on Appl

Volume INCLUDES
DISKETTE

MICRO on the Apple 3

Notice

Apple is a registered trademark of Apple Computer, Inc.
MICRO is a trademark of MICRO INK, Inc.

Preliminary article selection, Ford Cavallari; final article selection, program testing, de-
bugging, and modification, Tim Osborn; technical assistance, Darryl Wright; copyediting,
Marjorie Morse.

Cover Design and Graphics, Kate Winter

Every effort has been made to supply complete and accurate information. However, MICRO
INK, Inc., assumes no responsibility for its use, nor for infringements of patents or other
rights of third parties which would result.

Copyright© 1982 by MICRO INK, Inc.
P.O. Box 6502 {34 Chelmsford Street)
Chelmsford, Massachusetts 01824

All rights reserved. With the exception noted below, no part of this book or the accompany-
ing floppy disk may be stored in a retrieval system, transmitted, or reproduced in any way,
including but not limited to photocopy, photograph, magnetic or other record, without
prior agreement and written permission of the publisher.

To the extent that the contents of this book is replicated on the floppy disk enclosed with
the book, it may be stored for retrieval in an Apple Computer. The original retail purchaser
is permitted to make one (1) copy of the disk solely for his own back-up purposes.

MICRO on the Apple Series ISSN: 0275-3537

MICRO on the Apple Volume 3 ISBN: 0-938222-08-2
Printed in the United States of America
Printing 10 9 8 7 6 543 2 1

Floppy disk produced in the United States of America

-3

3

3

5 R B

0 I R

23

b

2y

3

MICRO on the Apple 3

Edited by the staff of
MICRO, The 6502/6809 Journal

MICRO INK
P.O. Box 6502
Chelmsford, Massachusetts 01824

SN BN ol Sl ol ol S o = SRl ol ol ol ol

e

)

Contents

INTRODUCTION
APPLESOFT AIDS

Applesoft Line Finder Routine 5
Peter |.G. Meyer

Amper-Search 9
Alan G. Hill

Applesoft Variable Lister 24
Richard Albright

MACHINE-LANGUAGE AIDS

37

Double Barrelled Disassembler 39
David L. Rosenberg

Cross Referencing 6502 Programs 48
Cornelis Bongers

A Fast Fractional Math Package for 6502
Microcomputers 65
Wes Huntress

Applesoft Error Messages from Machine Language
Steve Cochard

1I/0 ENHANCEMENTS

84

87

Serial Line Editor 89
Wes Huntress

Trick DOS 100
Sanford M. Mossberg

LACRAB 107
N.R. McBurney

GRAPHICS

125

Apple Color Filter 127
Stephen R. Berggren

True 3-D Images 131
Art Radcliffe

Apple Bits 136
Richard C. Vile

TUTORIAL/REFERENCE

155

Apple Byte Table 157
Kim G. Woodward

How Microsoft BASIC Works 164
Greg Paris

RECREATION/APPLICATIONS

175

A Simple Securities Manager 177
Ronald A. Guest

Solar System Simulation 186
Dave Partyka

Othello 196
Charles F. Taylor, Jr.

Musical Duets 201
Rick Brown

LANGUAGE INDEX
AUTHOR INDEX
DISK INFORMATION

215
216
218

)

S I R |

3

3

2

Introduction

MICRO Magazine is proud to present the third volume in our successful series,
MICRO on the Apple. The programs MICRO publishes for the Apple are con-
sistently among the best — programs that do interesting things in interesting ways
on one of the best microcomputers in the world. Some of the programs that appear
in this volume were originally published in MICRO Magazine; others are being
published now for the first time. All have been thoroughly tested and debugged.
Tim Osborn, our Apple expert, has spent many hours making sure that these pro-
grams are bug-free.

The programs in MICRO on the Apple, Volume 3, offer many hours of absorb-
ing instruction and entertainment for every programmer:

e a carefully selected mix of programming aids for Applesoft and
machine language

e impressive graphics programs
¢ invaluable reference articles
e [/0 enhancements
¢ games
Many of these programs, designed to be used as subroutines, speed up execu-

tion. Others add features to your Apple. All will improve your own programming
knowledge and ability.

Sl T R SR S S S R n I N N ol ST ol o

1

1

APPLESOFT AIDS

Applesoft Line Finder Routine
Peter |.G. Meyer

Amper-Search
Alan G. Hill

Applesoft Variable Lister
Richard Albright

24

Applesoft Aids

In this chapter we have included utilities to speed up execution and to help with
program development.

""Amper-Search,”’ by Alan Hill, will help speed up the task of searching a
string array for a specified character string. An added bonus is the &DEALLOC,
which will de-allocate a string or integer array. These two functions together will
greatly increase the speed and efficiency of programs that deal with array processing.

"‘Applesoft Line Finder Routine’’ by Peter Meyer will give the user a hex
dump of any Applesoft program line, allowing him to insert otherwise unavailable
characters into the program text. ''Variable Lister’’ could prove invaluable to
someone maintaining a complex program; it dumps all variable values at any
point requested without disturbing normal program execution. An added bonus is
a 6502 assembly version of the famous Shell-Metzner sort.

33y 3 3 3y 3 3

o

B I

3

Applesoft Line Finder
Routine

by Peter |.G. Meyer

This 55-byte machine-language program will display the
bytes constituting a specified line in an Applesoft
program. This program also demonstrates how you can
use the subroutines available in Applesoft and the
Apple Monitor.

The Applesoft Interpreter (at $D000-$F7FF) and the Apple Monitor ($F800-$FFFF)
contain many useful machine-language subroutines. One such subroutine,
FNDLIN (at $D61A), finds the location in memory of a given line of an Applesoft
program.

To see why you might wish to do this, consider the following simple prob-
lem: how do you print ‘APPLE][PLUS"’ from within a program? This is easily
reduced to two simpler problems: how to print ‘]’ and ‘‘['’? The former is
available on the Apple keyboard in the guise of shift-M, but you cannot enter the
latter from the keyboard. A solution is to include in your Applesoft program the
line PRINT ‘APPLE |Z PLUS'’, and then replace the hexadecimal number which
represents ‘Z' (namely, $5A) with the number which represents ‘[’ (namely, $5B).
This requires examination of the region of memory containing the tokenized form
of the PRINT statement, locating the $5A, and replacing it with $5B. In the case of
an Applesoft program composed of only a few lines, this can be done by direct in-
spection of memory using the Monitor. But, if your program has hundreds of
lines, then another method is called for.

Listing 1 is a short, machine-language program which is invoked (from BASIC
command mode) by a statement of the form

CALL LOCATION, LINE

6 Applesoft Aids

where LOCATION is the location (in decimal) of the machine-language routine (it
is relocatable), and LINE is the number of the line in the program to be searched
for. If the routine finds the line, then it will display the bytes constituting the line
and leave you in Monitor mode. (To return to BASIC command mode, enter
Control-C.) If there is no line of the specified number in the Applesoft program,
then the only result is a beep.

Suppose the routine is loaded or assembled at $300 (decimal 768), your Apple-
soft program is in RAM, and you wish to find the location of line 3370, which is,
say, PRINT "'|X"". If you enter CALL 768,3370 then the bytes constituting the line
will be displayed as follows:

xxxx- yy zz 2A 0D BA 22 5D 5A 22 00

where xxxx is the address of the start of the line, yy zz is the pointer to the begin-
ning of the next line (low-byte first), 2A 0D is the line number in hexadecimal
(low-byte first}, and 00 is the end-of-line token. The remaining five bytes are the
tokenized form of the statement PRINT '*|Z'’ (PRINT is represented by one byte:
BA). If, for example, the address of the line is $1A92 then (from Monitor mode)
you can enter:

1A99: 5B

which has the effect of replacing the byte ‘5A’ with the byte '5B’. If (after Control-
C-ing back to BASIC] the line is then LISTed, it will appear as PRINT "][’, and
will print accordingly.

For those readers without assemblers, the routine may be entered from
Monitor mode by typing in 300: 20 BE DE 20 OC (See listing 1 for the remain-
ing bytes.) Once entered, it may be saved to disk by entering BSAVE LINE
FINDER, A$300, L$37. To use it, BLOAD LINE FINDER and proceed as above.

Apart from the utility, this routine is interesting because it relies almost en-
tirely on subroutines in the Applesoft Interpreter and the Monitor, which is why it
is only 55 bytes long. The five Applesoft subroutines and three Monitor sub-
routines which are used are given in listing 1 along with their addresses.

The routine works as follows: after you enter CALL 768,3370, this statement
is placed in the buffer (at $200) and the zero page pointer TXTPTR is set to the first
byte (the token for CALL). Upon invocation of the routine at location 768,
TXTPTR is pointing to the comma, and the subroutine CHKCOM checks for this.
(If there is no comma, a syntax error message results.) The routine then gets the
line number using the subroutine LINGET, and places this (in hexadecimal form,
low byte first) at LINNUM. The subroutine FNDLIN picks up this number and
searches the Applesoft program for the line so numbered. If it does not find such a
line, it returns with the carry flag clear. In this case the routine sounds the bell and
returns to BASIC command mode.

3

B I

B R R D

3

I R

)

I -

Meyer Line Finder 7

If FNDLIN finds the line, then it returns with the carry flag set. It then
deposits the address of the line at LOWTR (low byte first, as usual). The routine
stores this address at A1, for later use by the subroutine XAM (eXAMine memory),
which will display the bytes constituting the line.

Having found the address of the beginning of the line, the subroutines REMN
and ADDON are used to find the address of the end. To use the subroutine REMN,
which searches from the byte pointed to by TXTPTR until it finds an end-of-line
token (00), the routine first sets TXTPTR to four places past the beginning of the
line. This action skips the link pointer and the line number, since the line number
may contain 00 (as in 0OA 00, representing 10), which would mislead REMN.
REMN is then invoked, and returns with the offset to the end-of-line in the Y
register. ADDON adds this offset to TXTPTR, so that TXTPTR is then pointing to
the end of the line. This address is stored at A2, and XAM is invoked to display the
bytes from Al to A2.

8

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0300
0300
0300
0300
0300
0300
0300
0300
D61A
D998
D9A6
DAOC
DEBE
0300
0300
0300
0300
0300
FDB3
FF3A
FF69
0300
0300
0300
0300
0300
003C
003E
0050
009B
00B8
0300
0300
0300
0303
0306
RAM

0309
030B
030E
0310
0312
0314
0316
0318
0319
031B
031D
031F
0321
0323
0326
0329
032B
032D
032F
0331
0334
0337

Applesoft Aids

20
20
20

BO
4C
AS

85
84
AS
18
69
85
AS
69
85
20
20
AS
A4

84
20
4c

BE
oc
1A

03
3a
9B
9c
3C
3D
9B

04
B8
9cC
00
B9
A6
98
B8
B9
3E
3F
B3
69

DE
DA
D6

FF

Do
D9

FD
FF

VOO VD WN-

;tiii****tt***tit****ii**

i LINE

:* COPYRIGMT (C) 1982
A MICRO INK, INC.
:* CHELMSFORD, MA 01824
:* ALL RIGHTS RESERVED

BY
P PETER MEYER

FINDER

* %k * ¥ % * * % * *

7
ekkhkhkhhhkhkhhhhhhrhhhhhdk

ORG
OBJ

o S6 Se se e

FNDLIN EQU
ADDON EQU
REMN EQU
LINGET EQU
CHKCOM EQU

$300
$800

APPLESOFT SUBROUTINES

$D61A
$D998
$D9A6
$DAOC
$DEBE

:MONITOR SUBROUTINES

XAM EQU
BELL EQU
MONZ EQU

$FDB3
SFF3A
$SFF69

;ZERO PAGE LOCATIONS

Al EPZ
A2 EPZ
LINNUM EPZ
LOWTR EPZ
TXTPTR EPZ

JSR
JSR
JSR

BCS
JMP
FOUND LDA
LDY
STA
STY
LDA
CLC
ADC
STA
LDA
ADC
STA
JSR
JSR
LDA
LDY
STA
STY
JSR
JMP
END

$3C
$3E
$50
$9B
$B8

CHKCOM
LINGET
FNDLIN

FOUND
BELL
LOWTR
LOWTR+1
Al

Al+l
LOWTR

#$04
TXTPTR
LOWTR+1
#$00
TXTPTR+1
REMN
ADDON
TXTPTR
TXTPTR+1
A2

A2+1
XaM
MONZ

;s RELOCATABLE

sCHECK FOR COMMA
:GET LINE NUMBER
;SEARCH FOR LINE IN BASIC PROG

;NOT FOUND
;STORE STARTING ADDRESS AT Al

;SET TXTPTR TO STARTING
; ADDRESS+4

;FIND END OF LINE
;SET TXTPTR TO END OF LINE
;STORE ENDING ADDRESS AT A2

:DISPLAY MEMORY FROM Al TO A2
sENTER MONITOR MODE

3

BN IR D T

3

-}

Amper-Search
by Alan G. Hill

High speed machine language search routine finds
character strings in BASIC arrays.

Amper-Search is a high-speed character search routine that will find and return the
subscripts of all occurrences of a specified character string in a target string array.
A search of a 2000 element array will take less than 1 second compared to about 90
seconds for an equivalent BASIC routine. Parameters are used to name the target
string array, define the character string, define the bounds of the search, and name
the variables to receive the subscripts and number of matches. An added bonus in
the Amper-Search code is another routine called RDEALLOC. This routine gives
your BASIC program the ability to de-allocate a string array or integer array when
it's no longer needed. &DEALLOC can be used with any Applesoft BASIC program.

Let’s look at the parameters and how they are passed between the Applesoft
program and Amper-Search. The general form is:

&S[EARCH](NAS,L,H,ST$,PL,PH,1% N %)
where:
[] bracket optional characters. The ''&S'’ are required characters.
NAS$ is the variable name of the single-dimensional string array to be searched.

L isavariable, constant, or expression specifying the value of the subscript of
NAS$ where the search is to begin; i.e. NA$(L).

H isavariable, constant, or expression specifying the value of the subscript of
NAS$ where the search is to end; i.e. NA$(H).

ST$ is the variable name of the simple string containing the ''search’’ characters.
A special case exists if the string contains a Control N character. See note 1.

PL is avariable, constant, or expression specifying the character position in the
NAS$(I) string where the search is to begin.

10

Applesoft Aids

PH is a variable, constant, or expression specifying the character position in the

1%

NAS$(I) string where the search is to end. PL and PH are equivalent to the
MIDS$ statement of the form: MID$(NAS$(I), PL,PH-PL +1).

is the name of the single-dimensional integer array into which the sub-
scripts of NA$ will be placed when a ‘‘match’’ is found. The first occurrence
will be placed in 1%(0). A special case exists if 1% is a simple variable rather
than an array variable. See note 5.

N% is the name of the simple integer variable into which the number of '‘matches’’

will be placed by Amper-Search. N% should be set to zero each time before
Amper-Search is invoked. Setting N% <0 is a special case. See note 6.

After Amper-Search is invoked, the elements of NA$ which match the ST$ string
may be listed with the statement: FOR I=0 TO N% —1: PRINT NAS$(I1%(I)}:
NEXT 1.

Notes

1. A match is defined as the consecutive occurrence of all characters in ST$ with

. Any valid variable name may be used as a parameter. An '' =

those in NA$(L) through NA$(H) and within the PL and PH character positions
of NAS$(I). A Control N character in the ST$ string is a wild card. It will match
any character in its corresponding NA$(I) position.

" will match
anything.

0 <L <H <maximum number of elements in NA$. Elements of NA$ can be
null strings.

. 1=PL=<PH<255. A PH>LEN [NA$(I}) is allowed and will ensure that the en-

tire NAS$(I) string is searched.

. 1% must be dimensioned large enough to hold all matches; i.e. DIM 1%(N%]).

Since you don’t know the number of matches before Amper-Search is invoked,
you have two alternatives. 1% can be dimensioned the same size as NAS, thus
assuring enough space to accommodate a complete match. This may waste
memory or require more memory than is available. A second alternative is to
first define 1% as a simple variable before invoking Amper-Search. In this
special case, Amper-Search will return the number of matches only. Your pro-
gram can then DIM I1%(N%), set N% =0, and re-invoke Amper-Search to
return the subscripts. Its speed makes this option practical even for large arrays
and will conserve memory by not allocating unused 1% elements.

. N% should be =0 prior to invoking Amper-Search. Set N% =0 if you want all

matches. If N% =0 upon return, there were no matches. Set N% = —1 if you
only want the first occurrence of a match. In this special case, N% will be —1
if there were no matches, or +1 if a match were found. The subscript of the
matching NA$ element will be found in 1%(0).

3y ¥ 3 3 3

3

S D I

3y & 3y ¥y ¥ 3 3 3 3

Hill Amper-Search 11

Note 5 described a method for allocating the minimum size for 1% that is
large enough to hold the maximum number of matches. You could ask, ‘'What if I
use &SEARCH iteratively with a different ST$ string each time that has more
matches than 1% can hold? Won't that cause a BAD SUBSCRIPT ERROR?'’ Yes it
will. Ideally, you would like to de-allocate 1% and re-DIMension it at the new
minimum size. The CLEAR command won't do the job because it will clear all
variables. Now you should see the utility of yet another Amper-library routine
called &DEALLOC which performs the needed function. The general form is:

&D[EALLOC] (A,B.N)

where A,B,N are the named variables of the integer and string arrays to be de-
allocated.

[] bracket optional characters. “&D"" are required.

For example: &D(1%) will de-allocate the 1% integer array, &D(XY$,K%) will de-
allocate the XY$ string array and the K% integer array.

To complete the de-allocation process, your program must follow the
&D(XY$) statement with an X=FRE(0) housekeeping statement to regain the
memory from character strings referred to only by the de-allocated string array.
&DEALLOC cannot be used to increase the size of an array while preserving the
current contents of the array.

Now let’s look at some simple examples created by running the program in
listing 1.

Listing 2 is a general BASIC demo you can experiment with to learn how
Amper-Search can be used.

Some of the routines in Amper-Search can be adapted for use in other Amper-
library machine language routines. The following routines may be useful:

GNAME retrieves the string or integer variable name from the '‘&'' parameter
list and places it in the NAME buffer in your machine language pro-
gram. The A register is returned with a "'$'’ or ''%’’ character.

INTE converts the positive ASCII variable name in NAME to Applesoft’s
2-character negative ASCII naming convention for integer variable
names. If the A register does not contain a ‘'%’’ upon entry, the carry
flag will be set upon return.

STRING performs the same function for string variable names as INTE does for
integer variables. The A register must contain a ''$'’ upon entry.

12 Applesoft Aids

FARRAY will search variable space for the array variable name contained in the
NAME buffer. If found, its address will be returned in the X and Y
registers. If not found, the carry flag will be set.

FSIMPL performs the same function for simple variables as FARRAY does for
array variables.

&DEALLOC also uses several of the above routines. Similar routines which
can be adapted reside somewhere in the Applesoft interpreter.

B I I

5

3

R I

S R I I .

-

b B

OOV D W

23
24

Hill Amper-Search

REM Akkkhhhhhhhhhhhkkhhkhkhkkk

REM * *
REM * AMPER-SEARCHY1 *
REM * ALAN G. HILL *
REM * *
REM * COPYRIGAT (C) 1982 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
REM * *
REM ***khkkhdhhhkdhhhhdhhhhkhn
REM

REM

JIMEM: 9 * 4096 + 2 * 256
DS = CH4R$ (4): PRINT D$"NOMONIC,I,O"

PRINT D$"BLOAD B.AMPER-SEARCH (48K)"

POKE 1013,76: POKE 1014,0: POKE 1015,146: REM 3F5:JMP $9200
DIM NAS(10),I%(10)

NA$(0) = "APPLE CORE"

NAS$(1) = "CRAB APPLE"

NAS$(2) = "APPLE&ORANGE"

NAS(3) = "APPLE/ORANGE"
LIST 18,23

100 REM FIND ALL OCCURRENCES OF 'APPLE’

101

N$ = 0:ST$ = "APPLE"

102 & SEARCH(NAS$,0,10,ST$,1,255,1%,N8%)

103 LIST 100,102: GOSUB 2000: GOSUB 3000
200 REM FIND 'APPLE' IN NAS(0)->NAS$(1) COLUMNS 1->5
201 N% = 0:ST$ = “"APPLE"

202 & SEARCH(NA$,0,1,ST$,1,5,1%,N%)

203 LIST 200,202: GOSUB 2000: GOSUB 3000
300 REM FIND 'APPLE ORANGE'

301 N§ = 0:ST$ = "APPLE" + CHRS (14) + "ORANGE"
302 & SEARC4(NAS$,0,3,ST$,1,255,1%,N%)

303 LIST 300,302: GOSUB 2000: GOSUB 3000
400 REM FIND 1ST ‘'ORANGE'

401 N = - 1:ST$ = "ORANGE"

402 & SEARC1(NAS$,0,3,ST$,1,255,1%,N%)

403 LIST 400,402: GOSUB 2000: GOSUB 3000
490 ST$ = “CRAB"

492 REM DYNAMICALLY ALLOCATE/DEALLOCATE M$%
495 FOR J =1 TO 2

500 N§ = 0:K% = 0

501 & SEARCH(NAS,0,3,ST$,1,255,K$,N%)

502 DIM M%(N%):N% =0

503 & SEARCH(NAS$,0,3,STS$,1,255,M%,N%)

504 LIST 490,530: GOSUB 2100: GOSUB 3000
510 & DEALLOC(M$)

520 ST$ = "APPLE"

530 NEXT J

600 REM FIND 'E' IN COLUMN 10

601 N§ = 0:ST$ = "E"

602 & SEARCH(NAS$,0,3,ST$,10,10,1I%,N%)

603 LIST 600,602: GOSUB 2000

700 END

2000 1IF N%
2005 FOR I

0 THEN PRINT "NONE FOUND": RETURN
0O TO N% -1

2010 4TAB 4: PRINT NAS(I®(I))
2020 NEXT I

2030 PRINT
2100 IF N%

RETURN
0 THEN PRINT "NONE FOUND": RETURN

1)

2105 PRINT

2110 FOR I = 0 TO N% - 1
2120 HTAB 4: PRINT NAS(M3(I))
2130 NEXT I

2140 PRINT

RETURN

3000 FOR I = 1 TO 5000: NEXT I: RETURN

]

13

14 Applesoft Aids

1 REM khkkdkkkkkhhkkkdkkhkkhkhkhdhhk
2 REM * *
3 REM * AMPER-SEARCH 2 *
4 REM * ALAN G. HILL *
S REM * *
6 REM * COPYRIGHT (C) 1982 *
7 REM * MICRO INK, INC. *
8 REM * CHELMSFORD, MA 01824 *
9 REM * ALL RIGHTS RESERVED *
10 REM * *
11 REM khkkkkkhkkhhkhkhhkhkkkhkhkhkhhhhd
12 REM

13 REM

1000 GOSUB 10000
1010 POKE 32,20: POKE 33,19: HOME : VTAB 5: PRINT "DO YOU WANT TO": PRINT
"SPECIFY SEARCH": PRINT "LIMITS(Y/N)?";: GET AS$: PRINT
1020 IF A$ < > "Y" THEN 1080
1030 VTAB 10: CALL - 868: INPUT "LOWER SUBSCRIPT:":L: IF L < O OR L > 2
T

1

1040 VTAB 12: CALL - 868: INPUT "UPPER SUBSCRIPT:

1

THEN PRINT B$: GOTO 1030
IFH < OORH > 2
OR H < L T™EN PRINT B$: GOTO 1040

1050 VTAB 14: CALL - 868: INPUT "LOWER COLUMN:";PL: IF PL < 1 OR PL > 2
55 THEN PRINT B$: GOTO 1050

1060 VTAB 16: CALL - 868: INPUT "UPPER COLUMN:";P4: IF PH < 1 OR P4 > 2
55 OR PH < PL TYEN PRINT B$: GOTO 1060

1065 VTAB 18: CALL - 868: PRINT "FIRST/ALL?";: GET AS$: PRINT : IF AS$ =
"F" THEN F§ = - 1

1070 GOTO 1120

1080 L = O0: REM START AT NAS$(0)

1090 H = I: REM SEARCH ALL

1100 PL = 1: REM START WIT4 1ST COLUMN
1110 P4 = 255: REM MAXIMUM COLUMNS

1115 F$ = 0: REM FIND ALL
1120 POKE 32,0: POKE 33,39: VTAB 23: CALL - 868

1130 1

NVERSE : PRINT "STRING:";: NORMAL : INPUT " ";ST$

1140 IF LEN (ST$) = O THEN END

1150 N%

= F¥%: REM INIT COUNTER

1160 REM INVOKE 'AMPER-SEARCH'

1170 &

SEARCH (NAS$,L,H4,STS,PL, P4, I%,N%)

1180 REM LIST FOUND STRINGS
1190 POKE 32,20: POKE 33,19: HOME

1200 1

F N¥ ¢ = 0 TMEN PRINT "NONE FOUND": GOTO 1120

1210 FOR I =0 TO N§ - 1

1220 VTAB I%(I) + 1: PRINT NAS(I%(I))
1230 NEXT I

1240 GOTO 1120

10000
10010
10015

REM HOUSEKEEPING
HIMEM: 9 * 4096 + 2 * 256
POKE 235,0

10020 D$ = CHRS (4)
10030 B$ = CHRS (7)

10040
10050

$
10060
10070
10080
10090
10100
10110 1
10120
10130
10140
10150 1
10160 I
10170
10180
10190
10200

PRINT D$"NOMONIC,I,0"
POKE 1013,76: POKE 1014,0: POKE 1015,146: REM SETUP 'kx' VECTOR AT
3F5 TO JMP $9200
TEXT : HOME : VTAB 10: HTAB 12: PRINT "AMPER-SEARCH DEMO"
HTAB 19: PRINT "BY": 4TAB 14: PRINT "ALAN G. 4ILL"
PRINT D$"BLOAD B.AMPER-SEARCH (48K)"
FOR I = 1 TO 1000: NEXT I
DIM NAS$(22),I%(22)
=0
REM INITIALIZE STRING ARRAY
READ NAS(I)

IF NA$(I) = "END" THEN 10160
=1+ 1: GOTO 10130

=1-1

HOME

FOR K =0 TO I
PRINT K; TAB(4);NAS$(K)
NEXT K

3

3

0 |

3

3

-4

8

4

S

.

