will have at least one disk drive.
That disk drive is known as the system’s startup or boot drive. This drive will normally be con-

28 / PRODOS FILES AND COMMANDS

nected to the drive 1 connection on the disk controller card that is normally installed in slot 6.
For the discussion that follows, it will be assumed that:

1. The system startup drive is connected to slot 6, drive 1.
2. Your system has the AUTOSTART ROM chip installed.
3. Your system is configured to accept ProDOS as outlined in Chapter 1.

When you put a diskette, the boot or startup diskette, into the system startup drive
(,S6,D1) and power up your system, the AUTOSTART ROM chip program first executes.
This forces the system to boot up from the startup diskette by installing into memory and ex-
ecuting the ProDOS operating system and by preparing your system to perform work.

The diskettes that cause your system to start up are known as startup diskettes. A
startup diskette must contain all of the information needed to bring a program from the
diskette into your system’s memory and to commence executing the program. A ProDOS
startup diskette holds all of the information needed to bring the operating system into
memory and start it running.

Any ProDOS diskette can be made into a startup diskette by placing the correct files on
that diskette. You did that in Chapter 1 when you created the SCRATCH.DISK. Then, you
did it almost blindly, without explanation. In the next few paragraphs is some explanation. At
power up time, a copy of the ProDOS program is automatically transferred from the diskette
into memory and executed.

A ProDOS startup diskette has the following characteristics:

—It was formatted using the ProDOS FILER program.

—It has the PRODOS program in its volume directory.

—It has the BASIC.SYSTEM program in its volume directory.

—It has an Applesoft 11 BASIC program called STARTUP in its volume directory.

2.1.2. The PRODOS program

The PRODOS program is just what the name implies. It is a set of machine-language routines
that provide the interface to any disk drive manufactured by Apple Computer, Inc. for the
Apple II computers. PRODOS is an operating system program that allows you to manage
many of the resources available to the Apple Il computers, plus handle interrupts and simple
memory management. In addition to all of the above, PRODOS allows you to interface your
own particular routines and additions to ProDOS.

PRODOS has a number of major modules. These are:

System program
receives user commands

External device routines
Command Dispatcher
Machine Language Interface

HOW PRODOS WORK / 29

Block File Manager
disk driver routine
clock/calendar routine

Interrupt Receiver/Dispatcher
interrupt handling routines

2.1.3. The BASIC.SYSTEM program

This part of the ProDOS operating system contains all of the operating system commands and
error routines that are supported by ProDOS. BASIC.SYSTEM allows the user and the
operating system to communicate.

In DOS 3.3 the entire operating system is contained in one program. In ProDOS the
operating system is divided into two parts. This arrangement allows you the ability to insert,
and, or modify your system’s operation. PRODOS contains only the most essential parts of
the operating system. BASIC.SYSTEM allows you to communicate with disk drives from
within Applesoft II BASIC. You may want to install other or different system programs on a
diskette. System programs are recognizable in a CATALOG or CAT presentation by the SYS
abbreviation in the type column.

When you system boots up, the PRODOS program is loaded into memory and then ex-
ecuted. Then the first system program stored on the diskette is loaded into memory and ex-
ecuted. Therefore, you need not have BASIC.SYSTEM as the next file to be executed. Any
file with a name XXXX.SYSTEM (where XXXX may be any combination of letters and
numbers that forms a valid name) may be loaded into memory and executed. More will be said
about this capability later and in Appendix J.

2.1.4. The STARTUP program

This program is an Applesoft II BASIC program that is run by BASIC.SYSTEM when
booting is finished. This program is comparable to the HELLO program of DOS 3.3 or SOS
1.1.

The Apple III operating system (SOS 1.1) requires that this program be called HELLO
and be written in Apple’s Business BASIC. The Apple II computers operating in DOS 3.3
allow you to name this program anything you desire, provided it is memory resident when that
diskette is initialized. It may be written in either of the two BASIC languages. ProDOS re-
quires that this program be written in Applesoft II BASIC and be called STARTUP.

If BASIC.SYSTEM does not find an Applesoft Il BASIC program named STARTUP,
the following message is then displayed:

PRODOS 1.0 ©1983 APPLE COMPUTER

and you are left in the immediate mode with the Applesoft II BASIC prompt character and
cursor. This means that the booting process is complete and it is up to you to command your
system for the next evolution.

30 / INTRODUCTION

2.2. VOLUMES AND FILES

A file is the basic informational storage unit. Any file may contain any set of information
such as names, numbers, letters, pictures, Applesoft II BASIC programs, lists, machine-
language programs, or graphs.

A file may be defined as a collection of related information stored on some medium
under a shared name. When a file is stored on a ProDOS diskette, it is assigned a name and a
file type. After a file is stored, access to the information stored in that file is gained through
the use of that file’s name. The file’s type determines the kind and character of the informa-
tion stored in the file. '

When you assign a name to a file, there are a few rules that you must follow. In the
following paragraphs, the ProDOS file name conventions will be given, followed immediately
with the DOS 3.3 conventions. In this way you will be able to make comparisons and quickly
understand the differences.

A ProDOS file name:

—is composed of up to 15 characters.
—must have a capital letter of the alphabet the first character.
—may contain any alphabetic characters (A-Z and a-z).
—may contain any numeric digit (0-9)
—may contain the period character (.).
—automatically converts lowercase characters to uppercase.
—must be unique. This means that no two names are to be exactly the same in one directory.
Files of the same name must be in different directories or on different diskettes.
A DOS 3.3 file name:

—is composed of up to 30 characters.

—must have a capital letter of the alphabet as the first character.
—allows all typable characters except a comma (,).

—must be unique. Files of the same name must be on different diskettes.

Figure 2.1 shows a number of legal and illegal ProDOS file names with comments con-
cerning the illegal file names.

Legal file names Illegal file names Comments
TWO.NAMED.FILES 2.NAMED.FILES Begins with a number
D2 .D2 Begins with a period
A.123.FILE A 123 FILE Contains spaces
FUNNY.FACE FACE,FUNNY Contains a comma

DISESTABLISH DISESTABLISHMENT More than 15 characters

VOLUMES AND FILES / 31

DUMMY.DATA DUMMY/DATA Contains a slash character
Funny.file funny.file First character not capital

Figure 2.1. ProDOS file names.

There are files of many types, such as program files, text files, binary files, and the most
important new type known as the directory file. The directory file is dicussed next.

2.2.1. The directory

A directory file is like any other file except that it contains only the names, locations, and
types of the files in that directory. Figure 2.2 shows two different directories.

This figure shows that the volume directory presently contains four files. These are two
additional directories or subdirectories and two other files. The additional subdirectories each
contain a number of other files. The diagram also shows that additional files and directories
may be added, up to the capacity of the diskette. In fact, ProDOS is able to support a file or
file structure of up to 32 megabytes, not on one diskette, however.

Volume
Directory

1
[ormart] [omeenz] [Eex] [Fey]

Figure 2.2. Directory file examples.

32 / PRODOS FILES AND COMMANDS

Notice that the directories may contain any number of files of any type. In fact, one or
more of the files in a directory may be another directory, known as a subdirectory. ProDOS
allows you to have up to and including 64 levels of directories on any one diskette or other
storage medium. You will find that trying to handle effectively more than four or five levels of
directories is difficult. It becomes somewhat lengthy to program, to remember, and to type
correctly.

In Chapter 1, you formatted a diskette. By the way, a formatted diskette does not con-
tain the operating system. The FILER program was used to place a special directory on the
newly formatted diskette. It is called the volume directory and has the name you assigned,
known as the volume name. This is the main directory for the entire diskette. The volume
directory characteristics are shown in Figure 2.2.

A ProDOS volume directory:

—is on every ProDOS formatted diskette.

—is named when you format a diskette.

—identifies the entire contents of that diskette.

—is the diskette’s name.

—may contain up to 51 files.

—may not be created using the CREATE command or the FILER command, Make Direc-
tory.

—cannot be removed using the DELETE command.

—cannot be protected using the LOCK command.

—may only be removed by reformatting the diskette.

If you want to see the contents of an entire diskette, it is only necessary to use the volume
directory name coupled with the CAT or CATALOG command. These two commands are
discussed next.

Place the backup copy of the /PRODOS diskette in drive 1 and power up your system
using the procedure outlined in Section 1.4. Then try the following commands using your
backup copy of the /PRODOS diskette:

JCAT /PRODOS
This command will give you the contents of the /PRODOS diskette. In the 40-column format,
your screen will look similar to that shown in Figure 2.3a.

Now, if you have an 80-column board in slot 3 or an Apple Ile, try the following after in-
voking the 80-column format. The 80-column format may be invoked by typing:

JPR#3
Now, you use the other cataloging command:

JCATALOG /PRODOS

TYPE BLOCKS MODIFIED CREATED

A 1-JaH-64 0:60 <G OATE)
¢ 15-HIV-63 6:08 (O DATE:
¢ g3 B:60 CHO DATED
{H0 DRTE?

.97 (N0 DATE)

2:32 (HO DATED

30 (N0 DATE)
. (N DATE?

5 (N DATE:

¢HD DATE)

¢HO OATE)

{H0 GATE

T 20-DEC § oI
k] 37 MO ATE
1 555 IE)
{71 § N0 ORTE

NEED: 268 TOTAL BLOCKS

Figure 2.3a. CAT files on /PRODOS.

FRODODS

8
=
(d)

MODIFIED

(o) ¥4 AR TN |

(R ey

1
|
Vad
1
7
9
17
29
1
3
6
&
1
4

ELOCES FREE: ELOCKS

1

Figure 2.3b. CATALOG files on /PRODOS.

33

34 / PRODOS FILES AND COMMANDS

In this case, notice that the video screen contains more information. This is shown in
Figure 2.3b.

There is a detailed discussion of the meaning of each of the columns and the specific dif-
ferences between the CAT and CATALOG commands in Section 3.1. For now, just realize
that there are differences in the commands and different information is presented to the video
screen depending upon which command is used.

Notice that some of the files are directories. These contain the names and addresses of
other files on the diskette. This can be immediately recognized by the DIR abbreviation in the
TYPE column to the right of the file name presented on the video screen.

The program that follows reads a directory and displays the contents of that directory
on your video screen in either a 40-column or an 80-column format. It assumes that your
80-column text card is installed in slot 3 and may be activated in the normal way.

]NEW
JLIST

REM ##%%%% READ.DIRECTORY **kk*
REM #
REM * WRITTEN BY:JL CAMPBELL
REM * DATED:10/10/1983
REM
REM
REM
REM *
REM *kkkkkkkhkhkhkhhkkhhhhhhhhhkkhk

0 TEXT : CLEAR : HOME : POKE 216,0:D$ = CHR$ (4)

15 PRINT D$;"FRE"

20 PRINT CHRS$ (27); CHR$ (17);: REM FORCE 40-COLS

25 FOR I =1 TO 39: PRINT "*";: NEXT I: PRINT

30 PRINT "*";: HTAB 39: PRINT "%V

35 PRINT "*";: HTAB 14: PRINT "READ CATALOG";: HTAB 39: PRINT "*"

40 PRINT "*";: HTAB 39: PRINT "*"

45 FOR I =1 TO 39: PRINT "*";: NEXT I: PRINT

50 VTAB 7: CALL - 958: INPUT "DIRECTORY NAME = ";PR$

52 IF LEFT$ (PR$,1) = "/" THEN 56

54 PR$ = "/" + PRS

56 IF RIGHT$ (PR$,1) < > "/" THEN 60

58 PR$ = LEFT$ (PR$, LEN (PR$) - 1)

60 VTAB 9: CALL - 958: INPUT "CHOOSE: 1=40-COLS 2=80-COLS ";N

65 IF N =1 OR N = 2 THEN 80

70 VTAB 22: HTAB 13: INVERSE : PRINT "ILLEGAL ENTRY!";

CHR$ (7): NORMAL

75 FOR I =1 TO 1000: NEXT I: GOTO 60

80 IF N =1 THEN W = 39

85 IF N = 2 THEN W = 79: PRINT D$;"PR#3": REM ACTIVATE 80-COLS

90 HOME

100 PRINT D$;"OPEN ";PR$;",TDIR"

120 PRINT D$;"READ ";PR$

COMPUTER:APPLE II+ & IIE
LANGUAGE:APPLESOFT II

SO oOoONOVEWN
* * *

VOLUMES AND FILES / 35

130 INPUT N$: PRINT LEFT$ (N$,W): REM READ NAME

140 INPUT T$: PRINT LEFTS$ (T$,W): REM READ TITLE

150 INPUT L$: PRINT L3$: REM READ BLANK LINE

160 INPUT NF$: PRINT LEFT$ (NF$,W): REM READ FILE NAMES
170 IF NF$ < > "" THEN GOTO 160

180 INPUT B$: PRINT LEFT$ (B$,W): REM READ BLOCK COUNT
190 PRINT D$;"CLOSE ";PR$

200 END

A line-by-line explanation of the above program follows.
Line Description

Line 1-9 Identify the program.
Line 10 Set up a clean machine.
TEXT means to place your machine in the text mode and place the cursor at the
bottom of the screen.
CLEAR means to clear all variables and more importantly the processor stack.
HOME means to place the cursor at the top of the screen and clear the entire
screen.
POKE 216,0 means to turn off the disk operating system error flag.
D3 is assigned the disk operating system character.

Line 15 Perform a quick ProDOS garbage collection.

Line 20 Print those characters that sets your machine to a 40-column presentation.
Line 25 Print a line of asterisks at the top of the screen.

Line 30 Print asterisks at the left and right edge of the screen.

Line 35 Print screen title.

Line 40 Print asterisks at the left and right edge of the screen.

Line 45 Print a line of asterisks on the screen,

Line 50 Position cursor, clear the screen, and ask operator to enter the directory name.
Line 52 Test the left of the pathname for a slash, */*’.

Line 54 If slash is not present then affix slash to the front of the name.

Line 56 Test the right end of the directory name for a slash.

Line 58 Take the right end slash off the name.

Line 60 Position cursor to line 9.

Clear the screen.
Ask operator for the presentation required.

Line 65 Test the response for a valid answer.

Line 70 Error message if response is not correct.

Line 75 General delay loop for error message presentation.

Line 80 If 40-column presentation, then set the width, W, to 39.
Line 85 If 80-column presentation, then set the width, W, to 79.

Then turn on the 80-column card in slot 3.
Line 90 Clear the screen.

36 / PRODOS FILES AND COMMANDS

Line 100 Open the directory file specified.
Line 120 Read the file specified.

Line 130 Input the name of the directory and print it on the screen.
Line 140 Input the column titles that are to be presented.
Line 150 Input the blank line.
Line 160 Input the first file name in the directory specified.
Line 170 Test for a null string.

If false, loop back and read another file name and data.
Line 180 Input the blocks used and free count.

Line 190 Close the specified file.
Line 200 End the program.

Note: This program assumes you have an 80-column card installed in slot 3.
The next section talks about a pathname and how it is used.

2.2.2. The pathname

ProDOS must know how to find any file that you want to retrieve from a diskette. In order to
do this, you must define to ProDOS ‘‘the yellow brick road’’ to follow from the diskette’s
volume directory to the storage location of the file you want. This road is called the
‘“pathname.”’ The pathname concept is not supported in DOS 3.3.

The pathname defines to ProDOS how to proceed from the volume directory to the file
being retrieved. For example, I need to know the PROFIT information from the subdirectory
LEMONADE.STAND in the volume directory MY. The pathname would then be:

/MY/LEMONADE.STAND/PROFIT

Now that you know how a pathname looks, let me define how it is composed.
A ProDOS pathname:

—is a series of file names, preceded and separated by slashes.

—has a slash as the first character in the pathname.

—has a volume directory file name as its first entry.

—is less than 65 characters long, including slashes and all subdirectory names and file name.

These rules are shown diagrammatically in Figure 2.4.

Next, let us look at a typical set of files that might be stored on a diskette. The file
storage structure is shown diagrammatically in Figure 2.5.

From the diskette diagram in Figure 2.5 you can see how files are organized on a
diskette. The volume directory name is MY. This directory contains three files, BANK,
HOME, and CREDIT.CARDS. The files BANK and HOME are subdirectories. The BANK
subdirectory contains two files named NOTES and CASH. The NOTES file is another sub-
directory that contains the files DUE and PAID. The HOME subdirectory also contains two
files named STOCKS and BONDS. The pathnames to each of the files on the MY diskette are:

VYOLUMES AND FILES / 37

/ > File name —

Figure 2.4. ProDOS pathname structure.

/MY/BANK/NOTES/DUE
/MY/BANK/NOTES/PAID
/MY/BANK/CASH
/MY/HOME/STOCK
/MY/HOME/BONDS
/MY/CREDIT.CARDS

Another view of the pathnames to the diskette contents are shown below. Notice that the
directories and subdirectories are shown with a slash character preceding the name, and no
slash character is shown for file names. The reason for this is because ProDOS allows you to
set a partial pathname known as the PREFIX. The PREFIX is discussed in Section 2.2.3.
With a properly assigned PREFIX, you need only refer to a file by its name.

/MY
/BANK
/NOTES
DUE

]

E’E EME CREDIT

.CARDS

[wotes | [casu | [stock | | sowos |

[oue | | pa |

Figure 2.5. Typical disk file storage.

38 / PRODOS FILES AND COMMANDS

PAID
CASH
/HOME
STOCKS
BONDS
/CREDIT.CARDS

Now you know how to proceed from the volume directory to a file and how a pathname
is constructed. It would really be nice if there were a shorthand way to set or save a pathname
or partial pathname. Fortunately, there is a way to reduce your typing on the keyboard or
reduce the size of your coding requirements. It is called the PREFIX. The prefix capability is
discussed in the next section.

2.2.3. The PREFIX

As you store new files on a diskette in different directories or subdirectories, the pathname re-
quired to reach those files could get rather long. As pathnames get longer, typing errors are
more prone to occur. ProDOS provides you with a means of having to type a pathname or
partial pathname once. It is called PREFIX. The prefix capability is not supported by DOS
3.3.

By assigning the PREFIX variable name to the pathname or to a partial pathname, you
can refer to a particular file name without having to type in the entire pathname. A partial
pathname is actually only the pathname minus what has been assigned to the PREFIX.

The best way to understand the prefix concept is through the use of some simple ex-
amples. These are shown in Figure 2.6.

ProDOS must find file Current PREFIX is You should type
/DISKNAME/REALLY/LEGAL /DISKNAME/ REALLY/LEGAL
/DISKNAME/REALLY/LEGAL /DISKNAME/REALLY/ LEGAL
/MY/BANK/NOTES/DUE /MY/ BANK/NOTES/DUE
/MY/BANK/NOTES/DUE /MY/BANK/ NOTES/DUE
/MY/BANK/NOTES/DUE /MY/BANK/NOTES/ DUE
/MY/HOME/STOCK /MY/ HOME/STOCK
/MY/HOME/STOCK /MY/HOME/ STOCK
/MY/HOME/BONDS /MY/HOME/ BONDS
/MY/CREDIT.CARDS /MY/ CREDIT.CARDS

Figure 2.6. Prefixes and pathnames.

Notice that some of the examples in Figure 2.6 show the pathnames that were shown
diagrammatically in Figure 2.5. The third column entries of Figure 2.6 are partial pathnames.

VOLUMES AND FILES / 39

A full pathname is formed by concatenating the PREFIX with the partial pathname. If a
prefix does not match any portion of a pathname, then you should change the PREFIX name.
It is recommended that you thoroughly understand the pathname and partial pathname
concept because you will be using them all the time in your programming. The rules for form-
ing a partial pathname are shown below.
A ProDOS partial pathname is:

—a file name, or a series of file names separated by slashes.
—the pathname minus the current prefix.
—Iless than 65 characters long, including pathnames and slashes.

The PREFIX command is used to set the prefix name. This command is discussed in
detail in Section 3.2.

2.3. PRODOS AND PROGRAMS

This section describes those ProDOS commands you will need to make use of Applesoft II
BASIC programs stored on a diskette. You will find that there are some very interesting added
capabilities to these ProDOS commands as compared to DOS 3.3.

The next section introduces you to a new and very handy capability. It is the — (DASH)
command.

2.3.1. The — (DASH) command

The — (DASH) command is a new feature of ProDOS. This command allows you to bring
into memory and run an Applesoft II BASIC program, machine-language routine, an EXEC
file, or a system program. In simpler terms, the — (DASH) command allows you to run from
the disk any program regardless of which program type is supported by ProDOS. The —
(DASH) command is also known as an intelligent RUN command. This command is not sup-
ported in DOS 3.3.

To run a program using this capability you issue from the immediate mode the
command:

]'_ pn [aS#] [!D#]

Let’s look at an example. Suppose that you want to run the FILER program on the
USERS.DISK that came with your ProDOS system. This was done in Chapter 1 when you
copied diskettes and created a diskette of your own. Place the EXAMPLES in one of your
disk drives and then type:

]— /EXAMPLES/FILER

40 / PRODOS FILES AND COMMANDS

This command, when executed, will bring the FILER program into memory and then
start execution of the program. The — (DASH) command may be used with any type of pro-
gram file, The file types are described in Chapter 3.

There is only one caution for using the — (DASH) command with a system program. As
the system program is brought into memory, everything else in memory is erased or destroyed.
If you are writing an Applesoft II BASIC program, please, make sure that the latest version
has been saved before running any system program.

Option Description

pn pn is the pathname or partial pathname of the file containing the program you want
to run. The file type must be BAS, BIN, TXT, or SYS. Binary files are loaded at
the address from which they were saved.

[,S#] The slot option defines the disk drive slot location.

[,D#] The drive option defines the disk drive location in a slot.

Examples of the — (DASH) command

— FILER
—/USERS.DISK/FILER
— EXAMPLES

— CONVERT

2.3.2. The RUN command

The RUN command is used for the purpose of loading and executing an Applesoft II BASIC
program stored on a diskette. You may use either of the two commands that are shown below:

JRUN pn [,@#] [,S#] [,D#]

]— pn [sS#] [!D#]

The RUN command is described in this section. The — (DASH) command was dis-
cussed in the previous section. The RUN command acts the same as in DOS 3.3, except for the
new @# option. This newly added option will be discussed in this and other sections of this
book.

When you use the RUN command without the @# option, ProDOS will find the pro-
gram file indicated by the pathname, LOAD the file into memory, and commence execution
of the program file from the beginning of the file.

For example, to run the program MATH.DEMO located on your /SCRATCH.DISK
diskette, use the command:

VOLUMES AND FILES / 41

IRUN /SCRATCH.DISK/MATH.DEMO

When the program is finished, you may restart it by using the command:

IRUN

without any options.

