
-
- IAiCAO

on the Apple
Volume 2 INCLUDES a

DISKETIE

- MICRO on the Apple

-

-

-

1

J

'1 , ,
-,
1 ,
1

J ,
,
1

1

l

l

J

i

r

MICRO on the Apple 2

Ford Cavallari, Editor

u~lnk
Incorporated
P.O. Box 6502

Chelmsford, Massachusetts 01824

Notice
Apple is a registered trademark of Apple Computer, Inc.
MICRO is a trademark of MICRO INK, Inc.

Cover Design and Graphics by Kate Winter

1
"'""')

\

.-,
I

.,

Every effort has been made to supply complete and accurate information. However, MICRO i
INK, Inc., assumes no responsibility for its use, nor for infringements of patents or other
rights of third parties which would result.

Copyright© 1981 by MICRO INK, Inc. l
P.O. Box 6502 134 Chelmsford Street)
Chelmsford, Massachusetts 01824

All rights reserved. With the exception noted below, no part of this book or the accompany­
ing floppy disk may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic or other record, without
prior agreement and written permission of the publisher.

To the extent that the contents of this book is replicated on the floppy disk enclosed with
the book, it may be stored for retrieval in an Apple Computer. The original retail purchaser
is permitted to make one II) copy of the disk solely for his own back-up purposes.

MICRO on the Apple Series ISSN: 0275-3537
MICRO on the Apple Volume 2 ISBN: 0-938222-06-6
Printed in the United States of America
Printing 10 9 8 7 6 5 4 3 2 1
Floppy disk produced in the United States of America

.,

r

To LM.H.

Acknowledgements

The bulk of the credit for work done on this book goes out to exceptionally hard­
working Special Projects Editor Marjorie Morse for her coordination of special pro­
jects operation, for her editing expertise, for her production and paste-up talent,
and for her incredible patience with the MICRO-Lab operations. Since the com­
pilation of this work also required extensive program generation and listing, I also
wish to thank Darryl Wright, data entry specialist and precision programmer, for
the hours of typing necessary to produce the diskette. Special thanks also go out to
the entire MICRO staff, especially those who had direct involvement with this
project. They are Emmalyn Bentley, the best typesetter in the hemisphere, and
Paula Kramer, production professional. Thanks also to the publisher of MICRO,
Robert Tripp, whose enthusiasm for MICRO made this project possible, to
associate publishers Richard Rettig, for providing much advice on the entire
MICRO on the Apple project, and Mary Grace Smith, for granting the spirit and
autonomy needed to finish up this project. Finally, I wish to thank Ski, for being
there again.

,
, ,
1

1 ,
,
,
,
1

')

~

J

J

J ., ,
j

,:'

r
r
r

1

~

r

r.
2

r-

r
¢lI&l

3

i

Contents
INTRODUCTION

MACHINE LANGUAGE AIDS

Breaker: An Apple II Debugging Aid 5
Rick Auricchio

Step and Trace for the Apple II Plus 16
Craig Peterson

TRACER: A Debugging Tool for the Apple II 22
R. Kovacs

Apple Integer BASIC Subroutine Pack and Load 28
Richard F. Suitor

MEAN 14: A Pseudo-Machine Floating Point Processor
for the Apple II 37

R.M. Mottola

I/O ENHANCEMENTS

Screen Write/File Routine
B.B. Baxter

Bi-Directional Scrolling 52
Roger Wagner

49

Apple II Integer BASIC Program List by Page 58
Dave Partyka

Paged Printer Output for the Apple 63
Gary Little

Hexadecimal Printer
LeRoy Moyer

RUNTIME UTILITIES

67

Common Variables on the Apple II 73
Robert F. Zant

PRINT USING for Applesoft 78
Gary A. Morris

Searching String Arrays 84
Gary B. Little

Applesoft and Matrices 89
Camelis Bongers

AMPER-SORT 97
Alan G. Hill

Apple II Trace List Utility 111
Alan G. Hill

1

3

47

71

.,
-,

4 GRAPHICS and GAMES 117
A Versatile Hi-Res Function Plotter 119 -,

David P. Allen

Apple II Hi-Res Picture Compression 124
J Bob Bishop

An Apple Flavored Lifesaver 137
Gregory L. Tibbetts J Applayer Music Interpreter 146
Richard F. Suitor

Improved Star Battle Sound Effects 156)
William M. Shryock, Jr.

Galacti-Cube 157
Bob Bishop ..,

I

5 HARDWARE 161
The Color Gun for the Apple II 163

-,
Neil D. Lipson

A Cassette Operating System for the Apple II 166 .,
Robert A. Stein, Jr.

BASIC and Machine Language Transfers
with the Micromodem II 172 -,

George J. Dombrowski, Jr.

A Digital Thermometer for the Apple II 177
Carl T. Kershner

KIM and SYM Format Cassette Tapes
on the Apple II 181

Steven M. Welch

6 REFERENCE 189
Intercepting DOS Errors from Integer BASIC 191 ..,

Andy Hertzfeld
Applesoft Floating Point Routines 194

R.M. Mottola
How to Use Hooks 200

Richard Williams ...,
Brown and White and Colored All Over 207

Richard F. Suitor

LANGUAGE INDEX 213 -,
AUTHOR INDEX 214
DISK INFORMATION 216

~

Introduction

MICRO magazine, the 650216809 Journal, has been offering software support to
V- Apple users for over four years. With this book, we reaffirm our commitment to

the Apple user, by presenting some of the most outstanding programs and articles
which have appeared in MICRO over these years.

While MICRO continues to be the monthly source for new and innovative
programs and articles, many of the older MICRO articles are still among the best
material available for the Apple. Out of the pool of superb material, we have
selected some of the best articles which we feel to be representative of MICRO,
and have blended them together into this anthology.

MICRO has always catered to the serious computer user. Most of the pages in
the magazine are filled with programs - programs which demonstrate some
useful technique or perform some non-trivial task. This tradition of serious com­
puting goes on at MICRO, and is reflected in this, the second volume, of MICRO
on the Apple.

More than just another Apple book, MICRO on the Apple 2 is an invaluable
aid to the serious programmer, and a tool for the casual programmer to get serious
with the Apple.

The MICRO on the Apple book series was conceived to distribute most effec­
tively the wealth of Apple material available in MICRO. Each volume in the series
brings together articles and programs, and presents them in logically defined
chapters. All the material, even that which first appeared in early issues of
MICRO, has been updated, either by the original author or by the MICRO staff.
And all the programs related to these articles, whether Integer BASIC, ApplesQft,
or machine language, have been keyed-in, tested, and collected on a ready-to-use
diskette.

This volume of the MICRO on the Apple series concentrates on the
intermediate-to-advanced user, by presenting a host of indispensable aids for pro­
gramming. The machine language utilities in the first chapter have been designed
to ease the burden of 6502 programming. Similarly, the runtime utilities will
facilitate advanced applications programming in Applesoft. The rest of the
material in the book, from the recreational programs to the reference articles, all
underscore the concept of good programming techniques.

2 Introduction

Subsequent volumes of MICRO on the Apple will contain more comprehen­
sive reference materials, tutorials, utilities, and applications programs, much of
which will be original material not appearing in MICRO. MICRO magazine will
maintain its monthly coverage of the Apple and the 6502. MICRO on the Apple
will be the reference partner - the book you keep along with your reference
manuals, next to your Apple.

Once again, a 13-sector diskette has been included with the book. The deci­
sion to include a 13-sector diskette was made because of the universal com­
patibility of 3.2 format and the large number of systems still without DOS 3.3.
Through the use of Apple's MUFFIN program, this disk can easily be converted
over to 3.3 format - and the programs will still work!

We hope that the approach which we have taken - collecting outstanding ar­
ticles into a book and the accompanying programs onto a disk - will encourage
the use of some of the routines you may have heard about but never had a chance
to type in. We further hope that these routines afford you a chance to experiment
with programming and explore some of the techniques and tricks explained in the
articles. Lastly, we hope that MICRO on the Apple 2 will give you the chance to
catch up on the MICRO articles you might have missed, and will encourage you to
check future issues of MICRO for the latest in sophisticated Apple material.

Ford Cavallari, Editor
October 1981

'1

.,

..,

i

1
MACHINE LANGUAGE AIDS

Introduction 4 r-

Breaker: An Apple II Debugging Aid 5
Rick Auricchio

Step and Trace for the Apple II Plus 16
Craig Peterson

TRACER: A Debugging Tool for the Apple II 22 - R. Kovacs

Apple Integer BASIC Subroutine Pack and Load 28
Richard F. Suitor

MEAN 14: A Pseudo-Machine Floating Point Processor
for the Apple II 37

RM. Mottola

INTRODUCTION
This chapter contains a group of utility programs designed to make machine
language programming less tedious and less time consuming. Many of these
utilities can work together, so the aspiring machine language programmer will be
equipped with a formidable toolkit, indeed, after reading this chapter. "Breaker:
An Apple II Debugging Aid," by Richard Auricchio, facilitates the setting of break­
points within programs, an invaluable capability for debugging large routines.
"Step and Trace for the Apple II Plus," by Craig Peterson, gives the Autostart
Monitor ROM the stepping and tracing capabilities found only in the discontinued
Old Monitor ROM. "Tracer: A Debugging Tool for the Apple II," by R. Kovacs,
enhances the step/trace capabilities of either your monitor or the Peterson pro­
gram. These three routines form the debugging portion of the 'toolkit.'

Richard Suitor's "Apple Integer BASIC Subroutine Pack and Load" provides
an easy method of binding machine language routines to Integer BASIC driver pro­
grams. This process can simplify program storage on either disk or tape. And,
finally, R.M. Mottola's "MEAN-14: A Pseudo-Machine Floating Point Processor
for the Apple II" provides a machine language alternative to Applesoft for floating
point operations.

1

l

1

i

Breaker: An Apple II
Debugging Aid

by Rick Auricchio

Machine language program development can often be
speeded up through the use of breakpoints. While the
Apple II does not have a breakpont capability built in,
this program can provide that feature. Multiple
breakpoints may be inserted into or deleted from any
machine language program, in any place and at any
time!

When debugging an Assembly language program, one of the easiest tools the
programmer can use is the Breakpoint. In its most basic form, the Breakpoint con­
sists of a hardware feature which stops the CPU upon accessing a certain address:
a "deluxe" version might even use the Read/Write and Sync (instruction fetch)
lines to allow stopping on a particular instruction, the loading of a byte, or the
storing of a byte in memory. Since software is often easier to create than hardware
(and cheaper for some of us!), a better method might be to implement the Break­
point with software, making use of the BRK opcode of the 6502 CPU.

A Breakpoint, in practice is simply a BRK opcode inserted over an existing
program instruction. When the user program's execution hits the BRK, a trip to
the Monitor (via the IRQ vector $FFFE/FFFF) will occur. In the Apple, the
Monitor saves the user program's status and registers, then prints the registers and
returns control to the keyboard. The difficult part} however, comes when we wish
to resume execution of the program: the BRK must be removed and the original
instruction replaced, and the registers must be restored prior to continuing execu­
tion. If we merely replace the original opcode, however, the BRK will not be there
should the program run through that address again.

The answer to this problem is BREAKER: a software routine to manage Break­
points. What the debugger does is quite simple: it manages the insertion and
removal of breakpoints, and it correctly resumes a user program after hitting a
breakpoint. The original instruction will be executed automatically when the
program is resumed!

6 Machine Language Aids

Is it Magiel

No, it's not magic, but a way of having the computer remember where the
breakpoints are! If the debugger knows where the breakpoints are, then it should
also know what the original instruction was. Armed with that information,
managing the breakpoints is easy. Here's how the debugger works.

During initialization, BREAKER is "hooked-in" to the APPLE monitor via
the Control-Y user command exit, and via the COUT user exit. The control-Y exit
is used to process debugger commands, and the COUT exit is used to "steal con­
trol" from the Monitor when a BRK occurs.

Breakpoint information is kept in tables: the LOCTAB is a table of 2-byte
addresses-it contains the address at which a breakpoint has been placed. The
ADTAB is a table of I-byte low-order address bytes: it is used to locate a Break
Table Entry (BTE). The BTE is 12 bytes long (only the first 9 are used, but 12 is a
reasonably round number) and it contains the following items:

• Original user-program instruction
• JMP back to user-program
• JMP back for relative branch targets

When adding a breakpoint, we must build the BTE correctly, and place the
user-program break address into the LOCTAB. There are eight (8) breakpoints
allowed, so that we have a 16-byte LOCTAB, 8-byte ADTAB, and 96 bytes of
BTE's.

As the breakpoint is added, the original instruction is copied to the first 3
bytes of the BTE, and it is "padded" with NOP instructions ($EA) in case it is a
I-or 2-byte instruction. A BRK opcode ($00) is placed into the user program in
place of the original instruction's opcode (other instruction bytes are not altered).
The next 3 bytes of the BTE will contain a JMP instruction back to the next user­
program instruction.

If the original instruction was a Relative Branch, one more thing must be
considered: if we remove the relative branch to the BTE, how will it branch cor­
rectly? This problem is solved by installing another JMP instruction into the BTE
for a relative branch-back to the Target of the branch, which is computed by ad­
ding the original PC of the branch, + 2, + offset. This Absolute address will be
placed into the JMP at bytes 7-9 of the BTE. The offset which was copied from the
original instruction will be changed to $04 so that it will now branch to that
second JMP instruction within the BTE; the JMP will get us to the intended target
of the original Relative Branch.

A call to the routine "INSDS2" in the Monitor returns the length and type of
instruction for the "add" function. The opcode is supplied in the AC, and
LENGTH & FORMAT are set appropriately by the routine.

,
j

1

1

'1

'1

1

i ,
,
,
,
i

.,
1
~

I

r
Auricchio Breaker 7

Removal of a breakpoint involves simply restoring the original opcode, and
clearing the LOCTAB to free this breakpoint's BTE.

Displaying of breakpoint prints the user-program address of a breakpoint,
followed by the address of the BTE associated with the breakpoint (the BTE
address is useful-its importance will be described later).

When the breakpoint is executed, a BRK occurs and the Apple Monitor gets
control. The monitor will "beep" and print the user program's registers. During
printing of the registers, BREAKER will take control via the COUT exit.
(Remember, we get control on every character printed - but it's only important
when the registers are being printed. That's when we're at a breakpoint). While it
has control, BREAKER will grab the user-program's PC and save it (we must sub­
tract 2 because of the action of the BRK instruction). If no breakpoint exists at this
PC (we scan LOCTAB), then the Monitor is continued. If a breakpoint does exist
here, then the BTE address is set as the "continue PC". In other words, when we
continue the user program after the break, we will go to the BTE; the original
instruction will now be executed, and we will branch back to the rest of the user
program.

Using Breaker

The first thing to do is to load BREAKER into high memory. It must then be
initialized via entry at the start address. This sets up the exits from the Monitor.
After a Reset, you must re-initialize via "Ycl' , (Yc is Control-Y) to set up the
COUT exit again. Upon entry at the start address, all breakpoints are cleared: after
'Ycl", they remain in effect.

To add a breakpoint, type: aaaaYcA . This will add a breakpoint at address
'aaaa' in the user program. A 'beep' indicates an error; you already have a break-

,- point at that address. To remove a breakpoint, type: aaaaYcR. This will remove
the breakpoint at address 'aaaa' and restore the original opcode. A 'beep' means
that there was none there to start with.

Run your user-program via the Monitor's "G" command. Upon hitting a
breakpoint, you will get the registers printed, and control will go back to the
monitor as it does normally. At this point, aLl regular Monitor commands are
valid, including "Y cA", "Y cR", and "Y cD" for BREAKER.

To continue execution type: YcG . This instructs BREAKER to resume execu­
tion at the BTE (to execute the original instruction), then to transfer control back
to the user program. Do not resume via Monitor "Gil command-it won't work
properly, since the monitor knows nothing of breakpoints. To display all break­
points, type: YcD. This will give a display of up to 8 breakpoints, with the address
of the associated BTE for each one.

8 Machine Ltmguage Aids

Caveats

Some care must be taken when using BREAKER to debug a program, First,
there is the case of BREAKER not being initialized when you run the user program.
This isn't a problem when you start, because you'll not be able to use the Yc com­
mands. But if you should hit Reset during testing, you must re-activate via "YcI",
otherwise BREAKER won't get control on a breakpoint. If you try a YcG, unpre­
dictable things will happen. If you know that you hit a breakpoint while
BREAKER was not active, you can recover. Simply do a "YcI", and then display
the breakpoints (YcD). Resume the user-program by issuing a Monitor "G" com­
mand to the BTE for the breakpoint that was hit (since BREAKER wasn't around
when you hit the breakpoint, you have to manually resume execution at the BTE).
Now all is back to normal. You can tell if BREAKER is active by displaying loca­
tions $38 and $39. If not active, they will contain $FO FD.

It's also important to note that any user program which makes use of either
the Control-Y or COUT exits can't be debugged with BREAKER. Once these exits
are changed, BREAKER won't get control when it's supposed to.

Command

aaaa Yc A

YCD

Yc I

aaaa Yc R

BREAKER Command Summary

Function

Add breakpoint at location aaaa. Won't allow you to add
one over an already existing breakpoint. Maximum of 8
breakpoints allowed.

Display all breakpoints.

Initialize after RESET key. Just lIets up 'COUT' exit
again without resetting any breakpoints.

Remove breakpoint from location aaaa. Restores original
opcode.

,
'1

'1

-,

'1

,
j ,
,
......,

,
J

i

r

oeoo
De 00
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
oeoo
0800
0800
0800
beoo
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
oeoo
0800
0800
0800
0800
0800
0800
0800
oaoo
0800
0800
oeoo
0800
0800
9300
9300
9300
9300 4C3695
9303
9303
9303
9303 00
9304 00
9305 00
9306 00
9307
9307
9307
9307 00
9308 EA
9309 Ell
930A 4CCOOO
9300 4C
930E
930E
930E
930E 26

1
2
3
4
5
6
7
8
9

;**************** ••••• **.
: * *
;*
;*
;*
;*

BREAKER-DEBUGGER
RICK AURICCHIO

BREAKER

*
*
*
* ,* *

;* CCPYRIGHT (C) 1ge1 *
; * MICRO INK. INC. *
;* CHELMSFCRD. MIl 01824 *
;* ALL RIGHTS RESERVED *
;* *
;************************
;
;ROUTINES TO HANDLE UP TO
;8 BREAKPOINTS. FOR USE IN
;DEBUGGING OF USER CODE ...

;

Auricchio Breaker

10
11
12
13
14
15
16
17
18
19
20
21

: *** APPLE-2 MONITOR EOUATES

22 FORMAT
23 LENGTH
24 AIL
25 AIH
26 A2L
27 A2H
28 A3L
29 A3H

I
CSWL
CSWH

INSDS2
PRNTYX
PRBYTE.
COUT
RESET
MON

EP~
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ

$2E
$2F
$3C
$3D
$3E
$3F
$40
$41

EPZ $36
EPZ $37

EOU
EOU
EOU
EOU
EOU
EOU

$F88E
$F940
$FDDA
$FDED
$FF65
$FF69

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

: CHANGE 'LOWPAGE' TO LOCATE
; ELSIWHERE IN MEMORY. IT IS

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

; NOW SET FOR A 48K DOS SYSTEM. ,
LOWPAG EOU $9300

:
INIT
:
, ***
;
FW1
FW2
PCL
PCH
;

ORG LOWPAG
OBJ $800

JMP INITX

DATA AREAS

BYT $00
BYT $00
BYT $00
BYT $0('

:=>INITIALIZATION ENTRY

'FINDPC' WORK BYTE 1
'FINDPC' WORK BYTE 2
'GO' PC LO
'GO' PC HI

: SKELETON BREAK-TABLE ENTRY

SKEL BYT $00
NOP
NOP

; SKELETON BTE

,tilOPS F'OR PAI:DING
,JUMP BACK INLINE

9

65
JMP $00
BYT $4C :JUMP CPCODE FOR BRANCHES

66
67
68
69

, LOW ADDRESS OF BTES KEPT IN ADTAB .
ADTAB BYT BTtO :LO ADDRESS

10 Machine Language Aids

930F 32
9310 3E
9311 4A
9312 56
9313 62
9314 6E
9315 7A
9316
9316
9316
9316
0826
9326
9326
9326
0832
(l83E
084A
0856
0862
086E
087A
0886
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386
9386 A20F
9388 A00493
938B D01693
938E D008
9390. AD0393
9393 OD1S93
9396 F006
9398 CA
9399 CA
939A 10EC
939C 18
939D 60
939E
939E 48
939F 8A
93AO 4A
93A1 AA
93A2 68
93A3 38
93A4 60
93A5
93A5
93A5
93A5
93A5
93A5
S3A5
93A5
93A5
93A5
93A5
93A5
93A5

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
llO
III
ll2
ll3
ll4
115
116
117
118
119
120
121
122
123
124
125
126
l27
128
129
130
131
132
133
134
135
136
137
138
139

:

BYT BTU
BYT BTE2
BYT BTE3
BYT BTE4
BYT BTES
BYT BTE6
BYT BTE7

LCCTAB CCNTAINS ADDRESS OF USER-PROGRAM INSTRUCTION
WHERE WE PLACED THE BREAKPOINT IN THE FIRST PLACE

LOCTAB OFS $10 :SPACE FOR 16 PCH/L PAIRS .
: BRF~K-TABLE ENTRIES (BTE'S) .
BTEO
BTU
BTE2
BTE3
BTE4
BTES
BTE6
BTE7

DFS $OC
DFS $OC
OFS $OC
DFS $OC
DFS $OC
DFS $OC
DFS $OC
DFS $OC

:12 BYTES RESERVED

:ENOUGH FOR 8 BREAKPOINTS

:

END OF DATA AREAS
THE REST IS ROM-ABLE

*
* NAME:
* PURPOSE:
* RETURNS:
*

FINDPC
CHECK IF PC IN FW1/FW2 MATCHES LOCTAB
CARRY SET IF YES: XREG=ADTAB INDEX 0-7
CARRY CLR IF NOT: XREG=GARBAGE

* VOLATILE:DFSTROYS AC
*

FINDPC LDX #115 :BYTE-INDEX TO END OF TABLE
FPCOO LDA FW2 :GET FOR COMPARE

CMP LOCTAB.X :A PCH MATCH?
BNE FPC02 :=>NO. TRY NEXT2-BYTE ENTRY
LDA FW1 :GET PCL NOW
CMP LOCTAB-1.X /A PCL MATCH?
BEQ FPC04 :=>YESI WE HAVW BREAKPOINT I

FPC02 OEX :BACK UP ONE
DEX :AND ANOTHER
BPL FPCOO :=>DO ENTIRE TABLE SCAN
CL,C :=>DONE: SCAN FAILED
RTS

:
FPC04 PHA :HOLD AC

TXA :HALVE VALUE IN X-REG
LSR :SINCE I'l"S 2-BYTE
TAX
PLA
SEC :SET 'SUCCESS'

**

* * N)\'~;E: ERE !I,K

INDEX

* PURPCSE: H/,NClE ENTR~ AT £,RK At.:I: PRccn:s E)KPCI~TS
* NO'lE: THIS RCUTINE GETE n:TEREI:' ct< *EVERY* 'COUT'
* CALL-- n' KKCwS ABOUT' BRK BECP,USE THE
* MONITCR' S REGISTERS ARE SETUP 'l'C PRIN'l' UEFF REG
* CCNTENTS. AFTER PRCCESSING IS [,CNE. IT RESTCFESTHE
• HONITCR' £ REGS ANI: RETURNS
*
**

,
'1

l

i

1

1 ,
,
.-,

)

'i ,

"'"'l
I

i

r

r

93A5
93A5 EeFB
93A7 CC27
93A9 C9AO
93AB C023
93AD A53C
93AF 38
93BO E902
93B2 8D0393
93B5 A53D
93B7 E900
93B9 8D0493
93BC 208693
93BF 900B
93C1 BCOE93
93C4 8D0593
93C7 A993
93C9 800693
93CC
93CC A9AO
93CE A2FB
93DO 4CFCFD
93D3
93D3
93D3
93D3
9303
93D3
93D3
93D3 AD0593
93D6 853C
93D8 AP0693
93DB 853D
93DD 4CB9FE
93EO
93EO
93EO
93EO
93EO
93EO
93EO
93EO
93EO
9lEO
93EO A2FF
93E2 E8
93E3 BD0002
93E6 C999
93E8 DOF8
93EA E8
93EB BI:'0002
93EE C9C7
93FO
93FO
93FO
93FO
93FO
9310 FOE1
93F2 C9C1
93F4 F018
93F6 C9C4
93F8 FOOB
93FA C9D2
93FC FOOA
93FE C9C9
9400 F009
9402 4C65FF
9405
9405 4CA894

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

,
BREAI< CPX #$FB

BNE ERKXX
BRK02 CMP #$AO

BNE BRKXX
LDA AIL
SEC

Auricchio Breaker

;15 XREG SET FOR EXAMINE
;=>NO GET CUT NOW.
;IS AC SETUP CORRECTLY
;=>NCPE. FALSF ALARM I
;GET USER PCl
; AND BACK IT UP BY

11

sBC #$02
sTA FWI

; 2 BYTES SINCE BRK BUMPED

;

LIlA A1H
sBC #$00
sTA FW2
JsR FINDPC
BCC BRK04
LOA ADTAB,X
STA PCL
LOA /LOWPAG
STA PCH

;GET PCH
;DO THE CARRY
; AND SAVE THAT TCO
;A BREAKER OF OURS HERE?
;=>NOPE. WE WON'T HANDLE
;YEs, GET BTE ADDRESS THEN
; AND SET IT AS THE 'GO'
; PC FOR THE 'GO' COMMAND.
;(OUR PAGE FOR BTE'S)

BRK04 LDA nAC
LDX nFB

BRKXX JMP $FDFO

;sET AC BACK FCR MONITOR
;AND X-REG. TOO
;=>NO. RIGHT BACK TO COUT

I

** •••• *****************.*********
* PROCESS THE 'GO' COMMAND •••• *
* (RESUME USER EXECUTION) *
* COMMAND FORMAT:(* CTRL-Y G) *

CMDGC LCA PCL
STA AIL
LDA PCH
STA A1H
JMP $FEB9

;GET RESUME PCL
I AND SETUP TO SIMULATE
I AN 'xxxx G' COMMAND

;D)SAIL INTO MONITOR'S 'GO'

* WE GET CONTROL HERE ON THE *
* CNTL-Y USER EXIT FROM THE *
* MONITOR (ON KEY-INS). ALL *
* COMMANDS ARE SCANNEP HERE; *
* CONTROL WILL PASS TO 'I'HE *
* APPROPRIATE ROUTINE..... *

I
KEYIN LDX II$FF
KEUNO INX

ICHAR INDEX
;SET NEXT CHARACTER

LOA $200,X
CMP 1/$99
BNE KEYINO
INX
LDA $200,X
eMP nC7

I GET CHARACTER FROM BUFFER
ICCNTROL-Y CHARACTER?
I-)NO. KEEP SCANNING
IBUMP OVER CTRL-Y
I GRAB COMMAND CHARACTER
lIS IT 'G' (GO)?

A BRANCH TABLE WOULD BE NEATER,
BUT IT WOULD TAKE UP MCRE CODE

; FCR THE FEW OPTIONS WE HAVE •••

BEO CMDGO
CMP nC1
BEO CMDADO
CMP nC4
BEC XXDISP
CMP #$02
BEO XXREMV
CMP #$C9
BEC XXINIT

BADCMD JMP RESET

XXDISP JMP CMDDsP

;">YES.
lIS IT 'A' (ADD)?
;=>YES.
;IS IT'D' (DISPLAY)?
;=>YES.
;IS IT 'R' (REMOVE)?
;=>YES.
;IS IT 'I' (INIT)?
;=>YES.
;NOTHING, IGNORE ITI

;EXTENDED BRANCH

12 Machine Language Aids

9408 4C0895
940B 4C4F95
940E
940E
940E
940E
940E
940E
940E
940E
940E AOQO
9410 B13E
9412 FOEE
9414
9414
9414
9414 A2CF
9416 BD1693
9419 D005
9418 BD1593
941E F006
9420 CA
9421 CA
9422 10F2
9424 30tC
9426
9426 A53E
9428 9D1593
942B 8DOB93
942E A53F
9430 901693
9433 8tOC93
9436 8A
9437 4A
9438 AA
9439 A993
943B 8541
9430 BDOE93
9440 8540
9442 M07
9444 B90793
9447 9140
9449 88
944A 10F8
944C C8
9440 B13E
944F 9140
9451 208EF8
9454 MOO
9456 913E
9458 A52F
945A 38
945B
945B
945B
945B A004
945D 7140
9451' 9140
9461 C8
9462 B140
9464 6900
9466 9140
9468 A52E
946A C99D
946C 1'016
946E A52F
9470 FOOF
9472 6A-
9473 B006

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

XXREMV JMP CMDRMV
XXINIT JMP CMtINT

:EXTENDED BRANCH
:EXTENDED BRANCH

.*.******************************
* PROCESS THE 'ADD' COMMAND *
* ADD A BREAKPOINT AT LOCATION *
* SPECIFIED IN COMMAND~..... *
* CMND FORMAT: (* AMA CTRL-Y A)*
********************************* .

CMDADD LDY #$00
LDA (A2L).Y
BEC BADCMD

:CHECK OPCOtE FIRST
lOP AT AAM A BRK ALREADY?
:=>YES. ILLEGAL!

:SCAN LOCTAB FOR AN AVAILABLE BTE TO USE

LDX 1/!15
ADDOO LDA LOCTAB,X

BNE ADD02
LDA LOCTAB-1,X
BEQ ADI:04

ADD02 DEX
DEX

:

Bpt. ADCOO
BMI BADCMC

ADD04 LOA A2L
STA LOCTAB-I, X
STA SKEL+4
LOA A2H
STA LOCTAB,X
STA SKEL+5
TXA
LSR
TAX
LOA /LCWPAG
STA A3H
LDA ADTAB/X
STA A3L
LDA n07

A0006 LDA SKEL,Y
ETA ('A3L), Y
DEY
BPL ADD06
INY
LtA (A2L) ,Y
STA (A3L), Y
JSR INSOE2
LtA 11$00
STA (A2L), Y
LDA LENGTH
SEC

:BYTE INDEX TO LOCTAB ENI:
:GET A BYTE
:=>IN USE
:GET HI HALF
:=>BOTH ZERO, USE IT!
:MOVE BACK TO
: ~EXT LOCTAB ENTRY
: AND KEEP TRYING
:=>DONE? ALL FULL I REJECT

: GET AAM VALUE
:SAVE LO HALF
,STUFF LO AODR INTO BTE
:GET AM" VALUE
ISAVE HI HALF
:STUFF HI ADDRESS INTO BTE
IGRAB INDEX FOR LOCT"B
:MAKE "tTAB INDEX
lAND STUFF B"CK INTO X-REG
IBTl'S HI ADDRESS VALUE
IHOLD IN WORK AREA
:GET BTE LO ADOR FROM AOTAB
ISAVE IN WORK AREA
17-BYTE MOVE FOR SK!L BTE
IGET SKEL BYTE
IMOVE TO BTE
ISET NEXT
1-> MOVE ENTILE SKELETON

IGET ORIGINAL OPCODE
I INTO BTE ••••••
11NStS2 (TO tISASSEMBLE)
ISET BRK OPCODE
: OVER ORIGINAL CPCCI:E
:GET IN&'l'RlJCTIO~ 1.ENGTH

SET UP JMP TC N!X'I' INST. IN THE: BTE

LDY #$04
AI:C (A3L). Y
STA (A3L), Y
JNY
LDA (A3L), Y
ADC #$00
STA (A3L). Y
LOA P'ORMAT
CMP #$9D
BEQ ADOBRCH
LOA LENGTH
BEQ CMI:RET
ROR
BCS ADJ:LEN2

:ArD TO PC FeR CESTINATICN
:STUFF INTO BTE

,RUN UP THE CARRY
: RIGHT HERE
:STUFF ADDRESS INTO JMP
IGET INSTRUCTION FORMAT
:IS FORMAT=BRANCH
:=>YES. MORE TO CO
:LENGTH=l?
:=>YES. DONE
:LENGTH=2?
:=>YES

,
i

1 ,
i ,
1

1

i

~
I ,

1

.,

r

9475 A002
947.7 B13E
9479 9140
947B AC01
9470 B13E
9471' 9140
9481 4C69FF
9484
9484
9484
9484
9484 AC01
9486 B13E
9488 18
9489 6902
948B 653E
9480 853E
948F A53F
9491 6900
9493 853F
9495 EA
9496 A904
9498 9140
949A A007
949C A53E
949E 9140
94AO C8
94A1 A53F
94A3 9140
94A5 B8
94A6 5009
94A8
94A8
94A8
94A8
94A8
94A8
94A8 A20F
94AA BOl693
94AO OOOB
94AF B01593
94B2 0006
94B4 CA
94B5 CA
94B6 10F2
94B8 30C7
94BA
94BA M80
94BC 20EOFD
94BF 8A
94CO 48
94C1 B(:1693
94C4 B01593
94C7 843B
94C9 e53A
94CB AA
94CC 2040F9
94CF 68
94DO 48
9401 4A
94D2 AA
9403 A9BC
94D5 20EDFD
9408 A993
94DA 853F
940C. 20DAFD
94PF 8DOE93
94E:2 853E
941.4 20DAFD

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
309
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
33e
339
340
341
342
343
344
345
346

LOY #$02
LDA (A2L).Y
STA (A3L), Y

AOOLEN LOY n01
LOA (A2L), Y
STA (A3L). Y

CMDRET JMP MON
I

Auricchio Breaker 13

ILENGTH=3. 3RD BYTE TC BTE
IGET INST 3RD BYTE
lAND ~OVE TO BTE
ILENGTH=2. 2ND BYTE TO BTE
IGET INST 2ND BYTE
lAND MOVE TO BTE
IDONE. BACK TO MONITOR

I FOR BRANCHES. WE'VE GOTTA ADD A JMP FOR THE 'TRUE'
I CONDITION (SINCE WE MOVED BRANCH OUT OF PROGRAM)
;
ADOBRC LDY #$01

LDA (A2L), Y
CLC
ADC #$02
ADC A2L
STA A2L
LOA A2H
ADC #$00
STA A2H
NOP
LOA #$04
STA (A3L), Y
LOY #$07
LDA A2L
STA (A3L). Y
INY
LDA A2H
STA (A3L), Y
CLV
BVC CMORET

;SET FOR 2ND BYTE
JOET DEST!NATION OFrSET
;ANO ADD 2 BYTES TC
ICONSTRUCT ABS ADDRESS
;AOO TO SUBJECT-INBT

;CARRY I'l'

;(PLAC~ HOLDER WASTE HEkEl
;TRUE BRANCH TO +4
:PUT INTO NEW OFrSET

;GET JMP ADDRESS
;MOVE IT TO
ITHE
; BTE FOR
; THE 'TRUE' BRANCH
;S~EAKY BRANCH
I 'to EXIT •••

******************-*************
* DISPLAY ALL ACTIVE BRKPOINTS *
* CoMMAND FMT: (* CTRL-Y D) *
********.**************.*.******

;
CMDDSP LDX #115
DISPOO LDA LOCTAB.X

BNE DISP04
LDA LOCTAB-l. X
BNE DISP04

DSPNxT DEX
DEX
BPL DISPOO
BMI CMDRET

DISP04 LOA 1I$8D
JSR COUT
TXA
PHA
LDY LOCTAB.X
LOA LOCTAB-1.X
STY $3B
STA $3A
TAX
JSR PRNTYX
PLA
PHA
LSR
TAX
LOA #$BC
JSR COUT
LDA /LOWPAG
STA 1I2H
JSR PRBYTE
LDA ADTAB.X
STA A2L
JSR PRBYTE

;INDEX TO LOCTAB ENe
;GET A BYTE
;=>IN USE
;TRY BOTH BYTES TO BE SURE
I=>DEFINITELY IN USE
; SET NEXT ENTRY
; IN LOCTAB
;=>MORE TO GO
;=>DONE: EXIT TO MONITOR

;OUTPUT A CARRIAGE
I RETUR~
IGET INDEX
; SAVE IT
;GET SUBJECT-INST PCH
; AND ITS peL
,SE'I UP PCH/peL

;PRINT Y.X BYTES IN HEX
;RESTORE INPEX

ICONVERT '1'0 AOTAB INDEX

;'<' CHARACTER
IPRINT IT
IBTE HI ADDRESS
,SET INDIRECT POINTER
;PRINT HEX BYT!.
IGET BTE LOW ADDRESS
ISET INDIRECT POINTER
;PRINT BTE FULL ADDRESS

14 Machine Language Aids

94E7 MBE
94E9 20EDFD
94EC
94EC
94EC
94EC
94EC
94EC
94EC A9AO
94EE 20EDFD
94F1 AOOC
94F3 B13E
94F5 20DAFD
94F8 B13E
94FA 20eEF8
94FD 200495
9500 68
9501 AA
9502 lOBO
9504
9504
9504
9504
9504
9504
9504 48
9505 4CD9F8
9508
9508
9508
9508
9508
9508
9508
9508
9508 A53E
950A 8D0393
950D A53F
950F 8D0493
9512 208693
9515 B003
9517 4C65FF
951A
951A BDOE93
951D 8540
951F 8A
9520 OA
9521 M
9522 A900
9524 A8
9525 9D1693
9528 9D1793
952B A993
952D 8541
952F B140
9531 913E
9533 4C69FF
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536
9536

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
J87
J88
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

;

LDA nBE
JSR COUT

;'>' CHARACTER
;PRINT IT

DISSASSEMBLE THE CRIGINAL INSTRUCTION.
PICK UP ORIGINAL OPCODE FROM BTE,
ORIGINAL ADDRESDS FIELD FROM USER
PROGRAM LOCATION ••••••••

LI:A nAO
JSR COUT
LDY 11$00
LDA (A2L) ,Y
JSR PRBYTE
LDA (A2L) , Y
JSR INSDS2
JSR KLUGE
PLA
TAX
BPL DSPNXT

;PRINT ONE SPACE HERE

; INDEX
;GFT OPCODE FROM BTE
;PRINT OPCODE
;GET OPCODE FROM BTE
; AND GET FORMAT/LENGTH
;SNEAK INTO INSDSP @ F8D9

;RESTORE LOCTAB INDEX
;=>DISPLAY THE REST

KLUGE ENTRY INTO SUBROUTINE WHICH
FORCES JSR PRIOR TO A PHA INSTRUCTION.
WE HAVE TO JSR TO THIS JMPII

KLUGE PHA ;PUSH MNEMONIC INCEX
;CCNTINUE WITH INSTDSP JMP $F8D9

;****END OF KLUGE****

* REMOVE A BRKPOINT AT LCC AAAA *
* COMMAND FMT: (AMA CTL-Y RR) *

CMDRMV LI:A A2L
STA FW1
LDA 1I2H
STA FW2
JSR FINDPC
BCS REMOV2
JMP RESET

REMOV2 LDA ADTAB,X
STA A3L
TXA
ASL
TAX
LDA #$00
TAY
STA LOCTAB,X
STA LCCTAB+1,X
LDA /LCWPAG
STA A3H
LDA (A3L) ,Y
STA (A2L) ,Y
JMP MON

;GET ADDRESS LO
;HOLD IT FCR FINDPC
;GET ADDRESS HI

;A BRKPOINT ~ERE??
;=>YES.
;=>NC, BELL FOR YOU I

;GFT THE LOCTAB ENTRY
;HOLD IT
;NCW CREATE LCCTAB INDEX

;CLEAR OUT THF APPROPRIATE
;LOCTAB ENTRY FCR BKPT .•

;HI ADDRESS FCR BTE
;HOLD FCR ADDRESSING
;GET OPCODE OUT OF BTE
; AND PULL BACK TO ORIGINAL
;=>ALL DONE.

**
*
* INITIALIZATION CODE. ENTERED AT START
* ADDR TO INITIALIZE. IT CLEARS LOCTAB,
* SETS UP THE CTL-Y AND COUT EXITS •••
*
* AFTER EVERY RESET, MUST RESETUP WITH
* * CTL-Y I
*
**

,
1 ,
'1

i

i

Il!&j
I

'1 ,
i

j

....,
I
}

"""'l
)

i

9536 416 ;
9536 A94C 417 INITX LDA #$4C
9538 8DF803 418 STA $3F8
953B A993 419 LCA /KEYIN
953D 8DFJ\03 420 STA $3FA
9540 A9EO 421 LDA /lKEYIN
9542 8DF903 422 STA $3F9
9545 A900 423 LDA #$00
9547 A20F 424 LDX #115
9549 9C1693 425 INI'fOO STA LOCTAB,X
954C CA 426 DEX
954D 10FA 427 BPL INITOO
954F 428
954F 429 ENTER HERE AFTER
954F 430 ;
954F A9A5 431 CMDINT LDA #BREAK
9551 8536 432 STA CSWL
9553 A993 433 LDA /BREAK
9555 8537 434 STA CSWH
9557 4C69FF 435 JMP MON

436 END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *
* *

HITTING

~ LABEL. LOC. LABEL. LOC. LABEL. LOC.

-

riiWJa

** ZERO PAGE VARIABLES:

FORMAT 002E LENGTH 002F AIL
A3L 0040 A3H 0041 CSWL

** ABSOLUTE VARABLES/LABELS

INSDS2 F88E PRN'f'YX F940
PRBYTE FDDA COUT FDED RESET
FW1 9303 FW2 9304 PCL
LCCTAB 9316 BTEO 9326 BTE1
BTE5 9362 BTE6 936E BTE7
FPC04 939E BREAK 93A5 BRK02
KEYIN 93EO KEYINO 93E2 BADCMD
CMDADD 940E AeDCO 9416 AI:D02
CMDRET 9481 ADDBRC 9484 CMCDSP
KLUGE 9504 C~IDRMV 9508 REMCV2

003C AIH
0036 CSWH

FF65 MON
9305 PCH
9332 BTE2
937A FINDPC
93A9 BRK04
9402 XXDISP
9420 Acr;04
94A8 CISPOO
951A INITX

SYNBOL TABLE STARTING Ar'DRESS: 6000
SYNBOL TABLE LENGTH: 0222

Auricchio Breaker 15

JMP CPCODE
STUFF IN CTL-Y EXIT LOC
KEYIN: HI ACDRESS
STUFF INTO JMP
KEYIN: LO ADDRESS
STUFF INTO JMP ADDRESS

;INDEX INTO LOCTAB END
;CLEAR IT OUT
;SO NO BREAKPOINTS

RESET, PLEASEl

BREAK: LO ADDRESS
STUFF INTO 'CCUT' EXIT HCOK
BREAK: HI ADDRESS
STUFF INTO

003C A2L
0037

FF69 LOWPAG
9306 SKEL
933E BTE3
9386 FPCOO
93CC BRKXX
9405 XXREMV
9426 ADD06
94AA DSPNXT
9536 INITOO

'COUT' EXIT HOOK

003E A2H 003F

9300 IN IT 9300
9307 ADTAB 930E
934A BTE4 9356
9388 FPC02 9398
93DO CMDGO 93D3
9408 XXINIT 940B
9444 ADDLEN 947B
94B4 DISP04 94BA
9549 CMDINT 954F

Step and Trace
for the Apple II Plus

by Craig Peterson

If you miss the SteplTrace of the original Apple II on
your new Apple II Plus, here is all you need to restore it.

Apple Computer's Apple II Plus is a pretty good machine. It has improved editing
features over those of the standard Apple II and a better cursor control and stop list
feature. And it's really nice to fire up the machine and be right in BASIC or DOS,
or better yet, to be in the middle of a tum-key type program.

Furthermore, Applesoft BASIC is a standard feature, and I'm partial to it over
Integer BASIC. But all of these improvements didn't come for free. There's only so
much room in the ROM monitor, and certain of its features had to be sacrificed to
make room for the new additions. As a result, the machine language Step/Trace
capabilities of the older Apple II ended up on the cutting room floor.

A lot of people will probably never miss Step/Trace. Unless you are into
assembly language programming, you probably don't need them. But if you do any
assembly language programming, Step/Trace can be invaluable. They allow you
to step through each machine language instruction, displaying all of the 6502
registers as you go along, so you can find any errors that might exist in the pro­
gram, Or even just see how the program works. Step does this one instruction at a
time, and Trace does it continuously, without stopping (unless a BRK instruction
is encountered).

Step-n-Trace PrograEn

Well, fear not, Apple II Plus owners, Step-n-Trace is here. The Step-n-Trace
(S&T) program essentially just adds the step-and-trace functions to the existing
monitor of your Apple II Plus. The operation and use of the monitor is identical to
that of the original Apple monitor. Type a hex address followed by one or more
'S's, to take steps through a program from that address. To trace from that
address, type a hex address followed by a 'T'.

An improved feature of S& T over the original Apple trace is that all you have
to do is press any key (for example, the space bar) to stop the trace. To continue
tracing, type a 'T', and trace will continue from where it stopped. Or you can type

..,

...,
.1

j

1

-,
)

IiIiiiiij
)

i

1
..,

i

i

~
I

r

.~

Peterson Step-Trace 17

an'S' to take only one step. The prompt character used for S&'T is an inverse '.' so
you can distinguish it from the normal Apple monitor. S&'T also includes all of
the normal monitor commands in addition to step and trace. In fact, it actually
uses many parts of the existing monitor to do its work.

How to Use the Program

To use Step-n-Trace, first load it and then type 'CALL 768', or 'BRUN' it from
your disk. You will then have all of the monitor commands at your disposal,
including step and trace. To get out of the program, just press 'RESET' on your
Apple II Plus, or use CTRL-C, or CTRL-B and you will end up in BASIC.

Since the program resides in hex address $300 to $3E9, it loads over some of
the DOS address pointers from $3DO to $3E9. Generally, this doesn't cause any
problems for me. However, this can be avoided by moving it to some other area of
memoryj but the jump addresses in lines 69, 75, 83, 91, 120, 168, and 169 will
have to be revised accordingly. The assembler listing for S&T makes use of most
of the same labels as the Apple monitor to make it easier to relate what's happen­
ing with the old monitor.

At this point, I should mention that the step-and-trace functions suffer from
the same problems as the original Apple monitor, in that under certain conditions,
the stack register will be displayed with an incorrect value. When this happens,
for example, after JSR or RTS, the display will be corrected after the next instruc­
tion. Also, if the program manipulates the stack with the use of TXS instructions,
the actual operation will probably be incorrect. Lastly, with DOS in effect, when a
program is traced through the changing of an I/O hook (usually $36 or $37) the
program trace will lock up because the output will have a partially incorrect jump
indirect address, and your trace will fall off the edge of the earth. The frailties
mentioned above are not nearly as restrictive as they may seem. All in all, S& T is
a useful utility.

Exploring Applesoft with S&"T

For those of you who have read this far, but don't really plan on doing any
assembly language programming, here is how Applesoft works. First load Step-n­
Trace and then enter the following BASIC program:

10 CALL 768: PRINT "HELLO"
20 END

Next type 'RUN', and you will be rewarded with the sound of the bell and an
inverse '.' prompt character, telling you that you're in S&T. Next type 'FF58S'.
From now on, each'S' you type will step you through the operations of Applesoft.
The first'S' should display 'D823- 4C D2 D7 JMP $D7D2' on the screen, followed
by the contents of the registers. This is the running return to Applesoft. As you
'S'tep or 'T'race through the instructions, you will see the colon ($3A), the print
command token ($BA), the quotation ($22), the characters of the word 'HELLO'

18 Machine Language Aids

[$48,45,4C,4C,4F) and more pass through the A [accumulator) register, as
Applesoft analyzes your program line.

With some study you'll begin to understand what Applesoft is doing. With
some effort, you can actually find where the subroutines are located for the I SIN',
I SQR', or any other function you're interested in. All of this is accomplished with
the help of S&T.

So, if you're doing any assembly language work on an Apple II Plus, S&T can
be of great help. If you're just interested in seeing how things actually run inside
your Apple, Step-n-Trace can open a lot of interesting doors.

(Editor's Note: A slightly modified version of this program, Step- Trace. 800, is also
included on disk. Step-Trace. 800 loads at $800 and does not employ the key stop
feature found in Step-Trace (shown in listing]. As a result, Step-Trace. 800 may be
used with the TRACER program on Apple II Plus or Language Card systems. To ac­
complish this, initialize Step-Trace. 800 and then TRACER.)

j

1

i

i

'1

i ,
'1

I.

"'""')
I

r
r- Peterson Step-Trace 19

0800 1 ;************************

r 0800 2 ;* *
08CO 3 ;* STEP-N-TMCE *
0800 4 ;* CRAIG PETERSON *
0800 5 ;* *
0800 6 ;* STEP-TMCE *
0800 7 ;* *
0800 8 ;* COPYRIGHT (C) 1981 *
0800 9 ;* MICRO INK, INC. *
0800 10 ;* CHELMSFORD, MJ\ 01824 *
0800 11 ;* ALL RIGHTS RESERVED *

fi\iii1II 0800 12 ;* *
0800 13 ;************************
0800 14 ;
0800 15 ;A PROGRAM TO FURNISH THE APPLE II
0800 16 ;PLUS WITH THE STEP AND TRACE CAPA-

~ 0800 17 ;BILITIES OF THE STANDARD APPLE II.
i 0800 18

0800 19 RTNL EPZ $2C ;RETURN ADDRESS LO
0800 20 RTNH EPZ $2D ;RETURN ADDRESS HI
0800 21 LGTH EPZ $2F ; LENGTH/DISPLACEMENT

f"""'1 0800 22 PRMP EPZ $33 ;PRCMPT CHARACTER
I 0800 23 YS}W EPZ $34 ;PLACE TO SAVE Y

080C 24 PCL EPZ $3A ;PROGRAM COUNTER LO
0800 25 PCH EPZ $3B ;PROGRAM COUNTER HI
0800 26 XOT EPZ $3C ;USER INSTRUCTION

j8! 0800 27 STAT EPZ $48 ; PROC S'I'ATUS REG
0800 28
0800 29 ,
0800 30 KBRI: EOU $COOO ;KEYBOARI: REGISTER
0800 31 INSD EOU $F882 ;DISPLAY PRGRM CNTR

I?iiIil 0800 32 DISA EOU $F8DO ;DISASEMBL INSTR
0800 33 ADJ2 EOU $F954 ;ADJUST PC-2
0800 34 ADJ3 EOU $F956 ;ADJUST PC-3
0800 35 REGD EOU $FAD7 ;DISPLAY USER REGS
0800 36 RGDS EOU $FADA ;DISP REGS-NO CR

fAIl 0800 37 GETL EOU $FD67 ;GET INPUT LINE
0800 38 BLI EOU $FEOO ;BLANK ROUTINE
0800 39 AIPC EOU $FE75 ; COPY Al TO PC
0800 40 BELL EOU $FF3A ;RING THE BELL
0800 41 RSTR EOU $FF3F ;RESTORE USER REGS

~ 0800 42 SAVE EOU $FF4A ;SAVE USER REGS
08CO 43 GETN EOU $FFA7 ;GET ITEM,NONHEX
0800 44 TSUB EeU $FFBE ;PUSH AND GOTO SUB
0800 45 TSBI EOU $FFC5 ;HANDLE THE MODE
0800 46 ZMOD EOU $FFC7 ; ZERO THE MODE

jI'IIIII 0800 47 CHRT EOU $FFCC ; CHARACTEP TABLE
0800 48
0300 49 ORG $0300
0300 50 OBJ $0800
0300 51
0300 D8 52 STRT CLD ;SET HEX MODE
0301 203AFF 53 JSR BELL ;RING THAT CHIME
0304 J\92A 54 CONT LDA ,* ;LOAD INVERSE *
0306 8533 55 STA PRMP ; AND STORE IN PRMP
0308 2067FD 56 JSR GETl ;REAI: A LINE
030B 20C7FF 57 JSR ZMOI: ;SET MODE & Y=O
030E 20A 7FF 58 NXTI JSR GETN ;GET ITEM,NONHEX
0311 8434 59 S'IY YSAV ;CHAR IN A-REG
0313 C9EC 60 TRYS CMP #SEC ;IS IT STEP?
0315 FOOB 61 BEO 'ENT2 ;IF=STEP,GO ENT2
0317 C9ED 62 TRYT CMP UED ;IS IT TRACE?
0319 DOOF 63 BNE TRCR ; IF<>TRACE, TRYCR
031B ADOOCO 64 LDA KBRI: ;WAS KEY PRESSD?
031E 3024 65 BMI AGIN ;KEY ON,-->AGIN
0320 C634 66 DEC YSAV ;MAKES STEP RPT
0322 20C7FF 67 ENT2 JSR ZMOD ;ENTRY FOR STEP
0325 204903 68 JSR STPZ ;GO STEP OUT
0328 lOlA 69 BPL AGIN ;RTN TO INP LINE
032A C9C6 70 TRCR CMP #$C6 ;IS IT A CR?
032C D009 71 BNE MCMD ;IF<>CR,TRY MCMD
032E 20C5FF 72 JSR TSBI
0331 2000FE 73 JSR BLI ;HANDLE CR AS BLNK
0334 4C0403 74 JMP CONT ;RETURN TO CONT

-

,..,
I

20 Machine Language Aids

'1
0337 A017 75 MCMD LDY #$17 TRY MONITCR CMDS
0339 SS 76 CHRS DEY SEARCH MON CHARS
033A 30C4 77 BMI STRT NCT FCUND, GO START -,
033C 09CCFF 78 CMP CHRT,Y CMP WITH TABLE
033F DOFS 79 BNE CHRS NOT FOUND, ->CHRS
0341 20BEFF 80 JSR TSUB FND, CALL SUB
03"44 A434 "81 AGIN LDY YSAV RESTORE Y
0346 4COE03 82 JMP NXTI GET NEXT COMMAND i 0349 2075FE 83 STPZ JSR A1PC ADR TO PC J
034C 20DOF8 S4 STEP JSR DISA TAKE ONE STEP
034F 68 85 PLA ADJUST TC USER
0350 852C 86 STA RTNL STACK AND SAVE
035:1 68 87 PLA RTN ADR .-,
0353 852D 88 STA RTNH \
0355 A20e 89 LDX #$08
0357 BCE103 90 XOIN LDA INMl, X ;INIT XEO AREA
035A 953C 91 STA XOT,X
035C CA 92 DEX -,
035D POF8 93 BNE XOIN
035F A13A 94 LDA (PCL,X) ;JSR OPCCDE BYTE
0361 F02C 95 BEQ XBRK ;SPECIAL IF BREAK
0363 A42F 96 LDY LGTH ;LENGTH FROM DASSY
0365 C920 97 CMP #$20
0367 F043 98 BEQ XJSR ;HANDLE JSR,RTS,
0369 C960 99 CMP #$60 ;JMP,JMP().
0368 F02F 100 BEQ XRTS ; & RTI SPECIAL
0360 C94C 101 CMP #$4C
036F F046 102 BEQ XJMP '1 0371 C96C 103 CMP #$6C
0373 F043 104 BEQ XJAT
0375 C940 105 CMP #$40
0377 F01F 106 BEQ XRTI
0379 291F 107 AND #$lF -,
037B 4914 108 EOR #$14
037D C904 109 CMP #$04 ;COPY USR INSTR
037F F002 110 BEQ XQ2 ;TC XEQ AREA
0381 B13A 111 XQ1 LDA (PCL),Y
0383 993COO 112 XQ2 STA XQT,Y i 0386 88 113 DEY
.0387 10F8 114 BPL XQ1
0389 203FFF 115 JSR RSTR ;RESTOR USR REGS
038C 4C3CO(l 116 JMP XCT ;XEQ USER OP
038F 2082F8 117 XBRK JSR INSD ;PRINT UEER PC ,
0392 20DAFA 118 JSR RGDS ;AND REGS
0395 4COO03 119 JMP STRT ;THEN GO STRT
0398 18 120 XRTI CLC
0399 68 121 PLA ;SIMULATE RTI
039A 8548 122 STA STAT ~ (l39C 68 123 XRTS PLA ;RTS SIMULATION J
039D 853A 124 STA PCL
039F 68 125 PLA
03AO 853B 126 PCN2 STA PCH
03A2 A52F 127 PCN3 LDA LGTH ;UPDAT PC BY LEN -,
03A4 2056F9 128 JSR AOJ3 \

03A7 843B 129 STY PCH
03A9 18 130 CLC
03AA 9(114 131 BCC NEWP

1 03AC 18 132 XJSR CLC
03AD 2054F9 133 JSR ADJ2 ;UPDATE PC AND
03BO AA 134 TAX ;PUSH ONTO STAK
03Bl 98 135 TYA ;FOR JSR
03B2 48 136 PHA ;SIMULATICN
03B3 8A 137 TXA,
03B4 48 138 PHA I
03B5 A002 139 LDY #$02
03B7 18 140 XJMP CLC
03B8 B13A 141 XJAT LDA (PCL) ,Y
03BA AA 142 TAX ;LOAD PC FCR JMP -J
03BB 88 143 DEY ;& (JMP)
03BC B13A 144 LDA (PCL),Y ;SIMULATlCiN
03BE 863B 145 STX PCH
03CO 853A 146 NEWP STA PCL

'\ 03C2 BOF3 147 BCS XJMP
03C4 AS2D 148 RTNJ LDA RTNH
03C6 48 149 PHA

-;

r-
\

Peterson Step-Trace 21

03C7 A52C 150 LDA RTNL
03C9 48 151 PHA
03CA 4CD7FA 152 JMP REGD DISPLAY USR REG
03CI: 18 153 BRAN CLC BRANCH TAKEN,
03CE A001 154 LDY #$01 ADD LEN+2 TC PC
03DO B13A 155 LDA (PCL) ,Y
03D2 2056F9 156 JSR ADJ3
0305 853A 157 STA PCL
0307 98 158 TYA
03D8 38 159 SEC
03D9 BOC5 160 BCS PCN2

('1liIII 03DB 204AFF 161 NBRN JSR SAVE ;NORML RTRN AFTR
031:E 38 162 SEC ;EXQING USER OP
03DF BOC1 163 BCS PCN3 ;GC UPDATE PC
03E1 FA 164 INM1 NOP
03E2 EA 165 INIT NOP
03E3 EA 166 NOP ;DUMMY FILL FOR
03E4 4CI:B03 167 JMP NBRN ;XEQ AREA
03E7 4CCI:C3 168 JMP BRAN

169 END

***** END OF ASSEMBLY

* ••••• **** •• ********* •• **
* * * SYMBOL TABLE -- V 1.5 *
* *
.*.***************** ••• *.

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES.

~ RTNL 002C RTNH 0020 LGTH 002F PRMP 0033 YSAV 0034 PCL OC3A
PCH C03B XCT 003C STAT 0048

** ABSCLU'I'E VARABLES/LABELS

r- KBRI: COOO INSD F8B:? OISA FBDO
ADJ2 F954 ADJ3 F956 REGI: FAD7 RGDS FADA GETL FD67 BL1 FEOO
A1PC FE7S BELL FF3A RSTR FF3F SAVE FF4A GETN FFA7 TSUB FFBE
TSB1 FFC5 ZMOD FFC7 CIlRT FFCC S'l'RT 0300 CeNT 0304 NXTI 030E
TRYS 0313 'l'RYT 0317 ENT2 0322 'IRCR 032A MCMO 0337 CHRS 0339
AGIN 0344 S'l'PZ 0349 STEP 034C XOIN 0357 XOI 0381 X02 0383
XBRK 038F XR'l'I 039B XRTS 039C PCN:? 03AO PCN3 03A2 XJSR 03AC
XJMP 03B7 XJA'l' 03B8 NEWP 03CO RTNJ 03C4 BRAN 03cD NBRN 03DB
INM1 03E1 INI'l' 03E2

SYMBOL TABLE STARTING ADDRESS.GOOO
SYMBOL TABLE LENGTH.OID2

TRACER: A Debugging Tool
for the Apple II

by R. Kovacs

The Apple's Step/Trace routines are handy, but you will
find them even more useful when used in conjunction
with this Tracer program.

The Apple II's monitor in ROM is crammed with many useful routines. These
include memory interrogation and modification, keyboard input, CRT display
output and cassette I/O. In addition, Apple has thoughtfully provided a number of
routines related to assembly language programming. A single-pass assembler and
disassembler are invaluable aids in writing and reviewing machine code. A
step/ trace feature allows you to control execution of your program during the soft­
ware development phase.

The step routine executes a single instruction and displays its address, both
Hex and disassembled code, the values of the A,X,Y,P registers and the stack
pointer. You can modify any register and continue execution of either the next
instruction or any arbitrary one.

Unfortunately, all this information uses up the display rather quickly such
that at best only the 11 most recent steps are shown. It seemed to me that it would be
useful to display more program counter history at the expense of other information.

The Program

The Tracer program was designed to operate in conjunction with Apple's
stepltrace routines to enhance their usefulness. It is basically a formatter which
controls the information output to the screen. This routine will display up to 160
of the most recent instructions executed. This is in addition to the usual details
(i.e. disassembled code and register displays) of the last instruction displayed.
Features include single step and trace with paging. You can either continue execu­
tion or temporarily exit to modify registers or memory. Tracer also looks for the
break code (~O) and waits for your action after announcing the break with a double
bell. The last instruction executed before the break was encountered will still be
displayed.

-;
i

i

1
<&iii)

\

i

-,
)

i

0liIiii)
\

i

i
1

'"""'l
\

r

Kovacs Tracer 23

Caution: It should be recognized that Tracer's display lags by one instruction.
If the monitor is entered via reset, the current register values saved may be dif­
ferent due to the next instruction having executed. Thus you should check your
values using the control-E monitor command.

A commented assembly listing is shown. The program is approximately 190
bytes long and is located starting at $300. It uses no additional page zero memory.

How it Works

Tracer controls what information is displayed on the screen by manipulating
the characters generated by the step/ trace routines. Tracer looks for certain key
characters and sequences to determine when one instruction has been completed.

A slight complication arises out of the 2-line display format used by Apple.
The character stream normally output to the screen after completion of a single
step begins with a carriage return ($80). It is then followed by a line of printout
whose first 4 characters are the Hex Address of the instruction just executed. This
line is terminated with another carriage return and the second line is output.

Tracer looks for the carriage return which marks the beginning of the first line
by diverting all characters to Tracer via the COUT hook. Subsequent characters
are stored in a buffer. The second line is recognized by a carriage return followed
by a space ($AO). The next carriage return is used to output the 4 character Hex
address from the buffer (plus a space) to the screen using the monitor COUT
routines ($FOFO). These routines take care of wraparound and scrolling to display
up to 160 addresses in an 8 by 20 line format.

Since the buffer happens to be part of screen memory, then it too is displayed.
The buffer region is protected by moving the bottom of the scrolling window.

The control Y function is used to initialize Tracer via a jump at $3F8. It clears
the screen, sets the scrolling window and sets the COUT hook at $36 and $37 to
divert all characters normally displayed on the screen to Tracer.

Directions

Tracer is relatively simple to use:

1. Load Tracer starting at $300. (Don't forget the Control-Y jump at 3FB:
4C 00 03.)

2. Run the program via the monitor by typing: Yc XXXX T where Yc is a
Control-Y and XXXX is the address where debugging is to begin. The
screen will clear, Tracer will become hooked via COUT and tracing begins
as the specified address.

3. Tracer is initialized to single step and will halt after displaying the familiar
step/trace information at the bottom of the screen. Additional steps are

24 Machine Language Aids

executed by depressing the space bar. The addresses of previously executed
instructions will begin to accumulate in the upper part of the display.

4. One page of instructions can be executed by depressing the return key instead
of the space bar. Control can be retained immediately by hitting any key. i

5. Of course hitting reset returns the user back to the monitor where registers
and memory can be manipulated if needed. Tracer can be reentered by "
typing: Yc T.