.

m

Hill Amper-Search

10210 RETURN

11000 REM SAMPLE STRINGS

11010 REM NOTE: TIS DEMO IS SCREEN ORIENTED. DON'T PUT MORE THAN 22 IT
EMS IN THE DATA STATEMENT LIST.

11020 DATA APPLE II,APPLE SIDER,APPLE CIDER,APPLEVENTION,APPLE PI,APPLE
SAUCE, APPLE TREE,APPLE ORCHARD

11030 DATA APPLE II PLUS, APPLES & ORANGES ,APPLE BLOSSOM,CANDIED APPL
ES,APPLE/ORANGE, APPLESOFT, APPLEODIAN, APPLEVISION

11040 DATA APPLE STEM,APPLE CORE,APPLE-A-DAY,APPLE PIE,APPLE PEEL,APPLE
-OF-MY-EYE

11050 DATA END

15

0800 l 7*******i*k*t**ikki*it*t*

0800 2 g* *

0800 3 AMPER-SEARCH *

0800 4 ;* BY *

0800 5 ;% ALAN G. HILL *

0800 6 * *

0800 7 :* COPYRIGAT (C) 1982 *

0800 8 ;* MICRO INK, INC. *

0800 9 ;* CHELMSFORD, MA 01824 *

0800 10 :* ALL RIGITS RESERVED *

0800 11 ;* *

0800 12 7**t*****t***t***ﬁi******

0800 13

0800 14 ;

00D0 15 NAPTR EPZ $DO

00D2 16 SAPTR EPZ $D2

00D4 17 JAPTR EPZ $D4

00D6 18 NPT EPZ $D6

00D8 19 L EPZ $D8

00DA 20 H EPZ $DA

00DC 21 PL EPZ $DC

00DD 22 pd EPZ $DD

00DE 23 TEM6X EPZ $DE

00EO 24 NAPTd EPZ $EO

00E?2 25 CNAPTR EPZ S$E2

00E4 26 CSAPTR EP7Z $SE4

00E6 27 SAVEY EPZ $E6

00E7 28 PS EPZ $E7

00E8 29 LENNA EPZ $ES

00E9 30 LENSA EPZ $E9

00EA 31 SWITCH EPZ SEA

00EB 32 SIZE EPZ SEB

00D2 33 OFFSET EPZ $D2

00D4 34 Al EPZ $D4

0050 35 250 EPZ $50

00B7 36 CHRGOT EPZ $B7

00B1 37 CHRGET EPZ $Bl

FDED 38 cCouT EQU $FDED

0800 39 ROM RAM
E6F8 40 GETBYT EQU $E6F8 : 1LEEF
DEC9 41 SYNERR EQU $DEC9 ;16CC
DD67 42 FRMNUM EQU $DD67 ;1564
E752 43 GETADR EQU $E752 ;1F49
0800 44

9200 45 ORG $9200

9200 46 OBJ $800

9200 47

9200 48 ;PROCESS &

9200 48 49 BEGIN PHA

9201 20 35 95 50 JSR SAVEZP ;SAVE ZERO PG
9204 68 51 PLA

9205 A2 02 52 LDX #$02

9207 CA 53 CHRSFN DEX

9208 30 53 54 BMI ERRX

920A DD A9 95 55 CMP CHRTBL, X ;'S' OR 'D'
920D DO F8 56 BNE CHRSFN ; TRY AGAIN
920F 8A 57 TXA

9210 0A 58 ASL ; TIMES 2
9211 AA 59 TAX

9212 20 Bl 00 60 SRO2 JSR CHRGET ;NEXT CHAR
9215 FO 46 61 BEQ ERRX

9217 C9 28 62 CMP #$28 ;o (
9219 DO F7 63 BNE SRO2

16

921B
921E
921F
9222
9223
9224
9224
9224
9224
9227
922A
922D
922F
9231
9233
9236
9239
923C
923E
9240
9242
9244
9247
924A
924D
924F
9251
9253
9255
9258
9258
925D
925D
925D
925D
9260
9263
9263
9263
9263
9265
9263
ERL-TN
926C
926E
9271
9273
9275
9277
9278
927A
927D
927F
9281
9233
9286
9289
9288
928E
9291
9233
9296
9299
929B
923E
92A0
92A3
92A5
92a7
I2RA9
92AB
92AD
9289
9283

Applesoft Aids
BD A6 95 64
48 65
BD A5 95 66
48 67
60 68

69

70

71
20 22 94 72
20 61 94 73
20 78 94 74
BO 34 75
86 DO 76
84 D1 77
20 Bl 00 78
20 67 DD 79
20 52 E7 80
A5 50 81
85 D8 82
A5 51 83
A5 D9 84
20 Bl 00 85
20 67 DD 36
20 52 E7 87
A5 50 88
85 DA 89
A5 51 90
85 DB 91
20 22 94 92
20 61 94 93
90 1D 94

95

96

97
20 5A 95 98
4C C9 DE 99

100

101

102
A2 00 103
BD B 95 104
c9 co 105
RO R L 196
09 30 107
20 ED FD 108
EO OC 109
DO 02 110
A2 19 111
E8 112
DO EB 113
20 B2 94 114
BO E4 115
86 D2 116
84 D3 117
20 BL 00 118
20 F8 E6 119
86 DC 120
20 BL 00 121
20 F8 E6 122
86 DD 123
29 22 94 124
20 41 94 125
BO C2 126
20 78 94 127
90 09 128
20 B2 94 129
B0 BE 130
A9 FF 131
85 EB 132
86 D4 133
84 DS 134
20 22 94 135
20 41 94 136
BO A8 137

LDA
PHA
LDA
PHA
RTS

LOC+01,X ;JMP TO
;ROUTINE
Loc, X :VIA

s RTS

** AMPER-SEARCH **

SEARCH

JSR
JSR
JSR
BCS
STX
STY
JSR
JSR
JSR
LDA
STA
LDA
STA
JSR
JSR
JSR
LDA
STA
LDA
STA
JSR
JSR
BCC

GNAME ;GET NAME
STRING :CONVERT
FARRAY ;FIND NAME
ERRV

NAPTR ;NAS
NAPTR+01

CHRGET

FRMNUM

GETADR

250

L : LOWER SUBSC
250+01

L+01

CHRGET

FRMNUM

GETADR

250

H :UPPER SUBSC
250401

H+01

GNAME

STRING

SR20

** ERROR **

ERRX

ERRV
SR18

SR19

SR20

SR21

JSR
JMP

LDX
LDA
cMp
BEQ
ORA
JSR
CcPX
BNE
LDX
INX
BNE
JSR
BCS
STX
STY
JSR
JSR
STX
JSR
JSR
STX
JSR
JSR
BCS
JSR
BCC
JSR
BCS
LDA
STA
STX
STY
JSR
JSR
BCS

RSZP
SYNERR

** VARIABLE NOT FOUND MSG. **

#$00

MSG1, X : ERROR MSG
#sco ;@ DELIMITER
ERRX

#$80

couT

#$0C

SR19

#$19

SR18 ;ALWAYS

FSIMPL ;FIND NAME
ERRV

SAPTR ;STS

SAPTR+01

CHRGET

GETBYT

PL sFIRST POSITION
CHRGET

GETBYT

P4 :LAST POSITION
GNAME

INTE

ERRX

FARRAY

SR21

FSIMPL

ERRV

#SFF

SIZE :# OF HITS ONLY
JAPTR ;I8

JAPTR+01

GNAME

INTE

ERRX

=

]

92B5
9283
92BA
92BC
92BE
92Cc1
92C3
92C3
3223
92C3
J2C
92C3
92c4
92C6
92c8
92CA
92cCC
92CE
9200
9202
9204
9206
9208
92DA
92DC
92DE
92E0
92E3
92ES
92E7
92E9
92EB
92ED
92EF
92F2
92F4
92F6
92F6
92F7
9P
92F0n
92FD
92FF
9301
9303
9305
9337
9309
9307
93I0L
930F
9311
9313
9314
9316
9318
9318
I3
9318
931A
931C
931E
9320
9321
9323
9325
9326
9328
932a
932C
932D
932F
9331
9333

20
RO
35
84
20
D]

18
AS
69
85
AS
69
35
85
85
AS
85
A9
85
A9
35
20
86
84
A5
85
AS
85
20
86
34

18
AS
69
35
AS
69
35
AOQ
Bl
no

~
C

135
o3
Bl
35
c8
Bl

35 E

A0
Bl
FO
85
c8
Bl

c8
Bl
85
A4
88
Cc4
BO
A9
85

B2
A9
06
D7
Bl
3A

D4
07
D4
ns
00
05
DA
50
DB
St
03
54
00
55
E9
EO
El
D8
50
D9
51
E9
DO
Nt

D2
02
D2
n3
00
D3
00
n2
03
18
E9

00
DO
4E
E8

DO
E2

DO
E3
DC

E8
38
00
E7

94

924

94

94

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
L55
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

JSR FSIMPL
BCS ERRV
STX NPT
STY NPT+0l
JSR CHRGET
BNE ERRX

** SET UP POINTERS **

CLC

LDA JAPTR
ADC #$07
STA JAPTR
LDA JAPTR+01
ADC #$00
STA JAPTR+01
LDA H

STA 250

LDA H+01

STA Z50+401
LDA #$03

STA $54

LDA #$00
STA $55

JSR MPLY
STX NAPTY
STY NAPTH+01
LDA L

STA 250

LDA L+01

STA 250401
JSR MPLY
STX NAPTR
STY NAPTR+01

CcLC

LDA SAPTR

ADC #$02

STA SAPTR

LDA SAPTR+01

ADC #$00

STA SAPTR+01

LDY #$00

LDA (SAPTR),Y

BNE SR22

JMP RETURN
SR22 STA LENSA

INY

LDA (SAPTR),Y

STA CSAPTR

INY

LDA (SAPTR),Y

STA CSAPTR+N1

** START SEARCHE **

NEXT LDY #$00
LDA (NAPTR),Y
BEQ NEXTNA
STA LENNA
INY
LDA (NAPTR),Y
STA CNAPTR
INY
LDA (NAPTR),Y
STA CNAPTR+01
LDY PL
DEY
CPY LENNA
BCS NEXTNA
NXTNAC LDA #$00
STA PS

** FINISHED PARAMETERS **

Hill Amper-Search

s N$

1 1%

;NAS(H)

iNAS(L)

;STS

:NULL

:SAVE
: ADDRESS

sNULL
;LEN(NAS())

sCURRENT POSITION

17

18

9335
9337
9339
933A
933C
933E
9340
9342
9344
9346
9348
934A
934cC
934C
934cC
934C
934E
9350
9351
9353
9355
9357
9359
9358
935D
935F
9361

9363
9364
9366
9368
936A
936C
936D
936F
9371

9373
9375
9377
9379
937B
937D
937F

2380

9382

9384
9386

9388
938A
938D
938D
938D
938D
938F
9391

9393
9395
9397
9398
939a
939C
939D
939F
93al

93A3
93A5
93A7
93a9
93AB
93AC
93AE
93B0O
93B2

Applesoft Aids
85 EA 212
Bl E2 213
c8 214
84 E6 215
A4 E7 216
Dl E4 217
FO OA 218
Bl E4 219
c9 30 220
FO 45 221
C9 OE 222
DO 11 223

224

225

226
A9 FF 227
85 EA 228
cs 229
ca E9 230
FO 38 231
E6 E7 232
FO 13 233
A4 E6 234
DO DA 235
A4 =6 236
24 EA 237
10 01 238
88 239
c4 ES 240
BO 04 241
ca DD 242
90 c5 243
18 244
45 DO 245
69 03 246
85 DO 247
AS D1 248
69 00 249
85 D1 250
£6 D3 251
DO 02 252
E6 D9 253
38 256
AS EO 257
E5 DO 258
A5 El 259
E5 D1 260
BO 8E 261
4C 1E 94 262

263

264

265
24 EB 266
30 18 267
A0 00 268
A5 D9 269
91 D4 270
c8 271
A5 D8 272
91 D4 273
18 274
A5 D4 275
69 02 276
85 D4 277
A5 D5 278
69 00 279
85 DS 280
AQ 03 281
18 282
Bl D6 283
69 01 284
91 D6 285
88 286

CONT

STA
LDA
INY
STY
LDY
cMP
BEQ
LDA
cMe
BEQ
CMP
BNE

SWITCH
(CNAPTR) ,Y

SAVEY
PS

(CSAPTR) , Y

SR25 ; POSSIBLE MATCH
(CSAPTR),Y

#$3D :MATCH ANYTiING
MATCH

#SOE ;CNTL N

SR26 ;NOT WILD CARD

** POSSIBLE MATCH **

SR25

SR26
SR28

NEXTNA

SR33

LDA
STA
INY
CPY
BEQ
INC
BEQ
LDY
BNE
LDY
BIT
BPL
DEY
cpy
BCS
CPY
BCC
CLC
LDA
ADC
STA
LDa
ADC
STA
INC
BNE
INC
SEC
LDA
SBC
LDA
SBC
BCS
JMP

** FOUND A

MATCH

SZONLY

BIT
BMI
LDY
LDA
STA
INY
LDA
STA
CLC
LDA
ADC
STA
LDA
ADC

TA

#SFF
SWITCH

LENSA ;AT END?

MATCH ;IT'S A MATCH!
PS

NEXTNA

SAVEY

CONT 7 ALWAYS

SAVEY

SWITCH

SR28

LENNA ;AT END?

NEXTNA ;BR YES

PH :LAST POSTTION

NXTNAC sNEXT CHARACTER
sNEXT NAS([)

NAPTR

#$03

NAPTR

NAPTR+01

#$00

NAPTR+01

L

SR33

L+01

NAPTH
NAPTR

NAPTH+01

NAPTR+01

NEXT

RETURN ;AT NAS(H)

MATCY **

SIZE

SZONLY ; # MATCYES ONLY
#$00

L+01 1 SUBSCRIPT
(JAPTR) ,Y

L
(JAPTR) ,Y

JAPTR
#$02
JAPTR
JAPTR+01
#S00
JAPTR+01

S
LDY #$03

CLC
LDA
ADC
STA
DEY

(NPT),Y
#$01 sNE=N3+1
(NPT),Y

2y .y oy 3 3 3

A

93B3
93B5
9387
93B9
93BB
93BE
93Co
93C2
93C3
93CS
93C7
93C7
93C7
93C7
93CA
93CDh
93D0
9300
93D0
93D0
93D3
93D5
93D7
93DA
93DC
93DF
93El
93E4
93E6
93ES8
93EA
93EC
93EE
93F0
93F1
93F3
93F5
93F6
93F8
93FA
93FC
93FE
9400
9402
9405
92406
9408
940A
940C
940E
9410
9412
9415
9417
9419
941C
941E
941E
941E
941E
9421
9422
9422
9422
9422
9422
9422
9422
9422
9424
9427
9429
942B
942D

Bl
30
69
91
4C
A9
21
c8
A9
91

ac
ac
ac

20
co9
FO
20
DO
20
BO
20
BO
86
84
A0
Bl
85
c8
Bl
85
18
AS
65
85
A5
65
85
20
38
AS
ES
85
A5
ES
85
20
co
DO
20
DO

20
60

A2
20
[e3°]
FO
[o°]
FO

Dé
07
00
D6
6C
00
D6

01l
Dé

1E
5D
63

22
24
05
41
03
61
E9
78
E7
DO
D1
02
DO
D2

DO
D3

D2
DO
D4
D3
D1
D5
18

6D
D2
6D
6E
D3
6E
B7
29
B7
Bl
AC

5A

00
Bl
2C
11
29
oD

93

94
92
92

924

94

94

94

95

00

00

95

00

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

ONLY1

:
H
:

(NPT),Y
ONLY1
#$00
(NPT),Y
NEXTNA
#$00
(NPT),Y

LDA
BMI
ADC
STA
JMP
LDA
STA
INY
LDA
STA

#5301
(NPT),Y

** FINISHED AMPER-SEARCH **

JMP RETURN
ERRXX JMP ERRX
JMP ERRV

ERRVX

:

DEALLO

RES0
RES5S

T se se ne

e se we e v me e

GNAME
GRO1

ETURN

** DEALLOCATE **

JSR
cMP
BEQ
JSR
BNE
JSR
BCS

GNAME
#$24

RES0

INTE

RESS
STRING
ERRXX

JSR FARRAY
BCS ERRVX

STX NAPTR

STY NAPTR+01
LDY #$02

LDA (NAPTR),Y
STA OFFSET
INY

LDA (NAPTR),Y
STA OFFSET+01
CcIC

LDA OFFSET
ADC NAPTR

STA Al

LDA OFFSET+01
ADC NAPTR+01
STA Al+01

JSR MOVE

SEC
LDA
SBC
STA
LDA
SBC OFFSET+01
STA $6E

JSR CHRGOT
CMP #$29

BNE DEALLO
JSR CHRGET
BNE ERRXX

$6D
OFFSET

$6D
$6E

** FINISHED **

JSR RSZP
RTS

Hill Amper-Search

: 1ST OCCURRENCE

N%=1

GET NAME
$

;%
; ALWAYS

;NAS

;MOVE VARIABLES

)
NEXT VAR

: RESTORE PAGEO

dhhkkhhkhkhkhdkdkhhhkhdhhhhdhhhhkdhddi

SUBROUTINES

I 2222222222222 22222222 22 a2l

** GET VARIABLE NAME **

LDX #$00
JSR CHRGET
CMP #$2C
BEQ GRO3
CMP #$29
BEQ GRO3

19

20

942F
9432
9433
9435
9437
9438
9439
943C
943D
9440
9441
9441
9441
9441
9443
9445
9448
944n
944cC
944E
9450
9452
9454
9457
945A
945B
945D
945E
945F
9460
9461
9461

9461

9461

9463
9465
9468
946A
946C
946E
9471
9474
9475
9476
9477
9478
9478
9478
9478
9478
947A
947C
947E
9480
9482
9484
9487
9489
948A
948C
948F
9491

9492
9494
9496
9498
9499
949a
949C
949E
94A0
94A1
94A3
94A5
94A7

Applesoft Aids

9D B5 95 361

E8 362
EO 10 363
DO ED 364
68 365
68 366
4C 5D 92 367
CA 368
BD B5 95 369
60 370

371

372

373
Cc9 25 374
DO 1A 375
8D B7 95 376
EO 01 377
DO 04 378
A9 80 379
DO 07 380
A2 01 381
A9 80 382
1D B5 95 383
9D B5 95 384
CA 385
10 F5 386
18 387
60 388
38 389
60 390

391

392

393
Cc9 24 394
DO 11 395
8D B7 95 396
A9 80 397
EO 01 398
FO 03 399

0D B6 95 400

8D B6 95 401
18 402
60 403
38 404
60 405

406

407

408

409
A5 6B 410
85 DE 411
A5 6C 412
85 DF 413
A0 00 414
Bl DE 415
CD B5 95 416
DO 08 417
cs 418
Bl DE 419
CD B6 95 420
FO 1B 421
18 422
AO0 02 423
Bl DE 424
65 DE 425
48 426
c8 427
Bl DE 428
65 DF 429
85 DF 430
68 431
85 DE 432
C5 6D 433
A5 DF 434
E5 6E 435

GRO3

INTE

GR10
GR12

GR14

ERRI

STA
INX
CPX
BNE
PLA
PLA
JMP
DEX
LDA
RTS

** INTEGER

CMP
BNE
STA
CPX
BNE
LDA
BNE
LDX
LDA
ORA
STA
DEX
BPL
CLC
RTS
SEC
RTS

NAME, X

#$10
GRO1

ERRX

NAME, X

NAME **

#825
ERRI
NAME+02
#s01
GR10
#$80
GR14
#$01
#$80
NAME, X
NAME, X

GR12

** STRING NAME **

STRING

GR18

ERRS

** FIND ARRAY NAME **
** IN VARIABLE SPACE **

FARRAY

F02

F04

CMP
BNE
STA
LDA
CPX
BEQ
ORA
STA
CLC
RTS
SEC
RTS

LDA
STA
LDA
STA
LDY
LDA
CMP
BNE
INY
LDA
CMP
BEQ
CLC
LDY
LDA
ADC
PHA
INY
LDA
ADC
STA
PLA
STA
CMP
LDA
SBC

#$24
ERRS
NAME+02
#$80
#$01
GR18
NAME+01
NAME+01

$6B

TEM6X

$6C
TEM6X+01
#$00
(TEM6X),Y
NAME

FO4

(TEM6X) ,Y
NAME+01
FOUND

#502
(TEM6X) ,Y
TEM6X

(TEM6X) ,Y
TEM6X+01
TEM6X+01

TEM6X
$6D
TEM6X+01
$6E

:SAVE NAME

;16 IS ENOUGH

:POP STACK

: $OR &

1%

:NOT %

: SAVE

: NAME

; IN

: APPLESOFT
; FORMAT

;CLEAR ERR

;SET ERR

:SAVE
:NAME

;SET ERR

11ST CHARACTER

1 2ND CHARACTER

: LOOK AT
:NEXT NAME

1

B S B

3

94A9
94AB
94AC
94AC
94AE
94B0
9481
94B2
94B2
94B2
94B2
94B2
94B4
94B6
9488
94BA
94BC
94BE
94C1
94C3
94C4
94C6
94C9
94CB
94ccC
94CE
94D0
94D2
94D4
94D6
94D8
94DA
94DC
94DE
94E0
94E2
94E3
94E3
94E5
94E7
94E8
94E9
94E9
94E9
94E9
94EA
94EC
94EE
94F0
94F2
94F4
94F6
94F6
94F6
94F6
94F8
94FA
94FB
94FD
94FE
9500
9502
9504
9506
9507
9509
950B
950D
950E
9510
9511
9513
9515
9517

90
60

A6
A4
18
60

AS
85
AS
85
AO
Bl
CcD
DO
cs
Bl
CD
FO
18
AS
69
85
AS

85
a5
Cc5
a5
ES
90
60

A6

18
60

18
AS
69
85
AS
69
85

A0
AS
4n
90
18
A2
B5
75
95
E8
DO
A2
76
CA
10
88
DO
A6
A4
60

D5

DE
DF

69
DE
6A

00
DE

08
DE
18

DE
07
DE
DF
00
DF
DE
6D
DF
6E
D8

DE

DO
07
52
D1
00
53

10
50

ocC

FE
54
56
54

F7
03
50

FB
ES

50
51

95

95

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

FOUND

T e ~e e se

FS2

Fs4

FOUND

e e e

PLY

* %

MUL2

MUL3

MUL4
MULS

BCC
RTS

LDX
LDY
CLC
RTS

SIMPL LDA

STA

Hill Amper-Search

F02 : TRY NEXT ONE
:NOT FOUND

TEM6X ;RTN WITH
TEM6X+01 ; ADDRESS

** FIND SIMPLE NAME **
** IN VARIABLE SPACE **

$69
TEM6X

LDA $6

STA
LDY
LDA
CMP
BNE
INY
LDA
CMP
BEQ
CLC
LDA
ADC
STA
LDA
ADC
STA
LDA
CMP
LDA
SBC
BCC
RTS

S LDX
LDY
CLC
RTS

CLC
LDA
ADC
STA
LDA
ADC
STA

A
TEM6X+01
#$00
(TEM6X) ,Y
NAME :1ST CHARACTER
Fs4

(TEM6X) ,Y
NAME+01 ;2ND CHARACTER
FOUNDS
; TRY NEXT ONE
TEM6X
#$07 ; DISPLACEMENT
TEM6X
TEM6X+01
#$00
TEM6X+01
TEM6X
$6D ;AT END?
TEM6X+01
S6E
FS2 :NEXT ONE
;NOT FOUND

TEM6X sRTN WITH
TEM6X+01 :ADDRESS

** MULTIPLY ROUTINE **

NAPTR
#$07

$52
NAPTR+01
#$00

$53

FROM 'RED' MANUAL **

LDY
LDA
LSR
BCC
CLC
LDX
LDA
ADC
STA
INX
BNE
LDX
ROR
DEX
BPL
DEY
BNE
LDX
LDY
RTS

#$10
$50

MUL4

#$FE

$54,X
$56,X
$54,X

MUL3
#$03
$50,X

MULS

MUL2
Z50

Z250+01

21

22

9518
9518
9518
9518
951A
951C
951E
9520
9522
9524
9526
9528
952a
952C
952E
9530
9532
9534
9535
9535
9535
9535
9535
9537
9539
953C
953D
953F
9541
9543
9545
9547
954A
954B
954D
954F
9551
9553
9556
9557
9559
955A
955a
955A
955A
955A
955C
955F
9561
9562
9564
9566
9568
956B
956D
956E
9570
9572

9573
9573

9573

9573

9576
9579

957C
957F
9582
9585
9588
958B
958E
9591
9594
9597
959a

Applesoft Aids
510
511
512
A0 00 513
Bl D4 514
91 DO 515
E6 DO 516
DO 02 517
E6 D1 518
AS D4 519
c5 6D 520
A5 D5 521
E5 6E 522
E6 D4 523
DO 02 524
E6 D5 525
90 E6 526
60 527
528
529
530
531
A2 00 532
BS DO 533
9D D6 95 534
E8 535
EO 20 536
DO F6 537
A2 00 538
86 EB 539
B5 50 540
9D DO 95 541
E8 542
EO 06 543
DO F6 544
A2 OF 545
A9 20 546
9D B5 95 547
ca 548
10 FA 549
60 550
551
552
553
554
A2 00 555
BD D6 95 556
95 DO 557
E8 558
EO 20 559
DO F6é 560
A2 00 561
BD DO 95 562
95 50 563
E8 564
EO 06 565
DO F6 566
60 567
568
569
570
cl1cb DO 571
C5 D2 AD
p3 C5 C1
D2 C3 c8
clcccr 572
CE AO C7
AE AO C8
c9 cc cc
C3 CF CD 573
CD C5 D2
c3 c9 c1
CcC A0 D2
c9 c7 c8
D4 D3 AO

H
b

MOVE
MVO1

NXTA1l

MVO02

o = ne we

SAVEZP
SV02

SV04

CLEAR

o e o e

RSZP
RS02

RS04

LDY
LDA
STA
INC
BNE
INC
LDA
CMP
LDA
SBC
INC
BNE
INC
BCC
RTS

LDX
LDA
STA
INX
CPX
BNE
LDX
STX
LDA
STA
INX
CPX
BNE
LDX
LDA
STA
DEX
BPL
RTS

** RESTORE
** PAGE SPACE **

LDX
LDA
STA
INX
CPX
BNE
LDX
LDA
STA
INX
CPX
BNE
RTS

** MOVE VARIABLES **

#$00
(A1) ,Y
(NAPTR) ,Y
NAPTR
NXTAL
NAPTR+01
Al

$6D
Al+01
$6E

Al

MVO02
Al+01
MVOl

** SAVE ZERO **
** PAGE SPACE **

#$00
NAPTR, X
ZPSV,X

#$20
SV02
#$00
SIZE
$50,X
SV50,X

#$06
SV04
#SOF
#$20
NAME, X

CLEAR

ZERO **

#$00
ZPSV,X
NAPTR, X

#$20
RS02
#$00
SV50,X
$50,X

#$06
RS04

** DATA STORAGE **

;NEXT ONE

; SAVE
;32 SPOTS

;s INIT
;ALSO $50, $55

;CLEAR
;NAME AREA

HEX C1CDDOC5D2ADD3C5C1D2C3C8

HEX ClCCC1CEAOC7AEAOC8C9CCCC

4EX C3CFCDCDCS5D2C3C9C1CCAOD2C9C7C8D4D3A0

3

3y 8 3

B e

3

(o

959D D2 C5
95A0 C5 D2
95A3 C5 C4
95A5 CF 93
95A7 23 92
95A9 44
95AA 53
95AB 8D
95AC D6 Cl
95AF C9 Cl
95B2 CC C5
95B5 AO AO
95B8 AO AO
95BB A0 AO
95BE AO AO
95C1 AO AO
95C4 AO
95C5 8D
95C6 CE CF
95C9 A0 C6
95CC D5 CE
95CF CO
95D0 AO AO
95D3 AO AO
95D6 AO
95D7

D3
Dé

D2
c2
AO
a0
AO
A0
AO
AO

D4
CF
c4

AO
AO

*%**** END OF ASSEMBLY

SYMBOL TABLE SORTED ALPHABETICALLY

Al
CHRTBL
CSAPTR
ERRVX
FARRAY
FS4
GRO1
GR18
LENNA
MPLY
MULS
NAPTR
NXTNAC
PS
RS04
SEARCH
SR20
SR28
SV50
250

00D4
95A9
00OE4
93CD
9478
94CB
9424
9471
00ES8
94E9
950B
00DO
9331
00E7
9568
9224
927A
9364
95D0
0050

SYMBOL TABLE SORTED BY ADDRESS

250
OFFSET
H
CNAPTR
LENSA
SRO2
SR19
NXTNAC
NEXTNA
ERRXX
RETURN
GR10
GR18
FOUND
MPLY
MOVE
SV02
RS04
SV50
GETADR

0050
00D2
00DA
O0E2
00E9
9212
9277
9331
936C
93CA
941E
9450
9471
94AC
94E9
9518
9537
9568
95D0
E752

9207
FDED
9263
9491
94BA
9422
9457
00D8
9518
9509
O0EO
9524
00DC
955C
9535
9277
935D
9545
OODE

00D2
00D8
00EO
OOE8
9207
9265
9318
9364
93BE
93DF
9441
9461
9491
94E3
950B
9535
955C
95B5
E6F8

Hill Amper-Search
574 HEX D2C5D3C5D2D6C5C4
575 LOC HEX CF93 : DEALLOC-1
576 HEX 2392 : SEARCH -1
577 CHRTBL HEX 44 iD
578 HEX 53 :S
579 MSGl1 HEX 8D
580 4EX D6C1D2C9C1C2CCC5A0
581 NAME 4EX AOAOAOAOAOAOAOAOAOAOAOAOAOAOAOAO
582 HEX 8D
583 HEX CECFD4AOC6CFD5CEC4
584 HEX CO
585 SV50 HEX AOAOAOAOAOAQ
586 ZPSV HEX AO : $20 SPACES
587 END
BEGIN 9200 CHRGET O00Bl CHRGOT 00B7 CHRSFN
CLEAR 9553 CNAPTR O0E2 CONT 9337 COUT
DEALLO 93D0 ERRI 945F ERRS 9476 ERRV
ERRX 925D ERRXX 93CA FO02 9480 FO04
FOUND 94AC FOUNDS 94E3 FRMNUM DD67 FS2
FSIMPL 94B2 GETADR E752 GETBYT [E6F8 GNAME
GRO3 943C GR10 9450 GR12 9452 GR14
q 00DA INTE 9441 JAPTR 00D4 L
LENSA 00E9 LOC 95A5 MATCH 938D MOVE
MSG1 95AB MUL2 94F8 MUL3 9500 MUL4
MVOL 951A MVO2 9532 NAME 95B5 NAPTH
NEXT 9318 NEXTNA 936C NPT 00D6 NXTAL
OFFSET 00D2 ONLY1 93BE P4 00DD PL
RE50 93DC RES5 93DF RETURN 941E RS02
RSZP 955A SAPTR 00D2 SAVEY O0E6 SAVEZP
SIZE 00EB SRO2 9212 SR18 9265 SR19
SR21 92A9 SR22 930C SR25 934C SR26
SR33 937F STRING 9461 SVO02 9537 sSV04
SWITCH OOEA SYNERR DEC9 SZONLY 93A9 TEM6X
ZPSV 95D6
CHRGET O0OBl CHRGOT 00B7 NAPTR 00DO SAPTR
JAPTR 00D4 Al 00D4 NPT 00D6 L
PL 00DC PH 00DD TEM6X OODE NAPTH
CSAPTR OOE4 SAVEY 00E6 PS 00E7 LENNA
SWITCH OOEA SIZE O0EB BEGIN 9200 CHRSFN
SEARCH 9224 ERRX 925D ERRV 9263 SR18
SR20 927A SR21 92A9 SR22 930C NEXT
CONT 9337 SR25 934C SR26 935D SR28
SR33 937F MATCH 938D SZONLY 93A9 ONLY1
ERRVX 93CD DEALLO 93D0 RE50 93DC RES5
GNAME 9422 GRO1 9424 GRO3 943C INTE
GR12 9452 GR14 9457 ERRI 945F STRING
ERRS 9476 FARRAY 9478 FO02 9480 FO04
FSIMPL 94B2 FS2 94BA FS4 94CB FOUNDS
MUL2 94F8 MUL3 9500 MUL4 9509 MULS
MVO1 951A NXTAL 9524 MVO2 9532 SAVEZP
SV04 9545 CLEAR 9553 RSZP 955A RS02
Loc 95A5 CHRTBL 95A9 MSGl 95AB NAME
ZPSV 95D6 FRMNUM DD67 SYNERR DEC9 GETBYT
cour FDED

23

Applesoft
Variable Lister
by Richard Albright

The ability to dump the values of all variables can be
immensely helpful in Applesoft program development.
The Applesoft Variable Lister provides this ability and
can be used with any program, located anywhere in
memory.

This Lister may be attached to any Applesoft program by simply merging its
Applesoft subroutine with the main program. This can be accomplished using the
standard Apple RENUMBER program. Any unused space in which the 71 lines will
fit without affecting the normal operation of the program will do, but the end of
the program is the recommended location.

Once installed within the program, the Lister can be invoked like any Apple-
soft subroutine; that is, by means of a GOSUB n statement where n is the number
of the first line of the subroutine within the program. This GOSUB can be issued
by the main program or from the keyboard.