You may do this because the RUN command without the file name option present is ac-
tually an Applesoft II BASIC command instruction. Therefore, ProDOS will relinquish con-
trol of your system in favor of the Applesoft II BASIC language interpreter for further proc-
essing. You see, the RUN command without the file name option is not a valid ProDOS

command.

Option
pn

L@#]

[,S#]
[,D#]

Description

pn is the pathname or partial pathname of the file containing the program you
want to run. The file must be an Applesoft II BASIC program.

By using this option, an Applesoft II BASIC program will commence exe-
cution at the line number specified by the #. If this option is omitted, pro-
gram execution begins at the lowest numbered line in the program.

The slot option has its normal meaning.

The drive option has its normal meaning.

Let’s create a very simple program to illustrate the RUN command. Power up your
system with the SCRATCH.DISK in the boot drive. Now enter the following program.

INEW

JLIST

100 PRINT “‘LINE 100 EXECUTED”
200 PRINT ““LINE 200 EXECUTED”’

300 END

Now that you have entered this program, save it on your diskette using:

ISAVE /SCRATCH.DISK/EXAMPLE

Let’s now RUN the program. You should see the following.

LINE 100 EXECUTED
LINE 200 EXECUTED

Clear the current program from memory by typing:

42 / PRODOS FILES AND COMMANDS

INEW

The next thing to do is to run the EXAMPLE program from the diskette starting at line
200. This is done by typing:

JRUN EXAMPLE, @200
You should see:
LINE 200 EXECUTED

printed on the screen.
If you LIST the program, you see that the entire program is in memory.

Examples of the RUN and RUN @# commands

RUN * Applesoft II BASIC command
RUN EXAMPLE

RUN EXAMPLE, @100

RUN EXAMPLE,@200,S6,D1

2.3.3. The LOAD command

If you want to move a copy of an Applesoft II BASIC program from its diskette storage loca-
tion to the memory of your system, use the LOAD command. This command works exactly as
it does in DOS 3.3. The syntax of this command is:

JLOAD pn [,5#] [,D#]

This command is used when you want to examine, modify, or list a program. When you
load a program or file into memory, you are actually loading a copy of that program or file
into memory. The diskette still contains that program or file unchanged. There is only one
caution for loading a program: any previous program in memory is lost. So, be careful.

Once a program is loaded into memory, you may run it by typing RUN. What this
means is that a program in memory is not identified by a name.

Option Description

pn pn is the pathname or partial pathname of the file containing the Applesoft II
BASIC program you want to load into memory.

[,S#] The slot option has its normal meaning.

[,LD#] The drive option has its normal meaning.

SUMMARY / 43

Examples of the LOAD command

LOAD EXAMPLE

LOAD EXAMPLE,S6,D1

LOAD /SCRATCH.DISK/EXAMPLE
LOAD /SCRATCH.DISK/EXAMPLE,S6,D1

2.3.4. The SAVE command

The SAVE command is for the purpose of transferring the program currently in memory to a
program file on a diskette. This command works exactly the same as in DOS 3.3. The syntax
for this command is:

ISAVE pn [,S#] [,D#]

When the file is stored on the diskette, it is saved as an Applesoft II BASIC program
(BAS). If this file never existed, ProDOS will create the file.

When you save a program file using a program name that already exists on a diskette,
that file must be unlocked and be of the same type. This means that you cannot save a text
type file of the name DUMMY, for example, to an Applesoft II BASIC program file of the
same name.

Every file on a diskette must have a unique file name in addition to having the correct
data type match for that file name.

Option Description

pn pn is the pathname or partial pathname of the program file you want to save. If the
pn program file already exists, that program must be unlocked.
[,S#] The slot option has its normal meaning.

[,LD#] The drive option has its normal meaning.
Examples of the SAVE command

SAVE EXAMPLE

SAVE EXAMPLE,S6,D1

SAVE /SCRATCH.DISK/EXAMPLE
SAVE /SCRATCH.DISK/EXAMPLE,S6,D1

SUMMARY

The concepts of a volume and its contents, the files and other directories, were discussed. This
chapter also showed the relations among a volume, a directory, a subdirectory, and file.

44 / PRODOS FILES AND COMMANDS

ProDOS and how it works were described in some detail. You were shown how ProDOS
manages the resources available.

The requirements for creating a ProDOS startup diskette were discussed. Each of there-
quired programs and their purposes were explained.

The rules for creating file names were outlined and defined. A comparison was made to
the rules for creating DOS 3.3 file names.

The pathnames for files and how to use pathnames and partial pathnames were dis-
cussed and examples, both legal and illegal, were given. The PREFIX capability and how it
relates to pathnames was discussed.

The following figure summarizes the pathname, slot, and drive option combinations
available in ProDOS.

[pn] [,S#] [,D#] Pathname desired
- - - See command description
ppn pn = prefix + ppn*

* If the prefix is empty, the last value of slot and drive is used.

When only slot is given, drive 1 is assumed
When only drive is given, the last slot value used is assumed.

* %

ppn + + pn = vn + ppn
ppn + - pn = vn + ppn**
ppn - + pn = vn + ppn***
pn - - pn = pn

pn + + ph = pn

Notes:

+ = option used

— = option not used

pn = pathname

ppn = partial pathname

vin = volume name of diskette

*
*
»

Figure 2.7. Pathname slot-drive summary.

In this chapter you were introduced to the following ProDOS commands:

CAT e.g., CAT Immediate and deferred
CAT /PRODOS

CATALOG e.g., CATALOG Immediate and deferred
CATALOG /PRODOS

PREFIX e.g., PREFIX /PRODOS/STATES Immediate and deferred

RUN e.g., RUN /PRODOS/DUMMY

RUN
e.g., — DUMMY

LOAD e.g., LOAD /PRODOS/VIEW
SAVE e.g., SAVE /MY.DISK/DEMO

QUESTIONS

A el M

Describe the requirements for creating pathnames.

Discuss the PREFIX command in detail. Why is it important?
How are files stored on a ProDOS diskette?

Compare the rules for naming files in ProDOS and DOS 3.3.

Describe the — (DASH) command. Explain why it is so handy.

Why is the new option to the RUN command so important?
What are the rules for volume directories and subdirectories?

QUESTIONS / 45

Immediate and deferred

Immediate mode only
Immediate and deferred
Immediate and deferred

3. HOUSEKEEPING
COMMANDS

Housekeeping in common for

women is the acid test.

Andre Maurois, 1924

3.0. OVERVIEW

This chapter describes those ProDOS commands that let you manipulate the files stored on
your diskettes.

In general these are called housekeeping commands. This entire chapter discusses only
these commands. Special attention should be given to the CREATE command and the accom-
panying table of file types.

In general, these are the commands that let you do things from either the immediate or
the deferred modes to keep things neat, to see things, to get rid of things, or to create things.

This chapter will give you many examples of how to use each of these commands, along
with the syntax required by each command.

The commands introduced in this chapter are shown in the box below.

46

THE CAT AND CATALOG COMMANDS / 47

CAT e.g., CAT /PRODOS Immediate and deferred
CAT /PRODOS,S6,D1

CATALOG e.g., CATALOG /PRODOS Immediate and deferred
CATALOG /PRODOS,S6,D1

PREFIX e.g., PREFIX /PRODOS Immediate and deferred
PREFIX /S6,D1

CREATE e.g., CREATE PIC4,TBIN Immediate and deferred
CREATE DIRECTORY,TDIR

RENAME e.g., RENAME STOCKS, PORTFOLIO Immediate and deferred
RENAME DEBTS,LOSSES

DELETE e.g., DELETE /MY/LOSSES Immediate and deferred
DELETE /MY/DEBTS,S6,D2

LOCK e.g., LOCK /MY/PORTFOLIO Immediate and deferred

UNLOCK e.g., UNLOCK /MY/PORTFOLIO Immediate and deferred

CHAIN e.g., CHAIN PART.TWO Immediate and deferred

STORE e.g., STORE /MY/DEBTS Immediate and deferred
STORE VAR.TABLE

RESTORE e.g., RESTORE /MY/DEBTS Immediate and deferred

PR# e.g., PR#6 Immediate and deferred
PR#0

IN# e.g., IN#2 Immediate and deferred
IN#0

3.1. THE CAT AND CATALOG COMMANDS

These two commands allow you to view the names and other characteristics of the files you
have stored on a diskette. By this time you should feel comfortable with both of these, since
you used them in Chapters 1 and 2. The syntax of these commands has the following form:

48 / HOUSEKEEPING COMMANDS

ICAT [pn] [,S#] [,D#]

JCATALOG [pn] [,S#] [,D#]

When you use the CAT or CATALOG command you will see an entirely different
screen presentation from DOS 3.3. CAT is not supported in DOS 3.3. CATALOG is the same
command for both DOS 3.3 and ProDOS; however, this command produces a lot more infor-
mation on the video screen, especially when you are in the 80-column format under ProDOS.

Let’s look first at the CAT command. From the immediate mode type:

]JCAT

You should see something like:

/PRODOS

NAME TYPE BLOCKS MODIFIED
*PRODOS SYS 3 1-OCT-83
*BASIC.SYSTEM SYS 21 1-OCT-83
*STARTUP BAS 1 15-JUL-83
BLOCKS FREE: XXX BLOCKS USED: XXX

At the top of the screen is the volume name, /PRODOS in this case. The diskette in the
disk drive accessed will determine the volume name presented.

The next set of data is a line-by-line presentation of the files, the files in the volume
directory in this case.

The first column of data tells you if a file is locked or unlocked. If the file is locked, Pro-
DOS uses the familiar asterisk (*) character. If no character is present, then the file is
unlocked.

The second column gives you the name of the file. Remember the file name rules?

The third column shows you the type of the file. All of the file type abbreviations are
shown in the next section.

The next column gives you the number of blocks of storage space required to store the
file. A block of storage is 512 bytes.

The last column gives you the last date the file was modified. If ProDOS does not know
the date the term <NO DATE> will placed in this area.

THE PREFIX COMMAND / 49

After all of the files in the directory have been listed, there is a summary line given that
tells you how many blocks have been used and how many blocks are still available.

In Chapters 1 and 2 you used these commands. If you use the CATALOG command
when in 40 columns, the information presented will occupy 2 lines on your video screen, be-
cause the information will wraparound on the screen. In Chapter 2 you invoked the
80-column board presentation and looked at the information presented. In order to invoke an
80-column presentation, it was only necessary to address the slot that contains the board. It is
done with: ’

JPR#3

Once you are in the 80-column format, the CATALOG command will give you even
more information than the CAT command. The only additional information that needs to be
explained is the final column. This is the ENDFILE SUBTYPE column. This column gives
you the number of bytes of storage space required on the diskette. For most files, this is a
single number. However, in the case of a binary file, there is an address listed. This address is
where the binary file will be loaded into memory, if you do not override the loading address by
using the address option. This is explained in Chapter 6 when the BLOAD command is
discussed.

The other possible entry in this column is an R parameter. This parameter gives you the
record length of an individual record in a random-access file. Random-access files are dis-
cussed in Chapter 5.

Examples of the CAT and CATALOG commands

CAT

CATALOG

CAT,S6,D2
CATALOG,S6,D2

CAT /MY/NEW.DIR
CATALOG /MY/NEW.DIR

3.2. THE PREFIX COMMAND

There are times when you will be referring to a set of files within a single directory that have
the same pathname except for the names of the files that contain the information you wish to
retrieve. It is very tedious, cumbersome, and error prone to type the entire pathname each
time you wish to retrieve one of these files. By using the PREFIX command, you can set the
prefix to the name of the directory or a partial pathname. This will allow you to refer to files
by their name only. This command was not available in DOS 3.3.

In order to assign a new value to the prefix or display the current prefix, use the
command:

50 / HOUSEKEEPING COMMANDS

JPREFIX [pn] [,S#] [,D#]

Let’s assume that your current prefix is /PRODOS/ and you want to load the program
EXAMPLE located on the diskette in drive 2. The volume name of that diskette is
/SCRATCH.DISK/. The entire pathname for the EXAMPLE file is /SCRATCH.DISK/
EXAMPLE. In order to load that program into memory, you would have to type the entire
pathname for that program. It would be much easier to set the prefix to a new partial path-
name: then you will need to only refer to the file name by itself. Use the command:

JPREFIX /SCRATCH.DISK

Now, you can refer to EXAMPLE by its name only.

When you first power up your system, the PREFIX variable is left blank or empty. The
slot and drive defaults are set to the slot and drive values that contain the diskette used during
the powerup phase. When the prefix is empty, ProDOS uses the default slot-drive combina-
tion to find files stored on a diskette because no other information is available.

Option Description

[pn] pn must be the pathname or partial pathname of a directory file, When you assign a
prefix, your system will test all peripheral storage devices looking for a valid
match for the new PREFIX. If no match is found a FILE NOT FOUND or
FILE TYPE MISMATCH error results.

[L,S#] If you specify the slot and drive instead of a file name,

[,D#] Then the volume name of the indicated diskette is assigned to PREFIX. On one
drive systems, refer to that drive using both the slot number and drive 1.

To determine what the current PREFIX contains, type:
JPREFIX

Let’s now take a couple of examples to see how this works. Assume that the ProDOS
diskette is installed in disk drive 1. Set the prefix to indicate the volume directory. Examples
are shown in Figure 3.1.

Setting PREFIX PREFIX Value

JPREFIX /PRODOS /PRODOS/
JPREFIX /PRODOS,S6,D1 /PRODOS/
JPREFIX ,S6,D1 /PRODOS/

THE PREFIX COMMAND / 351

JPREFIX /PRODOS/DOGS (FILE NOT FOUND)
JPREFIX / (blank)

Figure 3.1. PREFIX examples.

There are some things you need to notice. First, ProDOS adds a slash to your prefix if
you do not supply the ending delimiter. Second, ProDOS will supply the volume directory
when you specify the slot and drive numbers. This is very handy when you do not remember
the prefix associated with a volume. Power up your system and try some of these options.

When you start up /PRODOS or any other ProDOS diskette, the value in the prefix buf-
fer is left blank. The slot and drive defaults are set to indicate the disk drive containing that
diskette. When the prefix is blank, ProDOS will look for files located on the diskette
designated by the default slot and drive.

If you do not use the options with the PREFIX command, the current value of the prefix
is used.

In your own programs, when you use the PREFIX command with no options, the next
INPUT statement in your program expects to read the prefix. If you do specify options, then
the prefix is not displayed, but it is assigned the new value,

Assume that you have ProDOS booted with the /SCRATCH.DISK disk indrive 1. You
now want to determine the current prefix under program control. Let’s write a program to do
that.

INEW

JLIST

100 D$ = CHR$(4): REM CHR$(4) = CTRL-D
110 PRINT D$;*‘PREFIX"”’

120 INPUT PF$

130 REM

140 REM * REST OF PROGRAM
150 REM

200 PRINT D$;‘‘PREFIX "’ ;PF$
210 END
Lines Description
Line 100 Set CTRL-D to signify a ProDOS command.

Line 110 ProDOS command for PREFIX.
Line 120 Read the prefix in PF$ variable.

52 / HOUSEKEEPING COMMANDS

Lines 130-150 Remark statements.
Line 200 Restore the prefix to the original value.
Line 210 Terminate the program.

You give the prefix command without any options, as discussed above, and then INPUT
the PREFIX value into a string variable. Later in your program you may then restore the old
value before leaving the program.

3.3. THE CREATE COMMAND

The purpose of the CREATE command is to create files of all types, although its primary pur-
pose is to create directory files. ProDOS files can also be created using other commands. A
volume directory file can store the names and locations of a maximum of 51 files. It is recom-
mended that you create directories on a diskette before placing any other files on that diskette.
DOS 3.3 does not have this command. To create a file use the syntax that follows:

JCREATE pn [,Ttype] [,S#] [,D#]

Notice that the CREATE command has a new and different option from the options
shown previously in this chapter. This option is the Ttype, which determines the type of file to
be created. If the type option is left out, then a directory file is created. Therefore, if you wish
to create a file other than a directory, you must use the Ttype option.

For example, you may create a directory file named /CHECK.BOOK using the
command:

JCREATE /CHECK.BOOK

The number of files you may place into a directory is limited only by the space available
on a diskette. The size of a directory file is determined by the number of files in that directory.
The volume directory name is the only exception to this rule. The volume directory name is
created when the volume is formatted.

The first storage block (512 bytes) of diskette space used by the directory can hold a
maximum of 12 file names. After that, each additional directory block can hold 13 file names.

Option Description

pn pn is the pathname or partial pathname of the file that you are creating. Remem-
ber the file you are creating must not already exist.

[,Ttype] T defines the fact that the next three letters is the type designator for the file to be
created. The file type abbreviations are shown in Figure 3.2. The figure shows a
number of file characteristics. The only column of interest at this time is the ab-
breviation column.

THE CREATE COMMAND / 53

Values
File type Abbreviation Hex= Dec Notes
Typeless file $00= O (SOS and ProDOS)
Bad Block file BAD $01= 1
Pascal code file PCD *$02= 2
Pascal text file PTX *303= 3
ASCII text file TXT $04= 4 (SOS and ProDOS)
Pascal data file PDA *$05= 5
Binary file BIN $06= 6 (SOS and ProDOS)
Font file FNT *$07= 7
Graphics screen file FOT *$08= 8
Business BASIC program BA3 *$09= 9
Business BASIC data DA3 *$0A= 10
Word processor file WPF *$0B= 11
SOS system file SOS *$0C= 12
SOS reserved *$0D= 13
SOS reserved *$0E= 14
Directory file DIR $0F= 15 (SOS and ProDOS)
RPS data file RPD *$10= 16
RPS index file RPI *$l1= 17
SOS reserved types * $12=8BF (reserved - SOS)
ProDOS reserved types $CO=3EF (reserved - ProDOS)
ProDOS added commands CMD $F0= 240
ProDOS user defined $F# F1-3F8 (1-8 files)
ProDOS reserved $F9=249
Integer BASIC program INT $FA =250
Integer BASIC variables IVR $FB =251
Applesoft II BASIC BAS $FC=252
Applesoft II variables VAR $FD =253
Relocatable code file REL $FE=254
ProDOS system file SYS $FF =255

Notes:

1. The * character designates Apple III SOS only.

2. The * marked file types are not used by ProDOS.

3. There are a number of values reserved for specific operating systems other than ProDOS.
4, There are abbreviations you may never come across unless you have an Apple III.

Aside: (a) Extensions to ProDOS could easily be made to include additional file types.
(b) Notice the capability for you to add file types of your own now.

[,S#1-The slot and drive options have their normal meanings.
[,D#]

54 / HOUSEKEEPING COMMANDS

The new CREATE command gives you a very handy way to test for the existence or nonex-
istence of files.

Examples for the CREATE command

- CREATE /MY/BANK DIR file created
CREATE /MY/BANK,TDIR DIR file created
CREATE /MY/BANK/NOTES,TDIR,S6,D2 DIR file created
CREATE /MY/CREDIT.CARDS, TTXT TXT file created

. CREATE MY/TIME.SYSTEM,TSYS,D1 SYS file created

3.4. THE RENAME COMMAND

The RENAME command is for changing the name of a file that is already stored on a diskette.
This command operates essentially the same way as the RENAME command in DOS 3.3. The
syntax of the command is:

JRENAME pnl,pn2 [,S#] [,D#]

The pnl is the pathname of a file that is to be changed to pn2. The only caution is that
pn2 must be in the same directory as pnl. Therefore you can use:

JRENAME /MY/STOCKS/PERSONAL,/MY/STOCKS/PORTFOLIO

to change the PERSONAL file’s name to PORTFOLIO. However, you cannot use the
command:

RENAME /MY/PERSONAL/STOCKS,/MY/STOCKS/PORTFOLIO

If you need to move a file from one directory to another, it is usually necessary to use the
FILER capability. This is discussed in Chapter 8.

Option Description

pni,pn2 pnl and pn2 are the pathnames that indicate the storage location of the file. Both
of these pathnames must be unique. There are a number of possible errors that
could result from using incorrect pathnames.

[,S#] Both the slot and drive options have their usual meanings.

[,D#]

Examples for the RENAME command

THE LOCK AND UNLOCK COMMANDS / 55

RENAME /MY/DEBTS/OWED,/MY/DEBTS/PAID
RENAME /MY/STOCKS/OWNED,/MY/STOCKS/SOLD
RENAME GAME.PROGRAM,WORD.GAME

RENAME WORD.PUZZLE,CRYPTOGRAM

3.5. THE DELETE COMMAND

The purpose of this command is to remove a file from the diskette. This command operates
exactly the same as in DOS 3.3. The syntax of the instruction is:

IDELETE pn [,S#] [,D#]

You can remove the file /MY/RESUME from a diskette with the command:
JDELETE /MY/RESUME
Option Description

pn A pathname or partial pathname. The pathname must be included and the file must
exist on the diskette before you may use this command.

[,S#] Both the slot and drive options have their usual meanings.

[,D#]

Examples for the DELETE command

DELETE /MY/DEBTS/OWED
DELETE /MY/BANK/NOTES/PAID
DELETE WORD.GAME

DELETE MATH.DEMO

3.6. THE LOCK AND UNLOCK COMMANDS

There are times when you will want to protect your files from accidently being changed,
deleted, or renamed. This can be done using the LOCK command. Then in order to make a re-
vision to the locked file, you will be required to use the UNLOCK command. Both of these
commands operate exactly the same as in DOS 3.3. The syntax of these commands is:

JLOCK pn [,S#] [,D#]

JUNLOCK pn [,S#] [,D#]

56 / HOUSEKEEPING COMMANDS

For example, to lock a file use:
JLOCK /MY/XMAS.LIST

and later to unlock that same file use:
JUNLOCK /MY/XMAS.LIST

As long as a file is locked, you cannot rename, delete, or change that file in any way
without first unlocking that file.
For example, let us assume you are going to run both parts of a program.

JRUN /MY/FIRST.PART
When you are finished with this program, you need to execute the following:
JCHAIN /MY/SECOND.PART,@1000

Notice that the program, SECOND.PART, commences execution at line 1000. This
could be for a number of reasons. The most common might be because any chained program
may not dimension any array used in any previous part ¢ € a program.

Option Description

pn pn is the pathname or partial pathname that contains the Applesoft II BASIC pro-
gram needed to be run next.

[L@#] This option, when used, specifies the line number at which program execution is to
begin. If the specified line number does not exist, the next higher line number in
the program begins the execution. If this option is not used, program execution
begins with the lowest line number.