Figure 1: This example illustrates Tracer's output format while looping through
Apple's WAIT routine at $FCA8. The normal step/trace output for the current in-
struction is at the bottom of the screen and the previous 160 addresses of program .,
counter are listed above.

Oldest

t
160 Previously

Executed Addresses

Most
Recent

FCA9 FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAE
FCAF FCBl FCA9 FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAE
FCAF FCBl FCA9 FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCA!
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAE FCAF FCBl
FCA9 FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCA! FCAC FCA! FCAC FCAA FCAC FCA!
FCAC FCAt FCAF FCB1 FCA9 FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAC FCAA FCAC FCAE FCAF FCBl FCA9 FCAA
FCAC FCAA FCAC FCAA FCAC FCAA FCAC FCAA
FCAA- E9 01 SBC #$01

A=05 x=OO Y=OO P=31 S=99

Normal Apple Step/Trace Display

BIiiiiiI
I

~
I

i
......,

\

-,
I

'i
I

jW'I
I

r

OBOO
OBOO
OBOO
OBOO
OBOO
oeoo
OBOO
OBOO
OBOO
0800
OBOO
0800
oeoo
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
0800
oeco
OBOO
OBOO
OBOC
oeoo
OBOO
OBOO
OBOO
OBoe
OBOO
03F8
03FB
03FS
03FB 4C0003
03FB
e3P'B
03tB
03FB
03FB
0300
0300
0300
0300 203CFB
0303 205BFC
0306 1.915
0308 8523
C30A A91C
030C B536
030E A903
0310 8537
0312 A91F
0314 8524
C316 A902
0318 80BB03
031I; 60
031C
03lc
03lC
03le StB703
03lF 8CB803
0322 2C8A03
0325 301C
0327 C98D
0329 FOOC
032B ACB903
032E 995007
0331 C8

1
2
3
4
5
6
7
B
9

:************************
:* *
,* TrACER *
,* R. KOVACS *
:* •
,* COPYRIGHT (C) 1981 * ,* MICRO INK. INC. *
,* CHELMSFCRD. ME 01824 *
,* AIL RIGHTS FFSERVEC *
:* *
,************************

,

Kovacs

,ENTER VIA eONTROL-Y FOLLOWEC BY XXXXT
,WHERE XXXX IS THE ADOFESS TC BEGIN TRACING ,

Tracer 25

10
11
12
13
14
15
16
17
IB
19
20
21
22
23
24
25
26
27
2B
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
4B
49
50
51
52
53
54
55
56
57
58
59

WNDBTM EP2. $23
PCL EPZ $3A

,BOTTOM OF SCROLLING WINDOW
,PGM CCUNTER .

WINDOW EQU $FB3C
BELL EOU $FBDt
CLEAR EOU $FC58
COUT Eeu $FDFO
READ FOU $COCO
RESET EOU $COIO

BUFF EeU $0750
BUFFI EOU $0700

,SET NORMAL SCRCLL WINDOW
,TOGGLE SPEAKER
,CLEAR SCREEN. HOME CURSOR
,OUTPUT CHAR TO SCREEN
,KEYBCARD STROBE
,RESET KEYBOARD

,LINE #22-COL #0
#23 #0 ,

:*********************************.
,EET UP CCNTROL-Y JUMP TO $3F8

ORG $03F8
OBJ $OBFB

JMP TRINIT ,
;********************************** ,
,TRACER INITIALIZATION

,
ORG $03CO
OBJ $0800

TRINIT JSR WINDOW
JSR CLEAR
LDA #$15
STA WNDBTM
LDA /lTRACER
STA $36
LDA /TRACER
STA $37
LDA #$lF
STA $24
LDA #$C2
STA PGCNT
RTS

,CLEAR ENTIRE SCREEN

,EET SCROLL WINDOW

,SET COUT HOOK
,TO TRACER

,INIT CH FCR EVEN PAGING

,INIT PGCNT FOR
,SINGLE STEP

;
60
61 TRACEF STA SAVEA
62 STY SAVEY
63 BIT CRFLG
64 BMI CR
65 CMP #$8t
66 BEC SETeR
67 STORE LDY BPTR
68 STA BUFF.Y
69 INY

,SAVE A & Y
,REGIS'l'ERS
,WAS LAST CHAR A CR?
rYES
,IS THIS CHAR A CR?
,YES
,LOAD BUFF POINTER
,NO. SO STORE IT
,INC POINTER

26 Machine Language Aids

0332 8CB903
0335 0005
0337 A080
0339 8CBA03
033C AI:B703
033F ACB803
0342 60
0343 AOOC
0345 8CBAC3
0348 C9AO
034A D007
034C AC80
034E 8CB903
0351 DOD8
C353 AOOO
0355 B95007
0358 20FOFD
035B C8
035C C004
035E 90F5
0360 A9AO
0362 20FOFD
0365
0365
0365
0365 ACOO
0367 B13A
0369 FOOC
036B
036B
036B
036B CEBB03
036E FceD
0370 2COOCO
0373 30er:
0375 1020
0377 20DDFB
C37A 20DI:FB
037D AOAO
037F 8CBB03
0382 8DI0CO
0385 2COOCO
03S8 10FB
038A
038A
038A
038A ADOOCO
038D C98D
038F F006
0391 C9AO
0393 F005
0395 DOE3
0397 SD10CO
039A EA
039B
039B
039B
039B MAO
039D A027
039F 995007
03A2 99t'007
03A5 88
03A6 10F7
03A8
03A8 ADB703
03AB AOOO
03AD 8CB903
03BO C9BO
03B2 9088

70
71
72
73
74
75
76
77
78
79
eo
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
llO
III
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

STY BP'IR
BNE DONE

SETCR LDY #$8C
STY CRFLG

DONE LDA SAVEA
LDY SAVEY
RTS

CR LDY #$00
STY CRFLG
CMP #$AO
BNE ADDR-2
LDY #$80
STY BPTR
BNE STORE
LOY #$00

ADDR LI:A BUFF,Y
JSR COUT
INY
CPY #$04
BCC AI:DR
LDA #$AO
JSR COUT

;CHECK FOR BREAK

LDY #$00
LDA (peL), Y
BEQ KEYI

;LOOK FOR KEYBOARD INPUT
,
KEY

KEY1

KEY2

KEY3
KEY4

DEC PGCNT
BEQ KEY2
BIT READ
BMI KEY3
BPL TRACE
JSR BELL
JSR BELL
LDY #$AO
STY PGCNT
STA RESET
BIT READ
BPL KEY4

& EAVE IT
BRANCH ALWAYS
SET CR FLAG

;RESTCRE
;REGISTERS
;RETURN TC MONITOR
;RESET CR FLAG

;IS NEXT CHAR A SPACE?
;NO
;ADJ PTR TC ~EXT
;LINE ON SCREEN
;BRANCH ALWAYS
;INIT BUFF POINTER

;OUTPUT IT

;FINISHEI: PRINTING 4 CHAR
;NO

;OUTPUT A SPACE

;GFT OPCODE
;PAUSE IF BREAK

;CHECK PAGING

;ANY KEYBOARD INPUTS?
iYES

;SCUND BELL FOR BRK

;RESET PAGE CCUNTER
;AND PAUSE

;LCCP UNTIL ANOTHER
:KEY IS HIT

;TEST INPUT FOR TRACE, STEP OR QUIT

LDA READ
CMP #$8D
BEQ TRACE
CMP #$AO
BEQ STEP
BNE KEYl+3

TRACE STA RESET
STEP NCP
,

:LOAD CHARACTER
: 'RETURN' TC CONTINUE TRACE

; 'SPACE' TO SINGLE STEP

;NO MATCH, TRY AGAIN
:RESET KEYBOARD STROBE

;FILL PROTECTED FIELD WITH SPACES

FILL

LDA #$AO
LDY #$27
STA BUFF,Y
ETA BUFFl,Y
DEY
BPL FILL

LDA SAVEA
LDY #$00
STY BPTR
CMP #$BO
BCC DONE

:ASC!! SPACE
:40 CHAR/LINE

;RESET BUFF POINTER

;IS 1ST CHAR 0-9/A-F ?
;NO

1

i

i

.,
,
1

i

...,
\

!i!IlI'l

IfiiIiIIiII

03B4 4C2B03 139 JMP STORE
03B7 140
03B7 141 ;
03B7 00 142 SAVEA HEX 00
03B8 00 143 SAVEY HEX 00
038.9 00 144 BPTR HEX 00
03BA 00 145 CRFLG HEX 00
03BB 00 146 PGCNT HEX 00

147 END

***** ENr: OF ASSEMBLY

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

WNDBTM 0023 PCL 003A

** ABSOLUTE VARABLES/LABELS

WINDOW FB3C BELL FBDD CLEAR FC58 COUT
READ COOC RESET COlO BUFF 0750 BUFFl
STORE 032B SETCR 0337 DONE 033C CR
KEYI 0377 KEY:;> 037D KEY3 0382 KEY4
FILL 039F SAVEA 03B7 SAVEY 03B8 BPTR

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OI02

Kovacs Tracer 27

;YES, OUTPUT IT

FDFO
07DO TRINrr' 0300 TRACER 031C
0343 ADDR 0355 KEY 036B
0385 TRACE 0397 STEP 039A
03B9 CRFLG 03BA PGCNT 03BB

Apple Integer BASIC Subroutine
Pack and Load

by Richard F. Suitor

Oftentimes Apple programmers find themselves writing
machine language subroutines which will be called

j

i

"1 ,
from an integer BASIC program. Storing these "
subroutines in the same file as the BASIC driver
programs can get messy. This program enables you to
include a BASIC program and machine language 1
subroutines in one file which may be easily saved to
disk or tape.

The first issue of CONTACT, the Apple Newsletter, gave a suggestion for loading
assembly language routines with a BASIC program. Simply summarized, one
drops the pointer of the BASIC beginning below the assembly language portion,
adds a BASIC instruction that will restore the pointer and SAVEs. The procedure
is simple and effective but has two limitations. First, it is inconvenient if BASIC
and the routines are widely separated (and is very tricky if the routines start at
$800, just above the display portion of memory). Second, a program so saved can­
not be used with another HIMEM, and is thus inconvenient to share or to submit
to a software exchange.

The subroutine presented here avoids these difficulties at the expense of the
effort to implement it. It is completely position independent; it may be moved
from place to place in core with the monitor move command and used at the new
location without modification. It makes extensive use of SWEET 16, the 16-bit
interpreter supplied as part of the Apple Monitor ROM.

How to Use Pack and Load

To use the routine from Apple Integer BASIC, CALL MKUP, where MKUP is
128 (decimal) plus the first address of the routine. The prompt shown is "@".

Respond with the hex limits of the routine to be stored, as BBBB.EEEE (BBBB is
the beginning address, EEEE is the ending; the same format that the monitor
uses). Several groups may be specified on one line separated by spaces or several
lines. Type S after the last group to complete the pack and return to BASIC. The
program can now be saved.

,
,
,
,
~

J

..,
I

Suitor Pack and Load 29

To load, enter BASIC and LOAD. When complete, RUN. The first RUN will
move all routines back to their original location and return control to BASIC. It
will not RUN the program; subsequent RUNs will.

A LIST of the program after calling MKUP and before the first RUN will show
one BASIC statement (which initiates the restoration process) and gibberish. If
this is done, RESET followed by CTRL-C will return control to BASIC.

WARNING #1: The routine must be placed in memory where it will not over­
write itself during the pack. The start of the routine must be above HIMEM (e.g.
in the high resolution display region) or $17A + 4*N + W below the start of the
BASIC program, where N is the number of routines stored and W is the total
number of words in all of these routines. Also, those routines that are highest in
memory should be packed first to avoid overwriting during pack or restore. Other­
wise it is not necessary to worry about overwriting during the restore process;
only $IA words just below the BASIC program are used.

WARNING #2: Do not attempt to edit the program after calling MKUP. If
editing is necessary, RUN once to unpack, then edit and call MKUP again.

How Pack and Load Works

The routine first packs the restore routine just below the BASIC program. It
then packs other routines as requested, with first address and number of bytes
(words). When S is given, it packs itself with the information to restore LOMEM
and the beginning of the BASIC program. The first $46 words of the routine form a
BASIC statement which will initiate the restoration process when RUN is typed.

If a particular HIMEM is needed by the program (e.g. for high resolution pro­
grams) it must be entered before LOADing. The LOMEM will be reset by the
restoration process to the value it had when MKUP was called.

Some convenient load and entry points are:

BASO (load) MKUP entry
hex hex decimal
800 880 2176
A90 BlO 2832

lO4C lOCC 4300
2050 2000 8400
3054 3004 12500
6000 6080 24704
9000 9080 - 28544

Program on disk BLOADS at
$9400. MKUP is at $9480,
- 27520 decimal.

Editor's note: Due to a special request by the author, MICRO encourages the use
and distribution of this subroutine. However, please make sure proper credit is
placed on any copies: "This PACK and LOAD Subroutine was written by Richard F.
Suitor and first published in an early issue (#6) of MICRO, the 6502/6809 Journal. "

Please note that all other programs contained in this book are protected by
copyright and may not be reproduced.

30 Machine Language Aids

Appendix to Subroutine Pack and Load

When the subroutine Pack and Load was first written, I had in mind a utility
that would allow the user to easily pack and unpack subroutines (we had only
cassette storage then) before running a program. After using it awhile, it became
clear to many people that, after a program was debugged, it would be nice if it un­
packed and ran in one operation. Alan Hill, who has contributed many significant
programs for the Apple, was the first to point out to me that a JMP to $EFEC in­
stead of $E003 would accomplish this. In the meantime, Apple switched to
pushing Applesoft instead of Integer BASIC, a reasonable enough decision, but ex­
asperating to those who had invested a lot of effort in developing Integer BASIC
software. Apple still supplies the Integer BASIC in both ROM and language card
forms, but both of these cost money. A person on a limited budget who has pur­
chased an Apple Plus can obtain software versions from either lAC-associated
clubs or from Apple Pugetsound Program Library Exchange (A.P.P .L.E.) (304 Main
Ave. S., Suite 300, Renton, WA 98055).

Unfortunately this was a development which I had not foreseen when I wrote
this routine. The routine returns to ROM addresses which I believed immutable;
now those with Apple Plus versions can obtain versions of Integer BASIC for
which programs packed with this routine will badly fail.

The enclosed routine will solve their problem and the problem of those pro­
grammers who wish to change the return vector to automatically RUN or not. It is
a routine to change the address to which the UNPACK procedure returns upon
completion.

The desired address is entered into locations 0 and 1. For example, if you want
to use the address $EFEC, from the monitor you:

*O:EC EF

or from BASIC you:

POKE 0,236
POKE 1,239

To accomplish the change this routine, and the program to be changed, must
be in memory. The program must be LOADed, but not run. The routine is shown
at location 800 ($320), but will run correctly anywhere. BLOAD the routine, set
up locations 0 and 1, then CALL 800 to accomplish the change. You may save the
changed program.

The addresses which you may wish to use are:

Purpose

Back to BASIC
Unpack & RUN

ROM Version

$E003
$EFEC

Disk Version

$03DO
($9D58)

,
1

,
i

i

i

1

!
-'

-J
!

""'"'l
I

Suitor Pack and Load 31

The last entry, to unpack and RUN from a disk version, means you put the
contents of $9058 into 0 and the contents of $9059 into 1. This method should be
used for the A.P.P.L.E. version of Integer. Please note that although the locations
$9058,9 are the same for any 48K disk-based system, the contents of the locations
may differ. Thus, a version of a program prepared in this way is least likely to be
able to be run on another system. The version that is most likely to be "universally"
usable is one using the address $300. This choice has the disadvantage that it will
not unpack and RUN, but it will fail only on a cassette system or on a disk system
that has had page 3 overwritten. For these systems, enter the monitor and type
300:4C 03 EO. (Note: this will enable a 300G to return to BASIC, but will not
restore a disconnected OOS.)

However, using the routine given in this program, any "packed" program can
be loaded and altered to run on the user's system, and then saved.

Editor's Note: The Pack-Load routine requires that SWEET-16 be resident in
your Apple. Even after the modifications mentioned in this Appendix are made, if

~ SWEET-16 is not available, the unpacking and packing processes will fai1. Thus, if
your version of Integer BASIC does not include SWEET-16 in the proper locations,
Subroutine Pack and Load will not work.

r

~
I

0320- 08 18 A5 CA 69 54 85 18
0328- A5 CB 69 01 85 19 AO 00
0330- 38 A5 4C F1 18 48 A5 40
0338- C8 F1 18 AA 68 38 E9 03
0340- 85 18 BO 01 CA 86 19 A5
0348- 01 91 18 88 A5 00 91 18
0350- 60

32

08CO
0800
0800
0800
0800
0800
0800
0800
08CO
0800
0800
0800
C800
0800
080C
0800
0800
oeoc
08CO
0800
0800
08CO
0800
0800
0800
080e
C80e
0800
080C
0800
0800
0800
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400
9400

Machine Language Aids

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

:******* ••• *** •• *********
;* *
;* PACK AND LOAD SUBRTN *
;* RICHARD F. SUITCR *
;*
;*
;*

PAC.K-LOAD
*
*
*

;* COPYRIGHT (C) 1981 *
;* MICRO INK, INC. *
;* CHELMSFORD, MA 01824 *
;* ALL RIGHTS RESERVED *
;* *
;*********.**************

INTEGER BASIC ROUTINE 1C PACK AND RELOAD
MACHINE LANGUAGE SUBROUTINES AND/OR T~BLES

CALL BASO+128(DEC) = MKUP TO PACK EXISTING
ROUTINES AT THE START OF BASIC

RUNNING THE PACKED PROGRAM WILL UNPACK THE
PACKED ROUTINES AND RETURN TO BASIC (»

CHANGE THE LAST INSTRUCTION OF THE LISTING
TO 'JMP BRUN' TO UNPACK AND RUN IN ONE OPERATION.
NOTE: THIS STEP NOT NORMALLY TAKEN UNTIL.
PROGRAM DEVELOPMENT IS COMPLETE!

PROGRAM WILL RUN ANYWHERE IN MEMORY

ACCL
BSOL
TABL
TBCL
HIMS
LMRT
BPRG
FRML
NBYT
BPR2
PTLL
XTAB
SKPL
MODE
YSAV
PRMP
LMML
HUlL
LMWL
BBSL
JSRL
BSC2
BRUN
BUFF
SW16
G'fNM
PBL2
COUT
BELL
GTLN

ORG $9400
OBJ $600

EPZ $00
EPZ $02
EPZ $04
EPZ $06
EPZ $08
EPZ $OA
EPZ $CC
EPZ $OE
EPZ $10
EPZ $12
EPZ $14
EPZ $16
EPZ $18
EPZ $31
EPZ $34
EPZ $33
EPZ $4A
EPZ $4C
EPZ $CC
EPZ $CA
EPZ $CE
EQU $E003
FQU $EFEC
EQU $0200
EQtJ $F689
EQU $FFA7
EQU $F94A
EQU $FDED
EQU $FF3A
EQU $FD67

;RO, ACCUMULATOR
;Rl
;R2
;R3
;R4
;R5
;R6
;R7
;R8
;R9
;RI0
;R11
;RI2, SW16 STACK PTR

;PRCMPT
; INTEGER LCMEM
;INTEGER HIMEM
;INTEGER END OF VARIABLES
;BOTTOM OF PROGRAM
;CALL VECTOR
;BASIC
;RUN BASIC
; INPUT BUFFER
;SWEETI6 ENTRY
;GET # FROM BUFF.
;PRINT BLANKS
;OUTPUT CHAR.
;BEEP
; INPUT A LINE

BASIC STATEMFNT TC START CCDE REPLACEMENT
PROCESS ...

o POKE 1,76: POKE 2,(PEEK(202)+70) MOD 256:
POKE 3,(PEEK(203) + (PEEK(202)+7C)/256):
CALL 1

I

l

l
-,
1

l

l

1
'I

I
J

1

l

1 ,
1

1

1

1

r-

fil!IIIIJI Suitor Pack and Load 33

9400 460('00 75 BASO HEX 460000
~ 9403 64BI0l 76 HEX 64BI0l

9406 0065B7 77 HEX 0065B7
9409 4COO03 78 HEX 4COO03
940C 64B2 79 HEX 64B:1
940E 020065 80 HEX 020065
9411 38n.3F 81 HEX 382E3F
9414 B2CA 87 HEX B:1CA
9416 007212 83 HEX 00721:1
9419 B74600 84 HEX B74600
941C 721F 85 HEX 721F
941E B:10001 86 HEX B20001
94:11 0364B3 87 HEX 0364B3
9424 0300 88 HEX 0300
9426 65382E 89 ~lEX 65382E
9429 3FB2CB 90 HEX 3FB2CB
942C 0072 91 HEX 0072
942£ 1238:1E 92 HEX 1 :?382F
9431 3FB2CA 93 HEX 3FB2CA
9434 0072 94 HEX oon
9436 12B746 95 HEX 12B746
9439 007215 96 HEX 00n15
943C B200 97 HEX B200
943E 017203 98 HEX 017203
9441 4DB101 99 HEX 4DB101
9444 0001 100 HEX 0001
9446 101
9446 102 7 INITIALIZE PCINTERS
9446 103
9446 D8 104 PTBK CLD
9447 A201 105 LDX #l
9449 B5CA 106 PT02 LDA BBh,x ;R1 IS START OF PACKED PROG.
944B 9502 107 STA BSOL,X
944D B54C 108 LDA HIML,X ;R4 IS END (HIMEM)
944F 9508 109 STA HIMS,X
9451 CA 110 DEX

f'iIi'IIil 9452 10F5 III BPL PT02
9454 2089F6 112 JSR SW16
9457 105201 113 SET RO,PTLP-BASO
945A .185701 114 SET R8,PTLP+5-BASO
945D Al 115 ADD Rl ;SET R7 TC CURRENT START OF

r 945E 37 116 STO R7 ; PACKED DATA (BBSL+PTLP-BASO)
945F 67 117 LDD @R7
9460 35 lIS STO R5 ; PUT IN R5
9461 67 119 LDD @R7 ;PU'l' ORIGINAL LENGTH OF' PROGRAM
9462 36 120 !OTO R6 ; IN R6
9463 24 121 LDR R4
9464 B6 122 SUB R6 ;CALCULATE START OF ORIGINAL
9465 36 123 STO R6 ; PROGRAM AND POT IN R6
9466 lAll00 124 SET RA,ST16+1-PLPI
9469 BA 125 SUB RA ;CURRENT LOCATION OF ENTRY

('iiilFl 946A 3A 126 STO RA ;TO RESTORE LOOP IN RA
946B 67 127 LDD @R7 ;BASO LOCATION TO LEAVE ROUTINE
946C 33 1:18 STO R3
9460 00 129 RTN
946E A201 130 LDX #1

r- 9470 131
9470 132 7 REtTCRE ORIGINAL LOMEM AND START
9470 133 7 OF ORIGINAL PR~GRAM .•.
9470 134 I
9470 BSOI< 13S PT04 LDA LMR'I',X

fil!IIIIJI 9472 954A 136 STA LMMl"X
9474 9S0C 137 STA LMWL,X
9476 BSOC 138 LDA BPIHl,X
9478 9SCA 139 STA BBSL,X
947A CA 140 DEX

~ 947B 10F3 141 BPL P'I'04
947D 6C1400 142 JMP (PTLL)
9480 143 JMP (RA) • PLP1
9480 144
9480 145 I SECTION TO PERFORM PACK
9480 146 I
9480 U01 147 MI<UP LDX U
9482 BS4A 148 MI<21 LDA alML,X
9484 950A 149 STA alRT,)(:IIS-LOMEM

I'lii!IiiI

,..,
)

34 Machine Language Aids i
9486 B5CA 150 LPA BBSL.X :R9.R6"START
9488 9512 151 STA BPR2.X : OF PROGRAM

'l 948A 950C 152 STA BPRG.X
948C B5CE 153 LDA JSRL.X :R2-MKUP LOCATION
948E 9504 154 STA TABL.X
9490 B54C 155 LDA HIML.X :R4 .. HIMEM
9492 9508 156 STA HIMS.X -, 9494 CA 157 PEX
9495 lOEB 158 BPL MK21
9497 159
9497 160 INIT AND PACK THE RESTORE LOOP AT PTLP
9497 161

i 9497 2089F6 162 JSR SW16
949A 24 163 LDR R4
949B B9 164 SUB R9
949C 39 165 STO R9 :LENGTH OF PROGRAM
949D ll8000 166 SET Rl.MKUP-BASO

i 94AO 22 167 LDR R2
94Al B1 168 SUB Rl
94A2 31 169 STO Rl :BASO LOCATION
94A3 105201 170 SET RO.PTLP-BASO
94A6 Al 171 ADD Rl

i 94A7 32 1n STO R2 :PTLP LOCATION
94A8 181800 173 SET R8.ST16-PTLP
94AB A8 174 ADD REl
94AC 33 175 STO R3 :ST16 LOCATION
94AD E3 176 INR R3 :END (ST16) + 1

1 94AE lC5000 177 SET RC.$50 :SW16 STACK
94Bl OC42 178 BSB MV52 :PACK RESTORE LOOP
94B3 00 179 MK22 RTN
94B4 A9CO 180 MKOI LOA nco ; '@I
94B6 181

'i 94B6 182 GET LIMITS AND PACK PROGRAMS
94B6 183 I

94B6 8533 184 STA PRMP :PRCMPT IS '@'
94B8 A900 185 LDA to
94SA 8531 186 STA MODE

i 94BC 2067FD 187 JSR GTLN :GET COMMAND
94BF 8616 IB8 STX XTAB : END OF COMMAND
94C1 MOO 189 LDY .0
94C3 B90002 190 LOA BUFF.Y
94C6 C9D3 191 CMP t$D3 : 'S'. STOP?

j 94C8 F068 192 BEO MKI0 rYES
94CA 20A7FF 193 MK06 JSR GTNM :START OF RANGE
94CD C9A7 194 CMP UA7 :F(.) (SEE MON.)
94CF F010 195 BEO MK02
94Dl 98 196 MERR TYA :ERROR IF HERE

i 94D2 AA 197 TAX
94D3 204AF9 19B JSR PBL2 :ERROR INDICATOR
94D6 A9DE 199 LOA UDE : I ... t

94D8 20EDFD 200 JSR COUT
94DB 203AFF 201 JSR BELL -, 94DE 18 202 MK05 CLC
94DF 90D3 203 BCC MKOI
94El E631 204 MK02 INC MODE
94E3 20A7FF 205 JSR GTNM : END OF RANGE
94E6 206

! 94E6 207 Al & A3 NOW HAVE 1ST t. A2 SECOND
94E6 208 SET UP MeVE TC JUST BELOW (BBSL)
94E6 209 AND LOWER BBSL
94E6 210
94E6 2089F6 211 JSR SW16 .,
94E9 OllE 212 BRA SM02
94EB 183COO 213 MV51 SET R8.$3C
94EE 68 214 LPD @RB
94EF 32 215 STO R2 :R2=A1
94FO 68 216 LDD @RB ...,
94F1 33 217 STC R3 :R3=A2
94F2 B2 21B SUB R2 :A2-A1 i
94F3 3B 219 STO Re
94F4 E3 220 INR R3
94F5 B3 221 MV52 POP @R3 :MOVE FROM (R3) DOWN TO (R2),
94F6 96 222 STP @R6 :TO (R6) AND DOWN ! 94F7 23 223 LDR R3
94FB D2 224 CPR R2

'-;

Suitor Pack and Load 35

94F9 07FA 225 BNZ MV52
94FB 28 226 LOR R8 ;LENGTH-1
94FC 33 227 STO R3
94FD 180800 228 SET R8,8
9500 88 229 POP @R8 ;PREFACE PACKED ROUTINE
9501 96 230 STP @R6 ;BY LENGTH-1 AND BY
9502 88 231 POP @R8 ;STARTING ADDRESS
9503 96 232 STP @R6
9504 88 233 POP @R8
9505 96 234 STP @R6
9506 88 235 POP @R8

f!!i1III 9507 96 236 STP @R6
9508 OB 237 RSB
9509 OCEO 238 SM02 BSB MV51
950B 00 239 SM03 RTN
950C C9EC 240 MK09 CMP #$EC ;F(S) STOP?

fUll! 950E Fon 241 BEQ MKI0 ;YES
9510 C9C6 242 CMP #$C6 ;F(CR) END OF LINE?
9512 FOAO 243 BEQ MK01 :YES, GET NEW COMM.
9514 C999 244 CMP #$99 :F() : BLANK?
9516 F003 245 BEQ MK12 :YES
9518 DOB7 246 BNE MERR :ERROR IF OTHER
951A C8 247 MKll INY
951B B90002 248 MK12 LOA BUFF, Y :GET NEXT COMM. CHAR
951E C416 249 CPY XTAB :END OF LINE?
9520 B092 250 BCS MK01 :YES, GET ANOTHER
9522 C9AC 251 CMP #$AO : BLANK
9524 FOF4 252 BEQ·MKll
9526 C980 253 CMP #$80 :CR.
9528 F08A 254 BEQ MKOI
952A C903 255 CMP #$03 : '5 1

~ 952C F004 256 BEC MK10
952E C631 257 OEC MOOE
9530 F098 258 BEQ MK06 ;ALWAYS
9532 259
9532 260 PACK 1ST PART ANO CLEAN UP
9532 261 :
9532 2089F6 262 MK10 JSR SW16
9535 21 263 LOR R1
9536 32 264 STO R2 ;BASO LOCATION
9537 185201 265 SET R8,PTLP-BASO
953A A8 266 ADO R8
953B 37 267 STe R7 ;PTLP LOCATION
953C 25 268 LDR R5 :PACK:
9530 77 269 STO @R7 LOMEM
953E 29 270 LOR R9
953F 77 271 STe @R7 : ORIGINAL LENGTH OF PROGRAM
9540 21 272 LOR Rl ; BASO LOCATION
9541 77 273 STO @R7 ;ONTO ENO OF 1ST PART
9542 27 274 LOR R7 :OF ROUTINE
9543 33 275 STO R3

~ 9544 OCAF 276 BSB MV52 ;PACK BASO-PTLP PLUS ABOVE VARS.
9546 66 277 SM04 LOD @R6 :STRIP PREFACE
9547 66 278 LDD @R6 :LEAVINC EASIC STATEMENT
9548 00 279 RTN
9549 A50C 28.0 LDA BPRG
954B 85CA 281 STA BBSL ;R6 IS NEW START
9540 A50D 282 LOA BPRG+Ol ;OF PROGRAM
954F 85CB 283 STA BBSL+01
9551 60 284 RTS
9552 285
9552 286 RESTORE LOOP --THIS LOOP DOES THE ACTUAL
9552 287 UNPACKING AND IS ALWAYS JUST IN FRONT CF
9552 288 THE ORIGINAL BASIC PROGRAM ...
9552 289
9552 2089F6 290 PTLP JSR SW16
9555 61 291 PLPO LDD @R1
9556 33 292 STO R3 : DESTINATION
9557 61 293 LDD @R1
9558 38 294 STO R8 ; LENGTH

r- 9559 00 295 RTN
955A 2089F6 296 PLP1 JSR SW16
9550 41 297 MV60 LDR @R1 : UNPACK
955E 53 298 STe @R3
955F F8 299 OCR R8

r-

,
36 Machine Language Aids 1

9560 04FB 300 BIP MV60
9562 21 301 LI::R Rl
9563 D6 302 CPR R6 ;AT END YET?
9564 05EF 303 BIM PLPO ;NOT YET

1
9566 00 304 PLP2 RTN
9567 4C03EO 305 JMP BSC2
956A 306 ; OR JMP BRUN TO RUN AUTCMATICALLY
956A 00 307 ST16 HEX 00

308 END
1

***** END OF ASSEMBLY 1
******************.******

* * SYMBOL TABLE -- V 1.5 * i
*
.*************.*.********

LABEL. LOC. LABEL. LOC. LABEL. LCC.

** ZERO PAGE VARIABLES:

ACCL oooe BSOL 0002 TABL 0004 TBCL 0006 HIMS oooe LMRT OOOA
BPRG OOOC FRML OOOE NBYT 0010 BPR2 0012 PTLL 0014 XTAB 0016
SKPL 0018 MODE 0031 YSAV 0034 PRMP 0033 LMML 004A HIML 004C j
LMWL OOCC BBSL OC::A JSRL OOCE

** ABSOLUTE VARABLES/LABELS

BSC2 E003 BRUN EFEe BUFF 0200
,

SW16 F689 GTNM FFA7 PBL2 F94A COUT FI::EO BELL FF3A OTLN FI::67
BASO 9400 PTBK 9446 PT02 9449 PT04 9470 MKUP 9480 MK21 9482
MK22 94B3 MKOl 94B4 MK06 94CA MERR 9401 MK05 94I::E MKO~ 94El
MV51 94EB MV52 94F5 SM02 9509 SM03 950B MK09 950C MKll 951A
MK12 o951B MKI0 9532 510104 9546 PTLP 9552 PLPO 9555 PLPl 955A 1
MV~O 9551:: PLP2 9566 ST16 956A

SYMBOL TABLE STARTING AOORESS:6000
SYMBOL TABLE LENGTH:OlOA 1

...,
I

I
.I

..,
,

1

r

Mean 14: A Pseudo-Machine
Floating Point Processor
for the Apple II

by R.M. Mottola

Modelled after the Sweet 16, this program supports a
large variety of mathematical operations on five-byte
floating pOint values. This 'processor' can greatly
simplify and enhance your mathematical processing
power.

In the beginning of the life of the Apple II computer, an obstacle had to be over­
come in the writing of the firmware. As we know, the 6502 is an eight bit
microprocessor, but all too frequently routines require numeric operations involv­
ing double precision integers. Repeating common operations every time the
routines are required could be done, but it is not very space efficient. For that mat­
ter, performing the requisite register set-ups to use some general purpose
subroutines can also deplete available memory space, if the routines are called fre­
quently. What was needed was an arithmetic processor that could handle two­
byte integers. So, a pseudo-machine processor is a machine language program that
behaves like a processor.

This elegant solution is called the "Sweet 16 Pseudo-Machine Interpreter"
and is known and used by many Apple programmers. It lives from $F689 to F7FA
on the FO Integer BASIC ROM found in regular Apple II computers. From a soft­
ware point of view, the interpreter is used very much like you would use a
microprocessor. Programming it requires the use of various instructions and
operands. Hand assembly is easy because the instruction set isn't long and the for­
mat of the operators is very straightforward. A popular resident asembler, the Lisa
assembler by Randall Hyde, will even assemble Sweet 16 mnemonics.

The Mean 14 pseudo-machine floating point processor was modelled after the
Sweet 16. It too is programmed like a hardware processor. Instead of being de­
signed to process two-byte integers, the Mean 14 can perform many mathematical
operations on five-byte floating point values. These values are formatted in the
standard Applesoft variable representation described in the Applesoft manual.

The Mean 14 processor was written to facilitate floating point machine
language programming on an Apple II Plus or a standard Apple II with Apple­
soft ROM card. Since Apple does not provide any documentation for the floating

38 Machine Language Aids

point routines in Applesoft, it is pretty difficult for those wishing to write floating
point routines in assembly language. Even knowing the locations and entry
requirements of those routines is only partially helpful if either complex or
repetitive functions must be performed. Of course, you could always write your
more involved functions in Applesoft BASIC, but the Mean 14 will always per­
form at least ten times as fast and probably much more. The reason for this is
simply that the Mean 14 has little of the interpreter overhead that Applesoft has.
Using the example of adding two values, if Applesoft is used, and the values are
represented as variables which have not been used before, Applesoft must allocate
space for them first. And if arrays have been dimensioned, they must be moved up
to make space for the new variables. If the variables or arrays happen to collide
with strings, then string "house-cleaning" must take place. In machine terms, all
this takes an awful lot of time. As an added kicker, even more time must be allowed
if you use constants instead of variables.

On the other hand, Mean 14 doesn't have to do all of this. Its interpreter
overhead is very small and since you, the programmer, supply the operand either
by specifying pointers or, in the Immediate Mode, by actually supplying the
floating point value, the floating point routines don't have to search for or convert
anything. Mean 14 spends its time processing numbers - not trying to find them
or converting ASCn strings into them.

What Mean 14 Does

Mean 14 is a very simple kind of interpreter. You give it a number and it looks
it up, in a table, where it picks up the address of the subroutine which performs
the specific functil'm required. Most of those functions already exist in Applesoft.
Some require set-ups to make entry and exit easier. In all cases, the instruction set
has been designed to make straight-line machine language floating point
arithemetic a lot easier.

That last line indicates one of the possible shortcomings of the Mean 14 for
your particular floating point requirement. It can process data only in a straight
line. At present, it contains no conditionals in the instruction set. This apparent
problem isn't really all that bad when you actually use the Mean 14. For my own
applications, I've found that testing, branching, and loop operations can best be
handled outside of Mean 14, in 6502 assembly language. This is because, relative
to the amount of time it takes even the simplest floating point operation to
execute, all sorts of branching and testing-including entries and exits into and
out of Mean 14-can be accomplished very quickly. For this reason, conditionals
were left out of the Mean 14's instruction set. But that certainly doesn't mean
that you couldn't add them if your particular application required them.

Using Mean 14

Making use of the Mean 14 processor in your machine language programs is
easy. The only prerequisite, besides a working knowledge of assembly language, is
a fundamental knowledge of the format of Applesoft variables.

1. Note that Mean 14 and the Applesoft subroutines that it calls could leave any
and all registers in an undeterminable state. If you need certain registers in

i

1

1 ,
1

j ,
i

i

i ,
,
,
...,

J ,

~

('!iIIlIl

(1l!iiIII

r

Mottola MEAN-14 39

specific states, it's a good idea to write yourself both a Save and a Restore routine
and remember to JSR to the Save before entering Mean 14. You could even add
these routines to the Mean 14 entry and exits if you like.

2. Enter Mean 14 with a JSR to MEAN 14 ($8EOO in the source listing provided).
All code between this JSR and a Mean 14 "RET" will be interpeted by the Mean 14
processor. Remember that byte sequence is a function of the addressing mode. In
the Implied mode, any. operator is followed by the next operator. In Immediate
mode, an operator is immediately followed by a five byte operand (constant) in
Applesoft floating point variable format. In the Absolute mode, the operator must
be followed by a two byte pointer to the first memory location containing a
floating point value. In the Indirect mode, the operator is followed by a pointer,
which points to a pointer, which points to a floating point value. Remember, all
pointers must be in standard 6502 low-byte, high-byte order.

3. Consider the following section of code:

2000 SUB1 STY YSAVE ; SAVE Y
2002 STX XSAVE ; SAVE X
2004 JSR MEAN 14 ; ENTER MEAN 14
2007 DFB CO 00 03 ; *LDA $300
200A DFB C4 05 03 ; *ADD $305
200D DFB 45 81 00
2010 DFB 00 00 00 ; *SUB 111
2013 DFB OC ; *ABS
2014 DFB 81 4003 ; * ST A ($340)
2017 DFB 11 ; *RET
2018 LDX XSAVE ; RESTORE X
201A LDY YSAVE ; RESTORE Y
201C RTS

Both the X and Y registers were saved before entering Mean 14 in this exam­
ple. To make the code representation less confusing, it's a good idea to show the
Mean 14 mnemonic equivalents of the defined bytes in the comments field. I like
to designate them with an asterisk but any appropriate scheme should do.

4. If your machine language routines are to be called from BASIC and if values
obtained from Mean 14 operations will be used by BASIC, you might want to store
values directly into the memory locations allocated to Applesoft variables. This
will make the results of your machine language calculations directly available to
BASIC. Although there are subroutines in Applesoft to find a variable by its name,
they can take a lot of time to execute. An easier approach is to "know" where
your variables are by allocating them first, in your BASIC program. Thus, if the
first line of your program is:

10 A=O:B=O:C=O:D=O

then you'll know that the first variable is A, the second is B, etc. The pointer at
locations $69,$69A tells you the beginning of the simple variable space, so you
should be all set.

5. Be careful to avoid floating point errors such as Overflow and Division by Zero,
as Applesoft routines tend to dump you into BASIC if an error occurs.

40 Machine Language Aids

Format Of Mean 14 Operators

Mean 14 instructions are represented as single byte numeric values. Two
quantities are represented in this byte - instruction /IDd addressing mode. Since
there was room to spare (there are only four addressing modes and twenty odd
instructions) a very simple scheme was devised to include both. There are also
many unused values so the instruction set could easily be expanded. An
instruction is represented with the two high order bits indicating the addressing
mode and the lower six bits indicating the operation .

7 6
Addressing Mode

Mean 14 Addressing Modes

543 2 1 0
Instruction

The Mean 14 pseudo-machine processor instructions use four different
addressing modes. They are:

IMMEDIATE
ABSOLUTE
INDIRECT
IMPLlI;D

IMMEDIATE - Just like any processor, the Mean 14 instructions that allow
immediate addressing use the value following an operator in memory for the
operand. Since we deal with floating point values, the five memory locations
following the operator must contain the floating point operand. This must be in
Applesoft variable format.

EX. Load FPAC1 with the value "0"

40 0000 00 00 00 LOAIIO

OPERATOR OPERAND SYM130LIC

,
1

1 ,
1

1

1

1

1

1 ,
1

ABSOLUTE - The two bytes that follow the instruction (operator) in the
absolute mode must contain the address of the first byte of the desired buffer. The
value of the byte pointed at, and the values of pointer must be in low byte, high i
byte format.

EX. Store FPAC1 in locations $1 FOO-$1 F04 ..,

C1

OPERATOR

001F

OPERAND

STA $1 FOO-$1 F04

SYMBOLIC

INDIRECT - In this addressing mode, the two bytes that follow the operator

I ,
must contain the address of a two byte pointer which points to the first byte of the 1
buffer. This addressing mode is useful when loop processing a number of
variables. It allows the pointer to the variable to be changed and, since the pointer
is not a part of the Mean 14 object code, you needn't write self modifying code to ...,
perform a loop. Again, both the operand and the pointer must be represented in J

the low byte, high byte format.

1

~
i

i

Mottola 41

EX. Store FPAC1 in $2FFQ-$2FF4

81 00 20 SiA($2000)

Where $2000,$2001 point at $2FFO

IMPLIED - Certain instl1.}ctions perform opetations which do not involve
variables. These include register fupctions and exits from Mean 14.

E:X. Transfer FPAC1 to FPAC2
02 TAB

EX. Exit Mean 14
11 RET

MEAN 14 INSTRUCTtON SET

LDA Load FPAC1 b.li th memor"y'

IMMEDIATE '" $40
ABSOLUTI:: = $CO
INDIRECT = $130

STA Store FPAC1 in memory

ABsoLUTE = $Cl
I ND I RECT '" $::: 1

TAB Tratlsfet' FPAC1 to FPAC2

IMPLIED = $(12

TI3A TransfQ,. FF'AC2 to FPACl

I MPLI ED '" $0;3

ADD Add memorY to FPACl

IMMEDIATE = $44
ABSOLUTE = $C4
INDIRECT .. $S4

M -- FPACl

FPACl --> M

FPACl --> FPAC2

f"PAC2 --) FPACl

M + FPACl --> FPAC1

~ -~------------------~----------------------------~-------------

SUB Subtract, FPACl fl"om memor'Y

IMMEDIA1E $45
ABSOLUTE :0 $C5
INDIRECT $85

M - FPACl --) FPACl

42 Machine Language Aids

MUL

DIV

NOP

SQR

EXP

INT

ABS

SGN

LOG

Memory times FPACl

IMMEDIATE
ABSOLUTE
INDIRECT

$46
$C6
$86

Memory divided by FPACl

IMMEDIATE
ABSOLUTE
INDIRECT

No o~eration

$47
!~C7

~;::l7

IMPLIED $08

Square root of FPACl

IMPLIED = $09

FPAC2 raised to the power
of memory

IMMEDIATE $4A
ABSOLUTE $CA
INDIRECT $8A

Integer value of FPACl

IMPLIED $OB

Absolute value of FPACl

IMPLIED = $OC

Value of the sign of
FPACl

IMPLIED = $OD

Natural log of FPACl

IMPLIED = $(lE

,
,

M * FPACl --> FPACl 1

l

M / FPACl --> FPACl 1 .,
MPC + 1 1

,jFPACl --> FPACl 1

1
FPAC2 A M --> FPACl

1 ,
INT (FPACl) --> FPACl

'1

ABS (FPACl) --> FPACl 1
'j

SGN (FPACl) --> FPACl
,

1
LOG (FPACl) --> FPACl

.,
1

r

CVA

CVB

RET

Convert two-byte integer
in Applesoft integer variable
format to its floating point
e"luival ent.

ABSOLUTE $CF
INDIRECT $8F

Convert two-byte integer
in 6502 format to its floating
poi rot e"luival ent.

ABSOLUTE $DO
INDIRECT $90

Exit MEAN 14

IMPLIED $11

Mottola MEAN-14 43

MY. --) FPACl

ML,MH --) FPAC1

MPC --) PC

,
44 Machine Language Aids ,

0800 1 :*******.* ••• ** •• ****.*.*
oeoo 2 ;* * 1 0800 3 ;* MEAN-14 FP PROCESSOR *
0800 4 .* R.M. MOTTCLA *
0800 5 ;. *
0800 6 ;* MEAN-14 *
0800 7 ;* * 1 0800 e ;* COPYRIGHT (C) 1981 *
0800 9 ;* MICRO INK. INC. *
0800 10 ;* CHELMSFORD. MA 01824 *
oeoo 11 ;* ALL RIGHTS RESERVED *
0800 12 ;* * .,
0800 13 :****** ••• ***.*******.***
0800 14
0800 15 ;*SOFTWARE ADDRESSES
0800 16 ;*
oeoe 17 TEMPL EPZ $IE 1 oeoo 18 TEMPH EPZ $lF
0800 19 MPCL EPZ $4C
OBOO 20 MPCH EPZ $4D
OBOO 21 FPACI EPZ $90
DaDo n FPAC2 EPZ $A5

1 0800 23
0800 24
oeoo 25
0800 26 ; FIRMWARE ADDRESSES
OBor 27

1 oeoo 28
oeoo 29 INT>FP EQU $E2F2
0800 30 FPSUB EQU $E7A7
0800 31 FPADD ECU $E7BE
De 00 32 FPLOG ECU $E941 ,
0800 33 FPMOL EQU $E97F
0800 34 FPOIVI EQU $EA66
oeoo 35 FPLOAD EQU $EAF9
0800 36 FPSTR EQU $EB2B
0800 37 TR2>1 EQU $EB53 ! 0800 38 TRI>2 EQU $EB63
OBOO 39 FPSGN Eeu $EB90
De 00 40 FPABS EQU $EBAF
0800 41 FPINT EOU $EC23
0800 42 FPSQR EOU $EEeD ,
0800 43 FPEXP EQU $EE94
0800 44
eEOO 45 ORG $BEOO
8EOO 46 OBJ $BOO
8EOO 47 1 8EOO 48 ;MEAN 14 PSEUDO-MACHINE
BEOC 49 ;FLOATING POINT PROCESSOR
eEOO 50
eEOO 68 51 MEANI4 PLA ;GET MI4 CODE LOCATION
8EOI 854C 52 STA MPCL ;FROM RETURN ADDRESS ,.,
eE03 68 53 PLA J 8E04 854D 54 STA MPCH
8E06 205FBE 55 JSR PCINC
BE09 200F8E 56 M14A JSR M14B
BEOC 4C09BE 57 JMp M14A i BE OF Aooe 58 M14B LOY #$0
eEll B14C 59 LDA (MPCL) I Y ;GET ONE INSTRUCTION

I

B&:13 AA 60 TAX
BE14 293F 61 AND #PF ;GET CORRECT SUBROUTINE
eE16 OA 62 ASL ;ADDRESS FROM TABLE .,
BE17 AB 63 TAY
BEIB CB 64 INY
8E19 B9AOB! 65 LDA /iUB'l'BL,Y ;AND SHOVE IT
BElC 4B 66 PHA
BUD B8 67 DEY 1 BElE B9A08E 68 LOA SUBTBl-,Y
8E21 48 69 PHA
aE22 ;105FBE 70 JSR PCINe ;INCREM. M14 p.C. COUNT
BE25 SA '1 TXA
BE26 29CO 72 AND UCO IGET ADDRESSING MODE ,
BE2B F034 73 BBO M14G IIMPLlED?
BE2A 1020 74 BfI. M14D IIMMEDlATJ1:?
BJ1:2C 2940 75 MID #$40

1

r
Mottola MEAN-14 45

8E2E D013 76 BNE M14C ABSOLUTE?
(I1i'iI\I\ 8E30 B14C 77 LDA (MPCL), Y INDIRECT

8E32 851E 78 STA TEMPL GET POINTER TO AIJDRESS
BE34 C8 79 INY OF OPERAND
BE35 B14C 80 LDA (MPCL), Y
BE37 851F 81 STA TEMPH
BE39 8B 82 DEY
BE3A BllE 83 LDA (TEMPL) ,Y
8E3C 48 84 PHA
BE3D C8 85 INY
8E3E BllE 86 LDA (TEMPL), Y
8E40 48 87 PHA
8E41 9013 88 BCC M14E
8E43 B14C 89 M14C LOA (MPCL),Y ;GET ADDRESS OF
8E45 48 90 PHA ; OPERAND
8E46 C8 91 INY

r- 8E47 B14C 92 LDA (MPCL), Y
8E49 48 93 PHA
8E4A 900A 94 BCC M14E
8E4C A54C 95 H14D LCA MPCL ;SAVE P.C. AS ADDRESS
8E4E 48 96 PHA ;OF IMMEDIATE OPERAND
8E4F A540 97 LDA MPCH
8E51 48 98 PHA
8E52 A905 99 LOA #$5 ;AND OFFSET P.C. 5 BYTES
8E54 9002 100 BCC M14F
8E56 A902 101 M14E LOA #$2 ;OFFSET P.C. 2 BYTES

fBI BE 58 20618E 102 M14F JSR PCADD
8E5B 68 103 PLA ; PULL OPERAND ADDRESS
8E5C 104 ;AND TRANSFER
8E5C A8 105 TAY ;TC A AND Y REGS FOR SUBS
8E5D 68 106 PLA
8ESE 60 107 M14G RTS ;JMP VIA RTS
8E5F 108
8ESF A901 109 PC INC LDA #$1
BE61 IB 110 PCADD CLC
8E62 654C 111 ADC MPCL
8E64 854C 112 STA MPCL
8E66 9003 113 BCC PCl
8E68 E64D 114 INC MPCH
BE6A 18 115 CLC
8E6B AOOO 116 PCl LDY #$0

~ 8E6D 60 117 RTS
8E6E 118
8E6E AA 119 STR TAX
8E6F 4C2BEB 120 JMP FPSTR
8E72 851E 121 CONV1 STA TEMPL
8E74 841F 122 STY TEMPH
8E76 AOOO 123 LDY #$0
8E78 BllE 124 LDA (TEMPL), Y
8E7A 48 125 PHA
8E7B C8 126 INY

fBI 8E7C BllE 127 CIA LDA (TEMPL), Y
BE7E A8 128 TAY
8E7F 68 129 PLA
8E80 20F2E2 130 JSR INT>FP
8E83 A5A2 131 LDA FPACl+$5
8E85 1007 132 BPL NCCP
8E87 A9C4 133 LDA #VALUEI
8E89 A08E 134 LDY /VALUEI
8E8B 20BEE7 135 JSR FPACD
8E8E 60 136 NOOP RTS
8E8F 851E 137 CONV2 STA TEMPL
8E91 841F 138 STY TEMPH
8E93 AOOI 139 LDY #$1
BE95 BIlE 140 LCA (TEMPL), Y
8E97 48 141 PHA

fBI 8E98 88 142 DEY
8E99 FCE1 143 BEC CIA
8E9B 68 144 RETURN PLA ;PULL MEAN 14 RETURN
BE9C 68 145 PLA ;ADDREES FROM STACK
SE9D 6C4COO 146 JMP (MPCL)

~ 8EAO 147
8EAO 148
BEAO 149 SUBROUTINE ADDRESS 'I'ABLE
8EAO 150

,
46 Machine Language Aids ...,

SEAO F8EA 151 SUBTBL ADR FPLOAD-$l
8EA2 6D8E 152 AOR STR-$l
8EA4 62EB 153 AOR TR1>2-$1
8EA6 52EB 154 ADR TR2>1-$1

.,
8EA8 BDE7 155 ADR FPADD-$1
8EAA A6E7 156 ADR FPSUB-$l
8EAC 7EE9 157 ADR FPMUL-$l
SEAE 65EA 158 ADR FPDIVl-$1
8EBO 8DBE 159 AOR NOOP-$1

.,
8EB2 BCEE 160 ADR FPSQR-$1
8EB4 93EE 161 ADR FPEXP-$1
8EB6 22EC 162 AOR FPINT-$l
8EB8 AEEB 163 ADR FPABS-$1
8EBA 8F'EB 164 ADR FPSGN-$l

,
8EBC 40E9 165 ADR FPLCG-$l
8EBE ?l8E 166 ADR CONVl-$l
8ECO BE8E 167 ADR CONV2-$1
8EC2 9A8E 168 ADR RETURN-$1
BEC4 169 . ,
8EC4 170 :FLOATING POINT CONSTANTS
8EC4 171
8EC4 910000 172 VALUE 1 HEX 9100000000 % 65536
8EC7 0000
8EC9 173

,
8EC9 174
8EC9 175
8EC9 176
8EC9 177 LENGTH EQU *-MEAN14

178 END
,

***** END OF ASSEMBLY ,

* *
* SYMBOL TABLE -- V 1.5 *
* * i

I

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE V»'RIABLES:
,

TEMPL 001E TEMPH 001F MPCL 004C MPCH 0040 FPAC1 0090 FPAC2 00A5 ..,
** ABSOLUTE VARABLES/LABELS ,!

INT>FP E2F2 FPSUB E7A7 FPADD E7BE FPLOG E941 FPMUL E97F FPDIVI EA66
FPLOAD EAF9 FPSTR EB2B TR2>1 EB53 TR1>2 EB63 FPSGN EB90 FPABS EBAF
FPINT EC23 FPSQR EE8D FPEXP EE94 MEAN14 8EOO M14A 8E09 M14B 8EOF
M14C 8E43 M14D 8E4C M14E 8E56 M14F 8E58 M14G 8E5E PC INC 8E5F
PCADD 8E61 PC1 8E6B STR 8E6E CONV1 8E72 CIA 8E7C NOCP 8E8E
CONV2 8E8F RETURN 8E9B SUBTBL 8EAO VALUE 1 8EC4 LENGTH OOC9

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:015A

1

..,

2
110 ENHANCEMENTS

Introduction 48

Screen Write/File Routine 49
B.B. Baxter

B i-Directional Scrolling 52

~
Roger Wagner

Apple IT Integer BASIC Program List by Page 58

r Dave Partyka

Paged Printer Output for the Apple 63

r- Gary Little

Hexadecimal Printer 67
f1'iIIIl

LeRoy Moyer

INTRODUCTION
In order to communicate with your computer, an 1/0 device is a necessity. The
keyboard and video output are the standard 1/0 devices of the Apple, with a
printer being another commonly-found output device. ObViously, any
enhancements to the I/O capabilities will promote a better interface between pro­
grammer and Apple. In this chapter, some enhancements are described which
should make working with your Apple a bit easier.

"Screen Write/File," by Bruce Baxter, provides a method to directly save and
retrieve text screens to and from the disk. This technique can often save valuable
program memory space. "Bi-Directional Scrolling," by Roger Wagner, allows
scrolling through memory either backwards or forwards. Any portion of memory
may be scrolled through and viewed (in ASCII) with this routine. "Apple II Integer
BASIC Program List by Page," by David Partyka, lets the user list through an In­
teger BASIC program page-by-page on the Apple video screen.

The following two routines will be of special interest to printer owners. "Paged
Printer Output for the Apple," by Gary Little, provides for printer output to be
divided into variable size pages. It also allows a pause for single sheet paper feed.
And "Hex Printer," by LeRoy Moyer, facilitates machine language disassembly
listings on you printer.

i
]

1 ,
1 ,
i ,
,
,
-, ,
"1

i ,

..,
j

i

Screen Write/File Routine
by B.E. Baxter

Here is a useful and instructive routine which makes it
simple to edit the Apple screen and save the screen
image on disk.

The screen write/file routine is a simple 73-byte device to take control away from
r- the monitor and write directly to the screen. All of the escape editing capabilities

are supported so that it is very easy to enter and modify up to and including 21
lines of text. It is equally easy to save the screen image to disk after completion of
text entry.

How it Works

The source code is straightforward and makes liberal use of monitor routines.
Upon entry the cursor is homed and placed on line 1 (not zero). The block labeled
KEY continually polls the keyboard and outputs characters through COUT
(VIOOUT [$FBFO] could also be used if printer services are not wanted). The
limited editing facilities of the monitor are invoked by typing (escape) followed by
one of the command characters. Keyboard entry of CNTL Q is used to exit the
routine and return to BASIC via $300. Automatic exit is also obtained at line 43.
Upon exit, the bell will sound and the BASIC prompt character will appear with
the file parameters displayed at the end of the line. At this point the file must be
saved using the command, (BSAVE File name) A$0400, L$03CF (RETURN). The
parenthetical expressions must be typed by the useri that is, type BSA VE file
name, then trace over the remainder of the line with the right arrow to place it into
the keyboard buffer and at the end of the line press RETURN. Although I do not find
it necessary, a monitor MOVE to page 2 could be set up and inserted between lines
57 and 58 of the source listing. This would provide back-up in case BSA VB com­
mand is messed up. The object code is assembled at $0350 and is $49 bytes long.

Command Summary

In summary, the usage commands are:

Entry to Routine

From BASIC
From Monitor

Call 848
$0350G

50 I/O Enhancements

Exit to BASIC Mode

User
Automatic

(Control) Q
Line 43

Edit Screen (See Apple Ref. Materials)

(Escape)

Save Screen Image

@: Home cursor (Clear text)
A: Advance cursor
B: Backspace cursor
C: Move cursor down 1 line
D: Move cursor up 1 line
E: Clear from cursor to end of line
F: Clear from cursor to end of screen

[BSAVE file name[A$0400,L$03CF[CR] II = typed by user

'1

Of course it doesn't make much sense to idly write to the screen without
some useful purpose. I use the routine to create instruction and documentation
files. These files are especially valuable for object code utilities by providing ready ..,
access to usage and entry point information. Once the file has been created, it can
be handled just like any other file. BLOADing (file name) will immediately
display its contents on the screen without requiring any otherwise useful . ~
memory. Instruction/print statements in BASIC programs can therefore be
eliminated to be replaced by deferred execution BLOAD disk commands for a very
efficient use of main memory. ,

!

0800 1 :************************
0800 2 :* *
0800 3 :* SCREEN WRITER *
0800 4 :* BRUCE BAXTER *
0800 5 :* *
0800 6 :* SCREEN-WRITE *
0800 7 :* *
0800 e :* COPYRIGHT (C) 1981 *
0800 9 :* MICRO INK, INC. *
0800 10 :* CHELMSFCRD, MA 01824 *
0800 11 :* ALL RIGHTS RESERVED *
oeoo 12 :* *
0800 13 ;************************
0800 14
0800 15
0350 16 ORG $350

'i
j

0350 17 CBJ $800
0350 18
0350 19
0350 20
0350 21 cv EPZ $25
0350 22 POS EPZ $09
0350 23
0350 24 COUT EOU $FDEI:
0350 25 HOME EOU $FC58
0350 26 TABV EQU $FB5B

i
0350 27 RDCHAR EOU $FD35

1

Baxter Screen-Write 51

0350 28 CROUT EQU $FOeE
0350 29 BELL EQU $FF3A
0350 30
0350 2058FC 31 JSR HOME
0353 208EFO 32 JSR CROUT
0356 33
0356 2035FO 34 KEY JSR ROCHAR

)iiIII\ 0359 C991 35 CMP #$91
035B FOOC 36 BEQ QUIT
0350 A625 37 LOX CV
035F E016 38 CPX #$16
0361 F006 39 BEQ QUIT

~ 0363 20EOFI) 40 JSR COUT
0366 4C5603 41 JMP KEY
0369 42
0369 A916 43 QUIT LOA #$16
036B 8525 44 STA CV
0360 205BFB 45 JSR TABV
0370 203AFF 46 JSR BELL
0373 A9E4 47 LOA #$E4
0375 8509 48 STA POS
0377 A907 49 LOA #$07
0379 850A 50 STA POS+l
037B AOOO 51 LOY #$00
0370 52 7
0370 B98A03 53 OUT LOA OATA, Y
0380 9109 54 STA (POS) ,Y
0382 C8 55 INY
0383 COOF 56 CPY #$OF
0385 DOF6 57 BNE CUT
0387 200003 58 JSR $0300
038A AOCIA4 59 OATA ASC " A$0400,L$03CF "

r- 0380 BOB4BO
0390 BOACCC
0393 A4BOB3
0396 C3C6AO

60 ENO
fiI'iil

***** END OF ASSEMBLY

~
****** •••• ***.*** •••• ***.
* *
* SYMBOL TABLE -- V 1.5 *
* * •••• *.*** ••••••••• ***** ••

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

CV 0025 POS 0009

** ABSOLUTE VAR.".BLES / LABELS ,... CCUT FOED HOME FC58 TABV FB5B RDCHAR F035
CROUT FDSE BELL FF3A KEY 0356 QUIT 0369 OUT 037D DATA 038A

SYMBOL TABLE STARTING ADDRESS:6000
~ SYMBOL TABLE LENGTH: 0072

Bi-Directional Scrolling
by Roger Wagner

Everyone knows that a teletype only moves the paper in
one direction - up. Likewise, the Apple display only
scrolls one way - up. Now you can have scrolling in
both directions with these routines.

By using the following machine language routines, it is possible to scroll either
text/ gr page in either direction.

The up-scroll routine is derived from Apple Computer's Reference Manual
with the difference being that a zero-page location is referred to in order to deter­
mine which page to scroll. The down scroll routine makes similar use of the same
zero-page byte.

How to Use the Program

To use the routine a few entry conditions must be met:

1. Load the binary routine into the $300 page of memory starting at $300.

2. Set pointers 6,7 and 8,9. If you want to bring new information onto the
screen from RAM as you scroll, locations 6,7 must point to the location in
memory where the data to be loaded onto the top line of the screen will
come from when you scroll the screen page down. Similarly 8,9 point to
the place in memory to get the data for the bottom line when you scroll up.

If you want to use this routine to directly view memory, the easiest
way to set the pointers 6,7 and 8,9 is to set 8 and 9 to the address you want
to start viewing at. Put the low order byte in 8 and the high order in 9 then
scroll up 25 times. (The screen height plus 1.) Then set 6,7 to the same
value as 8,9 were originally (i.e., the low and high byte bring the starting
address). Last of all, scroll back down one line to bring the starting address
line into position as the first line of text visible at the top of the screen.

If you do not want new data brought onto the screen, then 6,7 and 8,9
will have to point to a part of memory that contains 40 blank space
characters. One way to do this is to freeze one blank line on either page 1

.,

,

j

1

i

i
!

1

i

Wagner Scrolling 53

or 2, and then set 6,7 and 8,9 to that location. These pointers must be reset
to that value each time the scroll is done. This is because normally the
scroll routine updates 6,7 and 8,9 by the screen width so as to remain syn­
chronized with the screen display. Another technique is to just clear the
top or bottom line to blanks each time a scroll is done.

3. Location 5 must hold a 4 for page 1 scrolling, and an 8 for page 2.

4. Now when you want the screen to scroll just 'CALL 768' to scroll up, and
'845' to scroll down.

Special Notes:

If you are going to use page 2 of text/gr in Integer BASIC, be sure to protect
the variables with a 'LOMEM': 3072. This may be done before running the pro­
gram, or if you know how, put as an early line in the program.