The Lister will operate under both ROM and RAM Applesoft, but requires the
use of a disk drive. The disk drive last accessed before the Lister was invoked must
contain a diskette on which the Lister's two machine language routines are stored
under the names SHELL-METZNER SORT and APPLESOFT VARIABLE LISTER
OBJ. In addition, one file buffer must be available.

Using the Lister

The output from the Lister will appear on both a printer and the screen if the
printer is open at the time the Lister is invoked. Otherwise, the output goes to the
screen only. The output format for the printer is slightly different from the screen
format.

3

_J

3

Albright Variable Lister 25

Figure 1 is an example of the printed output format. User responses to
prompts have been underlined. When the Lister is invoked, it first queries you for

ALPHA SORT, MEMORY SORT OR _Q__UlT?

with the double-underlined letters appearing in inverse on the screen. A ‘Q’
response at this point simply terminates the Lister with no further ado. An ‘A’
response results in an alphabetical listing of variables while an ‘M’ response will
cause variables to be listed in the order stored. After either an 'A’ or an ‘M’
response, the disk drive will activate briefly while a temporary file is created.
(More on this later.)

Next, the Lister asks if you would like to display

VALUES OR LOCATIONS?

A 'V’ response will give you the current value for each simple variable (as shown
in figure 1); an ‘'L’ response produces a display of locations at which the values are
stored in memory.

At this point the disk drive will again activate while the APPLESOFT VARI-
ABLE LISTER OBJ and (if ALPHA SORT has been selected) the SHELL-METZNER
SORT files are read and another temporary file is created. If sorting is performed, a

SORTING VARIABLE NAMES . . .

message is displayed while the names are being sorted. Usually the sorting process
takes only a few seconds.

After a slight pause, the first page of variables will be displayed (and printed if
the printer is on). A two-column format is used for all combinations of display op-
tions. Numeric values are displayed to full precision, but strings longer than 14
characters are truncated. Forty variables appear on a full page. The message

HIT SPACE BAR TO CONTINUE; ‘ESC’ TO QUIT

appears on the screen (not on the printer) after each page. Pressing the ESC key
results in the termination of the Lister (after some more disk activity). Pressing
the space bar, on the other hand, causes the next page of simple variables to be
displayed. If all simple variables have been displayed, the first page of array
variables is produced. Notice that array variable values cannot be displayed; only
the location of the start of each array is provided — even if VALUES is the selected
display mode.

Following the last array page, the Lister is terminated by pressing either the
space bar or the ESC key. At this point the disk drive will again briefly activate. If
the Lister was invoked from the keyboard, an error message will be encountered
and can be ignored. If invoked from the main program, execution continues nor-
mally with the statement following the GOSUB.

26 Applesoft Aids

Var

B1$
B2$
BS$
CA$
CL$
CR$

RT%

TS$
UN

w2$
XR%
zZ

Var

CT
DT$
QC
R $

Figure 1: Example of Printed Output

APPLESOFT VARIABLE LISTER
ALPHA SORT, MEMORY SORT OR QUIT? A

VALUES OR LOCATIONS? V.
SORTING VARIABLE NAMES...

Simple Variables; Alpha Order

Value

[
3

99
99
12
9

12

0

10

OPEN SURVEY C
OPEN SURVEY T
OPEN INTERVIE
OPEN SURVEY T
0

1

1

0

READ SURVEY C
READ SURVEY T
READ SURVEY C

Hex Dec

Value Var
0 LB$
ML%
3 LETTERS MQ
0 MR
NL%
NQ%
CLOSE NR
NR%
0 NS%
00$%
1 01$%
1 02%
TEST1 OP$
9 PP
96 Q
0 QQ
0 R
0 RO$
9 R1$
1 RE$
1
4
0
2048
5
WRITE INTERVI
1
1
Array Variables; Alpha Order
Hex D=c Var
$2DB2 11698
$33F5 13301
$2F99 12185
$3194 12692

3

3 3

33 3 3 3 3

33 3

.

3

.

Albright Variable Lister 27

The Source Code

The Applesoft Variable Lister consists of an Applesoft subroutine (listing 1), a
machine language setup routine (listing 2), and a machine language sort routine
(listing 3). The Applesoft subroutine can be entered and SAVEd under an arbitrary
name. The machine language routines may be entered into memiory either directly
using the monitor or indirectly using an assembler, then BSAVEd under the names
APPLESOFT VARIABLE LISTER OBJ] (for the setup routine) and SHELL-
METZNER SORT (for the sort routine).

Technical Notes

The Lister's Applesoft subroutine occupies about 3500 bytes of memory. In
addition, execution of the Lister requires a certain amount of free space: five bytes
per variable if the ALPHA SORT option is chosen and ten bytes per variable if the
MEMORY SORT option is selected. The Lister does not verify that this space is
available. If insufficient space exists, the result is unpredictable.

If the addition of the Lister to a program using Hi-Res graphics causes the pro-
gram to overflow into the Hi-Res memory area, then the merged program should
be saved and reloaded above the Hi-Res memory. If only Hi-Res page one is used,
this move is accomplished by executing the following POKEs between the SAVE
and the LOAD:

POKE 103,1:POKE 104,64:POKE 16384,0
To move the program above Hi-Res page two, use the following POKEs:
POKE 103,1:POKE 104,96:POKE 24576,0

The Lister’'s Applesoft subroutine itself uses three simple variables (ZZ, ZZ%
and ZZ$) and one array variable (ZZ). These variable names should be avoided in
the main program: if they appear in the main program, execution of the Lister sub-
routine will reset their values. ZZ will always appear in the simple variable
listing, but ZZ%, ZZ$, and the ZZ array variable will appear only if the Lister is
executed more than once between CLEARs or RUNSs.

Both the SHELL-METZNER SORT and APPLESOFT VARIABLE LISTER OB]J
routines use page three of memory. However, the contents of page three at the time
the Lister is invoked are saved on diskette in a temporary file named PAGE 3 SAVE.
The original page three is restored as part of the Lister termination processing.

Both machine language routines make extensive use of page zero, but again, a
temporary file (PAGE 0 SAVE) is used to save the initial values and they are
restored when the Lister finishes. However, only part of page zero is restored,
leaving some page zero values altered after running the Lister. Specifically, loca-
tions 24 to 31 {$18 to $1F) are altered. These locations are not normally used by an
Applesoft program.

28 Applesoft Aids

A third temporary file [PAGE 0 SAVE2) is used if ALPHA SORT is selected. It
is used to restore page zero values after the sorting has been completed. All tem-
porary files are deleted by the Lister if it terminates normally. Both the SHELL-
METZNER SORT and the APPLESOFT VARIABLE LISTER OB]J routines are fully
relocatable.

The sorting routine uses the Shell-Metzner algorithm and is designed to sort
fixed-length records so that the one with the lowest key value appears highest in
the memory. Up to 32,767 records occupying contiguous locations may be sorted
with this routine, space permitting. Each record may be up to 255 bytes in length
and must have a sort key field that may be as short as one byte or as long as the en-
tire record. The key is evaluated as an unsigned binary integer field and the sorting
is performed on that basis.

The sort routine uses memory locations 25 to 31 ($19 to $1F) as an input argu-
ment list, interpreted as follows:

25 ($19): record length
26 ($1A): key offset (i.e., record characters preceding the key)
27 ($1B): key length

28-29 ($1C-$1D): number of records
30-31 ($1E-$1F). pointer to 1st byte of 1st record

The last two items are two-byte binary integers, presented in the usual low
byte/high byte format. The sorting routine does not alter the values placed in any
of these locations, nor does it verify their consistency.

Although the sort routine can handle thousands of records, the setup routine
can handle a maximum of 255 variables of any type (simple or array). If more than
255 simple or array variables exist, the operation of the Lister is unpredictable.

Strings containing one or more carriage return characters (ASCII 13} cause for-
matting problems on both the screen and the printer. If the value appears in the
left column on the screen, then one variable may be omitted from the right col-
umn. On the printer, one or more blank lines may be introduced. This problem is
exemplified in figure 1: the CR$ string consists of a single carriage return
character, resulting in the unexpected gap between the CR$ and D variables in the
left column and the NR and NR% variables in the right column.

3

3

-3

3 3 3

3

3

)

e

e

10
29
30
40
50
60
70
80
20
100
110
129
130
140
159
160

170

190
200
210
220
230

240
250

260
270
280
290

300
310

320
330
340
350
360
370
380
390
400
410
420
430
440
450
460

470
439

490

500
510

Albright Variable Lister 29

REM dhkkkkkkkhkkkhkkkxkkxkbhkkklk

REM * *
REM * VARIABLE LISTER *
REM * RICIARD ALBRIGIT *
REM * *
REM * COPYRIGHT (C) 1982 *
REM * MICRO INK, INC. *
REM * CAELMSFORD, MA 01824 *
REM * ALL RIGYTS RESERVED *
REM * *
REM khkhkkkkkkhkhkhkhkkkkhkkkhkxkkk
REM

REM

FOR ZZ = 32 TO 35: POKE 715 + 2Z, PEEK (2%Z): NEXT 2%

DOKE 32,0: POKE 33,40: POKE 34,0: POKE 35,24: TEXT : NORMAL

PRINT : INVERSE : PRINT SPC(7);"APPLESOFT VARIABLE LISTER"; SPC(8
): NORMAL

FOR 2Z = O TO 9: POKE 752 + 22,48 + 72Z: NEXT %ZZ: FOR %22 = 10 TO 15: POKE
752 + 722,55 + 22Z: NEXT 2%

PRINT : INVERSE : PRINT "A";: NORMAL : PRINT "LP4A SORT, ";: INVERSE
. PRINT "M";: NORMAL : PRINT "EMORY SORT OR ";: INVERSE : PRINT "Q":

: NORMAL : PRINT "UIT? ":
22 = PEEK (- 16384): IF 27 < 128 THEN 190

POKE - 16368,0: PRINT CHR$ (2z): IF 22 < > 193 AND zZZ < > 205 AND
27 < > 209 THEN PRINT CHR$ (7): GOTO 180

IF 22 = 209 TYEN 830
2Z = 22 - 192: IF 22 > 1 THEN 22 = 2

POKE 250,2%: INVERSE : PRINT "V";: NORMAL : PRINT "ALUES OR ";: INVERSE
: PRINT "L";: NORMAL : PRINT "OCATIONS?":
72Z = PEEK (- 16384): IF 7Z < 128 THEN 240

POKE - 16368,0: PRINT CHR$ (2z): IF 2Z < > 204 AND 2Z < > 214 THEN

PRINT CHR$ (7): GOTO 250
22 = 2% - 204: IF 22 > O TEN 22 = 2
2% = 2Z + PEEK (250)
PRINT C4RS (4);"BSAVE PAGE 3 SAVE,A$300,L$100": PRINT CHR$ (4):"BS
AVE PAGE 0O SAVE,ACO,L40"
PRINT CHR$ (4);"BLOAD APPLESOFT VARIABLE LISTER OBJ": PRINT CHR$ (
4)
POKE 250,2%:%2Z = FRE (J): CALL 768
POKE 251, PEEK (111): POKE 252, PEEK (112): IF PEEK (250) = 2 OR PEEK
(250) = 4 TIEN 390
PRINT CHRS (4);"BSAVE PAGE O SAVE2,ACO,L40": PRINT CHR$ (4)
PRINT CHRS (4);"BLOAD SHELL-METZNER SORT": PRINT CHRS$ (4)
PRINT : PRINT "SORTING VARIABLE NAMES . . .": PRINT
POKE 25,5: POKE 26,0: POKE 27,3
2%z = PEEK (251) + 256 * PEEK (252) + 5 * PEEK (254): POKE 28, PEEK
(253): POKE 29,0: POKE 31, INT (Zz / 256): POKE 30,22 - 256 * PEEK
(31):2%Z = PEEK (254): CALL 768
POKE 28,%%: POKE 29,0:Z%2 = PEEK (30) + 256 * PEEK (31) - 5 * 2Z: POKE
31, INT (22 / 256): POKE 30,2Z - 256 * PEEK (31): CALL 768
PRINT CHR$ (4);"BLOAD PAGE O SAVE2": PRINT CHR$ (4):"DELETE PAGE O
SAVE2": PRINT CHRS (4)
JOME : INVERSE : PRINT SPC(5);"SIMPLE VARIABLES; ";: IF PEEK (250
) = 1 OR PEEK (250) = 3 THEN PRINT "ALP4A ORDER"; SPC(6):
I§ PEEK (250) = 2 OR PEEK (250) = 4 THEN PRINT "MEMORY ORDER"; SPC(
5);:
PRINT : NORMAL : IF PEEK (253) = 0 TMEN PRINT : PRINT "NO SIMPLE V
ARIABLES": GOSUB 530: GOTO 450
722(0) = PEEK (253):22(1) = PEEK (251) + 256 * PEEK (252) + 5 * (PEEK
(253) + PEEK (254))
IF PEEK (250) > 2 TIEN 22 = 2Z: POKE 25, PEEK (131): POKE 26, PEEK
(132):22$ = ZZ$: POKE 27, PEEK (131): POKE 28, PEEK (132):22% = 22%:
POKE 29, PEEK (131): POKE 30, PEEK (132)
GOSUB 580
IF PEEK (250) > 2 TiEN POKE 250, PEEK (250) - 2
JOME : INVERSE : PRINT SPC(6);"ARRAY VARIABLES: ";: IF PEEK (250)
= 1 THEN PRINT "ALPYA ORDER"; SPC(6):
IF PEEK (250) = 2 THEN PRINT "MEMORY ORDER"; SPC(5);
PRINT : NORMAL : IF PEEK (254) = 0 THEN PRINT : PRINT "NO ARRAY VA
RIABLES": GOSUB 530: GOTO 500

22(0) = PEEK (254):22(1) = PEEK (251) + 256 * PEEK (252) + 5 * PEEK
(254): GOSUB 580

GOTO 790

VTAB 2: PRINT "VAR HEX DEC * VAR HEX DEC": PRINT "--- -----
----- * ——e —-=—- -----": RETURN

30

520

530 2z2$ = "HIT" + CHR$ (96) + "SPACE" + CHR$ (96) + "BAR" + CHRS (96) +

540

550
560
570
580
590

600
610
620
630
640

650
660
670
680

690

700
710
720
730

740
750

760
770

780

790
800

810
820
830
840

Applesoft Aids

VTAB 2: PRINT "VAR VALUE * VAR VALUE": PRINT "--= ——mooo--x
----- ¥ —me ——m—eee-----..": RETURN

"TO" + CHR$ (96) + "CONTINUE" + CHR$ (123) + C4R$ (96) + CiR$ (1
23) + "ESC" + CHR$ (103) + CHR$ (96) + "TO" + CHRS (96) + "QUIT"
FOR 2Z = 1 TO LEN (22$): POKE 2Z + 1999, ASC (MIDS$ (22$,22,1)) - 6
4: NEXT 22
22 = PEEK (- 16384): IF 22 < 128 THEN 550

POKE - 16368,0: IF 22 < > 155 THEN PRINT : PRINT : RETURN

POP : POP : GOTO 790

REM PRINT VARIABLE NAMES & LOCATIONS
22(10) = INT ((PEEK (250) + 1) / 2): ON 2Z(10) GOSUB 510,520: POKE
34,3

2z(3) = 0:22(1) = 22(1) - §

22z(2) = 22(3) + 1: IF 22(2) > 22(0) THEN POKE 34,0: RETURN

22(3) = 22(2) + 19: IF 22z(3) > 2z(0) THEN 22(3) = 2z(0)

2z2(6) = 22(2) - 1

22(6) = 22(6) + 1: IF 22(6) > 2Z(3) TMEN 22(1) = 22(1) - 100:22(3) =

22(3) + 20: GOSUB 530: YOME : GOTO 610

VTAB 22(6) - 22(2) + 4:22(8) = 22(1): GOSUB 670: PRINT SPC(19 - POS

(0)):"* ";: IF 22(6) + 20 < = 22(0) THEN 2Z(8) = 22(l) - 100: GOSUB
670

PRINT :2Z(1) = 22Z(1) - 5S: GOTO 640

PRINT CHR$ (PEEK (2%(8))); CHRS (PEEK (22(8) + 1)); CHR$ (PEEK (
2z(8) + 2)):" ";: IF 22(10) = 2 THEN 730

PRINT "$";:22(5) = PEEK (22(8) + 4):22(4) = PEEK (2z(8) + 3):22(7)
= INT (22(5) / 16): PRINT CHR$ (PEEK (752 + 22(7))): CHR$ (PEEK
(752 + 22(5) - 16 * 22(7))):

22(7) = INT (22(4) / 16): PRINT CHR$ (PEEK (752 + 22(7))): CHRS (PEEK

(752 + 22(4) - 16 * 22(7)));

22$ = STR$ (256 * 22(5) + 22(4))

PRINT SPC(6 - LEN (22$)):22$;

RETURN

22(9) = PEEK (22(8) + 3) + 256 * PEEK (2z(8) + 4):2Z = PEEK (22(8)
+ 2) - 31: IF 22 > 1 THEN 22 = 2% - 3

ON 22 GOTO 750,770,780

2z(7) = PEEK (25) + 256 * PEEK (26) - 2: POKE 2z%(7) + 2, PEEK (2Z(9
) + 2): POKE 22(7) + 3, PEEK (22(9) + 3): POKE 22(7) + 4, PEEK (22(9
) + 4): POKE 22(7) + 5, PEEK (22(9) + 5)

POKE 22(7) + 6, PEEK (22(9) + 6): PRINT 2Z;: RETURN

2zz(7) = PEEK (27) + 256 * PEEK (28) - 2: FOR 2Z = 2 TO 4: POKE 2Z(7
) + 22, PEEK (22(9) + 22): NEXT 2Z2Z: PRINT LEFT$ (22$,14);: RETURN

22Z(7) = PEEK (29) + 256 * PEEK (30) - 2: FOR 2% = 2 TO 3: POKE 2Z(7
) + 22, PEEK (2Z(9) + 2Z): NEXT 2Z2Z: PRINT 22%;: RETURN

IF 22 = 209 THEN 830

HOME : PRINT : PRINT CHRS$ (4);"BLOAD PAGE O.SAVE": PRINT CHRS (4);
"DELETE PAGE O SAVE": PRINT CHRS$ (4)

PRINT CHRS (4);"BLOAD PAGE 3 SAVE"

PRINT CHRS$ (4);"“DELETE PAGE 3 SAVE": PRINT CHRS (4)

FOR 22 = 32 TO 35: POKE 2Z, PEEK (715 + 22): NEXT 22

JOME : RETURN

3

3 3 3 3

3

B

3

o

R

0300
0300
0300
0300
0300
0890
0300
0800
n8nn
0800
0300
0890
0800
08nn
00AS
N0A8
00AA
AY)

00FD
NOFE
0800
0800
0300
0300
0300
0300

0302
0304
0306
0308
030A
030C
030E
0310
0312
0313
0315
0316
0318
n31A
031¢C
031E
n320
0322
0324
0326
0328
n32a

032C
032D
032F
0331
0333
N335
0337
0338
033A
033C
033E
N340
0342
0344
0346
0348
034A
034C

034D
034F
0351
0353
0355
0357

AS

35
AS
85
A9
85

a5
AS
18
65
AA
AS
N5
90
DO
AS
D5
90
E6
A4
co
DO

60
A6
F6
A2
A9
25
E8
EO
no
AOD
Bl
c9
20
A2

29
85
c8

Bl
29
co
FO
85
18

69

A
53
a9
00
FD
FE
AR
AA

LY.N

A9
6C
11
06
AR
6B
n9
AA
an
02
E4

AA
FD
00
20
AS

03
F9
00
A8
7F
18
25
A7
7F
AS

A8
7F
00
1C
a6

48
49
59
51
52

53

55
56
57
58
59
60
61
52
63

65

(13
67
68
69
70
7

*
*
*
*
*
*
*
*
*
*
*
*
*

VNAME
VLOZ
VTYPE

NS IMPL
NARRAY

i
:

TOP

INCVT

STRTVP

BLNKVUN

VARTARLE LISTER 9RJ
RITIARD ALBRIGHIT

LISTER
COPYRIGIT (C) 1932
MICRD INK, INZ.
C1ELMSFORD, MA N1824
ALL RIGITS RFSERVED

I R R R IS)

£P7,
FP7,
EP7,

FP7
EPZ

IRG
2BJ

LDA

STA
LDA
STA
LDA
STA
STA
STA

Albright Variable Lister 31

L s

EE A A I

SA3 :ZURRENT VARIARLFE NAMF
SR ;TURRENT VARIARLE LOTATION
LN ;VARTIABLE TYPE (0=SIMPLFE;1=ARR
SFD ;7TOUNT OF STUPLE VARTARLES
SFFR :COUNT OF ARRAY VARIARBLFE3
$3n00
$3n0
$69 ;INITIALTZE VARTIABLE POINTER T
VLO~ :START OF SIMPLE VARTARLE
S6A ;3PACE
VLOZT+1
#S00 s INITIALIZE VARIABLE COUNTERS
N3TMPL ;T ZERN
NARRAY
VTYPE ;START WIT1 STMPLF VARTARLFES
VTYPE ;THP OF MATIN LONP
VTYPE ;SET X T 2 TIMFES TIFE
s VARTARBRLF TYDEX
VLOC+1 s TF CURRENT VARIABLE IS NOT
$6C, X sREYOND T{F END OF TiF
STRTVP :STORAGR SPATE FOR TiF
INCVT ;CURRENT VARIABLE TYPF,
VLOZ s TIEN GO "N TO VARTIARLE
358, X s PROTFESSING
STRTV?
VTY?E ; TNTREMENT VARIABLE TYPE
VTYPE
4507
™? ;G BACK TO TIE THOP TF TNDAEX<>
;OUIT IF [NDEX="
VTYPE ;START N¥ VARIABLE PROZESSING
NS [MPL, X ; INCRFMENT VARTARLFE ZOUNT
4S0N0 s BLANK OUT TURRENT VARIARLE
4529 s NAME
VNAME, X
#503
RLNKVY
#S00 sI® BTT 7 T3 OFF, TiFEN
(vLoc), Y ;SKIP INTEGFRR PROTRSSTNG
$S7F
SAVEL
#5275 SATTACE ‘3" TO NAME
UNAME+2
#ST7F ;SAVE 1ST T iARACTER
UNAME
;STRIP RIT 7 FROM 28D C{ARATTE
(VvLoc),Y ;AND SAVE IF NOT 300
#STF
#S00
LOWER
VNAME+1
;SKIP STRING PROTESSING

32 Applesoft Aids

0358 90 17 . 72 BCT LOWER

035A 90 B4 73 RELAY BCC TOP ;RELAY RETURN TO TOP

n35C 85 AS 74 SAVEL STA UNAME :SAVE 1ST Z4ARACTER

035E C8 75 INY :GET 2ND

035F Bl A8 76 LDA (VLOG),Y

0361 C9 7F 77 CMP #STF :1F BIT 7 IS OFF, TiEN

0363 90 n6 78 3CC SAVE? :SKIP STRING PROCESSING

0365 a2 24 79 LDX #$24 SATTACT 'S’ T) NAME

1367 36 A7 30 3TX UNAME+?

n359 29 7F a1 AND 4S7F :STRIP BIT 7

N358 C9 N0 92 3AVE? 4P ESON :SAVE 28D CHARACTER IF NOT

ZERC

N3N Fn N2 33 BEQ LOWER

N35F 95 16 91 STA VNAME+1

n371 13 35 LOWER 3RS :LOWER START OF STRING

1372 A5 6F 36 LDA S5F ;STORAGE AREA BY 5

0374 E9 05 37 3BC #$05

0376 85 6F EE! STA $6F

n373 A5 70 39 Lha $70

n37A E9 NN a0 3BC #500

1372 85 70 21 3T $70

N37E AD N9 92 LDY #$00 ;MOVE VARTABLE DESCRIPTION

0339 B9 AS N0 93 MOVE LDA VNAME,Y :TO STRING STORAGE

n383 91 5F 94 STA (S6F),Y

0335 3 95 NY

0336 21 N5 96 TPY #5905

1383 NN F6 97 RNE MOVE

03814 AS AA 23 LDA VTYPE : TF CURRENT VARIABLE TYPE=1

7337 €9 1 99) TMP #$01 :(1.E., AN ARRAY VARIABLE)

N33E FO 10 100 3EQ INTPTR ;SKIP SIMPLE VARTABLE

n39n 1% 191 cLC ; INTREMENT ZURRENT VARIABLE

N391 AS A3 192 LPA VLOC ;LOCATION BY 7 AND GO ON

0393 69 77 103 ADC #$07 :TO TiE NEXT VARIABLE

n395 85 AR 104 STA VLOZ

0397 AS A9 105 LDA VLOT+1

1393 69 20 106 ADC #S00

0398 85 A9 117 STA VLOC+1

039D 18 103 376!

039E 99 11 109 RCC GETNXT

N3AN A0 02 110 INTPTR LDY #$02 ; INCREMENT CURRENT VARIABLE

n3n2 18 11 e ;LOCATION BY TME LENGTY

13A3 A5 AQ 112 LDA VLOC ;OF TE CURRENT ARRAY

N335 71 a3 113 ADZ (VLOC),Y :AND GO ON TO TIE

03A7 AA 114 TAX :NEXT ARRAY VARIABLE

N3A8 A5 A9 115 LPA VLOZ+1

N3AA 28 116 INY

N3AB 71 A8 117 ADC (VLOC),Y

n3aD 85 A9 118 STA VLOZ+1

N3AF 96 Ag 119 STX VLOZ

0331 18 120 GETNXT <Lo ;GO ON TO TIE NEXT

N387 90 A6 121 BCC RELAY ;VARTABLE

N334 122 END

*4*k% END OF ASSEM3LY

SY30L TARLE SORTED ALPiARETICALLY
RLNKVN 1335 GETNXT 0381 TINTPTR N3A0 INCVT 0324 LOWER 0371
MOVE N330 NARRAY OOFE NSIMPL 00OFD RELAY 035A SAVEL 035¢
SAVE? 73583 STRTVP 032D TOP n31n vLoC NOAB VNAME 00AS5
VTYPE LLEY

SYM30L TARLE SORTED BY ADDRESS
VNAME 00AS VLOC N0AS VTYPE NOAA NSIMPL NOFD NARRAY NOFE
™D 0319 INZVT 0324 STRTVP 032D BLNKVN N335 RELAY 035A
SAVE1 N35C SAVE? 036B LOWER 0371 MOVE 0380 INCPTR 03A0

GETHNXT 03B1

3

33

3

B .