[L,S#] Both the slot and drive options have their usual meanings.

[,D#]

If you look at a catalog of the files on a directory or volume, the locked files will be
shown with an asterisk preceeding the file information presented on the screen. This is the
same as in DOS 3.3,

Option Description

pn pn is the pathname or partial pathname of the file that is to be either locked or
unlocked. Note: You cannot lock a volume name.

[,S#] Both the slot and drive options have their usual meanings.

[,D#]

THE LOCK AND UNLOCK COMMANDS / 57

Examples for the LOCK and UNLOCK commands

JUNLOCK /MY/BANK/NOTES/PAID
JLOCK WORD.GAME

JUNLOCK WORD.GAME

JLOCK /MY/BANK/NOTES/PAID

3.7. /0 FROM PROGRAMS

In this section the commands covered are those that enable you to communicate easily with
other Applesoft II BASIC programs and peripheral devices such as printers, disk drives,
MODEMS, and clocks. When the Apple computers communicate with peripheral devices,
this is known as either the input or output of information. Generically, this is referred to in-
put/output or just I70.

3.7.1. The CHAIN command

The CHAIN command is for executing separate parts of a program in sequential order. This
is very handy when a program becomes very large and will not all fit into memory. Now, you
have the capability to develop your programs in parts and then chain them at execution time.
Assume that you have a two-part program. You run the first part. Now, you need to run the
second part. The variables and files open from the first part will be preserved when you chain
the second part to the first part.

DOS 3.3 does not support this command in conjunction with Applesoft II BASIC.
However, there was a binary program on the SYSTEM MASTER diskette called CHAIN that
performed this function. This has now been incorporated into ProDOS. The syntax for the
CHAIN command is:

ICHAIN pn [,@#] [,S#] [,D#]

Examples for the CHAIN command

PRINT D$;“CHAIN SECOND.PART”’

PRINT D$;‘“CHAIN SECOND.PART,@1000”’
PRINT DS$;‘“CHAIN FIRST.PART”

PRINT D$;“CHAIN FIRST.PART,@2000,56,D1”’

3.7.2. The STORE command

This command and its counterpart, RESTORE, are really one of the more exciting additions
made to this new operating system. This command allows you to store the names and values

58 / HOUSEKEEPING COMMANDS

3.7.3. The RESTORE command

This command allows you to bring previously STOREd names and variable values into your
current program. Only a file previously STOREd can be RESTOREd. This command is not
supported in DOS 3.3. The syntax of the command is:

JSTORE pn [,S#] [,D#]

of all of the variables active in an Applesoft II BASIC program. This command is not avail-
able in DOS 3.3.

This is very handy if you wish to save the condition of a game during play, the condition
of long numerical methods calculations, or your position in a long mailing list. The syntax of
this command is:

]RESTORE pn [,S#] [,D#]

The STORE command places the variables in a file of the VAR type. When you execute
the STORE command, it may take some time before the disk drive comes on and actually
stores the variables. The reason for this is because ProDOS is compacting the information be-
fore storing the data.

Option Description

pn pn is the pathname or partial pathname of the file in which the variables are to be
stored.

[,S#] Both the slot and drive options have their usual meanings.

[,D#]

Examples for the STORE command

PRINT DS$;‘“STORE EXAMPLE.DATA”
PRINT D$;‘STORE /MY/XMAS.LIST.DATA,S6,D1”’

When you use this command, all currently defined variables are cleared from memory
before the new ones are brought into memory.

THE LOCK AND UNLOCK COMMANDS / 59

Option Description

pn pn is the pathname or partial pathname of the file containing the program variables.
[,S#] Both the slot and drive options have their usual meanings.
[,D#]

Examples for the RESTORE command

PRINT DS$;““RESTORE EXAMPLE.DATA”’
PRINT DS$;*“RESTORE /MY/XMAS.LIST.DATA,S6,D1"”’

3.7.4. The PR# command

This command is used to transfer data and information from the normal video screen output
to the device connected to the peripheral slot specified in the command. This command, PR#,
is used to transfer the destination of such data or information. This command is the same as in
DOS 3.3. The syntax for this command is:

]JPR# slot

The slot specified must be in the range from 0 through 7 on the Apple II Plus and in the
range from 1 through 7 on the Apple Ile.
~ For example, assume that your systems printer interface card is installed in slot 1. Then
the command:

JPR# 1

causes all subsequent data and information to be sent to the printer. When you wish to return
data output to the video screen, it is only necessary to issue the correct command. This com-
mand is:

JPR# 0

If you have an 80-column card installed in slot 3, then you may activate an 80-column
screen presentation by issuing:

JPR#3

from the immediate mode. Your video display will then change to the 80-column format. On
the Apple Ile the Apple Computer 80-column card or extended 80-column card is instaliled in

60 / HOUSEKEEPING COMMANDS

the auxiliary slot. The auxiliary slot is mapped into slot 3 for purposes of activating and deac-
tivating an 80-column card. On an Apple II Plus, an 80-column card is normally installed in
slot 3.

Examples for the PR# command

PRINT D$;“PR# 1"’
JPR#1
PRINT DS$;“PR# 2
JPR#2
PRINT DS$;“PR# 0"’
JPR#0

3.7.5. The IN# command

Normally, Apple computers will receive data and information from the keyboard. The IN#
allows you to receive data and information from sources other than the keyboard. This com-
mand works the same as in DOS 3.3. The syntax of the command is:

JIN# slot

For example, assume that you have a MODEM in slot 2 and that you are going to receive
data from your friend out of state. Your software would use the command:

JIN# 2

When you are through receiving data, you can return your system to the normal or
default condition by using the command:

JIN# 0

The comments that apply to an 80-column card for the PR# command also apply to the
IN# command.

If you are going to both receive and transmit data through one particular slot, you will
need to issue both the IN# and PR# commands.

Examples for the IN# command

PRINT D$;““IN# 2”
JIN#2

SUMMARY 61

PRINT D$;*“IN# 0”
JIN#0

SUMMARY

This chapter discussed housekeeping commands that are supported in ProDOS.

The main thrust of this chapter was to introduce you to the commands that you will use
frequently to manipulate or change the status of files.

Special emphasis was given to the CREATE command and all of the currently possible
file types.

Two commands that deal with peripheral devices were also shown. These two were the
IN# and PR# commands. It is through the use of these commands that Apple II computers are
able to communicate with the outside world by using ProDOS or Applesoft II BASIC. There
are other ways of course, but they are not a part of the discussion here.

A number of examples of each command were given along with the rules for forming the

commands.

The commands introduced were:

CAT e.g., CAT /PRODOS Immediate and deferred
CAT /PRODOS,S6,D1

CATALOG e.g., CATALOG /PRODOS Immediate and deferred
CATALOG /PRODOS,S6,D1

PREFIX e.g., PREFIX /PRODOS Immediate and deferred
PREFIX /56,D1

CREATE e.g., CREATE PIC4,TBIN Immediate and deferred
CREATE DIRECTORY,TDIR

RENAME e.g., RENAME STOCKS,PORTFOLIO Immediate and deferred

DELETE e.g., DELETE /MY/LOSSES Immediate and deferred
DELETE /MY/DEBTS,S6,D2

LOCK e.g., LOCK /MY/PORTFOLIO Immediate and deferred

UNLOCK e.g., UNLOCK /MY/PORTFOLIO Immediate and deferred

CHAIN e.g., CHAIN PART.TWO Immediate and deferred

STORE e.g., STORE /MY/DEBTS Immediate and deferred

RESTORE e.g., RESTORE /MY/DEBTS Immediate and deferred

PR# e.g., PR#6 Immediate and deferred
PR#0

IN# e.g., IN#2 Immediate and deferred

IN#0

62 / HOUSEKEEPING COMMANDS

QUESTIONS

How do you invoke the 80-column card?

What is the function of the CREATE command? Explain in detail.

How do you retrieve, save, and later restore the current PREFIX?

How do you use the PR# and IN# commands? How can you communicate with the outside
world using these commands?

5. What is the difference between the CAT and CATALOG commands?

Ll ol o

4. SEQUENTIAL-
ACCESS FILES

Have an open face, but

conceal your thoughts.

Italian Proverb

4.0. OVERVIEW

This chapter gives you your first experience with text files. You will be shown how to create,
store data into, and retrieve data from sequential text files.

In the early part of this chapter a description of a sequential-access file is given.
Throughout this chapter, programs and program segments will be given illustrating the com-
mands being described. The last sections of this chapter describe the commands needed to
operate with sequential text files.

There are many times that you may wish to store information or data that is not a pro-
gram onto a diskette. You may wish to keep track of your stock portfolio, municipal bonds,
recipes, or addesses. ProDOS allows you to do just that.

To do this, create a program that establishes a file on a diskette. That file will contain
the information you wish to keep. Next, create a program that will request information from
the computer user and store the data on the diskette in the file. Last, it would be nice to have a
program to recall the stored data and display it on the screen or print it on paper in a printer.

63

64 / SEQUENTIAL-ACCESS FILES

The three possible programs discussed may all be contained within one program, as major
subroutine modules. In fact there are only about seven major evolutions that need to be per-
formed on files. These are shown in Figure 4.1,

Creation program
Create file
Delete file

Processing program
Enter data
Change data
Delete data

Output program
Review file data
Report printing

Figure 4.1. File programs.

A file is like a list of items stored in some order, similar to a telephone directory or a
shopping list. This list may be of any size, up to the capacity of a diskette, and contain any in-
formation or data—even a program. Files may be created under the control of ProDOS using
the TEXT (TXT) type files. The reason they are called TEXT files is that data is stored in the
file in essentially text form. ProDOS supports two types of TEXT files:

—sequential-access
—random-access

There is no essential difference in the form of data storage, only in the file characteris-
tics. Random-access files are covered in the next chapter.

The letters TXT in the third column of a CAT display denotes a text file.

Since text files are NOT programs, but data, you cannot RUN, SAVE, or LOAD them.
Other commands, covered later, may be used with text files.

The commands introduced in this chapter are shown in the box below.

OPEN e.g., OPEN /MY/XMAS.LIST Deferred mode only

READ e.g., READ /MY/XMAS.LIST Deferred mode only

WRITE e.g., WRITE /MY/XMAS.LIST Deferred mode only

CLOSE e.g., CLOSE Immediate and deferred
CLOSE /MY/XMAS.LIST

APPEND e.g., APPEND /MY/XMAS.LIST Deferred mode only

SEQUENTIAL-ACCESS FILES / 65

FLUSH e.g., FLUSH /MY/XMAS.LIST Immediate and deferred
POSITION e.g., POSITION /MY/XMAS.LIST,F3 Deferred mode only

4.1. SEQUENTIAL-ACCESS FILES

The sequential-access file is a linear list of items, words, or numbers in which each item is con-
sidered a record in the file. This type of file organization comes from the days when the only
auxiliary storage media available to computers were high-speed tape drives. Tape drives re-
quire you to start at the beginning of a file, read each record in sequence, and perform any
processing sequentially. The sequential-access file stored on a diskette has the same character-
istics. When you either READ or WRITE data to the diskette, it is done in sequential order.

To create the file, store data into the file on the diskette, and retrieve data from the
diskette, you must first OPEN communications between the program and ProDOS. With
communications established with ProDOS, you next have to tell ProDOS the type of com-
municatons required; whether you wish to READ or WRITE data. Once an Applesoft 11
BASIC program has informed ProDOS that you wish to communicate and the type of com-
munication desired, you may either INPUT or PRINT data respectively. Once communica-
tion is finished, you must CLOSE the communications conversation with ProDOS.

The text file commands have a number of options. A few of them you will use most of
the time. Some of the options you will use only rarely. As each command is described, ex-
amples will be given that will illustrate the command and the option.

The basic unit of a sequential-access text file is the field. A field is a series of characters
that has as its final character the carriage return (RETURN) character. In Applesoft Il BASIC
you have three options when printing a line of text. These are shown in the small program
below.

The rest of this section will describe and explain a number of program examples using
the instructions introduced in the chapter. After the instructions have been used, the re-
mainder of the chapter gives you the syntax and additional information about the instructions
that have been used.

INEW

JLIST

J100 A$ = “APPLE”: B = “SOFT”
]110 PRINT AS$

]120 PRINT AS$;B$

1130 PRINT AS,B$

JRUN

66 / SEQUENTIAL-ACCESS FILES

APPLE
APPLESOFT
APPLE SOFT

After you have entered this small program, RUN it and you will see the three lines of text
printed on the screen as shown above. Notice that there is a carriage return character at the
end of each line. It is that character that causes the cursor to return to the left margin on the
next sequential display line. The delimiters (semicolon and comma) between variables in the
print statements do not cause the termination of a line of printed text.

This same scheme is used when you print data to a text file. When you print data to a
sequential-access file using Applesoft II BASIC print statements without a semicolon or
comma, the field is terminated with a carriage return.

A carriage return character signifies the end of a field. The next print statement will
store data into the next field of the file. Each subsequent print statement ending in a carriage
return stores data into the next field in the file. In this way a sequential-access text file may
contain any number of fields.

Let’s now look at how data is stored into a sequential-access file. Assume that you have
the program segment:

INEW
JLIST

10 REM* NUMBERS PROGRAM
30 D$ = CHR$@4)

100 PRINT D$;“OPEN NUMBERS”
110 PRINT D$;“WRITE NUMBERS”’
120 PRINT “‘ONE”’

130 PRINT “TWO”’

140 PRINT “THREE”

150 PRINT “FOUR”

160 PRINT D$;‘‘CLOSE NUMBERS”
500 END

It is recommended that you power up your system with the /SCRATCH.DISK in the
boot drive. When you have the Applesoft II BASIC prompt character and cursor you are
ready to enter the above program. By the way, you will add to this program later.

Lines Description

Line 10 Remark statement identifying program.

SEQUENTIAL-ACCESS FILES / 67

Line 30 The variable D$ contains the CTRL-D ProDOS character that signifies the
following instruction is a ProDOS command.

Line 100 OPEN communications with ProDOS. OPEN is discussed in Section 4.2,

Line 110 The communications is to WRITE data to the diskette.

Line 120 Store the first field to the diskette.

Line 130 Store the second field to the diskette.

Line 140 Store the third field to the diskette.

Line 150 Store the fourth field to the diskette.

Lines 120 through 150 do not have the CTRL-D preceding the operation. This is because all
output has already been redirected to the file through the instruction in line 110.

Line 160 Terminate communications with ProDOS. CLOSE is discussed in Section 4.5.
Line 500 END the program.

When you have this program entered; SAVE it as /SCRATCH.DISK/NUMBER.PRO-
GRAM and then RUN it. The information you have stored on a diskette is stored in the
following way under the name NUMBERS. This shown in Figure 4.2.

This particular file has four fields that encompass 19 characters, including all of the car-
riage returns. Please notice that the first field in the file is designated 0.

The next obvious question that arises is ‘““‘How can I see what has been stored in the
file?’’ Fair question. In the next few paragraphs more will be added to the program
/SCRATCH.DISK/NUMBER.PROGRAM.

Load the program /SCRATCH.DISK/NUMBER.PROGRAM from your disk driver
and LIST the program. Then enter the following additional code:

20 DIM A$(10)

200 PRINT D$;“OPEN NUMBERS”
210 PRINT D$;“READ NUMBERS”
220 INPUT A$(1)
230 INPUT A$(2)
240 INPUT A$Q3)

Characters stored: ONE| TWO| THREE| FOUR|
Field numbers: {0} {1} {2} {3}

Notes: (1) The | character represents a carriage return.
(2) Numbers represent the field numbers.

Figure 4.2. Sequential file character storage.

68 / SEQUENTIAL-ACCESS FILES

250 INPUT A$(4)
260 PRINT D$;‘“CLOSE NUMBERS”’
300 FOR1I = 1 TO 4: PRINT A$(I): NEXT I

Lines Description

Line 20 Dimension the variable A$ to handle 11 elements.

Line 200 OPEN communications with ProDOS. OPEN is discussed in Section 4.2,

Line 210 The communications is to READ data from the diskette. READ is discussed in
Section 4.3.

Line 220 Read the first field from the diskette.

Line 230 Read the second field from the diskette.

Line 240 Read the third field from the diskette.

Line 250 Read the fourth field from the diskette,

Lines 220 through 250 do not have the CTRL-D preceding the operation. This is because all
input has already been redirected to the file through the instruction in line 210.

Line 260 Terminate communications with ProDOS. CLOSE is discussed in Section 4.5.
Line 300 Print the contents of the A$ vector to the video screen.

When you have the additional program code entered, SAVE it as /SCRATCH.DISK/NUM-
BER.PROGRAM and then RUN it again, By the way, you will add more to this program
later. If everything goes well, you should see displayed on the screen:

ONE
TWO
THREE
FOUR

]

You now know that what you stored may be retrieved and seen through the mechanism
of supporting code. Also, you have now written a very simple data storage and retrieval
system. It really wasn’t very difficult, was it?

Earlier in this section, three ways to print information to a screen were described. In
Figure 4.3 the same options will be shown for printing to a sequential text file. The variables
AS$ and B3 are the same as before. A$=““APPLE"”’ and B$ = ““SOFT”’. The | character still
represents a carriage return character.

Statement Characters Comments

PRINT ‘“APPLE” APPLE| Complete field.
PRINT AS; APPLE Partially completed field.

SEQUENTIAL-ACCESS FILES / 69

PRINT B$ APPLESOFT| Completed field. Notice that there is no car-
riage return after the AS characters in the
file.

PRINT A$,B$ APPLESOFT| Completed field. Notice that there are no

spaces placed in the field.
PRINT B$;‘“ ”’;A$;S” SOFT APPLES| Completed field. Notice how you can link
items in a file field.

Figure 4.3. Print to a text file.

The reason for showing you these options is to give you a feel for how to put characters
together to form fields in a sequential-access text file.

Each field is written or read from a sequential-access text file through the use of a single
variable. The variables shown, thus far, have been string variables. You may also use numeric
variables, either floating point or integer. Each of these may be interspersed with string
variables. The only caution is that you must know the order in which you stored data so that it
can be retrieved correctly.

Figure 4.4 shows you ways in which you may retrieve the data stored in a file.

Statement Characters Comments

INPUT AS$ APPLE Reads one complete field.

INPUT B$ SOFT Reads one complete field from next field in the file.
INPUT A$,B§ APPLE SOFT Reads two complete adjacent fields from file.

GET C$ A Reads a single character from field in a file. If you are

going to use the GET statement, you will have to write

a loop in code that:

1. Reads and links character read to some string vari-
able.

2. Tests each character read for the field delimiter
(ASCII 13).

Figure 4.4. Retrieving from a text file.

There are several ways to retrieve data from a sequential-access text file. In most cases,
the INPUT statement is the best. However, there are times when the GET statement with sup-
porting code is required.

Up to this point, there has been one field in each record of a sequential-access text file.
There is a way to have muitiple elements of data in one field. By this I mean that there is a way
to place multiple pieces of data within a single field of a sequential-access file. It may be done
by physically placing commas between each element that makes up each field in the file. For
example, let’s put three elements of information within one field using the following code:

70 / SEQUENTIAL-ACCESS FILES

JNEW

JLIST

10 REM* MULTI-ELEMENTS PROGRAM
20 DIM A$(10)

30 D$ = CHR3(4)

100 PRINT D$;“OPEN ELEMENTS.DATA”

110 HOME: PRINT TAB(10) “MULTI-ELEMENTS DEMO”’: PRINT
120 PRINT D$;“WRITE ELEMENTS.DATA”

130 PRINT “‘FIRST,SECOND,THIRD"”’

140 PRINT ‘““ELEMENTS,PER,FIELD”’

150 PRINT D$;“CLOSE”’

200 PRINT D$;“OPEN ELEMENTS.DATA”

210 PRINT D$;‘READ ELEMENTS.DATA”

220 FORI =1TO 3
230 INPUT AS$(I): NEXT I

240 FORI =4TO 6

250 INPUT A$(I): NEXT I

260 PRINT D$;“CLOSE”

300 FORI = 1TO6: VTAB 2+1
310 PRINT A$(I)

320 NEXT I

500 END

Power up your system with the /SCRATCH.DISK in the boot drive. Then enter this
program from the keyboard. When it has been entered, save the program using the name
MULTI.ELEMENTS. Then RUN the program to see what happens.

You should get the following output:

MULTI-ELEMENTS DEMO

FIRST
SECOND
THIRD
ELEMENTS
PER

FIELD

]

SEQUENTIAL-ACCESS FILES / 171

Lines Description

Line 10 Remark statement identifying program.
Line 20 Dimension the variable A$ to handle 11 elements.
Line 30 The variable D$ contains the CTRL-D ProDOS character that signifies the
following instruction is a ProDOS command.
Line 100 OPEN communications with ProDOS. OPEN is discussed in Section 4.2.
Line 110 Clears screen. HOME.
Prints screen title centered at the top.
Print a blank line on the screen. PRINT.

It is permissible to print to the screen after a file is open provided you do the printing before
the WRITE instruction to the file is executed.

Line 120 The communications is to WRITE data to the diskette.

Line 130 Storethe first field to the diskette. This field contains three elements separated by
commas within the quoted field string.

Line 140 Store the second field to the diskette. This field also contains three elements
separated by commas within the quoted string.

Lines 130and 140do not have the CTRL-D preceding the operation. This is because all output
has already been redirected to the file through the instruction in line 120,

Line 150 Terminate communications with ProDOS. CLOSE is discussed in Section 4.5.

Line 200 OPEN communications with ProDOS. OPEN is discussed in Section 4.2.

Line 210 The communications is to READ data from the diskette. READ is discussed in

Section 4.3.

Line 220 Top of FOR—NEXT I loop.

Line 230 Read the first field from the diskette. This field contains three elements.
Range of the I loop. NEXT I.

Line 240 Top of FOR—NEXT I loop.

Line 250 Read the second field from the diskette. This field also contains three elements.
Range of the I loop. NEXT I.

Lines 230 and 250 do not have the CTRL-D preceding the operation. This is because all input
has already been redirected to the file through the instruction in line 210.

Line 260 Terminate communications with ProDOS. CLOSE is discussed in Section 4.5.
Line 300 Top of the FOR—NEXT I loop.
Position cursor on the screen. VTAB 2+1.

72 / SEQUENTIAL-ACCESS FILES

Line 310 Print the contents of the AS$ vector to the video screen.
Line 320 Range of the I loop. NEXT I.
Line 500 END the program.

Notice that lines 130 and 140 from the program are actually written to the file with com-
mas embedded within the quoted string. Later in the program, you will need to retrieve the six
pieces of data. Since INPUT statements consider commas as delimiters signifying the end of
an element, it is necessary to use multiple inputs to read an entire field. This has been shown in
lines 220 through 250.