To use page 2 in Applesoft is more difficult, but can be done. First, location
$3AB in the machine code must be changed from $05 to $lF. Also, you must
POKE 31 with a 4 or 8 as compared to the POKE 5 in Integer.

The real rub is that Applesoft programs normally begin in memory at $800
(hex) which conflicts with page 2 use. The way around this is to do a 'POKE 104,
12:POKE 3072, 0' before loading your program. After loading do a 'CALL 54514'
(unnecessary with DOS 3.2). Unless you do a 'RESET', 'Control-B, other
Applesoft programs will continue to load in at this higher location. Unfortunately,
use of page 2 with the RAM version of Applesoft is to my knowledge impossible.

~ (Sorry)

If you wish to move the scrolling routine, the only location-dependent aspects
of the code are 5 'JSR's and 1 'JMP' within it. Since these operations always
reference absolute addresses they will have to be rewritten. Of course, if you have
a relocate utility, it is that much easier.

For further enlightenment, see the sample Integer BASIC program which
makes use of the scrolling routine. Have fun!

Location Dependent

$303: JSR $39E
319: JSR 39E
34A: JMP 39C
353: JSR 39E
369: JSR 39E
39E: JSR 3A6

If page 2 of text/gr is to be used, it must be protected by a 'LOMEM:3072' for
Integer BASIC, or a 'special load' (as described in article) when using Applesoft.

Note: $3AB must be changed from $05 to $lF for Applesoft.

i

54 I/O Enhancements .,
08CO 1 :***************************
oeoo 2 ;* *

j 080C 3 ;* APPLE SCROLLING ROUTINE *
0800 4 ;* ROGER WAGNER *
0800 5 ;* *
0800 6 ;* SCROLL *
0800 7 ;* * 1 0800 8 ;* COPYRIGHT (Cl 1981 *
080C 9 ;* MICRO INf<, INC. *
0800 Ie ;* CHELMSF'ORD, MA 01e24 *
C800 11 ;* ALL RIGHTS RESERVEL *

i 0800 12 ;* *
0800 13 :***************************
0800 14
0800 15 THIS WILL LET EITHER
0800 16 PAGE SCROLL IN EITHER -, 0800 17 DIRECTION. IT IS PRI-
0800 Ie MARILY DESIGNED TO FEED
0600 19 NEW SCREEN DATA IN FROM
0800 20 A GIVEN RANGE OF RAM.
0800 21 -, 080C 22
0800 23
0800 24 OBJ $800
0300 25 ORG $300

! 0300 '26
0300 27 ,
0300 28 WNDLFT EPZ $20
0300 29 WNDWID EPZ $21
0300 30 WNDTOP EPZ $22 ,
0300 31 WNDBTM EPZ $23
0300 32 CH EPZ $24
0300 33 CV EPZ $25
0300 34 BASL EPZ $28 -,
0300 35 BASH EPZ $29 \ 0300 36 BAS2L EPZ $2A
0300 37 BAS2H EPZ $2B
030C 38 PAGE EPZ $05
0300 39 ;* FOR APPLESOFT USE PAGE EQU $lF <lII!iilii)
0300 40 ;* PAGE MUST HCLD $04 FOR PG 1. I
0300 41 ;* $08 FOR PG 2
0300 42 SCRNTP EPZ $06
0300 43 ;* $06, $07 = LO/HI BYTES
0300 44 ;* OF START OF LINE JUST BEFORE "'""i

I

0300 45 ;* TOP LINE ,
0300 46 ECRNBM EPZ $06
0300 47 ;* $08,$09 = LC/HI BYTES
0300 48 .* OF START OF LINE JUST AFTER .-, ,
0300 49 ; * BCTTOM LINE
C300 50 ;*
0300 51 ;*
0300 A522 52 SCROLL LDA WNDTCP
0302 48 53 PHA ,..,
0303 209E03 54 JSR VTABZ
0306 A528 55 NXTLN LDA BASL
0308 852A 56 ETA BAS2L
03CA A529 57 LDA BASH

i 030C 852B 58 STA BAS2H
030E A421 59 LDY WNDWID
0310 88 60 DEY
0311 68 61 PLA
0312 6901 62 ADC #$01 ~

!
0314 C523 63 CMP WNDBTM
0316 BOOD 64 BCE LDBTM
0318 48 65 PHA
0319 209EC3 66 JSR VTABZ

'"""'lI 031C B128 67 NXTCHR LOA (BASL), Y
I 031E 912A 68 STA (BAS2L),Y

0320 86 69 DEY

....",

~ Wagner Scrolling 55
f

0321 10F9 70 BPL NXTCHR
0323 30E1 71 BMI NXTLN
0325 ADOO 72 LDBTM LDY #00
0327 B108 73 LD2 LDA (SCRNBM). Y
0329 9128 74 STA (BASL), Y
032B C8 75 INY
032C C421 76 CPY WNDWID
032E 90F7 77 BCC LD2
0330 18 78 CRRCT CLC
0331 A506 79 LOA SCRNTP
0333 6521 80 ADC WNDWII:
0335 8506 81 STA SCRNTP
0337 A507 82 LDA SCRNTP+l
0339 6900 83 ADC #00
033B 8507 84 STA SCRNTP+1

r- 033D 18 85 CLC
033E A508 86 LOA SCRNBM
0340 6521 87 AOC WNI:WID
0342 8508 88 STA SCRNBM

r- 0344 A509 89 LDA SCRNBM+1
0346 6900 90 ADC #00
0348 8509 91 STA SCRNBM+1
034A 4C9C03 92 JMP VTAB
034D 93 ;*

~ 034D 94 ;*
034D 38 95 SCRLDN SEC
034E A523 96 LDA WNDBTM
0350 E901 97 SBC #$01
0352 48 98 PHA

~ 0353 209E03 99 JSR VTABZ
0356 A528 100 NXTLN2 LDA BASL
0358 852A 101 STA BAS2L
035A A529 102 LDA BASH

~ 035C 852B 103 STA BAS2H
035E A421 104 LDY WNDWID
0360 88 105 DEY
0361 68 106 PLA
0362 E900 107 SBC 11$00
0364 C522 108 CMP WNDTOP
0366 30CD 109 BMI LDTOP
0368 48 110 PHA
0369 209E03 III JSR VTABZ

~
036C B128 112 NXTCR2 LDA (BASL). Y
0.36E 912A 113 STA (BAS2L). Y
0370 88 114 DEY
0371 10F9 115 BPL NXTCR2
0373 30E1 116 BMI NXTLN2
0375 AOOO 117 LDTOP LOY 11$00
0377 B106 118 LT2 LDA (SCRNTP). Y
0379 9128 119 STA (BASL). Y
037B C8 120 INY
037C C421 121 CPY WNDWID ,..,
037E 90F7 122 BCC LT2
0380 38 123 CRRT2 SEC
0381 A5C6 124 LDA SCRNTP
0383 E521 125 SBC WNDWID
0385 8506 126 STA SCRNTP
0387 A507 127 LDA SCRNTP+l
0389 E900 128 SBC 1100
038B 8507 129 STA SCRNTP+1
0380 38 130 SEC
038E A508 131 LDA SCRNBM
0390 E521 132 SBC WNDWID
0392 8508 133 STA SCRNBM
0394 A509 134 LDA SCRNBM+1
0396 E900 135 SBC #eo
0398 8509 136 STA SCRNBM+1
039A 60 137 RTS

~

56 I/O Enhancements

039B eo 138 BRK
039~ .).;39 ; *
039c 140 ;*
039C A525 141 VTAJj 1,DI\ CV
P',l9E 20A60~ 142 VTAaz .:iSR BASCLC
03Al 6520 143 AbC WNI:LFT
03A3 8528 144 STA BASt,
03A5 60 145 RTS
03A6 146 ;*
03A6 147 ;*
0~A6 48 148 BAflCLC PHA
03A7 4A 149 LSR
03A8 2900 150 ANI:) iI~OO
O~AA 0505 151 ORA PAGE
03AC 8529 152 STA BASH
03AE 68 153 PLfI
03AF 2918 154 ANI: #$18
03B.I- 9002 155 BGC SSCLC2
03B~ 697F 156 ADC 1I$7F
03B5 852!j 157 BpCLC2 pTA BASL
03B7 011 158 ASL
03B8 OA .).59 AS I.,
03B9 05;1S .).60 ORA BASL
03BB 8528 161 S'rA BASL
03BD 60 162 ENP ~TS

163 ENI:

***** ~NI: qr ASpEMBLY

~~.***t.************~~

* * * SYMBOL TABLE ~~ V 1.5 *
* *
******************t****~*

LABEL. LCC. LABEr.,. LOC. LABEL. LOC.

** ?ERO PAGE VARIABLES:

WNDLFT 0020 WNI:WII: 002] WNCTOP 0022 WNI:BTM 0023 CB
BASL 0028 BASH 0029 BAS2L 002A BAS2H 002B PAGE
SCRNBM coos

0024 CV 0025
0005 SCRN'IP 0006

** AeSOLUTE VARABLES/LABELS

SCROLL 0300
CRRCT 0330
CRRT2 0380

NX'I'LN 0306
SCRLI:N 034D
VTAB 039C

NXTCHR 031C LDBTM 0325 LD2 0327
NXTLN2 0356 NXTCR2 036C LI:TCP 0375 LT'2
VTABZ 039E BASCLC 03A6 BSCLC2 03B5 END

SYMBOL TABLE STJI,RTING i',DDRESS: 6000
SYMBOL TABLE LENGTH:OI02

0377
03BD

1

,
,
,
,
i

j

i

1 ,

i

-

1 REM
2 REM
3 REM
4 REM
5 REM
6 REM
7 REM
8 REM
9 REM

10 REM
11 REM
12 REM
13 REM
14 REM
16 REM

* *
* APPLE SCROLLING RTNE *
* ROGER WAGNER *
* *
* SCROLLER *
* * * COPYRIGHT (C) 1981 *
* MICRO INK. INC. *
* CHELMSFORD. MA 01824 *
* ALL RIGHTS RESERVED *
* *

18 LOMEM:3072
20 REM OR SET LOMEM MANUALLY BEFORE RUNNING.
30 CALL -936: INPUT "PAGE 1 OR 2?".PAGE

Wagner

40 PRINT "INPUT ADDRESS «32767) TO START AT:": INPUT A

Scrolling 57

50 REM TO SCROLL WITHOUT BRINGING IN NEW DATA ENTER '0' FOR ADDRESS.
60 IF A#O THEN 100: TEXT: CALL -936: POKE 34.1:

REM FREEZE ONE BLANK LINE AT TOP OF SCREEN
70 VTAB 12: PRINT "(SAMPLE PG. 1 SCREEN DATA)"
75 POKE 5.PAGE*4: IF PAGE=2 THEN POKE -16299.0
80 POKE 6.0: POKE 7.4: POKE 8.0: POKE 9.4:

REM BRING NEW SCREEN DATA FROM THAT BLANK LINE

90 GO TO 150
100 LB=A MOD 256:HB=A/256
110 POKE 5.PAGE*4: IF PAGE=2 THEN POKE -16299.0
120 POKE 8.LB: POKE 9.HB
130 FOR 1=1 TC 25: CALL 768: NEXT I
140 POKE 6.LB: POKE 7.HB
150 KEY= PEEK (-16384): POKE -16368.0
160 IF KEY=149 THEN CALL 768: REM RT. ARROW KEY TC SCROLL UP
170 IF KEY=136 THEN CALL 845: REM LFT. ARROW KEY TO SCROLL DOWN
180 IF KEY#136 AND KEY#149 OR A#O THEN 190: POKE 6.0: POKE 7.4: POKE 8.

0: POKE 9.4: REM RESET 6.7 & 8.9 TO PCINT AT BLANK LINE
190 IF KEY#177 THEN 200: POKE 5.4: POKE -16300.0: REM '1' FOR PAGE 1
200 IF KEY#178 THEN 210: POKE 5.8: POKE -16299.0: REM '2' FOR PAGE 2
210 IF KEY#216 THEN 150: POKE -16300.0: TEXT: CALL -868: PRINT "BYE":

END

Apple II Integer BASIC Program
List by Page

by Dave Partyka

Viewing long program listings on the Apple's small
video display has been a consistent source of
frustration to the programmer. The solution
implemented here allows the user to view listings
page-by-page.

If you own an Apple II, I'm sure you feel there could be a better way to list a pro­
gram. Now you either list the whole program and watch it go by faster than you
can read it, or you list it by line numbers. When you list it by line numbers, you
may get two lines or you may get more lines than will fit on the screen.

Using the assembler program listed, and the Integer BASIC of the Apple II,
you can list your Integer BASIC programs one page (screen) at a time with a page
number at the bottom of each. Pressing just about any key (except B, P, or S) will
clear the screen and display the next page adding one to the page number. By
pressing keys you display your program a page at a time, not only two lines here,
or too many lines there.

The B, P, or S keys are special function keys. The B key (for beginning) will
clear the screen and display your program from the first page. This comes in handy
when you're in the middle or near the end of the display and you want to see some
subroutines or anything else at the beginning. Just press the B key and you are at
the beginning, ready to start over.

The next key, P (for page) will clear the screen and start displaying your pro­
gram, stopping at the page number you keyed in. For example, if you are at page 25
and you want to back up 2 pages, you press P0023. P will clear the screen and the
Apple will beep as you key in the four digits. You have to enter four digits so the
leading zeros are necessary. After the last digit is pressed, your program will be
displayed from the beginning, stopping at page 23. This is faster than pressing the
B key and other ones until you get to page 23.

,
,
'1

'1

1

1 ,
,
,
1

...,
I

...,
I

"'"'\\
\

"""")
I

Partyka List by Page 59

The last key, S (for Stop) gets you out of the list program and back to the Ap­
ple II BASIC. This key is used when you find a place in your program where you
want to add or delete a line. If you don't press the S key and you try to do anything,
as soon as you press a key the next page will be displayed.

There are two ways to activate this program. From monitor press CTRL-Y
then the RETURN key, or from BASIC type CALL 1016 then press the RETURN
key. As long as you don't use the area from hex 300 to 3FF, this program will re­
main in memory. Once the list program is activated, it is entered only when the
screen display reaches the bottom of the screen. If the end of your program ends
anywhere but the bottom of the screen, the Apple II will return to BASIC but the
list program will still be activated. To deactivate the list program, type CALL
1016, press the RETURN key, then press the S key for stop, or press the RETURN
key to skip to the bottom of the page and press the S key to stop.

If you ran a BASIC program and the list program is still activated, then the
results you get will depend on your program. Some programs won't be affected at
all. Others will stop if the listing reaches the bottom of the screen. Pressing a key
will start the program again. Other programs might be able to make use of this
assembler routine by stopping the display at the bottom of the screen.

Using this assembler program, you'll find it easier to de-bug your programs or
just follow the flow of any program.

,
60 I/O Enhancements ,
0800 1 ;************************
0800 2 ;* *
0800 3 ;* LIST BY PAGE * ..,
0800 4 ;* DAVID PARTYKA *
0800 5 ;* *
0800 6 ;* PAGE LIST *
0800 7 ;* *

1 0800 8 ;* COPYRIGHT (C) 1981 *
0800 9 ;* MICRO INK, INC. *
0800 10 ;* CHELMSFORD, ~~ 01824 *
0800 11 ;* ALL RIGHTS RESERVED *
0800 12 ;* * 1 0800 13 ;************************
0800 14
0800 15
0800 16 ; , 0800 17 BASL EPZ $28 ;LEFT CHAR POS ON LINE
0800 18 BASH EPZ $29
0800 19 CSWL EPZ $36 ;MONITOR OUTPUT HOOK
0800 20 CSWH EPZ $37
0800 21 ,
0800 22 KBD EOU $COOO ;KEYBOARD INPUT
0800 23 KBDSTB EOU $C010 ;KEYBOARD STROBE
0800 24 BASIC2 EOU $E003 ;BASIC WARM ENTRY
0800 25 LIST EOU $E04B ;BASIC LISTING ROUTINE
0800 "'6 BELL EOU $FBDD ;MONITOR BELL ROUTINE :1 0800 27 HOME EOU $FC58 ;MONITOR CLEARSCREEN
0800 28 COUT1 EOU $FDFO ;CHARACTER GUTPUT ROUTINE
0800 29 SAVE EOU $FF4A ;REGISTER SAVE ROUTINE
0800 30 RESTOR EQU $FF3F ;REGISTER RESTORE ROUTINE , 0800 31
0300 32 ORG $0300
0300 33 OBJ $0800
0300 34
0300 35 , \. 0300 A922 36 INIT LDA #MAIN ;LOAD BEGINNING
0302 8536 37 STA CSWL ;ADDRESS OF MAIN
0304 A903 38 LDA /MAIN ;PROGRAM IN USER
0306 8537 39 STA CSWH ;OUTPUT LOCATIONS. , 0308 20E603 40 BEG JSR HLOD ; LOAD HIGH VALUES.
030B A900 41 ZPNO LDA HOO ;MCVE ZEROS TO
030D 8DF403 42 STA PGHI ;PAGE COUNT
0310 8DF503 43 STA PGLO ;LOCATIONS.
0313 2058FC 44 JSR HOME ;CLEAR SCREEN. -, 0316 204BEO 45 JSR LIST ;START BASIC LIST.
0319 46

I

0319 209603 47 JSR ADD1 ;ADD1 TO PAGE'.
031C 20E603 48 JSR HLOD ;LOAD PAGE HOLD WITH FF.
031F 4C03EO 49 JMP BASIC2 ;RETURN TO BASIC CONTROL. .,
0322 204AFF 50 MAIN JSR SAVE ;SAVE REGISTERS
0325 A528 51 LDA BASL ;CHECK SCREEN ADDRESS
0327 4529 52 EOR BASH ;FOR 07 DO THE
0329 C9D7 53 CMP #$D7 ;24TH LINE. -t 032B D051 54 BNE DISP ;IF NOT = BRANCH. \
032D 209603 55 JSR ADD1 ;ADD 1 TO PAGE #.
0330 56
0330 ADF603 57 LDA PHOLD ;CHECK PAGE HOLD,
0333 C9FF 58 C~P #$FF ;IF = FF THEN THE P 1 0335 F019 59 BEO NPRES ; KEY WASN'T PRESSED.
0337 ADF403 60 LDA PGHI ; CCMPARE PAGE #
033A CDF603 61 CMP PHOLt' ;WITH PAGE HOLD,
033D D008 62 BNE CLR ;IF EOUAL ., 033F ADF503 63 LDA PGLC ;BRANCH TO THE
0342 CDF703 64 CMP PHCLD+! ;LCOP ROUTINE
0345 F006 65 BEO LOOPR ;ELSE
0347 2058FC 66 CLR JSR HOME ;CLEAR SCREEN
034A 4C8103 67 JMP RR ;CONTINUE PRINTING. i 034D 20E603. 68 LOOPR JSR HLOD ;LOAD PAGE HOLD WITH FF.
0350 2COOCO 69 NPRES BIT KBD ;LCOP UNTIL A

~

~ Partyka List by Page 61

0353 10FB 70 BPL NPRES ;KEY IS PRESSED.
0355 ADOOCO 71 LDA KBD ;WHEN KEY IS PRESSED
0358 8DI0CO 72 STA KBDSTB ;CLEAR KEY STROBE
035B C9D3 73 CMP #$D3 ;AND COMPARE FOR S.
035D DOCB 74 BNE CMPB ;IF NOT = BRANCH.

f'II"II 035F A9FO 75 LDA #$FO ;IF E STORE
0361 8536 76 STA CSWL ;NORMAL ADDRESS
0363 77
0363 A9FD 78 LDA #$FD ;IN THE USER
0365 8537 79 STA CSWH ;OUTPUT LOCATIONS.
0367 4C03EO 80 JMP BASIC2 ;RETURN TO BASIC CONTROL.
036A C9C2 81 CMPB CMP #$C2 ; B KEY PRESSED?
036C F09A 82 BEQ BEG :IF YES BRANCH.
036E C9DO 83 CMP #$DO ; P KEY PRESSED?

jliiiIIIl
0370 DOOC 84 BNE DISP :IF NO BRANCH.
0372 A200 85 LDX #$00 :IF YES THEN GET
0374 20Cl\'03 86 JSR GTPG :2 DIGITS OF PAGEt
0377 E8 87 INX :UP INDEX AND
0378 20D203 88 JSR GTPGl :GET NEXT TWO DIGITS.

r- 037B 4COB03 89 JMP ZPNO :JUMP TO ZERO PAGE 1/.
037E 2058FC 90 DISP JSR HCME :CLEAR SCREEN.
0381 203FFF 91 RR JSR RESTOR :RESTORE REGISTERS
0384 4CFOFD 92 JMP COUTI :DISPLAY ROUTINE.
0387 A8 93 PRINT TAY : SAVE ACCUM. AND
0388 °290F 94 AND #$OF :CONVERT LOW ORDER
038A 09BO 95 ORA #$BO :BYTE TO DECIMAL AND
038C 9DF407 96 STA $7F4,X ; PRINT PAGE #.
038F 98 97 TYA ;GET ACCUM. AND
0390 6A 98 ROR ; ROTATE
0391 6A 99 ROR :HIGH ORDER
0392 6A 100 RCR :BYTE TO THE
0393 6A 101 ROR :LOW ORDER
0394 CA 102 DEX :BYTE AND
0395 60 103 RTS ; RETURN.
0396 F8 104 ADDI SED : SET DECIMAL MODE.
0397 18 105 CLC :CLEAR CARRY FLAG.
0398 ADF503 106 LDA PGLO ;ADD
039B 690] 107 ADC #$01 :1

j 039D 8DF503 108 STA PGLO :TO
03AO ACF403 109 LOA PGHI ;THE
03A3 6900 110 ADC #$00 ; PAGE
03A5 8DF403 111 STA PGHI ;NUMBER.
03A8 D8 112 CLD ;CLEAR DECIMAL MODE.
03A9 A203 113 LDX #$03 :SET IND-X.
03AB ADF503 114 LOA PGLO ;GET PAGE # LOW.
03AE 208703 115 JSR PRINT :PRINT 1ST DIGIT.
03B1 208703 116 JSR PRINT ;PRINT 2ND DIGIT.
03B4 ADF403 117 LDA PGHI ;GET PAGE # HIGH.
03B7 208703 118 JSR PRINT ;PRINT 3RD DIGIT.
03BA 208703 119 JSR PRINT ;PRINT 4TH DIGIT.
03BC 60 120 RTS ;RETURN. - 03BE 2COOCO 121 KEY BIT KBD ;LOOP UNTIL A
03C1 10FB 122 BPL KEY ;KEY IS PRESSED.
03C3 20DDFB 123 JSR BELL ;RING BELL
03C6 ADOOCO 124 LOA KBD ;GET KEY
03C9 8DI0CO 125 STA KBDSTB :CLEAR STROBE - 03CC 290F 126 AND #$OF ;DROP HIGH ORDER
03CE 60 127 RTS ;HALF AND RETURN.
03CF 2058FC 128 GTPG JSR HOME ;CLEAR SCREEN.
03D2 129 ;
03D2 20BE03 130 GTPGI JSR KEY ;GET PAGE #.

~ 03D5 OA 131 ASL ;SHIFT LOW CReER
03D6 OA 132 ASL ;HALF TO THE
03D7 OA 133 ASL HIGH ORDER
03D8 OA]34 ASL HALF. - 0309 9DF603 135 STA PHOLD,X STORE IN PAGE HOLD.
03DC 20BE03 136 JSR KEY GET NEXT NUMBER.
03DF 5DF603 137 EOR PHOLD,X COMBINE WITH
03E2 9DF603 138 STA PHOLD,X PREVIOUS 1/ AND STORE -

62 IIO Enhancements

03ES 60 139 RTS
03E6 140 .
03E6 A9FF 141 HLOD LOA I/$FF
03E8 8DF603 142 STA PH OLD
03EB 8DF703 143 STA PHOLD+l
03EE 60 144 R'IS
03EF 14S
03EF 000000 146 HEX 0000000000
03F2 0000
03F4 00 147 PGHI HEX 00
03FS 00 148 PGLO HEX 00
03F6 0000 149 PHOLD HEX 0000
03F8 ISO .
03F8 4CC003 lSI CTRLY JMP INIT

lS2 END

***** END OF ASSEMBLY

*******.*****************

* * * SYMBOL TABLE -- V 1.S *
* * **********.**************

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

BASL 0028 BASH 0029 CSWL 0036

** ABSOLUTE VARABLES/LABELS

KBD COOO KBDSTB COlO
BASIC2 E003 LIST EQ4B BELL FBDD
RESTOR FF3F INIT 0300 BEG 0308
LOOPR 0340 NPRES 03S0 CMPB 036A
ADD1 0396 KEY 03BE GTPG 03CF
PGLO 03FS PHOLD 03F6 CTRLY 03F8

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH: OllA

CSWH

;IN PAGE HOLD. RETURN.

PUT HIGH VALUES
IN PAGE HOLD
LOCATIONS THEN
RETURN.

PAGE 1/ HIGH
PAGE 1/ LOW
PAGE HOLD

0037

HOME FCS8 COUT1 FDFC' SAVE
ZPNO 030B MAIN 0322 CLR
DISP 037E RR 0381 PRINT
GTPGI03D2 HLOD 03E6 PGHI

1

l
.,

i

FF4A
0347
0387
03F4 i

,

Paged Printer Output
for the Apple

by Gary Little

Improve the format of your printed output by adding a
page mode to your system.

If you have ever sent output to a printer you have probably become very annoyed
when the output continued from the very end of one page and then on to the next.
Wouldn't it be nice if the printer would automatically scroll to the top of a new
page when it got near the bottom of the previous one? PAGER does it for you; it
will count the number of line feeds that are sent by Apple to the printer. When
this total reaches 54, twelve blank lines are generated to automatically bring you
to the top of the next eleven-inch page. PAGER can be used from within a program
or from immediate-execution mode. It is extremely useful for LISTing long
programs page by page.

r- How to Use the Program

PAGER was written for use with a serial printer that is connected to the Apple
serial interface card. If PAGER is to be used in conjunction with a parallel printer
connected to the Apple parallel interface card, two bytes of the routine must first
be changed. To make these changes, load PAGER, and then enter the following
two commands from BASIC:

POKE 785,2
POKE 812,2

The modified program should then be saved.

To change the number of lines that are printed before PAGER causes the paper
to scroll to the top of the next page, enter the command POKE 798,LP from

IiiIIiI BASIC, where LP is the required number of lines per page.

To change page length, enter POKE 804,PL from BASIC, where PL is six times
the length of the page (in inches). For example, for an eleven inch page, PL = 66.
Note that PL must be greater than LP.

64 I/O Enhancements

Output to the printer can be stopped after each page is printed by entering a
POKE 822,1 command before activating PAGER. To proceed after a page has been
printed, simply press any key on the keyboard. This 'page pause' feature must be
used when you're feeding each piece of paper to the printer manually. To turn off
the 'page pause', enter a POKE 822,0 command.

Instructions for Use Within a Program

1

i

1

Use the following sequence to tum the printer on and off from within a BASIC 1
program:

5 D$ = CHR$(4)
10 PRINT D$;"PRH1"
20 LW= 132: REM LINE WIDTH
30 PRINT CHR$(9);LW;"N" : PRINT CHR$(9); "K"
40 CALL 768 : REM TURN ON PAGER

(Generate Output)

50 PRINT D$;"PRHO" : REM TURN PRINTER OFF

If DOS is not being used, change line 10 to PRN1 and line 50 to PRNO and delete
line 5. If a serial printer is being used, delete lines 20 and 30.

Instructions for Use Outside a Program

If a serial printer is involved, PAGER can be activated by a CALL 768 from
BASIC. It can be deactivated by a PRNO. If a parallel printer is involved, PAGER
can be activated by performing the following four steps:

1. Enter PRH1
2. Enter CTRL-I 132N (132 or other line width).
3. Enter CTRL-I K
4. Enter CALL 768

It can be deactivated by a PRNO.

Additional Notes:

1. Remember to set the DIP switches on the serial printer interface card for
the appropriate baud rate and line width before activating PAGER.

2. Remember to adjust the paper in the printer so that the first line printed
will be at the desired starting position before activating PAGER.

.,
1

,
i

1

-,

3. Make sure that a PRINTed line will not exceed the line width which has
been set for the printer. If it does, then the overflow will appear on the next line
and this line will not be taken into account by PAGER. 1

-
OBOO
OBOO
0800
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
OBOO
0800
OBCO
OBOO
OBOO
OBOO
OBoe
oeoo
OBOO
OBOO
OBOC
0800
0800
0800
0800
0800
OBOO
0800
0800
080C
0800
0800
0800
0800
08CO
0800
0800
080C
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0300
0300
0300
0300
0300 A90F
0302 B536
C304 M03
03C6 8537
0308 MOO
03CA 8506
030C 4CEA03
030F 48
0310 2000Cl
0313 68
0314 C98D
0316 FOOl
0318 60
0319 E606
031B A506
031D C936
031F DOF7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
4C
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
6C
61
62
63
64
65
66
67
68
69
70
71
72
73
74

.*******.****************
;. '*
:*
:*
:*

PAGED PRINTER
GARY LITTLE

*
*
*

:* PAGE *
:* '*
:* COPYRIGHT (C) 1981 *
:* MICRO INK. INC. *
:* CHELMSFORD. MA 01824 *
:* ALL RIGHTS RESERVEC *
;* *
;************************

:POSITION PAPER IN PRINTER
:THEN CALL 768 FROM BASIC
:TO ACTIVATE THIS ROUTINE.
:TO DE-ACTIVATE. ENT PRiO.

:PAGE PAUSE FEATURE:
POKE 822.0 TURN OFF

: POKE 822.1 TURN ON
:LINES PRINTED PER PAGE:

PCKE 798.LP
:
:PAGE LENGTH:

PCKE 804. PL

:DESCRIPTICN:

Little Page Printer

THIS ROUTINE WILL SEND 'PL-LP'
: BLANK LINES TO THE PRINTER AFTER
: 'LP' LINES HAVE BEEN SENT BY THE
: USER.

:DEFAULTS:
LP=54
PL=66 (11 00 PAPER)
PAGE PAUSE OFF

:
COUNT
CSWL
DOS
KBD
STRB
PRINT

EPZ $06
EPZ $36
EOU $3EA
EOU $COOC
EOU $COI0
EOU $CI00

ORG $300
OBJ $800

LDA ISTART
STA CSWL
LDA /START
STA CSWL+l
LDA #$00
STA COUNT
JMP DOS

START PHA
JSR PRINT
PLA
CMP #$80
BEO LINE

NEXT RTS
LINE INC COUNT

LDA COUNT
CMP #$36
BNE NEXT

:LINE COUNT STORAGE
:OUTPUor HOOK
:DOS I/O UPDATE HOOK
: KEYBOARD
:KEYBOARD STROBE
:PR#l SERIAL OUTPUT

:SET OUTPUT HOCK
:TO START OF RCUTINE.

:ZERO THE LINE COUNTER.

:GIVE NEW HOOK TO DOS.
:RCUTlNE STARTS HERE.
:SEND CHARACTER TO PRINTER.

:CARRIAGE RETURN?
:BRANCH IF IT IS.

:INCREMENT LINE COUNT.

:LINE COUNT =54?
:IF NOT, THEN RETURN.

65

66 I/O Enhancements

0321 A506 75 BLANK LDA CCUNT
0323 C942 76 CMP #$42
0325 FOOA 77 BEQ LeOP
0327 E606 78 INC COUNT
C329 A98A 79 LDA #$8A
032B 2000C1 80 JSR PRINT
032E 38 81 SEC
032F BOFO 82 BCS BLAN!<
0331 A900 83 LOOP L~A #$00
0333 8506 84 STA COUNT
0335 A900 85 LDA #$OC
0337 F008 86 BEQ DONE
0339 2COOCO 87 AGAIN BIT KBD
033C 10FB 88 BPL AGAIN
033E 2C10CO 89 BIT STRB
0341 60 90 DONE RTS

91 END

* •• ** END OF ASSEMBLY

• *
• SYMBOL TABLE -- V 1.5 *
• •

LABEL. LOC. LABEL. LOC. LABEL. LOC .

• * ZERO PAGE VARIABLES:

COUNT 0006 CSWL 0036

** ABSOLUTE VARABLES/LABELS

DOS
START
DONE

03EA KBD
030F NEXT
0341

COOO STRB
0318 LINE

COlO
0319

SYMBCL TABLE STARTING ADDRESS:6000
SYMBCL TABLE LENGTH:007A

,
i

;PAGE LENGTH MET?

;INCREMENT THE COUNTER
;LOAD A LINE FEED
;AND SEND IT TC THE PRINTER

;ZERO THE COUNTER.

CHANGE TO LDA #$01 TO
GET 'PAGE PAUSE'.
WAIT FOR KEYPRESS
BEFORE CONTINUING.
CLEAR KEYBOARD STROBE.

i

1 .,
,

PRINT C100
BLANK 0321 LOOP AGAIN 0331 0339 i

,
.....,

I

i

Hexadecimal Printer
by LeRoy Moyer

This simple program permits you to specify the limits
within which you want the Apple II disassembler to
operate.

When using the disassembler in the Apple II to print out machine language code,
you normally type in the starting address and then a number of L's. There are two
problems with using this method to print out a machine language program. The
first is that if the machine language program does not happen to be a multiple of
20 instructions, there is probably going to be a collection of unwanted garbage
printed at the bottom of the desired machine code. The second problem occurs
when the program being printed is fairly long. Do you type in 50 to 51 L's to get all
of the desired code? The program presented here solves both of these problems by
decoding and outputing the disassembled machine language code that lies
between two hexadecimal addresses.

After loading the program, using it is very easy. First, turn on the printer with
a control P and then type 800G (return). The screen will clear and prompt you
with the header "STARTING ADDRESS". Enter the hexadecimal address of the
first instruction to be decoded and then hit return. A similar prompting question
will be asked for the ending address and after entering the ending address the pro­
gram will start outputting the disassembled code beginning at the starting address
and continuing until the ending address.

The code presented here is transportable in that only two addresses (4 bytes)
need to be changed to relocate the program anywhere in memory. These locations
are the addresses for the data that prints out the program's two lines of text. Data
for this text is stored starting at lines $86B and $870 in the program listing and
this data is used in the lines at $806 and $828 respectively.

Several Apple monitor subroutines are used in this program and two of them
deserve some comment. The first is the GETNUM ($FFA7) subroutine that con­
verts a number stored as ASCII characters in the input buffer ($200), indexed by
the Y register, into a two byte hexadecimal number. This routine converts ASCII
characters until it encounters a character that is a non-hexadecimal number. A
carriage return ($80) is used in this program for the terminator. The resulting hex­
adecimal address is stored at location A2L ($3E) and A2H ($3F) in the usual low
byte, high byte order for addresses required by the 6502.

68 I/O Enhancements

The second routine that deserves some comment is the INSTDSP ($F8DO)
routine. This routine disassembles an instruction and outputs it to the screen.
The address that is used to direct the subroutine to the op-code to be disassembled
is stored in PCL ($3A) and PCH ($3B). After returning from INSTDSP, a number
that is one less than the length of the instruction is stored in location LENGTH
($2F). The address in the pointer ($3A, $3B) is not changed by INSTDSP and hence
the length of the instruction needs to be added to the pointer to get to the location
of the next op-code (lines 58 to 64 in the program listing).

If you don't want the initial lines of text printed out on your printer then in­
sert a printer tum-on routine between lines 55 and 56 of the assembled program
listing. Hopefully this routine will be useful in making your machine language
print-outs look neater in the future.

08CO
OSCO
0800
0800
08CO
0800
0800
0800
0800
08CO
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
080C
0800
0800
oeoo 2058FC
0803 A200
0805 BD6B08
0808 F008
080A 0980
080C 20EDFD
080F E8
0810 DOF3
0812 206FFD
0815 AOOO
C817 20A7FF
081A A53E
081C 853A
081E A53F
0820 853B
0822 208EFD
0825 A200
0827 BD7D08
082A F008
082C 0980
082E 20EDFD
0831 E8
0832 DOF3
0834 206FFD

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

:************************
.* * ;* HEXIDECIMAL PRINTER *
:*
:*
:*

LEROY MOYER

HEX PRINTER

*
*
*

:* *
:* COPYRIGHT (C) 1981 *
:* MICRO INK, INC. *
:* CHELMSFORD. MA 01824 *
:* ALL RIGHTS RESERVED *
:* *
:************************

;DECODE BETWEFN ADR
16 •
17 FINA
18 APA2
19 LENG

APPC 20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

STAR

DBA2

DBA 1

DBA4

DBA3

EPZ $FE
EPZ $3E
EPZ $2F
EPZ $3A

ORG $800
OBJ $800

JSR
LDX
LDA
BEQ
ORA
JSR
INX

$FCSe
#$CO
TIT1,X
DBA1
#$80
$FDED

BNE DBA2
JSR $FD6F
LPY #$00
JSR $FFA7
LOA APA2
STA APPC
LDA APA2+01
STA APPC+C1
JSR $FD8E
LDX #$00
LDA TIT2.X
BEQ DBA3
ORA #$80
JSR $FDED
INX
BNE DBA4
JSR $FD6F

:CLEAR SCREEN
:OUTPUT FIRST HEADER LINE
:"STARTING ADDRESS"

:KEYBOARD INPUT OF STARTING ADDRESS

:CHANGE TO HEXIDECIMAL ADDRESS
:MOVE HEXADECIMAL ADDRESS TO
: APPC ($3A)

:PRINT LINE FEED
:PRINT SECCND HEADER LINE

"ENDING ADDRESS"

:KEYBCARD INPUT OF ENDING APDRESS

.,
,
,
,
i ,
.,
,
,
,
,

i

1 ,

~

I

0837 AOOO
0839 20A7FF
083C A53E
083E 85FE
0840 A53F
0842 85FF
0844 208EFD
0847 2CDOF8
084A E62F
084C 18
084D A53A
084F 652F
0851 853A
0853 A53B
0855 69CO
0857 853B
0859 38
085A A53A
085C E5FE
085E A53B
0860 E5FF
0862 90E3
0864 208EFD
0867 208EFC
086A 60
086B D3D4Cl
086E D2D4C9
0871 CEC7AO
0874 CIC4C4
0877 D2C5D3
087A D3AO
087C 00
087D OD
087E C5CEC4
0881 C9CEC7
0884 AOCIC4
0887 C4D2C5
088A D303AO
088D 00

49
50
51
52
53
54
55
56 OBA5
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74 TI'I'l

75

76

77
78 TIT2
79

80

81
82

83

LDY
JSR
LOA
STA
LDA
STA
JSR
JSR
INC
CLC
LDA
ADC
STA
LDA
Ace
STA
SEC
LDA
SBC
LDA
SBC
BCC
JSR
JSR
RTS
ASC

ASC

ASC

HEX
HEX
ASC

ASC

ASC
HEX

END

#$00
$FFA7
APA2
FINA
APA2+01
FINA+Ol
$FD8E
$F8DO
LENG

APPC
LENG
APPC
APPC+Ol
#$00
APPC+Ol

APPC
FINA
APPC+01
FINA+Ol
DBA5
$FD8E
$FD8E

"STARTI"

"NG ADD"

IIRESS II

00
OD
"ENDING"

" ADDRE"

tlss "
00

~ ***** END OF ASSEMBLY

~ * *

* SYMBOL TABLE -- V 1.5 *
* * *************************

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

Moyer Hex Printer

CHANGE TO HEXADECIMAL ADDRESS
MCVE HEXADECIMAL ADDRESS TO·

FINA ($FE) FINAL ADDRESS

;PRINT LINE FEED
;DISASSEMBLE ONE LINE
;INCREMENT BYTE FOR LENGTH

;ADDLENGTH OF INSTRUCTION TO
;ADDRESS THAT IS POINTER FOR
;OP CODE TO BE DISASSEMBLED

69

;SUBTRACT FINAL ADDRESS TO SEE IF
; THE END HAS BEEN REACHED

;PRINT LINE FEED
;PRINT LINE FEED
;RETURN TO MONITOR
;DATA FOR FIRST HEADER LINE

;DATA FOR SECOND HEADER LINE

FINA OOFE APA2 003E LENG 002F APPC 003A

** ABSOLUTE VARABLES/LABELS

STAR
DBAI

0800 DBA2
0812 DBA4

0805
0827 DBA3 0834 DBA5 0847 TIT! 086B TIT2 087D

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0072

1

," - .

3
RUNTIME UTILITIES

~

Introduction 72

r- Common Variables on the Apple II 73
Robert F. Zant

PRINT USING for Applesoft 78
Gary A. Morris

Searching String Arrays 84
Gary B. Little

i Applesoft and Matrices 89
Comelis Bongers

fii'PIl AMPER-SORT 97
Alan G. Hill

~ Apple II Trace List Utility 111
Alan G. Hill -

INTRODUCTION
Runtime utilities are defined as the family of programs which assist in the execu­
tion of other programs. Such a utility usually is linked to the host program at exe­
cution time, and runs concurrently with it as a subroutine. In this chapter, several
runtime utilities for Applesoft and Integer BASIC programs are described which
will enhance the programming power of your Apple.

Robert Zant's "Common Variables on the Apple IT" discusses how to set up a
common variable space shared between BASIC programs. Both Integer and Apple­
soft versions are presented. Gary Morris' "PRINT USING for Applesoft" article
presents an implementation of the popular PRINT USING statement for Apple­
soft. "Searching String Arrays," by Gary Little, presents a machine language array
searching routine which is an order of magnitude faster than the BASIC equivalent
would be.

The next two utilities make use of the ampersand feature in Applesoft and are
both powerful enhancements to the Applesoft language. "Applesoft and
Matrices," by Comelis Bongers, provides for full matrix operations using BASIC
arrays. "AMPER-SORT," by Alan Hill, implements automatic sorting of arrays,
whether numeric or string.

Finally, "Apple IT Trace List Utility," by Alan Hill, presents a means of inter­
actively tracing an Integer BASIC program while storing the trace information.

,
,
1 ,
,
,
i ,
,
,
,
..,

I

.,
,
,

~
i

r

Common Variables
on the Apple II

by Robert F. Zant

Modular software designs rely on common variables to
pass data between interrelated programs. Two short
subroutines emulate the DOS CHAIN capability by
allowing use of common variables under Integer or
Applesoft BASIC, without a disk.

The solution of complex problems often leads to the writing of several interrelated
programs. Furthermore, the programs usually use several of the same variables -
called common variables. This is accomplished in most systems by not destroying
the common variables when a new program is loaded. Thus, the value of a variable
can be defined in one program and used in subsequent programs.

There is no true facility with the Apple II for using common variables. The
CHAIN command in DOS comes close to providing the capability, but it saves all
variables instead of just saving designated common variables. Also, it can only be
used with Integer BASIC programs run under DOS. No facility for common
variables is provided for non-disk systems or for Applesoft programs.

Creating a Common Variable Space

The following machine language routines can be used to pass all variables to
succeeding programs. Integer BASIC and Applesoft versions are provided. Both
versions are used as follows:

1. Load the machine language routine before the first BASIC program is
executed.

2. In each BASIC program except the last program, "CALL 774"
immediately before termination or before the DOS command to RUN the
next program.

3. In each BASIC program except the first program, "CALL 770" before ex­
ecuting any statement that affects or uses variables. Do not reDIMension
variables in subsequent programs.

74 Runtime Utilities

Since all variables are saved whether they are needed or not, main storage is
used most efficiently if the same set of variable names is used in all programs.
This, of course, is required for the variables that are intended to be common for all
programs. Other main storage is reclaimed by the reuse of the names of "non­
common" variables.

String variables will not always be saved correctly in Applesoft. H the string
value was read from disk, tape or keyboard, the value will be saved. If the string
value is defined in an assignment statement (e.g. A$ = "XXX"I, the value will
not be available to subsequent programs.

The Programs

The routine for Integer BASIC is very simple. The variable table pointer is
simply saved and restored. The Applesoft version, however, is a little more
complex. The Applesoft version of the routine moves all non-string variables to
high RAM, just under the strings. Then, when called at the beginning of the next
program via "CALL 770", the routine moves the variables back down to the end
of the new program.

'1 ,
,
1 ,
,

'1

i ,
,

.....,
\

1

'1

r

~

r-

~

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
080C
0800
0800
0800
0800
0800
0800
0800
0302
0302
0302
0302
0302 4COF03
0305 00
0306 ASCC
0308 8S1A
030A ASCD
030C 8SAB
030E 60
030F ASIA
0311 85CC
0313 A5AB
0315 85CD
0317 EO

1 ;** ••• *******************
2 :* •
3 :* COMMON VARIABLES *
4:* ROBERT ZANT *
5 ;* *
6:* COM-VAR-I *
7 :* *
8 :* COPYRIGHT (C) 1981 *
9 :* MICRO INK, INC. *

10 :* CHELMSFCRD, MA 01824 *
11 :* ALL RIGHTS RESERVED *
12 :* *
13 :****** •• *********.*** •••
14
15
16
17
18
19
20
21
22
23
24
25

:FOR
:
CL
CH

INTEGER BASIC

EPZ $lA
EPZ $AB

ORG $302
OBJ $800

26 JMP RECALL
27 BRK
28 LDA$CC
29 STA CL
30 LDA $CD
31 STA CH
32 RTS
33 RECALL LDA CL
34 STA $CC
35 LDA CH
36 STA $CD
37 RTS

38 END

•••••• **.***** •• ***** ••••
* *
* SYMBOL TABLE -- V 1.5 *
* *
******.*.****************

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

CL 001A CH OOAB

** ABSOLUTE VARABLES/LABELS

RECALL 030F

SYMBCL TABLE STARTING ADDRESS:6COO
SYMBOL TABLE LENGTH:002A

Zant Common Variables

:ENTRY 770

:ENTRY 774 - SAVE VARIABLES
:SAVE END OF
:VARIABLE TABLE

:BACR TO BASIC
:ENTRY 770 - RECALL VARIABLES
:RESET END OF
:VARIABLE TABLE

:BACK TO BASIC

0800 1 ;************************
0800 2 :* *
0800 3 :* COMMCN VARIABLES *
0800 4 :* ROBERT ZANT *
0800 5 :* *
0800 6 :* COM-VAR-A *
080C 7 :* *
0800 e :* COPYRIGHT (C) 1981 *
0800 9 :* MICRC INK, INC. *
0800 10 :* CHELMSFOR~, MA 01824 *
0800 11 :* ALL RIGHTS RESERVED *
0800 12 :* *
0800 13 ;***.***** •• *************
08CO 14
0800 15

75

,
76 Runtime Utilities ,

0800 16 .
0800 17 ;FOR APPLESOFT II BASIC 1 0800 18
08CO 19 .
0800 20 DL EPZ $18
0800 21 DH EPZ $19
0800 22 CL EPZ $lA 1 0800 23 CH EPZ $lB
0800 24 EL EPZ $lC
0800 25 EH EPZ $lD
0800 26 AIL EPZ $3C , 0800 27 A1H EPZ $3D
0800 28 A2L EPZ $3E
0800 29 A2H EPZ $3F
0800 30 A4L EPZ $42
0800 31 A4H EPZ $43 1 0800 32
0800 33
0302 34 ORG $302
0302 35 OBJ $800 , 0302 36
0302 37
0302 4C5603 38 JMP RECALL ;ENTRY 770
0305 00 39 BRK
0306 38 40 SEC ;ENTRY 774 - SAVE NUMERICS i 0307 A56F 41 LDA $6F ;COMPUTE ADrRESSES FOR MOVE
0309 8518 42 STA DL ; SAVE START OF STRING ADDRESS
030B E56D 43 SBC $6D ;END OF NUMERICS
030D 851A 44 STA CL ;TEMPORARY STORAGE
030F A570 45 LDA $70 1 0311 8519 46 STA DH
0313 E56E 47 SBC $6E
0315 851B 48 STA CH ;TEMPORARY STORAGE
0317 18 49 CLC ..,,, 0318 ASIA 50 LDA CL
031A 6569 51 ADC $69 ;START OF NUMERICS
031C 851A 52 STA CL ;TEMP STORAGE
031E A51B 53 LI:A CH
0320 656A 54 ADC $6A ,
0322 851B 55 STA CH
0324 A61A 56 LDX CL ; SUBTRACT ONE
0326 D002 57 BNE Al
0328 C61B 58 DEC CH ;START OF COMMON

'1 032A CA 59 Al DEX
032B 861A 60 STX CL
032D 8642 61 STX A4L ;SET UP MOVE
032F A51B 62 LDA CH
0331 8543 63 STA A4H l 0333 A569 64 LDA $69 ;START OF VARIABLES
0335 853C 65 STA AIL
0337 A56A 66 LDA $6A
0339 653D 67 STA AlH
033B A56D 68 LDA $6D ;END OF VARIABLES rIli!Ij
033D 853E 69 STA A2L ,
033F A56E 70 LDA $6E
0341 853F 71 STA A2H
0343 AOOO 72 LI:Y 1/$00

'-J 0345 202CFE 73 JSR $FE2C USE MONITOR MOVE ROUTINE \
0348 38 74 SEC COMPUTE DISPLACEMENT
0349 A56B 75 LDA $6B TO ARRAYS
034B E569 76 SBC $69
034D 851C 77 STA EL '1 034F A56C 78 LDA $6C
0351 E56A 79 SBC $6A
0353 851D 80 STA EH
0355 60 81 RTS BACK TO BASIC

i 0356 ASIA 82 RECALL LDA CL ENTRY 770 - RECALL
0358 853C !l3 STA AIL SET UP MOVE
035A A51B 84 LDA CH

i

fill"'!"
I
l

035C 8530 85 STA AIH
035E A518 86 LOA OL
0360 856F 87 STA $6F
0362 853E 88 STA A2L
0364 A519 89 LOA DH
0366 8570 90 STA $70
0368 853F 91 S'I'A A2H
036A A569 92 LOA $69
036C 8542 93 STA A4L
036E A56A 94 LDA $6A
0370 8543 95 STA A4H
0372 ACOO 96 LDY #$00
0374 202CFE 97 JSR $FE2C
0377 18
0378 A569
037A 651C
037C 856B
037E A56A
0380 651D
0382 856C
0384 38
0385 A56F
0387 E51A
0389 856D
038B A570
038D ES1B
038F eS6E
0391 18
0392 A56D
0394 6569
0396 8560
0398 A56E
039A 656A
039C 856E
039E A560
03AO D002
03A2 C66E
03A4 C660
03A6 60

ge CLC
99 LDA $69

100 ADC EL
101 STA $6B
102 LDA $6A
103 ADC EH
104 STA $6C
105 SEC
106 LDA $6F
107 SBC CL
108 STA $6D
109 LOA PC
110 SBC CH
III STA $6E
112 CLC
113 LDA $6D
114 Ar'C $69
115 STA $60
116 LDA $6E
117 ADC $6A
118 STA $6E
119 LDA $6D
120 BNE A2
121 DEC $6E
122 A2 DEC $60
123 RTS

124 END

* * * SYMBCL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. Lec. LABEL. LOC.

** ZERO PAGE VARIABLES:

Zant Common Variables 77

;START OF STRINGS

;STYART OF ~UMERICS

:USE MCNITOR MOVE ROUTINE
,COMPUTE STAR'l'
;OF ARRAYS

;COMPUTE ENO OF NUMERICS

,TEMP STORAGE

,TEMP VALUE

;TEMP VALUE
: SUBTRACT ONE

;END OF NUMERICS

IBACK TC BASIC

OL
AIL

0018 DH
003C AIH

0019 CL
0030 A2L

001A CH OOIB EL
003E A2H 003F A4L

OOIC EH 001D
0042 A4H 0043

** ABSOLUTE VARABLES/LABFLS

Al 032A RECALL 0356 A2 03A4

SYMBCL TABLE STARTING ADDRESS:6000
SY~lBOL TABLE LENGTH: C08A

PRINT USING for Applesoft
by Gary A. Morris

One of the minor but annoying problems with BASIC is
the format of output. The program here permits user­
defined formatting of the output for Applesoft, and can
be easily modified for other flavors of BASIC.

When I started using my Apple for business programming, my biggest headache
was formatting output for reports. I started out using various BASIC subroutines
that barely performed the needed job and required a lot of overhead. Tired of using
MID$, LEFT$, RIGHT$, and STR$, I decided to write a general-purpose print for­
matter using the USR function in Applesoft.

The routine is written entirely in assembly language, which is ideal for
handling this sort of problem. It is called from BASIC by assigning the string
variable ED$, the edit pattern showing how you want the output formatted.
During a print statement when you use the USR function, the argument is
evaluated and then printed in the format specified by the current value of ED$.

In the sample BASIC program (in figure 1) line 10 loads the machine language
program into RAM at $300-$3A9. Then line 20 puts a "JMP $0300" at $OOOA,
which is used by Applesoft to find the routine to be used. Lines 10 and 20 are only
needed once at the beginning of a program. Line 30 assigns an edit pattern to the
variable ED$. Line 40 is a sample print statement that uses the USR function. Line
50 assigns a value to X (that we want printed) rounded off to two decimal places,
and line 60 does this. If you wanted to round to three places, the 100 would be
changed to 1000 and the edit pattern would have to be changed to allow three
digits after the decimal point. Note that any valid expression could be within the
parentheses of the USR function.

The routine works by taking the number that Applesoft would normally print
out and filling up the edit pattern with those characters from right to left, skipping
over decimal points, commas and special characters.

The output of the routine may be used wherever a BASIC PRINT statement
can be used, such as printing to a disk file, to a printer, or just to the screen. It is
especially desirable for creating fixed-length records in files.

,
,
..,
i

....,
I

..,
) ,

i

i

i

j

i

"""l
I

i

i

j

fi'!IIIIi\
i

r

Morris PRINT USING 79

The edit pattern can be fairly complex, as in figure I, or' it can be simply
blanks. Using a blank pattern will cause the number to be right-justified within
the number of blanks in the edit pattern. H the number is too large to fit in the edit
pattern, the left-most digits will be truncated. Any special characters
($,. /I + %: *) in the edit pattern will be skipped, and the digits will fill in over
blanks or numeric digits in the pattern.

The zeros are used in the edit pattern so that, if the number is small, there
will always be zeros between the decimal point and the right-most column. H the
number is too small to fill past the comma(s), then the extra commas will be
replaced with blanks. When using' an edit pattern with a decimal point, the argu­
ment for the function must be a whole number, or two decimal points will result.
The edit pattern must be less than or equal to 16 characters in length. H it is
greater, it will be cut off at 16.

The machine language program was written so that it can be located
anywhere in addressable memory space. It is completely relocatable. That is, no
changes are needed to run it at another address. It requires 169 ($A9) bytes of
RAM. The program uses the same zero page locations that are assigned to
Applesoft so that there are no conflicts. It also uses 752-767 ($2FO-$2FFJas a buffer
to perform editing. This area is in the input buffer and is not used during printing
(except when printing DOS commands).

How It Works

Starting with the PRINT statement, the argument for the USR is evaluated
and placed in the floating point accumulator by the BASIC interpreter. Then a JSR
is made to $OOOA, where we have a JMP to the start of our subroutine.

At the beginning of the machine language subroutine, the Applesoft floating
point accumulator is converted (lines $300-$30B) into a character string, in the
format that Applesoft would normally print it out. This is done by the Applesoft
subroutines FPSTRI and FPSTR2 (my names). These routines leave the resulting
string at the bottom of the page used for the stack ($100).

The routine then searches ($30C-$32C) the variable table to find ED$. When
found, its value is moved ($32D-$336) to the buffer area ($2FO-$2FF).

After the program has all the necessary data, it starts to work. The length of
the unformatted number is found ($337-$340); and this number (an ASCII string
right now) is then moved (lines $341-$34D) into the buffer, one character at a
time, from right to left. The current character in the pattern is checked and, if it is
a special character, it is skipped. Minus signs are carried over any digits in the
pattern so that they will be on the left of the number. This process continues until
we run out of characters to put in the pattern (or the pattern fills up), at which
time any leftover commas are covered up (lines $37 A-$390) with blanks.

Finally the program is ready to print out the result. The lines at $391-$39D
print out all of the number, except the last digit (I'll explain this in a moment),

80 Runtime Utilities

using the output routine in Applesoft. This output routine does all of the
necessary checking and conversion so that Applesoft's SPEED, INVERSE, and
FLASH functions will work. The routine also sets the most significant bit of all
outgoing ASCII characters.

The USR function must return a value to the BASIC program, which will be
printed out by the BASIC interpreter, because we are in a PRINT statement. The
last character of the buffer (which must be a digit) is taken and converted to an
integer in the Y register and passed to Applesoft's integer to floating conversion
routine ($39E-$3A8). This routine converts the integer (passed in the A, Y
registers) into floating point in the floating point accumulator, which is just where
we need it to pass back to BASIC.

Hardware Requirements

This program requires an Apple II Plus, an Apple II with an Applesoft card, or
an Apple II with a language card. It will work in any memory size system. A disk
drive is not required.

If the appropriate changes are made to the JSRs and JMP in the machine
language routine, the program can be used with RAM Applesoft (which loads in at
$0800-2FFF). After keying in the code, make the following modifications to the
equate table and it will run with RAM Applesoft instead:

FPSTRI = $252B
FPSTR2 = $lBDE
COUT = $135F
INTFP = $lAEB
FIND = $184C

10 REM PRINT USING DEMO
15 REM
20 POKE 10,76: POKE 11,0: POKE 12,3
30 ED$ = "$ 0.00"
40 PRINT "SUB TOTAL ... "; USR (3495)
50 X = 12345.67899
60 PRINT "NET TOTAL ... "; USR (INT (X *100 +.5»
70 END

Figure 1

,
l ,
,
...,

) ,
....,

) ,
,

i

i

,
i

r

-

0800
0800
0800
0800
0800
0800
0800
0800
08CO
0800
0800
0800
0800
0800
0800
0800
0800
Ot:lCO
080e
0800
(,6(,C
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
oeoo
0300
0300
0300
0300
0300
0300
C300
0300
0300
0300
C300
0300
0300
0300
03(0
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300
0300 A552
0302 48
0303 2034ED
0306 20E7E3
0309 68
030A 8552
030C
030C
030C
030C A945
030E A2C4
0310 8581
0312 8682
0314 2C53EO
0317 A004
0319 B19B

1
2
3
4
5
6
7
8
9

1C
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

** ••••• **.**.**.***** •••

* *
*

;*
;*
;*
; *

PRINT USING
GREG MORRIS

*
*
*

COPYRIGHT (C) 1981 *
MICRO INK, INC. *

;* CHELMSFORD, MA 01824 *
ALL RIGHTS RESERVED * ;*

i* *
;************ ••• ****** •••

Morris

;THE UER FUNCTION REQUIRES A JMP TO
; TM" START OF THE RCUTINE. IF 'START'
;F.QlALS THE ADDRESS WHERE THE ROUTINE
; IS LGADEC THEN THE FOLLCWING WILL SET
;l'r THE JMP:

; 10 POKE 10,76
; 20 PCKE 11,START-INT(START/256}*25E
; 30 POKE 12,INT(START/256)

;VARIABLEE:

PRINT USING

AFLAG EPZ $52
NAME EPZ $81
PNTR EPZ $83
VARBLE EPZ $9B
LENGTH EPZ $DO

;FLAG FOR APPLESOFT
;VARIABLE NAME

ORG $300
OBJ $800

BUFFER EQU $02FO
STRING EQU $0100

A CHARACTER STRING

;ROM APPLESOFT SUBROUTINE
FPSTR1 EQU $ED34
FPSTR2 EQU $E3E7
CCUT EQU $DB5C
IN~ FP EQU $E 2F 2
FINC EQU $E053

;PNTR TO EDIT PATTERN
;POINTER TO VARIABLE
; PAT'I'ERN LENGTH

;ORG AT $0300 (RELOCATABLE)

;EDIT BUFFER
;NUMBER PUT HERE AS

ADDRESSES:
;FLOATING TO STRING
;CONVERSION ROUTINES
;PRINT AN ASCII CHAR
;INT TO FP CONVERSION
;FIND A VARIABLE

;RAM APPLESOFT SUBROUTINE ADDRESSES:
;FPSTRI EQU $252B ;FLOATING TO STRING
;FPSTR2 EQU $IBDE ;CONVERSION ROUTINES
;COUT EQU $135F ;PRINT AN ASCII CHAR
;INTFP EOU $IAEB ;INT TO FP CONVERSICN
;FIND EOU $184C ;FIND A VARIABLE

;FIRST CONVERT FLOATING POINT ACCUM
;TC AN ASCII STRING
START LDA AFLAG ;SAVE THE FLAG

PHA
JSR FPSTRI ;CONVERT FLOATING
JSR FPSTR2 ;PCINT TO STRING
PLA
STl'. AFLAG ; RESTCRE FLAG

;NOW FIND THE VARIABLE (ED$) THAT
;HAS THE EDIT PATTERN.
SEARCH LDA #'E' ;BASIC VARIABLE

LDX #$C4 ;NAME IS ED$
STA NAME
STX NAME+1
JSR FIND
LDY #4
LDA (VARBLE},Y ;GET ADDR HI

81

82 Runtime Utilities

C31E. &5&4
031D 88
031E B19B
0320 8583
0322 88
0323 B19B
0325 C910
0327 9002
0329 A910
032B 85DO
032D
032D A8
032E 88
032F B183
0331 99F002
0334 88
0335 10F8
0337
0337 ACOO
0339 B90001
033C F003
033E C8
033F DOF8
0341
0341
0341
0341
0341
0341
0341
0:41
0341
0341
0341
0341 A6DO
0343 88
0344 B90001
0347 48
0348 68
0349 48
034A C92D
034C DOOE
034E. BDEF02
0351 C92D
0353 9016
0355 CA
0356 DOFO
0358 68
0359 18
035A 9035
035C BDEF02
035F C920
0361 F008
0363 C93A
0365 FOEE
0367 C930
0369 90EA
036B 68
036C 9DEF02
036F CA
0370 F01F
0372 COCO
0374 DOCD
0376 E8
0377 18
0378 9010
037A BDEF02
037D C924
037F F010
0381 C92E
0383 BOOS
0385 A920
0387 9DEF02
038A CA
038B F004

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
lCo~
)('?

104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

STA PNTR+l
DEY
LDA (VARBLE),Y
STA PNTR
DEY
LDA (VARBLE), Y
CMP 1/16
BOC LENOK
LDA #16
STA LENGTH

;GET ADDR LO

;GET LENGTH

;MAXIMUM LENGTH
;ALLOWED IS 16111

LENGK
;MOVE THE PATTERN TO THE BUFFER

TIIY

LCOP2

;FIND

DEY
LDA (PNTR), Y
STII BUFFER,Y
DEY
BPL LOOP2

THE STRING END
LDY #0

LOOP LDA STRING,Y ;GET CHAR
BEQ NEXT2
INY
BNE LOOP

;MOVE STRING TO THE BUFFER, FROM
;RIGHT TO LEFT, FILLING OVER NUM­
;BERS BUT SKIPPING COMMA'S AND
;PERIODS. IF WE COME TO A MINUS
;SIGN, THEN KEEP GOING LEFT UNTIL
;THE PATTERN HAS A BLANK OR A COM­
;MA, THEN KEEP GOING LEFT STORING
;BLANKS IN THE BUFFER UNTIL IT ENDS
lOR WE COME TO A DOLLAR SIGN.

NEXT2 LDX LENGTH
EDLOOP DEY

LDA STRING,Y
PHA

CHECK PLA
PHA

CMP "-' BNE DIGIT
MINUS LDA BUFFER-l,X

CMP #'-'
BCC DROPIT

SKIPIT DEX
BNE CHECK
PLA
CLC
BCC DONE

DIGIT LDA BUFFER-l,X
CMP #' ,
BEQ DROPIT
CMP #':'
BEQ SKJPIT
CMP #'0'
BCC SKIPIT

DROPIT PLA
BTA BUFFER-1,X
DEX
BEQ DONE
CPY #0
BNE EDLOOP
INX
CLC
BCC NEXT1

BLANK LDA BUFFER-1,X
CMP #'$'
BEQ DONE
CMP #'.'
BCS NEXTl
LDA ii' ,
STA BUFFER-l. X

NEXT1 DEX
BEQ DONE

;FIELD WIDTH

;GET A CHARACTER
;SAVE IT

; IF 11 MINUS THEN

;GET IT BACK

;END OF STRING?