3 3

3

]

2]

m

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0019
001A
RD

001B
001C
00lE
00C9
00CA
0oocc
00CE
00DA
00DC
OOFA

00FC
OOFE
0800
0300
0300
0300
0300
0301
0303
0305
0307
0309
030B
030D
030F
0310
0312
0314
0316
0318
031A
031cC
031D
031F
0320
0322
0324
0326
0328
032A
032C
032E
0330
0332
0334
0336
0338
033a
033C
033D
033F
0341

0343

0345
0347
0349

18
AS
65
85
AS
85
AS
85
18
66
66
AS
DO
AS
DO
60
A2
38
AS
ES
85
AS
E5

a9
85
A9
85
A5
85
AS
85
18
AS
65
85
AS
65
85
A2

1a
1B
c9
1C
CE
1D
CF

CF
CE
CE
05
CF
01

00

1C
CE
DA
1D
CF
DB
o1

00
DD

ca
DD
CB

CA
CE
cC
CB
CF
CD
00

-
HFOVONOUVLWN -

—
~

e
~Noundsw

N o
o

[SE SRS
wN -

N NN
N ons

wNN
oo

w
—

WWWwwwww
OO NV b WN

7******t*ﬁ****itti*****tt
;i *
:* SHELL-METZNER SORT *
:* RICHARD ALBRIGHT *
% *
s * SORTER *
;* *
;* COPYRIGHT(C), 1982 *
s MICRO INK, INC. *
:* CHELMSFORD, MA 01824 *
;* ALL RIGHTS RESERVED *
o *
7i*****tﬁ*****itt*ttt**t*
RL EPZ $19

KEYOFF EPZ $1A

KEYLEN EPZ $1B
N EPZ $1C
ARRAY EPZ S1E
KEYEND EPZ $C9
I EPZ SCA
L EPZ $CC
M EPZ SCE
K EPZ $DA
J EPZ $DC
CNT1 EPZ $FA

CNT2 EPZ $FC
CNT3 EPZ $FE

ORG $300
0BJ $800

CLC
LDA KEYOFF
ADC KEYLEN
STA KEYEND
LDA N
STA M
LDA N+l
STA M+l
Loorl CLC
ROR M+l
ROR M
LDA M
BNE MORE
LDA M+l
BNE MORE
RTS
MORE LDX #$00
SEC
LDA N
SBC M
STA K
LDA N+1
SBC M+l
STA K+1
LDA #$01
STA J
LDA #$00
STA J+1
LOOP2 LDA J
STA I
LDA J+1
STA I+l
LOOP3 CLC
LDA I
ADC M
STA L
LDA I+l
ADC M+1
STA L+1
LDX #$00

Albright Variable Lister 33

;s RECORD LENGTH
;s KEY OFFSET FROM START OF RECO

:KEY LENGTH

;NUMBER OF RECORDS IN $1C-$1D
;POINTER TO ARRAY IN $1E-S1F
;OFFSET OF LAST KEY BYTE
;INDEX I IN $CA-SCB

;s INDEX L IN $CC-$CD

; INDEX M IN $CE-$CF

; INDEX K IN $DA-$DB

;INDEX J IN $DC-$DD

: TEMPORARY COUNTERS IN S$FA-SFF

sESTABLISH OFFSET OF LAST
:KEY BYTE

; INITIALIZE M TO N

: TOP OF MAIN LOOP
M:=M/2

:1STOP IF M=0

;1 K:=N-M

;SET X REGISTER TO O

34

034B

034D
034E
0350
0352
0354
0356
0358
035A
035C
035E
035F
0361

0362
0364
0366
0368
036A
036C
036E
0370
0371
0373
037s
0377
0378
037A
037¢C
037E
0380
0382
0384
0385
0386
0388
038A
038cC
038E
0390
0392
0394
0395
0397
0399
039B
039D
039E
03A0
03A1
03A3
03A5
03A6
03A8
03AA
03ac
03AD
O3AF
03B1
03B3
03BS
03B7
03B9
03BB
03BD

03BF
03C1
03c3
03C5S
03c7
03cC9
03cCB

Applesoft Aids
a4 19 74
38 75
B5 CA 76
E9 01 77
85 FA 78
95 FC 79
B5 CB 80
E9 00 81
85 FB 82
95 FD 83
88 84
FO 16 85
18 86
A5 FA 87
75 FC 88
95 FC 89
AS FB 20
75 FD 91
95 FD 92
90 EE 93
00 24
DO C9 95
90 BF 926
DO 98 97
18 98
AS 1E 99
75 FC 100
95 FC 101
A5 1F 102
75 FD 103
95 FD 104
E8 105
E8 106
EO 04 107
DO Cl 108
A4 1A 109
Bl FC 110
Dl FE 111
90 09 112
DO 2F 113
cs 114
c4 c9 115
DO F3 116
FO 28 117
A4 19 118
88 119
Bl FC 120
AR 121
Bl FE 122
91 FC 123
8A 124
91 FE 125
co 00 126
DO F1 127
38 128
A5 CA 129
E5 CE 130
85 Ca 131
A5 CB 132
ES5 CF 133
85 CB 134
A5 CB 135
30 06 136
DO B2 137
A5 ca 138
DO AE 139
E6 DC 140
DO 02 141
E6 DD 142
AS DD 143
c5 DB 144

GETLOC

GETOFF

RELAY3
RELAY?2
RELAY1
GETABS

COMPAR

SWITCH
SW1

INCJT

INCJ2

LDY

SEC
LDA
SBC
STA
STA
LDA
SBC
STA
STA
DEY
BEQ
CLC

LDA
ADC
STA
LDA
ADC
STA
BCC
BRK
BNE
BCC
BNE
CLC
LDA
ADC
STA
LDA
ADC
STA
INX
INX
CPX
BNE
Loy
LDA
cMP
BCC
BNE
INY
CPY
BNE
BEQ
LDY
DEY
LDA
TAX
LDA
STA
TXA
STA
CPY
BNE
SEC
LDA
SBC
STA
LDA
SBC
STA
LDA
BMI
BNE

RL

I,X

#501
CNT1
CNT2,X
I+1,X
#300
CNT1+1
CNT2+1,X

GETABS

CNT1
CNT2,X
CNT2,X
CNT1+1
CNT2+1,X
CNT2+1,X
GETOFF

Loore3
Loor?2
LOOP1

ARRAY
CNT2,X
CNT2,X
ARRAY+1
CNT2+1,X
CNT2+1,X

#$04
GETLOC
KEYOFF
(CNT2),Y
(CNT3),Y
SWITCH
INCJ

KEYEND
COMPAR
INCJ
RL

(CNT2),Y

(CNT3),Y
(CNT2),Y

(CNT3),Y
#$00
SW1

I

M

I

I+1
M+1
I+l
I+l
INCJ
RELAY3

LDA I

BNE
INC
BNE
INC
LDA
CMP

RELAY3

INCJ2
J+1
J+1
K+1

:SET Y REGISTER TO RECORD LENG

:INITIALIZE CNT2 TO I-1
;s IF X=0

:INITIALIZE CNT3 TO L-1
IP X=2

;AND STORE THE SAME
:VALUE IN CNT1

;sMULTIPLY BY RECORD LENGTY TO
:GET THE OFFSET OF THE
;(I-1)T™ RECORD (IF X=0) OR TH

;(L-1)TH RECORD (IF X=2) FROM
:TYE START OF THE ARRAY

; BREAK ON OVERFLOW
:RELAY RETURNS

:ADD LOCATION OF START
;OF ARRAY TO GET ABSOLUTE
; LOCATION OF (I-1)TH OR

: (L-1)T™ RECORD

:ADD 2 TO X REGISTER

;GO GET (L-1)TH RECORD

s IF X=2

:SET Y REGISTER TO KEY OFFSET
;COMPARE (I-1)TH AND

: (L-1)T™ KEY VALUES;

;SWITCH RECORDS IF THE
;(L-1)T™ KEY IS > THE
;(1I-1)TH KEY

s BRANCH ON I<1

1 J:=J+1

:BRANCH ON J>K

3

N

.

03CD
03CF
03D1
03D3
03D5
03D7
03D8
0o3pa
03DpC

20
DO
AS
Cc5
20
18
FO
DO

A4
A4

DA
9C

29
29

145
146
147
148
149
150
151
152
153

BCC RELAY2
BNE RELAY1
LDA J

CMP K

BCC RELAY2
CLC

BEQ RELAY2
BNE RELAY1
END

SYMBOL TABLE SORTED ALP{ABETICALLY

ARRAY

GETABS

INCJI2

XKEYOFF

M
RELAY3

ON1E
nN376
n3c8y
0N1A
00CE
0370

CNTL
GETLOC
J

L
MORE
RL

OOFA
034R
00EB
0occ
031D
0019

SYMBOL TABLE SORTED BY ADDRESS

RL

KEYEND

J

MORF.
RELAY3
SWITCH

0019
0nco
OOEB
031D
n370
039A

KEYOFF
1

CNT1
LOOP?2
RELAY?2
SWl

001A
00CA
O0FA
0334
0372
039C

CNT?
GETOFF
K
Loor1
N

SwWl

KEYLEN
L
CNT2
LOOP3
RELAY1
INCJ

00OFC
035E
0nneé
030F
001¢
039C

nn1s
0ncc
00FC
033C
n374
03C2

Albright

CNT3

I
KEYEND
LOOP2
RELAY1
SWITCH

N

M

CNT3
GETLOC
GETABS
INCJ2

Variable Lister 35

NOFE
0OCA
00C9
0334
0374
039A

001C
0OCE
O0FE
0348
0376
03c8

COMPAR
INCJ
KEYLEN
LOOP3
RELAY2

ARRAY
K
LoorP1
GETOFF
COMPAR

0388
03C2
001B
033C
0372

001E
00D6
030F
035E
038B

2

MACHINE-LANGUAGE AIDS

Double Barrelled Disassembler
David L. Rosenberg

Cross Referencing 6502 Programs
Cornelis Bongers

A Fast Fractional Math Package for 6502 Microcomputers
Wes Huntress

Applesoft Error Messages from Machine Language
Steve Cochard

39

48

65

84

Machine-Language Aids

This chapter contains four utility programs designed to make life a little easier for
the assembly-language programmer.

David Rosenberg’s ‘‘Double Barrelled Disassembler’’ not only prints a hard
copy disassembly two abreast, but also gives the user the ability to specify a
precise range of memory without disassembling in increments of 20 instructions.
"'Cross Referencing 6502 Programs’’ by Cornelis Bongers is an indispensible tool
for anyone interested in analyzing code through disassembly. With this program

the user can study all address references within a range of code, either external or
internal.

Wes Huntress's ‘‘Fast Fractional Math Package’’ provides the assembly
language programmer with a tool bag of fractional math functions. For the BASIC
programmer, it gives Integer BASIC the ability to perform complex functions and
speeds up Applesoft at the cost of some accuracy. ‘‘Applesoft Error Messages from
Machine Language’’ by Steve Cochard describes how to access Applesoft error
messages from machine language and offers programming examples on interfacing
with error message subroutines.

3

T

Double Barrelled
Disassembler

by David L. Rosenberg

This short utility makes it easier to create disassembly
listings. It not only lists from starting to ending
addresses, but also formats the listing into two
columns for easier reading and less paper usage.

How many L’s are there between $BD00 and $BFFF? What seems at first to be a
ridiculous question actually points out one of the few flaws in the Apple II's ROM
Monitor: the disassembler routine only prints twenty lines at a time. This can be a
major annoyance if you are printing many long listings.

This program attacks the problem and formats the listing into two columns to
minimize wasted paper and make the disassembly easier to follow. Once the pro-
gram has been BRUN the disassembly function is called by typing ‘‘beginning
address’’.''ending address’’ (CTRL-Y) return. This sequence will disassemble
the code from the beginning address through the ending address and print it in two
column per page format (see listing 1).

How Does it Work?

The program divides the first part of the object code into two segments, each
containing the same number of instructions as there are lines on a page. Then it
takes one instruction from each piece and calls the Monitor disassembly routine
to print them on the same line. Next, the pointers to the instructions are in-
cremented and the program loops to the disassembly portion again. When all the
instructions in each segment are done, a form-feed is printed and the next portion
of the code is segmented, and the process is repeated until the ending address is
reached.

The only problem I encountered was that the Monitor disassembly routine
prints a carriage return as the first character each time it is called. Obviously this
is not desirable after we go to the trouble of positioning the printer to the start of
the second column. To circumvent this the disassembler is called in four separate
pieces.

40 Machine-Language Aids

PR1 is called to print the address in the Program Counter ($3A,$3B) as four
ASCII bytes followed by a dash. PR2 points PC at the length of the instruction and
forms an index into the Monitor's op-code mnemonic table. PR3 actually prints
the mnemonic along with the appropriate address or hex literal. At this point we
must push a $01 onto the stack to indicate that this is the last instruction to
disassemble. PR4 increments PC to point to the next instruction then pulls the top
value from the stack, decrements it by one and if it is equal to zero, does a return.
Since PR4 is jumped to, this return will take us back to the mainline where the
program sets up to disassemble the corresponding instruction from column two.

Before calling the Monitor disassembler, PC must contain the address of the
instruction to be disassembled. Since we are disassembling and printing two non-
sequential instructions on each line, a large part of the program is concerned with
swapping instruction addresses in and out of PC. A4 ($42,$43) is used as a work
byte to store the column one address when the second column is being disassem-
bled. A3 ($40,$41) serves a similar function when the first column is being
disassembled. A2 ($3E,$3F) always contains the ending address of the code to be
disassembled.

The subroutine INITA3 calls a Monitor routine at $F88E to return the length
of an instruction. The whole purpose of the routine is to find the address of the
nth +1 instruction, where n is the number of lines per page. This is also the start
of column two, so we want this address to wind up in A3. To accomplish this we
will call INSDS2 n times and add the resulting length to the address at A3. Note
that the length returned is actually one less than the actual instruction length, and
therefore, we must increment LEN before adding it to A3. Invalid op-codes are not
flagged, but are returned as one-byte length instructions.

To end execution, routine CMPCA2 compares the current value of PC to the
value of A2 (the end address). If it is equal to, or greater than A2, we pop the last
return address from the stack and jump to UNHOOK. This effectively disconnects
from the mainline and resets the stack to the condition it was at when the dis-
assembler was first invoked. Because the program is called from monitor, the RTS
in UNHOOK will result in a return to monitor.

Making it Work

This program should be used with an AIO serial card in slot #1 and a Texas In-
struments 810 printer. The routine STHOOK sets the DOS output hooks and
disables the serial card’s video echo. If your interface is in a different slot, change
the LDX instruction at line 89. It is of the format Cn, where n is the slot number.
For printers with a software-selectable line width this would be the best place to
include the code for this function. The routine UNHOOK, always the last one ex-
ecuted, is where you should reset the line width.

3

33 3 3

4 3

3

3

3

3

Rosenberg Disassembler 41

The first instruction in the routine TAB controls how far over (in print posi-
tions) the second column will start. This can be changed to % of the line width
that you are using (i.e., $28 for an 80-column line). The number of lines per page is
set in two places, line 118 and line 177. It can be set to suit your needs, but just be
sure it is the same in both places.

If your printer does not recognize $0C as a form-feed character or does not
have a formfeed, the routine FFE ED will have to be changed. This routine makes
the printer skip to the top of the next page.

Since the program uses standard Apple output routines it can be used, as is,
with any printer card (serial or parallel) that does not require a software driver. If
you use a print driver routine, change the JSRs at lines 66, 79, 85 and 93 to go to
your driver entry point. The character to be printed will reside in the Accumulator

prior to these calls.

Editor’s note: Listing 2 is an example of how the Double Barrelled Disassembler
can be modified for other card/printer combinations. Here the program was
modified to work with Apple's serial Interface Card and a Bedford Computer
Systems, Inc., daisy wheel printer.

42

Listing 1

0800
0800
0800
0800
2800
08nn
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0024
002F
0034
003E
0040
0042
0045
03F8
0579
0SF9
N6F9
AARS53
F88E
FDED
FD99
F889
F8D3
FE67
0800
0800
0800
0800
n8non
0800
0800
0800
0800
0800

n8n2

0805
N

0807
080A

080¢C
080F
0810
0810
n810
0810
0810
0810
0813
0816

0819
081c
081F

0822
0825
0827
082A
082D
0830

Machine-Language Aids

A9

A9

3D
A9

8D
60

20
20
20

20
20
20

20
BO
20
20
20
20

(=a3)

4c
F8
10

F9
08

FA

62
87
29

E9
9E
D6

B7
12
c4
87
48
D6

03

03

n3

8
08
n8

n8
08
ns

n8

ng
08
08
08

DOV NIIHIUVN D W~

:********t***t**********i

7* *

:* DOUBLE BARRELLED *

¥ DISASSEMBLER *

P BY *

:* DAVID L. ROSENBURG *

.k *

p* DISSASMB *

:* *

i* COPYRIGiT (C) 1982 *

P * MICRO INK, INC. *

;* CHELMSFORD, MA 01824 *

:* ALL RIGYTS RESERVED *

ok *

:**********************t*

cH EPZ $24 ;CURSOR YORIZONTAL POSN

LEN EPZ S2F : INSTRUCTINN LENGTH

pC EPZ S3A ;ADDRESS TO DISSASSEMBLE

A2 EP7 S3E ;ENDING ADDRESS

A3 EPZ $40 ;ADDRESS TO DISASSEMBLE

A4 EPZ $42 ;WORK BYTE

A5 EPZ $45 :LINE COUNTER

VECTOR EQU $3F8 ;CTRL-Y VECTTOR ADDRESS

NOVID EQU $579 ;AI0 SERIAL CARD NOVID FLG

coL EQU SS5F9 ;SERTAL INTER. CARD COLUMN NO.

PWDTH EQU $6F9% ;SERIAL TNTER. CARD LINE WIDTH

400KS FQU S$AAS53 ;OUTPUT HOOK

INSDS2 EQU SFRSE :ROUTINE FOR INSTRUC. LENGT™

PRINT EQU SFDED sMONITOR COUT ROUTINE

PR1 FEQU $FD99 ;PART OF DISASSEMBLER (ROM)

PR2 EQU S$F889 :PART OR DTSASSEMBLER (ROM)

PR3 EQU S$FSD3 :PART NF DISASSEMBLER (ROM)

PR4 EQU S$FE67 ;PART OF DISASSEMBLER (RNOM)
ORG $800

ekkkhkkkhkhkkkdhkhhhhkhkdkhhhhk

:T1IS ROUTINE SETS TE APPLE'S CTRL-Y VECTOR ADDRESS
;TO POINT T2 THE START OF T{E DISASSEMBLER CODE

:IT IS EXECUTED WHEN TYE PROGRAM IS BRUN
A T T Y

INIT LDA #$4C

;0P CODE FOR JUMP
STA VECTOR ;STORE AT CTRL-Y VECTOR
LDA #START :GET LOW BYTE OF ENTRY LOCATIO

STA VECTOR+1 ;STORE AT VECTOR
LDA /START ;GET 4T BYTE OF ENTRY LNCATION

STA VECTOR+?2
RTS
AR R R AR AR KRR KRR A AR AR Kk

START OF DTSASSEMBLER
Kk kkkkkkh kR kkkhkkhhkhkhkkkkhkhk

START JSR STHNOK

:SET OUTPUT YOOKS FOR PRINTER

MATN JSR SETPC :SET PC ™ A3

JSR SETAS ;SET A5 TO & OF LINES PER PAGE

JSR INITA3 :SET A3 TO START OF COLUMN 2
Loor JSR CMPCA?2 ;COMPARE PC TH END ADDRESS

JSR DISASM ;DISASSEMBLE INSTRUCTION AT PC

JSR CMA3A?2 :COMPARE A3 TO END ADDRESS

BCS 1LNNP2 ;DON'T PRINT 2ND COLUMN TIF >

JSR STNRPC :SAVE PC AT A4

JSR SETPC :SET PC TO A3

JSR TAB

JSR DISASM :DISASSEMBLE INSTRUCTION AT PC

3

B R R D e

1

. A

S R

0833
0836
08139
083B
N83E
0849
0842
0845
0848
n84A
0848
084D
084E
0850
0852
0854
0857
0858
N85B
085C
085E
0861
0862
0864
0866
0869
086C
086E
0871
0873
0876
0877
0879
0878
087D
0880
n8K3
0886
0887
0889
0888
088D
088F
0890
0892
0894
0896
0898
0899
089B
089D
089E
08A0
08A2
08a4
08a6
08A7
08A8
08AB
08AD
0O8AF
08B1
08B2
08B3
08B6
0887
08B9
08BB
08BD

08BF
08cC1
0n8c3
08Cc4
08C6
08CR

20
20
A9
20
Cc6
DO
20
4C
A9
38
ES
AA
F0O
30
A9
20
cA
4Cc
60
A9
20
60
AD
A2
8E
8cC
A9
20
A9
8D
60
A9
AOQ
A2
8D
ac
8E
60
L%
85
AS

60
AS
85
AS
35
60
A9
85
60
AS
C5
20
FO
68
68
4c
A5
C5
90
68
68
4c
60
AS
cS
90
DO

AS
Cc5S
60
AS
85
AS

20
CD
nn
ED
45
DA
5C
13
42

0B
09
AO
ED

4E

nc
ED

00
cl
54
53
8D
ED
80
79

00
FO
FD
79
53
54

40
3a
41
3B

3A
40
3B
41

3C
45

3B
3F
12
05

77
3A
3E
05

77

41
3F
né6
04

40
3E

3A
42
3B

08
08
FD

08
08

FD

08

¥D

AA

FD

05

05
AA
AA

08

08

92

135
136
137

138
139
140
141
142
143

L9P?2

TAB

T1

TX
FFEED

STHINK

UNHOOK

SETPC

SETA3

SETAS

CMPCA?2

Ccl

Cc2
CMA3A2

CMA2
STORPC

JSR
JSR
LDA
JSR
DEC
BNE
JSR
JMP
LDA
SEC
SBC
TAX
BEQ
BMT
LDA
JSR
DEX
JMP
RTS
LDA
JSR
RTS
LDy
LDX
STX
STY
LDA
JSR
LDA
STA
RTS
LDA
LDY
LDX
STA
STY
STX
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
RTS
LDA
CcMP
BCC
BEQ
PLA
PLA
JMP
LDA
CMP
BCC
PLA
PLA
JMP
RTS
LDA
CMP
BCC
BNE

LDA
CcMP
RTS
LDA
STA
LDA

SETA3
RSTRPC
#S0D
PRINT

Loop
FFEED
MAIN
#3542

CH

X

™
#SA0
PRINT

T1

#$0C
PRINT

#3500
#sCl
400KS+1
400KS
#$8D
PRINT
#$80
NOVID

#$00
#SFO
#S$FD
NOVID
170KS
H0O0OKS+1

A3
PC
A3+1
PC+1

PC
A3
PC+1
A3+1

#3$3C
AS

PC+1
A2+1
c2
o3}

UN{ 00K
e
A2
(o]

UN{NOK

A3+1
A2+1
CMA?2
CMA?2

A3
A2

PC
A4
PC+1

Rosenberg

Disassembler 43

:SET A3 TO PC
:SET °C TO A4

;PRINT CARRIAGE RETURN
:DECREMENT LINE COUNTER
:IF NOT END OF PAGE
:ADVANCE TO NEXT PAGE

;SET X-REG TO

:66-CURSOR POSITION

:T.E. #OF SPACES TO PRINT
: TILL MIDDLE OF PAGE

;PRINT SPACES TILL
: X-REG=0

;PRINT FORM FEED

;SET THE OUTPUT HOOK
;TO C100 (SLOT 1)

:PRINT CARRIAGE RETURN TO
:INITIALIZE SERIAL CARD

:NO VIDEO MOD

;RESET VIDEO MOD
:AND RESTORE QUTPUT
sHOOKS TO SCREEN

;SET PC TO A3

:SET A3 TO PC

s INITTIALIZE LINE ZNOUNTER TN
;360 --- CHUNTS DOWN

;COMPARE 41 BYTE OF PC TO
;11 BYTE OF A2 (END ADDR)
: <RETURN

:=COMPARE LOW RYTES

;POP RETURN ADDRESS

;OFF TiE STACK

;RESET 400OKS AND QUIT
;COMPARE LOW BYTES

: RETURN
:POP STACK

;RESET AND QUIT

;COMPARE A3 AND A2
sRETURN WIT4 CARRY BIT
;SET OR CLEAR TO

: INDICATE STATUS

;SAVE CURRENT VALUE OF PC

44

Machine-Language Aids

08CA 85 43

08cC
08CD
N8CF
08D1
08D3
08D5
08D6
08D8
08DA
08DD
08EO
N8E3
08ES
0RE6
08E9
08E9
08E9
08E9
08E9
08E9
08E9
08EB
08ED
O8EE
O8EF
08F1
08F4
08F6
08F8
08F9
08FB
08FD
08FF
09Nl
0902
N903
0904
0906
0907

60
AS
85
A5
85
60
A6
A4
20
20
20
A9
48
4c

A2
AO
8A
48
Bl
20
E6
a5
18
65
85
920
E6
68
AA
CA
DO
60

42
3a
43
3B

3A
3B
99
89
D3
01

67

3C
00

40
8E
2F
40

2F
40
02
41

E5

FD
F8
F8

FE

F83

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
1561
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

STA
RTS
RSTRPC LDA
STA
LDA
STA
RTS
DISASM LDX
LDY
JSR
JSR
JSR
LDA
A
JMpP

A4+l

A4
PC
A4+1
PC+1

BC
PC+1
PR1
PR2
PR3
#$01

PR4

;RESTORE PC FROM CURRENT
:VALUE OF A4

;DISASSEMBLE 1 INSTRUCTION
AT PC USING MONITOR
;DISASSEMBLE ROUTINE

: IN FOUR PARTS

;SET COUNTER ON STACK FOR
;NUMBER OF INSTRUCTIONS
:ROUTINE SUPPLIES RTS

Ikdkkkhk kR ke khkk ok
;THIS ROUTINE CALCULATES THE ADDRESS OF THE

;FIRST INSTRUCTION IN COLUMN TWO
R R T T e T T

INTTA3 LDX
INIT41 LDY
TXA
PiA
LDA
JSR
INC
LDA
CLC
ADC
STA
BCC
INC
INTIT42 PLA
TAX
DEX
BNE
RTS
END

#$37
#$00

(A3),Y
INSDS2
LEN

A3

LEN

A3
INIT42
A3+1

INIT41

;NUMBER OF INSTRUCTIONS
;SET TINDEX POINTER

:SAVE NUMBER OF

; INSTRUCTIONS ON STACK

:GET OP CODE

sMONTITOR ROUTINE FOR LENGTH

;GET A3 AND

; INCREMENT BY

;s LENGT™ OF INSTRUCTION
:SAVE IN A3

: INCREMENT 41 BYTE

: TF NECESSARY

;GET NUMBER OF TNSTRUCTIONS

;SUBTRACT 1
: LOOP IF NOT DONE

-y 3 3

B

3 3y 3 3y 3

3

3

3 3

3

Listing 2

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
N800
0800
0800
0800
0800
0800
n8oon
0800
0024
002F
003A
003E
0040
0042
0045
03F8
0579
05F9

06F9

AAS53
F88E
FDED
FD99
F889
F8D3
FE67
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0802
0805
N

0807
080A

080C
080F
0810
0810
0810
0810
0810
0810
0813
0816

0819
ng1c
081F

0822

A9
8D
A9

8D
A9

8D
60

20
20
20

20
20
20

20

4C
F8
10

Fo
08

FA

03

03

03

ns
08
08

n\
08
08

08

Nolie o BEN o U, B VOIS I g

33

34
35
36
37
38
39
40
41
42
43
a4
45
46
47
48
49
50
51
52

53
54

55
56
57
58
59
60
61
62
63
64

65
66
67

68

Rosenberg Disassembler 45

7t***t*******tk*ﬁ***k****

. n *

;* DOUBLE BARRELLED *

P* DISASSEMBLER *

P * BY *

;* DAVID L. ROSENBURG *

:* *

;* MODIFIED BY T.S.0. *

i * TO WORK WITY *

;* THE APPLE SERTIAL *

¥ INTERFACE CARD *

o *

P * DISASSMB-S7 *

P * *

;% COPYRIGHT (C) 1982 *

e MICRO INK, INC. *

;* CHELMSFORD, MA 01824 *

;* ALL RIGITS RESERVED *

P *

;************************

cq EPZ $24 ;CURSOR YORIZONTAL POSN

LEN EPZ S2F ; INSTRUCTION LENGTH

PC EPZ S$3A :ADDRESS TO DISSASSEMBLE

A2 EPZ $3E ;ENDING ADDRESS

A3 EPZ $40 ;ADDRESS TO DISASSEMBLE

A4 EPZ $42 ;WORK BYTE

AS EPZ $45 ; LINE COUNTER

VECTOR EQU $3F8 ;CTRL-Y VECTOR ADDRESS

NOVID EQU $579 ;ATO0 SERIAL CARD NOVID FLG

CcoL EQU SSF9 ; SERTAL INTER. CARD COLUMN NO.