Line 230 could be replaced with:

230 INPUT A$(1),A%$(2),A$(3)
and line 250 could have been written:
250 INPUT A$(4),A$(5),A%(6)

If you choose to write these lines this way, then the FOR—NEXT loop code will need to
be deleted.

At this point, it might be a good idea to look at how these two multiple element fields are
stored on a diskette. This is shown in Figure 4.5.

Now, using the information presented, how would you read only the first element of
each field? Another question could be: how could you use the GET instruction to retrieve in-
formation from the ELEMENTS.DATA file? I am sure you can think of many other possible
iterations and questions.

4.2. THE OPEN COMMAND

The OPEN command is required as the preparatory command that tells ProDOS to prepare
for the reading or writing of data and information from a diskette. It also prepares a file buf-
fer space in memory to hold data. This is the command that tells ProDOS you wish to com-
municate. This command operates essentially the same as in DOS 3.3. The syntax for this
command is:

JOPEN pn [,S#] [,D#]

After you have opened communication with a file, you are allowed to either read or
write data from or to that file. Remember that any open file should be closed before you end
the current program that is executing.

THE OPEN COMMAND / 73

Characters stored: FIRST,SECOND,THIRD| ELEMENTS,PER,FIELD)|
Field numbers: { 0 } { 1 }

Notes: (1) the | character represents a carriage return.
(2) Numbers represent the field numbers.

Figure 4.5. Sequential file character storage.

When a program opens a text file, a number of possible things take place. These are:

ProDOS will set up a file buffer space in memory.

Resets HIMEM just below the file buffer space.

. Prepares your system to either read or write data starting at the beginning of the file.
Allows for eight files to be open simultaneously.

4, If the file with the pn does not exist, that file is then created and added to the appropriate

directory.
5. If the file already exists and is open, a FILE BUSY error will result when the file is
reOPENed.

whe

Option Description

pn pn is the pathname or partial pathname of the file that is to be opened. If the file
does not aleady exist, a file of the text (TXT) type is created.

[,S#] The slot and drive options have their normal meanings.

[,D#]

Examples of the OPEN command

PRINT D§$;*“OPEN EXAMPLE”’

PRINT D$;“OPEN DEMO.DATA,S6,D1”

PRINT D$;“OPEN /SCRATCH.DISK/DEMO.DATA”
PRINT D$;‘‘OPEN /SCRATCH.DISK/DEMO.DATA,S6,D1”

When working with sequential-access files, one of the minor but very aggravating prob-
lems is the possibility of old information staying in the file as the total size of the file changes.
This can happen because a sequential-access file has the characteristic of expanding and con-
tracting as data within the file changes. When the file contracts, the old data is not erased as
new data is placed in the file. So, in order to prevent the retrieval of the unwanted data from
the old version of the file, it is recommended that you first delete the file before writing the
new information to the file. This is done in the following way:

100 PRINT D$;*“OPEN EXAMPLE”
105 PRINT D$;“CLOSE EXAMPLE”

74 / SEQUENTIAL-ACCESS FILES

110 PRINT DS$;*“DELETE EXAMPLE”
115 PRINT D$;““OPEN EXAMPLE”

This code opens the EXAMPLE file and then closes the file. This assures that the file ex-
ists on the diskette. Then delete the file. Inmediately thereafter, the file EXAMPLE is opened
again. This reestablishes the file on the diskette. One caution when using this code: make sure
that you have everything from the old file either in memory or stored elsewhere before you
delete the file. In that way, you will not lose any information. "

4.3. THE READ COMMAND

After a file has been OPENed, you must further define to ProDOS the type of communica-
tion required; READ in this case. The READ command identifies to ProDOS the file and the
position in the file from which characters are to be read and prepares ProDOS for the INPUT
statement(s) that are to follow. Once the READ command has been executed, it remains in ef-
fect until the next ProDOS command is executed. This command operates the same as the
READ command in DOS 3.3, except for the added field numer (F#) option. The syntax for
this command is:

JREAD pn [,F#] [,B#]

Every time you use the READ command, you must identify the file to be read by using
the pn.

Option Description

pn pn is the pathname or partial pathname of the file that is to be opened. This must
be identical to the pn used when you opened the file.
[,F#} # is an integer number that indicates the number of fields past the current position

that should be read and discarded. This is done by reading characters, starting
from the current position, until the specified number of carriage returns has
been read.

A carriage return character is used to separate fields in a sequential-access file.

[, B#] # is an integer number that indicates the number of bytes, or characters, to be read
and discarded. This option will change the current position in the file.

THE WRITE COMMAND / 75
Examples of the READ command

PRINT D$;“READ EXAMPLES”

PRINT D§$;‘READ DEMO.DATA,F4”

PRINT D$;‘READ /SCRATCH.DISK/NUMBERS”’
PRINT DS$;‘READ /SCRATCH.DISK/NUMBERS,F2,B3”

4.4. THE WRITE COMMAND

After a file has been OPENed, you must further define to ProDOS the type of communica-
tion required; WRITE in this case. The WRITE command identifies to ProDOS the file and
the position in the file to which characters are to be written and prepares ProDOS for the
PRINT statement(s) that are to follow. Once the WRITE command has been executed, it re-
mains in effect until the next ProDOS command is executed. This command operates the
sames as the WRITE command in DOS 3.3, except for the added field number (F#) option.
The syntax for this command is:

JWRITE pn [,F#] [,B#]

Option Description

pn pn is the pathname or partial pathname of the file that is to be written. It must be
identical to the pn for the file you opened.
[,F#] # is an integer number that indicates the number of fields past the current position

that should be read and discarded. This is done by reading characters, starting
from the current position, until the specified number of carriage returns has
been read.

A carriage return character is used to separate fields in a sequential-access file.

[,B#] # is an integer number that indicates the number of bytes, or characters, to be read
and discarded. This option will change the current position in the file.

Examples of the WRITE command

PRINT DS$;“WRITE EXAMPLES"”’

PRINT D$;“WRITE DEMO.DATA F2,.B3”

PRINT D$;“WRITE /SCRATCH.DISK/NUMBERS,F2”
PRINT D$;“WRITE /SCRATCH.DISK.DEMO.DATA,F3,B2”

76 / SEQUENTIAL-ACCESS FILES

4.5. THE CLOSE COMMAND

When you are finished reading or writing to a file, you must close the file. It is necessary to
close the file in order to make sure that all characters are written to the file, the file buffer
memory is released to usable memory, and unwanted errors and error messages do not occur.
The CLOSE command works the same as in DOS 3.3. The syntax for the command is:

JCLOSE [pn]

If you use the CLOSE command without any options, all OPEN files will be closed and
all file buffers will be released.

Option Description

[pn] pn is the pathname or partial pathname that indicates the file that is to be
closed.

Examples of the CLOSE command

PRINT D$;“CLOSE”

PRINT D$;‘“CLOSE NUMBERS”’

PRINT D$;“CLOSE /SCRATCH.DISK/NUMBERS"”’
PRINT D§;‘“CLOSE /SCRATCH.DISK/DEMO.DATA”

When you are developing programs of your own, an error might occur that requires you
to change your code. If you make a mistake when a file or files were open, you should issue a
CLOSE without options before correcting and rerunning your program.

4.6. THE APPEND COMMAND

This command allows you to add information to the end of a sequential-access file. This com-
mand actually is three commands in one. It opens the file, positions to the end of the file, and
then performs a write to the file. This command operates the same as in DOS 3.3. The syntax
of this command is:

JAPPEND pn [,S#] [,D#]

The APPEND command performs the OPEN, POSITION, and WRITE functions. It
performs the three commands in the one statement. Once you have coded the APPEND com-

THE FLUSH COMMAND / 77

mand, you must also code a PRINT command that will actually store the data at the end of
the file.

Option Description

pn pn is the pathname or partial pathname of the file that is to be opened and written.
If the file doesn’t already exist, the file is created.

[,S#] The slot and drive options have their normal meanings.

[,D#]

Examples of the APPEND command

PRINT DS$; “APPEND EXAMPLES”’
PRINT A$

PRINT D$;“APPEND /SCRATCH.DISK/DEMO.DATA,S6,D2”
PRINT AS$,B$

4.7. THE FLUSH COMMAND

When writing data to a text file, ProDOS stores up a block of information (512 bytes, or
characters) before anything is placed on the diskette. The FLUSH command is for the pur-
pose of making sure that any characters left in the file buffer area are stored onto the diskette.
In this way you are assured that all characters destined to be written to a file have been stored
in that file. This command is not supported in DOS 3.3. The syntax for this command is:

JFLUSH [pn]

If you use the FLUSH command without any options, all open files will be flushed of
any leftover data, the same as with the CLOSE command.

Option Description

[pn] pn is the pathname or partial pathname that indicates the file that was opened. The
pn must be identical to the pn used to open the file.

Examples of the FLUSH command
PRINT D$;*FLUSH”

PRINT DS$;*“FLUSH EXAMPLES”’
PRINT D$;*“FLUSH /SCRATCH.DISK/DEMO.DATA”

78 / SEQUENTIAL-ACCESS FILES

When you use this command, remember it takes more than a normal amount of time
and will have a tendency to slow down your processing. Therefore, you will have to weigh the
tradeoff between data integrity and speed.

4.8. THE POSITION COMMAND

With this command, you are able to access the information in any field or byte within the file.
This command operates similar to the same command in DOS 3.3. The syntax for this com-
mand is:

JPOSITION pn,F#

Notice that neither of the arguments is optional. This command starts at the current
position in the file and then reads and discards the number of fields specified in the F# argu-
ment. Remember that the file specified in pn must first be open before you may use the POSI-
TION command.

Option Description

pn pn is the pathname or partial pathname that indicates the file that was opened. It is
the pn of the file whose position is to be altered. It must be identical to the pn of
the file opened.

F# # indicates the number of fields to be read and discarded. If you try to position
beyond the end of the file, you will get an END OF DATA error message.

Examples of the POSITION command

PRINT DS$;“OPEN EXAMPLES”’
PRINT D$;‘‘POSITION EXAMPLES,F3"’

PRINT D$;“OPEN /SCRATCH.DISK/DEMO.DATA”’
PRINT DS$;‘“POSITION /SCRATCH.DISK/DEMO.DISK,F4”’

SUMMARY

This chapter introduced you to ProDOS file processing. This chapter covered the first of the
two types of files supported by ProDOS. These file types are:

—Sequential-access text file
—Random-access text file

QUESTIONS / 79

The random-access text file will be covered in Chapter 5. This chapter covered the
sequential-access file.

You were given various ways of both reading and writing data to a sequential-access text
file. A number of small programs were created to illustrate how to work with this type of text
file.

The syntax was given for each of the commands introduced in this chapter. Examples
were also given for each of the commands.

The similarities and differences between these ProDOS and DOS 3.3 commands were
shown.

Remember that a sequential-access text file is very efficient in the use of diskette storage
space; however, it is not as easy to use sequential-access text files as it is to use random-access
text files. You will find that some of your files will better fit the sequential-access type while
others will better fit the random-access type.

The commands introduced in this chapter were:

OPEN e.g., OPEN /MY/XMAS.LIST Deferred mode only

READ e.g., READ /MY/XMAS.LIST Deferred mode only

WRITE e.g., WRITE /MY/XMAS.LIST Deferred mode only

CLOSE e.g., CLOSE Immediate and deferred
CLOSE /MY/XMAS.LIST

APPEND e.g., APPEND /MY/XMAS.LIST Deferred mode only

FLUSH e.g., FLUSH /MY/XMAS.LIST Immediate and deferred

POSITION €.g., POSITION /MY/XMAS.LIST,F3 Deferred mode only

QUESTIONS

Describe how data is stored on a diskette in a sequential-access file.

Describe each of the commands required to write data to a sequential-access file.
Describe each of the commands required to read data from a sequential-access file.
Which command ensures that you have stored all of the data to a file? What tradeoffs are
to be considered?

Describe how to store multiple pieces of data in one field of a sequential-access text file.
Explain how to use the Applesoft II BASIC GET instruction to retrieve data and informa-
tion from a sequential-access text file.

Ealb ol

b

5. RANDOM
ACCESS FILES

You never know till you try to
reach them how accessible men are;
but you must approach each man by

the right door.

Henry Ward Beecher, 1887

5.0. OVERVIEW

This chapter introduces you to random-access text files. You will be shown how to create
them, store information in them, and retrieve information from them. This chapter will
assume that you have read the previous chapter on sequential-access text files. There are a
number of similarities between these two types of files.

The first part of this chapter explains the structure of a random-access text file. You will
be able to see the different ways the random-access and sequential-access text files organize
data.

The last part of this chapter explains the syntax and options of each of the commands in-
troduced. It should be pointed out that even though the commands introduced seem to be like
those in the previous chapter, they really are different.

80

RANDOM-ACCESS FILES / 81

You will notice that the commands presented here are very similar to those presented in the
last chapter. However, the options for the commands are different.

The commands introduced in this chapter are shown in the box below.

OPEN e.g., OPEN EXAMPLES,L28 Deferred mode only
OPEN /MY/LIST,L200,S6,D1

READ e.g., READ EXAMPLES Deferred mode only

WRITE e.g., WRITE EXAMPLES Deferred mode only
WRITE /MY/LIST,S6,D1

CLOSE e.g., CLOSE Immediate and deferred
CLOSE /MY/XMAS.LIST

DELETE e.g., DELETE /MY/XMAS.LIST Immediate and deferred

APPEND e.g., APPEND EXAMPLES,L28 Deferred mode only
APPEND /MY/LIST/L200,D1

FLUSH e.g., FLUSH /MY/XMAS.LIST Deferred mode only

5.1. RANDOM-ACCESS FILES

The random-access file is different from the sequential file in that you may access any in-
dividual record that has been written to the diskette. Further, the form of storage on the
diskette is different. The file is made up of individual records. Each record contains fields and
each field contains either characters, numbers or both. The hierarchy of this organization is
shown in Figure 5.1.

This type of file has some other distinguishing characteristics. Each record is exactly the
same size and length, and, in general, data stored in each record is in the same order and of the
same composition. Each field of each record may be accessed randomly.

The random-access file structure is very useful, flexible, and extremely versatile,
However, it is not necessarily efficient in conserving diskette storage space. So, for the gain in
flexibility, usefulness, and power, you give up some storage space.

The random-access file structure requires that you specify additional file parameters.
The first is the length specification. Since all records in the file are the same size, ProDOS
allocates the specified record length space on the diskette each time you WRITE a new record
to the file. Second, you must specify the record in the file you wish to READ or WRITE.
When you OPEN communication with a random-access file, you specify the file length in ad-
dition to the file name. You also may specify the slot and drive; however, these are optional.

82 / RANDOM ACCESS FILES

FILE

I il

RECORD RECORD RECORD

FIELD FIELD FIELD

CHAR. CHAR. CHAR.

Figure 5.1. File hierarchy.

When you tell ProDOS what type of communication you wish to perform, either READ or
WRITE, you then must specify the file name and the record number. Other options you may
specify will be discussed later.

§.1.1. The record length

The first time you open a random-access file, you must specify the record length. The length
specification of a record represents the number of characters that may be stored in that
record.

Let’s look at an example of an OPEN statement.

255 PRINT D$;“OPEN /MY/BANK/NOTES/PAID ,L44”

Notice that the length of the record was specified, but the number of records in the file
was not specified. You do not have to worry about that since ProDOS keeps track of that item
plus the correct storage location of the records in the file.

5.1.2. Writing a record

The writing of data to a record in a random-access file requires that you specify the record
number to be written. If that record was previously written to, the data now written will over-
write all of the previous data. If the record specified has never been written to, ProDOS will
reserve sufficient space on the diskette under the file name to store the new data. So, if you are
only going to write one character to the PAID file, a total of 44 bytes of diskette storage will
be set aside as being full for each record in the file.

RANDOM-ACCESS FILES / 83

Let’s look at an example of the WRITE statement.
260 PRINT D$;““WRITE /MY/BANK/NOTES/PAID,R22"”

The subsequent PRINT statements will actually store data into record number 22. You
must specify a record number,

5.1.3. Record character storage

Let’s now look at how data is stored into a random-access file. Assume that you have the pro-
gram segment:

INEW
JLIST

10 REM* RANDOM.NUMBERS PROGRAM
30 D$ = CHR$(4)

40 FORI = 1to 4: READ A$(I): NEXT I

42 DATA ONE, TWO, THREE, FOUR

100 PRINT D$;‘“OPEN NUMBERS.RANDOM,L20”
110 FORR = 1TO 4

120 PRINT D$;“WRITE NUMBERS.RANDOM,R"”";R
130 PRINT A$(R)

140 NEXT R

150 PRINT D$;*‘CLOSE NUMBERS”’

500 END

It is recommended that you power up your system with the /SCRATCH.DISK in the
boot drive. When you have the Applesoft II BASIC prompt character and cursor you are
ready to enter the program above. By the way, you will add to this program later.

Lines Description

Line 10 Remark statement identifying program.

Line 30 The variable D$ contains the CTRL-D ProDOS character that signifies the
following instruction is a ProDOS command.

Line 40 FOR—NEXT I loop to READ data into the A$ vector.

Line 42 Data statement corresponding to the READ in previous program line.

Line 1600 OPEN communications with ProDOS. OPEN is discussed in Section 5.2.

Line 110 Top of the R FOR—NEXT loop.

84 / RANDOM ACCESS FILES

Line 120 The communications is to WRITE data to the diskette at record number R.
WRITE is discussed in Section 5.4.

Line 130 Store each data element in correct record to the diskette.

Line 140 Range of the R loop. NEXT R.

Line 130 does not have the CTRL-D preceding the operation. This is because all output has
already been redirected to the file through the instruction in line 120.

Line 150 Terminate communications with ProDOS. CLOSE is discussed in Section 5.5.
Line 500 END the program.

When you have this program entered, SAVE it as /SCRATCH.DISK/RAN-
DOM.NUMBER and then RUN it. After running the program, the information you have
stored on a diskette is stored in the following way under the name NUMBERS.RANDOM.
This shown in Figure 5.2.

This particular file has four records that encompass 20 characters each for a total of 80
characters, including all of the carriage returns. Please notice that the first record in the file is
designated 1. Further, notice that records 0 and 5 are missing. That is because those records
were not written.

The next thing to realize is that the specified record length of 20 includes the final car-
riage return delimiter that separates individual records. You should take that into account
when specifying the length size of a record.

The last item concerns a little bit of poetic license that has been taken. The carriage
return character delimiters are shown at the end of each record when in reality it will be placed
immediately after the last character written to that record. This was done for the purpose of
easily visualizing how a record is stored on a diskette.

R# Characters stored

1 ONE |
2 TWO |
3 THREE |
4 FOUR |

Notes: (1) The | character represents a carriage return.
(2) Numbers represent the record numbers.
(3) R# represents the record number column.

Figure 5.2. Random-access file storage.

RANDOM-ACCESS FILES / 85

The next obvious question that arises is: ‘“How can I see what has been stored in the
file?”’ Fair question. In the next few paragraphs more will be added to the program
/SCRATCH.DISK/RANDOM.NUMBER.

Load the program /SCRATCH.DISK/RANDOM.NUMBER from your disk drive and
LIST the program. Then enter the following additional code:

20 DIM A$(10)

200 PRINT D$;*“OPEN NUMBERS.RANDOM,L20”’
210 FORR = 1TO 4

220 PRINT D$;*“READ NUMBERS.RANDOM,R”’;R
230 INPUT A$(R)

240 NEXT R

260 PRINT D$;“CLOSE NUMBERS”’

300 FOR1 = 1TO 4: PRINT A$(I): NEXT I

Lines Description

Line 20 Dimension the variable A$ to handle 11 elements.

Line 200 OPEN communications with ProDOS. OPEN is discussed in Section 5.2.

Line 210 Top of the R FOR—NEXT loop.

Line 220 The communications is to READ data from the diskette. READ is discussed in
Section 5.3.

Line 230 Read the records into the A$ vector.

Line 240 Range of the R loop. NEXT R.

Line 230 does not have the CTRL-D preceding the operation. This is because all input has
already been redirected to the file through the instruction in line 220.

Line 260 Terminate communications with ProDOS. CLOSE is discussed in Section §.5.
Line 300 Print the contents of the AS$ vector to the video screen.

When you have the additional program code entered, SAVE it as /SCRATCH.DISK/
RANDOM.NUMBER and then RUN the program again. If everything goes well, you should
see displayed on the screen:

ONE
TWO
THREE
FOUR

]

86 / RANDOM ACCESS FILES

You now know that what you stored may be retrieved and seen through the mechanism
of supporting code that prints what has been retrieved from the diskette. Also, you have now
written a very simple data storage and retrieval system. It really wasn’t very difficult, was it?

If you now go back to Chapter 4 and look through Section 4.1, you will see that the two
programs RANDOM.NUMBER and NUMBER.PROGRAM are very similar. This was done
on purpose to give you a simple but graphic comparison. When running these two programs,
the results are exactly the same, they both run in essentially the same amount of time, and oc-
cupy essentially the same space on a diskette.

So, what’s the differences?

In these simple examples the differences are difficult to see immediately. The major dif-
ferences are evident in the way disk 1/0 code must be written. In the next program example,
the differences will become much more dramatic.

Up to this point, there has been only one field in each record of the random-access text
file. There are usually multiple fields of data in one record. By this I mean that there are multi-
ple pieces of data within a single record of a random-access file. This is done by placing
commas between each field that makes up each record in the file. ProDOS does this for you.
For example, let’s put three fields of information within one record using the following code:

INEW
JLIST

10 REM* MULTI-FIELDS PROGRAM
20 DIM A$(10)
30 D§ = CHR$4)

100 PRINT D$;“OPEN FIELDS.DATA,L20”

110 HOME: PRINT TAB(11) “MULTI-FIELDS DEMO”: PRINT
120 PRINT D$;*“WRITE FIELDS.DATA,RI”’

130 PRINT “‘FIRST”’: PRINT *“SECOND”’: PRINT ‘““THIRD”
135 PRINT D$;“WRITE FIELDS.DATA,R2”’

140 PRINT “ELEMENTS”’: PRINT “PER’’: PRINT “RECORD”’
150 PRINT D$;‘‘CLOSE”’

200 PRINT D$;*‘OPEN FIELDS.DATA”

210 PRINT DS$;“READ FIELDS.DATA,R1”

230 INPUT A3(1),A$(2),A3(3)

240 PRINT D$;“READ FIELDS.DATA,R2”

250 INPUT AS$(4),A$(5),A3(6)

260 PRINT D$;“CLOSE”’

300 FORI = 1TO6: VTAB2+1

310 PRINT A$(I)

320 NEXT1I

500 END

RANDOM-ACCESS FILES / 87

Power up your system with the /SCRATCH.DISK in the boot drive. Then enter this
program from the keyboard. When it has been entered, save the program using the name
MULTILFIELDS. Then RUN the program to see what happens.