;BLANK FROM
;HERE TO $

l

-,

,
1

-, ,
,
,

,
IIIii!\

I

,
1

j

r

r-­
!

r-
I

i

Morris PRINT USING

CPX LENGTH
BCC BLANK

DONE LDX n
LOOP4 LOA BUFFER-1,X

JSR COUT
INX
CPX LENGTH
BCC LOOP4

;PRINT THE
10UTPUT BUFFER
;EXCEPT LAST CHAR

0380 E4DO
038F 90E9
0391 A201
0393 BDEF02
0396 205CDB
0399 E8
039A E4DO
039C 90F5
039E
039E
039E

150
151
152
153
154
155
156
157
158
159
160
161
16:"
163
164
165

,TAKE THE LAST CHAR FROM THE BUF­
,FER, CONVERT IT TO FLOATING AND
,RETURN IT TO APPLESOFT TO BE PRINTED.

039E BDEFC2
03Al 4930
03A3 A8
03A4 A900
03A6 4CF2E2

166

***** END OF ASSEMBLY

LOA BUFFER-1,X
EOR #'0'
TAY
LOA #0
JMP INTFP

END

* * * SYMBOL TABLE -- V 1.5 *
* * *************************

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

;LO ORDER BYTE
IHI ORDER BYTE
,CONVERT & RETURN

AFLAG 0052 NAME 0081 PNTR 0083 VARBLE 009B LENGTH OODO

** ABSOLUTE VARABLES/LABELS

BUFFER C2FO
STRING 0100 FPSTR1 ED34 FPSTR2 E3E7
START 0300 SEARCH 030C LENOK 032B
EDLOOP 0343 CHECK 0348 MINUS 034E
BLANK 037A NEXT 1 038A DONE 0391

SYMBOL TABLE STARTING ADDRESS.6000
SYMBOL TABLE LENGTH:00F2

COUT DB5C INTFP E2F2
LOOP2 032F LOOP 0339
SKIPIT 0355 DIGIT 035C
LOOP4 0393

FIND
NEXT:"
DROPIT

83

E053
0341
036B

Searching String Arrays
by Gary B. Little

This machine language program makes searching a
large string array considerably faster and easier.

Have you ever wanted to search through a string array to see if it contains a par­
ticular phrase? If you have, it's probable that you have written a rather short loop
routine in Applesoft to do this. However, if you have a few thousand comparisons
to make, the Applesoft version may take an undesirable length of time to grind out
the desired results.

A much faster search can be carried out on the Apple II by using a search
routine written in 6502 assembly language. Such a program is shown here.

The SEARCH Routine

To understand exactly how the program works it is necessary to analyze the
method by which the Apple stores variables in its memory. The details are found
on page 137 of the Applesoft II BASIC Programming Reference Manual. For a one­
dimensional string array, the storage pattern is as follows:

NAME (2 bytes)
OFFSET pointer to next variable (2 bytes)
No. of dimensions (1 byte)
Size 1 st dimension (2 bytes)
String$(O)-length (1 byte)

-address low (1 byte)
-address high (1 byte)

String$(N) (3 bytes)

N is the size of the 1st dimension. If the string array is the first array variable
defined in a program, the memory location of the first byte of the trio of bytes,
reserved for the Cth array variable, is given by PEEK(107) + 256*PEEK(108) + 7
+ 3*C (where 0< =C< =N). This is because the pointer to the beginning of the
array space, and also to the beginning of the string array variable map, is found at
$6B,$6C (107,108) and there are 7 + 3*C bytes before the three Cth array variable
bytes.

j

1

-,
1

,
,
'1

'1 ,
"1

'1

i

"""'l
J

Little String Arrays 85

If the phrase to be searched for (the search variable) is the first simple variable
defined in a program, the memory location of the first byte of the three" bytes
reserved for the length and location of the string is given by PEEK(lOS) +
2S6*PEEK(106) + 2. This is because the pointer to the beginning of the simple
variable space, and also to the beginning of the simple variable map, is found at
$69,$6A (105,106). There are two bytes before the three variable bytes.

To carry out the search, it is simply necessary to compare the string pointed
to by SV + 3,SV + 4 (where SV=PEEK(105) + 2S6*PEEK(106)) with the string
pointed to by AV + 8 + 3*C,AV + 9 + 3*C (where AV = PEEK(107) +
256*PEEK(108) and C runs from 0 to N). This is precisely what is done in this
assembly language routine.

The time savings that can be realized by using the routine can be seen by run­
ning the Applesoft demo program LISTed. For example, an assembly language
search of 2,000 string array variables takes only one second, whereas the same
search done in Applesoft takes 19 seconds!

Using the Search Routine

I- To use the search routine from within an Applesoft program, the following

~

procedure must be followed:

1.

2.

3.

4.

S.

POKE the length of, and the two pointers to, the search phrase into locations
0,6,7, respectively. This is done in line #210 of the demo program.

POKE the number of the array variable from which the search is to proceed
('C) in locations 30,31 (low,high). This is done in line #220.

POKE the number of the array variable, at which the search is to end, ('N') in
locations 28,29 (low,high). This is done in line #230.

POKE the location of the trio of bytes for the Cth array variable in locations 8,9
(low,high). This is done in line #240.

CALL 768 to start the assembly language search routine. When control returns
to Applesoft the array number that has satisfied the search will be returned in
locations 30,31. If PEEK(30) + 2S6*PEEK(31) is greater than N, then the search
has failed. If not, then a match has been made with R$(C) where C = PEEK(30)
+ 2S6*PEEK(31) and R$ is the array that is being searched.

6. To continue the search to the end of the array, increment C and repeat the
above process.

The routine, as written, does not search for exact matches with the string ar­
ray variables. If the leftmost part of a string array variable is the same as the search
phrase, a match is considered to have occurred.

A useful application of this search routine is to use it in conjunction with a
mailing list database program. In this way, the search time for an individual
record can be cut down dramatically.

86

1
2
3
4
5
6 .,
8
9
10
11
12
14
100
110
120
130
140

Runtime Utilities

REM ************************
REM * *
REM * STRING SEARCH ROUTINE*
REM * GARY LITTLE *
REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRC INK. INC. *
REM * CHELMSFORD. MA 01824 *
REM * ALL RIGHTS RESERVED *

REM * *
REM ************************
REM
REM
S$ = "": REM MUST BE FIRST DEFINED SIMPLE VARIABLE
N = 2000: DIM R$(N): REM MUST BE FIRST DEFINED ARRAY VARIABLE

GOSUB 1000: REM LOAD SEARCH ROUTINE
DEF FN MD(X) = x - 256 * INT (x / 256)
TEXT: HOME: PRINT TAB (8);: INVERSE: PRINT "STRING ARRAY
SEARCH DEMO": NORMAL

150 PRINT: PRINT "RANDOM STRINGS:": PRINT
160 FOR I = 1 TO N:R$(I) = CHR$ (65 + 26 * RND (1» + CBR$

(65 + 26 * RND (1»: PRINT R$ (I) ;" ";: NEXT I: PRINT : PRINT
INPUT "ENTER SEARCH STRING: ";S$: PRINT

SV = AV:C = 1
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

SV = PEEK (105) + 256 * PEEK (106)
AV = PEEK (107) + 256 * PEEK (108)

340
1000
1010

POKE O. PEEK (SV + 2): POKE 6. PEEK (SV + 3): POKE 7. PEEK(SV + 4)
POKE 30. FN MD(C): POKE 31. INT (C / 256)
POKE 28. FN MD(N): POKE 29. INT (N / 256)
POKE 8. FN MD(AV + 7 + 3 * C): POKE 9. INT «AV + 7 + 3 * C) / 256)
CALL 768

C = PEEK (30) + 256 * PEEK (31)
IF C > N THEN 300
PRINT S$;" MATCHES #";C;" (PHRASE: ";R$(C);")"

C = C + 1: IF C < = N THEN 190
PRINT PRINT "MACHINE LANGUAGE SEARCH COMPLETED"
PRINT: INPUT "PRESS 'RETURN' FOR APPLESOFT SEARCH: ";A$: PRINT
FOR I = 1 TO N
IF S$ = LEFT$ (R$(I). LEN (5$» THEN PRINT S$;" MATCHES #";1;"
(PH RASE: 'I; R$ (I) ; ") "

NEXT I: PRINT: PRINT "APPLESOFT SEARCH COMPLETED": END
FOR I = 768 TO 849: READ X: POKE I.X: NEXT I: RETURN
DATA 32.74.255.160.0.177.8.133.1.200.177.8.133.26.200.177.8.133.
27.165.1.197.0.48.15.160.0.177.6.L09

1020 DATA 26.208.7.200.196.0.240.16.208.243.165.30.197.28.208.11.165.
31.197.29.208.5.230.31.76.63.255.24.165.e

1030 DATA 105.3.144.2.230.9.133.8.24.165.30.105.1.144.2.230.31.133.
30.56.176.177

'1

'1

1

-,
1

i

1
.....,

!

1

'1 ,
1
..,

I

-,
I

1

i

i

'i
I

r
f1Ii'\II Little String Arrays 87

0800 1 *************************
Ji'RI 0800 2 • •

0800 3 ·SEARCHING STRING ARRAYS·
0800 4 • GARY LITTLE •
0800 5 • *
0800 6 * STRING SEARCH *
0800 7 • •
0800 8 * COPYRIGHT(C) 1981 *
01il00 9 • MICRO INK, INC. *
0800 10 • CHELMSFORD, MA 01824 *
0800 11 • ALL RIGHTS RESERVED *
0800 12 • *
0800 13 *************************
0800 14
0800 15
0800 16
0800 17
0800 18 LENS EPZ $(' ;LENGTH OF SEARCH PHRASE
0800 19 LENR EPZ $1 ;LENGTH OF STRING ARRAY VARIABLE
0800 20 SP EPZ $6 ;POINTER TO SEARCH PHRASE
0800 21 RP EPZ $8 ;POINTER TO ARRAY VARIABLE TABLE
0800 22 RL EPZ $lA ;POINTER TO ARRAY VARIABLE
0800 23 NL EPZ $IC ;ENDING ARRAY NUMBER
0800 24 CL EPZ $lE ;STARTING ARRAY NUMBER AND COUNTER
080e 25 SAVE EQU $FF4A ;SAVE REGISTERS
0800 26 RSTORE EOU $FF3F ;RESTORE REGISTERS
0800 27
0300 28 ORG $300
0300 29 OBJ $800
0300 30
0300 204AFF 31 JSR SAVE ;SAVE REGISTERS
0303 ACOO 32 LOOP LDY #$00
0305 BI08 33 LDA (RP), Y ;GET LENGTH OF VARIABLE
0307 8501 34 STA LENR ;AND STORE
0309 C8 35 INY
030A BI08 36 LDA (RP) ,Y ;GET POINTER (LO)
030C 851A 37 STA RL ;AND SAVE
030E C8 38 INY
030F BI08 39 LDA (RP). Y ;GET POINTER (HI)
0311 851B 40 STA RL+l ;AND SAVE
0313 A501 41 LDA LENR ;IF LENGTH OF SEARCH
0315 C500 42 CMP LENS ;PHRASE EXCEEDS LENGTH
0317 300F 43 BMI NOPE ;OF VARIABLE, SEARCH FAILS
0319 AOOO 44 LDY #$00
031B BI06 45 AGAIN LDA (SP), Y ;COMPARE THE PHRASES
031D DllA 46 CMP (RL). Y ;LETTER BY LETTER
031F DO(,7 47 BNE NOPE ;FAILS IF NOT EQUAL
0321 C8 48 INY
0322 C400 49 CPY LENS
0324 FOI0 50 BEQ RTSI ; SUCCESS I
0326 DOF3 51 BNE AGAIN

~ 0328 A51E 52 NOPE LDA CL ;COMPARE COUNTER
032A C51C 53 CMP NL ;TC ENDING ARRAY NUMBER
032C DOOB 54 BNE LOOPI
032E A51F 55 LDA CL+l
0330 C51D 56 CMP NL+l

~ 0332 D005 57 BNE LOOPI ;DONE IF EQUAL
0334 E61F 58 INC CL+l
0336 4C3FFF 59 RTSI JMP RSTORE
0339 18 60 LOOPI CLC

f'UII
033A A508 61 LDA RP ;SET POINTER TO NEXT
033C 6903 62 ADC #$03 ;TRIO OF ARRAY BYTES
033E 9002 63 BCC Nl
0340 E609 64 INC RP+l
0342 8508 65 N1 STA RP

r- 0344 18 66 CLC
0345 A51E 67 LDA CL ;INCREMENT COUNTER

88 Runtime Utilities

0347 6901 68 AOC #$01
0349 9002 69 BCC N2
034B E6lF 70 INC CL+l
0340 85lE 71 N2 STA CL
034F 38 72 SEC
0350 BOBI 73 BCS LOOP

74 END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC . LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

LENS 0000 LENR 0001 SP 0006
CL OOIE

** ABSOLUTE VARABLES/LABELS

SAVE FF4A RSTORE FF3F LOOP 0303
RTSI 0336 LOOPI 0339 Nl 0342

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0092

,
1

1
:CHECK NEXT ARRAY VARIABLE

l

1

1
..,

RP 0008 RL OOIA NL OOIC

"1
AGAIN 03lB NOPE 032e
N2 0340 ,

,
,.,

J

..,
=,

I

'1

1

=,
J

iM'\
I

r-
I

-

Applesoft and Matrices
by Camelis Bongers

This machine language program performs the most
commonly used special matrix operations, as well as
most Applesoft operations. The program can be linked
to Applesoft by means of the & statement. Two
advantages of using this program rather than a BASIC
subroutine are a significant increase in execution
speed (on the average a factor 5) and greater
convenience. The required system configuration for the
program is a 48K Apple with Applesoft in ROM (or in
the Language Card).

For those who are not accustomed to working with matrices, a matrix is a block of
numbers. Several operations can be performed on a matrix or a pair of matrices.
For instance, adding two matrices A and B together, we obtain a matrix C, whose
elements consist of the sums of the corresponding elements of A and B. Thus if,

A- ~ J]
and

[2 4 7]
B = 1 8 -6

5 0 1

then the sum of A and B is

[
3 7

C = 3 9
9 -2

l~ -2
2

It will be clear that A, B, and C can be represented by three 2-dimensional
arrays in BASIC. When A and B have to be added, the following BASIC routine
may be used:

100 FOR 1=1 TO N: FOR J=1 TO M: C(I,J)=A(I,J)+B(I,J): NEXTJ,I

-,
90 Runtime Utilities 1
where Nand M are both equal to 3 in our example. When using the machine
language program, this routine can be replaced by the statement: 1

100 & C=A+8

Note that by using the latter statement, the names of the matrices are irrele­
vant. In the BASIC routine the names of the matrices always must be A, B, and C
to comply with the names of the BASIC arrays.

Applesoft Operations

Except for comparison, SCRN(, and CHR$, all the Applesoft operators and
functions that can be used on real variables or expressions are available for matrix
operations. There are, however, some restrictions on the syntax of the matrix
statement. First, no more than 3 matrices may be used in a matrix statement. Sec­
ond, single-valued expressions (or variables) must be put between brackets.
Another restriction is that matrices used in an & statement must have two dimen­
sions. Each of these dimensions must be larger than 0 and smaller than 255.
Furthermore, each matrix appearing in an & statement must have been dimen­
sioned previously by means of a DIM statement. For the exact syntax of the
matrix statement we refer to the 'Instructions' section of the article. Some ex­
amples are listed below.

Example 1:

10 DIM A(10,10): 8=1
20 &A=(8): A= RND(A): A=A*(10): A= INT(A)

In this example, the array A is set equal to 1. Next, the RND function is per­
formed on all elements of A, so that A now contains random numbers between 0
and 1. Then A is multiplied by 10, and the INT function is executed on each ele­
ment of A. After the execution of line 20, A is thus filled with random numbers
between 0 and 9. Note that the statement A= (RND(l)) puts all elements of A
equal to the same random number.

Example 2:

10 DIM A(5,6), 8(5,6), C(5,6)
20 8=3
30 &A = (3): 8=(2): C=A*8: C=C (8)

The statement C = A * B multiplies the corresponding elements of A and B and
stores the result in the corresponding elements of C. After the execution of this
statement, all elements of C are therefore equal to 6. Note that for a successful ex­
ecution of the statement, A, B, and C must have the same dimension (or order).
By means of the last statement, all elements of C are raised to the third power. If,
instead of the statement C = C I\(B), the statement C = C I\B is used, all elements
of C will become equal to the second power of 6, because now the matrix B instead
of the variable B is taken.

1

1

'1

1

1 ,
i

1
-,

I

1

1 ,
1

r

i

Bongers Matrices 91

Matrix Operations

Although the operations and functions used in the examples above can be
handy sometimes, they hardly justify the writing of a machine language program.
The real usefulness of the program is, therefore, not its ability to perform Apple­
soft functions and operations, but rather to handle some specific matrix opera­
tions as well. The following operations are implemented:

1. A = IDN(aexpr) where A must be a square matrix and 1 < = aexpr < = N if N
is the order of A. This statement puts A equal to a matrix consisting of zeros and
ones. If aexpr equals one, A becomes the identity matrix. For larger values of aexpr,
the columns of the identity matrix will be rotated aexpr - 1 positions to the left.
For instance, if A and B are square matrices of order 3, then A=IDN(1) and
B = IDN(2) return.

A~ [U ~
B- ~ H

2. A = TRN(B) puts A equal to the transpose of B. If B is of order p by q, then A
must be of order q by p. Putting a matrix equal to its own transpose (i.e.
A=TRN(A)) is not allowed. For instance, if B equals,

then A=TRN(B) will return

A = n ! ~J
3. A = B. C puts A equal to the matrix product of Band C. If B is of order p by

q, then the first dimension of C must equal q. In case the second dimension of C
equals r (thus C is q by rl, the matrix A has to be of the order p by r. Furthermore,
the matrix on the left of the II = ' I sign may not equal one of the matrices on the
right of the II = . I' As an example, we can multiply the matrices A and B in the ex­
ample above by means of the statement &'C =A.B. This leads to

[35 141
C = 14 2DJ

4. A=MIN(B), A=MAX(B) or A=ABM(B) put A respectively equal to the
minima, the maxima, or the absolute maxima of the columns of B. The overall
maximum, minimum, or absolute maximum of B is stored in A(D,I). If B is of
order p by q, then A must be of order q by 1.

92 Runtime Utilities

5. A = INV(B) puts A equal to the inverse of B and stores the determinant of B
in A(O,O). A and B must be square and of the same order. The statement
0= INV(C), where C equals the matrix above, returns for instance,

[.0396825397 -.0277777778]
o = - .0277777778 .0694444444

At the execution of the inverse statement, values stored in the Oth row of the
target matrix will be destroyed since this row is used to store some pointers. To
obtain the inverse of a matrix A, the statement A = INV(A) also may be used.
Finally, zeros on the main diagonal of the matrix to be inverted are allowed.

6. A = NEINV(B) gives the same result as A = INV(B) except that the program
continues if a division by zero occurs when B is singular. When using NEINV, it is
recommended to check the determinant of B (in A(O,O)) after execution of the
statement. When B is singular, the determinant will be zero.

7. A = PNT (aexpr) displays the matrix A. For each element of A, aexpr posi­
tions are reserved, and a carriage return is generated after each row. If aexpr equals
zero, the elements of A are separated by a blank.

An Application

An interesting application of matrix algebra is the linear model. The linear
model can be used to analyze the influence of a number of variables, called the in­
dependent variables, on another variable, called the dependent variable. The
model has the form,

y = bo + b l Xl + b2 X2 + .. bm Xm + u ,

where y denotes the dependent variable, and Xl' x2, etc., denote the independent
variables.

The last term, u, represents the influence of factors that were not included in
the model. Usually this term is called the residual. As an example, suppose that
we want to establish the relationship between the annual regional sales of a par­
ticular product (y), the number of times advertised (Xl) and the number of people
living in the region (x2). The available data are given in the table below.

Obs. Y Xl Xz
No. Sales Advert. Popul.

1 118 8 583
2 138 9 692
3 104 5 1082
4 65 1 836
5 46 1 628
6 61 2 244
7 48 1 632
8 66 2 172
9 78 5 319

10 69 2 383

,
,
-,
i

j ,
,
,
,
,
.,
,
!&i!j

I

i
)

i

i ,

i

Bongers Matrices 93

In matrix algebra the model can be written as,

Y = X.B + U,

where B (the unknown coefficients) is of order 3 by 1 and Y (the sales), and U (the
residuals) are of order 10 by l. The matrix X is of order 10 by 3. The elements of
the first column of X are equal to one (to account for bo) whereas the second and
third columns correspond to the columns under the heading Xv and X2 in the
table. To fit the equation to the data, the least squares principle is used, which
means that the coefficients are chosen such that the sum of the squares of the
elements of U is minimized. This leads to the following solution for B,

B = (X'.x)-lX'.Y

where X denotes the transpose of X. A BASIC program to compute the least
squares solution is presented in listing I, with the results of the example. The
least squares equation shows that the sales increase by 9.5 for each additional
advertisement (other things being equal) whereas an increase of 100 in the popula­
tion of the region increases the sales by l.6 (other things being equal).

The application given in this section was kept simple purposely. The linear
model, for instance, can easily be extended with a tremendous amount of
statistics which may (or may not) simplify the analysis of the data. Also the ap­
plication presented gives only a narrow view on the wide field of problems in
which matrix algebra may be useful. Examples include computations with
Markov-type problems and the location of the maximum (or minimum) of a func­
tion of several variables by means of the Newton method.

The Machine Language Program

The program is about $700 bytes long and starts at $8900. The end is at $8FF2,
which means that the area $9000-$9600 is free for other routines. (Editor's Note:
This program is not listed, but is saved on the disk in object form as MA TRICES.)

It can be connected to an Applesoft program by means of the command :
BRUN matrices or, if you don't have a disk, by the monitor command: 8900 G. In
the latter case you must enter Applesoft via the warm start (Le., Control-C). The
BRUN or 8900 G command executes the initialization routine at the start of the
program that sets HIMEM to the appropriate value and installs the & vector. In
case the & vector is destroyed during execution of a program, the matrix program
can be reconnected by the command CALL 35072.

The program extensively uses zero page locations to increase execution speed.
However, as a consequence, the ON ERR flag will be temporarily cleared during
the execution of an & line since the matrix routines use the storage space of the
ON ERR pointers. After the execution of the & line, the ON ERR flag and pointers
are restored to their original values. Apart from zero page locations, the control Y
and the & vector are used, which implies that values stored at $3FS - $3FA will be
destroyed.

94 Runtime Utilities

In Case of an Error

If the interpreter returns an error message during the execution of an & line,
there is either a bug in your statement or a bug in my program. In the first case, the
error is probably caused by the violation of one of the following conditions:

1. Only matrices containing reals are allowed in the & line.

2. Matrices used in an & statement must have 2 dimensions.

3. Each dimension of a matrix must be larger than 0 and smaller than 255.

4. The orders of the matrices should satisfy the conditions in the "instructions"
section of this article.

5. Each matrix appearing in an & statement must have been dimensioned earlier
in the program by a DIM statement.

6. ON ERR doesn't work during the execution of an & line.

Although the other case (Le. a bug in my program) seems at this time highly
improbable to me since the program was heavily tested for several months, I am
well aware that there are some kinds of bugs that can, as it seems, only be
discovered by other people. Therefore, if you find one, I would appreciate it very
much if you let me know.

Finally, a utility package which contains, among others, the matrix program,
will be released soon. This utility package resides in the second 4K bank of the
Language Card, and it will use only $300 bytes of 'normal' RAM.

Instructions

This section contains the matrix expressions that can be executed by means
of the & line. The syntax of the line is:

& matrix expression: matrix expression: etc.

The following operators and functions may be used:

operator:= +, -, *,I,I\,AND,OR

function : = SGN, INT, ASS, USR, FRE, POL, POS, SOR, RND, LOG, EXP,
COS, SIN, TAN, ATN, PEEK

Unless stated otherwise, matrices appearing in an & statement must have the

.,
,
.,
,
i

) ,
,
,
,
'1 ,
1

.,
J .,

l
same order, and matrix names on the left of the " =" sign can be chosen equal to
matrix names on the right of the " = ". The matrix expressions that are allowed 1
follow.

1

i
(

Bongers Matrices 95

fl1iIiiiI I. Applesoft Operations and Functions with:

1.1 1 matrix and 1 expression
A = (aexpr)

Example:
A = (-112), B=(Z%)

1.2 2 matrices
A=B
A = -B
A = NOTB
A = function(B)

Example:
A = SIN(B)

1.3 2 matrices and 1 expression
A = B operator (aexpr)

Example:
A = BA (COS(- 3))

fIII'i'I 1.4 3 matrices

,-
I

r-'"

t-'
I

A = B operator C

Example:
A = B/C

II. Specific Matrix Operations

2.1

2.2

2.3

2.4

2.S

A = IDN(aexpr) - Identity: A must be square and 1 < = aexpr < = order of
A.

A = TRN(B) - Transpose: if B is of order p by q, then A must be of order q by
p. A = TRN(A) is not allowed.

A = B.C - Multiplication: if B is of order p by q and C of order q by r, then A
must be of order p by r. A=A.C or A=C.A is not allowed.

A = MIN(B), A = MAX(B), A = ABM(B) - Minimum, maximum or ab­
solute maximum: if B is of order p by q then A must be of order q by 1. After
execution A(O,I) contains the overall minimum, maximum or absolute max­
imum of B.

A = INV(B) - Inverse: A and B must be square and of the same order. After
execution, A(O,O) contains the determinant of B.

,
96 Runtime Utilities J
2.6 A = NEINV[B) - Inverse: same as INV, except that singularity of B doesn't 1

stop the program.

2.7 A = PNT(aexpr) - Print: if aexpr= 0 the elements are separated by a blank,
else aexpr positions are reserved for each element. 1

1 REM ************************
2 REM * *
3 REM * MATRICES & APPLESOFT *
4 REM * BY C. BONGERS *
5 REM * *
6 REM * MATRIX DEMO *
7 REM * *
8 REM * COPYRIGHT (C) 1981 *
9 REM * MICRO INK. INC. *
10 REM * CHELMSFORD. MA 01824 *
11 REM * ALL RIGHTS RESERVED *
12 REM * *
13 REM ************************
14 REM
15 REM THE LINEAR MODEL
16 REM
18 HOME
20 INPUT "NUMBER OF CBSERVATIONS ? ";N
30 INPUT "NUMBER OF INDEPENDENT VARIABLES? ";M:Ml = M + 1
40 IF Ml > = N THEN PRINT: PRINT "TOO FEW OBSERVATIONS ": STOP
50 DIM X(N.Ml).XA(Ml.N).Y(N.l).B(Ml.l).E(N.l).EA(l.N).S(Ml.Ml)
60 DIM Vl(1.1).V2(1.1).H(M1.1).J(1.N)
70 PRINT: PRINT "INPUT THE ELEMENTS OF THE Y-VECTOR": PRINT
80 FOR I = 1 TO N
90 PRINT "ELEMENT ";1;" ? ";: INPUT "";Y(I.1):X(I.1) = 1
100 NEXT I
110 FOR J = 2 TO M1
120 PRINT: PRINT "INPUT THE ELEMENTS OF THE X";J - l;"-VECTOR": PRINT
130 FOR I = 1 TC N
140 PRINT "ELEMENT ";1;" ? ";: INPUT ;X(I.J)
150 NEXT I.J
160 REM CALCULATE RESULTS
170 & XA = TRN(X):S = XA.X:S = NEINV(S):H = XA.Y:B = S.H
180 IF S(O.O) = 0 THEN PRINT "THE S-MATRIX IS SINGULAR": STOP
190 PRINT: PRINT "THE LEAST SQUARES EQUATION EQUALS ": PRINT
200 PRINT"Y = ";B(1.1);
210 FCR J = 2 TO Ml: IF B(J.l) > = 0 THEN PRINT "+";
220 PRINT B(J.l);"*X";J - 1;
230 NEXT: PRINT : PRINT
240 & E = X.B:EA = TRN(E):E = Y - E
250 PRINT "** THE TABLE OF RESIDUALS **": PRINT
260 PRINT "NO"; TAB(4);"OBSERVED y"; TAB(16);"ESTIMATED Y";

TAB (29);" RESIDUAL"
270 FOR I = 1 TO N
280 PRINT I; TAB(4);Y(I.l); TAB (16);EA(1.I); TAB(29);E(I.1)
290 NEXT I: PRINT
300 & EA = TRN(E):V1 = EA.E
310 PRINT "STANDARD DEV. RESIDUALS: "; SQR (Vl(l.l) / (N - Ml»
320 & J = (1):V2 = J.Y:V2 = V2 / (N):E = Y - (V2(1.1»:EA = TRN(E):

V2 = EA.E
330 R = (V2(1.1) - Vl(l.l» / V2(1.1): IF R < 0 THEN R = 0
340 PRINT "R A 2";: HTAB (24): PRINT ': "; SQR (R)
350 END

1

,
1 ,
1 ,
,
j

i

1

l
...,

J

1

AMPER-SORT
by Alan G. Hill

Here's a fast machine language sort utility for the
Apple II that handles integer, floating pOint, and
character records. Because it is callable from BASIC,
this sort routine is a worthwhile addition to any
software library.

A sort utility is usually one of the first programs needed for records management
application programs. If the utility is written in BASIC and runs under an inter­
preter, one quickly discovers that the sort is painfully slow on a micro. The sort
program presented here, written in machine language for the Apple n with
Applesoft ROM, will certainly remedy that problem. While no speed records will
be set, it will run circles around BASIC, sorting 900 integer, 700 floating point, or

r- 300 30-character records in about 60 seconds.

r

-

The &. Connection

Speed is not the only beauty of AMPER-SORT. As its name implies, the
BASIC-to-machine language interface utilizes the powerful, but not-widely­
known, feature of Applesoft-the Ampersand. What is the Ampersand and why is
it so useful? Consider the following example of how a BASIC program passes sort
parameters to AMPER-SORT.

100 &SRT#(AB$,O,10,7,10,A,1,5,D)

This statement, when embedded in a BASIC program or entered as an immediate
command, will command AMPER-SORT to sort AB$(O) through AB$(lO) in
ascending order based on the 7 th to 10th characters and in descending order for the
1st through 5th characters. Of course, POKEs could be used to pass parameters
from other 6502 BASICs, but there's something more professionally pleasing
about the Ampersand interface.

There is no user documentation from Apple on the Ampersand feature. I first
read of the feature in the October 1978 issue of CALL APPLE. When the Applesoft
interpreter encounters an ampersand (&) character at the beginning of a BASIC
statement, it does a JSR $3FS. If the user has placed a JMP instruction there, a link
is made to the user's machine language routine. Apple has thoughtfully provided
some ampersand handling routines described in the November and December

98 Runtime Utilities

issues of CALL APPLE. The routines enable your machine language routine to ex­
amine and convert the characters or expressions following the ampersand. Here
are the routines used in AMPER-SORT.

CHRGET ($OOBl)

This routine will return, in the accumulator, the next character in the
statement.

The first character is in the accumulator when the JSR $3F5 occurs. The zero
flag is set if the character is an end-of-line token (00) or statement terminator
($3A). The carry flag is set if the character is non-numeric, and cleared if it is
numeric. The character pointer at $B8 and $B9 is advanced automatically so that
the next JSR $B1 will return the next character. A JSR $B7 will return a character
without advancing the pointer.

FRMNUM ($DD67)

This routine evaluates an expression of variables and constants in the amper­
sand statement from the current pointer to the next comma. The result is placed
in the floating point accumulator.

GETADR ($E752)

This routine will convert the floating point accumulator to a two-byte integer
and place it in $50 and $51. FRMNUM and GETADR are used by AMPER-SORT to
retrieve the sort parameters and convert each to an integer.

GETBYT ($E6FB)

This routine will retrieve the next expression and return it as a one-byte in­
teger in the X-register.

It is the user's responsibility to leave the $B8 and $B9 pointer at the
terminator.

Exploration of Parameters

Parameters are passed to AMPER-SORT in the following form:

100 &SRTII(AB$,B,E,7, 10,A,1 ,5,0)

where:

AB$ Is the variable name of the string array to be sorted. The general form is XX$
for string arrays, XX% for integer arrays, and XX for floating point arrays.

B is a variable, constant or expression containing the value of the subscript ele­
ment where the sort is to begin; e.g. AB$(B).

, ,
,
,
1

,
,
j

,
i

, ~

1 ,
,
,

r

r-
I

i

r-
!

Hill AMPER-SORT 99

E is a variable or constant or expression containing the value of the subscript
element where the sort is to end; e.g., AB$(E). Band E are useful when the
AB$ array is partially filled or has been sectioned into logically separate
blocks that need to be sorted independently.

7

10

A

1

S

D

is a variable, constant or expression specifying the beginning position of the
major sort field.

is a variable, constant or expression specifying the ending position of the ma­
jor sort field.

is a character specifying that the major sort field is to be sorted in ascending
order.

is a variable, constant or expression specifying the beginning position of the
first minor sort field.

is a variable, constant or expression specifying the ending position of the
first minor sort field.

is a character specifying that the first minor sort field is to be sorted in
descending order.

Using AMPER·SORT

The &SRT command will sort character, integer or floating point arrays and
can be used in either the immediate or deferred execution mode similar to other
Applesoft BASIC commands. Of course, the named array must have been
previously dimensioned and initialized in either case.

A. Character Arrays

1. Equal or unequal element lengths
2. Some or all elements
3. Ascending or descending order
4. A major sort field and up to 4 minor sort fields

Examples:

10 DIM NA$(500)

100 &SRT#(NA$,0,500,1 ,5,A)
200 &SRTII(NA$,0,500,1 ,5,A,6, 10,0,11,11,A)
299 F% =O:L= 10
300 &SRT=(NA$,F%,L,10,15,O)

Line 100 sorts on positions 1 through S in ascending order for alISO! elements of
NA$(SOO).

100 Runtime Utilities

Line 200 is the same as Line 100 except that minor sort fields are specified.
The sort sequence on positions 1-5 is in ascending order, positions 6-10 are in
descending order, and position 11 is ascending order.

Line 299 and 300 sort on positions 10-15 in descending order for NA$(O)
through NA$(lO).

B. Integer and Floating Point Arrays
1. Some or all elements
2. Ascending order only. (Step through the array backwards if needed in

descending order.)
Examples:

10 DIM AB%(100),FP(100)

100 &SRT#(,A.B % ,0,100)
299 S=50: E= 100
300 &SRT#(AB%,S,E)
399 X=49
400 &SRT#(FP,O,X)

Line 100 sorts all 101 elements of AB%(100) in ascending order. Lines 299
and 300 sort from AB%(50) through AB%(100), while lines 399 and 400 sort from
FP(O) through FP(49).

Limited editing has been included in the parameter processing code.
Therefore, you must be careful to observe such rules as:

1. 0 S B< E s maximum number of AB$ elements.

2. AB$ must be a scalar arraYi e.g., AB$(lO), not AB$(20,40).

3. The sort array name must be less than 16 characters, only the first two
count, and they must be unique.

4. The maximum number of sort fields is 5.

5. The beginning sort field position must not be greater than the ending sort
field position.

Options:

1. Constants, variables, or expressions may be used for subscript bounds and
sort positions.

2. The &SRT command may be used in immediate or deferred execution
mode.

Some editing checks are made. You will notice this when you get a "?SYN­
TAX ERROR IN LINE XXX" error message. You will also get a "VARIABLE XXX
NOT FOUND" message if the routine cannot find the AB$ variable name in
variable space.

The AMPER-SORT program is listed in its entirety. A BASIC demo program is
also shown.

,
1

,
1

,
,
-,
,
1

i ,

1

1

1 ,
1

fiiiiIIII
I

r

10 REM ************************
20 REM * *
30 REM * AMPER-SORT *
40 REM * ALLEN HILL *
45 REM * *
50 REM * AMPERSORT DEMO *
55 REM * *
60 REM * COPYRIGHT (C) 1981 *
70 REM * MICRO INK. INC. *
80 REM * CHELMSFORD. MA 01824 *
90 REM * ALL RIGHTS RESERVED *
100 REM * *
110 REM ************************
1000 GOTO 10000
1050 REM CHARACTER SORT
1060 CH$ = "ABCDWXYZ":L = LEN (CH$) - 1
1070 N% = 8
1080 DIM AB$(N%)
1090 FOR I = 0 TO N%
1100 C$ = MID$ (CH$. INT RND (1) * L) + 1.1)
1110 B$ = MID$ (CH$. INT RND (1) * L) + 1.1)
1120 FOR J = 1 TO 3
1130 C$ = C$ + C$:B$ = B$ + B$
1140 NEXT J
1150 AB$(I) = B$ + C$
1160 NEXT I
1170 GOSUB 1240
1180 REM SORT HALF ASCENDING
1190 REM SORT HALF DESCENDING
1200 'SRT'(AB$.0.N%.I.e.A.9.16.D)
1210 GOSUB 1260
1220 GOTO 11000
1230 REM PRINT ROUTINE
1240 PRINT" BEFORE"
1250 GOTO 1270
1260 PRINT" AFTER": PRINT "ASCEND DESCEND"
1270 FOR I = 0 TO N%
1280 PRINT AB$(I): NEXT I: RETURN
2000 REM INTEGER SORT
2010 N% = 8
2020 DIM IN%(N%)
2030 FOR I = 0 TO N%
2040 IN%(I) = 7500 - INT (RND (1) * 15000)
2050 NEXT I
2060 GOSUB 2120
2070 REM SORT
2080 'SRT#(IN%.O.N%)
2090 GOSUB 2130
2100 GOTO 11000
2110 REM PRINT ROUTINE
2120 HTAB 10: PRINT "BEFORE": GOTO 2140
2130 HTAB 10: PRINT "AFTER"
2140 FOR I = 0 TO N%
2150 PRINT IN%(I): NEXT I: RETURN
3000 REM FLOATING POINT
3010 T% = 8
3020 DIM FP(n)
3030 FOR I = 0 TO 8
3040 FP(I) = 1000 * RND (1) * SIN (I * 7.16)
3050 NEXT I
3060 GOSUB 3120
3070 REM SORT
3080 'SRT#(FP.O.T%)
3090 GOSUB 3130
3100 GOTO 11000
3110 REM PRINT ROUTINE
3120 HTAB 10: PRINT "BEFORE": GOTe 3140
3130 HTAB 10: PRINT "AFTER"
3140 FOR I = 0 TO T%
3150 PRINT FP(I): NEXT I: RETURN
9999 REM
10000 REM ** 'SORT DEMO **
10010 REM SAVE ROOM FOR
10020 REM SORT ROUTINE
10030 HIMEM: 20992: REM $5200

Hill AMPER-SORT 101

102

10040
10050
10060
10070
10080
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
11000
11010
11020
11030

0800
0800
080C'
080C
08('0
0800
0600
OSOO
OSOC
OSOO
OSOO
OSOO
0800
OSOO
CSOO
OSOO
OSCC
OSOO
OSOO
OSOO
08CO
OSOO
OSOO
OS(,O
osbo
OSOO
OSOO
OSOO
OSOO
OSOO
OSOO
OS(,C
OSOO
OSOO
OSOO
OSOO
OSOO
OSOO
OSOO
osoo
oeoo
5200
5200
5200
5200
5200
5200

Runtime Utilities

D$ = CHR$ (4)
PRINT D$;"BLOAD AMPERSORT,A$5200"
REM SET UP '&' HOOK
REM AT $3F5:JMP $5200
POKE 1013,76: POKE 1014,0: POKE 1015,82
HOME : CLEAR
VTAB 8: HTAB 15: PRINT "SORT DEMO"
PRINT : HTAB 15: PRINT "SELECTIONS"
PIlINT : HTAB 10: PRINT "1 INTEGER SORT"
HTAB 10: PRINT "2 FLOATING POINT SORT"
HTAB 10: PRINT "3 CHARACTER SORT"
HTAB 10: PRINT "4 EXIT"
VTAB 17: INPUT "SELECTION ";SE%
IF SE% < 0 OR SE% > 4 THEN 10090
ON SE% GOTO 2000,3000,1050,10190
END
PRINT "HI'f ANY KEY TO RETURN TO MENU"
WAIT - 16384,128
POKE - 16368,0
GOTO 10090

1
2
3
4
5
6
7
S
9

10
11
12
13
14
15
16
17
IS
19
20
21
22
23
24
25
26
27
2S
29
30
31
32
33
34
35
36
37
3S
39
40
41
42
43
44
45
46
47

.*********** •• *********** ;. .
;* AMPER-SORT
.* BY ALAN HILL ;.
;* AMPERSORT
;*
;* COPYRIGHT (C) 19B1

*
*
*
*
*
*

;* MICRC INK, INC. *
;* CHFLMSFCRD, MA 01S24 *
;* ALL RIGHTS RESERVED *
:* *
;************** ••• *.*****

NAPT
NMS1
ASIJ
CSIl
AS I:>
CSI2
IIII
NNNN
FSTR
FLEN
ClSP
JJJJ
LFNI
LENJ
TYPE
ZZ50
ZZ6B
CHRG
GETB
SNER
FRNM
GETA
MPLY
COUT

EPZ $DO
EPZ $D4
EPZ $D6
EPZ $D8
EPZ $DA
EPZ $DC
EPZ $DE
EPZ $EO
EPZ $E2
EPZ $E7
EPZ $EC
EPZ $ED
EPZ $EF
EPZ $FO
EPZ $Fl
EPZ $50
EPZ $6B
EPZ $B1
EOU $E6FS
EOU $DEC9
EOU $DD67
EOU $E752
EQU $55SA
EOU $FDED

ORG $5200
OBJ $OSOO

PROCESS '&'

APPLESOFT EVALUATION ROUTINE 'GETBY,
OUTPUTS "SYNTAX ERROR"
APPLESCFT EXPRESSION EVALUATOR ROUTJ
APPLESOFT FP->INT ROUTINE 'GETADR'
RELOCATED OLD MON. MULTIPLY ROUTINE
APPLESOFT OUTPUT ROUTINE

,
j ,
1.

i

,

.,

...,
i

r-
l

tlBl Hill AMPER-SORT 103

5200 48
5200 48 49 SORT PHA ;ENTER WITH FIRST CHAR
5201 20E654 50 JSR SVZP ;SAVE A WORK AREA IN ZERO PAGE
5204 68 51 PLA
5205 A200 52 LOX #$00
5207 002C55 53 SROI CMP SRTS,X ;EOIT FOR 'SRTt(,
520A 0046 54 BNE ERRX ;SIGNAL 'SYNTAX ERROR'
520C 20BI00 55 JSR CHRG ;GET NEXT CHARACTER
520F E8 56 INX
5210 E005 57 CPX #$05
5212 00F3 58 BNE SROI
5214 A200 59 LOX #$00 ;OK SO FAR
5216 F003 60 BEQ VNAM
5218 20BI00 61 SR04 JSR CHRG ;GET ANOTHER CHARACTER
521B C92C 62 VNAM CMP , ;LOCP TO GET ARRAY NAME
5210 FOOA 63 BEQ SR05
521F 907255 64 STA NAME,X ;SAVE NAME
5222 E8 65 INX
5223 EOI0 66 CPX #$10 ;16 CHARACTERS IS LONG
5225 OOFl 67 BNE SR04 ;ENCUGH FOR A NAME
5227 F029 68 BEQ ERRX ;SIGNAL ERROR

~ 5229 CA 69 SR05 OEX
I 522A B07255 70 LOA NAME,X ;~IHAT TYPE

5220 C924 71 CMP '$
522F F024 72 BEQ CHAR ; CHARACTER
5231 C925 73 CMP '%
5233 0015 74 BNE FPOO ;FLOATING POINT
5235 75
5235 76 INTEGER SCR~'

5235 77
5235 A201 78 INTE LOX #$01 ; INTEGER
5237 A980 79 INTI LOA #$80
5239 107255 80 ORA NAME,X ;NEG. ASCII
523C 907255 81 STJI NAME,X
523F CA 82 I:EX
5240 10F5 83 BPL INTI
5242 A902 84 LOA #$02 ;INITIALIZE OISPLACEMENT
5244 85EC 85 STA DISP
5246 A901 86 LOA #$01
5248 0019 87 BNE SR06
524A 88

r- 524A 89
I 524A 90 ;FLOATING POINT £CRT

524A 91
524A 92
524A A905 93 FPOO LCA #$05

r- 524C 85EC 94 STA OISP
524E A902 95 LCA #$02
5250 0011 96 BNE SR06
5252 97
5252 98
5252 4CA552 99 ERRX JMP ERRO
5255 100
5255 101
5255 102 ; CHARACTER SORT
5255 103

r 5255 A980 104 CHAR LOA #$80
5257 007355 105 ORA NAME+01 ;NEG. ASCII
525A 8D7355 106 STA NAME+01
525C A903 107 LOA #$03
525F 85EC 108 STA DISP
5261 A900 109 LCA #$00
5263 110
5263 III ** £ET UP SORT LIMITS **
5263 112
5263 85Fl 113 R06 STA TYPE ;O=CH, l=INT, 2=FP

fWlIIl 5265 20BI00 114 JSR CHRG ;NOW GET SUBSCRIPTS
5268 206700 115 JSR FRNM ; ANO PUT IN F.P. ACC.
526B 2052E7 116 JSR GETA ;CCNVERT TO INTEGER
526E A550 117 LOA ZZ5C'
5270 850E 118 STA IIII ;FIRST SUBSCRIPT

r- 5272 A551 119 LCA ZZ50+01
5274 85DF 120 STA IIII+01
5276 20BI00 121 JSR CHRG
5279 2067CO 122 JSR FRNM

,
104 Runtime Utilities ,
527C 2052E7 123 JSR GETA
527F A550 124 LDA ZZ50
5281 85D4 125 STA NMSI ;LAST SUBSCRIPT INTO N-l i 5283 18 1;>6 CLC
5284 6901 127 ADC #$01
5286 85EO 128 STA NNNN ;N
5288 A551 129 LDA ZZ50+01
528A 85D5 130 STA t.'MSl+Ol 1 528C 6900 131 ADC #$00
528E 85El 132 STA NNNN+Ol
5290 A5Fl 133 LDA TYPE
5292 D059 134 BNE TERM ;BRANCH NOT CHARACTER SCRT
5294 F015 135 BEQ SR16 ,
5296 136
5296 137 **** ERROR ••••
5296 138
5296 A200 139 ERR3 LDX #$00
5298 BD3155 140 SRll LCA MSG]' X ;ARPAY VARIABLE NAHE i 529B 0980 141 ORA #$80 ;NOT FOUND
529C 20EDFC 142 JSR COUT ;NCTIFY USER
52AO E8 143 INX
52Al E017 144 CPX #$17
52A3 DOF3 145 BNE SRI] ,
52A5 200955 146 ERRO JSR RSZP ;RESTCRE ZERO PAGE AND
52A8 4CC9CE 147 JMP SNER ;SIGNAL SYNTAX ERROR
52AB 148 ;
52AB 149 ; ••• GET SORT FIELDS •••
52AB AOOO 150 SR16 LCY #$00 i 52AC 8C8955 151 STY SAVY
52BO 20BI00 152 SR17 JSR CHRG ;GET NEXT CHARACTER
52B3 20F8E6 153 JSR GETB
52B6 CA 154 DEX
52B7 AC8955 155 LDY SAVY 1 52BA 96E2 156 STX FSTR,Y ;START COLUMN-l
52BC 20BI00 157 JSR CHRG
52BF 20F8E6 158 JSR GETB
52C2 AC8955 159 LDY SAVY
52C5 96E7 160 STX FLEN,Y ;END COLUMN """'\
52C7 20BI00 161 JSR CHRG \
52CA 90D9 162 BCC ERRO ;SHOULD BE 'A'OR'D'
52CC C944 163 CMP 'D
52CE F004 164 BEQ SR07 ; DESCENDING
52DO A9FF 165 LDA #$FF ;ASCENDING "I 52D2 3002 166 BMI SR09
52D4 A900 167 SP07 LDA #$00
52D6 998255 168 SR09 STA UPDN,Y ;SAVE SEQUENCE
52D9 C8 169 INY
52DA 8C8955 170 STY SAVY i 52DD 20BI00 171 JSR CHRG
52EO C929 172 CMP 'J
52E2 F006 173 BEQ LAST
52E4 C92C 174 CMP ,

"
52E6 FOC8 175 BEQ SR17 ;LOOP FCR NEXT SORT FIELDPARMS
52E8 DOBB 176 BNE ERRO
52EA 8C8855 177 LAS'! STY PRSN ;NO. OF SORT FIELDS
52ED 20BI00 178 TERM JSR CHRG ;MUST BE TERMINATOR
52FO DOB3 179 BNE ERRO ;IT WASN'T
52F2 180 l: 52F2 181 ;SEAROH SORT ARRAY NAME
52F2 182
52F2 AOOO 183 MC20 LDY #$00
52F4 B16B 184 LDA (ZZ6B),Y

:1 52F6 CC7255 185 CMP NAME
52F9 D008 186 BNE Mcn
52FB C8 187 INY ;FOUND FIRST CHARACTER
52FC B16B 188 LDA (ZZ6B),Y
52FE CD7355 189 CMP NAME+Ol

1 5301 F02B 190 BEQ SETN ;FCUND BOTH
5303 18 191 MC22 CLC ;KEEP LOOKING
5304 AOO2 192 LDY #$02
5306 B16B 193 LDA (ZZ6B),Y
5308 656B 194 ADC ZZ6B
530A 48 195 PHA .,..,
530B C8 196 INY)

:1

r-
". Hill AMPER·SORT 105
I

530C B16B 197 LDA (ZZ6B). Y

r-' 530E 656C 198 APC ZZ6B+Ol
5310 856C 199 STA ZZ6B+Ol
531:1 68 200 PLA
5313 856B 201 STA ZZ6B
5315 C56D 202 CMP $6D
5317 A56C 203 LDA ZZ6J;!+01
5319 E56E 204 SBC $6E
531B B003 205 BCS SR:17 ;NO LUCK. OUT OF BOUNDS
531D 4CF252 206 JMP MC20
5320 207

~ 5320 208 ****** NAME NOT FCUND *******
! 5320 209

53:10 1.202 210 SR27 LDX #$02
53:12 BD7255 211 SR28 LDA NAME. X
5325 9D3B55 212 STA VARI+1.X ;PUT NAME IN BUFFER

r- 5328 CA 213 DEX
5329 10F7 214 BPL SR28
532B 4C9652 215 JMP ERR3 ;SENP A MESSAGE
532E 216
532E 217 ***** INITIALIZE ARRAY POINTER ***

r- 532E 218
532E 18 219 SETN CLC ;FOUND VARIABLE NAME OE
532F A56B 220 LDA ZZ6B ;ARRAY TO BE SORTED.
5331 6907 221 ADC #$C7 ;COMPUTE ADDRESS OF
5333 8552 222 STA $52 ;STRING LENGTH BYTE.

r- 5335 A56C 223 LDA ZZ6B+Ol
5337 6900 224 ADC #$0(1
5339 8553 225 STA $53
533B A5!:'E 226 LDA IIlI ;(6B.6C)+7+DISP*IIII
533D 8550 227 STA ZZ50 ,.., 533F A5DF 228 LDA IlIl+Ol
5341 8551 229 STA ZZ50+01
5343 A5EC 230 LDA DISP
5345 8554 231 STA $54
5347 A900 232 LDA #$00
5349 8555 233 STA $55
534B ;>08A55 234 JSR MPLY ;ROM MULTIPLY ROUTINE
534E A550 235 LDA ZZ5(,
5350 85D6 236 STA ASII ;SAVE ADDRESS FOR MUCH USE
5352 A551 237 LDA ZZ50+01

~ 5354 85D7 238 STA ASI1+(ll
I 5356 4C6653 239 JMP SR22

5359 240
5359 241 ;****** BEGIN SCRT *******
5359 :14:1 .

! 5359 :143 ; ** FCR I =11 TO N-l LOOP **
5359 244
5359 18 245 CCNI CL·C
535A A5D6 246 LDA AElI
535C 65EC 247 ADC DISP ;NEXT I ADDRESS
535E 85D6 248 STA ASII
5360 A5D7 249 LDA AEIl+Ol
5362 6900 25(' ADC #$00
5364 8SD7 251 STA ASIl+Ol
5366 AOOI 25:1 ER2:1 LDY #$01

r- 5368 BID6 253 LDA (ASIl),Y ;GET ADDRESS GF THE
536A 85D8 254 STA CEIl ;CHARACTER STRING
536C CS 255 INY
536[1 BID6 256 LDA (}I.SIl), Y
536F 85D9 257 STA CSIl+Ol

fiiII"'l 5371 18 258 CLC
5372 A5D6 259 LOA ASIl ; ALSO NEED ADDRESS CF
5374 65EC 26(1 ADC DISP ;ADJACENT ELEMENT FCR
5376 85DA 261 STA ASI2 ;BUBBLE SORT COMPARISON
5378 A5D7 :16:1 LDA ASIl+(ll
537A 6900 263 AOC-#$OO
537C 85DB 264 STA ASI2+01
537E 18 265 CLC
537F A5DE 26t LOA IIII
5381 6901 267 ADC #$01

~ 5383 85EO 268 STA JJJJ ;J=I+1
5385 A5DF 269 LOA IIII+Ol
5387 690(1 270 ADC #$00
5389 85EE 271 STA JJJJ+Ol

~

106 Runtime Utilities

538B 4C9B53
538E ;

JMP SR24

538E

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

;**** FOR J=I+l TO N LOCP ****
538E
538E 18
538F A5DA
5391 65EC
5393 85DA
5395 A5DB
5397 6900
5399 85DB
539B ACOI
539D BIDA
539F 85DC
53Al C8
53A2 BIDA
53A4 85DD
53A6 A5Fl
53A8 F003
53AA 4C2F54
53AD
53AD
53AD
53AD ACOO
53AF BI06
53Bl F052
53B'3 85EF
53B5 B1DA
53B7 F04C
53B9 85FO
53BB A200
53BD B4E2
53BF BD8255
53C2 300C
53C4 B1D8
53C6 D1DC
53C8 B014
53CA 20C154
53CO 4C0554
53DO B1D8
53D2 D1DC
53D4 902F
53D6 F019
53D8 20C154
53DB 4C0554
53DE D025
53EO C8
53E1 C4EF
53E3 F006
53E5 C4FO
53E7 F016
53E9 900F
53EB C4FO
53ED 90E9
53EF FOOE
53Fl C8
53F2 C4EF
53F4 F009
53F6 C4FO
53F8 FODE
53FA 98
53FB D5E7
53FD DOCO
53FF E8
5400 EC8855
5403 DOB8
5405
5405
5405
5405 E6ED
5407 D002
5409 E6EE
540B A5ED
540D C5EO
540F A5EE

CONJ CLC
LDA ASI2
ADC DISP
STA ASI2
LDA ASI2+01
ADC #$00
STA ASI2+01

SR24 LDY #$01
LDA (ASI2),Y
STA CSI2
INY
LDA (ASI2),Y
STA CSI2+01
LDA TYPE
BEO CHST
JMP NCHH

;*** CHARACTER SORT ***
;
CHST LDY #$00

LDA (ASU), Y
BEO MC40
STA LENI
LDA (ASI2),Y
BEO MC40
STA LENJ
LDX #$00

SR29 LDY FSTR,X
MC33 LDA UPDN,X

8MI ASND
LDA (CSU)'Y
CMP (CSI2), Y
BGE MC26
JSR SWAP
JMP MC40

ASND LDA (CSII),Y
CMP (CSI2),Y
BLT MC40
BEO MC27

MC25 JSR SWAP
JMP MC40

MC26 BNE MC40
INY
CPY LENI
BEO MC39
CPY LENJ
BEO MC29
BLT MC28

MC39 CPY LENJ
BLT MC25
BEQ MC29

MC27 INY
CPY LENI
BEO MC29
CPY LENJ
BEO MC25

MC28 TYA
CMP FLEN,X
BNE MC33

MC29 INX

;

CPX PRSN
BNE SR29

;***** NEXT J ********
;
MC40 INC JJJJ

BNE MC38
INC JJJJ+Ol

MC38 LDA JJJJ
CMP NNNN
LDA JJJJ+01

;INCREMENT AB$(J) ADDRESS

;GET NEW STRING ADDRESS

;CHARACTER SORT

;STRING LENGTH
;NULL STRING, SKIP
;SAVE LEN (AB$(I»

;SAVE LEN(AB$(J»

;STARTING SORT COLUMN
;SEOUENCE
;BRANCH ASCENDING
; CHARACTER BY CHARACTER
;COMPARISON FOR DESCENDING
;POSSIBLE SWAP
;DEFINITE SWAP
; NEXT RECORD
;ASCENOING

;NC SWAP, NEXT RECORD
;POSSIBLE SWAP
; SWAP
;NEXT RECORD
;NO SWAP
;LOOK AT REMAINING CHARACTER

;UP TO THE LIMITS OF UNTIL

;WE FIND A REASON TO SWAP

; SWAP
;NO SWAP

;END OF SORT FIELD?
;BRANCH NO

;YES, ANY MORE FIELDS?

;J=J+l

;J=N?

,

,
i ,
i

i

~
I ,

r-

!'fIIlIl Hill AMPER-SORT 107

5411 E5E1 347 SBC NNNN+01
5413 9014 348 BCC JMPJ ;BRANCH NO

r-o 5415 349
5415 350 :*** NEXT I ****
5415 351
5415 E60E 352 INC IIII
5417 0002 353 BNE MC41

r- 5419 E60F 354 INC IIII+01 ;1=1+1
541B A50E 355 MC41 LOll IIII
541D C504 356 CMP NMS1 ;IeN-1?
541F A50F 357 LOll UII+01
5421 E505 358 SBC NMSl+01

! 5423 9007 359 BCC JMPI ; BRANCH NO
5425 360 ;
5425 361 :***** SORT OONE *****.*
5425 362
5425 200955 363 srON JSR RSZP ;RESTORE ZERO PAGE
5428 60 364 RTS
5429 4C8E53 365 JMPJ JMP CONJ
542C 4C5953 366 JMPI JMP CONI
542F 18 367 NCHH CLC ;NOT A CHARACTER SORT SO
5430 6A 368 ROR ;IT MUST BE INTEGER OR F. P.

r- 5431 B003 369 BCS INTC ;IT'S INTEGER
5433 4C6054 370 JMP FPCC ;IT'S FLOATING POINT
5436 371
5436 372 :***** INTEGER SORT .*****
5436 373

~ 5436 AD01 374 INTC LOY #$01
5438 Bl06 375 LOll (ASII), Y ;ASCENOING ORDER ONLY
543A D1DA 376 CMP (ASI2), Y
543C 88 377 OEY ;COMPARE IN%(I) WITH IN%(J)
5430 B106 378 LOA (ASU),Y

r-- 543F FlOA 379 SBC (ASI2), Y
5441 9022 380 BCC NCSP ;POSSIBLE SWAP
5443 B1D6 381 LOA (ASU), Y
5445 510A 382 EOR (ASI2), Y
5447 30BC 383 BMI MC40

fWIl 5449 384
5449 385 ;**** SWAP I WITH J *.*****
5449 386
5449 C8 387 SWIN INY
544A B1DA 388 LOA (ASI2) ,Y
544C 48 389 PHA
5440 88 390 OEY
544E BIDA 391 LOA (AS12),Y ;SWAP IN%(I) WITH IN%(J)
5450 48 392 PHA
5451 BI06 393 LOA (ASU), Y
5453 910A 394 STA (ASI2), Y
5455 C8 395 INY
5456 B106 396 LOA (ASII) , Y
5458 910A 397 STA (ASI2),Y
545A 88 398 DEY
545B 68 399 PLA
545C 9106 400 STA (ASU),Y
545E C8 401 INY
545F 68 402 PLA
5460 9106 403 STA (ASII), Y r- 5462 4C0554 404 JMP MC40 ;NEXT RECORD
5465 BID6 4C5 NOSP LCA (ASlJ) ,Y
5467 51Cl 406 ECR (AS'J:?),Y
5469 30CE 4('7 8MI £WII'< ;EWAP
5468 lC98 40e BPL MC4C'
546[; 4C9
5460 41C' **** FLOl'.TING POINT SCRT ***.
5460 411
5460 ACOO 412 FPCC LOY #$CO
546F BIC6 413 FPOI LCA (ASJI),Y

~ 5471 CI0A 414 CMP (ASI2),Y
5473 9008 415 BCC M8SP
5475 FC02 416 BEC FP(,2
5477 BOlO 417 BCS FPSP THIS BIT OF CCNVOLUTEO

r- 5479 C8 418 FPC2 INY LOGIC TELLS ME IF
547A COOS 419 CPY #$05 FP(I) IS GREATER THAN,
547C DOFl 42C BNE FP01 ECUAL TO, OR LESS THAN
547E F03E 421 BEQ JM40 FP(J) .