PWDTH EQU $6F9 ;SERTIAL INTER. CARD LINE WIDTY

400KS EQU $AAS53 :DUTPUT HOOK

INSDS?2 EQU $F88E ;ROUTINE FOR INSTRUC. LENGTH

PRINT EQU S$FDED ;MONITOR COUT ROUTINE

PR1 EQU $FD99 ;PART OF DISASSEMBLER (ROM)

PR? EQU $F889 ;PART OR DISASSEMBLER (ROM)

PR3 EQU $F8D3 ;PART OF DISASSEMBLER (ROM)

PR4 EQU S$SFE67 ;PART OF DISASSEMBLER (ROM)
NRG $800

:

sREIKK R IR KAk kR Ak Kk k ko kK
;T4IS ROUTINE SETS THE APPLE'S CTRL-Y VECTOR ADDRESS

: O POINT TO

TE START OF T™E DISASSEMBLER CODE

;1T IS EXECUTED WHEN THE PROGRAM IS BRUN
sREKKIRI KKK KKK IR IR R IR A Ak

INIT LDA
STA
LDA

STA
LDA

STA
RTS

e v e e

START JSR
MAIN JSR
JSR

JSR
LooP JSR
JSR

JSR

#$4C ;OP CODE FOR JUMP

VECTOR :STORE AT CTRL-Y VECTOR

#START :GET LOW BYTE OF ENTRY LOCATIO
VECTNOR+1 ;STORE AT VECTOR

/START sGET 41 BYTE OF ENTRY LOCATION
VECTOR+2

de dr J Je d de J de de e de de de ok g gk K e g K de gk Kk ok e ko

START OF DISASSEMBLER
Tkkhkkkdkhdkhhkkhhkrhhhkhkhhhkhhd

STHNOK :SET OUTPUT HOOKS FOR PRINTER
SETPC ;SET PC TO A3

SETAS :SET A5 TO # OF LINES PER PAGE
INTTA3 ;SET A3 T START OF COLUMN 2
CMPCA?2 ;COMPARE PC TO END ADDRESS
DISASM ;DISASSEMBLE INSTRUCTINN AT PC
CMA3A?2 ;COMPARE A3 TO END ADDRESS

46

0825
0827
082A
082D
0830

0833
ng836
0839
083B
083E
0840
0843
n84s
0848
0847
ng4c
ng4r
0852
0855
0857
n8s59
085a
n85C
n8s5D
085F
0861
0863
n866
0867
N86A
0868
0n86n
n87n
0871
n873
0875
n|878
0878
087D
0880
0883
0883
0883
0885
0838
08839
0888
088D
088F
088F
n892
0895
0896
0893
089A
08oc
N89E
089F
08a1
08A3
08AS
osa7
08A8
08AA
08AC
N8AD
08AF
03B1
08B3

08BS
0886
08B7
08BA

Machine-Language Aids

BO
20
20
20
20

20
20
A9
20
A9
20
A9
3D
6
DO
20
4c
AD
35
a9
18
£S
AA
FO
30
a9
20
ca
4z
60
1)
20
60
A0
a2
8E
8¢
A9
20
20

A9
8D
60
A9
AD

8C
SE
60
A5
85
AS
85
60
A5
85
AS
85
60
a9
85
60
a5
o]
20
FO

68
68
ac
AS

12
D3
96
52
E5

9F
nc
0D
ED
oA
ED
nn
Fo
45
D0
4B
13
FO
24
42

24

OB
n9
L0l
ED

5D

z
ED

00
ol §
54
53
8D
ED
ED

0o
Fo

00
FO
FD

53
54

40
3a
a1
3B

ELY
40
3B
41

3C
45

3B
3F
12
05

89
3A

08
08
08
08

08
08

FD
FD

25

ng
ng
05

FD

08

FD

AR
AR

FD
FD

06

AR
AA

nsg

69
70
71
72
73

74
75
76
77
78
79
30
21
32
33
34
35
26
87
38
39
99
21
92
93
94
95
LY3
97
28

109
101
102
103
1n4
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141

LNNP2

TAB

™

X
FFEED

STi90K

UNNNOK

SETPC

SETA3

SETAS

CMPCA2

cl

BCS
JSR
JSR
JSR
JSR

JSR
JSR
LDA
JSR
LDA
JSR
LDA
STA
NE”
BNE
ISR
Jup
LDA
STA
LDA
SEC
SBZ
TAX
REQ
BMT
LDA
JSR
NEX
JMP
RTS
LDA
JSR
RTS
LDY
LDX
STX
STY
LDA
JSR
JSR
LDA
STA
LDA
STA
RTS
LDA
LDY
LDX
STA
sTY
STX
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
RTS
LDA
cMP
BCC

BEQ

PLA
PLA
JMP
LDA

LOOP?2 ;DON'T PRINT 2ND COLUMN IF >
STORPC ;SAVE PC AT A4
SETPC ;SET PC TO A3
TAB
DISASM +DISASSEMBLE INSTRUCTINN AT
PC (=a3)
SETA3 ;SET A3 TO PC
RSTRPC :SET PC TO A4
#S0D
PRINT ;PRINT CARRIAGE RETURN
#S0A
PRINT ;PRINT LINE FEED
#5500
0L ;RESET ZOLUMN PARAMETER
A5 s DECREMENT LINE 7ZHOUNTER
Lne :IF NOT END OF PAGE
FFEED ;ADVANCE TO NEXT PAGE
MATN
oL ;GET ZOLUMN FROM SERTAL 7ARD
o}
#9472 :SET X-REG TO
:66-"URSOR POISITION
o} :1.E. #OF SPACES TN PRINT
:TTLL MIDDLFE NF PAGE
X
TX
#S20
PRINT ;PRINT SPACES TILL
: X-REG=0
Tl
#S02 ;PRINT FNRM FEED
PRINT
#3500 ;SET THE HUTPUT 479K
#Scl ;Y 2100 (SLAT 1)
HONKS+1
40NKS
#SAD ;PRINT CARRIAGE RETURN ™)
PRINT ;INTTIALIZE SERIAL CARD
PRINT
4380
NOVID :NO VIDEO MND
#$00 ;SHUT NFF FORCED CR'S
PWDTH ; FROM SERIAL CARD
#S00 sRESET VIDED MOD
#SFN ;AND RESTORE OUTPUT
#SFD ;4NOKS TO SCREEN
NOVID
40NKS
JO0KS+1
A3 ;SET PC TO A3
PC
A3+1
PC+1
o] ;$ET A3 TO PC
A3
PC+1
A3+l
#$3C s INTTIALTI%ZE LINE COUNTER T
AS ;60 ——-- COUNTS DOWN
PC+1 ;COMPARE 11 BYTE OF PC TN
A2+1 ;41 BYTE OF A2 (END ADDR)
c? ; <RETURN
c1 ;=COMPARE INOW BYTES
;POP RETURN ADDRESS
;OFF TIE STACK
UNHONK :RESET 4N0NKS AND QUIT
PC ;COMPARE LOW BYTES

2y 3 3 3

3

A

3y 3 3 3

S I S D

-5 3

3

i)

08BC
08BE
08CH
08C1
08C2
08C5
08C6
08C8
08CA
08cc
08CE
08DO
08D2
08D3
08nsS
08D7
08D9
08DB
n8DC
08DE
08EQ
08E2
08E4
08ES
08E7
08E9
08EC
08EF
08F2
08F4
08F5
08F8
08F8
08F8
08F3
08F8
08F8
08FA3
08FA
08FC
08FD
08FE
0900
0903
0905
0907
0908
090A
090C
090E
n910
0911
0912
0913
0915
0916

c5
90
68
68
4C
60
AS
o3}
90
DO
AS
o3}
60
AS
85
AS
85
60
AS
85
AS
85
60
A6
A4

20
20
A9
48
4c

A2
AO
8a
48
Bl

E6
AS
18
65
85

E6
68
AA
CA
DO
60

3E
0s

29

41
3IF
06
n4

3E

EL
42
3B
43

42
3A
43
3B

3A
3B
99
89
D3
01

67

3C
00

40
8E
2F
40

2F
40
02
41

08

FD
8
F8

FE

F8

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

Cc2
CMA3A2

CMA2
STORPC

RSTRPC

DISASM

CMP
BCC
PLA
°LA
JMp
RTS
LDA
CMP
BCC
BNE
LDA
cMp
RTS
LDA
STA
LDA
STA
RTS
LDA
STA
LDA
STA
RTS
LDX
LDY
JSR
JSR
JSR
LDA
P4A
JMP

A2
c2

UNHNOK

A3+1
A2+1
CMA?2
TMA?2
a3
A2

PC
A4
PC+1
A4+

A4
ec
A4+
PC+1

PC
PC+1
PR1
PR2
PR3
#$01

PR4

Rosenberg Disassembler 47

: RETURN
;2NP STACK

:RESET AND QUIT

;COMPARE A3 AND A2
:RETURN WIT4 CARRY BIT
:SET 2R CLEAR TN

: INDICATE STATUS

:SAVE CURRENT VALUE OF PC

:RESTORE PC FROM CURRENT
:VALUE OF A4

;DISASSEMBLE 1 INSTRUCTINN
:AT PC USTNG MONITOR
;DISASSEMBLE ROUTINE

: IN FOUR PARTS

:SET COUNTER ON STACK FOR
:NUMBER OF INSTRUCTIONS
;ROUTINE SUPPLIES RTS

:
;**ﬁi‘r*******t*i********iiﬁ*i*

;T4IS ROUTINE CALCULATES THE ADDRESS OF THE

;FIRST INSTRUCTINN IN COLUMN TWO
A

INITA3
INIT41

INIT4?2

LDX
LDY
TXA
P4A
LDA
JSR
INC
LDA
CLC
ADC
STA
BCC
INC
PLA
TAX
DEX
BNE
RTS
END

#$3C
#3$0n0

(n3),Y
INSDS?2
LEN

a3

LEN

A3
INIT4?2
A3+1

INIT41

sNUMBER OF INSTRUCTIONS
:SET INDEX POINTER

:SAVE NUMBER OF

; INSTRUCTIONS ON STACK

:GET OP CODE

:MONITOR ROUTINE FOR LENGTH

:GET A3 AND

: INCREMENT RBY

s LENGTY OF INSTRUCTION
$SAVE IN A3

: INCREMENT 41 BYTE

: TF NECESSARY

:GET NUMBER OF INSTRUCTINNS

:SUBTRACT 1
:LOOP IF NOT DONE

Cross Referencing
6502 Programs

by Cornelis Bongers

This cross reference program facilitates the analysis of
6502 programs by constructing a cross reference table
that relates each address that is used to its point of
reference.

The variety and quality of software for 6502 systems continues to grow. Now it is
not attractive to write certain programs yourself, such as a word processor or ad-
vanced game, since the market offers most programs of this kind at reasonable
prices. However, there is one flaw in this argument. After you buy a program, you
almost always discover that it would have suited your needs if those two (missing)
options had been included, or if that nasty bug had been left out.

An example is the flight simulator, a well-known program to Apple owners.
The first time I tried to hold that plane in the air while keeping the Germans off my
tail, it all seemed very difficult, even impossible. However, after many (entertain-
ing) hours, I finally mastered the game. Then I wondered why there wasn’t a second
level of play — one for aces. For instance, in the latter version, a restriction could
be put on the vertical velocity when the plane is landing. In the current version
you land safely, whatever the vertical speed. A plane crash would be more realistic
if the vertical velocity exceeds a certain speed at the moment of touchdown.

If you're satisfied with a program except for a few points, you have three
options: 1. Do nothing and just live with it. If this is your choice, stop reading and
skip the rest of this article. 2. Write your own program and include the missing
options while omitting the bugs. However, this decision will not in general be
very wise because it will cost you at least a few months (probably much longer) to
write. 3. Analyze the program you have and build in the extra options with patches.
As you'll see, the crucial part is the analysis of the program. A cross reference
table is useful for this, and although it doesn't answer all questions, it saves hours
of work on Applesoft analysis.

3

3

.

3

33

3 1 3 3

. |

3

31 3

3

3

Bongers X-REF 49

Analyzing Programs

1 will describe some of the experiences I had during the analysis of Applesoft.
Since I knew Applesoft started at $E000, I started analyzing at $E000 too. I kept
track of all zero page addresses that were used and the values that were stored in
them. I also made a list of the called subroutines. Soon I discovered that this pro-
cess would drive me crazy. After several hours of working, I had a zero page table
full of meaningless numbers, not to mention an enormous table of subroutines
that were called for unknown reasons.

Just before I decided to give up, I remembered something an experienced pro-
grammer once told me: a large program somehow has to analyze its input and thus
must have a keyword table. Furthermore, large programs usually contain a
number of subroutines which handle the keyword functions. Since keywords can
be recognized in a disassembly listing by repeated question marks, I found the
keyword table of Applesoft. Because program control must go to a routine handling
the keyword function when a keyword is detected, it seemed logical that there
also had to be a table of subroutine entry addresses.

After scanning through the listing, I found this table right before the keyword
table. A few hours later I had the subroutine entries in the listing marked with the
keywords and called it a day, thinking that the rest would be simple. Wrong! The
next day I discovered the addresses where the SPEED and ROT bytes are stored.
There was no progress because I still couldn’t keep track of the program flow since
too many subroutines were called from the keyword handling routines.

A similar problem arose with the zero page addresses. Often I suspected that a
certain zero page location was used in connection with a specific function only,
but I could not check this since it is absolutely impossible to find all the
references to a certain address in a listing of 96 pages.

A colleague who had written an x-ref assembler on a Nova 820 computer
made a cross reference table of Applesoft for me which solved most of my prob-
lems. An x-ref assembler lists all references that are made to an address. By using
these references it is possible to trace the program flow in reverse order, making it
easy to find the driver (main program) in the program you want to analyze. Fur-
thermore, the references show where in the program a certain zero page (or other)
location is used. (This helps to find out the meaning of the values stored in such a
location.)

Apart from the references themselves, useful information provided by a cross
reference table includes the number of references at a certain address. For in-
stance, if you find a subroutine with more than five references, it is bound to be an
important one and it certainly will be worth the trouble to find out what it does.
As an example, the cross reference table of a small program is listed in figure 1.

When executing this program it will ask for a BASE. After typing in a number
between one and nine, the program will display a counter on the screen which
starts counting at zero in a notation with base equal to BASE + 1. The ASCII values

50 Machine-Language Aids

listed behind the mnemonics show that the last part of the program contains the
text ‘BASE (1-9) 7' Since the ‘B’ from BASE is referred to by address $200D, this
will be an address within a routine that displays text.

Another important point is the empty line at $2024. Because this line is referred
to by the instruction BNE $2024 at $202D, there must be a hidden instruction at
$2024. Hidden instructions are sometimes used (among others in Applesoft) to
save a few bytes.

Note that the x-ref assembler lists addresses $A0, $AD, $D3 and $A0A9 as ad-
dresses used by the program. However, these addresses appear in the text ‘'BASE
(1-9) ' since the disassembler has translated some text to valid opcodes. The x-ref
assembler is thus not able to distinguish opcodes that are more or less randomly
generated within text or tables from real opcodes. This means that some of the
references listed by the x-ref assembler may not be valid.

Figure 1
0005- 2025
00A0- 203B
00AD- 203E
00D3- 2039
OOFE- 2023
040D- 2020
05D5- 2007
05D6- 202a 2031

2000-2058FC JSR $FC58 x|
2003-A222 LDX #$22 "
2005-A9R0 LDA #$BO)o
2007-9DD505 STA $05D5,X U 200B
200A-CA DEX J
200B-DOFA BNF $2007 Pz
200D-BD3820 LDA $2038,X =8 2016
2010-20EDFD JSR $FDED m}
2013-F8 INX h
2014-E00C CPX #$0C *
2016-COF5 BNE $200D Pu

2018-ACO0CO LDY $C000 , @ 201B
201B-10FB BPL $2018 {
201D-8C10CO STY $CO10 [
2020-8C0D04 STY $040D

2023-AS5FE LDA $FE g~

2024~ 202D
2025-0605 [CEC $05,X V
2027-A221 LDX #$21 "l
2029-98 TYA 2035
202RA-DPDD605 CMP $05L6,X]V
202D-DOF5 BNE $2024 Pu
202F-A9BO LDA #$BO)O
2031-9DD605 STA $05D6,X V
2034-CA DEX J
2035-10F2 BPL $2029 r
2037-60 RTS *

2038-C2 222 B 200D
2039-C1D3 CMP ($D3,X) AS
203B-C5A0 CMP $AO E

203C-A8 TAY (
203E-B1AD LDA ($AD),Y 1-
2040-B9A9A0 LCA $AOA9,Y 9)
2043-BF 2?2 ?

AOA9- 2040
C000- 2018
co10- 201D
FC58- 2000
FDED- 2010

3 13

.

3 3

3

A

3

3 3 3 8

Bongers X-REF 51

The X-REF Assembler Program

Since I consider an x-ref assembler an indispensable software tool for my
Apple, I wrote one. The text file of the progam is listed in figure 2.

To run the x-ref assembler, BRUN CROSS ASSEMBLER and give the
{monitor) command 800G to initialize the control Y vector. Next, load the binary
program that has to be x-reffed, starting at a user-defined location. In the sequel it
will be assumed that this is location $1000. In case you load from tape, the
monitor MOVE command can be used to ‘‘move’’ the program to this location.
After having performed these steps, the x-ref assembler can be executed by the
command,

XXXX <YYYY.ZZZZcontrol Y
where

XXXX is the origin of the program that has to be x-reffed.
YYYY s the start address (i.e. $1000) of the program in memory
Z77Z is the end address of the program in memory.

For instance, if you want to make a cross reference table of ROM Applesoft, it
first has to be moved to location $1000 by the command 1000< D000 .FS8OOM.
The x-ref assembler then can be executed by the command D000 < 1000.3800
control Y. After having typed in this command (followed by a carriage return) the
display should show five figures after a few moments. These are:

Pass The number of passes (including print passes) made thus far.

SAR The start of the address range that is x-reffed during the current pass.
EAR The end of the address range that is x-reffed during the current pass.
TSP A table pointer.

PCU The user’s program counter.

To explain these figures, it is necessary to give a brief description of the way
the x-ref assembler works. The program starts (after the control Y command) by
initializing a table which begins just behind the program that has to be x-reffed
and ends at a user-defined location. This table is used to store the references and
consists of the format shown in table 1.

Table 1
Memory (Next (Previous
Location Address Address) Address) References
7777.+1 0000 ZZZZ +1 + 1+0FF1 FFFF
Z77ZZ + 1+ 1+0FF1 FFFF FFFF 2777 + 1

52 Machine-Language Aids

The table is initialized with the values shown and each entry has a (user-
defined) length of OFF1 bytes. Next, the x-ref assembler starts x-reffing the pro-
gram, thereby keeping up two program counters. The first program counter (PC)
points to the subsequent addresses of the instructions that have to be disassembled
in the program starting at $1000, while the second program counter (PCU) points
to the corresponding addresses in the original program. The PC and PCU therefore
differ by a constant with the value $XXXX-$1000.

Suppose now that the first instruction that is being disassembled is LDA $00.
The x-ref assembler then searches the table to see whether address $00 is present
already. Since this is the case, it stores the current value of PCU, say $3000, as a
reference at the entry of address $00. If the second instruction is LDX $03, the
table is searched again, but this time no entry for address $03 is found. Therefore
this entry is added to the table and the pointers to the next and previous addresses
are updated. After adding address $03, the table appears as in table 2.

Table 2
Memory (Next (Previous
Location Address Address) Address) References
7777 +1 0000 Z777Z +1 +2+0FF1 FFFF 3000
Z77ZZ + 1+ 1+0FF1 FFFF FFFF 72777 +1 +2+0FF1
Z7ZZ+1+2+0FF1 0003 ZZZZ +1+1+QFF1 ZZZZ+1 3002

When x-reffing a large program, the table eventually becomes full. If the x-ref
assembler detects this, it narrows its search range by neglecting (in the current
pass) all addresses larger than the largest address found so far. The largest address
of the search range is displayed on the screen under the heading EAR. Thus, as
soon as the table is full, this address will change to a smaller value.

Suppose now that the table is full and the x-ref assembler finds an address, say
QQQQ, that is in the search range but not in the table. In that case, an entry for
this address has to be merged into the table. The program does this by first changing
the value of the largest address in the search range (EAR) to the next largest ad-
dress in the search range. Note that this address can be found by using the
"'previous address’’ pointer that is stored at each entry. The address QQQQ is then
stored in the entry of the previous largest address which is empty now. Finally, the
‘next address’ pointer of the largest address smaller than QQQQ, the 'next ad-
dress' and 'previous address’ pointer of QQQQ, and the ‘previous address’ pointer
of the smallest address larger than QQQQ, are updated to link QQQQ to the chain
of addresses.

3

B R

3

3

Bongers X-REF 53

If the x-ref pass has been completed, the results are displayed or printed up to
the largest address in the search range. In case all addresses could not be stored in
the previous x-ref pass, the program puts the smallest address of the (new) search
range (SAR) equal to the largest address of the (previous) search range plus one
(i.e., SAR =EAR + 1) whereas EAR is put equal to FFFF. Next, another x-ref pass is
made and this process continues until the references to all addresses have been
displayed or printed.

Finally, I'll discuss some of the program parameters that can be changed by
the user. These parameters can be found in the DATA SECTION of the listing.

The first four parameters are used to inform the program about your printer
configuration. If you don’t have a printer, put PRFLG equal to $00 and neglect the
three parameters: PNTL, PNTH and CSND. If PRFLG equals zero, all output will
be directed to the video screen. Since the output may run a little bit too fast on the
screen to make notes, you can display one address (plus references) at a time by
repeatedly pressing the escape key. Any other key will continue the output at nor-
mal speed.

I have distinguished three ways that printers can be connected to the Apple:

1. You may have an interface card, say in slot 2. In that case, put PNTL equal to
the slot number (i.e. 2) and put PNTH as well as CSND equal to zero.

2. If you use a subroutine that drives the printer, put the low byte of this sub-
routine in PNTL and the high byte in PNTH, and put CSND equal to zero.

3. If the printer routine already has been connected before execution of the x-ref
assembler, a special character to activate or deactivate the printer can be sent
by storing the ‘'printer off’’ character in PNTL, the ‘‘printer on’’ character in
PNTH and by putting CSND equal to $FF.

Editor’s note: For serial interface card in slot zero BRUN CROSS-SLOT-ZERO
in place of CROSS ASSEMBLER to send output to the printer.

The next parameter is EOT1. This parameter contains the highest memory ad-
dress used by the x-ref assembler (HIMEM). In the listing, EOT1 is put equal to
$8FFF since my printer routine starts at $9000, but if you don’t use a printer or
disk, EOT1 can be put equal to the highest RAM address. The parameter OFF1
equals the length of a table entry. Because 6 bytes per entry are needed to store the
address and the pointers, OFF1 equals $34 which means that (52-6)/2=23
references can be stored per entry. The last parameter, AMAX, is the maximal
number of addresses that will be printed per line, if a printer has been connected.

I hope these parameters will offer you sufficient selection possibilities to
make the type of cross reference table you need. If they do not, just x-ref the x-ref
assembler, analyze it and make a version suited to your needs.

54 Machine-Language Aids

Figure 2

1309
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
08900
0800
0800
0800
0800
0800
0800
009B
008C
C000
co10
002D
002C
0036
003C
003E
0042
003A
0024
002F
002E
F9CO
FAQOO
0800
0800
F88C
FC58
FD96
FDDA
F94A
F948
FI9B4
F9BA
FDED
FD8E
FE9S
F953
0800
0800
007E
0080
0082
0084
0086
0000
0001
0003
0005
0007
0088
008A
008C
008E
0090
0092
0093
0094
0095
0096
0097
0098
0800

VDN D WN —

7*****i*i*********i******

ESC
FF
KBD
CLKBD
RM
LM
CSWL
AlL
A2L
A4L
pC
CH
LEN
FORM
MNML
MNMR

FMIN
CLSC
PRYX2
PRBYT
PRBL2
PRBAK
CHAR1
CYHAR2
cour
CROUT
ouTP
PCADJ

AST
PCl
PC2
PCU1
PCU2
PASS
SAR
EAR
TSP
PCU
SOT
EOT
RUNT
END
HULP
SAVX
CNTR
OFF
EOP
TFUL
ACNT
ETBL

* CROSS ASSEMBLER
CORNELIS BONGERS
CROSS
COPYRIGHT (C) 1982
MICRO INK, INC.

CHELMSFORD, MA 01824
ALL RIGHTS RESERVED

dede g dedk g K de ok ke ek ke ok ek ke ke ke ke ke

ORG
EPZ
EPZ
EQU
EQU
EPZ
EPZ
EP2Z
EPZ
EPZ
EP2Z
EPZ
EPZ
EPZ
EPZ
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ
EPZ

*
*
*
*
*
*
*
*
*
*
*
*
*

$800
$9B
$8c
$CN00
$CO10
$2D
$2c
$36
$3¢C
$3E
$42
$3A
$24
$2F
$2E
$F9CO
$FA00

$F88C
$FC58
$FD96
$FDDA
$F94A
$F948
$F9B4
SFIBA
$FDED
$FDSE
S$FE9S
$F953

$7E
$80
$82
$84
$86
$00
$01
$03
$05
$07
$88
$8a
$8c
$8E
$90
$92
$93
$94
$95
$96
$97
$98

;s ESCAPE
;FORM FEED

sMONITOR LOCATIONS

sMONITOR SUBROUTINES

:DATA REGISTERS

:START ADDRESS RANGE
;END ADDRESS RANGE

: TABLE POINTER

1 USERS PROGRAM POINTER
;START OF TABLE

:END OF TABLE

;GENERAL USE

;POINTER TO LARGEST ADDRESS
: TEMPORARY STORAGE
:STORAGE X REGISTER
:BYTE COUNTER

; LENGTH OF TABLE ENTRY
:END OF PROGRAM FLAG

: TABLE FULL FLAG
;COUNTER

:END OF TABLE FLAG

3

]

.

I

3 3

.

-3

-3

0800
0800
0800
0800
0800
0800
0802
0805
0807
080A
080C
080F
0810
0810
0810
0810
0811

0812
0813
0814
0816
0817

0818
0818
0818
081E
0821
0824
0827
082A
0828
082C
082E
082E
082E
082E
0830
0831
0833
0835
0837
0839
083B
083D
083F
0841
0843
0846
0848
0849
084B
084D
084F
0852
0854
0857
0859
085B
085E
0860
0862
0864
0866
0869
0869
0869
0869
0868
086D
086E
0871
0873
0875
0877

A9
8D
a9
8D
A9
8D
60

FF
8E

20
FF
FF
34
oa

A2
86
E8
20
A9
85
85
20

4C
F8
2E
F9
08
FA

8F

00
96

09
FF
03
04
8E

03
03

03

53
41
45
20
50
43

07

08

08

08

FC

oc

08

98

929
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

PRFLG
PNTL

PNTH
CSND
EOT1
OFF1
AMAX

H

49EAD

SAR1

* INIT PROGRAM PARAMETERS

BEGIN

IFR

DI se ~e ne

IT

*** START OF PROGRAM ***

* INITIALIZATION *

LDA #$4C
STA $3F8
LDA #BEGIN
STA $3F9
LDA /BEGIN
STA $3FA
RTS

* DATA SECTION *

BYT S$FF
BYT $8E

BYT $90
BYT S$FF
ADR $8FFF
BYT $34
BYT SOA

Bongers X-REF 55

:BRUN TYIS PART
;INIT CONTROL Y VEZTOR

:SET PRINTER FLAG
: "N TO DEACTIVATE PRINTER

:"P TO ACTIVATE PRINTER
;SET CHAR SEND BYTE

:END OF MEMORY USED ('{IMEM)
;LENGTY OF A TABLE ENTRY
:MAXIMUM NO. OF
ADDRESSES/LINE

ASC 'PASSSAR EAR TSP PCU'

BYT $8D
ADR $0000

LDX #SFE

SEC

LDA A2L+$02,X
ADC #$00

STA SOT+$02,X
LDA AlL+$02,X
STA PC1+$02,X
STA PC2+$02,X
LDA A4L+$02,X
STA PCUL+$02,X
STA PCU2+$02,X
LDA SAR1-$FE, X
STA SAR+$02,X
INX

BNE IFR

STX EOP

STX ETBL

LDA OFF1

STA OFF

LDA EOT1

SBC OFF

STA EOT

LDA EOT1+1

SBC #$00

STA EOT+1

LDA #$80

STA PASS

JSR CLSC

* MAIN PROGRAM *

LDX #$00
STX TFUL
INX

JSR SPCN
LDA #S$FF
STA EAR
STA EAR+1
JSR POUT

:START ADDRESS RANGE

*

;INIT START OF TABLE
:TO SOT=A2L+1

;INIT PROGRAM COUNTERS

: INIT USERS PROGRAM COUNTER

;INIT START ADDRESS RANGE

+INIT END OF PROGRAM FLAG
;AND END OF TABLE FLAG
;INIT LENGTHd TABLE ENTRY

;END INIT END OF TABLE

:TO END OF MEMORY-1-OFF

;s INIT PASS
;CLEAR SCREEN

;CLEAR TABLE FULL POINTER

s INIT PROGRAM COUNTERS
;INIT END ADDRESS RANGE

:DEACTIVATE PRINTER

56

087a
087D
087F
0882
0885
0887
0889
088B
088E
0890
0893
0894
0896
0898
089A
089C
089D
089F
08A1l
0o8al
08Al
08al
08a4
08A6
08A8
08AA
08AC
08AD
08AF
08B1
08B3
08B5
08B7
08B9
08BB
08BD
08BE
08CO
08C1
08C3
08c4
08Cé
08cs
08CA
o8cc
08CE
08CF
08D1
08D3
08D4
08D6
08D7
08D9
08DB
08DD
08DE
08EO
08E3
08E6
08ES8
08EA
08ED
08F0
08F1
08F2
08F4
08F7
08F9
O8FB
08FE
0900
0902
0904
0906
0907

Machine-Language Aids

20 Al 08 142
A2 01 143
20 29 OC 144
20 26 0B 145

A5 96 146

DO OA 147

A9 8C 148

20 ED FD 149

A2 00 150 POUT

4C 29 OC 151

38 152 NRDY

A2 FE 153

B5 05 154 NLA

69 00 155

95 03 156

E8 157

DO F7 158

FO C8 159
160
161
162

20 5D 09 163 XASM

A9 FF 164

A2 00 165

86 8C 166

A6 8B 167

c8 168 MFUR

DO 02 169

E6 8D 170

91 8C 171 STOR

E4 8D 172

DO F5 173

C4 8A 174

DO F1 175

A0 00 176

98 177

91 88 178

c8 179

91 88 180

18 181

A2 FE 182

AS5 94 183

75 8A 184 NLP

95 07 185

95 90 186

cs 187

91 88 188

A9 00 189

E8 190

DO F2 191

c8 192

A5 88 193

91 05 194

A5 89 195

c8 196

91 05 197

20 67 09 198

20 8E FD 199

A0 00 200

A2 04 201 cpPl

B9 18 08 202 CPR

20 ED FD 203

c8 204

CA 205

DO F6 206

20 48 F9 207

cOo 14 208

DO ED 209

20 6F 0OA 210

AS 00 211 DNI

29 7F 212

A0 01 213

84 24 214

88 215

FO 09 216

JSR
LDX
JSR
JSR
LDA
BNE
LDA
JSR
LDX
JMP
SEC
LDX
LDA
ADC
STA
INX
BNE
BEQ

JSR
LDA
LDX
STX
LDX
INY
BNE
INC
STA
CPX
BNE
CPY
BNE
LDY
TYA
STA
INY
STA
CLC
LDX
LDA
ADC
STA
STA
INY
STA
LDA
INX
BNE
INY
LDA
STA
LDA
INY
STA
JSR
JSR
LDY
LDX
LDA
JSR
INY
DEX
BNE
JSR
CPY
BNE
JSR
LDA
AND
LDY
STY
DEY
BEQ

XASM ;CROSS ASSEMBLE
#501

PONOF +ACTIVATE PRINTER
PRINT :PRINT RESULTS

TFUL ;WAS TABLE FULL?
NRDY ;YES, BRANCH

#FF s READY, GIVE FORM FEED
CouT

#$00 ;s DEACTIVATE PRINTER
PONOF sRTS TO MONITOR
#SFE

EAR+$02,X

#$00 ;PUT SAR=EAR+1l
SAR+$02,X

NLA

AIT : ALWAYS

* CROSS ASSEMBLE SUBROUTINE *

IRUNT
#SFF
#$00
RUNT
EOT+1

;INIT RUNT

STOR
RUNT+1
(RUNT),Y
RUNT+1
MFUR

EOT
MFUR
#$00

;FILL TABLE WITH FF'S

(soT) .Y ;INIT FIRST TABLE ENTRY

(soT),Y

#SFE

OFF
SOT+$02,X
TSP+$02,X
END+$02,X

: TSP=SOT+OFF
; END=TSP

(soT).Y
#$00

;NEXT ENTRY IS TSP

NLP

soT
(Tsp),Y
SOT+1

;INIT SECOND TABLE ENTRY
;PREVIOUS ENTRY IS SOT

(TSP),Y
ATSP1
CROUT
#$00
$$04
4EAD,Y
CouT

:SET TSP TO FIRST EMPTY ENTRY
;CARRIAGE RETURN
;s PRINT HEADING

CPR

PRBAK
#$14
CP1

APASS
PASS
#$7F
#$01
CH ;INIT CURSOR

;ADJUST PASS

PRT ;s ALWAYS

[Re]

0909
090C
090F
0912
0915
0918
0919
091A
091C
091E
0920
0922
0925
0927
0929

092B

092D
092F
0931
0934

0936
0939
093B
093E
0940
0941

0943
0945
0947
0948
094A
094C
094E
0950
0952
0953
0955
0957
095A
095C

095D
095D
095D
095D
095F
0961
0963
0965
0966
0967
0969
096B
096D
096F
0971
0972
0972
0972
0972
0972
0975
0977
0979
097C
097E