You should get the following output:

MULTI-FIELDS DEMO

FIRST
SECOND
THIRD
ELEMENTS
PER

FIELD

]

Lines Description

Line 10 Remark statement identifying program.
Line 20 Dimension the variable A$ to handle 11 elements.
Line 30 The variable D$ contains the CTRL-D ProDOS character that signifies the
following instruction is a ProDOS command.
Line 100 OPEN communications with ProDOS. OPEN is discussed in Section 5.2. Record
length is 20.
Line 110 Clear the screen. HOME.
Print screen title centered at the top.
Print a blank line on the screen. PRINT.

1t is permissible to print to the screen after a file is open provided you do the printing before
the WRITE command to the file is executed.

Line 120 The communications is to WRITE data to the diskette.
WRITE is discussed in Section 5.4. WRITE record 1.
Line 130 Store the first record to the diskette. This record contains three fields.
Line 135 The communications is to WRITE data to the diskette.
WRITE record 2. WRITE is discussed in Section 5.4,
Line 140 Store the second record to the diskette. This field also contains three fields.

Lines 130 and 140 do not have the CTRL-D preceding the operation. This is because all output
has already been redirected to the file through the instructions in lines 120 and 135.

Line 150 Terminate communications with ProDOS. CLOSE is discussed in Section 5.5.
Line 200 OPEN communications with ProDOS. OPEN is discussed in Section 5.2.

88 / RANDOM ACCESS FILES

Line 210 The communications is to READ data from the diskette.
READ is discussed in Section 5.3. Read record 1.
Line 230 Read the first record from the diskette. This record contains three fields.
Line 240 The communications is to READ data from the diskette.
READ is discussed in Section 5.3. Read record 2.
Line 250 Read the second record from the diskette. This record also contains three fields.

Lines 230 and 250 do not have the CTRL-D preceding the operation. This is because all input
has already been redirected to the file through the instruction in lines 210 and 240.

Line 260 Terminate communications with ProDOS. CLOSE is discussed in Section 5.5.
Line 300 Top of the FOR—NEXT I loop.
Position cursor on the screen. VTAB 2+1.
Line 310 Print the contents of the A3 vector to the video screen.
Line 320 Range of the I loop. NEXT I.
Line 500 END the program.

Notice that lines 130 and 140 of the program are actually written to the file without any
commas embedded between fields in the record. Later in the program, you will need to
retrieve the three fields of data in each record. Since INPUT statements consider commas as
delimiters signifying the end of an element of data, it is necessary to use multiple data inputs.
This has been shown in lines 230 and 250.

At this point, it might be a good idea to look at how these two multiple-field records are
stored on a diskette. This is shown in Figure 5.3.

Notice that the extra space available in each record has been shown only to help you to
visualize the structure. Notice that you should account for both the commas and the carriage
return delimiter at the end of a record. The length parameter specified was set at 20. This is ac-
tually a little small, and was done for illustration purposes.

Now, by using the information presented, how would you read only the first field of
each record? Another question could be: how could you use the GET instruction to retrieve
information from the FIELDS.DATA file? I am sure you can think of many other possible
questions.

Again, it would be a good idea to compare this last program with its counterpart in Sec-
tion 4.1.

Characters stored: FIRST,SECOND,THIRD| ELEMENTS,PER,FIELD|
Record numbers: { 1 } { 2 }

Notes: (1) the | character represents a carriage return.
(2) Numbers represent the record numbers.

Figure 5.3. Random-access file character storage.

THE OPEN COMMAND / 89

5.1.4. Reading from a record

As you saw in the last two small programs, the READ command for a random-access file re-
quires that you specify the record number that is to be read. For example, look at line 210
from the last program example. The line is repeated here.

210 PRINT D$;“READ FIELDS.DATA,R1”

The following sections of this chapter explain each of the commands that are used with
random-access files.

5.2. THE OPEN COMMAND

Before you are able to read or write data from or to any random-access file, you must first
open communication with that text file. The open command will also set aside file buffer
space in memory to handle temporary data storage. This command operates the same as in
DOS 3.3 except for the length option default. The syntax for this command is:

JOPEN pn [,L#] [,S#] [,D#]

The first time you open communication with a random-access file, you must supply the
length parameter option. The # in this option is the number of bytes that each record in the file
may hold. After the file has been opened once, the length option is no longer needed because
ProDOS assumes that the length is the same.

Opening a random-access file with a record length other than the length used to create
the file, that length will be used until the file is closed. However, the original length still re-
mains as the default record length.

When you open a text file, ProDOS sets aside a file buffer memory space that holds
file identification information. Further, the system is prepared to either read or write
data starting at the beginning of the opened file. ProDOS allows you to have 8 files open
simultaneously.

When using files, it is always a good idea to FLUSH and CLOSE all open files before
leaving the current program. It is possible you could loose data that you thought was stored to
the diskette.

Option Description

pn pn indicates the name or partial pathname of the file to be opened. If the file
already exists, it must not already be open. If the file does not already exist, it is
created by ProDOS.

[,L#) You are required to use the record length option the first time you open the file.
This can be as early as when the file is created. If, however, you create the file

90 / RANDOM ACCESS FILES

without the length option, ProDOS assigns a record length of 1 for the file. A
record length may be any positive integer in the range of 1 to 65535.

[,S#] The slot and drive options have their normal meanings.

[,D#]

Examples for the OPEN command

PRINT D$;“OPEN DUMMY.DATA,L128"

PRINT D$;“OPEN /MY/BANK/NOTES/PAID,L30,S6,D2’
PRINT D$;“OPEN PAID,L"’;L;*,S”’;SL;*“,D’’;DR

PRINT D§$;“OPEN ”;F§;*,L”;LN

5.3. THE READ COMMAND

Before you can read any data from a file, you must identify to ProDOS that you want to read
data. The READ command tells ProDOS the file name and the record number you want to
read. This command works essentially the same as in DOS 3.3. The syntax for this command
is:

IREAD pn [,R#] [,F#] [,B#]

The READ command specifies to ProDOS:

—The file pathname.
—The record number.
—The position within the record.

The READ command will remain in effect until another ProDOS command is executed.
Option Description

pn pn indicates the name or partial pathname of the file to be accessed.

[LR#] # is the number of the record to which characters are to be stored. If this number
option is omitted, record 0 is assumed by ProDOS. The maximum record num-
ber is 16 megabytes divided by the file’s record length, or 65535, whichever is
smaller.

If # is larger than any previous record number, the ENDFILE column in the
catalog changes.

THE WRITE COMMAND / 91

[,F#) # is the number of fields that ProDOS should read and discard. Reading fields is
done by starting at the current position and reading characters counting the
specified number of carriage returns. This option changes the file’s current posi-
tion.

[,B#] # is the number of bytes, or characters, which ProDOS should read and discard.
This option changes the position in the file relative to the file's current position.

Examples for the READ command

PRINT D$;“READ DUMMY.DATA,R22”

PRINT D$;“READ ”’;F$;*“,R”’;R

PRINT D$;“READ DUMMY.DATA”

PRINT D$;““READ /MY/BANK/NOTES/PAID,R22”

5.4. THE WRITE COMMAND

It is necessary to tell ProDOS you want to WRITE data to some file record before you use the
PRINT statement to put characters into a random-access file.
The WRITE command specifies to ProDOS:

—The file pathname
—The recorded number
—The position within the record

The WRITE command will remain in effect until another ProDOS command is exe-
cuted. The syntax of this command is:

IWRITE pn [,R#] [,F#] [,B#]

Each time you wish to write to a different record, you need to use the WRITE command
before writing the new data to that new record. If you use the WRITE command without
specifying a record number, record zero will be written. This command operates essentially
the same as in DOS 3.3.

Option Description
pn pn indicates the name or partial pathname of the file to be written.

[LR#] # is the number of the record to which characters are to be stored. If this number
option is omitted, record 0 is assumed by ProDOS. The maximum record

92 / RANDOM ACCESS FILES

number is 16 megabytes divided by the file’s record length, or 65535, whichever
is smaller.

If # is larger than any previous record number, the ENDFILE column in the
catalog changes.

[,F#] # is the number of fields that ProDOS should read and discard. Reading fields is
done by starting at the current position and reading characters counting the
specified number of carriage returns. This option changes the file’s current posi-
tion.

[, B#] # is the number of bytes, or characters, which ProDOS should read and discard.
This option changes the position in the file relative to the file’s current position.

Examples for the WRITE command

PRINT D$;*“WRITE DUMMY.DATA,R22"”

PRINT D$;*“WRITE *’;F$;‘“,R’’;R

PRINT D$;*“WRITE DUMMY.DATA”

PRINT D§$;““WRITE /MY/BANK/NOTES/PAID,R22"

5.5. THE CLOSE COMMAND

When finished with all of your disk processing, you should CLOSE all of the files that were

open. It is necessary to properly close open files in order to ensure that all data has been
written to the file and that all file buffer space is released.

JCLOSE [pn]

The CLOSE command without the pn option will close all files and release all file buffer
space. This command operates exactly as in DOS 3.3.

Option Description

pn pn indicates the name or partial pathname of the file to be closed. It must be iden-
tical to the pn that you previously opened.

Examples for the CLOSE command

PRINT D§$;“CLOSE”

PRINT D$;*““CLOSE DUMMY.DATA”

PRINT D$;*“CLOSE /MY/BANK/NOTES/PAID”’
PRINT D$;‘“CLOSE ”’;F$

THE APPEND COMMAND / 93

5.6. THE DELETE COMMAND

The purpose of the DELETE command is to enable you to get rid of any file on a diskette ex-
cept the volume directory.

IDELETE pn [,S#] [,D#]

This command operates exactly as in DOS 3.3.
Option Description

pn pn indicates the name or partial pathname of the file to be opened. If the file
already exists, it must not already be open. If the file does not already exist, it is
created by ProDOS.

[,S#] The slot and drive options have their normal meanings.

[,D#]

Examples for the DELETE command

PRINT D§;*‘DELETE”

PRINT D$; “DELETE DUMMY.DATA”

PRINT D$;“DELETE /MY/BANK/NOTES/PAID”’
PRINT D$;‘DELETE ’;F$

5.7. THE APPEND COMMAND

The APPEND command is used for the purpose of writing data to the end of the present file.
This command is actually three commands in one. APPEND opens the file, positions to the
end of the file, and then writes the data to the file. The syntax of this command is:

JAPPEND pn [,L#] [,S#] [,D#]

After APPEND has been executed, you just have to issue the PRINT statements needed
to store data into the file at the current end of the file. This command is not supported for
random-access files in DOS 3.3.

Option Description

pn pn indicates the name or partial pathname of the file to be accessed.

94 / RANDOM ACCESS FILES

[,L#] You are required to use the record length option the first time you open the file.
This can be as early as when the file is created. If, however, you create the file
without the length option, ProDOS assigns a record length of 1 for the file. A
record length may be any positive integer in the range of 1 to 65535.

[,S#] The slot and drive numbers have their normal meanings.

(,D#]

Examples for the APPEND command

PRINT D$;“APPEND DUMMY.DATA,R22"

PRINT D$;“APPEND ”’;F$;*,R”";R

PRINT D$; “APPEND DUMMY.DATA”

PRINT D$;“APPEND /MY/BANK/NOTES/PAID,R22”

5.8. THE FLUSH COMMAND

The FLUSH command is used for the purpose of ensuring that all of the data in the file buffer
area is written to the diskette. ProDOS will store up to 512 bytes of data in its file buffer
before actually writing anything to the diskette media. This command is for the purpose of
emptying the file buffer. The syntax of this command is:

JFLUSH [pn]

When you use the FLUSH command without the pathname option, all open files will be
flushed. One caution: this command takes time and will slow down processing. This com-
mand is not supported by DOS 3.3.

Option Description

pn pn indicates the name or partial pathname of the file to be accessed.
Examples for the FLUSH command

PRINT D$; “FLUSH”’

PRINT D$;*FLUSH DUMMY.DATA”

PRINT D$;“FLUSH /MY/BANK/NOTES/PAID”’
PRINT D$; ‘FLUSH ’;F$

QUESTIONS / 95

SUMMARY

This chapter discussed the random-access text file. The structure of the file and the way data is
stored on a diskette were explained. Example programs were given, similar to those shown in
Chapter 4. These examples were designed to show the differences in the program code written.

The characteristics of random-access file organization were shown. The method of data
storage on a diskette within a random-access text file was also shown.

The tradeoffs between using sequential-access and random-access text files were
discussed.

For each of the instructions discussed, a comparison was made to DOS 3.3 so that you
can make the transition easily.

The commands introduced in this chapter were:

OPEN e.g., OPEN EXAMPLES,L28 Deferred mode only
OPEN /MY/LIST,L200,S6,D1

READ e.g., READ EXAMPLES Deferred mode only

WRITE e.g., WRITE EXAMPLES Deferred mode only
WRITE /MY/LIST,S6,D1

CLOSE e.g., CLOSE Immediate and deferred

CLOSE /MY/XMAS.LIST
DELETE e.g., DELETE /MY/XMAS.LIST Immediate and deferred

APPEND e.g., APPEND EXAMPLES,L28 Deferred mode only
APPEND /MY/LIST/L200,D1
FLUSH e.g., FLUSH /MY/XMAS.LIST Deferred mode only
QUESTIONS

. Describe how data is stored in a random-access file.

2. Compare sequential-access and random-access files. Account for both commands and
storage differences.

3. Discuss the F# and B# options for those commands that have them.

4. When using random-access files, are you allowed to use variables within the commands?
How do you do this?

5. What is the purpose of the APPEND command?

6. What is the purpose of the FLUSH command?

—

6. BINARY FILES

Drown not thyself to

save a drowning man.

Thomas Fuller, 1732

6.0. OVERVIEW

This chapter will discuss the ProDOS commands that let you use and manipulate binary pro-
grams and files. Remember that the running of a binary program may be accomplished using
the intelligent RUN command, —(DASH). That command was discussed in both Chapters 1
and 2,

The commands discussed in this chapter allow you to:

—Iload, save, and run binary programs.
—use binary programs to read and write characters.

The commands introduced in this chapter are shown in the box below:

96

BINARY FILES / 97

BLOAD e.g., BLOAD PIC1 Immediate and deferred mode
BLOAD PIC1,A$4000

BSAVE e.g., BSAVE PIC1,A$2000 Immediate and deferred mode
BSAVE PIC1,A8192

BRUN e.g., BRUN TONE.BEEP Immediate and deferred mode
BRUN BEEPER,
A$300
— TONE.BEEP

PR# e.g., PR#1 Immediate and deferred mode
PR#0

IN# e.g., IN#2 Immediate and deferred mode
IN#0

6.1. BINARY FILES

ProDOS, like DOS 3.3, allows you to store and retrieve portions of memory either to or from
a diskette. Earlier, in Chapter 2, you were introduced to the RUN, LOAD, and SAVE com-
mands. These commands dealt with Applesoft II BASIC programs. When dealing with binary
files, the BRUN, BLOAD, and BSAVE commands perform similar functions. The major dif-
ference is that these commands deal with uninterpreted information stored in some portion of
your computer’s memory.

The B letter preceding the command names signifies that the file to be manipulated is
binary in nature. Each command manipulates the information between the computer memory
and the file storage location on a byte-for-byte basis. These commands are referred to as
binary commands. Normally, these binary commands will involve a machine-language pro-
gram, a high-resolution picture for one or both of the Apple II computer graphics screens, or
any information in binary form that is in memory or stored on a diskette.

98 / BINARY FILES
6.1.1. Binary addresses

If you are only going to run machine-language programs that are already stored on a diskette,
you will not have to understand the memory organization of your computer. However, in all
likelihood, your involvement with binary files will be much more extensive.

If you are going to save binary memory information, graphics screen data, or work with
machine-language files, you will need to know how memory information is organized.

Memory is a continuous sequence of byte locations, each having a unique address. Each
address is different from all other addresses so that there is no confusion when referencing
any particular location. This is analogous to your home address. It is different from your
neighbors’ addresses. The first memory location in your computer is 0 in decimal which
equals $0000 hexadecimal. The next memory location is 1 in decimal, $0001 in hexadecimal.
Therefore, a 64K Apple computer has as its highest memory location 65535 in decimal, $FFFF
in hexadecimal. Appendix J gives you a decimal to hexadecimal conversion table.

In general, when working with binary files, you must specify a number of different
memory locations to save any portion of memory to a diskette file. First of all, you need to
define the starting address of the file in memory. Next, you need to define the length of the file
to be saved. This may be done in either of two ways. You may use the length option or the end-
ing address option. Further, you have the option of specifying these options in either decimal
notation or hexadecimal notation. In fact, you may mix up these option notations. These op-
tions will be discussed in the next section.

6.1.2. Command options

When saving binary information, it is necessary to define the address of the first memory
location to be saved. This is determined by using the A# option. The number of memory loca-
tions to be saved must also be defined using the L# option.

The A# and L# options may be expressed in either decimal or hexadecimal notation.
Both of these options are the same as in DOS 3.3.

Alternatively, you may use the new E# option, which is the ending address for the binary
file to be transferred. This is a new option in ProDOS. The length of a binary file may be
calculated by subtracting the starting address from the ending address. Caution: Do not mix
notation values. Subtract decimal values from decimal values and hexadecimal values from
hexadecimal values.

All of these options are discussed in detail in Section 6.3.

THE BLOAD COMMAND / 99

6.2. THE BLOAD COMMAND

This command causes binary data to be transferred from any disk file to a specified portion of
memory. Binary data is normally a machine-language program, a picture, or other graphics
data. This command works the same as in DOS 3.3 except for the additional options.

The syntax for this command is:

IBLOAD pn [,A#] [,B#] [,L#|E#] [Ttype] [,S#] [,D#]

The vertical line signifies that either option may be used but both are not required.
The BLOAD command may be used to:

—transfer a machine-language program from file storage to memory.
—move a graphics image from file storage to the graphics screen.
—move any binary image from file storage to memory.

If you use this command with nothing but the pathname option, then the entire file at the
default address values will be loaded from file storage to memory.

Option Description

pn pn is the pathname or partial pathname to indicate the file desired. If this is the
only option specified, the entire file specified will be placed into memory starting
at the stored default address.

If you have the 80-column capability activated and use the CATALOG command,
the starting address is presented in hexadecimal notation with an A preceding the
address. This is shown in the SUBTYPE column.

[LA#] This is the memory address at which the first byte of the file is to be loaded into
memory. The address specified must be a valid memory location.

LE#] E# is the last memory address location to be transferred.

LL# L# is the number of bytes to be transferred.

100 / BINARY FILES

[,B#] This option designates the first byte in the file that is to be transferred from the
diskette to memory. If this option is not specified, then byte zero ($0000) starts
the transer.

[Ttype] Typeis the three-letter abbreviation that indicates the type of file to be transferred.
If no type is specified, the file will be the BIN type. See Chapter 3 for all of the
abbreviations.

[,S#] The slot and drive options have their normal meanings.

[,D#]

When you are storing files on a diskette using ProDOS, the command used to save the
file, SAVE or BSAVE, determines the file’s storage format. An Applesoft II BASIC program
is saved by using tokens that represent the language’s keywords. A token is an ASCII numeric
value that stands for a language keyword or symbol. For example, the keyword PRINT, is
represented by the token value 186 = $BA.

It is now possible to BLOAD that Applesoft II BASIC program into memory by using
BLOAD with Ttype option as BAS. You could now make changes, look at the uninterpreted
code, or do anything else. When you are finished, then BSAVE the file back onto the diskette,
if necessary.

Examples of BLOAD command

BLOAD PICTURE

BLOAD PICTURE,A8192,E16383
BLOAD PICTURE,A$2000,L$2000,S6,D2
BLOAD PICTURE,A$2000,L.8192
BLOAD PICTURE,A8192,A%2000
BLOAD PICTURE,B0,BIN,S6,D2

6.2.1. Installing machine-code routines

Because of the way ProDOS dynamically allocates and deallocates memory for file buffers, it
is somewhat more difficult to manage memory and guarantee which parts of memory will be
free to store and protect machine-language routines.

For example, when you OPEN a file under control of ProDOS, the HIMEM pointer is
moved down in memory by 1K. This 1K area of memory is used as a file buffer in the area
where the old HIMEM used to be located. Further, that 1024 byte memory area, 4 pages, is
marked as used by the system bit map. More will be said about this in Chapter 9.

Therefore, in order to store a machine-language routine into memory and protect that
routine’s memory area, you must also do the same as ProDOS. When moving HIMEM down,
you must move HIMEM in increments of 256 bytes, a page at a time. Then you can BLOAD
your routine into memory and, finally, mark the appropriate system bit map as used.

THE BSAVE COMMAND / 101

You should do all machine-language loading into memory BEFORE you open any files. In
this way, all file buffers will then reside below all of your own routines.

6.3. THE BSAVE COMMAND

This command causes binary data to be transferred from a specified portion of memory to

any type of diskette file. Data anywhere in the computer’s memory may be transferred to a file

on a diskette. This command works the same as in DOS 3.3 except for the additional options.
The syntax for this command is:

IBSAVE pn ,A# ,L#|,E# [,B#] [, Ttype] [,S#] [,D#]

The vertical line signifies that either option may be used but both are not required.
You may use the BSAVE command to:

—transfer a machine-language program from memory to a storage file.
—move a picture from a graphics screen to a storage file.
—move any portion of memory into any type of storage file.

When using the BSAVE command, it is necessary to use the pn, A#, and either the L# or
E# options.

Option Description

pn pn is the pathname or partial pathname to indicate the file desired. If this is the
only option specified, the entire file specified will be placed into memory starting
at the stored default address.
If you have the 80-column capability activated and use the CATALOG command,
the starting address is presented in hexadecimal notation with an A preceding the
address. This is shown in the SUBTYPE column.

JA# This is the memory address at which the first byte of the file is to be saved from
memory. The address specified must be a valid memory location.

,E# E# is the last memory address location to be transferred.

,L# L# is the number of bytes to be transferred.

[,B#] This option designates the first byte in the file that is to be transferred from the
diskette to memory. If this option is not specified, then byte zero ($30000) starts
the transfer.