,
108 Runtime Utilities

J
5480 AOOI 4:12 MBSP LCY #$01
5482 BID6 423 LCA (ASII),Y :A TRUTH TABLE HELPS
5484 31DA 424 AND (ASI2), Y J 5486 IlDA 425 ORA (ASI2),Y
5488 3020 426 BMI FP03
548A 88 427 DEY
548B BIDA 428 LCA (AS12) , Y
548D [,02F 429 BNE JM40 ,
548F C8 430 INY
5490 BIC6 431 L[,A (AS1I), Y
5492 1016 432 BPL FP03
5494 3028 433 8MI JM40
5496 AOOI 434 FPSP LDY #$01 ,
5498 BID6 435 LCA (ASII),Y
549A 3ICA 436 AND (ASI2), Y
549C 11D6 437 ORA (ASII), Y
549E 301E 438 BMI JM40
54AO 88 439 DEY ~ 54Al BID6 440 LDA (ASII),Y
54A3 D005 441 BNE FP03
54A5 C8 442 INY
54A6 BICA 443 LDA (ASI2), Y
54A8 1014 444 BPL JM40 ,
54AA A004 445 FP03 LDY #$04
54AC BID6 446 FP04 LDA (ASII),Y :SAVE FP(I) IN STACK
54AE 48 447 PHA
54AF 88 448 DEY
54BO 10FA 449 BPL FP04 i 54B2 C8 450 FP08 INY
54B3 BIDA 451 Ll:'A (ASI2),Y
54B5 91D6 452 STA (ASII),Y :SWAP
54B7 68 453 PLA
54B8 91DA 454 STA (ASI2),Y ,
54BA C004 455 CPY #$04
54BC DOF4 456 BNE FP08
54BE 4C0554 457 JM40 JMP MC40 :NEXT RECORD
54Cl AOOO 458 SWAP- LDY #$00
54C3 BID6 459 LDA (ASII).Y ,
54C5 48 460 PHA :ROUTINE TO SWAP THE
54C6 C8 461 INY
54C7 A5D8 462 LDA CSII : CHARACTER POINTERS FOR
54C9 91DA 463 STA (ASI2),Y
54CB C8 464 INY : CHARACTER SORT. ,
54CC A5D9 465 LDA CSII+Ol
54CE 91DA 466 STA (ASI2),Y
54DO A5DD 467 LDA CSI2+01
54D2 91D6 468 STA (ASII),Y
54D4 85D9 469 STA CSII+Ol ,
54D6 88 470 DEY
54D7 A5DC 471 LDA CSI2
54D9 91D6 472 STA (ASU). Y
54DB 85D8 473 STA CSII
54DD 88 474 DEY .,
54DE BIDA 475 LDA (ASI2), Y
54EO 91D6 476 STA (ASII),Y
54E2 68 477 PLA
54E3 91DA 478 STA (ASI2), Y

IIiit 54E5 60 479 RTS
I 54E6 A200 480 SVZP LDX #$00 :SAVE SOME OF APPLESOFT'S

54E8 B5DO 481 MC51 LDA NAPT,X :ZERO PAGE. SORT ROUTINE
54EA 9D4855 482 STA ZPSV,X :NEEDS SOME ROOM TO WORK.
54ED E8 483 INX , 54EE Eon 484 CPX 22
54FO DOF6 485 BNE MC51
54F2 A56B 486 L[,A ZZ6B :ALSO $6B.6C
54F4 8D7055 487 STA SV6B
54F7 A56C 488 LDA ZZ6B+Ol
54F9 8D7155 489 STA SV6B+Ol .,
54FC A200 490 LCX #$00
54FE B550 491 MC55 LDA ZZ50,X :ALSO $50.55
5500 9D6A55 492 STA SV50,X
5503 E8 493 INX
5504 E006 494 CPX #$06 i 5506 DOF6 495 BNE MC55
5508 60 496 RTS

"""" I

~ ,

r- Hill AMPER-SORT 109

5509 A200 497 RSZP LDX #$00 :RESTORE ZERO PAGE DATA
550B BD4855 498 MC61 LDA ZPSV,X
550E 95DO 499 STA NAPT,X
5510 E8 500 INX
5511 Een 501 CPX 22
5513 DOF6 502 BNE MC61
5515 AI)7055 503 LDA SV6B
5518 856B 504 STA ZZ6B
551A AD7155 505 LDA SV6B+01
5510 856C 506 STA ZZ6B+01
551F A200 507 LDX #$00
5521 BI)6A55 508 MC65 LDA SV50,X
5524 9550 509 STA ZZ50,X
5526 E8 510 INX
5527 E006 511 CPX #$06

fiiIlIIII
5529 DOF6 512 BNE MC65
552B 60 513 RTS
552C 514
552C 535254 515 SRTS ASC 'SRT#(,
552F 2328

r- 5531 8D 516 MSG1 HEX 8D
5532 564152 517 ASC 'VARIABLE'
5535 494142
5538 4C45
553A 202020 518 VARI HEX 2020202020

r- 553D 2020
553F 4E4F54 519 ASC 'NOT FOUND'
5542 20464F
554.5 554E44
5·548 000000 520 ZPSV HEX 0000000000000000
554B 000000
554E 0000
5550 000000 521 HEX 0000000000000000
5553 000000
5556 0000
5558 000000 522 HEX 0000000000000000
555B 000000
555E 0000
5560 000000 523 HEX 0000000000000000
5563 000000
5!l66 0000
5568 0000 524 HEX 0000
556A 000000 525 SVSO HEX 000000000000
556D 000000
5570 0000 526 SV6B HEX eooo
5572 000000 527 NMIE HEX 0000000000000000
5575 000000
5578 oeoo
557A 000000 528 HEX 0000000000000000
557D 000000
5580 0000
5582 000000 529 UPDN HEX 0000000000
5585 0000
5587 00 530 INDS HEX 00
5588 00 531 PRSN HEX 00
5589 00 532 SAVY HEX 00

533 END

*.*** END OF ASSEMBLY

110 Runtime Utilities

******.******************

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

NAPT OODO NMS1 00D4 ASII 00D6
IIlI OODE NNNN OOEO FSTR 00E2
LENI OOEF LENJ OOFO TYPE 00F1

** ABSOLUTE VARABLES/LABELS

GETB E6F8 SNER DEC9 FRNM DD67
SORT 5200 SR01 5207 SR04 5218
INTl 5237 FPOO 524A ERRX 5252
SRll 5298 ERRO 52A5 SR16 52AB
LAST 52EA TERM 52ED MC20 52F2
SETN 532E CONI 5359 SR22 5366
SR29 53BD MC33 53BF ASND 53DO
MC27 53F1 MC28 53FA MC29 53FF
SDON 5425 JMPJ 5429 JMPI 542C
NOSP 5465 FPCC 546D FP01 546F
FP03 54AA FP04 54AC FP08 54B2
MC51 54E8 MC55 54FE RSZP 5509
MSG1 5531 VARI 553A ZPSV 5548
UPDN 5582 INDS 5587 PRSN 5588

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH: 0332

CSII 00D8 ASI2 OODA
FLEN 00E7 DISP OOEC
ZZ50 0050 ZZ6B 006B

GETA E752 MPLY 558A
VNAM 521B SR05 5229
CHAR 5255 SR06 5263
SR17 52BO SR07 52D4
Mcn 5303 SR27 5320
CONJ 538E SR24 539B
MC25 53D8 MC26 53DE
MC40 5405 MC38 540B
NCHH 542F INTC 5436
FP02 5479 MBSP 5480
JM40 54BE SWAP 54C1
MC61 550B MC65 5521
SV50 556A SV6B 5570
SAVY 5589

CSI2 OODC
JJJJ OOED
CHRG 00B1

COUT FDED
INTE 5235
ERR3 5296
SR09 52D6
SR28 5322
CHST 53AD
MC39 53EB
MC41 541B
SWIN 5449
FPSP 5496
SVZP 54E6
SRTS. 552C
NAME 5572

,
,

~
I

r
i

Apple II
Trace List Utility

by Alan C. Hill

The Integer BASIC trace command provides useful
information for program debugging. But the format in
which this information is presented (a barrage of line
numbers) is not terribly pleasant or easy to use. This
utility enhances the trace command's capabilities by
providing a more legible output format and a capability
for saving line numbers on longer tracings.

Did you ever use the TRACE function in Integer BASIC, only to give up in despair
after looking at a screen full of line numbers? Try it without a printer and you may
never use TRACE again! Here's the utility that will put TRACE back into your
debugging repertoire (for those of us who need a little help getting it right).

The utility presented here will list each BASIC program source statement line
by line in the order executed. There's no need to refer back and forth between
TRACE line numbers and the source program listing. Two versions are presented:
Version 1 is a real-time utility; i.e. each statement is listed immediately prior to
execution so you can follow the program's logical sequence. You can slow the
execution rate down or even temporarily halt execution while you scan the
screen. Version 2 only saves the line numbers of the last 100 lines executed for
listing later. Version 2 could be useful in tracing a full-screen graphics program.

The Technique

The program utilizes the DOS COUT hook at $AA53, $AA54 to intercept and
suppress TRACE printing. All other printing continues normally with one excep­
tion (see Warning #1). Before returning to the BASIC interpreter, the line number

r- is picked up and pushed into an array (TR) in the variables area above LOMEM. If
the number is the same as the previous line number, a zero line number is placed
in the stack with the line number of a FOR I = 1 to 1000: NEXT I delay loop, for
instance. When the number changes, it will be placed in the stack. The most re­
cent 100 line numbers are saved. Tracing is performed under user control by the
normal TRACE/NOTRACt statements. In Version 2, the lines may then be listed
after the test program ends. The technique in Version 1 is similar with one
distinction. The trace intercept routine transfers control to the utility program to
list the line as soon as it is put in the stack.

112 Runtime Utilities

How the TRACE Intercept Routine Works

The output pointer in $AA53, $AA54 is initialized by the utility to the ad­
dress ($300) of the Trace Intercept Routine. Each character is examined by TIR as
it comes through if the TRACE flag is up (bit 7 of $AO on). If off, TIR jumps back to
the normal print utility at $FDFO. If the character is a # ($A3), it is assumed that a
line number follows. Every line number in the stack is pushed down and the cur­
rent line number is placed at the top. Location $DC,DD points to the BASIC line
about to be executed. The line number is in the second and third bytes. In Version
2, TIR returns to the interpreter. In the real-time version (Version I), control is
next transferred to the utility program at line 30020. TIR expects that the address
of line 30010 has been saved in $15,16 by the utility programs CALL 945 in line
30010. TIR first saves the contents of $DC,DD and then replaces it with the con­
tents of $15,16. It also saves the address of the current statement within the
BASIC line. That is, the contents of $EO,El are saved at $IB,IC. TIR can now
transfer control back to the interpreter's continue entry point by a JMP $E88A
which then executes line 30020 of the utility. The current line of the test program
is listed; the BASIC pointers are restored by the CALL 954 in line 30090; the
return address is popped; and control is returned to the test program through
$E881. Fait accompli.

As mentioned previously, the TR array is used to save the line numbers. The
array is set up the first time TIR is entered. Note that TR is intentionally not
DIMensioned in the utility. TIR must handle that task since a RUN of the test pro­
gram will reset the variables area pointer ($CC,CD) back to LOMEM.

Programming the Routines

TIR starts at $300. It could be relocated if the absolute references in the POKE
and CALL statements are changed. Also note that the LIST statement in lines
30060 and 32040 will not be accepted by the Syntax checker. They must first be
coded as PRINT statements, located, and changed to LIST tokens ($74) using the
monitor. This is more easily done if these lines are coded and the tokens changed
before the remaining lines are entered. See example below for the case where
HIMEM is 32768:

NEW
30060 PRINT EXECLINE
32040 PRINT TR (I)
CALL - 151 (to enter Monitor)
*7FEC:74
*7FF9:74
(enter Control/C)
LIST
30060 LIST EXECLINE
32040 LIST TR (I)

,

,
,
,
,
1

,

,
~

I

Hill Trace-List 113

Using the Utility

1. After coding the assembler and BASIC utility programs, the test program is
then appended.

2. Create a line 0 that will be used to indicate that a line has successively
?iiaIl executed. For example, code:

... ,

r
r-

I'iR

o REM ***ABOVE LINE REPEATED***

3. Run the utility of your choice:

RUN 30000 Version 1 (Real-time list)
or RUN 32000 Version 2 (Post-execution list)

4. Insert the TRACE/NOTRACE statements wherever desired in test pro­
gram. Just enter the TRACE command directly if you want to trace the entire pro­
gram. Also see Warning #1.

5. RUN the test program.

6. Display the results:

A.

B.

Real-time Version: The lines will be listed automatically as executed.
Note the FOR:NEXT loop in line 30090 can be adjusted to control the
execution rate. The upper limit could be PDL(O), thereby giving you
run-time control over the execution rate. Note also that execution can
be forced to pause by depressing paddle switch O. Execution will
resume when the switch is released.

Post-execution Version: After stopping or ending the program, enter a
GOTO 32020 command. The first page of statements will be
displayed. Enter a "C" to display additional pages, a "T" to reset for
another test run, or an "E" to return to BASIC. Note that even if you
have traced with Version I, you can still display the last 100 lines with
Version 2.

Sample Run

Test Program

o REM *** REPEATED ***
10 TRACE
30 GOSUB 100+RND(3) *10
40 FOR 1=1 TO 10: NEXT I
50 GOTO 30

100 PRINT "LINE 100":RETURN
110 PRINT "LINE 110":RETURN

114 Runtime Utilities

120 PRINT "LINE 120":POP
125 NO TRACE:END
> RUN 30000
> RUN

Trace Output

30 GOSUB 100 + RND(3)*10
110 PRINT "LINE 110":RETURN LINE 110
30 GOSUB 100+RND(3)*10
40 FOR 1=1 TO 10:NEXT I
o REM *** REPEATED ***

50 GOTO 30
30 GOSUB 100+ RND(3)*10

120 PRINT "LINE 120":POP LINE 120
125 NO TRACE:END
>

For a slow motion game of " BREAKOUT" , trace it with the real-time version!

Hints and Warnings

It's usually a good idea to deactivate TIR after the test program has ended by
hitting Reset and Control-C and entering NOTRACE. Don't try to trace the test
program without first running the utility program at line 30000 or 32000.

To increase the debugging power of the real-time trace utility, make liberal
use of the push button to halt program execution. With practice and the proper
choice of the delay loop limit in line 30090, you can step through the program one
line at a time. Enter a Control-C while the push button is depressed and execution
will be STOPPED AT 30070. You can then use the direct BASIC commands to
PRINT and change the current value of the program's variables. Enter CON and
execution will resume. The game paddles must be installed for the program to
work correctly.

With additional logic in the utility program, you can create specialized
tracing such as stopping after a specified sequence of statements has been
detected. Return via a CALL 958 if you don't want TRACE turned back on.

Tracing understandably slows the execution rate of your program, but you
probably aren't concerned with speed at this point. However, the wise use of
TRACE/NOTRACE will help move things along. Also, when encountering a delay
loop such as FOR 1= 1 to 3000: NEXT I, you may want to help it along by stopping
with a Control-C entering 1=2999, and CONtinuing.

Warning 11: There must be no PRINT statement with a # character in the out­
put. TIR assumes that a # is the beginning of a trace sequence. Either remove the #
or bracket the PRINT statement with a NOTRACE/TRACE pair.

Warning 62.: There must be no variable names in the test program identical to
those in Version 1. The TR variable name must be unique in both versions.

,
,
,
i

,
- -'

1

1

JIiIII'
r

~
I

Hill Trace-List 115

Warning 63: Line 0 in the test program should be a REMark statement as
described above to avoid confusion. Line 0 is listed when a line is successively
repeated.

Warning 64: Once TRACE has been enabled, the test program must not
dynamically reset the variables pointer ($CC,CD) with a CLR or POKE unless it
first disables TRACE and resets $13,14; e.g., 100 NOTRACE:CLR: POKE 19, 0:
POKE 20,0: TRACE is OK.

Extensions

The primary motivation for this program was to improve the TRACE function
in Integer BASIC. However, you can imagine other uses of a program that gains
control as each statement is executed-maybe the kernel of a multiprogramming
executive.

29970 REM ************************
29971 REM * *
29972 REM * TRACE LIST UTILITY *
29973 REM * BY ALAN G. HILL *
29974 REM * *
29975 REM * TRACE LIST *
29976 REM * *
29977 REM * COPYRIGHT (C) 1981 *
29978 REM * MICRO INK. INC. *
29979 REM * CHELMSFORD. MA 01824 *
29980 REM * ALL RIGHTS RESERVED *
29981 REM * *
29982 REM * •••• ********** ••• **** ••
29983 REM
29984 REM
29985 PRINT: PRINT "'RUN 31000' APPEND": PRINT "'RUN 30000' REAL-TIME LIST"

: PRINT "'RUN 32000' POST-EXEC SETUP"
29986 PRINT "'GOTO 32020' POST-EXEC LIST": VTAB 20: INPUT '''RETURN' WHEN READY

TO APPEND". A$
29995 GOTO 31000
29998 REM 'RUN 30000' REAL-TIME
30000 NOTRACE : POKE 54.768 MOD 256: PCKE 55.768/256: POKE 19.0: POKE 20.

0: POKE 787.76: POKE 788.211: POKE 789.3: POKE 790.234: CALL -22447

30004 PRINT "ENABLE TRACE IN YOUR PROGRAM": PRINT "AND 'RUN'."
30005 REM TRACE VERl.0 11-28-78
30006 REM TRACE VERl.l 3-6-79
30007 REM ADD DISK APPEND CAPABILITY
30010 CALL 945: END
30020 EXECLINE=TR(O): IF EXECLINEiO THEN 30050
30030 IF RRRRR=1 THEN 30070
30040 RRRRR=I: GOTC 30060
30050 RRRRR=O
30060 LIST EXECLINE
30070 IF PEEK (-16287»127 THEN 30070
30075 IF EXECLINE=O THEN 30090
30080 FOR JJJJJ=1 TO 150: NEXT JJJJJ
30090 CALL 954: REM BACK TO TEST PGM
30100 END
31000 DIM A$(30)
31001 VTAB 24
31002 INPUT "APPEND ".A$
31005 IF A$iI'''' THEN 31030
31010 POKE O. PEEK (76): PCKE 1. PEEK (77): POKE 76. PEEK (202): POKE 77.

PEEK (203): CALL -3873: POKE 76. PEEK (0): POKE 77. PEEK (1): END

116 Runtime Utilities

31030 POKE 0, PEEK (76): POKE I, PEEK (77): POKE 76, PEEK (202): POKE 77,
PEEK (203): PRINT "LOAD "rA$r",V": POKE 76, PEEK (0): POKE 77, PEEK

(1)
31031 PRINT "'RUN 30000' REAL-TIME": PRINT "'RUN 32000' POST TIME": END
31999 REM 'RUN 32000' POST-EXEC
32000 POKE 54,768 MOD 256: POKE 55,768/256: POKE 19,0: POKE 20.0: POKE 787

,169: POKE 788,127: POKE 789,133: POKE 790,5: CALL -22447
32010 PRINT "TRACE SET UP. ENABLE TRACE IN YOUR PGM": END
3202C NOT RACE : POKE 54,240: POKE 55,253: IF PEEK (20)#0 THEN 32030: PRINT

"TRACE NOT ON IN YOUR PGM": GOTO 32090
32030 CALL -936: FOR 1=100 TO 1 STFP -1: IF TR(I)=-l THEN 32060
32040 LIST TR(I)
32050 IF PEEK (37»18 THEN 32090
32060 NEXT I
32070 GOTO 32090
32C80 CALL -936: IF 1>1 THEN 32060
32090 PRINT : PRINT "C/T/E 1"
32100 KEY= PEEK (-16384): IF KEY<128 THEN 32100: POKE -16368,0: IF KEY=212

THEN 32000: IF KEY=195 THEN 32080: END

Editor's Note: The main listing was omitted from the text due to space limitations.
The machine language program appears on the disk as TRACE INTERRUPT.

,

,

i

..,
)

.,

~
I

4
GRAPHICS AND GAMES

Introduction ll8

A Versatile Hi-Res Function Plotter ll9 - David P. Allen

Apple II Hi-Res Picture Compression 124
Bob Bishop

An Apple Flavored Lifesaver 137

r- Gregory L. Tibbetts

Applayer Music Interpreter 146

~
Richard F. Suitor

Improved Star Battle Sound Effects 156

r- William M. Shryock, Jr.

Galacti-Cube 157

fB
Bob Bishop

I

f'I/IilIIJ

INTRODUCTION
No book on the Apple would be complete without a chapter exploring the recrea­
tional capabilities of the machine. The two features of the Apple which have ex­
hibited the most recreational potential are the graphics and sound generation.
This section includes programs which utilize both these capabilities, and addi­
tionally includes a fun space maze game!

David Allen's "A Versatile Hi-Res Function Plotter" uses high-resolution
graphics to plot curves for any user-defined function. "Apple II Hi-Res Picture
Compression," by Bob Bishop, allows the user to compress any image on the
graphics screen by taking advantage of redundancy. The discussion of the pixel
technique used is very revealing. "An Apple Flavored Lifesaver," by Greg Tib­
betts, is a version of the popular "Life" simulation which allows pattern storage
on disk.

"Applayer Music Interpreter," by Dick Suitor, implements a sophisticated
music generation system for the Apple using no additional hardware. Several sam­
ple tunes are provided, as are the necessary instructions for generating music of
your own. William Shryock's "Improved Star Battle Sound Effects" is another
tonemaking routine. Though much shorter than the previous one, it has
nonetheless provided hours of amusement to many.

Finally, the space-maze game entry in this chapter is "Galacti-Cube" by Bob
Bishop. Written in Integer BASIC, the game challenges you to find the exit to the
'giant cube' floating through space!

i

,
,

A Versatile Hi-Res
Function Plotter

by David P. Allen

One of the obvious uses for Apple Hi·Res capability is
to plot various mathematical functions. The program
presented here is very general purpose and permits the
user to simply plot any expression as a function of
angle from 1 to 360 degrees. A modification is included
which will permit the program to be used on an Atari
as well.

A few years ago when scientific calculators first made their appearance, I was en­
chanted by the ease with which calculations using transcendental functions could
be accomplished. This prompted me to dust off the old trigonometry book and
delve into some basics through which I had once passed somewhat painfully.
Maybe pain isn't the word. Probably boredom and drudgery would be better
words. Log and function tables are probably the only documents with less
magnetism than the Little Rock telephone book. I expect that many a budding
mathematics curiosity has atrophied over the dryness of log tables.

With the power and freedom of this nifty calculator at hand I suddenly found
myself unfettered by the yoke of boredom and I swiftly recovered much of my
early curiosity by travelling quickly through basic trigonometry. Gone were the
stumbling blocks of look-up tables and I was able to move down many diver­
sionary "what if's" to see what really happens when certain values change in
mathematical formulae.

But as exciting as all this was, and because much of mathematics requires
visual images, I looked forward to a time when, with the help of a small computer,
I could generate graphs and figures as well as numbers to excite and satisfy my
curiosity.

And so it was that after acquiring an Apple II computer, one of my first exer­
cises was to develop a program which would use Apple's excellent high-resolution
graphics to plot the path of a variety of mathematical expressions. This program is
the result and I have had much, much fun with it.

120 Graphics and Games

The program was developed on an Apple II with 48K of RAM and an Applesoft
ROM card. The entire program takes only slightly more than 3K of RAM, depend­
ing on the complexity of the function being plotted.

Those who do not have the Applesoft ROM card may still use this program by
changing line 480 to read "HGR2" instead of "HGR". Under these circumstances
the function plotted formula will not be printed at the bottom of the screen. All
other functions work as described.

The heart of the program is line 1010 which contains the function being ex­
plored. A typical function is listed here. When run, the program first defines some
trigonometric and hyperbolic functions which are not directly available in
Applesoft BASIC. It then proceeds to plot the X and Yaxes. As currently arranged,
the expression under investigation is plotted as a function of changing angle, from
1 to 360 degrees. By changing lines 670 and 900, other independent variables
could be introduced. The program is completely protected against off-scale plot­
ting and automatically scales itself for the range of independent variables selected.

When the plot is completed the program dutifully presents a print-out of the
function and awaits your pleasure at the push of the return key. It then presents
you with a helpful list of all of the additional functions defined by the program in
addition to those resident in Applesoft BASIC. Line 1010 is listed and the cursor
invites your screen editing of this line for further variations.

A word of caution: any attempt to plot mathematical "no-no's" like square
roots or logs of negative values will earn you a quick error message. Do not
despair. Use of the ABS command will quickly get you back in business when
these values crop up!

This program has all kinds of tinkering possibilities. You might try surround­
ing line 1010 with a FOR ... NEXT loop to introduce other variable changes and to
allow longer expressions than you can conveniently type into line 1010 all at
once. Just beware! This program is subtly laced with a curious narcotic which has
been known to keep the user awake all night! Have fun!

i ,

,
,

,

~
I

10 REM ***.********************
12 REM * *
14 REM * FUNCTION PLOTTER *
16 REM * DAVID P. ALLEN *
18 REM * *
20 REM * FNPLOTTER *
22 REM * *
24 REM * COPYRIGHT (C) 1981 *
26 REM * MICRO INK, INC. *
28 REM * CHELMSFORD, MA 01824 *
30 REM * ALL RIGHTS RESERVED *
32 REM * *
34 REM ************************
140 REM
150 REM
180 REM THIS PROGRAM PLOTS A
190 REM CURVE FOR ANY EXPRESSION
200 REM AS A FUNCTION OF INCREAS-
210 REM ING ANGLE FROM 1 TO 360
220 REM DEGREES.
230 REM CHANGE LINE 1010 TO A
240 REM FUNCTION YOU WISH TO
250 REM PLOT.
260 REl'I
.270 REM
280 REM *** DEFINE FUNCTIONS ***
290 REM

Allen Function Plotter

300 DEF FN SCH(X) = 2 / (EXP (X) + EXP (- X»: REM SECH(X)
310 DEF FN CCH(X) 2 / (EXP (X) - EXP (- X»: REM CSCH (X)

121

320 DEF FN CTH(X) = EXP (- X) / (EXP (X) - EXP (- X» * 2 + 1:
REM COTH(X)

330 DEF FN SEC(X) = 1 / COS (x): DEF FN CSC(X) = 1 / SIN (x): DEF
FN COT(X) = 1 / TAN (X)

340 DEF FN SNH(X) = (EXP (X) - EXP (- X» / 2: REM SINH(X)
350 DEF FN COH(X) = (EXP (X) + EXP (- X» / 2: REM COSH(X)
360 DEF FN TAH(X) = EXP (- X) / (EXP (X) + EXP (- X» * 2 + 1:

REMTANH(X)
370 REM
380 REM
390 REM ** PLOi GRAPH AXES **
400 REM
410 HOME
420 REM
430 REM MOVE CURSOR TO BOTTOM
440 REM LINE.
450 REM
460 VTAB 24
470 REM
480 HGR
490 HCOLOR= 7
500 HPLOT 0,80 TO 279,80
510 HPLOT 0,16 TO 0,143
520 FOR I = 0 TO 279 STEP 70
530 HPLOT 1,78 TO 1,82: HPLOT 279,78 TO 279,82
540 NEXT I
550 FOR I = 16 TO 144 STEP 16
560 HPLOT 0,1 TO 4,1
570 NEXT I
580 REM
590 REM FLAGS FOR FIRST PLOT
600 REM AND SCALE.
610 REM
620 F = O:G = 0
630 REM
640 REM Rl AND R2 MAY BE SET
650 REM FOR OTHER LIMITS.
660 REM
670 R1 = I:R2 = 360
680 REM

122 Graphics and Games

REM
REM
REM
REM
REM
REM
REM

** BEGIN PLOT **

CHANGE STEP FOR MORE
OR LESS RESOLUTION.
IF Rl>R2 THEN STEP
MUST BE NEGATIVE.

REM
FOR I = Rl TO R2 STEP 5
REM
REM NEXT 3 STEPS ESTABLISH
REM HORIZONTAL SCALE.
REM
IF ABS (Rll >
IF ABS (R2l >
IF G = 0 THEN S

X = I:Y = 0
REM

ABS (R2l THEN R
ABS (Rll THEN R

70 * 4 / R:G = 1

REM CONVERT-S DEGREES TO
REM RADIANS.
REM

X = X * 3.14159 / 180
REM
REM PREVENTS CRASHING WHEN
REM X=O.
REM
IF X = 0 THEN X = .00001
REM
REM
REM NEXT LINE DESCRIBES
REM FUNCTION TO BE PLOTTED

REM
Yl =
Y = Y
Y = Y

REM
REM
REM

X = I
REM
REM
REM

Y =
REM

SIN (Xl +
+ Yl
* 20

SCALES X

* S

COS (2 * xl

RELATES PLOT TO X AXIS

- Y + 80

REM SUBROUTINE PREVENTS
REM OFF-SCALE CRASHING.
REM
GOSUB 1830
REM
REM PLOTS FIRST POINT.
REM
IF F o THEN HPLOT X,Y:F = 1
HPLOT TO X,Y
NEXT I
PRINT : LIST 1010
REM
REM
REM
REM
REM

BLANKS OUT LINE #
AFTER LISTING
LINE 1010.

ABS (Rll
ABS (R2l

690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
119'0
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370

POKE 1616,160: POKE 1617,160: POKE 1618,160: POKE 1619,160
REM
REM
REM
REM
REM
POKE
REM
REM

WAITING FOR YOUR PLEASURE I
PUNCH 'RETURN'
TO CONTINUE I

- 16368,0: WAIT - 16384,126

--;
)

,

i

.""""1
I

(IfIIII8
I

,..
;

1380
1390
14CO
1410
14'0
1430
1440
1450
1460
1470
1480
1490
1500
1510
15'0
1530
1540
1550
1560
1570
1:580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870

THROWS PREVIOUS KEYSTROKE
AWAY WITH

REM
REM
REM
REM
GET Z$
REM
REM
REM
REM
REM

'GET Z$' I

CLEAR SCREE~ AND
PRINT FUNCTIONS FOR
REMINDER.

TEXT HOME
PRINT TAB (
PRINT TAB (
PRINT TAB (
PRINT TAB(
PRINT TAB (
PRINT TAB (
PRINT TAB (
PRINT TAB (
PRINT TAB (
REM

9):"SECANT = FN SEC(X)"
9) : "COSEC = FN CSC(X)"
9):"COTAN = FN COTAN(X)"
9):"SINH = FN SNH(X)"
9) : "COSH = FN COH(X)"
9) : "TANH = FN TAH(X)"
9) : "SECH = FN SCH(X)"
9) : "CSCH = FN CCH(X)"
9) : "COTH = FN CTH(X)"

REM
REM
REM
REM
REM
REM

NOW WE SET UP LINE
1010 FOR EDITING.
'POKE 32, 2' MOVES
MARGIN SO CURSOR CAN
FIT IN FRONT.

VTAB (12)

Allen

PRINT " CHANGE LINE 1010 AS DESIRED AND"
PRINT "RUN AGAINI"
POKE 32,2
LIST 1010
REM
REM
REM
-REM
REM

NOW WE RESTORE MARGIN
AND MOVE CURSOR IN
FRONT OF LINE t.

POKE 32,0
POKE 37,13: POKE 36,0
REM
END
REM
REM SCALE ANTI-CRASHING
REM SUBROUTINE.
REM
IF X < 0 THEN X = 0
IF X > 279 THEN X = 279
IF Y < 0 THEN Y = 0
IF Y > 159 THEN Y = 159
RETURN

Function Piotter 123

Apple II Hi-Res
Picture Compression

by Bob Bishop

Every Apple owner is aware of the wonderful pictures
that can be made with Hi·Res graphics. An interesting
technique is presented which allows greater efficiency
in encoding picture information. and produces
additional special effects.

Almost every Apple II owner has, by now, seen examples of how the Apple II can
display digitized photographs in its Hi-Res graphics mode. These images consist of
192 x 280 arrays of dots all of the same intensity. By clustering these dots into
groups (such as in "dithering"), it is even possible to produce pictures having the
appearance of shades of gray. Several"slide shows" of these kinds of pictures have'
been created by both Bill Atkinson and myself and are available through various
sources, such as the Apple Software Bank. A typical "slide show" consists of
about 11 pictures on a standard 13-sector disk.

Each Hi-Res picture must reside in one of the two Hi-Res display areas before
it can be seen. The first area, $2000-$3FFF, is called the primary display buffer;
the second area, $4000-$SFFF, is called the secondary display buffer. It is obvious
that each of these display areas are 8K bytes long. Consequently, Hi-Res pictures
are usually stored as 8K blocks of data, exactly as they appear in a display buffer.
But do they have to be stored that way?

If you look closely at a Hi-Res picture, you can almost always detect small
regions that look very similar to other small regions elsewhere in the picture. For
example, Hi-Res displays usually contain regions of pure white or pure black. In
the case of dithered pictures, the illusion of gray may be caused by micro-patterns
of dots that are similar to other gray patterns somewhere else. Clearly, Hi-Res pic­
tures tend to contain a lot of redundancy. If there were some way of removing this
redundancy then it would be possible to store Hi-Res pictures in less than the
customary 8K bytes of memory.

Suppose we were to divide the display into small rectangular clusters, each 7
bits wide, by 8 bits high. Then a picture would consist of 24 rows of these picture
elements ("pixels")' with 40 of them per row. (Note the resemblance to the Apple

j

i

,

Bishop Picture Compression 125

~ il's TEXT mode of 24 lines, 40 columns per line!) The total number of pixels that
would be needed to define a Hi-Res picture would then be 40 times 24, or 960.
However, not all 960 pixels would be unique if there were redundancy in this
picture.

To try out these ideas, I used Atkinson's LADY BE GOOD picture (from the
Apple Magic Lantern-Slide Show 2) shown in figure I, and wrote a program to ex­
tract all the different pixels. I found that only 662 of the 960 pixels were unique.
This meant that almost one third of the picture was redundant!

Figure 1: (Max errors/pixel =0)

The next question that came to mind was: of the 662 unique pixels, how
'unique' were they? Was it possible that there might be two or more pixels that
were almost the same, except for maybe one or two dots that differed? If so, then it
could be possible to regard these as being identical 'for all practical purposes' since
the error in the resulting picture would hardly be noticed.

To examine this possibility, I modified my program to extract only those
pixels that differed by more than a specified MAX ERRORS/PIXEL. Table 1 shows
the result. If we allow, at most, 1 dot to be wrong in anyone pixel, then we need
only 492 pixels to define the picture, which is only about half of the original 960
pixels! As we allow more and more errors per pixel, the number of pixels required
to reconstruct the picture decreases accordingly, until we reach 28 errors/pixel. At
this point we are allowing half of the dots to be wrong. Since total black and total
white are always included in every pixel set (to prevent black or white areas from
becoming dotted), pictures with MAX ERRORS/PIXEL greater than or equal to 28
can always be composed of no more than two pixels, namely the black and white
pixels.

126 Graphics and Games

500 ~ max errors number of
per pixel pixels

0 662
1 492
2 334
3 245
4 178

400 5 135
6 100
7 75
8 53
9 44

10 34
11 29

300 12 24
13 18
14 15
15 11
16 10
17 7
18 7

200 19 6
20 5
22 4
24 4
26 4
28 2

100 ...
"'"

0 5 10 15 20

Table 1: Max Errors/Pixel

Suppose we now try to reconstruct the original picture from our extracted
pixel set. Clearly, the fewer pixels we have available for synthesizing, the poorer
the result will be. Figures 2 through 5 show the results of synthesizing LADY BE
GOOD with MAX ERRORS/PIXEL of 3, 7, 14, and 28. The number of pixels used
in each case was 245, 75, IS, and 2, respectively. Notice that the difference in
quality between figures 1 and 2 is not all that objectionable. The advantage that
figure 2 has is that it can be stored in less than 3K bytes of memory! (245 pixels at
8 bytes/pixel, plus 960 bytes to define which pixels go where.)

Thus it is clearly possible to store an 8K Hi-Res picture in considerably less
than 8K bytes, if you are willing to accept a little loss in the image quality. By
using this principle, I have produced a "Super Slide Show" containing 33 pictures
on a single disk. (Copies may be obtained from Apple's Software Bank.)

,
,

Iiiiiiii1j)

\

r
~
I

~
I

Bishop Picture Compression 127

The Compression Program

Listings 1 and 2 show the compression routines (and some associated data
tables), and require an Apple II with at least 32K bytes of memory. The routines
consist of two basic parts-the "analysis" portion, and the " synthesis " portion.

The analysis routine ($OBOO) searches the primary Hi-Res display buffer
($2000-$3FFF) and compares each pixel there with the pixels in its own current
pixel table (which starts at $0600) looking for a "match". If it finds a pixel in the
table that matches to within the specified MAX ERRORS/PIXEL (location $10), it
calls a match and proceeds to the next pixel in the picture. If it fails to find a
match, it adds the pixel to its current pixel table and then proceeds.

The synthesis routine ($OB80) works in the other direction. It first compares
each pixel of the primary buffer with each pixel in the pixel table to find the best
match. It then places this pixel in the corresponding location in the secondary Hi­
Res buffer, thus synthesizing the best approximation to the primary picture as it
can by using the pixels in its pixel table. (Since the analysis routine doesn't know
where its pixel table originated, it is possible to snythesize one picture from
another picture's pixels! The result is usually surprisingly good.) .

The routines are very easy to use. Simply load the picture to be compressed
into $2000-$3FFF, set MAX ERRORS/PIXEL into $10, and then call the routine at
$OBOO. When the routine returns, locations $07 and $08 contain the number of
extracted pixels in the form: NUMBER = 1 + (contents of $07) + 40* (contents
of $08).

Figure 2: (Max errors/pixel = 3)

128 Graphics and Games

To synthesize the picture from the extracted pixels, simply call the routine at
$OB80. When the routine returns, the reconstructed picture will be in the secon­
dary Hi-Res buffer ($4000-$SFFF).

If you have a 48K Apple and a disk, you can use the BASIC program shown in
listing 3. This program calls the compression routines (listings 1 and 2) in a more
user-oriented way so that they are even easier to use. The program displays a
menu of options that let you:

L - Load a picture from disk into the primary Hi-Res buffer.
1 - Display the picture currently in the primary Hi-Res buffer.
2 - Display the picture currently in the secondary Hi-Res buffer.
A - Analyze the primary picture (create the pixel table).
S - Synthesize the primary picture using the current pixel table.
0- Issue disk commands.
X - Transfer the compressed picture to disk drive number 2.

None of the selections require you to hit RETURN; just hit the corresponding
character. When specifying' 'L", the program will ask you for the name of the file
to be loaded. When specifying" A", you will be asked for the maximum error per
pixel that you will allow. (This does require a RETURN.) The "0" command will
give a colon (:) as the prompt character and will allow you to issue disk
commands. It will continue in this mode until you give it a null command (hit
RETURN) at which time it will return to the menu. The' 'X" command saves the
compressed picture (960 bytes) and its corresponding pixel table (up to 2K bytes)
onto a disk file. (I will leave it up to the interested reader to figure how to "un­
compress" this data.)

Figure 3: (Max errors/pixel = 7)

.1

:1

,

'-~
.1

.-
I

t­
I

~
I

Bishop Picture Compression 129

Figure 4: (Max errors/pixel = 14)

5: (Max errors/pixel = 28)

While the methods here work pretty well, they may not represent the
optimum way of compressing Apple II picture data. For example, my choice of
7 x 8 dots/pixel was somewhat arbitrary. Is it posible to get better compression
ratios by choosing smaller [or larger) pixel sizes? Or, given a picture that was
reconstructed from a given set of n pixels, is it possible to find another set of n pix­
els that gives a better result?

130 Graphics and Games

ocoo- 00 00 00 00 00 00 00 00 OCOO- 20 24 28 2C
OC08- 80 80 80 80 80 80 80 80 OD08- 20 24 28 2C
OCIO- 00 00 00 00 00 0C' 00 00 ODIO- 21 25 29 2D
OC18- 80 80 80 80 80 8C' 80 80 OD18- 21 25 29 2D
OC20- 00 00 00 00 00 00 00 00 OD20- 22 26 2A 2E
OC28- 80 80 80 eo 80 80 80 80 OD28- 22 26 2A 2E
OC30- 00 00 00 00 00 00 00 00 OD30- 23 27 2B 2F
C'C38- 80 80 80 80 8C' 80 80 80 OD38- 23 27 2B 2F
OC40- 28 28 28 28 28 28 28 28 OD40- 20 24 28 2C
OC48- A8 A8 A8 A8 A8 A8 A8 A8 OC48- 20 24 28 2C
OC50- 28 28 28 28 28 28 28 28 OD50- 21 25 29 2C
OC58- A8 A8 A8 A8 A8 AS A8 A8 OD58- 21 25 29 2D
OC60- 28 28 28 28 28 28 28 28 OD60- 22 26 2A 2E
OC68- A8 A8 A8 A8 A8 A8 A8 A8 OD68- 22 26 2A 2E
OC70- 28 28 28 28 28 28 28 28 OC70- 23 27 2B 2F
OC78- A8 A8 A8 A8 A8 A8 A8 A8 OD78- 23 27 2B 2F
OC80- 50 50 50 50 50 50 50 50 OC80- 20 24 28 2C
OC88- DO DO DO DO DO DO CO DO OD88- 20 24 28 2C
OC90- 50 50 50 50 50 50 50 50 OD90- 21 25 29 20
OC98- DO DO DO DO DO CO CO DO 0098- 21 25 29 20
OCAO- 50 50 50 50 50 50 50 50 ODAO- 22 26 2A 2E
OCA8- DO DO DO DO DO DO DO DO ODA8- 22 26 2A 2E
OCBO- 50 50 50 50 50 50 50 50 ODBO- 23 27 2B 2F
OCB8- CO CO DO DO DO DO DO DO ODB8- n 27 2B 2F

1000- 00 01 01 02 01 02 02 03
1008- 01 C'2 02 03 02 03 03 04
1010- 01 02 02 03 02 03 C3 04
1018- 02 03 03 04 03 04 04 05
1020- 01 02 02 03 C'2 03 03 04
1028- 02 03 03 04 03 04 04 05
1030- 02 03 03 04 03 C'4 04 05
1038- 03 04 04 05 04 05 05 06
1040- 01 02 02 03 02 03 03 04
1048- 02 03 03 04 03 04 04 05
1050- 02 03 03 04 03 04 04 05
1058- 03 04 04 05 04 05 05 06
1060- 02 03 03 04 03 04 04 05
1068- 03 04 04 05 04 05 05 06
1070- 03 04 04 05 04 05 05 06
1078- 04 05 05 06 05 06 06 07

1 REM
2 REM

REM
REM
REM
REM
REM
REM
REM
REM
REM

• •
3
4
5
6
7
8
9

10
11
12
13
14
15
20
30
50

100
llO
120
130
140
150
160
170

REM
REM
REM

* PICTURE COMPRESSION *
* BY ROBERT BISHOP *
• •
*

COMPRESS
*
*
*

* COPYRIGHT (C) 1981 *
* MICRO INK. INC. *
* CHELMSFORD. MA 01824 *
* ALL ~IGHTS RESERVED *
* *

DIM A$(40)
ANAL=11*256:SYN=ANAL+128:PRESS=4096+2*256+8*16
FLAG=O:XFLAG=O
PRINT "BLOAD PIXEL STUFF"
CALL -936: POKE -16300.0: POKE -16303.0
TAB 17: PRINT "M E N U"
TAB 17: PRINT "-------": PRINT
PRINT PRINT" L - LOAC PICTURE FROM DISK"
PRINT PRINT" A - ANALYZE PICTURE INTO PIXELS"
PRINT PRINT" S - SYNTHESIZE PICTURE FROM PIXELS"
PRINT PRINT" 1 - DISPLAY ORIGINAL PICTURE"
PRINT PRINT" 2 - DISPLAY SYNTHESIZED PICTURE"

1 .,
30 34 38 3C
30 34 38 3C

~ 31 35 39 3D
31 35 39 3D

J

32 36 3A 3E
32 36 3A 3E
33 37 3B 3F i 33 37 3B 3F
30 34 38 3C
30 34 38 3C
31 35 39 3D
31 35 39 3D "."
32 36 3A 3E \
32 36 3A 3E
33 37 3B 3F
33 37 3B 3F
30 34 38 3C -, 30 34 38 3C
31 35 39 3D
31 35 39 3D
32 36 3A 3E
32 36 3A 3E ...,
33 37 3B 3F \
33 37 3B 3F

...,
)

i

1

i

i

r

JlI'III
!

]IN
I

Bishop Picture Compression

180 PRINT • PRINT" D - ISSUE DISK COMMANDS"
190 PRINT • PRINT" X - SAVE COMPRESSED PICTURE TO DISK"
195 VTAB 20. PRINT "SELECTION ...
200 REM READ KEYBOARD
210 CHAR= PEEK (-16384)
220 IF CHAR<128 THEN 210
230 POKE -16384+16.0
300 ID=O
310 IF CHAR= ASC("L") THEN ID=l
320 IF CHAR= ASC("A") THEN ID=2
330 IF CHAR= ASC("S") THEN ID=3
340 IF CHAR= ASC("l") THEN ID=4
350 IF CHAR= ASC("2") THEN ID=5
360 IF CHAR= ASC("D") THEN ID=6
370 IF CHAR= ASC("X") THEN ID=7
400 IF ID=O THEN 100
500 GOTO 1000*ID

1000 VTAB 20. TAB 12. CALL -958. PRINT "LOAD PICTURE"
1005 POKE -16300.0. POKE -16303.0
1010 VTAB 22. INPUT "FILE NAME A$
1015 IF A$= THEN 100
1020 VTAB 22. PRINT "BLOAD ";A$;".A$2000.D1"
1050 GOTO 100
2000 VTAB 20. TAB 12. CALL -958. PRINT "ANALYZE PICTURE"
2005 POKE -16300.0. POKE -16303.0
2010 VTAB 22. INPUT "MAX ERRORS/PIXEL MAXERR
2020 POKE 16.MAXERR. CALL ANAL
2025 FLAG=1.XFLAG=0.NUMBER=40* PEEK (8)+ PEEK (7)+1

131

2030 VTAB 22. PRINT "THERE ARE ";NUMBER;" PIXELS WITH MAX ERROR ";MAXERR
2035 POKE -16384+16.0
2040 IF PEEK (-16384)<128 THEN 2040
2050 GOTO 100
3000 VTAB 20. TAB 12. PRINT "SYNTHESIZE PICTURE"
3005 POKE -16300.0: POKE -16303.0. VTAB 22. CALL -958
3010 FOR K=l TO 500. NEXT K
3020 IF FLAG THEN 3050
3030 VTAB 22. PRINT "THERE ARE NO PIXELS DEFINED YETI"
3040 GOTO 3060
3050 CALL SYN
3055 XFLAG=l
3060 POKE -16384+16.0
3070 IF PEEK (-16384)<128 THEN 3070
3080 IF PEEK (-16384)= ASC("l") THEN 210
3085 IF PEEK (-16384)= ASC("2") THEN 210
3090 GOTO 100
4000 POKE -16304.0. POKE -16302.0. POKE -16300.0. POKE -16297.0
4050 GOTO 200
5000 POKE -16304.0. POKE -16302.0. peKE -16299.0. POKE -16297.0
5050 GOTO 200
6000 VTAB 20. TAB 12. CALL -958. PRINT "DISK COMMAND"
6005 POKE -16300.0. POKE -16303.0
6010 VTAB 22. INPUT A$
6015 IF A$= THEN 100
6020 VTAB 22: TAB 2. PRINT ;A$
6030 PRINT • PRINT • PRINT
6040 GOTO 6010
7000 VTAB 20. TAB 12. CALL -958. PRINT "SAVE COMPRESSED PICTURE"
7005 POKE -16300 •. 0: POKE -16303.0
7010 IF XFLAG THEN 7025
7015 VTAB 22. PRINT "NO PICTURE HAS BEEN SYNTHESIZED YETI"
7020 GOTO 7040
7025 IF NUMBER<=256 THEN 7060
7030 VTAB 22. PRINT "THERE ARE TOO MANY (";NUMBER;") PIXELS"
7040 POKE -16384+16.0
7045 IF PEEK (-16384)<128 THEN 7045
7050 GOTO 100
7060 VTAB 22. INPUT "FILE NAME A$
7065 IF A$= THEN 100
7070 CALL PRESS
7080 VTAB 22. PRINT "BSAVE ";A$;".A$8000.L";960+2+8*NUMBER;".D2"
7090 GOTO 100

i
132 Graphics and Games

j
0800 1 ;************************
0800 2 ;* *
080e 3 ;* PICTURE CCMPRESSICN • ,
0800 4 ;* RCBERT BISHCP •
0800 5 ;* •
0800 6 ;* PlCT CCMP *
0800 7 ;* •
0800 8 ;. CCPYRIGH'I (C) 1981 * ~
0800 9 ,* MICRC INK, INC. • I

0800 10 :* CHELMSFCRD, MA 0]824 *
0800 11 :* ~LL RIGHTS RESERVED •
0800 12 :* *
0800 13 ;************************ ,.,
0800 14
0800 15
0800 16
0800 17 XAT EPZ $0000
0800 18 YAT EPZ $0001 i 0800 19 ZAT EPZ $0002
0800 20 XTO EPZ $0003
0800 21 YTO EPZ $0004
0800 22 ZTO EPZ $0005
0800 23 SCOR EPZ $0006 i 0800 24 XMAX EPZ $0007
0800 25 YMAX EPZ $0008
0800 26 X'I'MP EPZ $0009
0800 27 Y'IMP EPZ $OOOA
0800 28 BEST EPZ $OOOB j 0800 29 AT EPZ $OOOC
0800 30 TO EPZ $OOOE
0800 31 ERR EPZ $0010
0800 32 XIN EPZ $0011
0800 33 YIN EPZ $0012 ,
0800 34 PROD EPZ $0013
0800 35 HGRL EOU $OCOO
0800 36 HGRH EOU $ODOO
0800 37 BITS EOU $1000
0800 38 BELL EOU $FF3A '1 0800 39
0800 40
OBOO 41 ORG $BOO
OBOO 42 CBJ $800
OBOO 43 ,
OBOO 209311 44 BILD JSR INIT
OB03 A900 45 LDA #$00
OB05 8500 46 STA XAT
OB07 8501 47 STA YAT
OB09 A901 48 LDA #$01 Iiiij
OBOB 8502 49 STA ZAT J
OBOD A903 50 LDA #$03
OBOF 8505 51 STA ZTO
OBll A900 52 BLUP LDA #$00
OB13 8503 53 STA XTC I&j
OB15 8504 54 STA YTO !
OB17 202311 55 LUPE JSR COMP
OBIA A510 56 LDA ERR
OBIC C506 57 CMP SCOR
OBIE BOIF 58 BCS GOOD ,
OB20 A503 59 LDA XTO
OB22 C507 60 CMP XMAX
OB24 D006 61 BNE NEXT
OB26 A504 62 LDA YTO
OB28 C508 63 CMP YMAX ""'I
OB2A F005 64 BEQ OVER)
OB2C 20FI0B 65 NEXT JSR NUTO
OB2F DOE6 66 BNE LUPE
OB31 20FI0B 67 OVER JSR NUTO
OB34 200011 68 JSR MOVE ,.,
OB37 A503 69 LDA XTO
0839 8507 70 STA XMAX
OB38 A504 71 LDA YTO
OB3D 8508 72 STA YMAX
OB3F E600 73 GOOD INC XAT i OB41 A500 74 LDA XAT
0843 C928 75 CMP #$28 ,

~ Bishop Picture Compression 133

OB4S OOCA 76 BNE BLUP
)ilI'Il'!$ OB47 A900 77 LOA #$00

OB49 8500 78 STA XAT
OB4B E601 79 INC YAT
OB40 AS01 80 LOA YAT
OB4F C918 81 CMP #$18

1iII!III! OB51 DOBE 82 BNE BLUP
OB53 4C3AFF 83 JMP BELL
OBS6 84
OBS6 8S RECONSTRUCTION
OBS6 86 - OB80 87 ORG $B80
OB80 88 OBJ $880
OB80 89
OB80 A900 90 RCCN LOA #$00
OB82 8D50CO 91 STA $C050
OB8S 80S2CO 92 STA $C052
OB88 805SCO 93 STA $C055
OB8B 80S7CO 94 STA $COS7
OB8E 8S03 9S STA XTO
OB90 8S04 96 STA YTO

Ji1III!/!II OB92 A903 97 LOA #$03
OB94 8S02 98 STA ZAT
OB96 A9FF 99 RLUP LOA #$FF
OB98 8S0B 100 STA BEST
OB9A MOO 101 LOA #$00

~ OB9C 8S00 102 STA XAT
OB9E 8S01 103 STA YAT
OBAO MOl 104 LOA #$01
OBA2 850S 105 STA ZTC
OBA4 202311 106 LOOP JSR COMP

r- OBA7 1.506 107 LOA SCOR
OBA9 C50B 108 CMP BEST
OBAB BOOA 109 BCS CONT
OBAO 850B 110 STA BEST
OBAF A500 111 LOA XAT

~ OBBI 8509 112 STA XTMP
OBB3 ASOI 113 LOA YAT
OBB5 850A 114 STA YTMP
OB,B7 ASOO lIS CONT LOA XAT
OBB9 C507 116 CMP XMAX - OBBB D006 117 BNE INC
OBBO A501 118 LOA YAT
OBBF C508 119 CMP YMAX
OBCl FOI0 120 BEQ SEND
OBC3 E600 121 INC INC XAT

r- OBC5 ASOO 122 LOA XAT
OBC7 C928 123 CMP #$28
OBC9 0009 124 BNE LOOP
OBCB MOO 12S LOA #$00
OBeo 8500 126 STA XAT
OBCF E601 127 INC YAT
OBOI 0001 128 BNE LOCP
OB03 AS09 129 SENO LOA XTMP
OB05 8S00 130 STA XAT
OBD7 ASOA 131 LOA YTMP

r- OBD9 8501 132 STA YAT
OBCB A902 133 LCA #$02
OBOD 8S0S 134 STA Z'IC
OBOF 200012 135 JSR STC'R
OBE2 200011 136 JSR MOVE

~ OBES 20F10B 137 JSR NU'TO
OBE8 A504 138 LOA YTC
OBEA C918 139 CMP #$18
OBEC DOA8 140 BNE RLUP
OBEE 4C3AFF 141 JMP BELL

~ OBF! E603 142 NU'TC INC XTO
OBF3 AS03 143 LCA XTO
OBF5 C928 144 CMP #$28
OBF7 D006 145 BNE RFT
OBF9 A900 146 LOA #$00 - OBFB 8S03 147 STA XTO
OBFO E604 148 INC YTO
OBFF 60 149 RET RTS
OCOO 150 -

1
134 Graphics and Games ,

OCOO 151 MOVE A PIXEL FROM XAT,YAT,ZAT
OCCO 152 TC XTC,YTO,ZTO •.•.
CCOO 153 1 1100 154 ORG $l1CO
1100 155 OBJ $EOO
1100 156
1100 8A 157 MOVE TXA
1101 48 158 PHA j 1102 98 159 TYA
1103 48 160 PHA
1104 205411 161 JSR PREP
1107 MOO 162 MLUP Lry XAT
1109 BlOC 163 LDA (AT) ,Y ,
110B A403 164 LDY XTC
110D 910E 165 STA (TC) ,Y
110F A50D 166 LrA AT+l
1111 6904 167 Arc #$04
1113 850D 168 STA AT+l i 1115 A50F 169 LrA TC+l
1117 6904 170 ADC #$04
1119 850F 171 STA TO+l
l11B CA 172 DEX
lllC DOE9 173 BNE MLUP i lllE 68 174 PLA
111F A8 175 TAY
1120 68 176 PLA
1121 AA 177 TAX
1122 60 178 RTS 1 1123 179
1123 18C COMPARE PIXEL AT XAT, YAT, ZAT
1123 181 TO XTO,YTO,ZTO
1123 182
1123 8A 183 COMP TXA ,
1124 48 184 PHA
1125 98 185 TYA
1126 48 186 PHA
1127 2C5411 187 JSR PREP
112A A90C 188 LDA #$00 i 112C 8506 189 STA SCOR
112E A400 190 CLUP LDY XAT
1130 BlOC 191 LDA (AT), Y
1132 A403 1.92 LDY XTO
1134 SlOE 193 EOR (TO) ,Y :1 1136 297F 194 AND #$7F
1138 AS 195 TAY
1139 B9C010 196 LDA BITS,Y
113C 6506 197 ADC SCCR
113E 8506 198 STA SCCR ,
1140 A50D 199 LDA AT+1
1142 6904 200 ADC #$04
1144 850D 201 STA AT+l
1146 A50F 202 LDA TO+1
1148 6904 203 ADC #$04 ,
114A 85CF 204 STA TO+1
114C CA 205 DEX
114D DCDF 206 BNE CLUP
114F 68 207 PLA

i 1150 A8 208 TAY
1151 68 209 PLA
1152 AA 210 TAX
1153 60 211 RTS
1154 212

Iil&/ 1154 A502 213 PREP LDA ZAT
1156 6A 214 ROR
1157 6A 215 ROR
1158 6A 216 ROR
1159 6A 217 ROR
115A 2960 218 AND #$60
115C 850D 219 STA AT+l
115E A505 220 LDA ZTC
1160 6A 221 ROR
1161 6A 222 ROR
1162 6A 223 RCR
1163 6A 224 ROR
1164 2960 225 AND #$60

~
\

~

J!!II'I'II Bishop Picture Compression 135
;

1166 850F 226 STA TO+l

IiIIIIIII 1168 A501 227 LOA YAT
116A OA 228 ASL
116B OA 2:;>9 ASL
116C OA 230 ASL
116D AA 231 TAX
116E BOOOOC 232 LOA HGRL,X
1171 850C 233 STA AT
1173 BOOOOO 234 LOA HGRH,X
1176 291F 235 ANO #$IF
1178 6500 236 ADC AT+l

~
117A 8500 237 STA AT+l
117C A504 238 LOA YTO
117E OA 239 ASL
117F CA 240 ASL
1180 OA 241 ASL
1181 AA 242 TAX
1182 BDOOOC 243 LOA HGRL,X
1185 850E 244 STA TO
1187 BDOOOD 245 LOA HGRH,X
118A 291F 246 ANO #$lF

~ 118C 650F 247 AOC TO+l
118E 850F 248 STA TO+l
1190 A208 249 LOX #$08
1192 60 250 RTS
1193 251
1193 20COOC 252 INIT JSR $OCCO
1196 A97F 253 LOA #$7F
1198 800160 254 STA $6001
119B 800164 255 STA $6401
119E 800168 256 STA $6801
llAl 80016C 257 STA $6COI
11M 8D0170 258 STA $7001
llA7 800174 259 STA $7401
11M 800178 260 STA $7801
llAO 80017C 261 STA $7COI

r- llBO A900 262 LDA #$00
llB2 8508 263 STA YMAX
llB4 A901 264 LDA #$01
llB6 8507 265 STA XMAX
llB8 60 266 RTS

~ 11B9 267
1200 268 ORG $1200
1200 98 269 STCR TYA
1201 48 270 PHA
1202 A503 271 LDA XTO
1204 8511 272 STA XIN
1206 A504 273 LOA YTO
1208 8512 274 STA YIN
120A 202C12 275 JSR X40
120[; A513 276 LDA PROD ,.. 120F 850E 277 STA TC
1211 18 278 CLC
1212 A514 279 LOA PROO+l
1214 6980 280 ADC #$80
1216 850F 281 STA TO+l r- 1218 ASOO 282 LOA XAT
12lA 8511 283 STA XIN
12lC A501 284 LOA YAT
121E 8512 285 STA YIN
1220 202C12 286 JSR X40

r- 1223 A513 281 LDA PROO
Ins AOCO 288 LDY #$00
1227 910E 289 S'IA (TO) ,Y
1229 68 290 PLA
122A A8 291 TAY

,- 122B 60 292 RTS
122C A512 293 X40 LOA YIN
122E 8513 294 STA PROD
1230 A900 295 LOA HOO
1232 8514 296 STA PROD+l

~ 1234 0613 297 ASL PRCD
1236 2614 298 ROL PROD+l
1238 0613 299 ASL PROD

-

136 Graphics and Games ,
123A 2614 300 ROL PROIl+1
123C 0613 301 ASL PROD
123E 2614 302 ROL PROD+1
1240 AS13 303 LDA PROD

,
1242 0613 304 ASL PROD
1244 2614 305 ROL PROD+1
1246 0613 3010 ASL PROD
1248 2614 307 ROL PROD+l
124A 6513 308 ADC PROD i
124C 8513 309 STA PRCC
124E A514 310 LDA PROD+l
1250 6900 311 ACC #$00
1252 8514 312 STA PROD+l
1254 A513 313 LOA PROD i
1256 6511 314 ACC XIN
1258 8513 315 STA PROD
125A A514 316 LCA PROD+l
125C 6900 317 AIlC #$00
125E 8514 318 STA PROD+l

,
1260 60 319 RTS

320 END

***** END OF ASSEMBLY
,

* * i
* SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

,
** ZERO PAGE VARIABLES:

XAT 000(1 YAT 0001 ZAT 0002 XTO 0003 YTO 0004 ZTO 0005
SCOR 0006 XMAX 0007 ¥MAX 0008 XTMP 0009 YTMP OOOA BEST OOOB

,
AT OOOC TO OCOE ERR 001(1 XIN 0011 YIN 0012 PROD 0013

** ABSOLUTE VARABLES/LABELS i
HGRL OCCO HGRH DODO BITS 1000 BELL FF3A BILD OBOO BLUP OBll
LUPE OB17 NEXT OB2C OVER OB31 GOOD OB3F RCON OB80 RLUP CB96
LOOP OBA4 CONT OBB7 INC OBC3 SEND OBD3 NUTO OBFl RET OBFF
MCVE 1100 MLUP 1107 COMP 1123 CLUP 112E PREP 1154 INIT 1193
STOR 1200 X40 Inc

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH: 0172

-

An Apple Flavored
Lifesaver

by Gregory L. Tibbetts

The game of LIFE is made a little easier with this
flexible storage program which provides for translation,
rotation, and reversal of patterns.

John Conway's game of LIFE has one of the largest followings of any computer
simulation ever devised. My own interest dates back to my first "cellular ex­
cursion" in 1972, on a Hewlett-Packard 2000c machine. Since then I've collected
half a dozen versions and have played with several more, all widely different in ex­
ecution. One serious drawback nearly every version shares, however, is the sheer
drudgery of entering from 2 to 200 sets of coordinates each time a simulation is to
be run. I've seen several programs with systems to capture coordinates for a given
figure-some plain and some incredibly complex. All of these though, are
hampered by the fact that LIFE devotees rarely input the same pattern at exactly
the same location and orientation twice, and they usually like to combine figures
for interactive effects. One system attempting to circumvent these problems had
over 120 individual figures on paper tape, most duplicated up to 8 times for dif­
ferent orientations, and all marked and cataloged. Now that's dedication!

Being basically lazy myself (after all, I bought a computer to save myself
work), I decided that I needed a few simple routines that would let me name and
save figures to disk, and then call them back to the screen at virtually any loca­
tion, at any reasonable orientation, and in combination with any other pattern on
file. My goal then, and the subject of this article, is simply to make LIFE a little
easier (pun intended).

The platform I chose to build my routine on is an excellent machine
code/Integer BASIC hybrid program written by Dick Suitor entitled "Life for Your
Apple." It appeared in MICRO on the Apple, Volume I. Probably the best and
most versatile of all the versions I have seen, it has features like variable genera­
tion speed, the ability to set random cells alive in a selected field, and the use of
contrasting color to show cell development.

My first task was to come up with a method of storing and retrieving the
figures. The obvious solution was to save the x,y coordinates in a sequential text
file. To make the figures completely relocatable however, I needed a way to make

l38 Graphics and Games

the stored coordinates independent of the screen coordinates. The method I chose
was to select an arbitrary centerpoint for the figure, prior to input. Then as each
coordinate set was typed in, the x, y values of the center point would be subtracted
from the x, y values of the point being entered. The result is a set of codified x, y
values, positive and negative, which are relative only to the centerpoint, and
therefore totally independent of their current screen location. All that's required
to relocate the figure then, is to change the centerpoint when calling the figure
back from storage.

This method, in conjunction with Apple's system of screen coordinates, does
introduce an irregularity which will become important as we proceed. In normal
coordinate systems x values increase as we move to the right, and y values in­
crease as we go up. With the Apple IT, y values increase as we descend on the
screen. Further, all screen coordinates are positive, while the codified values may
be positive or negative, since they essentially make up a coordinate grid of their
own, with the x (horizontal) and y (vertical) axes intersecting at the chosen center­
point. Unlike normal grids, therefore, y values will be negative above this x axis
and positive below it. It will be necessary to keep this in mind, as it is the codified
values we will be manipulating in the coming paragraphs when we determine how
to reorient the figures.

This second task-finding a way to bring the stored figure back to the screen
in a different attitude than originally entered-was somewhat moxe difficult than
simply making it relocatable. However, it quickly became clear that all possible
orientations could be achieved by reversing the figure, rotating it, or both.

Rotation is obtained by moving each point clockwise around the center some
distance (depending on the degree of rotation), while reversal takes the two
dimensional image and flips it over, as one would tum over a playing card.
Obviously reversal requires us to know which axis the figure is to be reversed
around.

Defining an algorithm to rotate and reverse the figures was an interesting
exercise, (actually three exercises and three algorithms). I'm sure that somewhere
in the field of coordinate mathematics there exists specific rules for such opera­
tions. Being more a tinkerer than a scholar, however, I chose to discover those
rules by trial and error. Armed with graph paper and pencil, I defined a center, an x
and y axis, and began examining what happened to various sets of coordinates
when the points they described were reversed or rotated. The first thing I
discovered was that for any single set of coordinates, rotation or reversal involved
only two operations: either the unsigned magnitudes of the x and y values being
swapped, or the signs of one or both values being changed. One, or a combination
of these two alterations will produce all feasible orientations. I also learned that
rotations in other than 900 increments were not feasible for the purposes of the
LIFE game, but the proof of that is left as an exercise for the reader.