B9
20
B9
20
20

c8
co
DO
A9
85
20
A6
30
DO

AS

85
86
20
90

20
BO
20
AOQ
c8
c4

FO
Bl
cs
31
49
DO
A5
91
88
AS
91
20
90
60

A4
84
A4
84
60
18
A5
65
85
90
E6
60

00
DA
FF
DA
48

OA
EB
FF
93
8F
93
2E
06

7E
7F

78
21

8C
03
B2
05

94

12
8C

8C
FF
F2
07
8C

08
8c
72
A2

89
8D
88
8C

05
94
05
02
06

00
FD
FF
FD
F9

09

oA

OA

oA

09

oA

F9

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236

237
238
239
240
241
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

ANP

PRT

NZP

FOUN
NEF

ENF

IRUNT

ATSP2
ATSP1

RETR

o e ne m

ENFL

LDA
JSR
LDA
JSR
JSR
INY
INY
CPY
BNE
LDA
STA
JSR
LDX
BMI
BNE

LDA

STA
STX
JSR
BCC

JSR
BCS
JSR
LDY
INY
CPY

BEQ
LDA
INY
AND
EOR
BNE
LDA
STA
DEY
LDA
STA
JSR
BCC
RTS

LDY
STY
LDY
STY
RTS
CLC
LDA
ADC
STA
BCC
INC
RTS

JSR
STA
STY
JSR
STA
STY

Bongers X-REF 57

PASS,Y ;DISPLAY PASS,SAR, EAR,
PRBYT ;TSP AND PCU -
PASS-1,Y
PRBYT
PRBAK
#SA
ANP
#SFF
CNTR ;INTT COUNTER
DISA ;DISASSEMBLE ONE INSTRUCTION
CNTR
ENF ;BRANCH IF NO ADDRESS
NZP ;BRANCH IF NO ZERO PAGE ADDRESS
AST ;ADJUST AST FOR 7P INSTRUCTIONS
AST+1
AST
RANGE ;CHECK WIETMER ADDRES3 IS (N
ENF ; TABLE RANGE AND BRANCHY IF NOT
SEAR ;SEARCH ADDRESS IN TABLE
FOUN ;BRANCH IF EXACT MATCH
MERGE ;MERGE IF NOT
#$05
;SEARCH ROOM IN TABLE ENTRY
OFF ;TO STORE USERS PROGRAM COUNTER
ENF ;BRANCH IF ENTRY FULL
(RUNT),Y
(RUNT) , Y
#SFF
NEF
PCU ;ROOM FOUND, STORE
(RUNT) ,Y ;USERS PROGRAM COUNTER
PCU+1
(RUNT),Y
ENFL ;ADJUST PROGRAM COUNTERS
DNI
:RTS IF END OF PROGRAM REACIED

* IRUNT/ATSP2 : PUT RUNT=SOT OR TSP=TSP+OFF

SOT+1
RUNT+1
SOT
RUNT

TSP
OFF
TSP
RETR
TSP+1

* ENFL:SUBROUTINE ADJUST PROGRAM COUNTERS
* AND CHECK ON END OF PROGRAM

PCAD ;ADJUST USERS PROGRAM COUNTER
PCU

PCU+1

PCADJ ;ADJUST PROGRAM COUNTER

PC

PC+1

58

0980
0981
0983
0984
0986
0988
098a
098c
098E
098F
098F
098F
098F
098F
098F
0991
0994
0996
0998
0999
099B
099D
09A0
09A2
09A4
09a7
09AA
09AD
O9AF
09BO
0982
N9B4
09B6
09B8
09B9
09BC
09BE
09BF
09Co
09C3
09C5
09Cs8
09CA
09cc
09CE
09D0
09D2

09D3

09D4
09D6
09D8
09DB
09DC

09DE
09DF
09E2

09E4
09E6
09ES8
09EA
09EC
O9EE
09F1
09F3
09F5
09F7
09F9
09F8
09FE
0AO1
0AO3
0AO06
0AO07
0A09
OAOB

Machine-Language Aids

38
ES
98
ES5
24
10
90
E6
60

A9
AO

26
2A
88
DO
69
20
CA
DO
E8
20
A4
A2
EO
FO

90
BD
24
30
co
FO
DO
20
BD
FO
20
CA
DO
FO
88

88

89
00
04
02
95

00
8C
00
4A

07
08
96
00
3A
DA
AD
4a
2F

FO
02
03
F2

4a
03

co
2C
00
2D
00
05
2D
2C

F8
ED
EC

4A
2F
06
03
27
2E
18
B3
00
06
A3

oB
ED
B9
03
ED

DD
1E

F8

FD

FD
09
F9

F9

F9

FA

FD

F9

F9

FD
Fo

FD

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

KLR

PR

ISA

PROP

PRBK
NOBL

M1

M2

XASS
PRAD1

PRAD2

ouT

PRAD3

PRAD4

SEC
SBC
TYA
SBC
BIT
BPL
BCC
INC
RTS

LDX
JSR
BIT
BPL
PHA
LDX
LDY
JSR
LDY
LDA
JSR
JMp
JSR
CcPY
INY
BCC
LDX
CPY
BCC
DEX
JSR
LDX
PLA
TAY
LDA
STA
LDA
STA
LDA
LDY
ASL
ROL
ROL
DEY
BNE
ADC
JSR
DEX

BNE.

INX
JSR
LDY
LDX
CPX
BEQ
ASL
BCC
LDA
BIT
BMI
CMP
BEQ
BNE
JSR
LDA
BEQ
JSR
DEX
BNE
BEQ
DEY

SOT

SOT+1
PASS
KLR
KLR
EOP

* IF PASS POSITIVE,
* SEE ALSO APPLE MONITOR FOR COMMENTS

#$00
FMIN
PASS
XASS

PCU
PCU+1
PRYX2
#$00
(pC),Y
PRBYT
NOBL
PRBL2
LEN

PROP
#502
#$03
PRBK

PRBL2
#$03

MNML, Y
M
MNMR, Y
RM
#s00
#$05
RM

M

M2
#$BF
cour

M1

PRBL2

LEN

#$06

#$03
PRADS
FORM
PRAD3
CHARL-1,X
PASS

ouT

#SA3

RTS3
PRAD3
cour
CHAR2-1,X
PRAD3
couT

PRAD1
EMNO

;END OF PROGRAM REACHED?

;YES, RETURN WITH CARRY SET
;IF X-ASSEMBLE PASS
;IF PRINT PASS, SET EOP FLAG

* DISA:DISASSEMBLE ONE INSTRUCTION (X-ASSEMBLE PASS
PRINT PASS IF PASS NEGATIVE)

;s DETERMINE FORMAT INSTRUCTION
:IF PASS IS POS,
;CROSS ASSEMBLE

;PRINT USERS PROGRAM COUNTER

;s PRINT OPCODES
;IN A 8 CHAR. FIELD

:PRINT BLANK

s FETCH MNEMONIC

sPRINT BLANK AFTER MNEMONIC

;FETCH ADDRESS IF PRESENT

;IS CHAR "#" ?
;YES, STOP DISASSEMBLING
;NO, CONTINUE

;s ALWAYS

)y 3

3

.

3

mm

OAOC
OAQE
OAll
0Al3
0AlS
0Al7
OAl9
OAlC
OAlD
OAlE
0A20
0A21
0A22
0A25
0A26
0A29
0a28B
0A2D
OA2F
0A31l
OA33
OA35
OA37
0A39
OA3B
OA3D
OA3F
0A41
OA44
0A46
0a47
0A49
0A4B
OA4E
OA4E
OA4E
OA4E
OA4E
OA50
OAS52
0AS55
0AS7
0A59
OAS5SB
OA5D
OASF
0A60
0A60
0A60
0A60
0A60
0A61
0A63
0OA65
OA66
0A68
OA69
OA6B
0A6D
OA6E
OA6F
OA6F
OA6F
OA6F
OA71
0A72
OA73
OA75S
OA77
OA78
0A78
0A78
OA78
0A78

30
20
AS
co
Bl
90
20
AA
E8
DO
cs
98
20
8A
20
24
10
A9
85
A0
Bl
09
[e3°]
FO
co
BO
A9
20
c4
cs
90
A9
4c

24
10
4C
E6
86
A6
95
A6
60

38
AS
A4
AA
10
88
65
90
c8
60

a4
c8
98
49
85
60

38

DC
4E
2E
E8
3A
F2
63

0l

4E

4E
00
32
18

00
3A
80
FF
04
AO
02
A0
ED
2F

EA
1E
D1

00
03
DA
93
92
93
7E
92

2F
08

0l

07
0l

80
00

oa

oA

oa

oA

FD

oB

FD

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

PRADS

PRYX

EMNO

oopP

SPTA
CHT

* *

Zone me e

PBY

NPR

RTS3

*

R

CAD

PCA3

PCA4

RTS4

BMI
JSR
LDA
CMP
LDA
BCC
JSR
TAX
INX
BNE
INY
TYA
JSR
TXA
JSR
BIT
BPL
LDA
STA
LDY
LDA
ORA
CMP
BEQ
CMP
BCS
LDA
JSR
CcpPY
INY
BCC
LDA
JMP

Bongers X-REF 59

PRAD2

MPBY ;PRINT ADDRESS BYTE
FORM

#SE8

(pC),Y

PRAD4

PCA3

PRYX

MPBY

MPBY

PASS

RTS3 ;IF NO PRINT PASS, RTS

#$18

CH ;TAB FOR PRINTER OR VIDEO
#$00

(eC),Y

#$80

$SFF MY PRINTER DOESN'T ACCEPT FF
SPTA

#SA0 ;OUTPUT ASCII VALUES OPCODES
CHT

#$A0

cour

LEN

ooP
#S1E sSET TAB FOR PRINTER OR VIDEO
ITAB1

MPBY:PRINT BYTE IF PRINT PASS
STEAL (ADDRESS) BYTE IF X-PASS

BIT
BPL
JMP
INC
STX
LDX
STA
LDX
RTS

PASS

NPR

PRBYT ;PRINT BYTE AND RTS
CNTR ;COUNT ADDRESS BYTES
SAVX 1 SAVE X-REGISTER
CNTR

AST,X :SAVE ADDRESS BYTE
SAVX

PCAD:ADJUST USERS PROGRAM COUNTER
OR CALCULATE TARGET FOR RELATIVE BRANCY

SEC
LDA
LDY
TAX
BPL
DEY
ADC
BCC
INY
RTS

LEN
PCU+1

PCA4

PCU
RTS4

* APASS:ADJUST PASS

APASS

ANGE

LDY
INY
TYA
EOR
STA
RTS

SEC

PASS

#$80
PASS

* RANGE:CHECK WI{ETHER ADDRESS 1S IN SEARC{ RANGE
* RETURN WITY CARRY CLEAR IF NOT, ELSE WITH CARRY SET

60

OA79
OA7B
OA7D
OA7F
0AS81
0A83
0A85
oa87
0A89
OA8B
0A8C
0A8C
0ABC
0aRC
0asc
OAS8F
0A90
0A92
0A94
0A96
0A97
0A98
0A9A
OA9C

OA9E

OAAO
0AAl
OAA3
OAA4
0AA6
OAA8
OAA9
OAAA
OAAC
OAAE
OABO
OAB2
OAB2
0AB2
OAB2
OAB2
OAB4
OAB6
OAB8
OABA
OABC
OABE

OACO
OAC3

OACS5
OAC7
OAC9
0ACB
OACC
OACE
OADO
OAD2
OAD4
OAD6
0AD8
OADA
OADC
OADE
OAEO
OAEl
OAE2
OAE4
OAE6
OAES8
OAEA
OAEC
OAEE

Machine-Language Aids

A5 03 431

E5 7F 432

A5 04 433

ES 7E 434

90 08 435

A5 7F 436

ES 01 437

AS 7E 438

ES 02 439

60 440 NIR
441 ;
442 ;
443 ;
444 ;

20 5D 09 445 SEAR

38 446

A0 01 447 CoN

A5 7F 448

Fl 8C 449

AA 450

88 451

aS 7E 452

F1 8C 453

90 05 454

DO 04 455

8A 456

DO 01 457

60 458 RTSS

A0 02 459 NFND

Bl 8C 460

AA 461

c8 462

Bl 8C 463

85 8D 464

86 8C 465

BO DE 466
467 ;
468 ;
469
470 ;

AS 96 471 MERGE

FO 1C 472

A5 8E 473

85 05 474

A5 8F 475

85 06 476

AD 04 477

20 1C 0C 478

85 8F 479

86 SE 480

A4 94 481

A9 FF 482

88 483 PR

91 05 484

co 06 485

DO F9 486

A0 05 487 NFUL

A2 01 488

Bl 8C 489 RET

91 05 490

95 90 491

B5 05 492

91 8cC 493

88 494

cA 495

10 F2 496

a2 01 497

Bl 90 498 REK

91 05 499

B5 05 500

91 90 501

95 8C 502

LDA
SBC
LDA
SBC
BCC
LDA
SBC
LDA
SBC
RTS

JSR
SEC
LDY
LDA
SBC
TAX
DEY
LDA
SBC
BCC

BNE

TXA
BNE
RTS
LDY
LDA
TAX
INY
LDA
STA
STX
BCS

EAR
AST+1
EAR+1
AST
NIR
AST+1
SAR
AST
SAR+1

IRUNT

#$01
AST+1
(RUNT),Y

AST
(RUNT) ,Y
RTS5

NFND

NFND

#5802
(RUNT),Y

(RUNT),Y
RUNT+1
RUNT
COoN

* SEAR:SEARCY ADDRESS IN TABLE, RETURN WITH CARRY SET
* IF FOUND, ELSE WIT{ CARRY CLEAR

;PUT RUNT=SOT

:RTS IF TABLE ENTRY
ADDRESS IS

; LARGER THAN ADDRESS
SEARCHED FOR

;GET NEXT TABLE ENTRY IN RUNT

;ALWAYS

* MERGE:MERGE OR ADD ADDRESS (IN) TO TABLE IF

* NO EXACT MATCH FOUND

LDA
BEQ
LDA
STA
LDA
STA
LDY

JSR
STA

STX
LDY
LDA
DEY
STA
CPY
BNE
LDY
LDX
LDA
STA
STA
LDA
STA
DEY
DEX
BPL
LDX
LDA
STA
LDA
STA
STA

TFUL
NFUL
END
TSP
END+1
TSP+1
#9504

CFF1l
END+1

END
OFF
#SFF

(Tsp),Y
#$06

PR

#S05
#$01
(RUNT) ,Y
(TSP),Y
HULP, X
TSP, X
(RUNT) ,Y

RET

#$01
(HuLP) ,Y
(TsP),Y
TSP, X
(quLp) ,Y
RUNT, X

;IS TABLE FULL?

BRANCH IF NOT

;ELSE RESERVE ENTRY LARGEST
;ADDRESS FOR CURRENT
ADDRESS

: STORE gEXT BUT LARGEST
S

ADDRE!
tENTRY IN END FOR LATER USE

;STORE FF'S IN TABLE ENTRY

;ADJUST POINTERS
; (TsP),4,5=(RUNT),4,5
s4ULP, 0, 1=(RUNT),4,5

; (RUNT) ,4,5=TSP,0,1

; (HULP),2,3=TSP,0,1
;RUNT, 0, 1=TSP,0,1

3

3

S R

5

)

e

OAFO
OAF1
OAF2
OAF4
OAF6
OAF8
OAFA
OAFB
OAFD
OAFF
0BO1
0B0O4
0BO5

0BO7
0B09
OBOB
0BOD
OBOF
OBl1
0B13
OB15
OB16
0B18
0OBlA
0OB1C
OBlE
0B20
0B21
0B23
0B25
0B26
0B26
0B26
0B26
0B29
0B2B
OB2E
0B30
0B32
0B33
0B35
0B38
0B3A
OB3D

0B40
0B42
0B44
0B47
0B4A
0B4C
OB4E
0B50
0B52
0B54
0B56
0B57
0B59
OB5B
OB5C
OBSD
OB5F
0B61
0B63
0B65
0B66
0B68
0B6B

OB6E
0B71
0B74

0B77
OB7A

88
CA
10
A5
91
A5
88
91
A5

20
38
E5

A5
E5
90
E6
AOQ
Bl
85

Bl
85
AO
Bl
85
88
Bl
85
60

F2
7F

7E

05
96
OE
66

8A

06
8B
18
96
04
8E
90

8E
91
0l
90
03

90
04

6F
03
09
88
05

F9
1A
03
DF
00

9B

10
00
FB
95
31
98
20
o1

05
07

05
08
1E
OF

oc
8F
95

72
90
8F

72
95

09

[01.

ocC

oc

OB
co

co
co

09
OB

09
0B
09

09

503
504
505
506
507
508
509
510
511
512
513
514
515

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

570
571
572

573
574

YFULL

RTSS

DEY
DEX
BPL
LDA
STA
LDA
DEY
STA
LDA
BNE
JSR
SEC
SBC

LDA
SBC
BCC
INC
LDY
LDA
STA
INY
LDA
STA
LDY
LDA
STA
DEY
LDA
STA
RTS

* PRINT:

PRINT

NEL
PZER

ASK

PZERT

PAD

JSR
LDX
JSR
LDA
STA
DEX
BPL
JSR
BNE
JSR
LDA

CMP
BNE
STA
LDA
BPL
LDA
BNE
LDA
BNE
LDY
SEC
LDA
SBC
TAX
DEY
LDA
SBC
BCC
BNE
TXA
BNE
JSR
JSR

JSR
JMP
JSR

JSR
LDA

REK
AST+1
(TSP),Y
AST

(Tse),Y
TFUL
YFULL
ATSP2

EOT

TSP+1
EOT+1
RTSS
TFUL
4504
(END) ,Y
HULP

(END) ,Y
HULP+1
#$01
(HuLP) ,Y
EAR

(HuLP),Y
EAR+1

PRINT PASS

APASS
#$03
SPCN
SOT, X
TSP,X

NEL
CFFF
PZER
CHKR
KBD

#ESC
PZERT
CLKBD
KBD
ASK
EOP
PAI
ETBL
PAD
#$01

(TsP),Y
PCU

(Tse),Y
PCU+1
PAI

PAD

PAD
DISA
INFO

ENFL
CHEK
DISA

ENFL
EOP

Bongers X-REF

; (TSP),0, 1=ADDRESS

;IS TABLE FULL?
:YES, BRANCY
:NO, ADJUST TSP

;CHECK WHETHER TABLE
IS FULL Now

:NO, BRANCH

61

;YES, SET TABLE FULL POINTER

:SET END ADDRESS RANGE

;RESTORE PRINT COUNTERS

;s TSP=SOT

: (TSP),6,7=$FFFF 2
:BRANC'{ IF NOT

:YES, NEGLECT FIRST ENTRY
;s KEYBOARD INPUT = ESCAPE
C4AR. ?

;NO, BRANCY
;CLEAR STROBE
sWAIT FOR ANOT{ER STROBE

;END OF PROGRAM FLAG NON?
;YES, DO NOT DISASSEMBLE
;IF END OF TABLE TiEN

;s DISASSEMBLE ONLY

;ADDRESS EQUAL TO PCU?
;NO, ADDRESS IS SMALLER
;NO, ADDRESS IS LARGER

;s ADDRESS=PCU YERE, PRINT
;ADDRESS, DISASS. AND
TABLE INFO

sADJUST PROGRAM COUNTERS

;PRINT ADDRESS AND
DISASSEMBLE

62

0B7C
OB7E
0B80
0B81
0B83
0B85
0B86
OB87
0B89
0B8A
0B8D
0B90
0B93
0B95
0B95
0B95
0B95
0B97
OB9A
0B9D
OB9F
0BAO
OBAl
OBA2
OBA4
OBA7
0BAA
0BAC
OBAF
0BB2
OBB3
OBB5
0BB8
OBBA
OBBC
OBBE
0BC1
0OBC2
OBC5
OBC6
OBC9
0OBCA
OBCC
OBCE
OBCF
OBCF
OBCF
OBCF
OBCF
0BD1
0BD4
0BD6
0BD8
OBDA
OBDC
OBDE
OBDF
OBDF
OBDF
OBDF
OBDF
OBEl
OBE4
OBE6
OBE8
OBEA
OBEC
OBEE
OBFO
OBF2
OBF3
OBF4
OBF6
OBF8
OBFA

Machine-Language Aids

25
FO
60
AO
Bl
AA
88
Bl
A8
20
20
20
DO

A0
20
20
FO
48
8A
48
AS
2D
CD
90
20
20
98
E6
oD
co
FO
A2
20
68
20

20
c8
c4
DO
60

A5
2C
10
A9
85
A9
85
60

AO
20
c5
DO
E4
DO
AS
05
FO
68
68
A2
B5
95
BS

98
BD

01
05

05

96
95
DF
A8

06
CF
1c
2F

97
10

06
8E
CF

97
10

05
01
4n

DA
DA

94
[o]e]

24
10
02
1C
24
00
97

02
1C
8F
1C
8E
18
96
95
10

0l
3a

07

FD
OB
0B

0B
oc

08
08

FD
0B

08

F9
FD

FD

08

oc

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

PAI

CHEK

*

b se s se

NFO
NPRQ

PINT

NCRT

NBLK

ITAB
ITABL

STCH

*

Qe ~e w0

I
Vol
b

APCR

AND
BEQ
RTS
LDY
LDA
TAX
DEY
LDA
TAY
JSR
JSR
JSR
BNE

ETBL :RTS EOP=1 AND ETBL=1
PZER

#S01 ;PRINT ADDRESS AND INFO
(TSP),Y

(Tsp),Y

PRYX2
INFO
CHKR
PZER s ALWAYS

INFO:PRINT TABLE ENTRY INFORMATION

LDY
JSR
JSR
BEQ
PHA
TXA
PHA
LDA
AND
CMP
BCC
JSR
JSR
TYA
INC
ORA
CcMP
BEQ
LDX
JSR
PLA
JSR
PLA
JSR
INY
CPY
BNE
RTS

LDA
BIT
BPL
LDA
STA
LDA
STA
RTS

IF NOT,

LDY
JSR
cMP
BNE
CPX
BNE
LDA
ORA
BEQ
PLA
PLA
LDX
LDA
STA
LDA

#$06
ITAB ;SET TAB FOR PRINTER
CFF1
RS ;IF ADDRESS=$FFFF TiEN READY
;SAVE ACCU
ACNT
PRFLG sMAXIMUM NO. OF ADDRESSES
AMAX ;PER LINE PRINTED?
NCRT s BRANCH IF NOT
CROUT ;CARRIAGE RETURN IF YES
ITAB ;SET TAB AND INIT ACNT
ACNT
PRFLG
#$07
NBLK
#s01 :PRINT BLANK
PRBL2
;FOLLOWED BY THE ADDRESS
PRBYT
PRBYT
OFF
NPRQ
;RTS IF END OF ENTRY REACHED

* ITAB:SET TAB FOR PRINTER OR VIDEO AND
* INIT ADDRESS COUNTER

CH

PRFLG ;s PRINTER ON?

STCH ;s BRANCH IF NOT

#$1C :SET TAB FOR PRINTER
CH

#$00 ;INIT ADDRESS COUNTER
ACNT

* CHKR:CHECK IF END OF TABLE REACHED AND RTS IF SO

ADJUST TSP

#$02

CFFl

END+1

ATSP

END

ATSP ;BRANCH ON END OF TABLE
TFUL ;CHECK WHETHER TABLE FULL
EOP ;OR END OF PROGRAM REACHED
ITBL :BRANCH IF NOT

#$01
PC,X
PC2,X
PCU, X

3

R

i

OBFC
OBFE
OBFF
0co1l
0Co02
0Co4
0Cc06
ocos
0Cco09
0co9
0Co09
0co9
ocos
0COoD
oc10
0Cl2
0oc15
0C16é
oc1?
oc19
oClAa
OC1A
0ClA
0C1A
oC1C
OClE
OC1lF
0C20
0c22
0C24
0C26
ocas
0c29
0c29
0c29
0c29
0c29
ocac
0C2E
0c3l
0Cc33
0C36
0c39
0oc3c
0c3D

OC3F
0C42
0c45
oc47
0c49
0Cc4B
oc4c
0oc4c
oc4c
0c4cC

AO
Bl
AA
cs
Bl
c9
DO

60

AD
FO
aD
FO
BD
4C
4C
8A
FO

aD
AE
FO
85
86
60

86
F5

98
05
06

06
05

05
FF
02
FF

10
1D
13
09
11
ED
95

FA

11
12
F2
36
37

00
00

08
08
08

FD
FE

08
08

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

695
696
697
698
699
700
701
702
703
704

ITBL
ATSP

o s~
»*

SPCN
SPC1

STA
DEX

PCU2,X

BPL APCR

RTS
INC
STX
STA
RTS

LDY
LDA
STA
LDA
STA
DEX
DEY
BPL
RTS

ETBL
TSP
TSP+1

#S01
PC1,X
PC,Y
PCUl,X
PCU,Y

SPCl

Bongers X-REF

;s ELSE
;SAVE PRINT COUNTERS
;AND RTS TO MAIN PROGRAM

;SET END OF TABLE FLAG

SPCN:INIT PROGRAM COUNTERS

; % CFFF:C4ECK WHET4ER (TSP),6,7=$FFFF

ONOF

VIDP
SLDV

RTTS

* END

**%%%* END OF ASSEMBLY

LDY
LDA
TAX
INY
LDA
CcMP
BNE
CPX
RTS

LDA
BEQ
LDA
BEQ
LDA
JMP
JMP
TXA
BEQ

LDA
LDX
BEQ
STA
STX
RTS

#3806
(TseP),Y

(TsP),Y
#SFF
REET
#S$FF

PRFLG
RTTS
CSND
SLDV
PNTL,X
couT
OUTP

vViDP

PNTL
PNTH
vioe
CSWL
CSWL+1

OF PROGRAM

END

* PONOF: PRINTER ON/OFF ROUTINE
* X=1 ACTIVATES PRINTER,

X=0 DEACTIVATES PRINTER

63

;DO NOTHING IF PRINTER FLAG

:11IS OFF

;SEND CHAR?
$BRANCH IF NOT

;s LOAD CHAR AND
:SEND TO PRINTER
sACTIVATE SLOT

;BRANCH IF PRINTER OFF
COMMAND

;BRANCH IF INTERFACE CARD
sACTIVATE PRINTER ROUTINE

64 Machine-Language Aids

IBRUN SORT, D2
BRUN SORT, D2
SYMBOL TABLE SORTED ALP{ABETICALLY

AlL
AMAX
AST
CFF1
CHEK
CNTR
CROUT
EAR
EOP
FF
HULP
ITABl1
M
MNML
NEF
NLA
NRDY
ouTr
PC
PCAD
PINT
PR
PRADS
PRFLG
PRYX2
REK
RTS3
RUNT
SLDV
STCH
XASM

003C
0817
007E
oclc
0B90
0093
FD8E
0003
0095
0oo08sc
0090
0BD1
002c
F9CO
0940
0896
0893
09FB
003a
0A60
OB9F
OACB
oall
0810
FD96
OAE6
OASF
008C
0C3C
0BD8
08al

A2L
ANP
ATSP
CFFF
CHKR
CON
CSND
EMNO
EOT
FMIN
IFR
ITBL
Ml
MNMR
NEL
NLP
NZP
ouTP
PC1
PCADJ
PNTH
PRAD1
PRBAK
PRINT
PZER
RET
RTS4
SAR
SOT
STOR
XASS

003E
0909
0C04
0C1lA
OBDF
0A90
0813
OA29
008A
F88C
0831
0Co02
09ca
FAOO
OB2E
08cs
0931
FE95
0080
F953
0812
09E6
F948
0B26
OB3D
OAD6
OA6E
0001
0088
08B1
09E2

SYMBOL TABLE SORTED BY ADDRESS

PASS
CH
CSWL
AST
SOT
HULP
TFUL
PNTL
AMAX
AIT
MFUR
DNI
NEF
RETR
PRBK
PRAD1
PRADS
CHT
PCA3
NIR
MERGE
YFULL
ASK
INFO
RS
APCR
CFFF
SLDV
PRBAK
MNML
PRBYT

0000
0024
0036
007E
0088
0090
0096
0811
0817
0869
08AC
08FE
0940
0971
09aA
09E6
OAll
OA41
0A63
OA8B
OAB2
OBOF
0B47
0B95
OBCE
OBF6
0Cla
0C3c
F948
F9CO
FDDA

SAR
M
PC
PCl
EOT
SAVX
ACNT
PNTH
HEAD
POUT
STOR
ANP
ENF
ENFL
NOBL
PRAD2
PRYX
MPBY
PCA4
SEAR
PR
RTSS
PZERT
NPRQ
ITAB
ITBL
CFF1
RTTS
PRBL2
MNMR
couTr

0001
002C
003A
0080
008A
0092
0097
0812
0818
088E
08B1
0909
0957
0972
09AD
09EA
OA21
OA4E
OA69
OA8C
OACB
0B25
0OB4C
0B9A
OBCF
0C02
oclc
oc4B
F94A
FAQO
FDED

A4L
APASS
ATSP1
CH
CHT
cour
CSWL
END
EOT1
FORM
INFO
KBD
M2
MPBY
NFND
NOBL
OFF
PAD
PC2
PCU
PNTL
PRAD2
PRBK
PROP
PZERT
RETR
RTSS
SAR1
SPC1
TFUL
YFULL

EAR

AlL
PC2
RUNT
CNTR
ETBL
CSND
SAR1
NRDY
NLP
PRT
IRUNT
KLR
M1
ouT
EMNO
NPR
RTS4
CON
NFUL
PRINT
PAD.
PINT
ITABL
ATSP
REET
KBD
PCADJ
CLSC
ourp

0042
OAG6F
0967
0024
OA41
FDED
0036
008E
0814
002E
0B95
C000
09CE
OR4E
OAA4
09AD
0094
0B74
0082
0007
0811
09EA
09AA
09a2
0B4C
0971
OAA3
082c
0CcoB
0096
0BOF

0003
002D
003cC
0082
008c
0093
0098
0813
082C
0893
08cs
0912
095D
098E
09cCA
09FB
OA29
OAS5S
OA6E
0A90
OAD2
0B26
0B74
OB9F
0BD1
0C04
0czs
€000
F953
FCS8
FE95

ACNT
APCR
ATSP2
CHARL
CLKBD
cprl
DISA
ENF
ESC
FOUN
IRUNT
KLR
MERGE
NBLK
NFUL
NPR
OFF1
PAI
PCA3
PCUl
PONOF
PRAD3
PRBL2
PRT
RANGE

RTSS
SAVX
SPCN
TSP

TSP
FORM
A2L
PCUl

OFF
ESC
EOT1
BEGIN
NLA
CcpPl
NZP
ATSP2
DIsAa

PRAD3
oopP
RTS3
APASS
RTSS
RET
NEL
PAI
NCRT
STCH
SPCN
PONOF
CLKBD
CHAR1
CROUT

0097
OBF6
0966
F9B4
col0
08ES8
098F
0957
009B
093E
095D
098E
NAB2
0BC1
OAD2
OASS
0816
0B81
0A63
0084
0C29
0A06
F94A
0912
OA78
002D
0825
0092
0Cco9
0005

0005
002E
003E
0084
008C
0094
009B
0814
082E
0896
08ES8
0931
0966
098F
09CE
0A06
0A33
OASF
OA6F
OAA3
OAD6
OB2E
0B81
0BB2
0BD8
0C09
0C29
colo0
F9B4
FDSE

AIT
ASK
BEGIN
CHAR2
CLsC
CPR
DNI
ENFL
ETBL
HEAD
ITAB
LEN
MFUR
NCRT
NIR
NPRQ
o0oP
PASS
PCA4
PCU2
poUT
PRAD4
PRBYT
PRYX
REET
RS
RTTS
SEAR
SPTA
VIiDP

PCU
LEN
A4L
PCU2
END
EOP
PRFLG
OFF1
IFR
XASM
CPR
FOUN
ATSP1
PROP
XASS
PRAD4
SPTA
PCAD
RANGE
NFND
REK
PZER
CHEK
NBLK
CHKR
SPC1
ViDP
FMIN
CHAR2
PRYX2

0869
0B47
082E
F9BA
FCS58
08EA
0O8FE
0972
0098
0818
OBCF
002F
08AC
0BB2
OA8B
0B9A
0A33
0000
0A69
0086
088E
0a08
FDDA
0oa21
ocas
OBCE
0oc4B
0A8C
OA3F
0C39

0007
002F
0042
0086
008E
0095
0810
0816
0831
08A1
08EA
093E
0967
09A2
09E2
OAOB
OA3F
0A60
OA78
0AR4
OAE6
0B3D
0B90
OBC1
OBDF
0COB
0C39
F88C
F9BA
FD96

3

3

A Fast Fractional Math Package
for 6502 Microcomputers

by Wes Huntress

Implemented for the Apple Il computer, these routines
can be used by any 6502 microcomputer to obtain fast
fractional arithmetic from assembly language.