[Ttype] Typeis the three-letter abbreviation that indicates the type of file to be transferred.

102 / BINARY FILES

If no type is specified, the file will be the BIN type. See Chapter 3 for all of the
abbreviations. :

[,S#] The slot and drive options have their normal meanings.

[,D#]

Examples of BSAVE command

BSAVE HRI1.PIC,A8192,18192

BSAVE HR1.PIC,A$2000,L$2000

BSAVE HRI1.PIC,A8192,1$2000,B0,S6,D2
BSAVE HRI1.PIC,A$2000,L$2000

BSAVE HRI1.PIC,A8192,E16383

BSAVE HRI1.PIC,A16384,E24576,B0,56,D2

6.4. THE BRUN COMMAND

This command causes binary data to be transferred from a binary disk file (BIN) to a specified
portion of memory, and then executed. You will use this command to execute a binary pro-
gram stored in a binary file on a diskette. This command works the same as in DOS 3.3 except
for the added options.

The syntax for this command is:

IBRUN pn [,A#] [,B#] [,L#|,E#] [,S#] [,D#]

When you use this ProDOS command, the binary file specified by the pn is loaded into the
memory locations specified by the options or the defaults and then commences execution of
the program. The vertical line signifies that either option may be specified if you use that op-
tion but both are not required.

There is one caution when using this command. ProDOS does not differentiate between
binary programs and binary data. Therefore, it is recommended that you use file names that
relate to the contents of the file. For example, MUSIC.PROG to designate a binary program
that might play musical tunes or HR2.PIC to designate a high-resolution page 2 graphics pic-
ture. There is the possibility that running a binary data or graphics picture could cause
changes to ProDOS and ruin your whole day.

As was shown in Chapter 2, you may use the — (DASH) command to run a machine-language
program.

THE PR# AND IN# COMMAND / 103

Option Description

pn pn is the pathname or partial pathname to indicate the file desired. If this is the
only option specified, the entire file specified will be placed into memory starting
at the stored default address.

If you have the 80-column capability activated and use the CATALOG command,
the starting address is presented in hexadecimal notation with an A preceding the
address. This is shown in the SUBTYPE column,

[,A#] This is the memory address at which the first byte of the file is to be loaded into
memory. The address specified must be a valid memory location.

[LE#] E# is the last memory address location to be transferred.

[LL#] L# is the number of bytes to be transferred.

[,B#] This option designates the first byte in the file that is to be transferred from the
diskette to memory. If this option is not specified, then byte zero ($0000) starts

the transfer.
[,S#] The slot and drive options have their normal meanings.
[,D#]
Examples of BRUN command

BRUN MUSIC.PROG

— MUSIC.PROG

BRUN MUSIC.PROG,A$300

BRUN MUSIC.PROG,A768,B0,S6,D1
BRUN MUSIC.PROG,A$300,B0,L30,S6,D1

6.5. THE PR# AND IN#¥ COMMAND

These commands normally are used to redirect your computer’s output or input. This was
discussed previously in Chapter 3., These commands allow you to communicate through the
expansion slots in addition to the normal forms of communication. These commands work
the same as in DOS 3.3 except for the additional options.

The syntax for these commands is:

]PR# slot [,A#]|A#

JIN# slot [,A#]|A#

The vertical line signifies that either option may be used but both are not required.

104 / BINARY FILES

Option Description

slot This value may be any integer number from 0 through 7. If the number is zero, then
output is to the video screen. If slot is any number from 1 through 7, then input
and output are redirected to the slot specified.

[,A#] # is an address option. This is for the purpose of defining the address of the charac-
ter input or output routine you wish to use.

A# Same as above.

The A option is an added capability to the PR# and IN# commands that was not present
in DOS 3.3. This capability allows you to write your own character input routines or output
routines. Then when you reference that particular slot, the routine stored at the A option ad-
dress will actually be executed.

Another very handy capability allows you to change the physical address mapping of the
expansion slots.

For example, you could reassign slot addresses.

]PR# 1,A3C200

In this case you have reassigned slot 2 to slot 1. Since the normal slot for a printer is slot 1 and
you have a printer in slot 2, you have actually reassigned slot numbers.

Examples of PR# and IN# commands

PRINT D$;‘‘PR#0”
PR#6

PR#1

PRINT D§$;“PR#1”’
IN#2,A3C200
IN#1,A3C200
PRINT DS§;‘“IN#2”
IN#0

PRINT DS$;“IN#3”

6.6. THE MONITOR AND PRODOS

Since this chapter deals with binary files, now would be a good time to discuss a very in-
teresting new capability of ProDOS. There are probably times when you will be in the monitor
and you wish to know what has been stored on a diskette. To get into the monitor, type:

SUMMARY / 105

JCALL —151

Then you will be presented with the monitor prompt;

*

All of the ProDOS commands will still work from within the monitor. For example, you may
wish to type:

*CAT

This will give you the normal 40-column catalog display. From here you may run an Ap-
plesoft II BASIC program, perform a warm boot, return to the BASIC prompt, or other
monitor evolutions.

Normally, you will want to return to the monitor by typing:

*CTRL-C

This means to type the CTRL key and the C key simultaneously, followed by typing the
RETURN key.

SUMMARY

This chapter explained and discussed in detail those ProDOS commands that allow you to
manipulate binary files.

The general organization of memory was discussed, and the use of the address options
used with the binary commands was shown.

The commands introduced in this chapter were:

BLOAD e.g., BLOAD PICI Immediate and deferred mode
BLOAD PIC1,A$4000

BSAVE e.g., BSAVE PIC1,A$2000 Immediate and deferred mode
BSAVE PIC1,A8192

BRUN e.g., BRUN TONE.BEEP Immediate and deferred mode
BRUN BEEPER,A$300
— TONE.BEEP

PR# e.g., PR#1 Immediate and deferred mode
PR#0

IN# e.8., IN#2 Immediate and deferred mode

IN#0

106 / BINARY FILES

QUESTIONS

1.

u-;hw

If you did not have the FILER program, how could you move the PRODOS, BASIC.SYS-
TEM, and STARTUP programs to a newly formatted diskette?

. What does the E# option mean? Where might this information be helpful? Where is this in-

formation displayed?

. How is the Ttype option helpful? Where and when is it used?

How can you redirect or remap a slot assignment?

. How do the IN# and PR# commands work?

7. EXECUTIVE FILES

Philanthropic and religious bodies do
not commonly make their executive

officers out of saints.

Emerson, 1860

7.0. OVERVIEW

This chapter explains the EXEC command. This command allows you to have the Apple com-
puters take control of operations through the use of sequential-access text files. The sequen-
tial-access text file may contain:

—ProDOS commands,
—Applesoft II BASIC program, or
—Input statements.
It is possible, through the use of the EXEC command, to:
—Convert Integer BASIC programs to Applesoft II BASIC programs.

—Repair programs.
—Insert routines into programs.

107

108 / EXECUTIVE FILES

—Renumber programs or portions of programs.

—Move code from programs to text files to an APPLEWRITER file. (See the APPLE-
WRITER EXTENDED program.)

—Create an automatic, turnkey set of routines that run without intervention by you, the
operator.

The command introduced in this chapter is shown in the box below:

EXEC e.g., EXEC DUMMY Immediate and deferred mode

7.1. EXEC FILES DEMONSTRATION
There are actually two steps involved in the creation of an EXEC file. These are:

1. Create and RUN an Applesoft II BASIC program that creates an EXEC file.
2. Use the EXEC command to perform the functions of the EXEC file commands. Com-
mands are taken from the EXEC file.

The Applesoft I1 BASIC program you create must do the following;

—OPEN a sequential-access text file,

—WRITE to or APPEND to a file,

—put commands into the text file using the PRINT or LIST command,
—CLOSE the sequential-access text file.

Let’s create a small program to illustrate what is required to be done. Power up your sys-
tem with the SCRATCH.DISK in the boot drive and then enter the following small program.

INEW
JLIST

10 REM * BASIC PROGRAM

100 HOME : PRINT TAB(16) ‘“EXECS IT”’: PRINT
110 PRINT ‘‘ONCE UPON A TIME”

120 PRINT “THERE WAS AN EXEC”

130 PRINT ‘“WHO RAN EVERYTHING”

140 PRINT “WITHOUT HELP FROM YOU”’

150 END

EXEC FILES DEMONSTRATION / 109

Now that you have entered this program, save it as EXEC.PROG to the SCRATCH.
DISK. You could use the command:

JISAVE /SCRATCH.DISK/EXEC.PROG

Since your system is still up and running, you next write the second program that will,
when RUN, create the text file that will later be EXECuted. The program to be entered is:

INEW
JLIST

10 D$ = CHR$ (4)

100 PRINT DS$;““PREFIX /SCRATCH.DISK/”’
110 PRINT DS$;‘“OPEN DO.EXEC”

120 PRINT D$;“WRITE DO.EXEC”’

130 PRINT “PREFIX /SCRATCH.DISK"”

140 PRINT “CAT”

150 PRINT “RUN EXEC.PROG”

160 PRINT “LIST”

170 PRINT D$;‘“‘CLOSE DO.EXEC”’

180 END

Now that you have this program entered, save it as EXEC.IT. This can be done by:

ISAVE /SCRATCH.DISK/EXEC.IT

You now have the two required programs saved on the SCRATCH.DISK. The next
thing to do is to:

JRUN /SCRATCH.DISK/EXEC.IT

which will create the sequential-access text file named DO.EXEC. Finally you are ready to use
the EXEC command. Type the command:

JEXEC DO.EXEC

This will cause the commands in the sequential-access file named DO.EXEC to be ex-
ecuted. You now have a program named EXEC.IT which may be used to create EXEC files of
all kinds.

The next section will discuss the details and options of the EXEC command.

110 / EXECUTIVE FILES

7.2.

THE EXEC COMMAND

The EXEC command allows you to take commands and data from a sequential-access text file
instead of from the keyboard or through other text file forms. This command works essen-

tially

runni

the same as it does in DOS 3.3. The syntax for this command is:

IEXEC pn [,F#] [,S#] [,D#]

There are some interesting things that should be known when an EXEC file is actively
ng. These are:

The program is not affected by either a
NEW command or
CLOSE command.

The program cannot be stopped by a CTRL-C.
Monitor commands cannot be executed from within an EXEC file.

If an EXEC file is executing:

It may execute an Applesoft 11 BASIC program.
Interrupting the program with CTRL-C, will usually interrupt the EXEC
file.
Subsequent INPUTted data from program will be taken from the EXEC
file.

It may execute another EXEC file.
The second EXEC file will replace the first EXEC file.

Option Description

pn
[.F#]

[,S#]
[,D#]

pn is the pathname or partial pathname that identifies the EXEC file.

is the number of fields to skip at the beginning of the EXEC file. This is accom-
plished by counting the number of instruction delimiters passed over.

The slot and drive options have their normal meanings.

Examples for the EXEC command

EXEC DO.EXEC

EXEC DO.EXEC,F2

EXEC /SCRATCH.DISK/DO.EXEC
EXEC /SCRATCH.DISK/DO.EXEC,S6,D1

EXEC FILES DEMONSTRATION / 111

7.3. EXEC USES

One of the more interesting and useful applications that the EXEC command may accomplish
is the transforming of an Applesoft II BASIC program to a text file. Why would you want to
do that? Once an Applesoft II BASIC program has been captured into a sequential-access text
file you can:

—edit the program using a word processor, such as APPLEWRITER II or APPLEWRITER
Ile.

—merge parts of one program into another program, such as your favorite subroutines.

—insert subroutines from a subroutine file into a large program.

—connect two or more programs together.

—convert an Integer BASIC program to Applesoft II BASIC program.

Probably the most powerful use of the EXEC command is the combination of capturing
an Applesoft II BASIC program using EXEC and performing global edits, changes, and addi-
tions to that program using APPLEWRITER. When you have finished with the new word-
processor file and saved the latest version to diskette, then EXEC your new program.

SUMMARY

This chapter discussed only the one command, EXEC.

An entire chapter was devoted to this command because it is very powerful and allows
you to accomplish many very interesting, useful things.

A number of possible uses for the EXEC command were discussed. However, not all of
the possibilities were explained or discussed. Your imagination should provide you with many
other possibilities.

QUESTIONS

1. Discuss the requirements for creating an EXEC file.

2. Discuss various ways that you could use the EXEC command.

3. Discuss in detail how you would use EXEC operating in ProDOS with APPLEWRITER 11
operating in DOS 3.3. Include how to go from DOS 3.3 to ProDOS.

4, Discuss how to convert an Integer BASIC program to Applesoft II BASIC.

5. How would you insert a series of subroutines into an Applesoft II BASIC program using
the EXEC command?

8. THE PRODOS FILER
AND CONVERT PROGRAMS

Do we move ourselves, or are moved

by an unseen hand at a game?

Alfred Lord Tennyson, 1865

8.0. OVERVIEW

This chapter discusses the two major utility programs included in ProDOS. Their functions
are to perform many of the housekeeping, organization, conversion, and general system
operation tasks. Without these programs, the day-to-day operation of your system would be
far more ineffective and less productive. For those of you who are familiar with DOS 3.3,
there are two programs provided on the SYSTEM MASTER diskette that are direct cor-
ollaries to these two expanded utilities in ProDOS. Figure 8.1 shows these program sets:

ProDOS DOS 3.3
FILER ' FID and COPYA
CONVERT MUFFIN

Figure 8.1. ProDOS-DOS programs.

112

OVERVIEW / 113

The /PRODOS/FILER program performs all of the functions that the FID program
performed plus a number of others. The /PRODOS/FILER program allows you to organize
the information stored on a diskette. The /PRODOS/FILER will probably be used more than
any of the other programs on the EXAMPLES disk. This program is covered in the first part
of this chapter.

Throughout the discussion of the /PRODOS/FILER program, there are a number of
ProFile notes. ProFile is the name of Apple’s hard disk mass storage device. These notes are
for the purpose of helping you use the /PRODOS/FILER and the ProFile together.

The /CONVERT program allows you to convert all of your DOS 3.3 programs to Pro-
DOS. This is similar to the function of the MUFFIN program that converts DOS 3.2.1 pro-
grams and files to DOS 3.3 programs and files. However, /CONVERT is much more capable
than MUFFIN.

Below are presented the keystroke menu selections for the /PRODOS/FILER and
/CONVERT programs to give you a quick summary of the keystrokes required for both the
/PRODOS/FILER and /CONVERT programs.

Those keystroke options that are defined in lowercase characters are for the
/CONVERT program and those in uppercase are for the /PRODOS/FILER program.

? - TUTOR This keystroke gives you information about
that part of the PRODOS/FILER you are
currently using. This also explains how to
type keyboard entries.

A - ALTER WRITE-PROTECTION This keystroke allows you to alter, or
change, the protection on a file.

B - BLOCK ALLOCATION This keystroke lets you see the total number
of blocks on a volume, how many are used,
and how many are still available for storage.

C - COPY A VOLUME This keystroke allows you to make an exact
. copy of an entire volume onto another vol-

ume.
C - COPY FILES This keystroke allows you to create an exact

duplicate of individual files from one disk-
ette to another.

C - CHANGE SLOT AND DRIVE This option allows you to change the slot-
drive combination for the transferring of
files.

D - CONFIGURATION DEFAULTS This keystroke shows you the current de-
faults in effect.

114 / THE PRODOS FILER AND CONVERT PROGRAMS

D - DETECT BAD BLOCKS
D - DELETE FILES

D - SET PRODOS DATE
F - FILE COMMANDS

F - FORMAT A VOLUME
K - COMPARE VOLUMES

K - COMPARE FILES
L - LIST VOLUMES

L - LIST PRODOS DIRECTORY

M - MAKE DIRECTORY

P - SET PREFIX

P - SET PRODOS PREFIX

Q- QUIT

R - RENAME A VOLUME

This keystroke allows you to scan a volume
for possibly damaged blocks. Damaged
blocks could cause a loss of stored data.

This keystroke deletes files from a diskette
without affecting the rest of the files on the
volume.

This option allows you to enter a date for
date-stamping files.

This keystroke allows you to pick the file
commands from the main filer menu.

This keystroke lets you format a new blank
diskette for the storage of programs and
files.

This keystroke lets you compare two vol-
umes to determine if they are exact copies
of each other.

This keystroke gives you a byte-for-byte
comparison of any two files that are named.

This keystroke lists the volumes that are
currently active on your system.

This keystroke lists all of the files in the di-
rectory you name. You will be given the
file’s:

- type - write-protect status

- file size - change date

- free blocks

This keystroke lets you create subdirectories
on a diskette.

This keystroke lets you change or designate
a pathname or partial pathname as the cur-
rently active PREFIX.

This option allows you to set a new prefix
pathname.

This keystroke lets you terminate the oper-
ation of the PRODOS/FILER program.

This keystroke allows you to rename a vol-
ume without changing the contents.

USING THE FILER PROGRAM / 115

R - RENAME FILES This keystroke allows you to rename a
stored file.

R - RESTORE DEFAULTS This keystroke restores your system to the
predefined default values.

R - REVERSE DIRECTION This option allows you to reverse the direc-
tion of the transfer when you are converting
files.

S - SELECT DEFAULTS This keystroke lets you define those defaults
peculiar to your own system.

T - TRANSFER FILES This option allows you to actually transfer
file to ProDOS.

V - VOLUME COMMANDS This keystroke allows you to pick the vol-
ume subprograms menu.

8.1. USING THE FILER PROGRAM

In order to use the /PRODOS/FILER program, it is only necessary to boot the ProDOS disk
and select the F (/PRODOS/FILER) option from the main menu screen. Remember that you
do not need to type the RETURN key when making a selection. This will clear the screen,
bring the /PRODOS/FILER program into memory, and automatically execute the program.

Once the program is executing, it is only necessary to follow the screen options to ac-
complish what is desired.

8.1.1. ProDOS FILER menu

The /PRODOS/FILER program has a number of subprograms that operate either upon a
diskette as a whole or upon the individual files stored on a diskette. Collectively, these pro-
grams are normally called utility programs. Figure 8.2 shows these main program categories.

In a number of the subprogram screens, default values are shown. In those cases, you
may select the defaults by simply typing the RETURN key. If you want to change the default
value, simply type your required value.

One of the handy features of the /PRODOS/FILER program is the use of the ESCAPE
key. You can use this key to restart a screen from the beginning, return to a previous screen, or
back out of a selection. This allows you to be able to change subprograms and screens easily.

If you make a typing error and enter a keystroke that does not correspond to one of the
legitimate commands, the /PRODOS/FILER program is very forgiving and allows you to
reenter the correct keystroke.

By selecting the ? (TUTOR) option, you will be given information about the individual
filer commands and terminology definitions that may be unfamiliar to you, at least for now,
Section 8.1.2 discusses the TUTOR.

116 / THE PRODOS FILER AND CONVERT PROGRAMS

SEECIEITS LSS S SR EES R EE TS R
1
FLE'S PRODOS TEM UTILITIE= H

FILEE WUEESIOW 1.8 .1 :
RIGHT AFFLE COMFUTER. 13832-24 i
Xiiitiiiiti*i**ii*itft###1*::
F - TUTOR
FILE COMMAHDS
LOLUME COMMAMDS
COHFIGURATION DEFALILTE
g - QuUIT
SELECT AH OPTION:

Figure 8.2. FILER main screen.

File commands are those that will affect only an individual file. Section 8.1.3 contains
explanations of these subprograms.

Volume commands are those that affect a diskette as a whole unit. Section 8.1.4 dis-
cusses these subprograms.

Section 8.1.5 discusses the CONFIGURATION DEFAULTS option that lets you
customize the defaults to match your particular system.

The QUIT option allows you to return to the USER’S DISK main menu or any other
diskette of your choosing. This is discussed in Section 8.1.6.

8.1.2. TUTOR

The ProDOS TUTOR screens give you information quickly so that you do not have toread a
book like this one to remember what is required. The ProDOS TUTOR is entered by typing
the ? (QUESTION MARK) key on the keyboard.

As you proceed through this chapter, you will notice that every menu screen has a tutor
option. The use of the tutor is very straightforward. Make the selection using the ? (QUES-
TION MARK) key and follow the continuation prompting at the bottom line of each screen.

USING THE FILER PROGRAM / 117

8.1.3. File commands

This section will explain all of the file commands. This set of subprograms works with in-
dividual files stored on a diskette.

Your computer does not name files, you do. There are a number of rather simple rules
for creating names for files. These rules have been covered earlier.

Figure 8.3 gives the FILE COMMANDS video display screen that is first presented
when the F option is selected from the main /PRODOS/FILER menu.

In the following subsections, each menu option display screen will be shown and
discussed.

LIST PRODOS DIRECTORY. This option allows you to list the files stored in any directory
or on a diskette. When you select this option and enter the directory pathname, you will be
presented with the files stored in that directory plus the following information:

—the directory name
—the type of file

—the size of each file
—the write-protect status

FILE COMMEHDS
PSSP T LT E SRS TR S T
* - TUTOR
- LIST FPREOOOS DIRECTORY
ENCOPY FILES

PEIRENE SFLIEES
COMFARE FILES
HLTERE WEITE-FEOTEC
¢ - EEHAME FILES
- MAKE DIRECTORY

P - SET PREFI
HH OFTIOH OR <E

Figure 8.3. FILE COMMANDS screen.

118 / EXECUTIVE FILES

—modification date
—the free blocks on the diskette
—the use blocks on the diskette

This screen is shown in Figure 8.4.
The data presented to the screen contains all of the files on the level specified and below.

Notes:

1. If the prefix is set to the directory you want to list, type the = (EQUAL) and press
RETURN key.

2. If you type the ? (QUESTION MARK) you will be given only the used and free blocks on
the diskette.

3. You may also get a listing of the directory on a printer by changing the display device. See
the Configuration Defaults in Section 8.1.5.

ProFile Note:

Make sure that the prefix is set to the correct device name = /PROFILE.

3 FEEEEEERERERER

I LIST FEODOS DIRECTORY

: 4

33 PRODOS¥¥¥¥ 33 d 444

~~EHWTER FATHHAME gMND FRESS ¢

Figure 8.4. LIST PRODOS DIRECTORY screen.

USING THE FILER PROGRAM / 119

COPY FILES. This option allows you to copy files from one diskette to another or from one
directory to another. This screen is shown in Figure 8.5.
When the destination pathname already has an existing file stored, you will be asked:

DELETE EXISTING FILE? (Y/N)
You now have three options, These are:
—answer Y to replace existing file.
—answer N to leave existing file alone.
—cancel operation by pressing ESCAPE key.
Notes:
1. If you have a one-drive system, you will be prompted each time you need to change disk-
ettes.