The reversal mechanism turned out to be the simplest. A little paper and pen­
cil work showed that no matter which axis was used for reversal, any point
remained the same distance from each axis when reversed. The magnitudes of the

,
.,

j

i

i

~
I

-

r--
I

Tibbetts Lifesaver 139

x and y values then must remain the same. The signs, however, do not. A reversal
around the y axis, for example, sends points from the upper right quadrant
(+ x, - y) to the upper left quadrant (- x - y), and from lower right (+ x, + y) to
lower left (-x, + y). Obviously then, reversal on the y axis changes the sign of the x
values only. By the same token, an x axis reversal changes the sign of the y values
only. Translated into a sequence of program steps this mechanism is implemented
in program lines 1070-1110 and 350-400. I also resolved the further question of
whether multiple reversals were desirable, that is, two reversals around one axis,
or one around each. I determined they were not, but as a second exercise, for fun,
the reader may wish to prove why they were not.

Rotation was a little harder as the cases of 900 , 1800 , and 2700 rotation all had
to be allowed for. Easiest to discover was the 1800 process. Just as in the reversal
case, a point rotated 1800 still remains the same distance from each axis, and
therefore, the x and y magnitudes remain the same. Signs however, do not follow
the same pattern as during reversal. Since the points in the upper right quadrant
(+ x, - y) move to the lower left (- x, + y), lower right(+ x, + y) to upper left (- x, - y)
and vice versa, it becomes clear that both x and y values must change sign. A 1800

rotation therefore is accomplished by simply multiplying the two values by -1.
This is implemented in lines 1030-1060 and 320-340.

A 900 rotation is not so straight-forward. It is best seen by using the example
of a clock face with the x axis running through the 9 and 3, and the y axis through
the 12 and 6. A 900 rotation of this clock face moves the point at numeral 1 to the
position of numeral 4. For the first time, the magnitude of the x and y values have
changed. The distance of the point from the y axis in its original position has
become the distance from the x axis after rotation and vice versa. What happens in
a 900 rotation then, is that the magnitudes of x and yare simply exchanged. The
signs, unfortunately, do not follow such a clearcut pattern. Nevertheless, a pat­
tern does exist. I found it by examining the four quadrants in sequence and noting
what happens to their associated x and y signs. Starting at the upper right (+x, -y)
and moving to the lower right produces (+ x, + y). Another 900 rotation produces
(- x, + y), and the final rotation (- x, - y). Study here shows that the sign of x in
the original quadrant is the sign y will have in the new quadrant. Since the
magnitude of x becomes the magnitude of yalso, we can simply give y the signed
value of x for every point to be rotated. You can also see that the sign of the new x
value is the opposite of the old y value. To get the new x value we must multiply
the old signed value of y by - 1. These two steps complete the 900 algorithm and it
is implemented in lines 1030-1060 and 270-310. To keep the program as short as
possible, 2700 rotations were made by using the 900 and 1800 subroutines
together. This completes the screen output design.

Disk storage is achieved by saving the x and y arrays into a sequential text
file; each figure to a separate file. Though this is somewhat wasteful of disk space,
I set it up this way to avoid complex file management routines, and to allow for
easy renaming and catalog display. The final step was to insert tests in the plot
sequence to prevent range errors from crashing the program if a center point was
selected that would cause the figure to plot off the screen, and having to restart the
program from scratch. The original centerpoint is not stored with the codified
values, and consequently is not available for later examination.

140 Graphics and Games

The program as it appears in the listing, is set up to run on a 48K Apple II,
using Apple DOS to store and retrieve the patterns. The instructions for setting up
the program, however, are universal with respect to RAM size. I believe that the
program could also be converted to use a cassette-based DOS imitator as off-line
storage, but that is beyond the scope of this article. (Editor's Note: See Robert
Stein's "Cassette Operating System" article, in the Hardware section.) The
machine code runs resident at $800 (2048), and the program has been modified to
load both sections as a unit, and relocate the machine portion when run. (Editor's
Note: Both separate BASIC and Machine Language sections, as well as the combined
version, are saved on disk.)

The program is completely automated and self-prompting, therefore I have
only a few helpful hints.

First, patterns are best developed on, and input from graph paper numbered
along the top and side to match the screen. This gives a backup as well as a hard
copy visual image to check the screen output. Second, the centerpoint you select
to input the figure is not automatically set as a live cell. Consequently, it can
literally be any point on the screen. You must remember though, that all figures
are rotated and reversed around this relative center and, therefore, it should be
chosen with care. Third, with really large figures where the choice of center point
is critical to keep from plotting the figure off screen, it is helpful to include the
center coordinates in the figure name as a guide during recall. Last, due to the
finite field limits established by Mr. Suitor's program, known patterns may not
behave normally if they contact the edge. Gliders for example, turn to boxes as
they hit the edge, rather than continue to move off screen. This is no cause for
alarm; simply a fact of Life.

For fun, create a pattern file with the coordinates listed below. Name this
figure PULSAR SEED, and use an initial centerpoint of say 19,19. When you run it
the results may surprise you. In any case, have fun!

(X,y); (10,8); (9,9); (11,9); (9,10); (11,10); (9,11); (10,11); (11,11); (9,12);
(11,12); (9,13); (11,13); (10,14); (99,99).

1

i

,
,
,
i

i

~
) ,

j

j
, J

,... Tibbetts Lifesaver 141

0800 1 ,************************
0800 2 :* *
0800 3 :* APPLE LIFESAVER *
0800 4 :* GREGORY L. TIBBETTS •
0800 5 :* •
0800 6 :* LIFESAVER * r- 0800 7 :* •

1
0800 8 :* COPYRIGHT (cl 1981 *
0800 9 :* MICRO INK, INC. *
0800 10 :* CHELMSFORD, MA 01824 *
0800 11 :* ALL RIGHTS RESERVED *

r- 0800 12 :* *
0800 13 , ••• *********************
0800 14
0800 15
0800 16
0800 A505 17 LBLI LDA $0005
0802 8503 18 STA $0003
0804 A504 19 LDA $0004
0806 8502 20 STA $0002
0808 18 21 CLC - 0809 6980 22 ADC #$80
080B 8504 23 STA $0004
080D A505 24 LDA $0005
080F 6900 25 ADC #$00
0811 C908 26 CMP '$08

!- 0813 DOOC 27 BNE LBLA
0815 A504 28 LDA $0004
0817 6927 29 ADC #$27
0819 C952 30 CMP '$52
081B 1008 31 BPL LBLB
081D 8504 32 STA $0004
081F A904 33 LDA #$0004
0821 8505 34 LBLA STA $0005
0823 18 35 CLC
0824 60 36 LBLR RTS

r- 0825 38 37 LBLB SEC
0826 BOFC 38 BCS LBLR
0828 20CA08 39 JSR LBLS
082B 200008 40 LBLX JSR LBLI
082E 9001 41 BCC LBLC

~ 0830 60 42 RTS
0831 A027 43 LBLC LDY '$27
0833 98 44 TYA
0834 AA 45 TAX
0835 A900 46 LBLH LDA #$00

~ 0837 994009 47 STA $0940,Y
083A 997009 48 STA $0970,Y
083D BI02 49 LDA ($02),Y
083F FOOF 50 BEQ LBLE
0841 100A 51 BPL LBLD

.~ 0843 FE4009 52 INC $0940,X
0846 FE7009 53 INC $0970,X
0849 2908 54 AND #$08
084B F003 55 BEQ LBLE
084D FE4009 56 LBLD INC $0940,X
0850 BI04 57 LBLE LDA ($04),Y
0852 FOOF 58 BEQ LBLG
0854 1003 59 BPL LBLF
0856 PE7009 60 INC $0970,X
iJ859 ~ 61 LBLF AlIID '$08 r- 085B F006 62 BEQ LBLG
085D FE7009 63 INC $0970,X
0860 FE4009 64 INC $0940,X
0863 88 65 LBLG DEY
0864 CA 66 DEX - 0865 10CE 67 BPL LBLH
0867 A026 68 LDY '$26
0869 18 69 CLC
086A AD6709 70 LDA $0967
086D 6D6609 71 ADC $0966 - 0870 8506 72 STA $0006
0872 AD9709 73 LDA $0997
0875 6D9609 74 ADC $0996

j

142 Graphics and Games

1
0878 8507 75 STA $0007
087A 18 76 LBLW CLC
087B A506 77 LDA $0006 .,
087D 793F09 78 ADC $093F,Y
0880 38 79 SEC
0881 F94209 80 SBC $0942, Y
0884 8506 81 STA $0006
0886 C903 82 CMP #$03 ,
0888 FOOE 83 BEQ LBLK
088A 9004 84 BCC LBLJ
088C C904 85 CMP 1$04
088E FOOE 86 BEQ LBLL
0890 BI02 87 LBLJ LDA ($02), Y ,
0892 FOOA 88 BEQ LBLL
0894 2985 89 AND #$85
0896 5004 90 BVC LBLM
0898 BI02 91 LBLK LDA ($02), Y
089A 0930 92 ORA #$30 ,
089C BI02 93 LBLM LDA ($02), Y
089E 18 94 LBLL CLC
089F A507 95 LOA $0007
08Al 796F09 96 AIlC $096F,Y
08A4 38 97 SEC i 08A5 F97209 98 SBC $0972,Y
08A8 8507 99 STA $0007
08AA C9(,3 100 CMP #$03
08AC FOOE 101 BEQ LBLP
08AE 9004 102 BCC LBLN ,
08BO C904 103 CMP #$04
08B2 FOOE 104 BEQ LBLT
08B4 BI04 105 LBLN LDA ($04), Y
08B6 FOOA 106 BEQ LBLT
08B8 29F8 107 AND #$F8 ') 08BA 5004 108 BVC LBLV
08BC BI04 109 LBLP LOA ($04), Y
08BE 0903 110 ORA #$03
08CO 9104 III LBLV STA ($04), Y
08C2 88 112 LBLT DEY ,
08C3 F002 113 BEQ LBLU
08C5 10B3 114 BPL LBLW
08C7 4C2B08 115 LBLU JMP LBLX
08CA A904 116 LBLS LOA #$04
08CC 8505 117 STA $0005 '1 08CE MOO 118 LOA #$00
0800 8504 119 STA $0004
0802 806809 120 STA $0968
0805 8D8809 121 STA $0988
0808 60 122 RTS 1 0809 20CA08 123 JSR LBLS
08DC 200008 124 LABO JSR LBLI
080F 9001 125 BCC LBLY
08El 60 126 RTS
08E2 A027 127 LBLY LDY #$27 ,
08E4 BI02 128 LBLC LDA ($02).Y
08E6 FOOA 129 BEQ LBLZ
08E8 297F 130 AND i$7F
08EA C910 131 CMP #$10
08EC 3002 132 BMI LABA ,
08EE 0980 133 ORA #$80
08FO 9102 134 LABA STA ($02), Y
08F2 BI04 135 LBLZ LOA ($04).Y
08F4 FOOA 136 BEQ LABB
08F6 29F7 137 AND #$F7 ~
08F8 6A 138 ROR
08F9 9002 139 BCC LABC
08FB 0904 140 ORA #$04
08FD 2A 141 LABC ROL
oaFE 9104 142 STA ($04) ,Y i 0900 88 143 LABB DEY
0901 FOD9 144 BEQ LABD
0903 10DF 145 BPL LBLC

146 END ..,
I

.1

f""'"
!

,-

Tibbetts Lifesaver

• •
• SYMBOL TABLE -- V 1.5 • • •
***********************.*

LABEL. LOC. LABEL. LOC. LABEL. LOC .

•• ZERO PAGE VARIABLES:

•• ABSOLUTE VARABLES/LABELS

LBLI 0800 LBLA 0821 LBLR 0824
LBLH 0835 LBLD 084D LBLE 0850
LBLJ 0890 LBLK 0898 LBLM 089C
LBLV 08CO LBLT 08C2 LBLU 08C7
LBLO 08E4 LABA 08FO LBLZ 08F2

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OOFA

1
2
3
4
5
6
7
8
9

REM **.*********************

10
11
12
13
14

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

* •
• APPLE LIFE-SAVER •
• GREGORY TIBBETTS • • * • LIFESAVER •
• • • COPYRIGHT (C) 1981 •
• MICRO INK, INC. •
• CHELMSFORD, MA 01824 • • ALL RIGHTS RESERVED •

* •
*************.**********

15 LOMEM:2500
16 DIM HEX$(30)
30 PRINT "BLOAD LIFE"
50 GOTO 800

LBLB
LBLF
LBLL
LBLS
LABC

60 POKE -16302,0: COLOR=O: FOR K=40 TO 47
70 HLIN 0,39 AT K: NEXT K

0825 LBLX 082B
0859 LBLG 0863
089E LBLN 08B4
08CA LABD 08DC
08FD LABB 0900

80 KX= PDL (0)-10: IF KX>240 THEN KX=KX1: IF KX<O THEN KX=O
90 K1=KX·6:K2=KX·2:K3=500/(K1+50)+1

100 FOR X=l TO K3
110 CALL GEN
120 FOR K=l TO K2: NEXT K
130 CALL MOP
140 FOR K=l TO SIZE: COLOR=11
150 NEXT I
160 GOTO 80
170 FOR 1=1 TO SIZE: COLOR=ll
180 X=XCTR+X(I):Y=YCTR+Y(I)
190 IF X<O OR X>39 OR Y<O OR Y>39 THEN 1210
200 PLOT X,Y: NEXT I
210 RETURN
220 FOR 1=11 TO 12: FCR J=J1 TO J2
230 COLOR=ll: IF RND (L) THEN COLOR=O
240 PLOT I,J
250 NEXT J: NEXT I
260 GOTO 60
270 FOR 1=1 TO SIZE
280 X=Y(I):Y=X(I)
290 IF Y(I) THEN X=X·-l

LBLC
LBLW
LBLP
LBLY

143

0831
087A
08BC
08E2

144 Graphics and Games

300 X(I)aX:Y(I)=Y
310 HEX'!' I: RETURN
320 FOR 1=1 TO SIZE
330 X(I)=X(I)*-l:Y(I)=Y(I)*-l
340 NEX'!' I: RETURN
350 FOR 1=1 TO SIZE
360 IF XAX THEN 380
370 X=X(I):Y=Y(I)*-l: GOTO 390
380 Y=Y(I):X=X(I)*-l
390 X(I)=X:Y(I)=Y: NEX'!' I
400 RETURN
410 PRINT D$;"OPEN";A$
420 PRINT D$;"READ";A$
430 FOR 1=1 TO 255
440 INPUT X(I),Y(I)
450 IF X(I)=99 OR Y(I)=99 THEN 470
460 NEX'!' I
470 SIZE=I-l
480 PRINT D$;"CLOSE";A$
490 IF ROT THEN GOSUB 270
500 IF HALF THEN GOSUB 320
510 IF REV THEN GOSUB 350
520 GOSUB 170
530 HALF=O:ROT=O:REV=O:XAX=O:SIZE=O
540 RETURN
550 PRINT D$; "OPEN" ;A$
560 PRINT D$; "DELETE" ;A$
570 PRINT D$;"OPEN";A$
580 PRINT D$; "WRITE" ; A$
590 FOR 1=1 TO SIZE
600 PRINT XCI)
610 PRINT Y(I)
620 NEX'!' I
630 PRINT D$;"CLOSE";A$
640 RETURN
650 FOR 1=1 TO 255
660 INPUT X, Y
670 IF X=99 OR Y=99 THEN 720
680 IF X<O OR X>39 OR YeO OR Y>39 THEN 700
690 X(I)=X-XCTR:Y(I)=Y-YCTR: GOTO 710
700 PRINT "INPUT X,Y",X,Y
710 NEX'!' I
720 X(I)=99:Y(I)=99
730 SIZE=I
740 RETURN
750 INPUT "INPUT X,Y",X,Y
760 IF X=99 OR Y=99 THEN 60
770 IF X<O OR X>39 OR yeO OR Y>39 THEN 790
780 COLOR=ll: PLOT X,Y: GOTO 750
790 PRINT "OUT OF RANGEl": GOTO 750
800 TEX'!'
810 DIM X(255),Y(255),A$(50),B$(2),D$(1)
820 GEN=2088:MOP=2265:Kl=1:K2=1:D$="": REM D$=CNTRL D
830 CALL -936: VTAB 5: TAB 9: PRINT ·CONWAY'S GAME OF LIFE": FOR 1=1 TO

700: NEX'!' I
840 GR
850 PRINT "DO YOU WISH TO: l.PLAY OR 2.CREATE"
860 INPUT "A NEil PATTERN FILE (1/2).",Cl
870 IF Cl=2 THEN 1140
880 INPUT "SPEED=PDL(O):SET DEFAULT (0-255)",KXl
390 PRINT "00 YOU WISH: l.RANDOM PATTERN 2.PATTERN"
900 INPUT "FROM DISK OR 3.STANDARD: (1/2/3)",Cl
910 IF Cl=3 THEN 990
920 IF Cl=2 THEN 1010
930 INPUT "X DIRECTION LIMITS ",Il,I2
940 IF 11<0 OR 12>39 OR 11>12 THEN 930
950 INPUT "Y DIRECTION LIMITS ",Jl,J2
960 IF Jl<O OR J2>39 OR Jl>J2 THEN 950
970 INPUT "CNE IN '111" CELLS WILL LIVE: ENTER N",L
980 GCTO 220
990 PRINT "ENTER YOUR PATTERN (X,Y):99,99 EXITS"

1000 GOTO 750
1010 INPUT "WHAT FIGURE NAME",A$
1020 INPUT "ENTER CENTER COORD'S (X,Y)",XCTR,YCTR

j ,
,
,
,
,
,
,
.,

I

.,

,

1030 INPUT "ENTER ROTATION (0/90/180/270)".ROT
~ 1040 IF ROT=180 OR ROT=270 THEN HALF=1

1050 IF ROT=90 OR ROT=270 THEN ROT=1
1060 IF ROT<>1 THEN ROT=O

Tibbetts

1070 INPUT "ENTER 1. REVERSED OR 2. STANDARD (1/2)". REV
1080 IF REV>1 THEN REV=O: IF NOT REV THEN 1110
1090 INPUT "REVERSE ON I.X-AXIS OR 2.Y-AXIS (1/2)" .XAX
1100 IF XAX>I THEN XAX=O
1110 GOSUB 410
1120 INPUT "ANOTHER FIGURE (Y/N)".B$: IF B$="N" THEN 60
1130 PRINT "CAUTION: FIGURES MAY OVERWRITEI": GOTO 1010

~ 1140 INPUT "ENTER CENTER COORD'S (X.Y)".XCTR.YCTR
1150 PRINT "ENTER ALL LIVE CELLS (X.Y):99.99 EXITS"
1160 GOSUB 650
1170 INPUT "ENTER NAME FOR THIS FIGURE".A$
1180 GOSUB 550

~ 1190 PRINT "TESTING": GOSUB 410
I 1200 GOTO 60

1210 PRINT "PLOT ABORTED/FIGURE WENT OFF SCREEN"
1220 PRINT "MOVE CENTERPOINT:X AND Y WHEN ABORTED'·
1230 PRINT "WERE .. :X: :Y: PCP : POP

~ 1240 IF 1=1 THEN 1020:IE=I-l: COLOR=O: FOR 1=1 TC IE
1250 PLCT X(I)+XCTR.Y(I)+YCTR: NEXT I: GOTO 1020

Lifesaver

1260 REM ADAPTATION BY GREG TIBBETTS OF RICHARD SUITOR'S PROGRAM IN
1265 REM "BEST OF MICRO" VCLUME II 1979
1270 REM LINES 0-50 PROGRAM SET-UP
1280 REM 60-160 SPEED AND GENERATION
1290 REM 170-210 GENERAL PLOT SUBR.
1300 REM 220-260 RANDOM PLOT SUBR.
1310 REM 270-340 ROTATION SUBR'S.
1320 REM 350-400 REVERSAL SUBR.

I~ 1330 REM 410-540 DISK READ SUBR.
1340 REM 550-640 DISK WRITE SUBR.
1345 REM 650-740 DISK INPUT SUBR.
1350 REM 750-790 STANDARD INPUT SUBR.
1360 REM 800-840 INITIALIZATION

~ 1370 REM 850-920 MODE SELECTION
1380 REM 930-1200 USER INPUT/SELECT
1390 REM 1210-1250 PLOT ABORT SUBR.

10000 END

145

Applayer Music
Interpreter

by Richard F. Suitor

The Apple's built-in ability to generate sound is well
known. Yet oftentimes this powerful capability is under­
utilized by Apple users, due to the difficulty involved in
programming meaningful tones. The Applayer music
interpreter eliminates most of these complications, and
provides a straightforward method to produce real
music on your Apple.

This music program is more than a tone-making routine, it is a music interpreter.
It enables you to generate a table of bytes that specify precisely the half-tone and
duration of a note with a simple coding. Its virtue over the simpler routines is
similar to that of any interpreter (such as Sweet 16, or, more tenuously, BASIC)
over an assembler or hand coding-it is easier to achieve your goal and easier to
decipher the coding six months later.

The immediate motivation for this interpreter was Martin Gardner's
Mathematical Games Column in the April 1978 Scientific American. Several
types of algorithmically generated music are discussed in that column; this pro­
gram provides a means of experimenting with them as well as a convenient
method of generating familiar tunes.

The program is written in 6502 assembly language. It would be usable on a
system other than the Apple if a speaker was interfaced in a similar way. Access­
ing a particular address (C030) changes the current through the Apple speaker
from on to off or from off to on; it acts like a push button onloff switch (or, of
course, a flip-flop). Thus this program makes sound by accessing this address
periodically with an LOA C030. Any interface that could likewise be activated
with a similar (4 clock cycles) instruction could be easily used. A different inter­
facing software procedure would change the timing and require more extensive
modification.

The tone is generated with a timing loop that counts for a certain number of
clock cycles, N (all of the cycles in a period including the toggling of the speaker
are counted). Every N cycles a 24 bit pattern is rotated and the speaker is toggled if
the high order bit is set. Four cycles are wasted (to keep time) if the bit is not set.

,
.,
..,

I

,
j

i

,..,
I

-!

Suitor Applayer 147

There is a severe limit to the versatility of a waveshape made from onloff transi­
tions, but tones resembling a variety of (cheap) woodwinds and pipes are possible,
with fundamentals ranging from about 20 Hz to 8 KHz.

Applayer interprets bytes to produce different effects. There are two types of
bytes:

Note bytes - Bit 7 Not Set
Control bytes - Bit 7 Set to 1

A note byte enables you to choose a note from one of 16 half tones, and from
one to eight eighth notes in duration. The low order nibble is the half-tonej the
high order nibble is the duration (in eighth notes) minus one.

Bit 7654 3210
Note Byte o (Duration) (Half-Tone)

The control bytes enable you to change the tempo, the tonal range which the
16 half-tones cover, rests, the waveshape of the tone and to jump from one portion
of the table to another.

Control Byte Table

HEX DECIMAL FUNCTION
81 129 The next three bytes are the new waveshape

pattern.
82 130 JMP-New table address follows. Low order byte

first, then page byte.
83 131 JSR-New table address follows. When finished,

continuing this table at byte after address byte.
9N 144+N N is the number of 16th notes to be silent at the tail

of a note. Controls rests and note definition.
AN 160+ N< 32 Selects the tonal range. Half-tone 10 is set to one of

32 half-tones giving a basic range of four octaves.
CN 192+ N<62 Controls the tempo. Length of a note is proportional

to N. Largest value gives a whole note lasting about
3.5 sec.

FF 255 RETURN. Stop interpreting this table. Acts as return
for 83 JSR instruction or causes return from Ap-
player.

To use Applayer with sheet music, you must first decide on the range of the
half tones. This must sometimes be changed in the middle of the song. For exam­
ple, the music for "Turkey in the Straw", which appears later, was in the key of
Cj for the first part of the song I used the following table:

NOTE C D E F GAB C D
TONE # 0 2 4 5 7 9 B C E

148 Graphics and Games

The tonal range was set with a control byte, BO. In the chorus, the range of the
melody shifts up; there the tonal range is set with a B 7 and the table is

NOTE GAB C D E F G A
TONE # 0 2 4 5 7 9 ACE

(The actual key is determined by the waveshape pattern as well as the tonal range
control byte. For the pattern used, 0505 OS, the fundamental for the note written
as C would be about 346Hz, which is closer to F.)

Rests can be accomplished with a 9N control byte and a note byte. For exam­
ple, 94 10 is a quarter rest, 98 30 is a half rest, etc. This control is normally set at
91 for notes distinctly separated, or to 90 for notes that should run together.

Let's try to construct a table that Applayer can use to playa tune. We can start
simply with "Twinkle, Twinkle Little Star." That tune has four lines; the first
and fourth are identical, as are the second and third. Our table will be constructed to:

1. Set up the tonal range, tone pattern and tempo that we want
2. JSR to a table for the first line
3. JSR to a table for the second line
4. Repeat #3
5. Repeat #2
6. Return
7. First line table and return
8. Second line table and return

Since Applayer is not symbolic, it will be easier to construct the tables in
reverse, so that we can know where to go in steps 2-6. The note table for the first
line can go at OBOO and looks like:

OBOO- 10 10 17 17 19 19 37 15
OB08- 15 14 14 12 12 30 FF FF

The second line can follow at OBlO:

OBI0- 17 17 15 15 14 14 32 FF

Now we can start on step 1. I'll suggest the following to start; you'll want to make
changes:

OB20- BO 81 05 05 05 EO 91

The above determines the tonal range, the tone waveshape, the tempo, and a six­
teenth note rest out of every note to keep the notes distinct. To run them together,
use 90 instead of 91. Steps 2 - 6 can follow immediately:

OB20- 83
OB28- 00 DB 83 10 DB 83 10 DB
DB 30- 83 00 DB FF

.. 1
.,

:1 .,
"

" .,
i , ,

i , ,

i

.,
,

.,
• J

r

Suitor Applayer 149

That completes the table for "Twinkle, Twinkle." We now have to tell
Applayer where it is and turn it on. From BASIC we must set up some zero page
locations first and then TSR to Applayer: (Don't forget to set LOMEM before run­
ning; 2900 will do for this table.)

100 POKE 19, 32
110 POKE 20,11
120 POKE 1,8
130 POKE 17, 8
140 POKE 16, 0
120 CALL 2346

(low order byte of the table address, 0820)
(high order byte of the table address, 0820)
(high order byte of 1st page of Applayer program)
(16 & 17 contain the tone table address)

Uump subroutine to 092A)

We can also make a short program in assembly language to set up the zero
page locations. See routine ZERO, location 09C0 in the listing.

This initialization can be used most easily by reserving the AOO page, or much
of it, as a "Table of Contents" for the various note tables elsewhere in memory.
To do this with "Twinkle, Twinkle" we add the following table:

OA20- 82 20 OB

This jumps immediately to the table at OB20. With this convention, we can move
from table to table by changing only the byte at 9DO (2512 decimal).

We can use this initialization from BASIC, too, by changing the last instruc­
tion to RTS:

100 POKE 2512,32 (low order table byte)
110 POKE 2538,96 (change inst. at 09EA to RTS)
120 CALL 2496 Uump subroutine to 9CO)

From the monitor: *9DO:20
*9COG

will do.

If you quickly tire of "Twinkle, Twinkle," you may wish to play with
"Turkey in the Straw." The table follows; its structure will be left as an exercise.

From the monitor: *9DO:0
*9COG

will play it.

i
150 Graphics and Games ,

(Editor's Note: An Integer BASIC driver routine for APPLAYER, called ,
APPLA YER MENU, is included on the disk. This driver program automatically
loads and executes the music interpreter, allowing playback of either of the two
example tunes discussed (these tunes are included in the APPLA YER binary file). , Users without Integer BASIC in their systems may still load and execute
APPLA YER directly from the monitor, as described in the article.}

(Editor's Note: Glitches in "Turkey in the Straw" were deliberately included. It is j
left as an exercise to the reader to correct them!)

Note Table for "Turkey in the Straw" ,
OAOO: 83 90 OF 83 90 OF FF
OFOO: 90 1C 1A 92 38 90 18 1A
OF08: 18 13 10 11 91 13 13 33 ,
OF10: 33 90 18 1A 92 3C 3C 90
OF18: 1C 1A 18 1A 91 1C 38 18
OF20: 38 90 1C 1A 92 38 90 18 ,
OF28: 1A 18 13 91 10 11 13 53
OF30: 33 90 18 1A 91 3C 3F 90
OF38: 1F 1C 18 1A 1C 18 92 3A ,
OF40: 94 78 91 FF
OF50: 81 55 55 55 FF
OF58: 81 05 05 05 FF
OF60: 15 18 18 15 78 FF i
OF68: 16 1A 1A 16 7A FF

J

OF70: 10 10 10 10 18 18 18 18
OF78: 35 15 15 33 90 11 13 91 "1 OF80: 15 18 18 18 90 18 15 11
OF88: 13 91 15 15 13 13 71 FF
OF90: 83 58 OF D4 BO 83 50 OF .,
OF98: B7 83 60 OF 83 50 OF 83
OFAO: 60 OF 83 50 OF 83 68 OF
OFA8: 83 50 OF 83 68 OF 83 50 , OFBO: OF 83 70 OF FF

Tone Table

0800: AO 03 68 03 38 03 08 03 j
0808: EO 02 B8 02 90 02 68 02
0810: 48 02 28 02 08 02 1:8 01

~ 0818: DO 01 B4 01 9C 01 84 01
0820: 70 01 5C 01 48 01 34 01
0828: 24 01 14 01 04 01 F4 00
0830: E8 00 DA 00 CE 00 C2 00 i
0838: B8 00 AE 00 A4 00 9A 00
0840: 92 00 8A 00 82 00 7A 00
0848: 74 00 6D 00 67 00 61 00 -r 0850: 5C 00 57 00 52 00 4D 00
0858: 49 00 45 00 41 00 3D 00

~
)

Suitor Applayer 151

C600 1 ************************
0800 2 * *
OSOO 3 * APPLAYER MUSIC *
OSOO 4 * INTERPRETER *
OSOO 5 * RICHARD F. SUITOR *
OSOO 6 * *
OSOO 7 * APPLAYER *
OSOO 8 * *
OSOO 9 * COPYRIGHT (C) 1981 *
0800 10 • MICRO INK, INC. •
0800 11 * CHELMSFCRD, MA 01824 * r- 08CO 12 * ALL RIGHTS RESERVED *

I 0800 13 * *
0800 14 ************************
OSOO 15

r-'
0800 16
OSOO 17

" 0800 18
OS60 19 ORG $OS60
0860 20 OBJ $OS60

,- 0860 21
0860 22 ,
0860 EA 23 TIME NOP
OS61 EA 24 NOP
08112 EA 25 NOP ,- OS63 S8 26 TIMEA DEY
OS64 8545 27 STA $0045 ;ANY INNOCUOUS 3 CYCLE INSTRUCTION
OS66 DOEB 28 BNE TIMEA ;BASIC S CYCLE LOOP
0868 F005 29 BEQ TIMEC
OS6A SS 30 TIMEB DEY
086B EA 31 NOP
OS6C EA 32 NOP
0860 IJOF4 33 BNE TIMEA
OS6F 2404 34 TIMEC BIT $0004 ; START CHECK OF BIT PATTERN
OS71 3S 35 SEC ;IN 2, 3, AND 4
OS72 3002 36 BMI TIMED
0874 EA 37 NOP
0875 18 38 CLC
0876 2603 39 TIMED ROL $0003
OS78 2602 40 ROL $0002
OS7A 2604 41 ROL $0004
087C 9003 42 BCC TIMEE
087E AD30CO 43 LOA $C030 ;TOGGLE SPEAKER
0881 C606 44 TIMEE DEC $0006 ;DURATION OF NOTE IN
0883 D005 45 BNE TIMEF ;NO. OF CYCLES IN LOCATIONS
0885 C607 46 DEC $0007 ;6 AND 7
0887 0005 47 BNE TIMEG
08S9 60 48 RTS

~ 08SA EA 49 TIMEF NOP ;TIMING EQUALIZATION
OSSB EA 50 NOP
08SC DOOO 51 BNE TIMEG
OS8E A405 52 TIMEG LDY $0005
0890 6COOOO 53 JMP ($0000)
0893 54
OS93 55 ;SCALING ROUTINE FOR CYCLE DURATION
0893 56 ;CALCULATION LOC 6,7 = A REG *LOC
0893 57 ;50, 51 ,- OS93 58
0893 8545 59 SCALE STA $0045
OS95 A900 60 LDA #$00
OS97 S506 61 STA $0006
OS99 S507 62 STA $0007
089B A205 63 LDX #$05
089D IS 64 CLC
OS9E 6607 65 SCALE X ROR $0007
OSAO 6606 66 ROR $0006
OSA2 4645 67 LSR $0045
08A4 900C 68 BCC SCALEA
08A6 A506 69 LDA $0006

~

i

152 Graphics and Games ~
)

08A8 6550 70 ADC $0050
08M e506 71 STA $0006 '\ 08AC A507 72 LOA $0007 f

08AE 6551 73 ADC $0051
08BO 8507 74 STA $0007
08B2 CA 75 SCALEA DEX , 08B3 10E9 76 BPL SCALEX
08B5 E607 77 INC $0007 SIMPLE LOGIC IN TIMING ROUTI.
08B7 60 78 RTS
08BE 79 ORG $08BE
08BE 80 ,
08BE 81 ;NOTE PLAYING ROUTINE Y REG
08BE 82 ;HAS HALF-TONE INDEX
08BE 83 ,
08BE A512 84 NOTE LOA $0012 ;NOTE LENGTH
08CO 8552 85 STA $0052 i 08C2 A50F 86 LOA $OOOF ;NOTE TABLE OFFSET)

08C4 8510 87 STA $0010
08C6 B110 88 LOA ($OOlO),Y ;LOW ORDER BYTE OF
08C8 38 89 SEC ;MACHINE CYCLES PER PERIOD , 08C9 8554 90 STA $0054
08CB E935 91 SBC #$35 ;CYCLES USED UP TIMING OVERHEAD
08CD 8508 92 STA $0008
08CF CB 93 INY
0800 B110 94 LOA ($OOlO),Y ;HIGH ORDER BYTE OF MACHINE ,
0802 8555 95 STA $0055 ;CYCLES PER PERIOD
080:4 E900 96 SBC #$00
0806 8509 97 STA $0009
0808 11900 98 LOA #$00
08DA 8550 99 STA $0050 1 080C 8551 100 STA $0051
08DE 8553 101 STA $0053
08EO A010 102 LOY #$10
08E2 202403 103 JSR $0324 , 08E5 104
08E5 105
08E5 106 THE ROUTINE AT $324 EMULATES THE OLD
08E5 107 MONITOR rIVIDE ROUTINE, WHICH DIVIDES
08E5 108 LOCS 54,55 BY 52,53 AND LEAVES THE ,
08E5 109 RESULT IN 50,51 FOR THE SCALING
06E5 110 ROUTINE. THIS DIVIDE ROUTINE IS LISTED
08E5 111 IN THE REFERENCE MANUAL ON P.162 ($FB81)
08E5 112 -, 08E5 11508 113 LOA $0008
08E7 48 114 PHA J

08E8 4609 115 LSR $0009
08EA 6A 116 ROR
08EB 4609 117 LSR $0009 i 08ED 6A 118 ROR
08EE 4609 119 LSR $0009
08FO 6A 120 ROR
08F1 8505 121 STA $0005 ;NC. OF 8 CYCLE LOOPS
08F3 68 122 PLA ! OeF4 2907 123 ANI: #$07 ;LEFT OVER CYCLES DETERMINE
08F6 M 124 TAX ;ENTRY POINT
08F7 BDF809 125 LOA TTABLE,X ;TABLE OF ENTRY POINTS
Utl~'A tl!:>OO 126 STA $0000 ; FOR TIMING LOOP
08FC A50E 127 LOA $OOOE ;NOTE DURATION, QUARTER,
08FE 38 128 SEC ; HALF
08FF E50D 129 SBC $0000 ;REST PART OF NOTE
0901 FOOF 130 BEQ NOTEB ;IF NCTHING TO DO
0903 209308 131 JSR SCALE ;SCALING ROUTINE ~ 0906 A202 132 LOX 11$02 ,START PATTERN LOAD

0908 B50A 133 NOTEA LOA $OA,X
090A 9502 134 STA $02,X
090C CA 135 DEX
0900 10F9 136 BPL NOTEA
090F 206FC8 137 JSR TIMEC ;TIMING ROUTINE

".., ,

~ Suitor Applayer 153

0912 A50D 138 NOTEB LDA $OOOD REST PART OF NOTE
0914 FOOE 139 BEQ MAIN IF NOTHING TO DO
0916 209308 140 JSR SCALE SCALING ROUTINE
0919 A900 141 LeA #$00
091B 8502 142 STA $000:;> :ZERO OUT PATTERN FOR
091D 8503 143 STA $0003 :REST PART

~ 091F 8504 144 STA $0004
0921 206F08 145 JSR TIMEC :TIMING
0924 146 ORG $0924
0924 147

r- 0924 148 :MAIN PART OF INTERPRETER

i 0924 149 :ENTRY AT "ENTRY"
0924 150
0924 E613 151 MAIN INC $0013 :TABLE ADDRESS
0926 D002 15:;> BNE ENTRY
0928 E614 153 INC $0014
092A ACOO 154 ENTRY LDY #$00
092C B113 155 LDA ($OO13),Y :NEXT TABLE BYTE
092E 3012 156 BMI MAINA :TO CONTROL SECTION

r- 0930 48 157 PHA
0931 290F 158 AND #$OF : TONE
0933 OA 159 ASL
0934 A8 160 TAY
0935 68 161 PLA
093,6 2970 162 AND #$70 :DURATION
0938 4A 163 LSR
0939 4A 164 LSR
093A 4A 165 LSR
093B 6902 166 ADC #$02 :TOTAL DURATION IN 16THS
093D 850E 167 STA SOOOE
093F 4CBE08 168 JMP NOTE :PLAY NOTE
0942 C9FD 169 MAINA CMP UFD :CO + 3D IS LONGEST NOTE FOR
0944 9001 170 Bec MAINB :SCALING REASONS

~
0946 60 171 RTS

, 0947 48 172 MAINB PHA
0948 OA 173 ASL
0949 1007 174 BPL MAINe
094B 68 175 PLA

r- 094C 293F 176 AND #$3F :NOTE LENGTH
094E 8512 177 STA $0012
0950 BOD2 178 BCS MAIN :UNCONDITIONAL BRANCH
0952 OA 179 MAINC ASL
0953 100e 180 BPL MAIND
0955 68 181 PLA
0956 291F 182 AND #$lF :TONAL RANGE INDEX
0958 OA 183 ASL
0959 850F 184 STA $OOOF
095B 90C7 185 BCC MAIN :UNCONDITIONAL BRANCH
095D OA 186 MAIND ASL
095E 1007 187 BPL MAINE
0960 68 188 PLA
0961 290F 189 AND #$OF :REST FRACTION - 0963 850D 190 STA $OOOD
0965 90BD 191 BCC MAIN : UNCONDITIONAL BRANCH
0967 OA 192 MAINE ASL
0968 1003 193 BPL MAING

~
096A 68 194 MAINF PLA
096B 90B7 195 BCC MAIN : DUMMY, CONTROLS NOT INTERPRETED
096D OA 196 MAING ASL
096E 30FA 197 BMI MAINF
0970 OA 198 ASL
0971 102B 199 BPL MAINI
0973 68 200 PLA
0974 AA 201 TAX :JSR AND JMP SECTION
0975 4A 202 LSR - 0976 900A 203 BCC MAINH
0978 A513 204 LDA $0013 :JSR SECTION, PUSH RETURN TABLE
097A 6901 205 ADC #$01 :ADDRESS ON TO STACK
097C 48 206 PHA -

154 Graphics and Games

097D A514
097F 6900
0981 48
0982 C8
0983 B113
0985 48
0986 C8
0987 B113
0989 8514
098B 68
098C 8513
098E 8A
098F 4A
0990 9098
0992 202A09
0995 68
0996 8514
0998 68
0999 8513
099B 18
099C 9086
099E 68
099F A003
09A1 B113
09A3 990900
09A6 88
09.A7 DOF8
09A9 A513
09AB 6903
09AD 8513
09AF 9002
09B1 E614
09B3 4C2409
09CO
09CO
09CO
09CO
09CO D8
09C1 MOO
09C3 8510
09C5 A908
09C7 8511
09C9 8501
09CB A90A
09CD 8514
09CF A920
09D1 8513
09D3 A90l
09D5 850D
09D7 A920
09D9 8512
09DB M20
09DD 850F
09DF M05
09E1 850A
09E3 850B
09E5 850C
09E7 202A09
09EA 4C69FF
09F8
09F8
09F8
09F8
09F8 636A62
09FB 6D616C
09FE 606B

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271

LDA $0014
ADC UOO
PHA

MAINH INY
LDA ($0013),Y
PHA
INY
LDA ($0013),Y
STA $0014
PLA
STA $0013
TXA
LSR
BCC ENTRY
JSR ENTRY
PLA
STA $0014
PLA
STA $0013
CLC
BCC MAIN

MAINI PLA
LDY U03

MAINJ LDA ($0013).Y
STA $0009.Y
DEY
BNE MAINJ
LDA $0013
ADC U03
STA $0013
BCC MAINI<
INC $0014

MAINI< JMP MAIN
ORG $09CO .

:GET NEW ADDRESS

:AND STORE IT FROM BEGINNING
:OF SELECTION
:JMP
:JSR

:PULL ADDRESS AND STORE IT

:UNCONDITIONAL BRANCH

:GET NEW PATTERN AND
:STORE IT

:JUMP OVER PATTERN

:INITIALIZATION FOR ZERO PAGE

ZERO CLD
LDA UOO
STA $0010
LDA #$08
STA $0011
STA $0001
LDA UOA
STA $0014
LDA U20
STA $0013
LDA #$01
STA $OOOD
LDA #$20
STA $0012
LDA U20
STA $OOOF
LDA #$05
STA $OOOA
STA $OOOB
STA $OOOC
JSR ENTRY
JMP $FF69
ORG $09F8

:JUST IN CASE

:NOTE 'I'ABLE PAGE

:NOTE TABLE BYTE

:REST 16THS

:NCTE LENGTH. CONTROLS TEMPO

:TONAL RANGE INDEX

:WAVE SHAPE PATTERN

:TO APPLAYER
:TO MONITOR. AFTER THE BEEP

:TABLE OF ENTRY POINTS FOR TIMING ROUTINE
:
TTABLE HEX 636A626D616C606B

END

.,
,
,
1 ,
,
,
1

1 ,
,
,
,
l

'1

'1

1

r-

~
I,

~
i

r-

*********************.***

* * * SYMBOL TABLE -- V 1.5 *
* * *************************

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERC PAGE VARIABLES:

** ABSOLUTE VARABLES/LABELS

TIME 0860 TIMEA 0863 TIMEB 086ATIMEC
TIMEF OSBA TIMEG 088E SCALE OS93SCALEX
NCTEA 0908 NOTEB 0912 MAIN 0924 ENTRY
MAINC 0952 I\I'AIND 095D MAINE 0967 MAINF
MAINI 099E MAINJ 09A1 MAINK 09B3 ZERO

SYMBCL TABLE STARTING ADDRESS:6000
SnlBOL TABLE LENGTH:OOFA

1 REM ************************
2 REM *
3 REM *
4 REM *
5 REM *
6 REM *
7 REM *
8 REM *
9 REM *

APPLAYER MUSIC
INTERPRETER

BY RICHARC SUITOR

APPLAYER MENU

*
*
*
*
*
*
*
*

10 REM * COPYRIGHT (C) 1981 *
11 REM * MICRO INK, INC. *
12 REM * CHELMSFORD, MA 01824 *
13 REM * ALL RIGHTS RESERVEC *
14 REM * *
15 REM *********************.**
16 REM
17 REM
18 PRINT "BLOAC APPLAYER"
19 LOMEM:4095
20 START=2496:LOBYTE=2512
30 lMAX=2

100 CALL -936
110 TAB 13
120 PRINT "APPLAYER MENU"
130 VTAB 4
140 PRINT "1 TWINKLE, TWINKLE"
150 PRINT "2 - TURI<EY IN THE STRAW"
195 VTAB 19
200 INPUT "WHICH NUMBER",I
220 IF 1<0 OR I>IMAX THEN 100
230 IF 1=0 THEN END
240 IF 1=1 THEN J=32
250 'IF 1=2 THEN J=O
300 POKE LOBYTE,J
320 CALL START
350 GOTO 100

Suitor Applayer 155

OS6FTIMED OS76 TIMEE OSSl
OS9E SCALEA 08B2 NOTE OSBE
092A MAINA 0942 MAINB 0947
096Al<IAING 096~ MAINH 09S2
09COTTABLE 09F8

Improved Star Battle
Sound Effects

by William M. Shryock, Jr.

A long, long time ago ... in a motion picture studio far,
far away ... there was a special effects team working on
a science fiction epic. And they asked ... "What would a
star-battle sound like?" ... and the Apple II answered

1 REM *****************************
2 REM * STAR BATTLE SOUND EFFECTS *
3 REM * BY *
4 REM * WILLIAM SHRYOCK, JR. *
5 REM * COPYRIGHT (C) 1981 *
6 REM * MICRO INK, INC. *
7 REM ALL RIGHTS RESERVED *
8 REM *****************************

10 POKE 0,160: POKE 1,1: POKE 2,162: POKE 3,0: POKE 4,138: POKE 5,24: POKE
6,233: POKE 7,1: POKE 8,208: POKE 9,252: POKE 10,141

20 POKE 11,48: POKE 12,192: POKE 13,232: POKE 14,224: POKE 15,150: POKE
16,208: POKE 17,242: POKE 18,136: POKE 19,208: POKE 20,237: POKE 21
,96 •

30 CALL -936: VTAB 12: TAB 9: PRINT "STAR BATTLE SOUND EFFECTS"
40 SHOTS= RND (15)+1
50 LENGTH= RND (11)*10+120
60 POKE I,SHOTS: POKE IS,LENGTH: CALL 0
70 FOR DELAY=1 TO RND (1000): NEXT DELAY
80 GOTO 40

This version can be used in Lo-Res programs without having to reset HIMEM.
Also it can be loaded from BASIC.

.,
,
,
,
,
i .,
.,
,
,
.,
.,
1

1

-,
1

-

-

Galacti-Cube
by Bob Bishop

You are the Captain of a starship exploring the outer
limits of our universe. You have discovered a gigantic
cube floating in space. Through the only opening you
have flown your ship inside, but now you can't find your
way back out!

GALACTI-CUBE is a simple maze game in three dimensions. You are in a
3 x 3 x 3 array of cubical compartments and must find your way out in no more
than 40 moves, or else you lose. Moves are made by hitting the keys N, S, E, W, U,
or D to move north, south, east, west, up or down, respectively. Although it
appears small, a 3 x 3 x 3 cubical maze actually has 27 rooms in it, which can
make the task of finding your way through deceptively non-trivial.

The program is written entirely in Apple II Integer BASIC and requires at least
8K hytes of memory. In fact, since the program uses no machine language,
graphics, or special sound effects, it could probably be converted over to other
CRT-type computers (such as the PET, TRS-80, etc.) without too much difficulty.

10 REM ************************
12 REM * *
14 RE~: * CALACTI-CUBE *
16 RUt. * R.J. BISHOP *
18 REM * *
20 REM * COPYRIGHT (C) 1981 *
22 REM * MICRO INK, INC. *
24 REM * CHELMSF'ORD, MA 01824 *
26 REM * ALL RIGHTS RESERVED *
28 REM * *
29 REM .**** •••••• ******* •• * •••
30 DIM BCX(27),OUE(27),NCDE(6),BIT(6),A$(5)
40 GOSUB 9000
50 GOSUB 1000
60 V'fAB 23: TAB 5: PRINT "(HIT ANY KEY TO START THE GAME) ":
70 GOSUB 4000: GOSUB 5000
90 LOC=14:0LD=LOC:FUEL=40

100 REM MAIN LOOP
110 GOSUB 2000
150 CALL -936: PRINT: PRINT PRINT" COMMAND:"
160 PRINT: TAB 7: GOSUB 4000: CALL -936
165 IF A$"''''' THEN 150
170 IF A$(l,l)j1"F" THEN 250
180 CALL -936. PRINT: PRINT" YOU HAVE ":FUEL

158 Graphics and Games

190 PRINT : PRINT" FUEL UNITS"
210 FOR K=l TO 1000: NEXT K: GOTO 150
250 Z=(OLD-l)/9+1
260 Y=«(OLD-l)/3) MOD 3)+1
270 X=«OLD-l) MOD 3)+1
300 IF A$"'''E'' THEN X=X+l
310 IF A$="W" THEN X=X-l
320 IF A$="N" THEN Y"Y+l
330 IF A$""&" THEN Y=Y-l
340 IF 1I$""U" THEN Z .. Z+l
350 IF A$="D" THEN Z=Z-l
360 LOC=X+3*(Y-l)+9*(Z-1)
370 IF LCC<>OLD THEN 390
380 PRINT "": GOTO 150
390 IF X<l OR X>3 OR Y<l OR Y>3 THEN 700
400 IF BCX(OLD»=32 AND Z=O THEN 800
410 VAL=BCX(OLD): IF VAL>"32 THEN VAL=VAL-32
420 IF VAL>=16 AND Z=4 THEN 800
430 IF Z<l OR Z>3 THEN 700
450 BITS=BOX(OLD)
460 WIIY=BITS-2*(BITS/2):BITS .. BITS/2
470 IF WAY .. O AND 1I$="E" THEN 700
480 WAY=BITS-2*(BITS/2):BITS=BITS/2
490 IF WAY=O AND A$a"W" THEN 700
500 WAY=BITS-2*(BITS/2):BITS=BITS/2
505 IF WAY=O AND A$="N" THEN 700
510 WAY=BITS-2*(BITS/2):BITS=BITS/2
5J5 IF WAY=O AND A$""S" THEN 7CO
520 WAY=BITS-2*(BITS/2):BITS=BITS/2
525 IF WAY=O AND A$="U" THEN 700
530 WAY=BITS-2*(BITS/2):BITS=BITS/2
535 IF WAY .. O AND A$.. "D" THEN 700
540 WAY"BITS-2*(BITS/2):BITS=BITS/2
550 FUEL=FUEL-l: IF FUEL>O THEN 100
560 CALL -936: PRINT" YOU ARE"
565 PRINT
570 PRINT" OUT OF"
575 PRINT
580 PRINT" FUELI";
590 GOTO 830
700 CALL -936: PRINT" THAT DIREC-"
710 PRINT : PRINT " TICN HAS AN"
720 PRINT: PRINT" OBSTRUCTION";
730 FOR K=l TO 1000: NEXT K: GOTO 150
800 CALL -936: PRINT "YOU FOUND THE"
810 PRINT : PRINT " EXIT IN ONLY"
820 PRINT: PRINT" ";41-FUEL;" MOVESI";
830 GOSUB 2700
840 FOR K=l TO 2500: NEXT K
850 CIILL -936: END
900 END

1000 REM GENERATE THE MAZE
1010 FOR K=l TO 27
1020 BCX(K)=128
1030 NEXT K
1040 BOX(l4)=0
1050 QUE(1)=14:QBIG=1
1060 XQBIG=l
1100 FOR K=l TC QBIG
1110 IND=QUE(K)
1140 KNT=O:RCAD=l:DEL=l
1150 FCR J=O TO 2
1160 SET=3*DEL
1170 FCR L=O TO 1
1180 NDX=IND+DEL
1190 IF NDX<l THEN 1400
1200 IF (NDX-1)/SET<>(IND-1)/SET THEN 1400
1250 IF BOX(NDX)<128 THEN 1400
1300 KNT=KNT+1:NCDE(KNT)=NDX:BIT(KNT)=ROAD

,
,
,
1

j ,
..,
..,
..,
..,
,
j

"1

-, ,
,
1

1400 DEL=-DEL:ROAD=ROAD+ROAD
1450 NEXT L
1460 DEL=SET
1470 NEXT J
1500 IF KNT=O THEN 1600
1510 NDX= RND (KNT)+1:XQBIG=XQBIG+1
1520 CUE(XQBIG)=NODE(NDX)
1530 BOX(IND)=BOX(IND)+BIT(NDX)
1540 TIB=2*BIT(NDX)

Bishop

1550 IF TIB=4 OR TIB=16 OR TIB=64 THEN TIB=TIB/4
1590 BOX(NODE(NDX»=BOX(NODE(NDX»+TIB-128
1600 NEXT K
1610 QBIG=XQBIG: IF QBIG<27 THEN 1100
1700 HOLE=2* RND (2)+6* RND (2)+18* RND (2)+1
1710 OPEN=16: IF HOLE<14 THEN CPEN=32
1720 BOX(HOLE)=BCX(HCLE)+OPEN
18CO RETURN
2000 REM UPDATE THE DISPLAY
2005 GOSUB 2700
2010 Z=(OLD-1)/9+1
2020 Y=«(OLD-l)/3) MOD 3)+1
2030 X=«OLD-l) MOD 3)+1
2040 VTAB 13-Y-Y
2050 TAB 8*Z+X+X-7
2060 PRINT "-"
2110 Z=(LOC-1)/9+1
2120-Y=«(LCC-l)/3) MOD 3)+1
213C X=«LCC-l) MOD 3)+1
2140 VTAB 13-Y-Y
2150 TAB 8*Z+X+X-7
2170 POKE PEEK (36)+ PEEK (40)+256* PEEK (41).109
2200 BITS=BOX(LOC)
2210 VT=20:T=34:A$="EAST": GOSUB 2500
2220 VT=22:T=34:A$="WEST": GOSUB 2500
2230 VT=2C:T=28:A$="NORTH": GOSUB 2500
2240 VT=22:T=28:A$="SOUTH": GOSUB 2500
2250 VT=20:T=24:A$="UP": GOSUB 2500
2260 VT=22:T=23:A$="DOWN": GOSUB 2500
2300,GOSUB 2600
2400 OLD=LOC
2450 RETURN
2500 WAY=BITS-2*(BITS/2):BITS=BITS/2
2510 MCDE=l27: IF' WAY THEN MCCE=255

Galacti-Cube

2520 POKE 50.MODE: VTAB VT: TAB T: PRINT A$: POKE 50,255
2550 RETURN
2600 VTAB 19: TAB 5
2610 POKE 32,2
2630 POKE 33,14
2660 POKE 34,17
2680 POKE 35.22
2690 RETURN
2700 POKE 32,0
2710 POKE 33,40
272C POKE 34,0
2730 POKE 35,24
2750 RETURN
4000 REM 'GET' FROM THE KEYBOARD
4010 POKE -16368,0
402C CHAR= PEEK (-16384): IF CHAR<128 THEN 4020
4030 POKE -16368,0:A$="?"
4080 IF CHAR=141 THEN A$='oo,
4090 IF CHAR=l96 THEN A$="D"
4100 IF CHAR=197 THEN A$="E"
4110 IF CHAR=198 THEN A$="F"
4120 IF CHAR=206 THEN A$="N"
4130 IF CHAR=211 THEN A$="S"
4140 IF CHAR=213 THEN A$="U"
4150 IF CHAR=215 THEN A$="W"
4200 RETURN

159

160

5000
5010
5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5200
5210
5220
5230

5240
5250
5300
5310
5320
5330
5340
5400
5410
5420
5430
5440
5450
5500
5900
9000
9010
9020
9030
9040
9050

Graphics and Games

REM DaAW DISPLAY
CALL -936: PRINT" YOUR LOCATION
PRINT: PRINT" (BOT) (MID) (TOP)
PRINT : TAB 34: PRINT "N"
PRINT: TAB 34: PRINT "I"
TAB 34: PRINT "I"
TAB 29: PRINT "w <--*--> E"
TAB 34: PRINT "I"
TAB 34: PRINT "I"
PRINT : TAB 34: PRINT "s"
VTAB 6
FOR K=l '1'0 3
PRINT : PRINT "
NEXT K
VTAB 16: TAB 21: PRINT "OBSTRUCTION SENSORS"
POKE 50,63
VTAB 5: PRINT"
FOR K=l TO 7

COMPASS"
REFERENCE"

PRINT" ";: TAB 9: PRINT" ";: TAB 17: PRINT" ";: TAB 25:PRINT " "

NEXT K
PRINT "
VTAB 18: TAB 21: PRINT"
FOR K=l TO 5
TAB 21: PRINT" ";: TAB 39: PRINT
NEXT K
TAB 21: PRIl~T "
VTAB 15: PRINT
PRINT "
FOR K=l TO 7
PRINT" ";: TAB 18: PRINT" "
NEXT K
PRINT "
POKE 50,255
RETURN
CALL -936: VTAB 10
TAB 10: PRINT "*** GALACTI-CUBE ***"
PRINT : TAB 19: PRINT "BY"
PRINT : TAB 14: PRINT "ROBERT BISHOP"
FOR K=l TO 1500: NEXT K
CALL -936

9110 PRINT " YOU ARE THE CAPTAIN OF A STAR-SHIP"
9120 PRINT "EXPLORING THE OUTER LIMITS OF OUR UNI-"
9130 PRINT "VERSE. YOU HAVE DISCOVERED A GIGANTIC"
9140 PRINT "CUBE FLOATING IN SPACE. THROUGH THE"
9150 PRINT "ONLY OPENING YOU HAVE FLOWN YOUR SHIP"
9160 PRINT "INSIDE, BUT NOW YOU CAN'T FIND YOUR WAY"
9170 PRINT "BACK OUTI"
9190 PRINT" FROM YOUR EXPLORATIONS YOU HAVE"
9200 PRINT "LEARNED THAT THE CUBE IS DIVIDED INTO"
9210 PRINT "AN ARRAY OF 3X3X3 CUBICAL COMPARTMENTS"
9220 PRINT "AND YOU ARE CURRENTLY IN THE CENTER-"
9230 PRINT "MOST ONE."
9250 PRINT " YOUR SHIP IS EQUIPPED WITH A DIS-"
9260 PRINT "PLAY INDICATING YOUR LOCATION. THE"
9270 PRINT "CBSTRUCTION SENSORS INDICATE WHICH DI-"
9280 PRINT "RECTIONS (FLASHING) ARE BLOCKED. YOU"
9310 PRINT "MOVE YOUR SHIP BY HITTING THE FIRST"
9320 PRINT "LETT'ER OF THE DIRECTION YOU WANT TO GO."
9:Bo PRINT "YOUR FUEL SUPPLY (WHICH IS DISPLAYED BY"
9340 PRINT "HITTING THE LETTER, F) WILL ONLY LET"
9350 PRINT "YOU MAKE UP TO 40 MOVES. GOOD LUCKI"
9999 RETURN

'1 ,
,
1

j ,
,
,
..,
,
,
'1

j

1 ,
..,
i ,

5
HARDWARE

Introduction

The Color Gun for the Apple II
Neil D. Lipson

A Cassette Operating System for the Apple II
Robert A. Stein, Jr.

BASIC and Machine Language Transfers
with the Micromodem II

George J. Dombrowski, Jr.

A Digital Thermometer for the Apple II
Carl Kershner

KIM and SYM Format Cassette Tapes on the Apple II
Steven M. Welch

162

163

166

172

177

181

INTRODUCTION
On a rainy weekend day, when there is nothing to do around the house, what better
project could there possibly be than to interface some external hardware to your
Apple. The Apple computer is equipped with several easy-to-use input and output
ports. The articles in this section describe how to use them, and provide some in­
teresting construction projects as well.

''The Color Gun for the Apple IT," by Neil Lipson, describes how to build and
interface a simple photocell array to the Apple. When used with the described soft­
ware, this array can discern color. Robert Stein's "A Cassette Operating System
for the Apple II" provides a means to file and store named programs on cassette
tape. "BASIC and Machine Language Transfers with the Micromodem IT," by
George Dombrowski, discusses techniques for program transfers using a popular
communications interface.

"A Digital Thermometer for the Apple II," by Carl Kershner, discusses how
to interface a thermistor to the Apple so that the Apple can provide a temperature
display. Finally, "KIM and SYM Format Casssette Tapes on the Apple II," by
Steven Welch, provides a KIM-I format tape dump capability for the Apple, using
a special routine which outputs to the cassette port.

,
,
,
,
,
,
,
,
1 ,
,
,
j

'1

i
j

"1 ,
,

-

The Color Gun
for the Apple II

by Neil D. Lipson

The Apple produces many colors-but what about
recognizing them? With some quite inexpensive
hardware, you can turn your Apple II into a color
detector-a device which will automatically determine
the colors of any object. So who says the Apple is color
blind?

Shortly after I developed my light pen for the Apple back in May, 1978, I began
thinking about other devices that could be hooked up to the paddle inputs. One
idea was making a "color gun" which when pointed at an object would tell you
the color. The idea is similar to that of the operation of a television transmitter.
Color is broken down into three main colors, which are red, blue, and yellow.
Therefore by having three inputs into the Apple, into paddle 0, paddle I, and pad­
dle 2, we could in effect have a device that would ., see" the three color breakdown
ratios of any object. By further analyzing this ratio, we could see different shades
of color and with high quality color filters, we could make an extremely accurate
device which could even give the exact color temperature of the object. One of the
interesting aspects of this device that sets it apart from any other color
temperature meter, is that you can calibrate it by pointing it at a piece of white
paper to adjust for differences in the light source. Therefore, the color gun will
work in any type of artificial lighting within certain parameters. (You could not
use it under a red light for example.)

Building the Color Gun

To start off, buy three sensitive cadium sulfide photo cells (physically
between ~ to YS. inch in diameter). If the cells are not equal in sensitivity, they
can be equalized easily in software. (This is illustrated in the listing.) Merely
point the gun at a white piece of paper (or at the light source itself if it's not too
bright) during the calibration procedure.

The construction of the gun is very simple. Mount the three cells in a triangle
about 2" for each side on a piece of wood or other material. Then place three
filters over the cells, with red on paddle 0 cell, blue on paddle 1 cell, and yellow on

,
164 Hardware j

paddle 2 cell. The purer the filter, the better. Photographic filters are the best, and
will give the best results. However, red, blue or yellow clear plastic will work 1
satisfactorily in most situations. Note the use of the REM statements in the pro-
gram. These are for slowing down the paddle readings just a hair in order to avoid
having the readings "overlap". The wiring diagram is shown in figure 1. .., ,

Mount the entire setup in some type of barrel or cylinder about 4 inches long,
with the inside of the barrel painted white. Glue everything together and seal 1
against light leaks. Plug it into the game paddle after the wiring is complete and you
are ready to go. For the pin numbers of the paddles, consult your reference manual.

Red

5V pdl'O'

The Color Gun Program

Blue

pdl'1'

Figure 1

Yellow

pdl'2'

Enter the Applesoft program, and run it. The gun will only recognize 6 colors,
and when it isn't sure what the color is, it will give you two colors (one primary
color and one secondary). This should not happen if the colors are absolutely pure,
but most colors are not, so expect this situation often.

Notice the correction algorithm in statement 70 in the program to correct for
the blue cell. The cells that I used were somewhat more sensitive to blue than the
other colors (which is common of cadium sulfide). This was noticed when the
color gun kept saying "orange" (the compliment of blue). The correction
algorithm eliminates most of this problem. If the gun acts strangely, run it again
until it gets a good calibration. It sometimes takes more than one run to get it
working properly (usually because it is confused by a bright color nearby).

By fine tuning the software, and using more exact ratios, you can determine
many other colors. Given enough ratios to choose from, you can give the color
temperature of the object (with high quality cells and filters). The typical
photographic filters you can use are the yellow (K2), the red (25 or 25A) and the
blue (47). These may be varied if desired to meet the spectral response of the par­
ticular cell you buy. You could even use different colors in the filters as long as
you adjust the software accordingly. Buy the smallest filter you can (it only has to
cover about ~ inch diameter), but make sure there is no light leak from the'sides
of the cells. If you follow these instructions the gun will work perfec,tly the first
time around. Have fun!