Have you ever faced the problem of wanting to use fractions or decimal arithmetic
when only Integer BASIC was available? Have you ever wanted to use trigonometric
or complex math functions with Integer BASIC? Or have you ever faced the opposite
problem with Applesoft — complex math a snap, but if only it was as fast as
Integer? If the former was your problem, then you probably upgraded your Apple II
from Integer to Applesoft. If you did, or bought an Apple II Plus in the first place,
then you may have come across the second problem at one time or another.

Applesoft provides floating point math with 9-digit accuracy including trigo-
nometric functions. These features are superb for most applications requiring
complex mathematics, but much slower compared to integer arithmetic. In some
speed-critical applications, such as the projection and animation of high-
resolution 3-D images, Applesoft is often simply too slow. In the case of 3-D
animation, this results in a slow frame projection rate. The only way to improve
the speed at present is to access Applesoft math subroutines directly from
assembly language and thereby avoid the interpreter overhead.

If you are not a machine-language programmer, you can still increase execu-
tion speed of floating point math by using an Applesoft compiler. These compilers
have just recently appeared on the software market and will convert your Apple-
soft program to a machine-language version which will run floating point math
two to three times faster. The ultimate solution is to use an arithmetic processor
board where the math routines are implemented in hardware. These boards are
available, but at a price, and not every Apple owner will have one. Therefore, if
you are writing software for a general audience, these peripheral boards are not the
solution.

66 Machine-Language Aids

There is an alternate approach to getting a significant increase in math speed
for Apple users with standard hardware configurations. The solution is to write an
assembly-language math package that contains complex math functions but is
built for speed rather than accuracy. One way would be to rewrite the Applesoft

floating point math package to use 3-byte or 4-byte numbers instead of the standard -

Applesoft 5-byte format. The floating point routines in the Integer ROMs use a
4-byte format. Floating point math in any format is still significantly slower than
integer math, so that if speed is the utmost consideration, then some form of integer
math must be used. Use of integer math to gain speed requires only that we give
up the ability in floating point math to represent very large or very small numbers.
It is possible to represent fractional or decimal numbers with an integer format.
The limitation to accuracy is the number of bytes used to represent a number.

The assembly-language routines presented in this article provide a very fast
3-byte (24-bit) integer math package which is capable of representing fractional
numbers. Complex math functions, such as the trigonometric operators, have
been implemented. The routines work in the same way as standard 2-byte multiple-
precision integer arithmetic except that a third byte is included to represent the
fractional part of a number. The first byte of the 3-byte number represents the frac-
tional part, and the next two bytes are the integer part of the number in the
familiar byte-swapped format. Examples of 3-byte fractional numbers are:

010101 = 257 1/256 = 257.004
FF 4000 = 64 255/256 64.996
240300 = 336/256 = 3.141

The accuracy in the fractional part is one part in 256, or in decimal form 0.004.
While this is not at all competitive with the accuracy of Applesoft, it may be all
that is required in some applications and is the fastest possible fractional
arithmetic in software. The accuracy could be improved by adding multiple-
precision fractional parts, but this would soon lose efficiency compared to floating
point routines. The numbers are signed so that the largest positive number which
can be represented is 32767.996, and the largest negative number is — 32768.996.
The smallest numbers which can be represented are +/ - 0.004.

The Fractional Integer AriThmetic (FIAT) package is intended to be tucked
between DOS and its buffers. It is invisible to DOS and both BASICs. Figure 1 is a
memory map showing where the FIAT code is located. FIAT contains its own
variable space in page $98. At three bytes per variable, there is room for 85
variables and constants. This is sufficient for most applications.

To use FIAT from machine language it is easiest to think of it in terms of a
pseudo-processor. FIAT has a set of 3-byte registers through which all operations
are performed. The ‘op-codes’’ are subroutine calls (JSRs) to load these registers,
operate on their contents, and move their contents to other registers or to
memory. Figure 2 illustrates the programming model for FIAT.

B I B

23

]

ezl

Huntress Math

DOS
$9D00

FIAT

FIAT CODE

VARIABLES $9800

DOS
BUFFERS

Figure 1: FIAT Memory Map

67

VA

MEMORY
B3 [2
AC RC
x
> TC
QC

Figure 2: FIAT Programming Model

68 Machine-Language Aids

There are two main registers used in accessing memory and in arithmetic
operations. The ''AC"’ register, or accumulator, is the principal working register.
All functions operate on the number in the AC register, and the results of all
arithmetic operations are left in the AC register. Numbers can be transfered both
to and from the AC register and memory. The usual program sequence for using an
operator with single operand (a ''unary’’ operator) such as SGN, ABS, INT, SIN,
etc., is to first transfer a 3-byte number into the AC register, then call the
arithmetic operator, and finally transfer the result from the AC register.

The RC register is used only for those operations requiring two operands
(''binary’’ operators): ADD, SUB, MUL, DIV, and CMP. For these operations, one
operand is placed in the AC register and the other in the RC register. Numbers can
be moved into, but not out of, the RC register. The order of the operations is: AC
SUB(tract) RC, AC DIV(ided by) RC, and AC CMP(ared to) RC. The result of
ADD, SUB, MUL and DIV is left in the AC register. The CMP operator conditions
the accumulator of the 6502.

The TC and QC registers are provided for storage of intermediate results.
Results can be moved into TC and QC from AC, and back from TC or QC into AC
or RC. Some care must be exercised in using the TC and QC registers however,
since the SQR function uses the TC register, and the TAN and ATN functions use
both the TC and QC registers.

There is a fifth register, the SC register, which is an extension of the AC
register. The AC register, including the SC register and an extension byte ACX,
can be as wide as seven bytes, depending on the operation being performed. This is
all transparent to the user. Operands are always loaded in the 3-byte AC register
(ACL, ACM, ACH] and all results are found in the AC register.

.Listing 1 is a source listing of FIAT outlining the function and usage of each
operator. Any special entry or exit conditions are listed below the routine title.
Listing 2 gives the entry points for each function and lists the 6502 and FIAT
registers used. Listing 3 is a sample listing of an assembly language program which
uses FIAT.

Most routines in FIAT have more than one entry point. The principal entry
point assumes that the AC register (and RC register if required) has already been
loaded. For unary operators, a second entry point is provided which will load a
specified variable from memory into AC and then perform the operation. These
entry points are labeled with a "*#"’ suffix. For example, the sine operator has a
principal entry point labeled SIN and a unary entry point labeled SIN#. The unary
entry point in this case requires that the 6502 Y register point to the variable in
page $98.

Binary operators have three entry points. The principal entry point assumes
that both the AC and RC registers are already loaded. The unary (suffix: ''#'’) entry
point loads the RC register with the variable indexed by the 6502 X register. The
binary entry point, suffixed by ‘'##'’, loads both the RC and AC registers. On
binary entry, the 6502 X register points to the variable to be loaded into RC, and
the 6502 Y register points to the variable to be loaded into AC.

3

Huntress Math 69

The trig functions SIN, COS, and TAN in FIAT use degrees rather than radians.
The unit angle is one degree. Positive angles, negative angles, and angles larger
than 360 degrees can be input. Fractional angles will be converted to the nearest
degree. The routine FXA can be used to reduce any angle to a positive value be-
tween 0 and 359.996 degrees.

The inverse trig functions ASN (arcsin), ACS (arccos), and ATN (arctan) are
provided but are limited by the accuracy of the 1-byte fraction. To the accuracy
available, the sines of 84, 85, and 86 degrees are all FF 00 00, and the sines of 87,
88, 89, and 90 degrees are all 00 01 00. Therefore ASN (FF 00 00) will return just 86
degrees and ASN (00 01 00) will return 90 degrees. This problem is only serious for
angles near 90 degrees for the ASN operator, and for angles near 0 degrees for the
ACS operator. The ATN function does not have this problem, but is accurate only
to +/ — one degree over its whole range and is slower than ASN or ACS. The ASN
and ATN operators return an angle between —90 and +90 degrees. The ACS
operator returns an angle between 0 and 180 degrees.

Range checking to maximize speed is not provided for any of the operators.
The user is responsible for insuring that the input is in the proper format (3-byte
signed integer) and that the operation does not result in overflow. The INC, DEC,
ADD and SUB operators will ‘'wrap-around’’ on overflow. For example: 1 ADD
32767 = -32768. A multiply which would result in a number with a value
greater than 32767.996 or less than - 32768.996 yields nonsense. A DIV by zero or
INV zero yields nonsense. The SQR function returns the square root of an unsigned
number for negative number input. The trig functions are more forgiving. SIN,
COS, and TAN will accept any value and reduce it with FXA. ASN and ACS
assume any values greater than +/ - 1.0 to be equal to +/ - 1.0. The ATN func-
tion accepts any value.

The improvement in speed gained by using FIAT instead of Applesoft floating
point math is very large for all but the multiply and divide routines. For MUL and
DIV the gain is a factor of about 5. For the ADD and SUB routines, the gain is a fac-
tor of 50. For INT, SGN, and ABS routines the gain is about 100. For the SQR, SIN,
COS, and ASN (vs. derived Applesoft arcsin) the gain is about 200. For TAN and
ATN the gain is about 40 and 20 respectively.

To make your own copy of FIAT, use your assembler to copy the source listing
in listing 1 and assemble it at $800. Get into the monitor and type in the data given
in listing 4 for the sine table from $80D to $866. Now, from the monitor, type:

*98F3 < 800.BFFM < CR >
*98F3G <CR >
*BSAVE FIAT,A$98F3,L$3FF <CR >

To install FIAT, boot the system and type RUN FIAT-LOADER (listing 4).

70 Machine-Language Aids

Listing 1

()80{) 1 :iiii**ttt**k*t****i*&ti

0800 2 g+ *

0800 3 ;* 24-BIT FRACTIONAL *

ngnn 4 ;* SIGNED INTEGER *

0800 5 i+ ARITYMETIC *

0800 6 ¥ *

0800 7 ;* BY WES iUNTRESS *

N800 8 :* *

0800 9 :* COPYRIGIT (C) 1982 *

0800 10 ;* MICRD INK, INC. *

N800 11 ;* CHELMSFORD, MA 01824*

0800 12 ;* ALL RIGHTS RESERVED *

0800 13 :* *

080() 14 7i***tit*t**tt*****i****

0800 15

0800 16 ;EQUATES

0800 17

0800 18 7P EPZ 0

0800 19 QCL EPZ $03

080N 20 QCM EPZ QCL+1

0800 21 TCL EP7 $07

0800 22 ACX EPZ $F9

0800 23 ACL EPZ ACX+1

0800 24 ACM EPZ ACL#1

0800 25 ACH EPZ ACM+l

0800 26 SCL EPZ ACH+1

0800 27 scM EPZ SCL+1

0800 28 scy EPZ SCM+1

0800 29 RCL EPZ $EB

0800 30 RCM EPZ RCL+1

n80no 31 RCH EPZ RCM+1

0800 32 T™P EP7 RCH+l

0800 33 CNT EPZ TMP+1

0800 34 FLG EPZ $CE

0800 35 FLd EPZ $CF

0800 36

0800 37 VAR EQU $9800

n8non 38

98F3 39 ORG $98F3

98F3 42 ;STUFF INTO DOS, RESET DOS PTRS
98F3 43 ;RESERVE VARIABLE SPACE

98F3 44

98F3 A9D3 45 LDA #$D3

98F5 8D009D 46 STA $9D00

98F8 A997 47 LDA #$97

98FA 8DO19D 48 STA $9N01

98FD 4CD4A7 49 JMP $ATD4

9900 50

9900 51 ;RESERVE SIN TABLE SPACE

9900 52

0867 53 TRG DFS 90

9954 54

QQSA 55 :i!**t*iiii**it*ti**t****t********
995A 56 ¥ *
995A 57 :* CLEAR: AC=0 *
995A 58 ;¥ *
QQSA 59 :*****i***********t**i****i*ttt***
995A 60

995A A000 61 CLR LDY #0

995C 84FA 62 STY ACL

995E 84FB 63 STY ACM

9960 B84FC 64 STY ACH

9962 60 65 RTS

9963 66

9963 67 ;***************'ki****t***i**ﬁ***i
9963 68 ;* *
9963 69 ;* INCREMENT: AC=AC+l *
9963 70 g% *
9963 71 :********i********it*****it*******
9963 72

9963 205C9C 73 1INC# JSR TMA

9966 E6FB 74 INC INC ACM

9968 D002 75 BNE ICO

3} 33 3 3

33 3

)

3

3

T

(R

996A
996C
996D
996D
996D
996D
996D
996D
996D
996D
9970
9971
9973
9975
9977
9979
997B
997C
997¢C
997C
997C
997C
997C
997C
997C
997C
997C
997F
9981
9983
9986
9988
998A
993B
998B
998B
9988
998B
998B
998B
9988
998B
998B
998E
9990
9992
9994
9996
9998
9998
9998
9998
9998
9998
9998
9998
999B
999E
99A0
99A1
99A3
99A5
99A7
99a8
99AA
99AB

99AB
99AB
99AB
99a8B
99AB
99AR
99AB
99AF
99B1

E6FC
60

205C9C
38
ASFB
E901
85FB
B002
C6FC
60

205C9C
24FA
1003
206699
A200
86FA
60

205C9C
ASFA
FOF8
24FC
10F0
30EB

205C9C
206C9C
A2FD
18
B5FD
7SEE
95FD
E8
DOF7
60

205C9C
2069C
A2FD

76
77
78
79
80

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

929
100
101
102
103
104
105
106
1n7
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150

INC ACH
ICo RTS
;***t***************i**********ﬁi*
. * *
:* DECREMENT: AC=AC-1 *
.k *

7
ehdkhkhkhhkhkhhhkhhhhhhhkhhhrhdkhhdhhhkdkhkhd
H

6EC# JSR TMA

DEC SEC

LDA ACM

SBC #1

STA ACM

BCS DCO

DEC ACH
DCO RTS
;t***********ﬁ**t******i**********
% *
;% INTEGER: AC=INT(AC+.5) *

. * *
H
e e e de o o de e o de e g e de e e e ok e e ok e e e de e e e ke o

:
:

: ROUNDS INSTEAD OF TRUNCATES

INT# JSR TMA
INT BIT ACL
BPL INO
TNO JSR INC
INO LDX #0

STX ACL
TOK RTS
:**ﬁ*t****itt*it*****i****iii**&k*
ok *
;* TRUNCATE: AC=INT(AC) *
* *

H
e e e e e e o e ek R ok e d gk e ke e e v e e ke ok ok ke ok ke ke ke ok

; TRUNCATES AS PER BASIC "INT"

:
TNC# JSR TMA
TNC LDA ACL
BEQ TOK
BIT ACH
BPL INO
BMI TNO

T R I R L X
* *
* ADD: AC=AC+RC *
* *
L e e 2 L

ADD## JSR TMA

ADD# JSR TMR

ADD LDX #S$FD
CILC

ADL LDA SCL,X
ADC TMP,X
STA SCL,X
INX
BNE ADL
RTS

.
?

okkhkhkhhhkhhhhhkhhhhkhkhhkhkhrhrhhhdhdhddd
:

.k *
;* SUBTRACT: AC=AC-RC *
. *

o e de de g d de de de de kg ke de e d Kk de e d g de ok ke e e ke ok ke ke

éUB## JSR TMA
SUB# JSR TMR
SUB LDX #S$FD

Huntress

Math

71

72

9983
99B4
99B6
9988
998BA
99BB
998D
99BE
99BE
99BE
99BE
99BE
99BE
99BE
99BE
99BE
99BE
99BE
99BE
99BE
99BE
99C1
99C3
99C5
99C7
99¢C9
99CB
99CD
99CF
99D1

99D2

9902
99D2

99D2

9902
9902
99D2

99D2
99D2

99D2
99D2

99D2

99D2

99D2

9905
99D8
99DA
99DC
99DE
99E0
99E2
99E4
99E6
99E8
99EA
99EC
99EE
99F0
99F1
99F3
99F5
99F6
99F8
99FA
99FB
99FB
99FB
99FB
99FB
99FB
99FB
99FB
99FB
99FE
9A01

Machine-Language Aids

38
B5FD
F5EE
9SFD
E8
DOF7
60

205C9C
ASFC
3033
Dpoos
ASFB
D004
ASFA
F024
A901
60

205CocC
206C9C
A202
ASFC
3006
A4ED
100a
30EB
A4ED
3004
100E
B5FA
DSEB
D006
CA
10F7
A900
60
BOD?
A9FF
60

205C9C
4C089A

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

SEC
SBL LDA SCL,X

SBC TMP,X

STA SCL,X

INX

BNE SBL

RTS
L Y
* *
* SIGN: A REG = SGN(AC) *
* *

e e de de de de e de de e e e de ok e e e o e e o e e e e o e o ke e e

A REG CONDITIONED BY SIGN:

A=0 FOR AC=0
A=1 FOR AC>0
A=FF FOR AC<O

Ne me we me se we wo we me se se we me

SGN# JSR TMA

SGN LDA ACH
BMI CMI
BNE CPL
LDA ACM
BNE CPL
LDA ACL
BEQ CEQ

CPL LDA #1
RTS

e de Je e de de dede de e de e de ke d e ek e ke ke ke de ke ke ke ek e
*

*
*
* COMPARE: A REG = (AC)CMP(RC) *
* *
*

ot de de e o de e e de g ok o e o e e e o e e e e e o o e e ok e e

A=0 FOR AC=RC
A=1 FOR AC>RC
A=FF FOR AT<RC

CMP## JSR TMA
CMP# JSR TMR
CMP LDX #2
LDA ACH
BMI CMX
LDY RCY
BPL CLQ
BMI CPL
CMX LDY RCY
BMI CLQ
BPL CMI
cLp LDA ACL,X
CLQ CMP RCL,X
BNE CNE
DEX
BRPL CLP
CEQ LDA #0
RTS
CNE BCS CPL
CMI LDA #SFF
RTS

e e de e de e e de de de de de e e o de o ok e e e ke e e e ke e e e e
*

ABSOLUTE VALUE: AC=ABS(AC) *
*

*

*

*

* CHANGE SIGN: AC=-AC
* *
*

e e de e e de e e de de de e e ek e e e e e e e ok de e e e ok e e e

CHG# JSR TMA
JMP CHG

3 31 3 3

3

3

3

9A01
9A04
9Aa04
9A04
9A04
9A06
9A08
9A08
9a08
9A08
9A0A
9A0B
9a0D
9AOF
9all
9a13
9A14
9116
9a17
9A17
9A17
9A17
9A17
9a17
9A17
9a17
9ala
9A1D
9a20
9A22
9A24
9a26
9a28
9A2A
9A2C
9A2E
9A30
9A32
9a34
9A36
9A38
9A39
9A3B
9A3C
9A3E
9a40
9A42
9A44
9A46
9A48
9A4A
9A4C
9A4E
9A50
9A52
9A54
9A56
9a58
9AS5A
9A5B
9A5D
9ASF

9A61
9A64
9A65
9A65
9A65
9A65
9A65
9A65
9a65
9A65
9A68
9A68B
9A6E

205C9C

24FC
100E

A2FD
38
BSFD
49FF
6900
95FD
E8
DOFS
60

205C9C
206C9C
200098
ASFA
85F9
ASFB
85FA
ASFC
85FB
AO018
A900
85FC
85FD
85FE
ASF9
4A
9013
18
ASFC
65EB
85FC
ASFD
65EC
85FD
ASFE
65ED
85FE
66FE
66FD
66FC
66FB
66FA
66F9
88
DOD9
A6CE
F003

20089A
60

205C9C
206C9C
20009B
ASFC

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

288
289
290
291
292
293
294
295
296
297
298
299
300

ABS# JSR TMA
+ ABSOLUTE VALUE

ABS BIT ACH
BPL CHO

;CHANGE SIGN

CHG LDX #S$FD
SEC

c4L LDA SCL,X
EOR #$FF
ADC #0
STA SCL,X
INX
BNE CHL

c40 RTS

H
:'*fki*'***iﬁ**i**t**it**it**ii*i*

o ®
H

:+* MULTIPLY: AC=AC*RC

*
*
*

?
:***t*t**it*i****it*ﬁi****i**i*ﬁ**

MUL## JSR TMA
MUL# JSR TMR
MUL JSR CKS
MUL1 LDA ACL
STA ACX
LDA ACM
STA ACL
LDA ACH
STA ACM
LDY #24
LDA #0
STA ACH
STA SCL
STA SCM
MSHL LDA ACX
LSR
BCC MROR
CLC
LDA ACH
ADC RCL
STA ACH
LDA SCL
ADC RCM
STA SCL
LDA SCM
ADC RCH
STA SCM
MROR ROR SCM
ROR SCL
ROR ACH
ROR ACM
ROR ACL
ROR ACX
DEY
BNE MSHL
LDX FLG
BEQ MLO

JSR CHG
MLO RTS

:NEG # ?

Huntress

:FIX FOR NEG #

:***itit'ﬁ*t****'i*ﬁi*******iiti*ii

. *

:* DIVIDE: AC=AC/RC
.

*
*
*

ek khhkhhkhkhkhhkhhhhhrhhrhhhhhhhdhhdkh

DIV## JSR TMA
DIV# JSR TMR
DIV JSR CKS
DIVl LDA ACH

;NEG # ?

Math

73

74 Machine-Language Aids

9A70 B85FD 301 STA SCL

9A72 ASFB 302 LDA ACM

9A74 85FC 303 STA ACH

9A76 ASFA 304 LDA ACL

9A78 B5FB 305 STA ACM

9A7A A018 306 DIV2 LDY #24

9A7C B4EF 307 STY CNT

9A7E A900 308 LDA #0

9A80 85FA 309 STA ACL

9A82 85FF 310 STA SCM

9A84 85FF 311 STA SCH

9A86 06FA 312 DIVL ASL ACL

9A88 26FB 313 ROL ACM

9A8A 26FC 314 ROL ACH

9A8C 26FD 315 ROL SCL

9A8E 26FE 316 ROL SCM

9A90 26FF 317 ROL SCH

9392 38 318 SEC

9A93 AS5FD 319 LDA SCL

9A95 ESEB 320 SBC RCL

9297 AA 321 TAX

9A98 ASFE 322 LDA SCM

9A9A ESEC 323 SBC RCM

9a9C A8 324 TAY

9A9D AS5FF 325 LDA SCH

9A9F ESED 326 SBC RCH

9AAl 9008 327 BCC DIVS

9AA3 86FD 328 STX SCL

9AAS5 B4FE 329 STY SCM

9AA7 85FF 330 STA SCq

9AA9 E6FA 331 INC ACL

9AAB C6EF 332 DIVS DEC CNT

9AAD DOD7 333 BNE DIVL

9AAF A6CE 334 LDX FLG

9ABl F003 335 BEQ DVO

9AB3 20089A 336 JSR CHG ;FIX FOR NEG #
9AB6 60 337 DVO RTS

9aB7 338

9}\37 339 7******ﬁitfii***********i**iii*i**
9AB7 340 ;* *
9AB7 341 :* INVERT: AC=1/AC *
9AB7? 342 ;* *
9AB7 343 :t*ii***i***itﬁ**************ﬁi***
9AB7 344

9AB7 205C9C 345 INV# JSR TMA
9ABA 20869C 346 INV JSR TAR

9ABD A900 347 LDA #0

9ABF 8S5FB 348 STA ACM

9AC1 85FD 349 STA SCL

9aC3 A901 350 LDA #1

9ACS 85FC 351 STA ACH

9AC7 20009B 352 JSR CKS

9ACA 4C7A9A 353 JMP DIV2

9ACD 354

9ACD 355 ’t***tiﬁii*i*ﬁ****iiiihitfittit**t
9ACD 356 ;% *
9ACD 357 :* SQUARE ROOT: AC=SQR(AC) *
9ACD 358 ;* *
9ACD 359 :*tﬁttﬁ*itti*ﬁ*i*ititttiiiit*tii**
9ACD 360

9ACD 361 ;NEWTON-RAPYSON SQUARE ROOT

9ACD 362

9ACD 363 ;STORE ARGUMENT

9ACD 364 ;AND LOOP COUNT

9ACD 365

9ACD 205C9C 366 SQR# JSR TMA
9ADO 20909C 367 SQR JSR TAT

9AD3 A910 368 LDA #$10
9aADS 8SEE 369 STA TMP
9AD7 370

9AD7 371 ;INITIAL GUESS = 0
9AD7 372

9AD7 A900 373 LDA #0
9AD9 85CE 374 STA FLG

9ADB 85EB 375 STA RCL

)

9ADD

9ADF

9AELl

9AEl

9AEL

9AEl

9AEl

9AE4

9AES

9AE7

9AE9

9AEB
9AEB

9AEB
9AEB
9AEE
9AF0
9AF2

9AF4

9AF4
9AF4
9AF4
9AF7

9AF7

9AF7

9AF7

9AF7

9AFA
9AFD
9AFF
9AFF
9B0O
9B00
9B0O
9B0OO
9B00
9B0OO
9BOO
9B0O
9B0OO
9802
9B04
9B06
9B09
9BOA
9BOC
9BOE
9BOF
9B11
9B12
9B14
9B16
9818
9B1A
9B1B
9B1D
9B1F
9B20
9B20
9B20
9B20
9820
9820
9B20
9820
9B20
9B20
9B20
9B22
9824
9826
9828
9RB2A
9B2C
9B2C

85ED
85EC

209€E99
18
66FC
66FB
66FA

200899
FOOF
C6EE
FOOB

20869C

20A49C
206E9A
FOE2

60

A000
24FC
1004
20089A
88
24ED
100F

A2FD
38

BSEE
49FF
6900
95EE
E8

DOFS5
84CE
60

A900
A268
AON1
85EB
86EC
84ED

376
377

378
379

380

381

382

383

384

385

386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
a1l
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

STA RCH
STA RCM

ADD GUESS TO ARG/GUESS
AND DIVIDE BY TWO

o me ~o ~e

SQL JSR ADD
CIC
ROR ACH
ROR ACM
ROR ACL

GUESS = OLD GUESS ?

e ~o s

JSR CMP
BEQ SQO
DEC TMP
BEQ SQO

STORE NEW GUESS

e s e

JSR TAR

-~

FETCH ARGUMENT AND
DIVIDE BY GUESS

<o ~e e

JSR TTA
JSR DIV1
BEQ SQL
SQO RTS
;**t*tii******tﬁi*itﬁ**it*******i*
54 *
;* CHECK SIGN SUBROUTINE *
;* FOR MULTIPLY AND DIVIDE *
o * *

H
:i*******ﬁt***ﬁ******i****i***ti**

CKS LDY #0

BIT ACH

BPL CKA

JSR CHG

DEY
CKA BIT RCH

BPL CKB

INY
CGR LDX #$FD

SEC
CKL LDA TMP,X

EOR #$FF

ADC #0

STA TMP,X

INX

BNE CKL
CKB STY FLG

RTS
:t**t*****t*i*it*ti***t*ﬁﬁii&i****
. *
:* FIX ANGLE SUBROUTINE: *
;* INSURES 0 <= AC < 360 *
PR *

T 2222222222222 3 22 222222222 R 2ttt

:

;RC=360

FXA LDA #0
LDX #104
LDY #1
STA RCL
STX RCM
STY RCH

ANGLE NEGATIVE ?