2. You can not copy files to a new subdirectory without first creating that directory. Use the
make directory option first.

70 PATHHAME :

"ATHHAME BHDO FRESS

Figure 8.5. COPY FILES screen.

120 / EXECUTIVE FILES

ProFile Note:

You are able to copy from a floppy disk to a ProFile disk, or vice versa. There is only one cau-
tion; you must have enough space to handle the copy on the destination device.

DELETE FILES. This option allows you to delete files from a diskette directory. This screen
is shown in Figure 8.6.

Notes:

1. A directory must be empty before it can be deleted.
2. A volume directory can only be deleted by reformatting the diskette.

ProFile Note:

Be absolutely sure you want to delete any file from the ProFile, if no backup exists.

EEREEEEREERERRRRRR R R RN
DELETE FILES

-—-EHTER FATHHAME aHD PRESS <{RET>--

Figure 8.6. DELETE FILES screen.

USING THE FILER PROGRAM / 121

COMPARE FILES. This option allows you to compare two files on a diskette to determine if
they are identical. This is a good way to validate that your backup copy is identical to the
original. This screen is shown in Figure 8.7.

ProFile Note:

You may compare two files on a ProFile in different subdirectories.

ALTER WRITE-PROTECTION. This option allows you to change the write-protection
status of a file. This means that you may either lock or unlock a file. The screen is shown in
Figure 8.8.

RENAME FILES. This option allows you to change the name of a stored file without chang-
ing its contents. This screen is shown in Figure 8.9.
Using this option is very straightforward.

MAKE DIRECTORY. This option allows you to make a directory or subdirectory on a disk-
ette. The volume’s directory is created when you first format the diskette. However, subdirec-
tories are not created through the formatting process. You must create subdirectories using

COMPFARE FILES
T S S e i 4B S

R PATHHAME AND PRESS <RET>--

Figure 8.7. COMPARE FILES screen.

122 / EXECUTIVE FILES

LIS ICIE S S EE T ISR S S S S LSS
GLTER MEITE-FROTECTIOH
SPRODOS-¥F¥F33d3 8t esss
RITE-PROTECTION--

1E :

-—EHTEFE FATHHAME AHD FE

Figure 8.8. ALTER WRITE-PROTECTION screen.

either this option or the CREATE command within a program. A directory or subdirectory
must be created in some fashion before you may store files in them.

When creating a directory on a diskette, the /PRODOS/FILER program will first check
to determine if there is enough room on the diskette to hold the directory. This does not mean
that there will be any room for the file; it just means that there is enough room for the direc-
tory file.

SET PREFIX, This option allows you to set a new prefix on a diskette. Setting a prefix means
storing a pathname or partial pathname. Once you have set the prefix, it is not necessary to
type that pathname again when accessing files. Once the prefix is set, it remains in effect until
you change it or turn off the computer.

Notice that the current PREFIX is at the top of the display.

Anytime you type a pathname that does not begin with a slash (/) the current pathname
the prefix will be used as the first part of the pathname. If you want the entire pathname ig-
nored, then type in the full pathname. After you have finished typing the pathname, type the
RETURN key to signify the completion.

USING THE FILER PROGRAM / 123

SEEES LTSS EEEF TR TR Yid
FEHAME FILES ;
PRODDS EEFEEE R R v b bbbt b 444

--EHTER FATHHAME AMD FRESS <RET>--

Figure 8.9. RENAME FILES screen.

8.1.4. Volume commands

This set of commands allows you to operate with diskettes as an entire unit. The word volume
is another term for disk or diskette. In most cases volume will refer to the Apple computer
floppy or flexible diskette. However, the term applies equally to Apple’s hard disk drive Pro-
File. ProFile is a 5SMB mass storage media. The SMB capacity is like having 35 floppy disk-
ettes available to you all simultaneously. ProDOS supports both forms of disk storage. Figure
8.12 shows these commands as presented on a video screen.

The ? (TUTOR) option works the same as described earlier in Section 8.1.2 and needs no
further explanation.

The F command allows you to format an entire volume, diskette. This command’s cor-
rollary in DOS 3.3 is the INIT command. This is covered in Section 8.1.4.1,

Section 8.1.4.2 shows you the video screen for copying one volume to another volume.
The COPYA program on the SYSTEM MASTER DOS 3,3 diskette performs this function
for DOS 3.3 diskettes,

E

SEEE2TITITR TR ETEX LT SL S
MAKE DIRECTORY %

;]

¥

SPRODOS %4 ddeddddiiiiss ¥
RECTORY—-

--EHTER PATHHAME @HD PRESS <RET:--

Figure 8.10. MAKE DIRECTORY screen.

SET PEEFI=
PEODODS - $F%Ffdddddddd s

{#PROOOS S

-~EHTEE FATHHAME @AHD

ERERSECREECSS

Figure 8.11. SET PREFIX screen.

USING THE FILER PROGRAM / 125

FEEPEREEEERERERRE FERRERREER R AR R a s
UOLUME COMMAHDES
ST LB IR TR E BT ST T
TUTOR
FORMAT A VOLURME
COPY A WOLUME

LIST UOLUMES
EEMAME @A UOLLUME
OETECT EBAD ELOCES
ELOCK ALLOCATIOHN
; COMFARE WOLUMES
ZELECT AW OFTIOH QR <ESC

Figure 8.12. VOLUME COMMANDS screen.

Listing of the files on a volume may be accomplished by using the L (LIST VOLUMES)
option. The video screen for this is shown in Section 8.1.4.3. This subprogram has a corollary
in the FID program of DOS 3.3. Section 8.1.4.4 shows you the display that lets you RENAME
a volume.

The next section describes how to detect bad blocks that might be present on a diskette.

Section 8.1.4.6 gives you the block allocation present in a diskette.

The last section (8.1.4.7) shows you the screen presented when you want to compare one
volume with another.

ProFile Note:

Be very careful when you format ProFile. It is a large storage device and may contain valuable
information.

FORMAT A VOLUME. This screen allows you to prepare a volume to accept programs,
files, or data. All diskettes must be formatted before you can store data on the diskette. Every
computer manufacturer uses a slightly different diskette recording scheme. The diskette
manufacturers manufacture blank diskettes. Therefore, computer manufacturers provide
either system or utility software that provides their recording scheme on the surface of the
manufacturer’s blank diskette. Figure. 8.13 shows you the screen for formatting a volume.

126 / EXECUTIVE FILES

FrEdd kiR ed Rk
FOEMAT A UOLLUME
b A A A

ATCH . DISE

Figure 8.13. FORMAT A VOLUME display screen.

The surface of the recording media is divided into sections called blocks. A block of data
is 512 bytes long. In DOS 3.3 terminology, this would be 2 sectors, because a sector holds 256
bytes of information. Further, there are 35 tracks of 8 blocks each where each track is marked
for recording data.

Notice that you have the capability of accepting the default volume name assigned by
the /PRODOS/FILER or choosing one of your own. If you accept the default, volumes will
be named as follows:

/BLANKxx

In this case, the xx represent numbers that start with 00 and increment by one each time
you accept a default value. The range of numbers are from 00 through 99. Then the number
sequence will recycle from the beginning.

Further, you may format a volume using any legitimate slot-drive combination, includ-
ing a ProFile hard disk, if you have one. So, please be careful when making selections. Re-
member that the ESCAPE key may always be used to restart a screen or to escape that
selection.

USING THE FILER PROGRAM / 127

When you enter a slot-drive combination or a volume name of your own, all you have to
do is type over the default values or name presented on the screen.

You will probably have some diskettes that you previously formatted. Now you want to
reformat them and store new information. When ProDOS determines that the diskette
already has information stored on the diskette, you will be asked to verify that you wish to
destroy all previous information. Do not answer the question lightly, because once you re-
spond by telling the format program to destroy previous information, there is no retreating.
The stored information is gone.

After a diskette is successfully formatted, you will see the message:

FORMAT COMPLETE

Remove the formatted diskette from the disk drive and label it with the volume name,
contents, and current date, and identify it as a ProDOS diskette.

ProFile Note:
If you are going to format a mass storage disk like the ProFile, you will get the message:
WARNING:YOU ARE ABOUT TO FORMAT A LARGE DISK

If you made a mistake, use the ESC key to terminate the selection.
If it is what you want, type RETURN key.

COPY A VOLUME. In Chapter 1 you were introduced to making copies of the diskettes that
came with ProDOS. It is always a good idea to make copies of your diskettes. Even though the
data stored on a diskette is very stable and highly reliable, disasters can happen. Murphy’s law
again. So, take out ‘‘volume insurance’’ and make backup copies of your diskettes.

In the previous section, it was stated that you must format a diskette before you are able
to store data and information on that diskette. Now you will be given the exception to the rule.
When you copy one volume to another, the COPY A VOLUME option will first reformat the
destination diskette before copying the contents of the source diskette to the destination
diskette. If there is anything at all on the destination diskette you want to keep, PLEASE
move those files to someplace else so they won’t be lost.

When making a copy of a volume, you may maintain the same name or change the name
on the new volume. Figure 8.14 shows you the screen for copying a volume.

The source (original) diskette in the above example is to be placed in slot 6, drive 1. The
destination (new or copy) diskette is to be placed in slot 6, drive 2.

If you have a single drive system, place your source volume in drive 1 and be prepared to
do a lot of diskette swapping. Fortunately, the copy program will place messages on the video
screen telling you which diskette is to be placed in the disk drive.

When all of the copying has been completed, you will be given the message:

128 / EXECUTIVE FILES

iz@j_-#_v;#;;;;;;;;;;;f;:;:}:1:.txﬂ’.*X****X***1**1**%1#%1##%%
5 COPY A VUOLUME ¥
27

KRR KRR R Ry

"UOLUME IN
D

SLOT

RIVE

7 UOLUME IN SLOT:
g RIVE :

D
HEM UOLUME NAME :

{RET> TO ACCEPT:<{ESC> TO EXIT--

Figure 8.14. COPY A VOLUME display screen.

COPY COMPLETE

You have once again made a successful copy of a diskette.

Unless you have two volumes, this option is not of much value for the ProFile.

LIST VOLUMES. The easiest way to determine what mass storage volumes are assigned to
what expansion slots is to use this video screen command. When you select the L (LIST
VOLUMES) option from the previous screen, your system will automatically test every
peripheral storage device and determine the name of the volumes active. The list volumes
screen is shown in Figure 8.15.

The LIST VOLUMES video screen display tells you which ProDOS volumes are active
and in which expansion slot and drive they reside. If there is no volume in one of your drives,
it will not be shown in the list. Further, if you have a DOS 3.3 diskette in one of your disk
drives, you will see the message

USING THE FILER PROGRAM / 129

¥
; LIST VOLUMES ‘
k-
H

S0 2200800000800 30 ¢SRS R SRR
SLOT DORIVE UOLUME NAME

;;1_'_'{;#_‘j#::#:f#:}:.‘t:}:.’#i){************x*x****x***#X#ﬁ#‘

AM
RODO
ROFI

() [TN |

S
LE

{RET> TO BEGIN: <ESC3> TO ESIT-=%8

Figure 8.15. LIST VOLUMES.

<NO DIRECTORY >

displayed on the video screen.
The /RAM volume is the 64K expansion memory resident on the extended 80-column

text card available for the Apple Ile only. This card and its capabilities are covered in Section
F.4 of Appendix F. For now, just accept the fact that it has the address of slot 3, drive 2.

ProFile is installed in slot 5, drive 1. This is the recommended location. The ProFile is dis-
cussed in Section F.5 of Appendix F.

RENAME A VOLUME. As you sit at your system formatting diskettes, it is highly probable
you will think of volume names that are more interesting than /BLANKIS5, for example.

These names may end up being whimsical, off-color or just unwanted later on. There always
comes the time when the volume called /GOTO.JOHN really needs to be called /GL.MAY.84

for ““General Ledger—May 1984.”’

130 / EXECUTIVE FILES

The RENAME A VOLUME option allows you to make the change. This option lets you
change the name of a volume without changing the contents of the diskette. The rename dis-
play is shown in Figure 8.16.

Place the volume you wish to rename into an available disk drive. Then select the slot
and drive designations of the volume’s location. Once you have done this you need only enter
the new name for that volume. The system will do the rest.

Remember, the new name must have:

—the first character be alphabetic
—15 characters or less
—no embedded blanks
—no special characters

DETECT BAD BLOCKS. Sometimes, it is obvious when a diskette cannot be used any-

more—when it is creased in the lid of your attache case, for example, or bathed by hot coffee.

Other times, volumes will go bad in much more subtle ways. They will develop bad blocks.
Bad blocks can develop in very sneaky ways from causes such as:

PRERFREEEEER RO OO
RENAME A UOLUME
-“#t#**r*x**********#*#r###f#ttz

Ee=
IME IN SLOT:
JOLUM OB TUE :

MEM UOLUME NAME: (/¥RODOS

{RET> TO ACCEPT:<ESCY» TO EXIT--

Figure 8.16. RENAME A VOLUME display screen.

USING THE FILER PROGRAM / 131

—dust on the diskette

—fingerprints on the recording window
—excessive usage

—old age (like me)

If you suspect any of these things have possibly damaged a diskette volume, it is recom-
mended that you check the volume for bad blocks. Figure 8.17 shows you the screen for doing
that.

For this option all you are required to enter is the slot-drive combination that contains
the diskette to be checked.

If there are no bad blocks, you will get the message:

0 BAD BLOCKS

If, however, any bad blocks are discovered, these will be annotated as:

BAD BLOCK NUMBER
XXXX
YYYY
Z777Z

ITESF LS ED RS BOE SIS EEF O ST T 5 5 3
ODETECT BAD BLOCKS

* TO ACCEPT:<ESC>» TO ERIT—--

Figure 8.17. DETECT BAD BLOCKS display screen.

132 / EXECUTIVE FILES

If you do get bad blocks detected, it is recommended that you move all of the files that
are still good. Then either discard the diskette or reformat the diskette.

Notes:

1. You may use this option to check for bad blocks on DOS 3.3 diskettes.
2. You may also get a listing of the detected bad blocks on a printer by changing the display
device. See the Configuration Defaults in Section 8.1.5.

BLOCK ALLOCATION. This command option allows you to find out how many blocks on
a volume are used by files, how many are still available, and the total number of blocks on the
volume.

This option helps a great deal when you are moving files from one volume to another.
You may want to know if there is enough space left on the destination diskette to hold more
files.

You should be able to get a feel for the space requirements of programs and files by us-
ing this command option.

3 H##########t################k####ttz
. ALLOCATION ¥
¢::¢::t:z:xux:xxxxxxxxxxuxxxx:#:#::tzz#:.tttt"-.

i ALLOCATION=-= -

Li
UpLUME IN SLOT: 6
=l al DRIVE: (1)

3
kS
¥
i
¥

> TO' ACCEPT:KESE> TO EXIT=—

Figure 8.18. BLOCK ALLOCATION screen.

USING THE FILER PROGRAM / 133

COMPARE VOLUMES. This option, as the name says, is for the purpose of comparing two
volumes for a match. This is very handy because there are times when you want to determine if
your backup really is an exact copy of the original.

After you have entered the slot-drive combinations for the two diskettes you wish to
compare, this subprogram does a byte-for-byte comparison of the two diskettes.

If the two volumes are really exact copies, you should get the message:

COMPARE COMPLETE

However, if there are any blocks that do not match, you will get the message:

BLOCK NUMBERS DO NOT MATCH
1
3
4

—PRESS <RET> TO CONTINUE: <ESC> TO EXIT

;mmmmnw;nnnuuuuna4uui
i OMPARE UOLUMES 3
4 i
EMHMHHHHHHHHHtuununu

-COMPARE-- 7
TH lluleE IN §
THE 0p
To UOLUME IN

oy =M
o

L
I
L
1

~

OR

y TD ACCEPT:<ESG» TO EXIT-

Figure 8.19. COMPARE VOLUMES display screen.

134 / EXECUTIVE FILES

Only three mismatching blocks will be shown initially. By typing the RETURN key the
remaining mismatched blocks are displayed.

Notes:

1. You may use this option to compare two DOS 3.3 diskettes.
2. You may also get a listing of the compared diskettes on a printer by changing the display
device. See the Configuration Defaulls in the next section.

Some clues to possible mismatches are:

—block 2—the names are different
—block 6—the maps for the diskettes are different

Profile Note:

This option is not of much value unless you have two or more hard disks like ProFiles.

8.1.5. CONFIGURATION DEFAULTS

This option allows you to customize the /PRODOS/FILER program to your particular sys-
tem. You are allowed to either set your own system configuration or revert to the predefined
defaults. This is shown in Figure 8.20.

When you select defaults for your system configuration, the selected values will be writ-
ten to the diskette so the program must be in drive 1 of the boot drive throughout the
operation.

After you have selected the S option, you will be given a secondary screen shown in the
next section.

SELECT DEFAULTS. The SELECT DEFAULTS option will present the following screen,
If you do not remember the slot assignments for your disk drives and printer then use the ESC
key to return to the main menu and ask the program to display the slot assignments, See
Figure 8.21. Then return to here for any reassignment$ ypu wish to make,

If you use the RETURN key on any of the values presented, then you are accepting the
default value. At any time you make a mistake you may use the ESC key to réturn you to the
top of the selections and reenter the selections.

The output device is where the FILER program will display information. If you select
the printer, then all subsequent output will be sent to your printer, Make sure that your printer
is turned on and is in the ON-LINE or SELECTED condition. Of course, paper in the printer
will also help.

The other screen possible is to be able to restore defaults That screen is shown in the
next section.

USING THE FILER PROGRAM / 135

COHFIGURATION DEFAULTE 3
SRR R R R R RN R R b
TUTOE

S SELECT DEFRULTS
E - RESTORE DEFAULTS

SELECT AN OPTION OR <ESC>:

Figure 8.20. CONFIGURATION DEFAULTS screen.

RESTORE DEFAULTS. By selecting the RESTORE DEFAULTS option, the FILER pro-
gram will restore all options to the standard or defaulted values. The screen presented is
shown in Figure 8.22.

Notice that this screen shows that the disk drives are installed in slot 6 and the normal
output is to be to the video display. If you wish to accept the defaults as displayed, you need
only press the RETURN key.

If you decide to keep the customized values then press the ESC key and go back to where
you started.

8.1.6. QUIT

This option is for the purpose of leaving the /PRODOS/FILER program and being able to
execute any other program or system of programs.

Notice that the video screen shows that the system program, /BASIC.SYSTEM, will be
executed if you accept that pathname. If you do not want to accept, simply type in the path-
name of the program you want to execute.

136 / EXECUTIVE FILES

-—-FRESS {FET> TO ACCEFT:<ES [:‘ » i EXEES

Figure 8.21. SELECT DEFAULTS screen.

8.2. USING THE CONVERT PROGRAM

The /CONVERT program has been included in ProDOS for the purpose of being able to con-
vert DOS 3.3 programs and files to the new ProDOS environment. This program performs a
similar function to the MUFFIN program provided when the transition was made from DOS
3.2.1to DOS 3.3. :

Because of the formatting differences between DOS 3.3 and ProDOS, you will have to
convert all DOS 3.3 diskettes to ProDOS.

There are a few cautions, however. The CONVERT program will not transfer DOS 3.3
or ProDOS random-access files. You will have to find some other way to transfer these files.

8.2.1. ProDOS CONVERT menu

The main menu gives you the ability to choose any of the capabilities of the CONVERT pro-
gram. If you do not understand how to use the program then select the TUTOR option first by
typing a question mark on the keyboard.

USING THE CONVERT PROGRAM / 137

PEREEEER R RARERRRRRR RN R Rk ey
*

¥
%
%4

STORE ODEFGULTS
FE‘E,I:;[F: SOURCE =

DESTIHATION

SELECT
> [N

2 i L '.l.i ~
> AND MOHITOR

--PRESS <RET: i BN S

Figure 8.22. RESTORE DEFAULTS screen.

It is recommended that you set the date first if there is no date showing. This will give
you the created date on your ProDOS diskette when you transfer files.
8.2.2. Reverse transfer direction

This option allows you to change the direction of the transfer. When you select this option,
the screen will only change in the direction line. This direction display actually wraps around
in this area.

8.2.3. Change DOS 3.3 slot and drive

This option lets you adjust the slot-drive combination to suit your particular system. When
selecting this option, you may either enter new information, enter partial information or ac-
cept defaults by simply typing the RETURN key.

Profile Note:

When transferring files from ProFile to DOS 3.3, change the slot-drive combination first.

138

':#t#%ii%#iﬁﬁiiitx#1§1§x111%
BLUIT i
FPRODOS - 3%kt eitisss

STEH:=

-—EHTEE FATHHAME AHD FRESS <E

Figure 8.23. QUIT screen.

» Probis

ODirection of Transret
snoe 005 3.3 Slot and O
t FrobDOs Oate
S=t FrolOS Prefix

Enter Command: 7 = e @ - Quit

Figure 8.24. CONVERT main menu.

Q

FILER AND CONVERT ERROR MESSAGES / 139

8.2.4. Set ProDOS prefix

This option allows you to change the ProDOS prefix for the purpose of converting programs
and files from many different diskettes to many different diskettes. Make sure that you have
entered the correct prefix before attempting to transfer any files.

8.2.5. Set ProDOS date

Since there is a place for the modification and creation date when you place files on a diskette,
you need to have a way to date-stamp your files.

8.2.6. Transfer or list files

This option is probably the one that you will use the most. This option allows you to list the
files on the DOS 3.3 diskette, and then from that presented list move the files to the ProDOS
diskette.

8.3. FILER AND CONVERT ERROR MESSAGES

Appendix D gives you a list of the possible error messages provided by both
/PRODOS/FILER and /CONVERT.

SUMMARY

This chapter discussed the two major utility software programs: /PRODOS/FILER and
/CONVERT. You were shown how each option worked and what each accomplished.
The /PRODOS/FILER program includes the following subprograms:

?7-TUTOR

. F-FILE COMMANDS
? -TUTOR
L -LIST PRODOS DIRECTORY
C-COPY FILES
D-DELETE FILES
K-COMPARE FILES
A-ALTER WRITE-PROTECTION
R-RENAME FILES
M-MAKE DIRECTORY
P -SET PREFIX

V-VOLUME COMMANDS
? -TUTOR
F -FORMAT A VOLUME
C-COPY A VOLUME
L -LIST VOLUMES

140 / EXECUTIVE FILES

R-RENAME A VOLUME
D-DETECT BAD BLOCKS
B -BLOCK ALLOCATION
K-COMPARE VOLUMES

D-CONFIGURATION DEFAULTS
? -TUTOR
S -SELECT DEFAULTS
R-RESTORE DEFAULTS

Q-QUIT

The /CONVERT program includes the following subprograms:

Reverse Direction of Transfer
Change DOS 3.3 Slot and Drive
Set ProDOS Date

Set ProDOS Prefix

Transfer (or List) Files

sHToaQ®

-~

Tutor

Q Quit

The major emphasis in this chapter was the description of how to operate the
/PRODOS/FILER and /CONVERT programs.