,
,
1 ,
.,
j ,
1

1 ,
,
,

fIRl

ran ,

r-

r­
i.

1
2
3
4
5
6
7
8
9
10
11
14

REM
REM
REM
REM
REM
REM
REM
REM
REM

REM
REM
REM

*
*
*

COLOR GUN
NEIL LIPSON

*
*
*

* * * COPYRIGHT (C) 1981 *
* MICRO INK, INC. *
* CHELMSFORD, MA 01824 *
* ALL RIGHTS RESERVED *
* *

Lipson Color Gun 165

15 CALL - 936: VTAB 10: HTAB 10: PRINT "COLOR CUN BY NEIL D. LIPSON":
F·OR I .. 1 TO 20CO: NEXT I

17 REM
18 REM
19 REM
20 REM

YELLCW-2
BLUE -1
RED -0

22 CALL - 936: PRINT
25 GOSUB 1000
30 CALL - 936: PRINT
32 A"' PDL (0)
35 REM
40 B.. PDL (l)
45 REM
50 C.. PDL (2)
55 REM
60 A .. A * Al
61 B .. B * B1
62 C .. C * C1
70 B .. B I 1.5

PRINT

PRINT

100 PRINT "RED CELL.,"IA
110 PRINT "BLUE CELL"" /B
115 PRINT "YELLOW CELt ... " IC
116 PRINT I PRINT

PRINT

117 PRINT "THE COLeR 15:"1 PRIN'!
118 PRINT "*********************"

PRINT

121 IF C < BAND C < (A) THEN PRINT "YELLOW"
123 IF A < B AND A < C THEN PRINT "RED"
124 IF A) B AND A) C THEN PRINT "GREEN"
125 IF B) A AND B) C THEN PRINT "ORANGE"
126 IF C < AC) B THEN PRINT "PURPLE"
129 IF B < C AND B < (A) THEN PRINT "BLUE"
130 PRINT "*********************"
131 FOR X a 1 TO 2300: NEXT X
140 GOTO 30
200 END
1000 CALL - 9361
1010 PRINT "POINT
1020 FOR I = 1 TO
1030 Al = PDL (0)
1035 REM
1040 B1 = POL (1)
1045 REM

PRINT
GUN AT A WHITE SHEET OF PAPER"
15001 NEXT I

1C50 C1 = PDL (2)
1055 PRINT "A1=";A1
1056 PRINT "B1=";B1
1057 PRINT "C1=";C1
1060 01 Al * B1 * C1
1070 A1 = D1 I Al
1080 B1 = 01 / B1
109C Cl = D1 / C1
1100 PRINT "CORRECTION FACTOR FOR RED = ";A1
lllO PRINT "CORRECTION FACTOR FOR BLUE = ";B1
1120 PRINT "CORRECTION FACTOR FOR YELLOW = ";C1
1125 FOR I = 1 TO 2000: NEXT I
1130 RETURN
10000 END

A Cassette Operating System
for the Apple II

by Robert A. Stein, Jr.

Have you ever wished that, as great as the Apple II
computer system is, you were able to load programs by
name from a library cassette? Well, with this mini-sized
cassette operating system you can stack many
programs on one cassette and load the one you want
by typing in its name. Great for showing off your
system without juggling a dozen or so cassette tapes.

,
,
,
,
,
,
,
,
,

The Cassette Operating System [CASSOS) resides in memory at locations 02CO to 1
03FF, where it won't gt:t clobbered by BASIC programs or initialization. Add the
optional cassette control circuit, or purchase one of the commercially available
ones (Candex Pacific, 693 Veterans BLVD, Redwood City, CA 94063), and you
never need envy the PET for its loading technique again. ..,

Operation

First, load CASSOS into memory. To load a program using CASSOS, depress
CTRL-Y and RETURN. "PROG?" will be displayed, enter a 1-10 character pro­
gram name. The cassette tape will be searched and the program loaded if found.
"XXXXXXXXXX LOADED" will be output, where XXXXXXXXXX is the program
now in memory. If the cassette control circuit (described later) is present the tape
will also be stopped. A line of question marks F????????) is displayed if the request
program was not found. To write a program to the library cassette enter Y c (CTRL-YJ,
" WRITE" , and RETURN. Program will be saved under the name requested at
PROG? "XXXXXXXXXX OUT" will be displayed at completion and the recorder
stopped. To end a cassette program file enter: Yc;, "EOF", RETURN; a special
record header will be written. Note that to conserve limited memory space the
EOF routine utilizes the program write subroutine so the "XXXXXXXXXX OUT"
message should be ignored.

The program is structured such that the last 63 locations of the input buffer
are used for display messages, so if more than 191 characters are entered at one
time the program will still function, but without messages. The listing as

,
.,
1

-,

,
1

Stein Cassette Operating 167

presented was for a 48K system with DOS i change location 0358 as follows for a
different configuration:

Without DOS

IF- 8K
2F-12K
3F-16K
4F-20K

Program Design

5F-24K
7F-32K
8F-36K
BF-48K

With DOS

35-24K
55-32K
65-36K
95-48K

The method by which CASSOS functions is to write a program header block
consisting of header ID, program name, and start of the BASIC load. This is
followed by the program data itself, utilizing the Apple monitor routines.

A Cassette On/Off Circuit

The following diagram describes a simple circuit for stopping and starting a
cassette recorder which has a "remote" plug from the Apple II under program con­
trol. The theory involves activating or deactivating the AN3 signal on the Apple
game connector. A store to location C05F turns the recorder on and location
CaSE turns it off. The strobe triggers a transistor which in tum opens a relay and
closes the connection to the remote plug, starting the recorder. If your recorder re­
quires an open connection to start tape movement wire the relay normally closed
instead of open. It is also possible to add a relay that would interrupt power to the
recorder for control if you have no remote capability on your recorder.

Parts List

All parts were purchased at a local electronics store
6VDC Relay (275-004)
NPN Transistor (2N3568 or equivalent)
1000 Ohm Resistor
250 Ohm Resistor
Mini-Plug

All connections were made to a DIP Header which was modified by soldering
a 16-pin IC to it so that the game paddles could be used without modification
when the cassette ON/Off circuit was in use. The common 6VDC relay was
modified to be triggered by the game connector signals by wiring a 2500 ohm
resistance (utilizing a series of resistors connected in series so that the sum is 2500
Ohms) in parallel with the relay coil. If your recorder's rewind controls are dis­
abled by the remote jack, wire a switch to bypass the transistor between chasis
ground and the relay, which will allow the rewind to operate when depressed. If
all this is beyond your scope simply stop, then start the recorder manually.

168 Hardware

1 REM ************************
2 REM *
3 REM *
4 REM *
5 REM *
6 REM *
7 REM *

CASSETTE 0.5.
BY ROBERT STEIN

DIRECTORY

*
*
*
*
*
*

8 REM * CCPYRIGHT (C) 1981 *
9 REM * MICRO INK. INC. *

10 REM * CHEUISFORD. MA 01824 *
11 REM * ALL RIGHTS RESERVED *
12 REM * *
13 REM ************************
14 REM
15 REM
16 REM
2C N=l: CALL -936: VTAB (10): DIM X$(l)
25 INPUT "INSERT LIBRARY TAPE AND DEPRESS 'RETURN'''.X$
30 POKE -16289.0: CALL -936: GOSUB 300
40 PRIN'I' "FILE # PROGRAM NAME BYTES"
50 PRINT ,,------ ------------ "
60 CALL 84C: CALL -259
70 IF PEEK (688)= ASC("E") THEN 210
80 IF PEEK (688)= ASC("S") THEN 200

100 REM LOAD PROG~ INTO MEMORY BELOW THE DIRECTCRY PROG~.
1C5 D= PEEK (856)-3
110 POKE 60. PEEK (700): POKE 61.(PEEK (701)-3)
120 POKE 62.255: POKE 63.D: CALL -259
130 PRINT N.: POKE 789.2: POKE 788.177: CALL 785
140 M=(PEEK (700)/2)+ PEEK (701)*128
150 L=2*« PEEK (856)*12S+128)-M):N=N+1
160 PRINT" "lL: GOTO 60
200 GCSUB 300: PRINT "NO EOF MARK"
210 POKE -16290.0: GOSUB 300
230 PRINT : PRINT "***END OF FILE***"
240 C.-.LL -155
300 FOR 1=1 TO 30
305 L= PEEK (-16336)+ PEEK (-16336): NEXT I
31e CALL -1059: RETURN

080C 1 :************************
0800 2 ;* *
0800 3 ;* CASSET'l"E C.S. *
0800 4 ;* BY RCBERT STEIN *
0800 5 ;* *
OSOO 6 .* CASSOE *
0800 7 ;. *
0800 8 ;* COPYRIGHT (e) 1981 *
0600 9 ;* MICRC INK. INC. *
0800 10 ;* ~HELMSFCRD. MA 01824 *
080e 11 ;* ALL RIGHTS RESERVED *
0800 12 :* *
0800 13 :************************
OSOO 14
0800 15 .
08CO 16 SLO EPZ $3C ;TAPE BUFFER START/END
0800 17 SHI EPZ $3D
0800 18 ELO EPZ $3E
0800 19 EHI EPZ $3F
0800 20 OFFSET EPZ $50 ;OFFSET STORAGE
0800 21 SAVEY EPZ $60 ;SAVE Y-REG
0800 22 IN EPZ $60 ;INPUT PARAMETERS
0800 23 INLO EPZ $60
0800 24 INH! EPZ $61
0800 25 PPL EPZ $CA ;INTEGER BASIC PROGRAM
0800 26 PPH EPZ $CB ; PCINTER
0800 27

,
,
,
,
,
,
,
,
,
,
,
,
i

1 ,
1

i ,

/ilIIIIII
I

j

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
080e
0800
0800
0800
0800
0800
0800
02CO
02CO
02CO
02CO A9D3
02C2 8DB002
02C5 A9Bl
02C7 206703
02CA A9FF
02CC 8DBB02
02CF A5CA
02Dl 8DBC02
02D4 A5CB
02D6 8DBD02
021)9 20CDFE
02DC A4CA
02DE A5CB
02EO 206003
02E3 20CDFE
02E6 A9EB
02E8 207E03
02EB
02EB 87AOCF
02EE D5D4FF
02Fl 87AOCC
02F4 CFCIC4
02F7 C5C4FF
02FA DOD2CF'
02FD C7BFFF
0300
0300 A202
0302 D007
0304 8460
0306 2062FC
0309 A460
030B 8E1503
030E 8C1403
0311 AOOO
0313 B9FA02
0316 C9Fr
0-318 F02D
031A 20EDFD
031D C8
031E DOF3
0320
0320 48
0321 A902
0323 8660
0325 8561
0327 A9AO
0329 206CFD

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

FCHAR
WBUF
un
10
NAME
PEND
PHL
PHH
,
CLRAN3
SETAN3
BASIC2
BELL
CR
GETLN2
CCUT
WRITE
REAr

EQU $0201
EQU $0200
EQU $02A3
Eeu $02BO
EOU $02Bl
EQU $02BB
EOU $02BC
EQU $02BO

EQU $C05F
EQU $C05E
EQU $E003
EOU $FBDD
EQU $FC62
EQU $FD6C
EQU $FDEC
EQU $FECD
EQU $FEFC

ORG $2CO
OBJ $800

PWRITE LDA
STA
LDA
JSR

#$D3
ID
#NAME
INI'I'
#$FF
PEND
PPL
PHL
PPH
PHH
WRITE
PPL

WEOF LDA

OUT

STA
LDA
STA
LDA
STA
JSR
LDY
LDA PPH
JSR SETS
JSR WRITE
LDA j/OUT
JSR ECHO

HEX 87AOCF05D4FF

Stein Cassette Operating 169

;lST CHARACTER IN BUFFER
;WORK BUFFER
;PROG. NAME INPUT BUFFER
;HEADER ID, 'S' OR ' ,
;PROGRAM NAME
;END SENTINAL (FF)
;BASIC TOP

;CLEARS GAME I/O AN3
;SETS GAME I/O AN3
;INTEGER BASIC WARM START
;MONITOR BEEP ROUTINE
;MONITOR CARRIAGE RETURN
;MONITOR INPUT ROUTINE
;MONITOR OUTPUT ROUTINE
;MONITOR TAPE WRITE
;MONITOR TAPE READ

;SET LABEL ID TO'S'

;OFFSET TO BUFFER

;LABEL SENTINAL

; STORE TOP OF PROGRAMADDRESS

;WRITE LABEL

;SET TOP WRITE/HIMEM BOTTOM
;WRITE PRCGRAM
;SET TO WRITTEN MESSAGE
;PRINT XXXXXXXXXX OUT

;" OUT" MESSAGE

LOADED HFX 87AOCCCFCIC4C5C4FF ;" LOADED" MESSAGE

PROG? HEX DOD2CFC7BFFF

,
TYPE 3 LDX #$02

BNE TYPE
NLTYPE STY SAVEY

JSR CR
LDY SAVEY

TYPE STX CONT+2
STY CONT+l
LDY /1$00

CONT LDA PROG?,Y
CMP #$FF
BEQ TDONE
JSR COUT
INY
BNE CONT

INPUT PHA
LDA /INI
STX INLO
STA INHI
LDA #$AO
JSR GETLN2

" PROG?" MESSAGE

;SET HI ADDRESS TO 02
;BRANCH TO MAIN ROUTINE

OUTPUT CR/LF
RESTORE Y
MODIFY LOAD INSTRUCTION

SET I-VALUE
GET CHARACTER
DELI METER?
YES- RETURN
OUTPUT
INCREMENT INDEX
CONTINUE (JMP)

SAVE INPUT COUNT
SET HI INPUT ADDRESS
STORE ADDRESS
(PHA & LOA TO CHG HI)
SET PROMPT TO " "
INPUT TO COMMON BUFFER

170 Hardware

032C 68
032D AA
032E AOOO
0330 B90002
0333 C98D
0335 F008
0337 9160
0339 C8
033A CA
033B FOOA
033D DOF1
033F A9AO
0341 9160
0343 C8
0344 CA
0345 DOFS
0347 60
0348
0348 AOBO
034A A200
034C 205103
034F AOBD
0351 A902
0353 0004
0355 AOFF
0357 A995
0359 953D
035B 943C
035D ES
035E E8
035F 60
0360 A200
0362 205903
0365 DOEE
0367
0367 8550
0369 A202
036B AOFA
036D 200403
0370 204803
0373 A90A
0375 A650
0377 202003
Q37A 8D5FCO
037D 60
037E
037E 48
037F 8D5ECO
0382 A202
0384 AOB1
0386 200403
0389 68
038A A8
038B 200003
038E 4C03EO
0391
0391 A9A3
0393 206703
0396 204803
0399 20FDFE
039C ADB002
039F C9D3
03Al 0029
03A3 ACBC02
03A6 ADBD02
03A9 206003
03AC 20FDFE
03AF A200
03Bl BDBI02

93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

PLA
TAX
LDY /1$00

MOVE LDA WBUF,Y
CMP 1I$8D
BEO CRI
STA (IN). Y
INY
DEX
BEO TDCNE
BNE MOVE

CRI LDA #$AO
STA (IN) ,Y
INY
DEX
BNE CR1

TOONE RTS
,
SLBL LOY UD

LDX 11$00
JSR SEC
LDY /lPHH

SEC LDA /1$02
BNE SET

SHIM LDY #$FF
LDA #$95

SET STA SHI,X
STY SLC,X
INX
INX
RTS

SETS LDX 11$00
JSR SET
BNE SHIM

INIT STA OFFSET
LDX /PRCG?
LDY #~RCG?
JSR NLTYPE
JSR SLBL
LDA #$OA
LDX OFFSET
JSR INPUT
STA CLRAN3
RTS

ECHG PHA

.

STA SETAN3
LDX /NAME
LOY #NAME
JSR NLTYPE
PLA
TAY
JSR TYPE3
JMP BASIC2

PLOAD LDA UNI
JSR IN IT

TRYAGN JSR SLBL
JSR READ
LDA ID
CMP #"S"
BNE NFOUND
LDY PHL
LOA PHH
JSR SETS
JSR READ
LDX #$00

TEST LDA NAME,X

;RESTORE COUNT
;SET TO X
;SET Y-INDEX
;LOAD FROM WORK BUFFER
;LAST INPUT?
;YES
;STORE IN USER AREA
;INCREMENT POINTER
;DECREMENT COUNTER
;RETURN IF DONE
;ELSE BRANCH TO LOOP

;SPACE FILL

;LOOP TILL MAXIMUM
; RETURN

;SET ID LABEL ADDRESS
;SET START FLAG
;SET-UP TO SET END TOO
;SET END OF LABEL

;BRANCH TO SET START
;SET HIMEM,
;(CHANGE FOR MORE MEMCRY)
;SET START
; OR END
;BUMP END BY 2 FOR
;END PAIR

;SET BASIC TOP & BOTTOM

;STCRE INBUF OFFSET
;SET " PROG?" ADDRESS

;OUPUT WITH NL
;SET LABEL PARAMETERS
;INPUT = 10 CHARACTERS
;USER INPUT OFFSET
;INPUT PROGRAM NAME
;TURN ON CASSETTE

;STCRE CFFSET
;TURN OFF CASSETTE
;SET TO CUTPUT LABEL NAME

;GET MESSAGE
;PUT IN Y FOR TYPE
;OUTPUT " OUT" OR " LCADED"

;INPUT PROGRAM NAME
; TO IN1 ($2A3)
;SET LABEL PARAMS.
;READ LABEL
;GET ID

;EOF OR NOT ON TAPE

READ PROGRAM PARAMETERS
READ PROGRAM
SET INDEX
CCMPARE FOUND NAME

,
,
,
-,
1 ,
.,
,
,
,
,
,
,
"'1

!

'1

1 ,
'1

r
r

r

03B4 DDA302
03B7 DODD
03B9 E8
03BA EOOA
03BC DOF3
03BE ADBC02
03C1 85CA
03C3 ADBD02
03C6 85CB
03C8 A9F1
03CA DOB2
03CC 8D5ECO
03CF A220
03D1 A9BF
03D3 20EDFC
03D6 CA
0307 CCFS
03D9 20DDFB
03DC FOB3
03DE
03DE AD0102
03E1 C9D7
03E3 F010
03E5 C9C5
03E7 DOA8
03E9 8DB002
03EC 204803
03EF 8D5FCO
03F2 4CCA02
03F5 4CC002
03F8
03F8 4CDEC3
03FB 0000
03FD 0000
03FF 00

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
ISO
181
182
183
184
185
186
187
1S8
189
190
191
192
193
194
195
196

197

NFOUND

NC

,
WHICH

SAVE

CTRLY
NMI
IRQ

CMP IN1,X
BNE TRYAGN
INX
CPX i1$OA
BNE TEST
LDA PHL
STA PPL
LDA PHH
STA PPH
LDA #LOADED
BNE ECHO
STA SETAN3
LDX 11$20
LDA #$BF
JSR CbUT
DEX
BNE NC
JSR BELL
BEQ PLOAD

LDA FCHAR
CMP #"W"
BEQ SAVE
CMP #"E"
BNE PLOAD
STA ID
JER SLBL
STA CLRAN3
JMP WEOF
JMP PWRITE

JMP WHICH
HEX 0000
HEX 0000
HEX 00

END

Stein Cassette Operating

; WITH INPUT NAME

;CHECK ALL LOOKED AT

;SET TOP CF BASIC ADDRESS

;SET TO " LOADED"
;OUTPUT WITH VERIFY NAME
;TURN OFF CASSETTE

;PRINT ??????????

; LOOP
;SOUND TONE
;RETURN FOR NEW NAME

;FIRST CHAR OF FUNCTON (E,R,W)
; "WRITE"

: II EOFu
:IIREADII
;STORE E AS ID IN LABEL
;SET LABEL PARAMETERS
;TURN ON CASSETTE
;BRANCH TO WRITE EOF
;BRANCH TO WRITE PROGRAM

CONTROL-Y TRANSFER TO CHECK FN
NMI VECTOR
IRQ VECTOR

171

r- ***** END OF ASSEMBLY

r-
i

* * * SYMBOL TABLE -- V 1.5 *
* *

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

SLO
IN

003C SHI
0060 INLO

003D ELO
0060 INHI

** ABSOLUTE VARABLES/LABELS

FCHAR
WBUF
PHH
GETLN2
OUT
CONT
SEC
PLOAD
SAVE

0201
0200
02BD
FD6C
C2EB
0313
0351
0391
03F5

IN1
CLRAN3
CCUT
LOAI:ED
INPUT
SHIM
TRYAGN
CTRLY

02A3
C05F
FDED
02F1
0320
0355
0396
03F8

ID
SETAN3
WRITE
PROG?
MOVE
SET
TEST
NMI

003E EHI
0061 PPL

02BO NAME
C05E BASIC2
FECD READ
02FA TYPE3
0330 CR1
0359 SETS
03B1 NFOUND
03FB IRQ

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:01E2

003F OFFSET 0050 SAVEY 0060
OOCA PPH OOCB

02B1 PEND
EC03 BELL
FEFD PWRITE
0300 NLTYPE
033F TDONE
0360 INIT
03CC NC
03FD

02BB PHL 02BC
FBDD CR FC62
02CO WEOF 02CA
0304 TYPE 030B
0347 SLBL 0348
0367 ECHO 037E
03D1 WHICH 03DE

BASIC and Machine Language
Transfers with the
Micromodem II

by George J. Dombrowski, Jr.

The D.C. Hayes Micromodem is one of the most
popular communications interfaces available for the
Apple. With such an interface, it becomes possible to
transfer programs between your Apple and remote
computers. Here are a couple of routines which
facilitate transfers of BASIC and machine language
programs between two Apples.

There is no doubt that the Micromodem II, produced by D.C. Hayes Associates for
the Apple II, is a very sophisticated telecommunications device. I purchased a
Micromodem several months ago and have been pleased with its performance ever
since. This device couples directly with Ma Bell and can be easily programmed to
automatically answer your phone or even to transmit short messages to other
machines.

One of the best features provided by D.C. Hayes Associates is the well­
documented 8S page manual, complete with example programs. However, despite
the quality of this manual, there is a glaring omission. I originally purchased the
Micromodem II with the notion of easily transferring machine language and
BASIC programs to other Apple owners. Although the manual details a procedure
for adapting Apple Computer's Datamover program to the Micromodem firm­
ware, easier more direct methods of sending BASIC programs to another computer
were not described. This article describes an immediate mode procedure for
transferring BASIC programs and also provides an Applesoft routine for sending
machine language programs or binary data to another Apple II.

Sending a BASIC program in immediate mode is a simple matter using the
Micromodem II. Once the phone connection has been established, the receiving
computer must be placed in remote mode by sending a CTRL R followed by PR #S
where S = modem slot #. When the BASIC prompt appears, remote control of the
Apple at the other end has been achieved. The receiving computer is now waiting
input. It will accept commands and input from its own keyboard, your keyboard
or those issued automatically by your computer during program execution. In

1

1 ,
j ,
,
,
,
1 ,
,
,
i ,
j ,
,

r

i

i

Dombrowski Micromodems 173

other words, the receiving computer will accept a LISTing of a program sent from
another computer and interpret each line as a command. Before LISTing the pro­
gram, however, a few additonal steps must be taken to set up both computers for
the transfer.

Once remote control of the receiving machine has been established, the
appropriate BASIC must be initialized by typing either the INT or FP DOS com­
mand. At this point output from the remote computer should be directed to the
video port by executing a PR#O. This is a precautionary step to prevent the
accidental transmission of messages generated by the receiving machine's com­
mand interpreter. These messages could be received by the sending computer and
interfere with the program transfer. The operator of the sending computer will not
see the BASIC prompt return after this command. In order to LIST the program on
your computer, terminal mode must be exited by typing CTRL-A/CTRL-X. The
receiving Apple is left in remote mode waiting for input, while the sending com­
puter is set up to LIST the program.

Although this procedure seems complicated, after using it a few times it is
easy to remember. For those of you who like to sit back and watch your machine
do the work, the following program will create an EXEC file for this purpose.

From now on the commands typed at the local keyboard will not be sent to
the remote machine. First, the firmware carriage-return-delay for out-going data
must be set by typing POKE 1912 + S, 18 followed by POKE 1528 + S,80. The pause
after each carriage return allows sufficient time for the receiving machine to inter­
pret and execute each line before another is sent. Register 1528 + S normally con­
tains decimal 3 in terminal mode, which corresponds to a delay of 30 msec.
Second, the program to be sent is loaded and the LIST formatting routine disabled
by typing POKE 33,30. Finally, aPR #2 is issued and after the cursor returns (0.8
sec), the LIST command given.

Apple is left in remote mode waiting for input, while the sending computer is
set up to LIST the program.

Run this program to create the EXEC file, and then LOAD the program you
want to send. Finally, EXEC BASIC PROGRAM TRANSFER. This EXEC file will
work with either BASIC. The user's machine will be placed in terminal mode
when the transfer is finished. PR #2 must then be issued to the remote computer
to receive its output.

Binary data or machine language programs can be transmitted in a similar
fashion by employing a modified version of the monitor hexadecimal dump
routine. Ordinarily upon hitting RETURN this routine displays a hexadecimal
address followed by a hyphen following the address. The substitution is necessary
because the monitor interpreter requires a colon to immediately follow the
address when binary data is input. The change was accomplished by relocating a
small portion of the F8 ROM chip ($FD92-$FDC5) to RAM memory at
$1000-$1033. Address $100D was altered from $AO ("_") to $BA (":"). In addi­
tion, the address for the JSR instruction at $1021-1023 was changed from $FD92 to

174 Hardware

$1000. This HEX dump routine has been incorporated into an Applesoft BASIC
program which takes care of the housekeeping chores described above for transfer­
ring BASIC programs plus a few more.

Applesoft Binary Transfer with the Micromodem n

Although these methods require little software and are easy to implement,
they do have a disadvantage. The time required to send BASIC and machine
language programs using these techniques is greater (approximately 20% and
130%, respectively) than would be expected from the time calculated based upon
program length. This is because both Integer BASIC and Applesoft programs are
stored in memory with reserved words tokenized. Tokenized words such as
PRINT, POKE, or NEXT require only one byte of memory. Sending a byte at 300
baud takes about 1/30 second; however, with the LISTing procedure described
here, transmitting a reserved word such as PRINT requires approximately 5/30's
of a second.

Similarly, with machine language programs, for every 8 bytes of data transfer­
red, a 4 digit hexadecimal address, colon, 8 pairs of hexadecimal data, and 8 spaces
must be sent. A total of 29 characters are sent for every 8 bytes of memory.

In spite of this disadvantage, these techniques are handy for sending medium
sized programs over short distances where time is not a costly factor.

NOTE: These programs were designed for the Micromodem to reside in slot 2. If
another slot is chosen, registers 1530 and 1914 in the page listings must be
changed to 1528 + Sand 1912 + S, respectively where S = the Modem Slot
Number.

,
1 ,
1 ,
,
,
,
,
,
,
,
1

1 ,
j

i

j

t-
I

fiI'I'II
I

1 REM ***********************.
2 REM * *
3 REM * MICROMODEM TRANSFERS *
4 REM * GEORGE DOMBROWSKI *
5 REM * *
6 REM * BINARY TRANSFER *
7 REM * *
8 REM * COPYRIGHT (C) 1981 •
9 REM· MICRO INK. INC. •
10 REM· CHELMSFORD. MA 01824 •
11 REM· ALL RIGHTS RESERVED •
12 REM· •
13 REM ***********************.
14 REM
15 REM
19 REM BINARY TRANSFER/MICROMODEM II
20 D$ = CHR$ (4)
30 PRINT D$"NOMON C.I.O"
40 GOSUB 420

Dombrowski Miclomodems 175

50 INPUT "IS RECEIVING COMPUTER IN REMOTE MODE WITH EITHER BASIC INITIAL
IZED?";ANS$

60 PRINT
70 IF LEFT$ (ANS$.l) <) "Y" THEN PRINT "TRANSFER ADANDONED": END
80 POKE 1530.60: POKE 1914.18: REM 600 MSEC WAIT AFTER CARRIAGE RETURN.

AUTO LINE FEED IS ACIVATED AND THE WAIT FUNCTION + LOCAL CISPLAY ENA
BLED.

90 PRINT "STARTING AI:DRESS-": INPUT "(MUST END WITH 0 OR 8)";ST$
100 REM LINES 110/170 - HEXIDECIMAL TO DECIMAL CONVERSION.
110 Z$ = "0123456789ABCDEF"
120 FOR I = LEN (ST$) TO 1 STEP - 1
130 FOR J = 1 TO LEN (Z$)
140 IF MID$ (Z$.J.1) <) MID$ (ST$.I.1) THEN NEXT J
150 DEC = DEC + (J - 1) * (16 • X)
160 X = X + 1: NEXT I
170 HB = INT (DEC / 256):LB = DEC - (HB • 256)
180 REM LINE 190 PLACES THE DECIMAL EQUIVALENTS OF THE HIGH & LOW BYTE

ADDRESS INTO THE PAGE 0 LOCATIONS USED BY THE MEMORY DUMP ROUTINE.
190 POKE 61.HB: POKE 60.LB
200 INPUT "NUMBER OF BYTES (DECIMAL) ";NB
210 PRINT: INVERSE: HTAB 6: PRINT "HITTING ANY KEY ABORTS TRANSFER":

NORMAL
220 PRINT D$"IN .0"
230 PRINT D$"PR #2"
240 PRINT "CALL-lSI"
250 PRINT: REM SENDS CARRIAGE RETURN.
260 FOR I = 1 TO INT (NB / 8) + 1
270 IF PEEK (- 16384)) 127 THEN POKE - 16368.0: GOTO 300
280 CALL 4113: REM CALLS MACHINE LANGUAGE ROUTINE BELOW.
290 NEXT I
300 PRINT
310 PRINT "3DOG"
320 PRINT D$"PR iO"
330 PRINT
340 POKE 1530.3: REM NORMAL 30 MSEC WAIT
350 PRINT" ••• ALL DONE ••• "
360 PRINT: PRINT "THE SENDING COMPUTERIS NOW IN TERMINAL MODE & THE REC

EIVING COMPUTER HAS BEEN RETURNED WITH BASIC UP IN REMOTE MODE."
370 PRINT: INVERSE: HTAB 15: PRINT "HIT RETURN": NORMAL
380 PRINT D$" IN #2"
390 POKE 1914.138: REM INITIATE TEMINAL MODE/FULL-DUPLEX (USE 10 FOR

HALF-DUPLEX) •
400 END
410 REM LINES 420/450 LOAD RELOCATED MEMORY DUMP ROUTINE AT $1000.
420 FOR M = 4096 TO 4147: READ D: POKE M.D: NEXT M
430 RETURN
440 DATA 164.61.166.60.32.142.253.32.64.249.160.0.169.186.76.237.253.16

5.60.9.7.133.62.165.61.133.63.165.60.41.7.208.3.32.0.16
450 DATA 169.160.32.237.253.177.60.32.218.253.32.186.252.144.232.96
460 REM THE BASIC PRGM + DUMP ROUTINE OCCUPY $800-$1040. IF THE BINARY

DATA TO BE SENT RESIDES IN THIS RANGE. IT MUST FIRST BE RELOCATED W
ITH THE MONITOR MOVE COMMAND.

176

1
2
3
4
5
6
7
8
9
10
11
12
13

Hardware

REM *************.**********
REM • •
REM • MICRCMODEM TRANSFERS •
REM • GEORGE DOMBROWSKI •
REM • •
REM • BASIC TRANSFER •
REM • •
REM • COPYRIGHT (C) 1981 •
REM • MICRO INK. INC. •

REM • CHELMSFORD. MA 01824 •
REM • ALL RIGHTS RESERVED •
REM • •
REM **** •••• *****.**********

14 REM
15 REM
16 REM BASIC T~NSFER/MICROMODEM II
20 REM FIRST RUN THIS PROGRAM AND THEN
30 REM ESTABLISH REMCTE CONTROL OF RECEIVING MACHINE
40 REM LEAVE TERMINAL MODE BY TYPING CTRL-A/CTRL-X
50 REM THEN TYPE <EXEC BASIC PROGRAM TRANSFER>
60 D$ = CHR$ (4)
70 PRINT D$"OPEN BASIC PROGRAM TRANSFER"
80 PRINT D$"WRITE BASIC PROGRAM TRANSFER"
90 PRINT "POKE 1530.80:REM FCR LONG FLOATING POINT PROGRAMS A GREATER DE

LAY MAY BE REQUIRED."
100 PRINT "POKE 1914.18"
110 PRINT "POKE 33.30"
120 PRINT "INIO"
130 PRINT "PRI2"
140 PRINT "LIST"
150 PRINT "PRIO"
160 PRINT "INI2"
170 PRINT "TEXT"
180 PRINT "POKE 1530.3"
190 PRINT "POKE 1914.138"
200 PRINT D$"CLOSE"
210 END

1 ,
i ,
,
,
,
'1 ,
,
i

}

fiij
) ,

1

,
......,

J

~
I

A Digital Thermometer
for the Apple II

by Carl J. Kershner

Can the Apple II tell the temperature? Thermistor
probes can be connected directly to the Apple II Game
110 Connector and their output signals processed via
a linearizing algorithm to produce a digital display in
both degrees Celsius and Fahrenheit. This article
explains how.

A thermistor temperature measuring probe can be directly connected to the Apple
II computer via its built-in Game I/O Connector. This is possible since ther­
mistors are "thermal resistors" which exhibit large resistance changes in response
to a change in temperature. Paddle input ports, PDLfO,l,2,&'3), on the Apple are
essentially eight bit AID converters for such variable resistance sources.

The Apple and the thermistor are quite suited for one another since the
inherent nonlinearity of the thermistor can be easily handled with a simple
algorithm in software. In addition, the small current drain during the sampling
cycle of the RC network on the Apple's 553 timer closely approaches the ideal
zero-power operating condition for a thermistor. Both the nonlinearity and the in­
duced temperature due to the probing current have been particularly troublesome
characteristics which engineers have had to find ways of working around when
applying thermistors.

~ The program written in Applesoft consists of an input section, a data reduc-
tion section and a display section. The input section calls for the selection of a
paddle input and two thermistor specifications used by most manufacturers: the
room temperature resistance designated as RO and a vallie representing the ratio
of the resistance at 25°C to that at 50°C designated as RA. The selected paddle
input is then read and scaled to represent the resistance value at the input port.
The corresponding temperature in both degrees Celsius and Fahrenheit are
calculated from the resistance via a temperature-resistance relationship:

where Rl and R2 are the resistances at the absolute temperature T 1 and T 2 respec­
tively, and {J is a constant for the particular thermistor material. The results are

~ rounded to the nearest integer and displayed in a three-digit format with the
blanking of leading zeros and a negative sign for temperatures below zero.

178 Hardware

A thermistor probe can be connected to the Apple II by merely attaching one
of its leads to the + 5 volt supply, pin I, and the other to one of the PDL ports, pins
6,7,10, or 11 on the Game 110 connectorJ 14. No other components or modifica­
tions are required so long as a thermistor is chosen with a room temperature
resistance and ratio which suits the temperature range and sensitivity desired for
application. A 40,000 ohm thermistor with a ratio of 9 or 10 will provide at least
one degree Fahrenheit sensitivity and a working range suitable for an indoor ther­
mometer application. The best way to choose a thermistor for your particular
application is to run the program using a game paddle as input, enter values for RO
and RA from a manufacturer's specification sheet, and observe the useful oper­
ating range and sensitivity of the selected thermistor. This latter procedure
demonstrates the additional usefulness of the program as an engineering design
aid in selecting a thermistor for other applications.

Thermistors suitable for this application can be purchased for less than five
dollars from most supply houses or directly from a manufacturer. A Fenwal
GA44P2 glass probe type thermistor with a room temperature resistance of 40,000
ohms and a ratio of 9.53 is a good choice for an indoor thermometer application,
whereas a Fenwal GA42P2 with a room temperature resistance of 15,000 ohms
and a ratio of 9.1 is a good compromise for indoor-outdoor use. It is best to house
the thermistor probe in a small metal tube to protect it from mechanical damage
and to provide thermal inertia to minimize effects of short-term temperature tran­
sients. It is also advisable to calibrate the thermistor probes against a laboratory
type thermometer, if high accuracy is desired, because the manufacturing
tolerances on RO and RA values for the inexpensive probes described here are
generally no better than ± 10%.

Because thermistors can be used that have relatively high resistances,
transmission line and contact temperature effects can be neglected and the probes
can be situated far from the computer console. Thus the Apple II digital ther­
mometer can perform many useful temperature monitoring tasks in and around
the house.

The Fenwal products mentioned in this article can be purchased from Fenwal
Electronics, 63 Fountain St., PO Box 585, Framingham, MA 01701.

j

'1 ,
,
'1 ,
1 ,
1

~
)

1 ,
,
'1

i

1

~

I

r
-!
,..
I

r

r

10 REM ************************
15 REM * *
20 REM * DIGITAL THERMOMETER *
25 REM * CARL KERSHNER *
30 REM *
35 REM *
40 REM *

THERMOMETER *
*
*

45 REM * COPYRIGHT (C) 1981 *
50 REM * MICRO INK, INC. *
55 REM * CHELMSFORD, MA 01824 *
6e REM * ALL RIGHTS RESERVED *
65 REM * * 70 REM ************************
80' REM
90 REM

Kershner Digital Thermometer 179

100 REM DIGITAL THERMOMETER FOR THERMISTOR PROBE(DISPLAYS BOTH CELCIUS
&FAHRENHEIT)

110 PRINT "WHICH INPUT DO YOU WANT(0,1,2,3)": INPUT NUMBER
120 PRINT "WHAT THERMISTOR CONSTANTS DO YOU WANT(RO,RATIO)": INPUT RO,RA

125 BETA .. 1.7636E3 * LOG (RA)
130 HOME: REM CLEAR SCREEN
140 REM PRINT TEMPERATURE SCALE CHARACTERS
150 GR: COLOR= 15
160 HLIN 26,27 AT 6: HLIN 26,27 AT 7: HLIN 26,27 AT 9: HLIN 26,27 AT 10:

VLIN 7,9 AT 25: VLIN 7,9 AT 28
170 HLIN 34,38 AT 9: HLIN 34,38 AT 10: HLIN 34,36 AT 14: HLIN 34,36 AT 1

5:. VLIN 9,20 AT 33
180 HLIN 26,27 AT 23: HLIN 26,27 AT 24: HLIN 26,27 AT 26: HLIN 26,27 AT

27: VLIN 24,26 AT 25: VLIN 24,26 AT 28
190 VLIN 28,29 AT 38: VLIN 27,28 AT 37: VLIN 26,27 AT 36: VLIN 26,27 AT

35: VLIN 27,28 AT 34
200 VLIN 28,35 AT 33: VLIN 35,36 AT 34: VLIN 36,37 AT 35: VLIN 36,37 AT

36: VLIN 35,36 AT 37: VLIN 34,35 AT 38
210 T .. 298: REM SET T(O) AT 298 DEGREES ABSOLUTE
220 RI .. 589.94 * POL (NUMBER): REM READ INPUT & SCALE TO OHMS
230 IF RI .. 0 THEN RI .. 1: REM PREVENT DIVISION BY ZERO
240 TC ~ INT (1 / (1 / T - LOG (RO / RI) / BETA) - 272.5). REM CALCUL

ATE TEMPERATURE IN DEGREES CELCIUS AND ROUND TO NEAREST INTEGER
245 IF ABS (TC) > 999 THEN GOTO 220. REM LIMIT OVERFLOWING DISPLAY
250 SIGN .. 0
260 IF TC < 0 THEN SIGN = 15
270 CO~R" SIGN
280 HLIN 3,5 AT 29. HLIN 3,5 AT 30. REM DISPLAY NEGATIVE SIGN
29C TC = ABS (TC)
300 J = INT (TC / 100).I .. J. REM SEPARATE HUNDRED'S DIGIT
310 IF J = 0 THEN J .. 10. REM BLANK LEADING ZERO
320 X .. 1.y = 26. GOSUB 1000. REM DISPLAY CELCIUS HUNDRED'S
330 J = INT «TC - J * 100) / 10): REM SEPARATE TEN'S DIGIT
340 IF I .. 0 AND J = 0 THEN J = 10. REM BLANK BOTH HUNDRED'S AND TEN'S

LEADING ZEROS IF J&I ARE BOTH ZERO
350 X = 9.y = 26. GOSUB lOCO. REM DISPLAY CELCIUS TEN'S DIGIT
360 J .. TC - I * 100 - J * 10. REM SEPARATE ONE'S DIGIT
370 X = 17.y = 26. GOSUB lOCO. REM DISPLAY CELCIUS ONE'S DIGIT
380 TF = INT (9 * (1 / (1 / T - LOG (RO / RI) / BETA) - 273) /5 + 32.5

). REM CALCULATE FAHRENHEIT & ROUND TO NEAREST INTEGER
390 SIGN = 0
400 IF TF < 0 THEN SIGN = 15
410 COLOR= SIGN
420 HLIN 3,5 AT 12. HLIN 3,5 AT 13. REM DISPLAY NEGATIVE SIGN
430 TF = ABS (TF)
440 J = INT (TF / 10C).I = J. REM SEPARATE HUNDRED'S DIGIT
450 IF J = 0 THEN J = 10. REM BLANK LEADING ZERO
460 X = 1.y = 9. GOSUB 1000. REM DISPLAY FAHRENHEIT HUNDRED'S DIGIT
470 J .. INT «TF - J * 100) / 10). REM SEPARATE TEN'S DIGIT
480 IF I = 0 AND J = 0 THEN J = 10. REM BLANK BOTH HUNDRED'S AND TEN'S

LEADING ZEROS
490 X .. 9.y = 9. GOSUB 1000. REM DISPLAY FAHRENHEIT TEN'S DIGIT
500 J = TF - I * 100 - J * 10. REM SEPARATE ONE'S DIGIT

180

510 X = 17:Y = 9: GOSUB 1000: REM DISPLAY FAHRENHEIT ONE'S DIGIT
520 GOTO 220
1000 REM SEVEN SEGMENT ENCODER
1010 ON J GOTO 1110,1120,1130,1140,1150,1160,1170,1180,1190,1200
1100 A 15:B = 15:C = 15:D = 15:E = 15:F = 15:G = 0: GOTO 2000
1110 A O:B = 15:C = 15:0 = OlE = O:F : O:G = 0: GCTO 2000
1120 A 15:B = 15:C = 0:0 = 15:E = 15:F = O:G = 15: GOTO 2000
1130 A = 15:B = 15:c = 15:0 = 15:E = O:F : O:G : 15: GOTO 2000
1140 A : O:B = 15:C : 15:0 : OlE : O:F = 15:G = 15: GOTO 2000
1150 A 15:B O:C: 15:0 : 15:E : O:F = 15:G = 15: GOTO 2000
1160 A 15:B O:C: 15:D : 15:E : 15:F : 15:G = 15: GOTO 2000
1170 A 15:B 15:C: 15:0 : OlE = e:F : O:G = 0: GOTO 2000
1180 A 15:B 15:C = 15:D : 15:E : 15:F = 15:G = 15: GOTO 2000
1190 A = 15:B 15:C: 15:D : 15:E = O:F = 15:G : 15: GOTO 2000
1200 A = O:B = O:C = 0:0 : OlE : O:F = O:G = O:J = 0: GOTO 2000
2000 REM SEVEN SEGMENT DISPLAY
2010 COLOR= A
2020 HLIN X + 1,X + 4 AT Y
2030 HLIN X + 1,X + 4 AT Y + 1
2040 COLOR= G
2050 HLIN X + 1,X + 4 AT Y + 5
2060 H~IN X + 1,X + 4 AT Y + 6
2070 COLOR: D
2080 HLIN X + 1,X + 4 AT Y + 10
2090 HLIN X + 1,X + 4 AT Y + 11
2100 COLOR: F
2110 VLIN Y + 1,Y + 5 AT X
2120 COLOR= B
2130 VLIN Y + 1,y + 5 AT X + 5
2140 COLOR= E
2150 VLIN Y + 6,y + 10 AT X
2160 CCLOR: C
2170 VLIN Y + 6,Y + 10 AT X + 5
2180 RETURN

1 ,
,
,
,
,
,
,
,
1 ,
,
,
,

~
J

~
I

r

r-
I
I

~
I

r
r

KIM and SYM Format
Cassette Tapes on the Apple II

by Steven M. Welch

Now you can swap programs and data between your
Apple and any AIM, SYM or KIM via cassette 1/0.

Many KIM and SYM owners have graduated to bigger and better 6S02 systems as
their needs and financial situations changed. If you are one of these people, and
find that your KIM is sitting in the comer gathering dust because your Apple is so
much easier to work with, read on. With this program, you can use your Apple as a
"host computer" for assembly language program development and then "down
load" the finished program into your single board computer (SBC). Just like the
big boys! Not only will you make better use of your several hundred dollar invest­
ment, but you will also have the bonus of a new set of computer jargon to bore
your friends. The value of developing assembly language programs in this fashion
cannot be fully appreciated until you use the Apple to develop a sizeable program
for the SYM or KIM. The many miseries of hand assembling magically disappear.
The constant verbal self-abuse which generally accompanies calculator keyboard
entry and debugging quickly becomes a fading memory. Have you ever forgotten
to initialize a loop counter only to realize it 300 bytes of hand assembly later?

The program listed here was produced to fill a need: to develop a large pro­
gram on a SYM. I estimate that we have saved an absolute minimum of 2 man­
months in the development of a IS00-byte program by using the Apple for entry,
debugging and assembling. Also, having a real assembler easily available to us, we
have written better code and have not needed the numerous patches and kludges
which inevitably crop up when one writes large programs in machine code. At the
University of Colorado at Boulder, where I am employed, we are developing a
microprocessor-controlled Charge Coupled Photo Diode (CCPD) spectrographic
detector for the Sommers-Bausch Observatory using a SYM-l computer. Although
this is a very nice SBC, the basic version lacks certain features which are highly
desirable in a computer that will be used for program development; e.g., fast mass
storage, an assembler, text editor, ASCII keyboard, and display device. It seemed
to us that the controlling program was going to take a great deal of time to devise
without these several conveniences.

The "big boys" get around the lack of these features by purchasing (usually
for $10-20,000), a Microprocessor Development System. While our observatory

182 Hardware

didn't have the ten or twenty thousand dollars to throwaway, we did have access
to an Apple II computer belonging to my boss, Dr. Bruce Bohannan. The Apple has
almost all of the features of the typical Microprocessor Development System ex­
cept, perhaps, a means of communicating with the SBC in question. How can an
Apple talk to a SYM? Fortunately, both computers use the 6502 micro-processor
chip, so programs assembled for the Apple have little or no trouble running on the
SYM or KIM. Also, fortunately, all of these machines have a means of reading and
writing programs on audio cassettes. It goes without saying, of course, that the
tape formats of these machines are totally incompatible. We had to do some
translating; either convince the SYM to speak Apple, or convince the Apple to
speak SYM. Since it's easier to develop programs on the Apple (that's why I did all
this in the first place), I decided to teach my Apple to speak SYM.

It turns out that there is another good reason to teach the Apple SYMese. The
SYNERTEK people who make the SYM, have been so kind as to publish listings of
the SYM monitor in the back of their manual. This monitor listing has routines in
it which produce SYM or KIM cassette tapes. The result is that the program is very
easily modified to run on the Apple. No timers are used (the Apple has none), and
the serial data is sent out through a single bit of a 6522 output port. Although the
Apple doesn't have any 6522s, it does have several single bit outputs, and in par­
ticular, it has a single bit output with the level adjusted to be used as a cassette
recorder interface. Even though this is not a 6522 output, under certain conditions
it can be thought of as one. The way that the Apple works, any time the address of
the cassette output port appears on the address bus, the cassette output flip-flop
changes state. On the other hand, in the SYM we send a particular bit pattern to an
address and these bits appear on the output latch.

Basically, what this means is that we can pretend that the Apple cassette is
the SYM cassette output if we write only to this output when we want to change
the level of the cassette port. With the Apple, it should be noted, there is no con­
trol over the phase of the output signal, but all of the cassette-read routines in
question are not sensitive to phase. Fortunately, through good luck or the good
planning of the programmers at SYNERTEK, 90% of the cassette output code was
written in just this way. This feature makes the program a snap to adapt to the
Apple. Once I had picked out the proper pieces of the SYNERTEK code and figured
out what they had done, I had only to change a few lines to obtain the results
listed here. Since I did not write the program, I won't explain how it works, but I
have heavily commented the listing for those readers who are interested.

Using the Program

,
,
,
,
1

1 ,
,
,
,
,
,
,

It is a good idea to make a SYNC tape first. The Apple output level is about 1S. i
of the SYM's output level which may require changing the volume on playback
from the usual value. Also, the Apple does not have a high-frequency roll-off
capacitor which the SYM uses, and as a result, the tone controls may need adiust- .,
ment. The SYNC tape enables you to set the controls properly on your tape
recorder (as outlined in the SYM manual, Appendix F). To make a SYNC tape,
load the SYMOUT program into your Apple, set the mode by setting the 1
parameter, MODE (location $l1EO), to $80 for SYM format or to $00 for KIM for- ,

r­
I.

I'\lIBl
I

j ,

r

r

Welch KIM and SYM 183

mat and begin the program at SYNc: ($1000). This is an endless loop, so record a
few minutes of the output before you hit RESET and use the resultant tape to set
the level and tone on the tape recorder when reading it into the SYM (see Appen­
dix F in SYM manual).

Once you have the proper level and tone settings, down-loading your program
is fairly easy. First, load the SYMOUT program. Then, load your executable pro­
gram into RAM. Next, put in the parameters: Starting Address ($11DB-C), Ending
Address ($l1DD-EJ, Tape 1.0. Number ($l1DF), and the MODE ($l1EO) and start
the program at SYMOUT: ($1080). Record the program, play it into your SYM,
and there you have it!

Direct Computer to Computer Communication

A discovery by Dr. Bohannan: If your tape recorder has a monitor hookup,
through which you can listen to whatever is being recorded, you can hook up the
Apple directly to the SYM and reduce the error rate astronomically! On our SYM
we have about a 70% chance of a successful load of our 1500 byte program with
our tape recorder, a Sony. The level and tone control settings are extremely
critical as well. When the machines are hooked up directly through the monitor
jack of our tape recorder, we have success every time and the level and tone set­
tings are unimportant. I've also found that several of my tape recorders work very
well this way and have the monitor feature through the earphone jack even though
it is not marked.

0800 1 :************************
0800 2 r* *
0800 3 r* SYM-KIM FORMAT *
0800 4 r* CASSETTE OUTPUT *
08PO 5 r* S.WELCH *
0800 6 r* *
0800 7 r* SYM-KIM *
0800 8 r* *
olloo 9 :* COPYRIGHT (C) 1981 *
0800 10 :* MICRO INK. INC. *
0800 11 :* CHELMSFORD. MA 01824 *
0800 12 .* ALL RIGHTS RESERVED * .'
0800 13 :* *
0800 14 :************************
0800 15
0800 16
0800 17 :LARGELY COPIED FROM THE
0800 18 :SYNERTEX MANUAL. AND RE-
0800 19 :PRODUCED HERE WITH THE
0800 20 :PERMISSION OF SYNERTEX
0800 21 :SYSTEMS CORP.
0800 22
0800 23

fAPOUT EOU $C020 0800 24
0800 25
0800 26 :USE APPLE GAME PADDLE ANNUNCIATOR to FOR TAPE RECORDER
0800 27 :ON-OFF CONTROL. RECORDER ON IS LOW.
0800 28 :
0800 29 TAPEON EOU $C059 :PUT 0 HERE TO TURN ON
0800 30 TAPEOF EOU $C058 :PUT 1 HERE TO TURN OFF
0800 31 TM1500 EPZ $47 : PROB SHOULD BE TWEAKED
0800 32 TIME99 EPZ $IA rFOR DELAY ROUTINE
0800 33 EOT EPZ $04
0800 34 SYN EPZ $16
0800 35 BUFADL EPZ $E7 rARBITRARY PLACE ON ZERO PAGE
0800 36 BUFADH EPZ $E8
0800 37 CHAR EPZ $EA

184 Hardware

0800 38
0800 39
0800 40
0800 41
0800 42
1080 43
1080 44
1080 45
1080 46
1080 20BB11 47
1083 A080 48
1085 2CE011 49
1088 100D 50
108A 51
108A 52
108A A208 53
108C A015 54
108E 209511 55
1091 88 56
1092 DOFA 57
1094 CA 58
1095 DOF5 59
1097 60
1097 A9l6 61
1099 200711 62
109C 88 63
109D DOF8 64
109F 65
109F A92A 66
10Al 200711 67
10A4 68
10A4 ADDF11 69
10A7 203B11 70
10AA 71
10AA ADDB11 72
lOAD 203811 73
lOBO ADDC11 74
10B3 203811 75
10B6 2CE011 76
10B9 100C 77
10BB 78
10BB ADDD11 79
lOBE 203811 80
lOCI ADDE11 81
10C4 203811 82
10C7 83
10C7 84
10C7 A5E7 85
10C9 CDDD11 86
10CC D029 87
10CE A5E8 88
10DO CDDEll 89
10D3 D022 90
10D5 A92F 91
10D7 200711 92
10DA 93
10DA ADElll 94
10DD 203Bll 95
10EO ADE211 9.6
10E3 203B11 97
10E6 98
10E6 A904 99
10E8 203Bll 100
lOEB A904 101
10ED 203B11 102
10FO 103
10FO 18 104
10Fl 105
10Fl A201 106
10F3 8E58CO 107
10F6 60 108
10F7 109
10F7 AOOO 110
10F9 BlE7 III
10FB 203811 112

;
;---PROGRAM STARTS HERE, LINE 390 OF SYM CODE LOC 8E87
;
BEGIN EOU $1080

ORG BEGIN
OBJ $880

;--INITIALIZE-­
SYMOUT JSR START

LDY 1$80
BIT MODE
BPL DUMPTI

;
;--WRITE 8 SECOND MARK-­

LDX 1$8
MARK8A LDY .$15
MARK8B JSR DELAY

DEY
BNE MARK8B
DEX
BNE MARK8A

;MUST START IN MIDDLE OF PAGE
,OUT OF WAY OF MOST SYM PROGRAMS

;ENTRY-PARAMETERS SET BEFORECALL
; INCASE WE TAKE KIM BRANCH
;TEST BIT 7 OF MODE (l=SYM,OaKIM)
;KIM-DO 128 SYNS

;8 TIMES •••
;ONE SEC (21 DELAYS PER SEC)
;BENIGN PAUSE, SYM USES KIM CHAR

;--WRITE 256 SYNS FOR SYNC-­
DUMPTI LDA 'SYN

JSR OUTCTX
DEY
BNE DUMPTI

;--WRITE START CHARACTER-­
LDA i'*'
JSR OUTCTX

;--WRITE ID--
LDA ID
JSR OUTBTX

;---WRITE STARTING ADDRESS--­
LDA SAL
JSR OUTBCX
LDA SAH
JSR OUTBCX
BIT MODE ;KIM OR HS?
BPL DUMPT2·

;---WRITE ENDING ADDRESS--­
LDA EAL
JSR OUTBCX
LDA EAH
JSR OUTBCX

;---START OF MEMORY DUMP---
;--FIRST CHECK IF THIS IS THE LAST BYTE OUT---
DUMPT2 LDA BUFADL ;LOAD ADDRESS OF CURRENT BYTE

CMP EAL
BNE DUMPT4 ;COMPARE TO ENDING ADDRESS
LDA BUFADH
CMP EAH
BNE DUMPT4 ; BRANCH IF MORE TO OUTPUT
LDA i'I' ;yup, LAST BYTE, WRITE 'I'
JSR OUTCTX

;---WRITE CHECKSUM--­
LDA CHKL
JSR OUTBTX
LDA CHm
JSR OUTBTX

;---WRITE TWO EOT'S--­
LDA tEOT
JSR OUTBTX
LDA 'EOT
JSR OUTBTX

;---oK, NOW WE'RE ALL
CLC

DONE, SO CLEAN UP AND EXIT--­
;INDICATE SUCCESS

;---SKIPPED LOTS OF
LDX 1$01

STUFF, MOSTLY SYM SPECIFIC--­
;SBUT OFF TAPE RECORDER

STX TAPEOF
RTS

;NEXT IS THE CODE WHICH
DUMPT4 LDY 1$0

,AND WE'RE ALL DONE
OUTPUTS THENEXT MEM LOCATION

;FIND THE NEXT BYTE
LDA (BUFADL). Y
JSR OUTBCX ;WRITE IT AND UPDATE CHCKSUM

i ,
,
,
,
,
,
1

1 ,
1 ,
,
1

..,
,
"1

-
-

-

10FE E6E7
1100 DOCS
1102 E6E8
1104 4CC710
1107
1107
1107
1107
1107 2CE011
110A 1047
110C
1l0C
110C
110C A209
110E 8CE411
1111 8SEA
1113
1113 ADE311
1116 46EA
1118 49ES
l11A 8D20CO
I11D
111D A047
111F 88
1120 DOFD
1122 9011
1124 49ES
1126 8D20CO
1129 A046
112B 88
112C DOFD
112E CA
112F DOES
1131 ACE411
1134 60'
113S EA
1136 90Fl
1138
1138 20AC11
113B 2CE011
113E 08CC
1140
1140 A8
1141 4A
1142 4A
1143 4A
1144 4A
114S 204811
1148 290F
114A C90A
114C 18
114D 3002
114F 6907
11S1 6930
11S3
l1S3
l1S3
11S3
l1S3 8EE311
11S6 8CE411
l1S9 8SEA
11SB A9FF
l1SD 48
l1SE ADE411
1161 46EA
1163 A212
116S B002
1167 A224
1169 A019
116B 49ES
116D 8D20CO
1170 88
1171 DOFD
1173 CA
1174 DOF3

113
114
l1S
116
117
118
119
120
121
122
123
124
12S
126
127
128
129
130
131
132
133
134
13S
136
137
138
139
140
141
142
143
144
14S
146
147
148
149
ISO
lSI
lS2
lS3
lS4
10;5
IS6
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Welch KIM and SYM 185

:BUMP BUFFER AD DR

: CARRY

INC BUFADL
BNE DUMPT2
INC BUFADH
JMP DUMPT2 :GO BACK AND SEE IF WE'RE DONE

:START OF VARIOUS CHARACTER OUT ROUTINES

OUTCTX BIT MODE :HS OR KIM?
BPL OUTCHT :KIM TAKES BRANCH

:OUTBTH - NO CLOCK A.X DESTROYED
:MUST RESIDE ON ONE PAGE - TIMING CRITICAL
:
OUTBTH LDX i$9 :8 BITS+START BIT

STY TEMP2
STA CHAR

:CAN'T READ LEVEL ON APPLE. SO NEXT INSTRUCTION IS DUMMY
LDA TEMPI :FOR TIMING

GETBIT LSR CHAR
EOR iTPBIT
STA TAPOUT :INVERT LEVEL

;HERE STARTS FIRST 416 USEC PERIOD
LDY tTM1500

A416 DEY ;TIME FOR THIS LOOP IS 5Y-l
BNE A416
BCC NOFLIP :NOFLIP IF BIT 0
EOR iTPBIT :BIT IS 1 - INVERT OUTPUT
STA TAPOUT :END OF FIRST 416 USEC PERIOD

B416 LDY tTMlS00-l
B416B DEY :LENGTH OF LOOP IS SY-l

BNE B416B
DEX
BNE GETBIT :GET NEX BIT (LAST IS OSTART BIT)
LDY TEMP2 :(BY 9 BIT LSR)
RTS

NOFLIP NOP :TIMING
BCC B416 : (ALWAYS)

OUTBCX JSR CHKT
OUTJlTX BIT MODE

BMI OUTBTH
:OUTBTC - OUTPUT
OUTBTC TAY

LSR
LSR
LSR
LSR
JSR HEXOUT

HEXOUT AND t$OF
CMP t$OA
CLC
BMI HEXI
ADC #$07

HEXI ADC 1$30

:GO UPDATE CHECKSUM

:HS
ONE KIM BYTE

:SAVE DATA BYTE

:SHIFT HI NIBBLE INTO PLACE
:AND OUTPUT HI NIBBLE FIRST
;CONVERT LO NIBBLE TO ASCII

;OUTCHT OUTPUTS AND ASCII CHAR IN KIM FORMAT
: (MUST RESIDE ON ONE PAGE. FOR TIMING)
:
OUTCHT STX TEMPI

STY TEMP2
STA CHAR
LDA t$FF

KIMBIT PHA
LDA TEMP2
LSR CHAR
LDX t$12
BCS HF
LDX 1$24

HF LDY 1$19
EOR tTPBIT
STA TAPOUT

HFPl DEY
BNE HFPl
DEX
BNE HF

:SAVE X " Y

: USE FF W/SHIFTS TO COUNT BITS
:SAVE BIT COUNTER
;DUMMY FOR TIMING
:GET DATA BIT IN CARRY
; ASSUME ONE

:BIT IS ZERO

: DUMMY. REALLY
:INVERT OUTPUT BIT
:PAUSE FOR 138 USEC

186 Hardware

1176 A218
1178 B002
117A A20C
117C A027
117E 49E5
1180 8D20CO
1183 88
1184 DOFD
1186 CA
1187 DOF3
1189 68
118A OA
118B DODO
118D AEE311
1190 ACE411
1193 98
1194 60
1195
1195
1195
1195
1195
1195
1195 8EE311
1198 8CE4ll
119B A200
119D AOIA
119F 88
llAO DOFD
llA2 CA
llA3 DOF8
lIAS AEE311
llA8 ACE411
llAB 60
lIAC
llAC
llAC .A8
llAD 18
llAE 6DE111
11B1 8DE111
11B4 9003
11B6 EEE2ll
1189 98
11BA 60
llBB
11BB 20C711
11BE 20DOll
llCl A900
11C3 8D59CO
11C6 60
11C7 A900
11C9 8DE111
11CC 8DE2ll
llCF 60
llDO
llDO
lIDO
lIDO
llDO ADDCll
11D3 85E8
lIDS ADDB11
llD8 85E7
11DA 60
11DB
llDB
lIDB
11DB
llDB
llDB
llDB 00
11DC 00
11DD 00
llDE 00
llDF 00
llEO 00

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

LF LDX 1$18
BCS LF20
LDX '$OC

LF20 LDY '$27
EOR ,TPBIT
STA TAPOUT

LFPl DEY
BNE LFPl
DEX
BNE LF20
PLA
ASL
BNE KIMBIT
LDX TEMPI
LDY TEMP2
TYA
RTS

;ASSUME BIT IS ONE

;BIT IS ZERO

; DUMMY
; INVERT OUTPUT
;PAUSE FOR 208 USEC

;RESTORE BIT CTR
;DECREMENT IT
;FF SHIFTED 8x-00

;RESTORE X.Y. DATA BYTE

;WE NEED A DELAY FUNCTION, BECAUSE THE SYM PROG
;USES THE KIM CHARGOUT ROUTINE WITH OUT PUT DISABLED
;TO DELAY (AND WE CAN'T)

;THIS ONE SHOULD BE 1/21 SECOND, SINCE IT EMULATES
;THE KIM CHAR OUT ROUTINE. WHICH THE SYM PROGRAM USES
DELAY STX TEMPI ;PRESERVE X

STY TEMP2 ;AND Y
LDX #$00 ;DO OUTER LOOP 256 TIMES

LOOPO LDY tTIME99 ; LOOP
LOOP1 DEY

BNE LOOP1
DEX
BNE LOOPO
LDX TEMPI ;RESTORE X
LDY TEMP2 ;AND Y
RTS

;CHKT .•• UPDATE CHECKSUM FROM BYTE IN ACC
CHKT TAY ;SAVE ACC

CLC
ADC CHKL
STA CHKL
BCC CHKT10
INC CHKH

CHKTI0 TYA
RTS

;START---LEAVING OUT SOME
START JSR ZERCK

JSR P2SCR
LDA #$00
STA TAPEON
RTS

ZERCK LDA #$00
STA CHKL
STA CHKH
RTS

; BUMP HI BYTE
;RESTORE ACC

UNECESSARY JUNK
;ZERO CHECKSUM
;TBATS ~lliAT THEY NAMED IT
;TURN ON TAPE RECORDER

;ZERO CHECKSUM

;--P2SCR-- THIS MOVES THE STARTING ADDRESS
TO THE RUNNING BUFFER ADDRESS.