QUESTIONS

How do you get the /PRODOS/FILER and /CONVERT programs to execute?
Describe the functions of /PRODOS/FILER in detail.

. Describe each of the volume commands used in the /PRODOS/FILER program.
Describe each of the file commands used in the /PRODOS/FILER program.
Describe the cautions and considerations when using the ProFile.

Discuss how to customize the /PRODOS/FILER program to your own system.
What options do you have available when you quit the /PRODOS/FILER program?

NaMmbhwbD=

9. THE MACHINE
LANGUAGE INTERFACE

If it (automation) keeps up, man will
atrophy all his limbs but the

push-button finger.

Frank Lloyd Wright, 1955

9.0. OVERVIEW

This chapter assumes that you have had some experience with 6502 assembly language and the
internal structure of the Apple II family of computers. The intent of this book is to explain
ProDOS in enough depth to allow you to take advantage of this new operating system. It is
recommended that you refer to any of the numerous excellent books on 6502 assembly
language to give you additional information. Further, you may need to study the ProDOS
technical manual, if you need more in-depth information.

ProDOS, in addition to being an operating system, also handles interrupts, provides
memory management, and time-date stamps files from a clock/calendar card, if you have one
installed in your computer.

There is a new mechanism in ProDOS called the Machine Language Interface (MLI).
This mechanism allows you to make calls to the operating system, validates them, and issues

141

142 / THE MACHINE LANGUAGE INTERFACE

operating system commands. Calls to the MLI give you control over certain hardware. MLI
calls may be categorized into housekeeping, memory, and interrupt calls. This chapter will
discuss these mechanisms.

In this chapter and in others, the term system program has been used. This term as used
here and by Apple Computer, Inc. in their ProDOS manuals may be a bit confusing, espe-
cially if you are familiar with system programs on large computer systems. A system program
on large computer systems is neither an applications program (for instance general ledger or
financial planner) nor an operating system (for example OS 360/370 or OS/VMS). It nor-
mally provides a means of making operating system calls from an application program (for in-
stance a sorting module or file management module).

Under ProDOS, a system program refers to any program written in assembly language
that makes calls to the Machine Language Interface (MLI), and follows those protocols or
conventions. System programs may be identified by their file type or by their name, of the
form ---.SYSTEM. In general, it is the structure of a program, not its function, that makes a
program a ProDOS system program.

9.1. MEMORY USAGE

This section discusses the way the Machine Language Interface uses memory and various
memory areas within ProDOS. ProDOS treats memory in the same way the 6502
microprocessor treats memory: as a sequence of 256-byte pages. These pages are numbered
$00=0 through $FF =255 for every 64K = 65536 memory space.

Section 9.1.1 gives the booting and loading sequence required to install ProDOS into
memory and activate the operating system.

Section 9.1.2 gives a number of memory locations and their translations. ProDOS main-
tains a system bit map that keeps track of the usage status of every page of memory. More will
be said about this later in this section.

9.1.1. ProDOS loading sequence

When you first boot up your system with a startup diskette, a reasonably complex loading
procedure is set into motion. This loading procedure is set into motion any of a number of
ways. These are:

1. Applying power to a turned off machine with a ProDOS diskette installed in your boot
drive.

2. Issuing a PR# or IN# command from the Applesoft II BASIC immediate mode.

3. Issuing a 6-(CTRL)-P from the monitor prompt.

Any of the above causes a transfer of control to the onboard ROM located on the disk
controller card. As this transfer takes place, the following procedure will begin:

1. The disk drive ROM program is executed, which causes blocks 0 and 1 from the diskette to
be loaded into memory at $800 = 2048, and then that program is executed.

MEMORY USAGE / 143

2. The loader program attempts to find the file named PRODOS with the file type $FF =255
in the volume directory of the startup diskette. The $FF file type is a ProDOS system file.
The PRODOS file is loaded into memory at location $2000=8192. After the program is
loaded, then this program is executed.

3. Then the MLI determines your computer’s memory size and relocates itself to its final
location. The program then determines the devices installed and their slot locations. Fi-
nally, the system global page in memory is set up.

4. The last procedure accomplished is a search made of the volume directory for the first file
with the name ---.SYSTEM and a type $FF = 255 file. Once this is loaded and relocated it is
executed.

If either the PRODOS or ---.SYSTEM program files are missing, your system will report
to you that it is unable to load ProDOS. The memory map for ProDOS and those for other
memory areas are shown in Appendix B.

Once you have ProDOS installed, the search order for files is:

—slot 6, drive 1
—slot 6, drive 2
—slot 7

—slot 5, drive 1
—slot 5, drive 2

9.1.2. Memory maps

The following memory sections and their translations show you a number of places within
ProDOS that you may find interesting or helpful. These, along with numerous subroutines,
should help you understand the makeup of ProDOS.

The ProDOS MLI uses locations $40 through $4E on page zero during calls. These loca-
tion values are saved before an MLI call and then restored before exiting that call. The page
zero locations $3A through $3F are used for disk-driver routines. These are not restored after
usage.

A series of constants held in memory are shown below.

B898-. AEAFBO /0
BSAO-B1 B2B3B4B5B6B7B8 12345678
B8A8-B9. 9.......

The memory locations $BSCD through $B93A contain the ProDOS command table,
There are some very interesting things to be noticed from this table. First, the DOS 3.3 com-
mand table set the high bit on the last character of each particular command. In ProDOS, that
feature has been eliminated. Second, each command was listed separately. In ProDOS, the
commands have been run together, bunched up, and have no separators. This means that the
command table takes less space and implies a very different means of parsing for legal
commands.

144 / THE MACHINE LANGUAGE INTERFACE

B8CS8- . . . 425341
B8DO0- 56 45 52 49 46 59 42 4C
B8D8-4F 41 44454C 4554 45
B8EOQ- 43 41 54 41 4C 4F 47 4F
BBES- 50 45 4E 57 5249 54 45
BB8F0- 58 45 43 52 45 41 54 45
B8F8- 46 52 45 53 54 4F 52 45
B900- 4E 41 4D 45 42 52 55 4E
B908- 4C 4F 43 4B 43 48 41 49
B910- 4E 23 46 4C 55 53 48 52
BI18- 45 41 44 50 4F 53 49 54
B920- 49 4F 4E 4F 4D 4F 4E 50
B928- 52 23 50 52 45 46 49 58
B930- 43 4C 4F 53 45 41 50 50
B938-454E 44 .

..... BSA
VERIFYBL
OADELETE
CATALOGO
PENWRITE
XECREATE
FRESTORE
NAMEBRUN
LOCKCHAI
N#FLUSHR
EADPOSIT
IONOMONP
R#PREFIX
CLOSEAPP

The next memory locations show the ProDOS command modifier translations.

B9BS8-. 41 42 45 4C 53 44 46 .ABELSDF
BYCO0-5256.

The following memory locations show the translations for the various file type ab-
breviations as they are displayed when you use the CAT or CATALOG commands.

B9EO- . .Cl1C4C2

BY9E8- C1 D3 D0 C1 D7 D0 DO C1
B9F0- D3 D4 D8 D4 C2 C9 CE C4
B9F8- C9 D2 C3 CD C4 C9 CE D4
BA00- C9D6 D2 C2 C1 D3 D6 Cl
BAO8- D2 D2 C5 CC D3 D9 D3 .

The following memory locations show a series of month names that are used to display

ASPAWPPA
STXTBIND
IRCMDINT
IVRBASVA
RRELSYS.

dates when ProDOS needs to display the date.

BAOF-.CA
BA10-C1 CEC6 C5 C2CDC1D2
BA18-C1D0OD2CD C1 D9 CADS
BA20-CECADSCCCID5SC7D3
BA28- C5 D0 CF C3 D4 CE CF D6
BA30-C4C5C3IBCCECFA0C4
BA38- C1 D4 CS BE 28 AB 40 41

. |
ANFEBMAR
APRMAYJU
NJULAUGS
EPOCTNOV
DEC<NO D
ATE >

MEMORY USAGE / 145

BA3C-. . . .28AB4041(+@A
BA40- 42 43 44 45 46 47 48 49 BCDEFGHI
BA48- 4B 4C 4D 4E 50 53 56 . KLMNPSV.

The next few memory locations show a prompting message that may be placed upon a
video screen when for any reason you are left in the monitor.

BB98-. . . DOCCCS5CiID3 ... PLEAS
BBAO-C5A0DOD2CSD3ID3A0 E PRESS
BBA8-D3DOCIC3C5A0C2C1 SPACE BA
BBB0O- D2 A00G0 00000006000 R

BCCO- 30 2E 424530 2E 4449 O.BEO.DI
BCCS8- 53 4B 2F 53 54 41 5254 SK/START
BCDO-5550. UP.

The $BE54 and $BES5 memory locations are used to handle the parsing of any com-
mand string parameters. The various bit positions within these bytes have distinct hex-
adecimal values. Each of these values has a distinct meaning. These meanings are shown
below.

The memory locations $BD00 through $BDFF have uses that are unknown at this time.

The memory locations $BE54 and $BE55 contain the modifier values allowed for a
specific ProDOS command.

BES54 = $80 Need a prefix, pathname is optional
40 No parameters needed to be processed
20 Deferred mode command only
10 Filename is optional
08 CREATE command allowed
04 File type optional
02 Second filename required for RENAME command
01 A filename is expected

BESS = $80 Address allowed
40 Byte allowed
20 End address allowed
10 Length value allowed
08 @ line number allowed
04 Slot and drive numbers allowed
02 Field
01 Record
00 Volume number ignored

146 / THE MACHINE LANGUAGE INTERFACE

The following memory locations are a series of bytes with the high bit set to 1, and
translate to the copyright message sometimes displayed by ProDOS on a video screen.

BEE(O-C3CFDOD9D2C9C7C8 COPYRIGH
BEES8-D4A0CIDODOCCCSAC T APPLE,
BEF0- AOB1 B9B8 B3. . . 1983

The $BF = 191 page of memory contains the system’s global variables. This includes the
addresses $BF00 through $BFFF. This section of memory is inviolate. Because of this, this
page serves as the communication link between system programs and the operating system.
The MLI places all information that is helpful or useful to a system program into these
memory locations.

BF00- 4C B7 BF JMP $BFB7 ;MLI call entry point
BF03-4CBDEE JMP S$EEBD ;Spare. Reserved for future use.

BF06- 4C 42 F1 JMP $F142 ;Clock/Calendar routine, user installed
BF09-4CDAD1 JMP S$DIDA ;Error reporting vector.
BFOC-4CE6D1 JMP $DI1Eé6 ;System failure vector.

BFOF- 00 ;Error code. 0 = No error.

In the next memory locations are a series of two-byte addresses starting at $BF10. Each
of these addresses contains information about specific devices. The range of memory from
BF10 through BF2F contains information defined as follows:

BF10: Slot zeroreserved BF20: Slot zero reserved

BF12: Slot 1, drive 1 BF22: Slot 1, drive 2

BF14: Slot 2, drive 1 BF24: Slot 2, drive 2

BF16: Slot 3, drive 1 BF26: Slot 3, drive2 = / RAM, reserved
BF18: Slot 4, drive 1 BF28: Slot 4, drive 2

BF1A: Slot 5, drive 1 BF2A: Slot 5, drive 2

BF1C: Slot 6, drive 1 BF2C: Slot 6, drive 2

BFI1E: Slot 7, drive 1 BF2E: Slot 7, drive 2

If one of these addresses carries the value DOA2, that slot is currently empty and does
not contain and interface card. Listed below are possible entries for a system.

BF10- A2D0 A2 D0 A2 D0 A2 D0
BF18- A2 DO EA C500 FB A2 D0
BF20- A2 DO A2 D0 A2 D0 00 FF
BF28- A2 D0 A2 D0 00 F8 A2 D0

Notes

1. Slot 5, drive 1 (BF1A-BFI1B) contains a disk drive. In this case a ProFile hard disk.
2. Slot 6, drive 1 (BFI1C-BF1D) contains a Disk II drive.

MEMORY USAGE / 147

3. Slot 3, drive 2 (BF26-BF27) contains /RAM as a memory disk drive.
4. Slot 6, drive 2 (BF2C-BF2D) contains a Disk II drive.

BF30- 60 03 54 EO 60 BF 00 00

L |

et~ Thie search list of active devices.

Number of active devices minus 1,

—— The last device {slot and drive) used,
BF38- 00 00 00 00 GO 00 00 00 —«—— Extra space for active devices,

The following memory locations are for the purpose of putting a message on the video
screen.

BF40- 43 4F 50 52 2E 2041 50 COPR. AP
BF48-504C452C31393833 PLE,1983

The purpose of the following eight memory locations is not known at this time.
BF50- 8D 8B C04C D8 FF 0000

The following addresses are the memory map of the lower 48K. Each bit that is set
represents one page of memory (256 bytes) that is currently in use. Those pages that are in use
(protected) are marked with a 1 (set). Those that are not in use (unprotected) are marked with
a 0 (reset). ProDOS will not allow you to write file buffer information into protected areas.
This area is known as the system bit map. There are 24 bytes set aside for the system bit map.
Each byte represents a 2K block of memory. Therefore, 8 bytes represents 16K of memory.
The 24-byte system bit map represents 48K of memory. How each 256 bytes of memory is
represented is shown below.

BF58- 00-07 08-OF 10-17 18-1F 20-27 28-2F 30-37 38-3F <« Pages

CF 00 00 00 00 00 00 00 + Value

-
—_
Q
Q
—_
-
-
-

-e«— Bits set = pages used

Addresses
» $0700-07FF

- $0600-C6FF

b $0500-05F F

e §0400-04FF

~—»- $0300-03FF

148 / THE MACHINE LANGUAGE INTERFACE

| L > $0200-02FF
» $0100-01FF
$0000-00FF

The next 16K of memory is shown as being unused.

BF60- 40-47 48-4F 50-57 58-5F 60-67 68-6F 70-77 78-7F < Pages

00 00 00 00 00 00 00 00 < Value

BF68- 80-87 88-8F 90-97 98-9F A0-A7 AS8-AF B0-B7 B8-BF « Pages

00 00 00 3F FF FF FF C3 < Value

Ojoftr[1]|1]1]1[1]|~=-Bits set = pages used

Addresses

——p $9FC0-9FFF

— - $9EO0D-9EFF

\—————————» $90D00-9DFF

i $9C00-9CFF
$9B800-9BFF

—- $9A00-9AFF
» $9900-99FF

$9800-98FF

The following eight memory locations are used to hold the addresses of the allowable
file buffer starting addresses. These are for the open files only. They should not be changed
when activated. None are active at this time.

BF70- 00 00 00 00 00 00 00 00
BF78- 00 00 00 00 00 00 00 00

The next eight memory locations are for the purpose of holding the addresses of the
allowable four interrupt vectors. Again, these should not be changed.

BF80- 00 00 00 00 00 00 00 00

The memory addresses BF88 through BFSF are for the purpose of holding the values
and status of various 6502 processor and memory areas.

MEMORY USAGE / 149

BF88- 00 00 00 00 00 00 00 00

l I——l—> Interrupted address/return address
ROM, RAM

Status register (processor)

- Stack register

> Y register

»- X register

»- A register

The bytes BF90 through BF91 hold the current date and BF92 through BF93 hold the
current time, provided you have a clock/calendar card installed in your system that is sup-
ported by ProDOS. Note that it is necessary to reverse the bytes for the purpose of figuring the
current date and time. This is done below.

BF90- 92 A7 — These two bytes hold the date.
A7 92

| |
N | 1

FEDCBA9876654321 0 -+ Bitpositions for reversed word,

1jo|t1|OojO|1|1|1]1]OjO]1]|O|O|1]|O| = Bit vatues within word,

Year Month Day
83 12 18

BF92- 2B 10 — These two bytes hold the time.

10 2B

| |
| [|

FEDCBA9876543 210 --«— Bitpositions for reversed word,

olojo|1{ojojolo|o]jo|t1|o]1]1]|0]|O| —— Bitvatues within word.

Hours Minutes .
- — ~— |tis4:44 pm

16 44

150 / THE MACHINE LANGUAGE INTERFACE

Both the date and time bytes are used when writing call to the MLI discussed in the next
section.

BF94- File level number. Used during OPEN, FLUSH, and CLOSE. When a file is opened
it is assigned a level from 0 through 4 depending upon the value in this location.
BF95- Backup byte.

The next two bytes are reserved for future use.

BF96-
BF97-

The location $BF98 is the machine identification byte. Each of the bits within the byte
have special meanings. For example:

7654 3210 -+— bitpositions

BF98- |1

L

011 -+—— bit values

1(0
J [FI translation — meanings

e~ 1 = Thunderclock

0 = no clock

1 = 80-column card
0 = no card

e reserved for future use.

e 11 = 128 K
10=264 K
01=48K
00 = unused

- 11 = Apple IIl emulation
10 = Apple 1le
01 = Apple Il Plus
00 = Apple II

From the bit pattern above, the computer is an Apple Ile with 128K of memory that also
has an 80-column card and a Thunderclock card. From this byte you have a great deal of
information.

The next byte will tell you which slots are occupied with ROM installed. For example:

MEMORY USAGE / 151

76 543 2 10 -+ bitpositions (slots)

BF99- (0

1{r11{110{110] - bitvalues

transiation — meanings

- INUSEA

used — printer card,

—p— unused — MODEM card.

e U15€d — B0-cOlumn card.

=~ used — clock/calendar card.

used — hard disk card.

used — floppy disk card.

- unused — 280 card.

For the example, slots 2 and 7 are not used. To the right of the diagram are listed the nor-
mal or default cards that may be installed in the individual slots. Most manufacturers design
their products to be slot independent. However, over the past 6 years, certain slots have taken
on specific peripherals. Those are the ones listed.

BF9A-

BF9B-

BF9C-
BF9D-
BF9E-

BF9F-

This byte is for the purpose of storing whether a prefix is active or not. A 0 means
that no prefix is active.

This byte shows whether the MLI is active or not. If bit 7 is turned on ($80) then the
MLI is active.

These two bytes carry the return address of the last MLI call.

This byte carries the X register value on entry to the MLI.

This byte carries the Y register value on entry to the MLI.

The memory areas $BFAO through $BFFB contain a series of routines for the language
card bank-switching. These addresses are subject to change.

BFFC- 00 The earliest version of the MLI with which your system program will work. In this

case zero (00).

BFFD- 00 The version number of your system program. In this case also a zero (00).

152 / THE MACHINE LANGUAGE INTERFACE

BFFE- 00 This byte carries the minimum compatibility version.

BFFF- 00 This byte carries the latest version number of ProDOS.

9.2. ISSUING CALLS

The MLI provides a very handy interface between the machine-language programmer and
files stored on a diskette, The MLI is totally independent of the BASIC.SYSTEM program.
The MLI consists of:

—The command dispatcher
—The block file manager
—Disk driver routines
—The interrupt handler

In order to use the MLI there are a couple of very simple requirements that need to be
followed. The following machine-language routine is actually about all that is required.

JSR MLI ;Call command dispatcher located at address $BF00
DB CNUM ;This byte defines which call is being made

DW PLIST ;A two-byte address pointer to the parameter list
BNEERROR ;Branch to error routine if accumulator is nonzero

The JSR is a Jump to SubRoutine located at the MLI address. This address is $SBF00.
The DB means Define Byte. The value placed there is the call number (CNUM). The DW
means Define Word. This is a 2-byte field that carries the address pointer to the parameter list
allowed for this call. PLIST means Parameter LIST. The last line of code is BNE, Branch if
accumulator is Not Equal to zero. This implies that the accumulator of the 6502 processor
must be set to a zero value provided the call terminates successfully. Another instruction that
may be used is the BCS (Branch if Carry is Set). This implies that you must set the carry flag to
zero (CLear the Carry, CLC) if the call terminates successfully, and make sure the ac-
cumulator is zero. If a call is to terminate in an error then you should SEC (SEt the Carry) and
load the accumulator with the error code value before returning from the subroutine.

By the way, a call to the MLI will return to the JSR + 3 bytes. This means that you will be
returned to the BNE instruction. The only 6502 processor flags that are affected are the Z-flag
and the C-flag. The Z-flag is set to 1if the accumulator is zero. You have to set the C-flag if an
error is returned in the accumulator. Further, you should make arrangements in your code to
preserve the X and Y register and the SP (stack pointer).

The parameter list defined by the PLIST pointer will contain information to be used by
the MLI call. There are three types of elements used in a parameter list. These are values,
results, and pointers.

A value is a byte or bytes that carry quantities used by the MLI routine or the Block File
Manager (BFM).

ISSUING CALLS / 153

A result is a byte or bytes in the parameter list where the BFM will place values. From
these values, programs can get information about the results of performing the MLI call.

A pointer is normally a 2-byte memory address that will indicate a location in memory
where data, code, or space is available for the storage of information.

Finally, the first element in the parameter list is the parameter count. This is a 1-byte
value that tells you the number of parameters in the list to be used by the MLI call. This value
does not include the parameter count byte.

MLI calls are divided into three distinct groups. Each of these groups is discussed in one

of the next three sections.
Fortunately, there is a program called EXERCISER supplied with ProDOS. This pro-

gram will help you learn how to use the MLI. It allows you to execute MLI calls from a menu.
You will use this exerciser program just as if you were writing a call of your own. You specify
the call by its command number, the parameter list, and then execute the MLI call by typing a
carriage RETURN.

When you run this program you use the command:

]— /PRODOS/ EXERCISER

The screen you are presented is shown in Figure 9.1.

e Ak g

i
i
;3
3
£33
$
L
$L

L =] DIRECTORY
fi= .1_[IIF| EUFFER

SELECT CoMManD

Figure 9.1. EXERCISER main menu.

154 / THE MACHINE LANGUAGE INTERFACE

At this point you can exercise each of the commands in the list presented and gain con-
fidence that writing calls to the MLI is not difficult.

The next sections will describe the above calls. After a description of the call there is a
screen presentation of the requirements for that call as presented by the EXERCISER. By us-
ing the