;THE WEIRD NAME IS DUE TO THE NAMES
;OF THE LOCATIONS WHICH WE ARE MOVING IN THE SYM BOOK
P2SCR LDA SAH ;STARTING ADD HI

STA BUFADH
LDA SAL ;STARTING ADD LO
STA BUFADL
RTS

;PAGE PARAMETERS, ETC.
;THESE NEXT SIX LOCATIONS SHOULD BE
;FILLED WITH THE CALLING PARAMETERS
;BEFORE CALLING THE SYMOUT ROUTINE

.
SAL HEX 00
SAH HEX 00
EAL HEX 00
EAH HEX 00
ID HEX 00
MODE HEX 00

STARTING ADDRESS, LO BYTE
STARTING ADDRESS, HI BYTE
ENDING ADDRESS+l, LO BYTE
ENDING ADDRESS+l, HI BYTE
TAPE ID NUMBER
SYM=$80. KIM=$OO

1 ,

1 ,
i

1

1

i

1 ,

~
I

r-

r

r

-
-

Welch KIM and SYM 187

11El 00 263
11E2 00 264
11E3 00 265
11E4 00 266
11E5 00 267
11E6 268
11E6 269
11E6 270
llE6 271
11E6 272
11E6 273
1000 274
1000 275
1000 276
1000 20BB11 277
1003 A9l6 278
1005 200711 279
1008 4C0310 280
100B 281

CHn
CHm
TEMPI
TEMP2
TPBIT

HEX 00
HEX 00
HEX 00
HEX 00
HEX 00

: VARIABLES

:--- SHORT ROUTINE TO MAKE SYNC TAPES
(APPLE PRODUCED TAPE WILL USUALLY NEED
DIFFERENT VOLUME AND TONE SETTINGS
THAN KIM OR SYM TAPES)

.
ORG $1000
OBJ $800

SYNC JSR START
SYNMOR LDA iSYN

JSR OUTCTX
JMP SYNMOR

MAKE A SYNC TAPE
LOAD SYNC CHARACTER
SEND IT
DO IT FOREVER

282 END

ee ••• e. __ ._._ •• __________

* * * SYMBOL TABLE -- V 1.5 *
* * eee*eeeee ________________

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

TM1500 0047 TIME99 001A EOT 0004 SYN 0016 BUFADL 00E7
CHAR OOEA

** ABSOLUTE VARABLES/LABELS

TAPOUT C020 TAPEON C059 TAPEOF C058 BEGIN 1080 SYMOUT 1080
MARKSA 108C MARK8B 108E DUMPTI 1097 DUMPT2 10C7 DUMPT4 10F7
OUTBTH 110C GETBIT 1116 A416 ll1F B416 1129 B416B 112B
OUTBCX 1138 OUTBTX 113B OUTBTC 1140 HEXOUT 1148 HEXI 1151
KIMBIT 115D HF 1169 HFPl 1170 LF 1176 LF20 117C
DELAY 1195 LOOPO 119D LOOPI 119F CHKT 11AC CBKTI0 llB9
ZERCK 11C7 P2SCR 11DO SAL llDB SAH 11 DC EAL llDD
ID 11DF MODE 11EO CHKL llEl CHm llE2 TEMPI llE3
TPBIT 11E5 SYNC 1000 SYNMOR 1003

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:OlDA

BUFADH 00E8

OUTCTX 1107
NOFLIP 1135
OUTCBT 1153
LFPl 1183
START llBB
EAH llDE
TEMP2 11E4

-,
1 ,
,
,
,
,
,
,
,
,
,
,
1

1

1

1

1

I""'"
J

6
REFERENCE

Introduction 190
r-

Intercepting DOS Errors from Integer BASIC 191
Andy H ertzfeld

Applesoft Floating Point Routines 194
R.M. Mottola

How to Use Hooks 200
Richard Williams

r-
Brown and White and Colored All Over 207

Richard F. Suitor -

INTRODUCTION
This chapter provides some assorted reference material which should be of great
interest to any serious Apple user who wants to know more about the firmware
and hardware features locked within the machine. Each of these articles explores a
different feature of the Apple.

"Intercepting DOS Errors from Integer BASIC," by Andy Hertzfeld, presents a
quick overview of the DOS error codes, where they are stored, and how to inter­
cept them from within an Integer BASIC program. "Applesoft Floating Point
Routines," by R.M. Mottola, discusses the powerful floating point routines which
are locked inside the Applesoft firmware. Incidentally, these are the routines used
by the MEAN-14 system Isee chapter 1). Richard Williams' "How to Use Hooks"
explains the use of vectors, or hooks by the monitor, and how to use them to inter­
cept program control. Two example programs are provided. Finally, Dick Suitor's
"Brown and White and Colored All Over" discusses some of the theory behind
the Apple's color graphics, and provides an example program.

All these programs should further your understanding of your Apple and
what's in it. The article on hooks is especially recommended to the novice to aid
understanding of the routines in chapter 1.

,
,
.,

.' ,
.,

)

.,
,

i ,
,

,
i

..,
J

.,
:

r

Intercepting DOS Errors
from Integer BASIC

by Andy Hertzfeld

Implement true turnkey applications on the Apple with

this DOS error handling interface. Now Integer BASIC

programs can trap errors from DOS, diagnose problems,

and take remedial action with no intervention from the
·operator.

When a DOS error such as FILE NOT FOUND occurs during execution of a BASIC

program, execution is suspended and an error message is printed. Unfortunately,

this is often not what we want to happen. We would prefer the program to be

notified of the error and allowed to continue execution, dealing with the error in

any fashion it desires.

This is fairly easy to achieve under Applesoft because it includes an ONERR

error intercepting facility. It is much harder to intercept erors from Integer BASIC;

this article describes one method for doing so.

Unlike Integer BASIC, the DOS resides in normal RAM. This means it can be

patched to make it do almost anything we wish. It turns out that location 9D5A

(for 48K systems) holds the address of the BASIC error-handling routine that DOS

vectors to whenever an error arises. It usually contains E3E3, for Integer BASIC,

and D865 for ROM Applesoft. However, we can store our own address into 9D5A

(5D5A for 32K systems) and thereby gain control whenever a DOS error occurs.

The following 24-byte, relocatable routine will intercept errors from BASIC.

When a DOS error arises, it will store the error number at location 2; the line

number of the statement that caused the error in locations 3 and 4; and, finally, it

will transfer control to the BASIC statement whose line number is found in

locations a and 1. Since the routine is relocatable, you can position it anywhere

you wish. Location 300 appears to be a pretty good place, unless you are keeping

your printer driver there.

To activate the error intercept facility, perform the following two POKEs

which store the address of the intercept routine in $9D5A:

fIiiiilI POKE-25254,0: POKE-25253,3 (for 48K systems) or

POKE-23898,0: POKE-23899,3 (for 32K systems)

192 Reference

The error intercept routine itself can be POKEd into page 3 or BLOADed off
disk, whichever you prefer. If you locate it somewhere other than $300, make sure
to alter the above POKEs accordingly.

Mter the routine is loaded into memory, it is very easy to use. If LINE is the
line number of the statement where the error handling portion of your program
begins, you should "POKE 0, LINE mod 256" and "POKE I, LINE1256" to inform
the interceptor where you want it to branch to. Your BASIC error-handling can
figure out which statement caused the error by PEEKing at locations 3 and 4.

PEEK(3) + 256*PEEK(4) is the line number. It can determine which type of
DOS error occured by PEEKing at location $2. Table 1 gives the numbers for the
various different classes of error.

Unfortunately, there is still one minor problem. Even though you regain con­
trol when a DOS error occurs, DOS still rings the bell and prints out any error
message. One simple POKE will inhibit DOS from doing this, but since the POKE
will suppress all DOS error messages, including immediate execution errors, it is
a little bit dangerous. Also, the POKE is different for different memory size systems
and for different versions of DOS.

48K with DOS V3.1:
48K with DOS V3.2/3.3:
32K with DOS V3.1:
32K with DOS V3.2/3.3:

POKE-22978,20
POKE-22820,18
POKE 26174,20
POKE 26332,18

Table 1 - Error Numbers and Messages

Number
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Message
Language Not Available
Range Error
Range Error
Write Protection Error
End of Data Error
File Not Found Error
Volume Mismatch Error
Disk II 0 Error
Disk Full Error
File Locked Error
Syntax Error
No Buffers Left Error
File Type Mismatch
Program Too Large Error
Not Direct Command

,
,
i

J

i ,
1 ,
-,

J

'i
I

Note that these are error messages for DOS V3.2 or V3.3; the V3.1 messages i
are slightly different.

Hertzfeld Intercepting DOS 193

On all systems, you can restore error messages by POKEing 4 into the system­
dependent address cited above.

The ability to capture DOS errors is very important, especially for tum-key
systems where it is a disaster if a program crashes for any reason at all. Perhaps
this little routine will allow more people to program in faster, more elegant
Integer BASIC rather than choosing the Applesoft language.

CBOO 1 j***********************
OBCO 2 ;* *
OBOO 3 ;* INTERCEPTING *
OBOO 4 ;* DCS ERRORS
OBOO 5 ;* EY ANDY HERTZFELD *
OBOO 6 ;* *
OBOO 7 ;* ERROR *
OBOO B ;* *
OBOO 9 ;* COPYRIGHT (C) 19B1 *
OBOC 10 ;* MICRC INK, INC. *
OBOO 11 ;* CHEMSFORD, MA 01B24 *
OBOO 12 ;* ALL RIGHTS RESERVED *
OBOO 13 ;*
OBOO 14 i***********************
OBCO 15
OBOO 16
08CC 17 ERNUM EPZ $02
OBOO 1B ERRLIN EPZ $03
ceoo 19 ONERR EPZ $OC
OBOC 20
OBCO 21 PR EPZ $DC
OBOO 22 ACL EPZ $CE
OBOO 23 ACH EPZ $CF
CBOC 24
OBCC 25 GO TO EQU $EB5E
OBCC 26
030C 27 ORG $300
030C 28 OBJ $8CO
0300 29 , .
0300 30
030C B602 31 ERRCR STX ERNUM
0302 AOOI 32 LDY #01
0304 B1DC 33 LDA (PR), Y
0306 B5C3 34 STA ERRLIN
C308 CB 35 INY
0309 B1DC 36 LDA (PR). Y
030B B504 37 STA ERRLIN+l
030D A500 3B LDA ONERR
030F B5CE 39 STA ACL
0311 A501 40 LDA CNERR+1
0313 B5CF 41 ETA ACH
0315 4CSEEB 42 JMP GOTC

43 END

* *
* SYMBOL TABLE -- V 1.5 *
* *
******************.******

LABEL. LCC. LABEL. LOC. LABEL. LCC.

** ZERC PAGE VARIABLES:

ERNUM 0002 ERRLIN 0003 CNERR COOO PR

** ABSOLUTE VARABLES/LABELS

GOTO EBSE ERROR 0300

SYMBOL TABLE STARTING ADDRESS:6000
S\~BOL TABLE LENGTH:00S2

;ERROR NUMBER
:LINE OF ERROR
:CONTROL TRANSFER LINE

:BASIC LINE POINTER
:BASIC ACCUMULATOR

:BASIC 'GOTO' ROUTINE

:SAVE ERROR NUMBER

;GET LOW BYTE OF ERRING
;LINE NUMBER AND SAVE

;DITTC FOR HIGH BYTE

GET LOW BYTE CF LINE NUMBER
OF ERROR HANDLING STATEMENT
DITTO FOR HIGH BYTE
SET THINGS UP FOR BASIC AND
LET THE FIRMWARE TAKE OVER

OODC ACL OOCE ACH OOCF

Applesoft Floating Point
Routines

by R.M. Mottola

...,

,
j

i

Applesoft BASIC is a complete and easy-to-use ,
language-but sometimes it can be annoyingly slow.
To decrease execution time, many programmers code
some routines in machine language. Yet it seems j
wasteful to re-code routines which already exist in the
Applesoft interpreter. The solution to the dilemma: Use
the floating point routines directly! Here is a discussion 1
of where floating point routines are located, what they
do, and an example of their direct use.

Part of a recent project required me to write a routine that would calculate various
statistical data reductions on a series of data points. The initial result, written in
Applesoft floating point BASIC, worked well enough but took a healthy amount of
time to execute. Upon doing some timing experiments, it became apparent that a
good deal of the time required to perform the task was eaten up by BASIC
overhead conversion of types, floating point "FOR-NEXT" loops, and general
interpereter related functions.

What I really wanted was to write all of the routine in machine language. To
do this, there were two options available. The first was to write some floating
point routines which maintained the Applesoft five byte variable format. This
proved to be impractical due to the amount of memory required for these routines.

The second and much more memory efficient solution was to locate the
floating point routines already in my machine in Applesoft. This proved to be
reasonably difficult for a number of reasons but after much head-scratching I've
managed to unearth the following routines. Before using them, its probably a good
idea to familiarize yourself with the format of both the Applesoft variables and the
Applesoft floating point accumulators.

The format of Applesoft variables is a standard five byte floating point
representation, with the highest order byte containing the exponent and the lower
four bytes containing a signed mantissa. [See page 137 of the Applesoft manual for
more on this.) The format of the Applesoft accumulators is a little different. You
will notice from various Applesoft zero page usage tables that seven bytes have

...,

i

i ,

i

"i
i

j

'i

r-
,

Mottola Applesoft 195

been allocated for each of the two floating point accumulators. The format of
these accumulators is as follows: The highest order byte contains the exponent.
The next four bytes contain the negative absolute value of the mantissa, as
represented in Applesoft variable format. The sixth byte contains the original
high-order byte of the mantissa if a value has just been converted from variable
format to accumulator format. In any case, this byte is used to represent the sign
of the mantissa. The seventh and last byte of the accumulator is a "function" byte
used in arithmetic operations. It is not initially assigned a value on conversion of a
value from variable format to accumulator format.

To use the following floating point routines is a reasonably straight-forward
process. For the sake of simplicity, you may find it easier to forget the
accumulator formatting of values, and load all values into the accumulator using
the "FPLOAD" subroutine listed. This routine performs the conversion while do­
ing the load. You should also be careful to represent all values in normalized form.
If you plan to use only values that have been previously specified by Applesoft,
you will not have to do this as Applesoft normalizes all variables as they are
specified. To use your own values, you may find the accompanying utility pro­
gram useful.

Another thing to be careful about is floating point errors (Division by zero,
Overflow). Since these floating point routines were not meant to be used outside
of Applesoft, the entry points to the error handling routines are in ROM. Unfor­
tunately, the vectors to these routines are cast in stone (or Silicone, anyway) and
cannot be changed. There are two ways to deal with these errors:

1. Test your routines for "worst case" operation. If you can make sure that errors
will never occur, you've got it made.

2. Applesoft has the ability to vector errors to a specified BASIC line number with
the ONERR ... GO TO statement to direct errors to a specified line number. On this
line number, you can make a call to your own machine language error handling
routines.

- The following routines constitute the major arithmetic routines available in
Applesoft. There are, of course, other functions buried in BASIC which have not
been identified here.

Name: FPLOAD
Address: $EAF9
Symbolic: M ___ FPACI

Loads variable into primary floating point accumulator. Converts to FPAC format.
A and Y registers must point at variable in memory (ADL, ADH). Clears $AC.

Name: FPSTR
Address: $EB2B
Symbolic: FPACl~M

196 Reference

Stores value in primary floating point accumulator in memory. Converts from
FPAC format to Applesoft variable format. X and Y registers must point at first
byte in memory in which value is to be stored [ADL, ADH). Clears $AC.

Name: TRl> 2
Address: $EB63
Symbolic: FPACI

Transfers the value contained in the primary floating point accumulator to the
secondary floating point accumulator. Clears $AC.

Name: FPDIV2
Address: $EA60
Symbolic: FPAC2IM~FPACl

Divides the value contained in the secondary floating point accumulator by the
value pointed at by the A and Y registers [ADL, ADH) and stores the result in the
primary floating point accumulator.

Name: TR2 > 1
Address: $EBS3
Symbolic: FPAC2~FPACl

Transfers the value contained in the primary floating point accumulator to the
secondary floating point accumulator. Clears $AC.

Name: FPSQR
Address: $EE8D
Symbolic: FPACl~ FPACI

Returns the positive square root of the value contained in the primary floating
point accumulator in the primary floating point accumulator.

Name: FPEXP
Address: $EE94
Symbolic: FPAC2 M~FPACI

Raises the value contained in the secondary floating point accumulator to the
value pointed at by the A and Y registers. The result is stored in the priinary
floating point accumulator.

Name: FPINT
Address: $EC23
Symbolic: INT [FPACl~FPACl

Returns the integer value of the value contained in the primary floating point
accumulator to the primary floating point accumulator.

i

i

i

i

tsii!j
I

i

i

i
I ,

i

Name: FPABS
Address: $EBAF
Symbolic: ABS (FPACl)~FPACl

Hertz£eld Intercepting DOS 197

Returns the absolute value of the value contained in the primary floating point
accumulator to the primary floating point accumulator.

_ Name: FPADD
Address: $E7BE
Symbolic: M+FPACl~FPACl

Adds the value of the variable pointed to by the A and Y registers (ADL, ADH) to
the value contained in the primary floating point accumulator and stores the
result in the primary floating point accumulator.

Name: FP ADD2
Address: $E7 AD
Symbolic: 0.5 + FPACl~FPACl

Similar to previous routine, but adds the value (0.5) to the primary floating point
accumulator.

Name: FPMUL
Address: $E97F
Symbolic: M*FPACl~ FPACI

Multiplies the value pointed at by the A and Y registers (ADL, ADH) by the value
contained in the primary floating point accumulator and stores the result in the
primary floating point accumulator.

fi'I1'II'l Name: FPSUB
Address: $E7A7
Symbolic: M - FPACl~FPACl

Subtracts the value contained in the primary floating point accumulator from the
value pointed at by the A and Y registers (ADL, ADH) and stores the result in the
primary floating point accumulator.

Name: FPDIV
Address: $EA66
Symbolic: M / FPACl~ FPACI

Divides the value pointed to by the A and Y registers (ADL, ADH) by the value
contained in the primary floating point accumulator and stores the result in the
primary floating point accumulator.

Name: FPSGN
Address: $EB90
Symbolic: SGN (FPACl)~ FPACI

198 Reference

Returns the sign of the value contained in the primary floating point accumulator.
A negative value will return (-1). A positive value will return a (1). A value of
zero will return a (0).

Name: FPLOG
Address: $E941
Symbolic: LOG (FPACI)~FPACI

Returns the natural log of the value obtained in the primary floating point
accumulator to the primary floating point accumulator.

Name: COMP2
Address: $E89E
Symbolic: TWO'S COMPLEMENT OF FPACI~ FPACI

Returns the Two's Complement of the value contained in the primary floating
point accumulator to the primary floating point accumulator.

Name: INT > FP
Address: $E2F2
Symbolic: (Y,A)~FPACl

Converts a two byte integer to its floating point equivalent (FPAC format) and
stores it in the primary floating point accumulator. The integer must be
represented with the high-order byte stored in the A register, and the low-order
byte stored in the Y register.

Name: FP > INT
Address: $ElOC
Symbolic: FPACI~($AO, $AI)

Converts the floating point contained in the primary floating point accumulator
to a two byte integer, which is stored in the fourth and fifth bytes of the primary
floating point accumulator ($AO, $AI). $AO contains the high-order byte and $Al
contains the low-order byte.

-,
I

i

,
,
1

1

1

'i

i

~

1
2
3
4
5
6
7
8
9
10
11
12
13
14

REM ************************

REM * *
REM *
REM *
REM *

FLOATING POINT
ROUTINEE'

R.M. MOTTOLA

*
*
*

REM * *
REM * COPYRIGHT (C) 1981 *
REM * MICRO INK, INC. *
RE~ * CHELMSFORD, ~~ 01824 *

REM * ALL RIGHTS RESERVED *
REM * *
REM ************************

REM
REM

= O:D$ CHR$ (4)
FOR N = 768 TO 792
READ A: POKE N,A
NEXT

Hertzfeld

80
90 X
100
110
120
130 REM ESTABLISH CONVERSION ROUTINE AT $300

DATA 165,105,24,105,2
DATA 164,106,144,1,200
DATA 32,249,234,160,6
DATA 185,157,0,153,25
DATA 3,136,16,247,96

Intercepting DOS

140
150
160
170
180
190
200
210

HOME: PRINT: PRINT TAB(7)"FLOATING POINT CONVERSIONS"

PRINT : PRINT : PRINT "INSTRUCTIONS-"

PRINT : PRINT "ENTER VALUE YOU WISH CONVERTED TO FLOATING POINT

199

220
REPR ESENTATION. IF YOU WISH TO PRINT THE CONVERSIONS ON THE"

PRINT "PRINTER, FOLLOW THE VALUE WITH A 'P'. TO RETURN TO BASIC,

HI T (RETURN) KEY."
:230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510

VTAB 14: CALL - 868
INPUT "ENTER VALUE: ";A$
IF A$ = "" THEN VTAB 23: END: REM ""=NULL$

IF RIGHT$ (A$,l) > < "P" THEN 300

PRINT D$;"PR#l"
REM PRINTER IN SLOT #1
PRINT : PRINT

X = VAL (A$): CALL 768
VTAB 18: CALL - 958: PRINT "VALUE= "X
PRINT: PRINT "ACCUMULATOR: $";

FOR N = 793 TO 799
A = PEEK (N): GOSUB 450

NEXT : PRINT : PRINT
PRINT "VARIABLE: $";

B = PEEK (105) + PEEK (106) * 256 + 2
FOR N = B TO B + 4

A = PEEK (N): GOSUB 450
NEXT : PRINT
PRINT D$;"PRIIO"
GOTe 230

REM DECIMAL TO HEX SUB
A A / 16:B = INT (A)
A = (A - B) * 16
B = B + 48: IF B > 57 THEN B

PRINT CHR$ (B);
A = A + 48: IF A > 57 THEN A

PRINT CHR$ (A)" ";
RETURN

B + 7

A + 7

How to Use
the Hooks

by Richard Williams

There are a lot of great things you can do with your
Apple, once you know how to use the available hooks.

The Apple II allows you easily to substitute your own input and output routines
for the standard routines. Figure 1 shows the basic flow of control when a
character is output by the Apple II. Figure 2 shows how the control path changes
when you substitute your own output routine for the standard monitor path. By
using what are known as "hooks," you can break the normal flow of control and
redirect it to your own routine.

An example of how this method can be used is shown in figure 3. Control
characters normally do not show on the screen. However, by inserting a routine to
change control characters into inverse video when printed, the characters will
show on the screen. This procedure is very useful for listing programs containing
control characters.

How It Works

Before doing the actual input or output, the system does an indirect jump, via
the zero page, to the actual input or output routine. By changing the jump address,
you can substitute your own routine for the standard zone. For input, at location
$FD18 in the monitor, there is a JMP (KSWL) instruction. KSWL (at $38) and
KSWH (at $39) contain the address of the input routine with the low byte specified
first. Similarly, at address $FDED, there is a JSR (CSWL) instruction which is the
jump to the output routine. CSWL, address $36, and CSWH, at $37, contain the
address of the output routine. This code can be seen on pages 166 and 167 of the
Apple II reference manual.

How to Insert an Input Routine

The normal input routine is KEYIN at address $FD1B. To replace it with your
routine, store its address in KSWL and KSWH. Your input routine needs to do the

,
i

i

i

i ,

.,

..,

following. -,

-
Williams Hooks 201

_ 1. Upon entry to your routine, the accumulator will contain the character that
was replaced by the flashing prompt. You must restore this character on the screen
by doing a STA (BASL), Y where BASL = $28. Do this before altering the A or Y
registers.

2. Clear the keyboard strobe, if the character came from the keyboard.

3. Return the character, with the high bit set, in the accumulator.

4. The normal input routine increments the random number seed while it waits
for input. You should do this also.

If you wish to get your input from the keyboard, you can do all of these by do-
_ ing a call to KEYIN (JSR $FDlB). You can then do whatever processing you want

on the character, which is in the accumulator, and then return with an RTS. If you
write your own routine to replace KEYIN, you should first carefully study KEYIN.

Outputting Outputting Outputting

r- Program Program Program

+ t ~
Monitor Monitor Monitor
Output Output Output
Handler Handler Handler - + t ~
Monitor User User Routine

Character Character To Convert
Output Output Control To
Routine Routine Inverse Video -

+ Monitor - Character
Output
Routine

Figure 1 Figure 2 Figure 3

- How to Insert an Output Routine

The normal output routine is COUTl (address $FDFO). To insert your
routine, store its address in CSWL and CSWH (addresses $36 and $37) with the
low byte first. The character to be output will be placed in the accumulator before
your routine is called. If you wish the character in the accumulator to be printed

202 Reference

on the screen after you are done, exit your routine by doing a JMP COUTI. A
routine to convert control characters to inverse video is an example of this
procedure.

How to Remove the Routines

The input and output routines can be removed from the hooks by typing INHO
or PRHO respectively. Or, if done in a program, a JSR SETKBD (address $FE89)
simulates a INHO, and a JSR SETVID (address $FE93) simulates a PRHO.

Special Notes for DOS Users

If you are using the disk operating system (DOS), you must follow some
special rules when attaching or removing your routines. DOS normally sits in
both the input and output hooks itself. Consequently, when you alter the hooks,
you must call a DOS routine which informs DOS that the hooks have been
changed. DOS will then reconnect itself to the hooks, but it will use your routines
instead of the standard I/O routines. The routine to do this is at $3EA.

Example

,
,
,
IiiIliI

I
I

The sample program in figure 4 inserts or removes a routine from the input hook. i

To connect your routine do a 300e from the monitor. To remove your routine
from the hook, do a 30Ce. '1

300:
302:
304:
306:
308:
30B:
30C:
30F:
312:

LDA
STA
LDA
STA
JSR
RTS
JSR
JSR
RTS

Hlow address of routine
$38 ;Store it in KSWL
Hhigh address byte of routine
$39 ;Store it in KSWH
$3EA ;Reconnect DOS

$FE89;JSR SETKBD to simulate INHO
$3EA ;Reconnect DOS

Figure 4

A Sample Program Using the Input Hook

There are three characters that the Apple II can understand, but that cannot be
typed in from the standard keyboard. They are the backslash (/), the left bracket
([), and the underscore (_). One way to type in these characters is to make a
hardware modj,fication to the keyboard. Another way is to attach a routine to the
input hook that will convert unused control characters to these characters. The
firs! program converts the following characters:

i

j
1

-

Williams Hooks 203

Control K to a left bracket ([I

Control L to a backslash (I I

Control 0 to an underscore (_ I

Here's how you use this program:

Type or BLOAD the program at $300. Note that this program is written for
DOS users. If you aren't using DOS, then replace the JMP $3EA with RTS
instructions.

To connect the routine, do a 303G from the moniter or a CALL 771 from
BASIC.

To disconnect the routine, do a 300G from the monitor or a CALL 768 from
BASIC.

The second sample program uses the output hook to convert control
characters into inverse video characters. All control characters except contol M,
which is the carriage return, are converted.

Summary of Important Addresses for Using the Hooks

Name Address Comment

COUT1 $FDFO Monitor character output routine.

CSWL $36 Low address byte of output routine.

CSWH $37 High address byte of output routine.

KEYIN $FD1B Monitor keyboard input routine.

KSWL $38 Low address byte of input routine.

KSWH $39 High address byte of input routine.

MVSW $3EA Routine to reconnect DOS

SETKBD $FE89 Simulates a IN#O

SETVID $FE93 Simulates a PR#O

!

204 Reference '1

OSOO 1 ;****************-******* ,
OSOC 2 :* *
OSOO 3 1* HOW TO USE HOOKS *
OSOO 4 :* RICHARD WILLIAMS *
OSOO 5 :* *
OSOC 6 :* NEWKEYS * ...,
0800 7 :* * .1

OSOO 8 :* COPYRIGHT (C) 19S1 *
OSOO 9 :* MICRO INK. INC. *
0800 10 :* CHELMSFORD. MA 01S24 *

~ OSOO 11 :* ALL RIGHTS RESERVED *
OSOO 12 :* * j
0800 13 :************************
OSOO 14
OSOO 15
OSOO 16 : ,
0800 17 BKSLSH EPZ 220 ASCII BACKLASH
OSOO IS CTRLK EPZ 139 ASCII CONTROL K
OSOO 19 CTRLL EPZ 140 ASCII CONTROL L
OSOO 20 CTRLO EPZ 143 ASCII CONTROL 0
OSOO 21 KSWL EPZ $3S INPUT HOOK ADDRESS ,
OSOO 22 KSWH EPZ $39
OSOO 23 RTBRKT EPZ 219 :ASCII RIGHT BRACKET
OSOO 24 UNDSCR EPZ 223 :ASCII UNDERSCORF
OSOO 25
OSOO 26 : ~ OSOO 27 KEYIN EOU $FD1B :MONITOR'S INPUT HANDLER
OSOO 2S MVSW EOU $3EA :ROUTINE TO RECONNECT DOS
OSOO 29 SETKBD EOU $FES9 :SIMULATES INtO
OSOO 30
OSOO 31 ..,
OSOO 32 :------NEXT OBJECT FILE NAME IS NEWKEYS.OBJO
OSOO 33
OSOO 34
OSOO 35 , 0300 36 ORG $300
0300 37 OBJ $SOO
0300 3S
0300 39
0300 40 .. .
0300 4COF03 41 JMP UNHOOK :JUMP TO DISCONNECT ROUTINE ...,
0303 42 i
0303 43 ;*** THIS PART ATTACHES OUR ROUTINE INTO THE INPUT HOOK
0303 44 :
0303 A916 45 ATTACH LDA .KEYCHK :A=LOW BYTE OF ADDRESS
0305 S53S 46 STA KSWL -,
0307 A903 47 LDA /KEYCHK :GET HI BYTE
0309 S539 4S STA KSWH
030B 20EA03 49 JSR MVSW :GO TO IT
030E 60 50 RTS

"""'I 030F 51
030F 52 :*** THIS PART UNHOOKS THE ROUTINE
030F 53
030F 20S9FE 54 UNHOOK JSR SETKB!: :DO A INto
0312 20EA03 55 JSR MVSW
0315 60 56 RTS ~
0316 57 : \
0316 5S ;*** THIS IS THE ROUTINE
0316 59 .
0316 201BFD 60 KEYCHK JSR KEYIN :GET THE KEY
0319 C9SB 61 CMP 'CTRLK :CONTROL K?

....,
031B D003 62 BNE NOTK
031D A9DB 63 LDA ,RTBRKT :MAKE IT A BRACKET
031F 60 64 RTS
0320 C9SC 65 NOTK CMP ,CTRLL :CONTROL L?,
0322 D003 66 BNE NOTL ,
0324 A9DC 67 LDA 'BKSLSH :MAKE IT A BACKLASH
0326 60 6S RTS
0327 C98F 69 NOTL CMP ,CTRLO :CONTROL O?
0329 D002 70 BNE CHKDNE
032B A9DF 71 LDA .UNDSCR ..,
032D 60 72 CHKDNE RTS

73 END

..,

fWi8l

fI'iii'\

fI'iii'\

~

f'II\I!I

f'II\I!I

*** ••••••••• **.** •••• ** ••
* *
* SYMBOL TABLE -- V 1.5 *
* * .*.***.* •••• *************

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

Williams Hooks

BKSLSH OODC CTRLK OOBB CTRLL OOBC CTRLO OOBF KSWL
RTBRKT OODB UNDSCR OODF

003B KSWH

** ABSOLUTE VARABLES/LABELS

KEYIN FDIB MVSW 03EA SETKBD FEB9 ATTACH 0303
UNHOOK 030F KEYCHK 0316 NOTK 0320 NOTL 0327 CHKDNE 0320

SYMBOL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:009A

OBOO 1 :*******.***************.
OBOO 2 ;* *
0800 3 ;* HOW TO USE HOOKS *
OBOO 4 ;* RICHARD WILLIAMS •
OBOO 5 ;* *
OBOO 6 ;* CONVERT *
OBOO 7 ;* *
OBOO B ;* COPYRIGHT(C) 19B1 *
OBOO 9 ;* MICRO INK. INC. *
OBOO 10 :* CHELSMFORD, I'J\ 01B24 *
OBOO 11 ;* ALL RIGHTS RESERVED *
OBOO 12 ;* *
OBOO 13 ;6.*.**** ••• ******.*****_
0800 14
OBOO 15
OBOO 16
OBOO 17 CSWH EPZ $37
OBOO IB CSWL EPZ $36
0800 19 CTRLM EPZ $80
0800 20 MASK EPZ $3F
OBOO 21 NULL EPZ $80
0800 22 SPACE EPZ $AO
0800 23
0800 24
0800 25
0800 26 COUTI EQU $FDFO
0800 27 MVSW EQU $3EA
0800 28 SETVID EQU $FE93
0800 29
0800 30
0300 31 ORG $300
0300 32 OBJ $800
0300 33
0300 34
0300 4COF03 35 JMP UNHOOK
0303 36

OUTPUT HOOK HIGH BYTE
OUTPI!1' HOOK LOW ORDER BYTE
CONTROL M
MASK TO CONVERT TO INVERSE
NULL CHARACTER
SPACE CHARACTER

;CHARACTER OUTPUT ROUTINE
;RECONNECTS DOS
;PERFORMS PRiO

0303 37 :*** ROUTINE TO CONNECT ROUTINE INTO HOOK
0303 38
0303 A916 39 LOA #CONVRT ;GET LOW BYTE OF ADDRESS
0305 B536 40 STA CSWL
0307 A903 41 LDA /CONVRT ;GET HIGH BYTE
0309 8537 42 STA CSWH
030B 20EA03 43 JSR MVSW
030E 60 44 RTS
030F 45

205

0039

206 Reference

C30F 46 :*** THIS UNHOOKS
030F 47
030F :;>093FE 48 UNHOOK JSR SETVID
031:;> 20EA03 49 JSR MVSW
0315 60 50 RTS
0316 51
0316 52 ;*** THIS IS THE
0316 53
0316 C980 54 CONVRT CMP #NULL
0318 900A 55 BCC GOOUT
031A C9AO 56 CMP #SPACE
031C B006 57 BCS GOOUT
031E C98D 58 CMP tCTRLM
0320 F002 59 BEQ GOOUT
0322 293F 60 AND #MASK
0324 4CFOFI) 61 GOOUT JMP COUTl

62 END

***** END OF ASSEMBLY

* *
* SYMBOL TABLE -- V 1.5 *
* *

THE ROUTINE

: SIMULATE PR#O
: RECONNECT DOS

CONVERSION ROUTINE

: <NULL CHARACTER

:>=SPACE CHARACTER

:RETURN CHAR?

:CONVERT TO INVERSE

LABEL. LOC. LABEL. LOC. LABEL. LOC.

** ZERO PAGE VARIABLES:

CSWH 0037 CSWL 0036 CTRLM 0081) MASK 003F NULL 0080 SPACE OOAO

** ABSOLUTE VARABLES/LABELS

COUTl FDFC MVSW 03EA SETVID FE93 UNHOOK 030F CONVRT 0316 GOOUT 0324

SYMBCL TABLE STARTING ADDRESS:6000
SYMBOL TABLE LENGTH:0072

1
.,
i

,

1

i

1

Brown and White
and Colored All Over

by Richard F. Suitor

The video graphics memory buffers are the backbone of
the Apple II's impressive color capabilities. This article
discusses the Apple's color video output, emphasizing
color generation theory and covering relationships
between colors and screen memory locations. The
information explored in this article is then used to
generate several random color displays, which can be
used to further explore Apple graphics.

The Color of Your Apple

The colors on your screen come from your color TV and are controlled in part
by the video signal. Most of the signal carries the brightness information of the
picture-a black and white set uses this part of the signal to generate its picture.
Superimposed on this signal is the color carrier, a 3.58 MHz signal that carries the
color information. The larger this signal, the more colorful that region of the
picture. The hue (blue, green, orange, etc.) is determined by the phase of the color
signal. Reference timing signals at the beginning of each scan line synchronize a
"standard" color signal. The time during a 3.58 MHz period that the picture color
signal goes high compared to when the standard goes high determines the hue. A
color signal that goes high when the standard does, gives orange. One signal that
goes low at that time gives blue. Signals that are high while the standard goes from
high to low or from low to high give violet and green. (This, at least, was the in­
tention. Studio difficulties, transmission paths and the viewer's antenna and set
affect these relations, so the viewer is usually given final say with a hue or tint
control.)

The time relation of the color signal to the standard signal is expressed as a
"phase angle". It is measured in angular measures such as degrees or radians and
can run from 0 to 360 degrees. This phase angle corresponds to position on a color
circle, with orange at the top and blue at the bottom, as shown in figure 1.

The perimeter of the circle represents different colors or hues. The radial
distance from the center represents amount of color, or saturation. The former is
usually adjusted by the tint control, the latter by the color control. A color that

208 Reference

GREEN

FOREST
GREEN

ORANGE

1000 0001

NEUTRAL

0100 0010

MID BLUE

VIOLET

DEEP
BLUE

Figure 1 Color circle shows relations of color to color number bit position.

can be reproduced by a color TV can be related to a point in this circle. The angular
position is coded in the phase of the 3.58 MHz color carrier signal; the radial
distance from the center is given by the amplitude of the color carrier.

The numerical coding of the Apple colors can be appreciated using this circle
and binary representation of the color numbers. The low order bit corresponds to

red (#1). The second bit corresponds to dark blue (#2), the third to dark green (#4)
and the high order bit to brown (dark yellow, #8). To find the color for any color
number, represent each 1 bit as a quarter-pie piece centered over its respective
color, as indicated in figure 1. The brightness or lightness of the color corresponds
to the number of pie pieces and the color corresponds to the point where the whole
collection balances. Black, #0, has no bits set, no pie and no brightness. White,
#15, has four bits set, the whole pie, and is of maximum brightness and balances
in the center of the circle at neutral. Orange, #9 or 1001 in binary, has pie over the
top hemisphere and balances on a point between neutral and orange. The #5,
binary 0101, has two separate wedges, one over red and one over green. Since it is
symmetric, it balances at the center. It represents a neutral gray of intermediate
brightness as does #10. The #14 has pie over every sector except the red one. It is
bright and balances on a line toward forest green. It gives a bluish green light.

A diagram representing the relations of all the colors is given in figure 2. Each
of the one, two and three bit numbers form planes, each corresponding to a color
circle. You can think of these positions as points in space, with brightness increas­
ing with vertical position and horizontal planes representing color circles of differ­
ing brightness.

The colors of the Apple are thus coded by the bit patterns of the numbers
representing them. You can think of them as additive combinations of red, dark
blue, dark green and brown, where adding two colors is represented by ORing the
two numbers representing them. Subtractive combination can be represented by
ANDing the light colors, pink, yellow, light green and light blue. The more bits
set in a number, the brighter; the fewer, the darker. The bit patterns for 5 and 10
have no 3.58 MHz component and so generate a neutral tone. At a boundary

-,
! ,

"1
!

,

"""" I

/
'-

-
-

Suitor Brown and White 209

~ITE ll111

1011~ ______________ -+ ____ ~1~1~0~1.~

0111 -~.
LIGHT BLUE 1110

~.
001, ______

VIOLET

0001
RED

• 0000
BLACK

Color space locations of the Apple n colors.

LIGHT GREEN

0100 •
DARK GREEN

Figure 2 Each horizontal plane forms a color circle of different brightness.

between 5 and 10 however, this pattern is disturbed and two bits or spaces adjoin.
Try the following program which has only grays displayed:

10 GR
20 FOR 1 = 0 TO 9
30 COLOR =5
40 HUN 0,39 AT 2*1
50 VUN 20,39 AT 2*1
60 VUN 20,39 AT 2*1 + 21
70 COLOR = 10
80 HUN 0,39 AT 2*1 + 1
90 VUN 20,39 AT 2*1 + 1

100 VUN 20,39 AT 2*1 +20
110 NEXT 1
120 RETURN

The top half of the display has HLINs alternating 5 and 10. The botton half
has VLINs, alternating 5 and 10. What do you see? The bit pattern for a number is
placed directly on the video signal, with the four bits occupying one color carrier
period. When two bits adjoin at a 5,10 boundary, a light band is formed. When two
spaces adjoin, a dark band is formed. The slight tints are due to the boundaries
having some color component. Changing the 5,10 order reverses this tint.

210 Reference

Now is a good time to consider just how large a 3.58 MHz period is. The Apple
text is generated with a 5 x 7 dot matrix, a common method of character genera­
tion. These same dots correspond to individual bits in the high resolution display
memory. One dot is one-half of a 3.58 MHz period and corresponds to a violet (#3)
or green (#12) color signal. This is why the text is slightly colored on a color TV
and the high resolution display has two colors (other than black and white), green
and violet. (But you can make others, due to effects similar to those seen in the
BASIC program above.)

[Note: The Apple II now has orange (#9) and blue (#6) as high resolution colors as
well as green and violet. A circuit change interprets bit 7 of each word in the high
resolution display (this bit is not displayed) and shifts the displayed dots for the
other bits by a ~ period or dot. This choice affects 7 consecutive bits or displayed
dots. You cannot switch from orange to green with these seven. Thus in high
resolution pictures, boundaries between orange and green, orange and violet, blue
and green, or blue and violet can have a low resolution, "staircase" appearance.

Also note that not every high resolution point can be plotted in a particular
color. Only half, for instance, can be plotted in green. The other half can be plot­
ted in violet. That is why a high resolution plot of a colored point or vertical line
sometimes seems to produce nothing. Plotting twice at two consecutive horizon­
tal points solves this problem.}

The design of color TV has further implications for the display. The video
black and white signal is limited to about 4 MHz, and many sets drop the display
frequency response so that the color signal will not be obtrusive. A set so designed
will not resolve the dots very well and will produce blurry text. Some color sets
have adjustments that make the set ignore the color signal. Since the color signal
processing involves subtracting and adding portions of the signal, avoiding this
can sometimes improve the text resolution. Also, reducing the contrast and the
brightness somewhat can help with text material.

The color TV design attempts to remove the color carrier from the picture
(after duly providing the proper color), but you may be able to see the signal as 3 or
4 fine vertical lines per color block. They should not be apparent at all in the
white, black or the gray (except on a high resolution monitor).

Tan is Between Brown and White

This section presents a brief application of the concepts of the relationships in
color space of the Apple colors. Many of you, I suspect, are regular readers of
Martin Gardner's "Mathematical Games" column in Scientific American. I
strongly recommend it.

One column discussed the aesthetic properties of random variations of dif­
ferent kinds. To summarize briefly, three kinds are:

-
-

~
I

Suitor Brown and White 211

WHITE Each separate element is chosen randomly and is independent of every
other element. It is called "white" because a frequency spectrum of the
result shows all frequencies occur equally, a qualitative description of
white light.

BROWN Each separate element is the previous element plus a randomly chosen
deviation. It is called "brown" because Brownian motion is an

_ example.
I

lIF Its frequency spectrum is intermediate between "white" and "brown".

The column presented arguments, attributed to Richard Voss, that lIf varia­
tions are prevalent and aesthetically more satisfying than "white" (not enough
coherence) or "brown" (not enough variation). An algorithm was given for
generating elements with lIf random variations. Briefly, each element is the sum
of N terms (three, say). One term is chosen randomly for each element. The next
is chosen randomly for every other element. The next is chosen randomly for
every fourth element, and so forth.

With the Apple, you can experiment with these concepts aurally (hence
Applayer) and visually with the graphic displays. Color is a dimension that was
not discussed much in the column. This section presents an attempt to apply
these concepts to the Apple display.

Most of us know what "white" noise is like on the Apple display. An exercise
that many try is to choose a random point, a random color, plot and repeat. For
example:

10 GR
20 X = RNO(40)
30 Y = RNO(40)
40 COLOR = RN 0(16)
50 PLOT X,Y
60 GOTO 20

Despite the garish display that results, this is a "white" type of random
display. Except for all being within certain limits, the color of one square has no
relationship to that of its neighbors and the plotting of one square tells nothing
about which square is to be plotted next.

To implement the concept of "11£", I used the following:

1. X and Y are each the sum of three numbers, one chosen randomly from
each plot, one every 20 plots and the third every 200.

2. A table of color numbers was made (DIM(16) in the program) so that color
numbers near each other would correspond to colors that are near each other. The

_ choice given in the program satisfies the following restrictions:

a. Adjacent numbers are from adjacent planes in figure 2.

212 Reference

b. No angular change (in the color planes) is greater than 4S degrees between
adiacent numbers.

3. The color number is the same for 20 plots and then is changed by an
amount chosen randomly from - 2 to + 2. This is a "brown" noise generation
concept. However, most of the display normally has color patches that have been
generated long before and hence are less correlated with those currently being
plotted. I'll claim credit for good intentions and let someone else calculate the
power spectrum.

4. Each "plot" is actually eight symmetric plots about the various major
axes. I can't even claim good intentions here; it has nothing to do with lIf and
was put in for a kaleidoscope effect. Those who are offended and/or curious can
alter statement 100. They may wish then to make X and Y the sum of more than
three terms, with the fourth and fifth chosen at even larger intervals.

A paddle and push buttons are used to control the tempo and reset the display.
If your paddle is not connected, substitute 0 for PDL(O).

1 REM
2 REM
3 REM
4 REM
5 REM
6 REM
7

**** •• *****.************
* * * BROWN,WHITE,COLOURED *
* RICHARD SUITOR *
* *
* BROWN/WHITE *

~M * *
8 REM * *
9 REM * COPYRIGHT (C) 1981 *

10 REM * MICRO INK, INC. *
11 REM * CHELMSFORD, MA 01824 *
12 REM * ALL RIGHTS RESERVE~ *
13 REM * *
14 REM ************************
20 DIM A(16):A(1)=0:A(2)=2:A(3)=6:A(4)=7:A(5)=3:A(6)=1:A(7)=5:A(8)=11
22 A(9)=9:A(10)=8:A(11)=10:A(12)=13:A(13)=15:A(14)=14:A(15)=12:A(16)=4

40 GOTO 3000
100 PLOT X,Y: PLOT 38-X,Y: PLCT X,38-Y: PLOT 38-X,38-Y: PLOT Y,X: PLOT

38-Y,38-X: PLOT Y,38-X: PLOT 38-Y,X
110 RETURN
120 Z=16
125 L= RND (5)-2
130 U= RND (9):V= RND (9)
147 FOR B=l TO 10
150 R=U+ RND (9):S=V+ RND (9)
155 IF PEEK (-16286»127 THEN GR
160 K=K+L: IF K>16 THEN K=K-Z
165 IF K<O THEN K=K+Z
170 COLOR=A(K)
180 0=(PDL (0)/2) • 2
190 FOR 1=-0 TO 0: IF PEEK (-16287»127 THEN 200: NEXT I
200 FCR 1=1 TO 20
210 X=R+ RND (6):Y=S+ RND (6): GOSUB 1001 NEXT I
220 NEXT B
230 GOTO 120

1010 K=l:L=S
1020 Z=16
2000 GOTC 120
3000 GR : CALL -936
3010 PRINT "PA~DLE 0 CONTROLS PATTERN SPEED"
3020 PRINT "USE BUTTON 0 TO GO AT ONCE TO HI SPEED"
303C PRINT "HOL~ BUT'lON 1 TO CLEAR SCREEN"
3040 GOTO 1010
9000 END

i

""""I
!

i

Language Index
r- APPLES OFT BASIC

SEARCH Searching String Arrays, Little 84
MATRIX DEMO Applesoft and Matrices, Bongers 89
AMPERSORT DEMO AMPER-SORT, Hill 97
FNPLOTIER Hi-Res Function Plotter, Allen 119
COLOR GUN Color Gun, Lipson 163
BASIC TRANSFER Transfers with the Micromodem, Dombrowski 172
BINARY TRANSFER Transfers with the Micromodem, Dombrowski 172
THERMOMETER Digital Thermometer, Kershner 177
FLOATING POINT Floating Point Routines, Mottola 194

INTEGER BASIC
SCROLLER Bi-Directional Scrolling, Wagner 52

(\WiiIl TRACE LIST Trace List Utility, Hill 111
TRACE TEST Trace List Utility, Hill III
COMPRESS Hi-Res Picture Compression, Bishop 124
LIFESAVER Apple Flavored Lifesaver, Tibbetts 137
APPLA YER MENU Applayer Music Interpreter, Suitor 146
BA TILE SOUNDS Star Battle Sound Effects, Shryock 156
GALACTI-CUBE Galacti-Cube, Bishop 157
DIRECTORY Cassette Operating System, Stein 166
BROWN /WHITE Brown and White and Colored, Suitor 207

r- MACHINE LANGUAGE
BREAKER Breaker, Auricchio 5
STEP-TRACE Step and Trace, Peterson 16
TRACER Tracer, Kovacs 22
PACK-LOAD Subroutine Pack and Load, Suitor 28
MEAN-14 MEAN-14, Mottola 37
SCREEN WRITE Screen Write/File, Baxter 49

(\WiiIl SCROLL Bi-Directional Scrolling, Wagner 52
PAGE Program List by Page, Partyka 58
PAGE LIST Paged Printer Output, Little 63

~ HEX PRINTER Hexadecimal Printer, Moyer 67
COM-VAR-I Common Variables, Zant 73
COM-VAR-A Common Variables, Zant 73
PRINT USING Print Using, Morris 78

I'Wliil STRING SEARCH Searching String Arrays, Little 84
MATRICES Applesoft and Matrices, Bongers 89
AMPERSORT AMPER-SORT, Hill 97
TRACE INTERRUPT Trace List Utility, Hill III
PICT COMP Hi-Res Picture Compression, Bishop 124
LIFE Apple Flavored Lifesaver, Tibbetts 137
APPLAYER Applayer Music Interpreter, Suitor 146
CASSOS Cassette Operating System, Stein 166
SYM-KIM KIM and SYM Tapes, Welch 177
ERROR Interpreting DOS Errors, Hertzfeld 191 - NEWKEYS How to Use Hooks, Williams 200
CONVERT How to Use Hooks, Williams 200

-

Author Index
(Biographies included)

Allen, David P .. 119
Founding partner, chairman of the board,and executive producer of the Video
Picture Company, Inc., Boston. Also senior engineer and consultant for RCA
Corp. in designing educational television facilities.

Auricchio, Richard .. 5
Software engineer for Apple Computer, Inc.

Baxter, Bruce E ... 49
Aerospace engineer; interested in compiler writing and Apple systems software.

Bishop, Bob .. 124, 157
Senior member of the technical staff at Apple Computer, Inc., working on
research and development. Bishop is author of Applevision.

Bongers, Cornelis .. 89
Assistant professor of statistics at Erasmus University in Rotterdam, The
Netherlands.

Dombrowski, George .. 172
Research chemist; interested in the application of computer technology to the
science of chemistry.

Hertzfeld, Andrew ... 191
Employed at Apple Computer, Inc., since August 1979.

Hill, Alan ... 97, III
Apple owner and enthusiast since early 1978. He enjoys writing utility pro­
grams.

Kershner, Carl .. 177
Works in Laser Photochemistry and Isotope Separation at Monsanto Research
Corp. Kershner holds a Ph.D. in Chemistry.

Kovacs, Robert .. 22
Electro-optics engineer who views the computer as his most valuable
problem-solving tool. He has used micros, miDlS, and mainfames for
numerical simulation, parameter evaluation, control and automated text
applications.

Little, Gary .. 63, 84
Articled law student and Apple hobbyist. Past president and current treasurer
of Apples British Columbia Computer Society in Vancouver.

Lipson, Neil. ... 163
Software Chairman of International Apple Core, President of Philadelphia
Apple Club, and a partner in Progressive Software.

,

i

'l

1

i

'I
I

-
i

i

~
I

r
i

Author Index 215

Morris, Greg .. 78
Works for Abbott Coin Counter Co. designing microprocessor-based equip­
ment used in banks for bulk money counting.

Mottola, R.M .. 37, 194
Member of the Systems Staff at Cyberg Corp., a manufacturer of medical
instrumentation.

Moyer, LeRoy ... 67
Holds a Ph.D. in physics. Because of the usefulness of computers to physics,
he has programmed a variety of machines since 1961. Moyer's major project
on the Apple is a word processing application in Spanish.

Partyka, David .. 58
Works as a programmer on an IBM 3031 OS system for the May Department
Stores, Co.

Peterson, Craig.. 16
Numerical control engineer for his company which uses an Apple II.

Shryock, William M., Jr .. 156

Stein, Robert A., Jr ... 166
Systems engineer for NCR.

Suitor, Richard F ... 28, 146, 207
Suitor grew up expecting to be a physicist, but his mind was warped by early
exposure to the awesome collections of vacuum tubes and blinking lights that
evolved into the micros of today. In 1978 he obtained an Apple. Final
degeneration was immediate; having decided his case was chronic, he has
joined Software Resources of Cambridge, Massachusetts.

Tibbetts, Gregory L. ... 137
Manager of Technical Support Microsoft Consumer Products.

Wagner, Roger ... 52

Welch, Steven .. 181
Astronomer and electronic engineer working for NBI, a word processing firm
in Boulder, CO.

Williams, Richard ... 200
Graduated from U.C. Berkeley with a BSEE and went to work for Apple Com­
puter. Learned assembly language programming on the CDC 6400, then moved
to the 6502.

Zant, Robert F ... 73
Professor of information systems at North Texas State University. Zant has 17
years experience in computing as a programmer, analyst, educator, and
consultant.

,
216 Disk Information 1

i

i
I

~
DISK VOLUME 002

*A 005 MICRO ON THE APPLE 2 i
I

*B 004 BREAKER
*B 002 STEP-'!'RACE

i *B 002 STEP-TRACE. 800 *A 015 FNPLOTTER
*B 002 TRACER *1 011 COMPRESS
*B 003 PACK-LOAD *B 010 PICT COMP
*B 002 MEAN-14 *B 034 LADY BE GOOD
*B 002 SCREEN wRITE *1 016 LIFESAVER
*1 007 SCROLLER *B 003 LIFE
*B 002 SCROLL *1 004 APPLAYER MENU 1
*B 005 PAGE LIST *B 010 APPLAYER
*B 002 PAGE *1 004 BATTLE SCUNI:S
*B 002 HEX PRINTER *1 022 GALAC'I'I-CUBE i
*B 002 COM-VAR-I *A 007 COLOR GUN
*B 002 COM-VAR-A *B 003 CASSCS
*B 002 PRINT USING *1 005 DIRECTORY 'i
*A 007 SEARCH *A 005 BASIC TRANSFER
*B CO2 STRING SEARCH *A 010 BINARY TRANSFER
*A 008 NATRIX DEMO *A 014 THERMOMETER !
*B 008 tt.tATRICES *B C03 SYM-KIM
*A C09 AMPERSORT DEMO *B 002 ERROR
*B 005 At-'JPERSORT *A 007 FLOATING POINT
*1 009 TRACE LIST *B OC2 NEW KEYS
*B 003 TRACE INTERRUPT *B 002 CONVERT
*1 003 TRACE TEST *1 006 BROWN/WHITE i

i

i

Warranty
MICRO on the Apple

Although we've worked to create as perfect a diskette as possi­
ble, including hiring a reputable, reliable disk manufacturer to
copy the diskettes, there is no guarantee that this diskette is
error-free.

To cover the few instances of defective diskettes, we are
providing the following warranty (this card must be filled out
and returned to MICRO INK, Inc., immediately after purchase):

If within one month of purchase you find your diskette is
defective, return the diskette to MICRO, along with $1.00 to
cover shipping and handling charges.

If after one month of purchase, but within no time limit,
this diskette proves defective, return it to MICRO with $6.00
to cover replacement cost, shipping and handling.

Your date of purchase must be validated by your dealer; if
purchased directly from MICRO, the valid date appears on this
card.

Defective diskettes must be returned to MICRO to enable
our quality assurance personnel to test and check the diskette.
We need to know what caused the defect to avoid similar prob­
lems in the future.

We recommend that you try LOADing or BLOADing each
program on the diskette immediately after purchase to ensure
that the diskette is not defective.

Signature Date of purchase (Volume 2)

Address (please print):

Name

Street

City State/Province/ Country Code

Other Products from MICRO
In addition to the MICRO on the Apple series, MICRO INK, Inc., pro­
duces several other products, including MICRO magazine, a monthly
journal which reports on new 6502/6809 microprocessor family appli­
cations, systems, and developments . Other books published include
the Best of MICRO series (anthologies of some of the best general­
interest articles from MICRO), and What's Where in the Apple, (a
detailed Atlas and memory map for the Apple II computer).

Ask your dealer for MICRO, or subscribe by completing this form:

Yearly Rates (U.S Dollars)

United States
Canada
Europe
Mexico, Central America

Middle East, North Africa
Central Africa

South America, South Africa
Far East, Australasia

MICRO Books
At Your Dealer

Best of MICRO, Vol. 1
Best of MICRO, Vol. 2
Best of MICRO, Vol. 3

What's Where in the Apple

MICRO on the Apple
(each volume)

Note: Circle desired item.

$ 6.00
8.00

10.00

14.95

24.00

Surface Air Mail

$24 .00 nla
27.00 nla
27.00 $42 .00

27 .00 48.00

27.00 72.00

Ordered by Mail
Surface Air Mail

$ 8.00
10.00
12.00

16.95

INo! U.S./Canadaj

$12.00
15 .00
18 .00

19.95

Subscription rates are subject to change without notice. These prices
are current as of January 1982.

o Check enclosed for $ _____ _
o Bill VISA
o Bill MasterCard

Signature

Please print

Name

Street

City

Card Number

StatelProvincel Country

Expires

Code

17(;8l0
'ltVII 'PJO~Swl e4J

179 'ON
~!wJed

o I 'ltd
e6e~sod 's'n
e~et:l ~ l n8

I II II I

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 60 CHELMSFORD, MA 01824

POSTAGE WILL BE PAID BY ADDRESSEE

IAlCRO'M
P. O. Box 6502
Chelmsford, MA 01824

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

17(;8l0 'ltVII 'PJO!sWle4:)
z;oS9 x08 'O'd

w,O'tJ~1V1

IAiCRO
helps
you look
inside ...

YES! I want to get the
most out of my 650216809 MICROcomputer

... The journal for the intelligent 650216809 computerist!
MICRO: the premier how-to magazine for
the serious user of all 6502 based systems
including the Apple, PET/ CBM, OSI,
Atari, AIM, SYM, KIM, and all 6809
based systems includ ing the T RS-80 Color
Computer

MICRO: the resource journal internation­
ally respected by professionals in business,
industry, and education

MICRO: helps you go beyond games and
"canned" programs to learn about the
inner workings of your machine

• Keeps you informed with up·to-the­
minute data on new products and
publicat ions
• Hardware catalog w ith organized,

concise description
• Software catalog in an easy to use

format
• New pub lications listed and

an notated
• Reviews and evaluations of

signif icant products

• In-depth hardware tutorials bring ex­
pert advice into your home or office

• Deta iled d iscussions of programming
languages deepen and broaden your
programming ability

• Complete program listings enable you
to increase your mach ine's capabilities

• Bibliography of 6502/ 6809 informa­
tion helps you f ind pertinent articles
in a timely manner

• Special monthly features with in-depth
treatment of one subject or system
increase your knowledge of t he field

• Balanced mix of machine-specific and
general articles for your everyday use
as well as long range reference needs

• I nformative advertising focused speci­
fically on 6502/6809 mach ines keeps
you abreast of latest developments

• Reader feedback puts you in touch
w ith other micro-computerists

• MICRO is the magazine you need to
get the most from your own 6502/
6809 system

Hardware

Circuitry

This is a gummed flap. Moisten and fo ld down to seal automatic envelope.

• A ll orde rs must be prepa id in
U.S. dollars or charged to your
Master Charge or Visa.

• Make checks and international
money orders payable t o MICRO.

VISA

Our toll free number is :

1-800-227-1617. Ext.564 . I

SUBSCRIBER ORDER FORM
Yearly Subscription (ISSN 027-9002) Save 20% off single issue price.

U.S. DOLLARS

SURFACE AIR MAIL
*United States

Canada
Europe

Mexico, Central America,
Mid East, No. & Central A f rica

So. America, Far East,
So. Africa, Australasia

*SPECIAL OFFER - save even
more - 30% off single issue price -
U.S. 2 yrs. $42.00.

$24.00 n/a

27.00 n/a
27.00 $42.00

27.00 48.00

27 .00 72.00

Un ited States

Canada
Europe

Mexico, Central America,
Mid East, No. & Central Africa
So. America, Far East,
So. Africa, Australasia

Circle desired item.
Total for Service Selected $ __

OKAY! I'm an intelligent MICROcomputer user:
Send me a subscription to MICRO.

j

Name ___________________________________ Occupation __ __

Address __ __

City ______________________ State: ______________________ Z ip ____________________________________ _

Country (if not U.S.) M.C.# V isa# __________________________________ _

Help MICRO bring you the kind of informat ion you want by comp leting this short questionnaire.

Microcomputers Owned/P lann ing to Buy : A IM APP LE ATARI K IM OSI PET SYM Other. ______________________________ _

Per iphera ls Owned/Planning to Buy: Memory Disk Video Printer Other: ___ _

Microcomputer Usage : Educational Business Personal Contro l Games Other: ___ _

Langu ages Used: Assem bl er Basic Forth Pasca l a ther: __ _

You r comments and/or suggest ions on MICRO: _ ___ _

•

1

-

Notice to Purchaser

When this book is purchased, this pocket should contain

A. One floppy disk entitled MICRO on the Apple,
Volume 2.

B. A warranty card pertaining to the disk.

If either is missing, make sure you ask the seller for a copy.

The publisher hereby grants the retail purchaser the right
to make one copy of the disk for back-up purposes only.
Any other copying of the disk violates the copyright laws
and is express ly forbidden.

MICRO on the Apple, Volume 2
Edited by Ford Cavallari

More Than 30 Programs on Diskette!

MICRO INK, Inc., publisher of MICRO, The 650216809 TournaI , now brings you
MICRO on the Apple, Volume 2, the second in a series of hooks containing applica­
tions for the Apple.

This volume, produced for the intermediate-to-advanced-Ievel user, provides you
with reference material, . advanced machine language routines, programming tech­
niques, graphics applications, and entertainment.

Chapter titles include Machine Language Aids, I/O Enhancements, Runtime
Utilities', Graphics and Games, Hardware, and Reference. These articles have been
updated by tbe MICRO staff, and authors when possible. The programs were tested
and entered on the diskette, which comes with the book (1 3-sector DOS 3.2 format).

About the Editor

Ford Cavallari received a degree in mathematics from Dartmouth . While there, he
made extensive use of the college's time-sharing and microcomputer facilities and
helped convert several important BASIC academic programs to run on Apple II
systems. His work with the Apple has ranged from large-scale computer architecture
projects to tiny, recreational graphics programs. He is a foundmg member of the
Computer Literacy Institute. As Apple Specialist on the staff of MICRO, The
650216809 TournaI, be serves as Editor of the MICRO on the Apple book senes.

$24.95 in U.S./Canada
(Including floppy disk,

ISSN 0275-3537,
ISBN 0-938222-06~6

MICRO INK, Inc.
P.O. Box 6502

Chelmsford, Massachusetts 01824

-

-
-
-
-

-
-
-
-
-
-
-
-
-
-