Huntress

Math

75

76

9B2C
9B2C
9B2E
9B30
9B30
9B30
9B30
9B30
9B33
9B34
9B36
9B37
9B37
9B37
9837
9B37
9B3A
9B3C
9B3E
9B40
9B4?2
9B44
9B46
9B46
9B46
9B46
9B47
9B47
9B47
9B47
9B47
9B47
9B47
9B47
9B4A
9B4D
9B50
9B52
9B54
9B54
9B54
9B54
9B55
9B57
9B59
9B5B
9B5D
9B5F
9B61
9B63
9B65
9867
9B69
9B6B
9B6D
9B6F
9B6F
9B6F
9B6F
9B72
9B74
9B76
9B78
9B7A
9B7B
9B7E
9B80
9B80

9B80
9B80
9B82
9884
9887
9B88

Machine-Language Aids
451
ASFC 452 LDA ACH
100A 453 BPL FXB $ND
454 ;
455 ;FIX NEG ANGLE
456 ;ADD 360 UNTIL AC>=0
457
209E99 458 FXN JSR ADD
AA 459 TAX
30FA 460 BMI FXN
60 461 RTS
462
463 ;FIX POS ANGLE
464 ;SUB 360 UNTIL AC<360
465
20B199 466 FXP JSR SUB
c901 467 FXB CMP #1 ;AC>360
9008 468 BCC FXO
DOF? 469 BNE FXP ;YES
ASFB 470 LDA ACM
c968 471 CMP #104
BOF1 472 BCS FXP 1 YES
473
474 ;ANGLE OK
475
60 476 FXO RTS
477 ;
478 7iti*t**ﬁti**ﬁt*it*tt*ﬁit*t*tti*t*
479 ;* *
480 ;* SINE: AC=SIN(AC) *
481 ;* *
482 :i*i****i*ii*t***iﬁtt***t*t***tit*
483
205C9C 484 SIN# JSR TMA
20209B 485 SIN JSR FXA
207F99 486 JSR INT
A000 487 LDY #0
84CE 488 STY FLG :SIGN +
489
490 :REDUCE ANGLE TO <= 90
491 ;
38 492 SEC
ASFC 493 LDA ACH
D006 494 BNE SNA ;AC>255
ASFB 495 LDA ACM
C9BS 496 CMP #181
9008 497 BCC SNB ;AC<=180
n968 498 SNA LDA #104
ESFB 499 SBC ACM
85FB 500 STA ACM
C6CE 501 DEC FLG ;SIGN -
C95B 502 SNB CMP #91
9004 503 BCC SNG ;AC<=90
A9B4 504 LDA #180
ESFB 505 SBC ACM
506 ;
507 ;ANGLE IN A, GET AC=SIN(A)
508 ;
205A99 509 SNG JSR CLR
Cc957 510 cMP #87
9004 511 BCC SNT
E6FB 512 INC ACM :A>86
1006 513 BPL SNS
AA 514 SNT TAX
BD0O099 515 LDA TRG,X
85FA 516 STA ACL
517
518 ;NEG VALUE ?
519
24CE 520 SNS BIT FLG
1003 521 BPL SNO
20089A 522 JSR CHG
60 523 SNO RTS
524

3

3

o

9B88
9888
9888
9B88
9888
9888
9888
9B8B
98B8E
9891
9B91
9B91
9B91
9B91
9B91
9891
9891
9894
9B97
9B9A
9B9D
9BIF
9BAl
9BA3
9BA6
9BA9
9BAC
9BAF
9BB2
9BB3
9BB3
9BB3
9BB3
9BB3
9BB3
9BB3
9BB3
9BB6
9BB8
9BBA
9BBC
9BBE
9BC1
9BC3
9BC4
9BC6
9BC8
9BCA
9BCC
9BCE
9BDO
9BD2
9BD3
9BDS

9BD8
9BDA
98DD
9BDF
9BEl
9BE3
9BE6
9BE7
9BE7
9BE7
9BE7
9BE7
9BE7
9BE7
9BE7
9BEA
9BED
9BED
9BED
9BED
9BEE

205C9cC
20ED9B
4C4n98B

205C9C
20909C
208B9B
20C199
D004
A902
85FA
209A9C
20RA49C
204A98B
20C29C
206B9A
60

205C9C
A000
84CE
A6FC
1006
20089A
C6CE
AA
D004
C6FB
3004
A25A
100C
A257
ASFA
CA
F005
DD0099

90F8
205A99
B6FB
24CE
1003
20089A
60

205C9C
20869B

38
A900

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599

:**tki*******i*t***ﬁ*************i

.k *
;* COSINE: AC=COS(AC) *
. * *

:
;***ii**********'***i***ii*t***iii

cos# JSR TMA
cos JSR CPA :90-A
JMP SIN

P L2222 s 222222222 2222222 A 2 20
* *
* TANGENT: AC=TAN(AC) *
* *
Akkkkhkkkkrkhhhkkhkhkkhkhdhhhkhddr

e w0 e e

TAN# JSR TMA

TAN JSR TAT
JSR COS
JSR SGN
BNE TNQ
LDA #2
STA ACL

TNQ JSR TAQ
JSR TTA
JSR SIN
JSR TQR
JSR DIV
RTS

Y R 22 222222322222 X222 22222 2 22 2]
* *
* ARCSINE: AC=ASN(AC) *
* *
ti*t!if*tiii**ti***iiii*tiia*tiii

o e ~o ~e s e e

ASN# JSR TMA
ASN LDY #0

STY FLG

ASN1 LDX ACH

BPL ASC

JSR CHG

DEC FLG

TAX
ASC BNE AOV

DEC ACM

BMI ASG
AoV LDX #$5A

BPL ASF
ASG LDX #$57

LDA ACL
ASL DEX

BEQ ASF

CMP TRG,X

BCC ASL
ASF JSR CLR

STX ACM

BIT FLG

BPL ASO
TNA JSR C4G
ASO RTS
;****i*i*ti*i*t*i*t*att*i*******ﬁt
;* *
:* ARCCOSINE: AC=ACS(AC) *
. * *

:
:**ﬁ***i***i*****ﬁ**ﬁ**i**i*******

ACS# JSR TMA

ACS JSR ASN ; AC=ASN
;AC=90-AC
CPA SEC

LDA #0

Huntress

Math

77

78

9BFO
9BF2
9BF4
9BF6
9BF8
9BFA
9BFC
9BFE
9C0no
9Ccol
9Cco1l
9Cco1
9Ccol
Ccn1
9Cco01
9col1
9co1l
9c04
9co7
9cn9
9COB
9CcoD
9C10
9C1?2
9C14
9C16
9c18
9C1B
9C1E
9C20
9C22
9C25
9c28
9C28B
9Cc2D
9C2F
9C32
9C35
9Cc38
aCc3B
9Cc3D
9C40
9C43
9Cc45
9c47
9C4A
9C4B
9C4B
9C4B
9C4B
9C4B
9C4B
9C4B
9C4B
9C4B
9C4B
9C4B
9C4D
9C4F
9C52
9C55
9C56
9Ccs57
9C59
9CS5SB
9CsC
9cs5C
9C5C
9csc
9cs5C
9csc
9CcsC
9csc
9cs5C
9cCs5C

Machine-Language Aids

ESFA
85FA
A95A
E5FB
85FB
A900
ESFC
85FC
60

205C9C
20C199
85CF
85CE
1003
20089A
ASFC
DOB6
ASFB
30B2
209A9C
20869C
A200
86CE
20209A
206699
20D09%A
A504
DOOE
20869C
20B89C
206E9A
20BA9B
1006
20BA9A
20EA9B
24CF
1003
20089A
60

A903
85EF
BD0098
990098
E8

c8
C6EF
DOF4
60

600
601
602
603
604
605
606
607
608
509
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

SBC ACL
STA ACL
LDA #90
SBC ACM
STA ACM
LDA #0

SBC ACH
STA ACH
RTS

:********#i**t*i**t***t*i****it***
o % *
;

;* ARCTANGENT: AC=ATN(AC) *
:* *
7********it*tt********i*tt**i****i

ATN# JSR TMA
ATN JSR SGN
STA FIA
STA FLG
BPL ATP
JSR CHG
ATP LDA ACH
BNE AOV
LDA ACM
BMI AoV
JSR TAQ
JSR TAR
LDX #0
STX FLG
JSR MUL1
JSR INC
JSR SQR
LDA QCM
BNE ATM
JSR TAR
JSR TQA
JSR DIVl
JSR ASN1
BPL ATF
ATM JSR INV
JSR ACS
ATF BIT FIA
BPL ATO
JSR C4G
ATO RTS

i

R L T I e
. *
:

:* LET: VAR1=VAR? *
s * *
R T Ty

:

i

sENTRY: POINTER TO VAR#1 IN Y AND
:POINTER TO VAR#2 IN X

LET## LDA #3
STA CNT
LTL LDA VAR, X
STA VAR,Y
INX
INY
DEC CNT
BNE LTL
RTS

dkkhkhkhhkhkhhhhhhhhhkhkkrhhrhhhhhhhkdhddhh
*

*
*
* FETCH AC: AC=VARIABLE *
*
*

*
Kk khkhkhkhdkhhhhhhhhhhhhhhdhd

e s s

: TRANSFERS VARIABLE TO AC
:ENTER WITY VAR PTR IN Y
s PROTECTS PTR IN X

3

|

_

S I e e D e e

b

-

9CS5C
9C5C
9C5E
9C60
9C63
9C65
9C66
9C67
9C69
9Cé6B
9Cc6éC
9C6C
9Cc6C
9Cc6C
9CeéC
9C6C
9CceéC
9ce6C
9C6C
9C6C
9Cc6C
9CéD
9C6E
9Cc70
9C73
9Cc75
9C76
9Cc77
9c79
9Cc7a
9c7a
9C7A
9C7A
9C7A
9C7A
9C7A
9C7A
9C7A
9C7A
9C7A
9c7a
9Cc7a
9Cc7C
9C7E
9cs8l
9Cc82
9ca3
9c8s
9C86

9C86
9Cc86
9C86
9C86
9C86
9C86
9C86
Elef-1:]
9C8A
9C8C
9C8D
9C8F
9C90
9C90
9C90
9C90
9C90
9C90
9C90
9C90
9C92
9Cc94
9C96
9c97
9C99

86EE
A2FD
B90098
95FD
cs

E8
DOF7
AGEE
60

8a

A8
A2FD
B90098
95EE
c8

E8
DOF7
60

A2FD
B5FD
990098
cs

E8
DOF7
60

A202
BSFA
95EB
ca
10F9
60

A202
BSFA
9507
CA
10F9
60

675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

724
725
726
727
728
729
730
731
732
733
734
735
736
717
738
739
740
741
742
743
744
745
746
747
748

TMA STX TMP
LDX #$FD
MPL LDA VAR,Y
STA SCL,X
INY
INX
BNE MPL
LDX TMP
RTS

H
.ft***f**t*ii*ttf*********titt*ik*
;
ok *
;
;* FETCH RC: RC=VARIABLE *
7* *
:i*********iiﬁ***ii***t****ﬁi***fi
H

: TRANSFERS VARIABLE TO RC
;sENTER WIT4 VAR PTR IN X

TMR TXA
TAY
LDX #$FD
MRL LDA VAR,Y
STA TMP,X
INY
INX
BNE MRL
RTS

T I e e R I e S 222 2 22 22 A2
* *
* STORE: VARIABLE=AC *
* *
O S e s R T e 2 e

STORES A RESULT FROM AC
INTO A VARIABLE LOCATION

ENTER WITH VAR PTR IN Y

o Se Se S Se me se o~ we we we e

LDX #$FD
LDA SCL,X
STA VAR,Y
INY

INX

BNE STL
RTS

nn
33
[l

:Qi*ﬁﬁ*ff*.t*i*tiiQ*Q'****i*"****

s *
:* TRANSFER AC TN RC *
. * *

:
7**Qttiﬁﬁ'***ﬁ****ﬁﬁi*iiﬁ****ﬁ*iiﬁ

TAR LDX #2
TRL LDA ACL,X
STA RCL,X
DEX
BPL TRL
RTS

ke hhhhhhkhhdkhddhddhdhdhidi
*

*
*
* TRANSFER AC TO TC *
*
*

e ~o ~e e~

*
I Y2 222222222232 2222222 22222 2 2 2 22

. e

TAT LDX #2
TAL LDA ACL,X
STA TCL,X
DEX
BPL TAL
RTS

79

80

9Cc9A
9C9A
acoa
9C9A
9coa
acoa
9C9A
9C9A
9cac
9C9E
9CAO
9CAl
9CA3
9CA4
9ca4
9CA4
9CA4
9CA4
aca4
9CA4
9Cca4
9CA6
9CA8
9CAA
9CAB
9CAD
9CAE
9CAE
9CAE
9CAE
9CAE
9CAE
9CAE
9CAE
9CBO
9CB2
9CB4
9CB5S
9CB7
9CB8
9CcB8
9CB8
Bl 1]
9CB8
9CB8
9CB8
aces8
9CBA
9CBC
9CBE
9CBF
9CccC1
9cec2
9CC2
9cc2
9CC2
9CC2
9Cc?2
9CC2
9cec2
9cc4
9CC6
9ces
9cc9o
9CCB
9cce

Machine-Language Aids

A202
B5SFA
9503

10F9
60

A202
B507
95FA

10F9
60

A202
B507
95EB

10F9
60

A202
B503
95FA
CA
10F9
60

2202
B503
95EB

10F9
60

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
309
810
811
812
813
814
815

LA T e Y
* *
* TRANSFER AC TO QC *
* *
L T

o ~e ~e se e e =

TAQ LDX #2
AQL LDA ACL,X
STA QCL,X
DEX
BPL AQL
RTS

L T ey T Y]
* *
* TRANSFER TC TO AC *
* *
L L T

o e se ne e me e

TTA LDX #2
TTL LDA TCL,X
STA ACL,X
DEX
BPL TTL
RTS

khkhhhdk kb hkhhhhhhhhkkkdkdkd
* *
* TRANSFER TC TO RC *
* *
dhdekhdkkdk kb hhkhhhhhhhhhhhhhddkhhs

Se se ve me ne e e

TTR LDX #2
TXL LDA TCL,X
STA RCL,X
DEX
BPL TXL
RTS

R T T T 22
* *
* TRANSFER QC TO AC *
* *
L T Ty T T

o se me me se ne s

TQA LDX #2
QAL LDA QCL,X
STA ACL,X
DEX
BPL QAL
RTS

R s s T2 2
* *
* TRANSFER QC TO RC *
* *
R L T T 2

o se se me se se e

TQR LDX #2
QRL LDA QCL,X
STA RCL,X
DEX
BPL QRL
RTS

END

3

_

3 3

3

3

A

Huntress Math

Listing 2

1 :**tiitit'tt*i*titltt*itt

2 ;t *

3 ;* EQUATES FOR 24-BIT *

4 ;* MATH PACKAGE *

5 :iit***tttt***ttii******t

6 ;

7 ;PRINCIPAL ENTRY POINTS

8 ;ASSUME AC (AND RC) LOADED

9 ;

10 CLR FQU $995A ;sUSES Y,AC

11 INC EQU $9966 ;USES AC

12 DEC EQU $9970 ;USES A,AC

13 INT EQU $997F ;USES X,AC

14 TNC EQU $998E :USES A,X,AC

15 ADD EQU $999E ;USES A,X,AC

16 SUB EQU $99B1 ;USES A,X,AC

17 SGN EQU $99C1 ;USES A

18 CMP EQU $99D8 ;USES A,X,Y

19 ABS EQU $9A04 ;USES A,X,AC

20 CHG EQU $9A08 ;USES A,X,2C

21 MUL EQU $9A1D ;USFS A,X,Y,AC,FLG

22 DIV EQU $9A6B ;USES A,X,Y,AC,FLG,CNT
23 INV EQU $9ABA ;USES A,X,Y,AC,RC,FLG,CNT
24 SQR EQU $9ATO ;USES A,X,Y,AC,RC,TC,FLG,CNT, TMP
25 FXA EQU $9B20 ;USES A,X,Y,AC,RC

26 SIN EQU $9B4A ;USES A,X,Y,AC,RC,FLG
27 cos EQU $9BEB ;USES A,X,Y,AC,RC,FLG
28 TAN EQU $9B94 ;USES A,X,Y,AC,RC,TC,QC,FLG,CNT
29 ASN EQU $9BB6 ;USES A,X,Y,AC,FLG

30 ACS EQU $9BEA ;USES A,X,Y,AC,FLG

31 ATN EQU $9C04 ;USES A,X,Y,AC,RC,TC,QC,FLG,FLH,CNT, TMP
32 TMA FQU $9C5C ;Y>VAR. USES A,Y,AC,TMP
33 TMR EQU $9CéC :X>VAR. USES A,X,Y,RC
34 STR FQU $9C7A ;Y>VAR. USES A,X,Y

35 TAR EQU $9C86 ;USES A,X,RC

36 TAT EQU $9C90 ;USES A,X,TC

37 TAQ EQU $9C9A ;USES A,X,TQ

38 TTA EQU $9CA4 ;USES A,X,AC

39 TTR EQU $9CAE ;USES A,X,RC

40 TQA EQU $9CE8 ;USES A,X,AC

41 TQR EQU $9CC2 ;USES A,X,RC

42

43 UNARY OPFRATORS: LOADING ENTRY POINTS

44 LOADS AC WITH VARIABLE INDEXED BY Y-REG

45

INC# EQU $9963 ;Y>AC
DEC# EQU $996D ;Y>AC
INT# EQU §$997C ;Y>AC
TNC# EQU $998B ;Y>AC
SGN# FQU $99BF ;Y>AC
ABS# EQU $9A01 ;Y>AC
CHG# FQU $99FR ;Y>AC
INV# EQU $9ABR7 ;Y>AC
SQR# EQU $9ACD ;Y>AC
SIN# EQU $9B47 ;Y>AC
COs# EQU $9BE88 ;Y>AC
TAN# EQU $9B91 ;Y>AC
ASN# EQU $9BB3 ;Y>AC
ACS# EQU $9BE7 ;Y>AC
ATN# EQU $9CO01 ;Y>AC

;BINARY OPERATORS: FULL LOADING ENTRY POINTS
;LOADS AC WITH VARIABLE INDEXED BY Y-REG,AND
;LOADS RC WITH VARIAELE INDEXED BY X-REG

ADD## EQU $9998 ;Y>AC, X>RC
SUB## EQU $99AB ;Y>AC, X>RC
CMP## EQU $99D2 ;Y>AC, X>RC
MUL## EQU $9A17 ;Y>AC, X>RC
DIV## EQU $9A65 ;Y>AC, X>RC
LET## EQU $9C4B ;Y=X. USES ONLY A,X,Y,CNT

81

82 Machine-Language Aids

72

73 ;BINARY OPERATORS:HALF LOADING ENTRY POINTS
74 ;LCADS RC WITH VARIABLE INDEXED BY X-REG
75 :ASSUMES AC ALREALCY LOADED

76 ;

77 ADD# EQU $999B ;X>RC

78 SUB# EQU $99AE ;X>RC

79 CMP# EQU $99D5 ;X>RC

80 MUL# EQU $9A1A ;X>RC

81 DIV# EQU $9A68 ;X>RC

82

83 END

Listing 3

0800 1 7tt*t*t*ttt*ti*t**itt*ttt*****t*
0800 2 ;* *
0800 3 ;* EXAMPLE COCE USING FIAT *
0800 4 ;* *
0800 5 :-.**ti*ttit*t**titt*tti*t*itt**i
0800 6

0800 7 ;FIAT EQUATES

0800 8 ;

0800 9 INC EQU $9966

0800 10 ADD EQU $999E

0800 11 cMp EQU $99D8

0800 12 DIV EQU $9A6B

0800 13 SQR EQU $9AD0

0800 14 STR EQU $9C7A

0800 15 TAT EQU $9C90

0800 16 TAQ EQU $9C9A

0800 17 TTR EQU $9CAE

0800 18 TOR EQU $9cCC2

0800 19 MUL# EQU $9A1A

0800 20 SINg# EQU $9B47

0800 21 SUB## EQU $99AB

0800 22 MUL## EQU $9A17

0800 23 LET## EQU $9C4B

0800 24

0800 25 ;VARIABLE EQUATES

0800 26

0800 27 A EPZ $00

0800 28 B EPZ $03

0800 29 ¢ EPZ $06

0800 30 D EPZ $09

0800 31 E EPZ $OC

0800 32 F EPZ $OF

0800 33 PI EPZ $12

0800 34 ;

0800 35 ;B=(A-B)*C+l

0800 36

0800 A00O 37 LDY #A

0802 A203 38 LDX #B

0804 20AR99 39 JSR SUB##

0807 A206 40 LDX #$C

0809 201A9A 41 JSR MUL#

080C 206699 42 JSR INC

080F ACO3 43 LDY #B

0811 20729C 44 JSR STR

0814 45

0814 46 ;F=PI*SQR(A*B+C*D)/SIN(E)
0814 47 ;

0814 AQ0C 48 LDY $E

0816 20479E 49 JSR SIN#

0819 209A9C 50 JSR TAQ

081C A000 51 LDY #A

081E A203 52 LLX #B

0820 20179A 53 JSR MUL##

0823 20909C 54 JSR TAT

0826 2006 55 LDY #C

0828 A209 56 LCX #D

d

N

.

3

Huntress Math

83

082A 20179A 57 JSR MUL##
082C 20AE9C 58 JSR TTR
0830 209E29 59 JSR ADD
0833 A212 60 LDX #PI
0835 201A9A €1 JSR MUL#
0838 20C29C 62 JSR TOR
083B 206B92A 63 JSR LIV
083E ACOF 64 LDY §F
0840 207A9C 65 JSR STR
0843 66
0843 67 ;IF A>B THEN C=B
0843 68
0843 A003 69 LDY $B
0845 A200 70 LDX #A
0847 200899 71 JSR CMP
084A 1007 72 BPL NO
084C R006 73 LDY #C
084E A209 74 LDX #D
0850 204B9C 75 JSR LET##
0853 60 76 NC RTS
0854 77
0854 78

79 FND
10 REM 2222222222222 22222222227
20 REM * *
30 REM * FIAT LOADER *
40 REM * *
50 REM * WES 4UNTRESS *
60 REM * *
70 REM * COPYRIGHT (C) 1982 hd
80 REM * MICRO INK, INC. *
90 REM * CHELMSFORD, MA. 01824 *
92 REM * *
94 REM E2 2222222222222 2222222222
100 POKE - 25344,211
110 POKE - 25343,151
120 CALL - 22572
130 PRINT CHR$ (4)"BLOAD FIAT"

Applesoft Error Messages
from Machine Language

by Steve Cochard

The methods and data required to utilize Applesoft
error messages in assembly language are presented.
Use of these routines should be limited to assembly
language routines that are interfaced with Applesoft
programs.

I needed to know more about how Applesoft generates its error messages. While
writing an assembly language program that interfaced with Applesoft, I found that
just the simple ‘‘syntax error,” which was the only message I knew how to
utilize, was not enough.

I started my search for the '‘errors’’ by looking at the machine code for the
''syntax error’’ message which is located at $DEC9. It consists of only two
commands:

LDX #$10
JMP $D412

This short routine was intended only to load the X register with the starting ad-
dress of the word SYNTAX in a table of all error messages. With a little more
searching in the $D412 routine, the table was found.

The 240-byte-long error message table is located at $D260. By loading the X
register with the appropriate index and then jumping to the $D412 routine, it is
possible to utilize any error message from machine language or Applesoft.

Table 1 shows the values to be loaded into the X register to generate any of the
available 17 messages. Listings 1 and 2 show very short machine and Applesoft
programs to verify that this is true. Listing 3 shows a program that will list the en-
tire table.

3

.

3

_3

Cochard Error Messages 85

Note that this procedure, if utilized in machine language, performs exactly as
if the error had occurred in an Applesoft program. The error message is printed, the
bell rings, the last executed line number is printed, and the program stops. If an
ONERR GOTO statement was already executed, the program will again operate as
if the error had occurred in Applesoft. The object line of the ONERR GOTO will be
jumped to and executed. Happy Errors!

Table 1: Value of X register and error messages.

0 NEXT WITHOUT FOR 107 BAD SUBSCRIPT
16 SYNTAX 120 REDIM'D ARRAY
22 RETURN WITHOUT GOSUB 133 DIVISION BY ZERO
42 OUT OF DATA 149 ILLEGAL DIRECT
53 ILLEGAL QUANTITY 163 TYPE MISMATCH
69 OVERFLOW 176 STRING TOO LONG
77 OUT OF MEMORY 191 FORMULA TOO COMPLEX
90 UNDEF'D STATEMENT 210 CAN'T CONTINUE

224 UNDEF'D FUNCTION

Listing 1: Enter from the monitor to interface with program listing 2.

300:LDX $0306
303:JMP $D412

Listing 2: Applesoft program to print error messages.

10 INPUT ""WHAT VALUE OF X ? '';X
20 POKE 774,X
30 CALL 768

Listing 3: Lists the entire table. Enter it from the monitor and then type in 300G.

300:LDX #8$00
302:LDA $D260,X
305:EOR #$80
307:BMI $0310
309:0RA #$80
30B:JSR $FDED
30E:LDA #$8D
310:JSR $FDED
313:INX
314:CPX #$FF
316:BNE $0302
318:RTS

3

I/0O ENHANCEMENTS

Serial Line Editor
Wes Huntress

Trick DOS
Sanford M. Mossberg

LACRAB
N.R. McBurney

89

100

107

I/O Enhancements

You can improve communication with your computer by using any of these handy
programs.

Sandy Mossberg's '‘Trick DOS’’ will allow you to change DOS commands; as
a result you can create abbreviations for the commands, or completely change
them.

"'Binary File Parameter List'’ by Clyde Camp not only gives you the ability to
see the location of the default address for binary type files, but also displays their
lengths. N.R. McBurney’s ''LACRAB,” an effective Applesoft BASIC listing-
formatter and cross-reference program, improves the look and readability of your
listing. The program utilizes features such as single statement.lines and logical
indentation.

''Serial Line Editor’’ by Wes Huntress is an improvement over the monitor
ROM line input routine. It provides a better delete and insert character routine
(the line appears the way it is stored), move cursor to beginning or end of line com-
mand, move cursor to first occurrence of a specified character command, and
other features. The author offers methods to interface the Line Editor to any
Applesoft program.

3 3

3

Serial Line Editor

by Wes Huntress

This routine is an extended line editor that allows
inserting, deleting, and several other features.

The GETLN machine-language routine replaces your Apple’s line input routine
(resident in monitor ROM). Both Applesoft and Integer BASICs call this routine
for line input. The advantage of the alternate routine given here is the editing
features it contains. The Apple monitor ESC editing features are very useful for
editing BASIC program lines, but are not the best for editing text. The editing
features in GETLN are typical of serial text line editing and could form the basis of
any line-oriented text processing program. GETLN also allows the input of nor-
mally forbidden characters in Applesoft, such as the comma and colon.

All of these advantages are gained at a slight disadvantage in usage. Applesoft
programs must be moved up two pages in memory and a few extra program steps
are required instead of a simple INPUT statement. GETLN should be used only for
string input and string editing. The version given here is for Applesoft. With a few
changes it can be made to work for Integer as well.

When called, GETLN prompts for input and places the characters in the
keyboard buffer at $200.2FF. All editing is done on the characters placed in the
keyboard buffer. On return from GETLN it is necessary to move the characters
from the keyboard buffer to the memory space that is to be occupied by the string.
For Applesoft, this requires that the location in memory of the string variable's ad-
dress pointer be known. The method used to accomplish this is the same as given
in CONTACT#6. A dummy variable is declared as the first variable in the pro-
gram, i.e. X$ ='' "', which assigns the two-byte variable name to the first two loca-
tions in memory at the LOMEM: pointer. The third location is assigned to the string
length, and the fourth and fifth locations to the address of the string in memory,
low byte first.

90 I/0 Enhancements

The LOMEM: pointer is at $69-70, so that the address of the string X$ can
now be found indirectly from the LOMEM: pointer. A separate machine language
program, called GI, is provided. It interfaces the GETLN routine with Applesoft
programs by placing the address of the keyboard buffer and the buffer string length
into the proper location for X$ using the LOMEM: pointer.

The string X$ is now assigned to the string in the keyboard buffer. In order to
move it into the upper part of memory where Applesoft strings are normally
stored, and to prevent the string from being clobbered the next time GETLN is
called, the statement X$=MID$(X$,1) is used. This statement performs a
memory move from the present location of X$ {the keyboard buffer) to the next
available space in high memory, and is the key to the success of the interface of
GETLN with Applesoft programs.

How to Use It

To use GETLN with Applesoft programs, both GI and GETLN must be present
in memory. To set up your program and call for input, use the following procedure:

5 X$=""""REM FIRST VARIABLE DECLARATION

100 CALL 840:A%$ =MID$(X$,1):REM KEYBOARD INPUT

Line 100 replaces the INPUT A$ statement. CALL 834 is to the keyboard in-
put entry point in the GI interface routine. Three other entry points are provided
in the interface routine. The call

100 CALL 859:X$ =MID$(X$,1):REM DOS INPUT

replaces the INPUT A$ statement when READing text files from the disk. A
separate routine from the keyboard input routine is required for Applesoft pro-
grams since the DOS stores and outputs all text files in negative ASCII. The call

100 X$=AS$:CALL 806:REM PRINT

can be used in place of the PRINT A$ statement to print all control characters in
inverse video. Otherwise use the PRINT A$ statement as usual. To recall a string
for further editing, use

100 X$ =A$:CALL 813:A$ =MID$(X$,1):REM EDIT

The cursor will be placed on the screen at the beginning of the recalled string.
Dimensioned strings can be used as well as simple strings. GETLN can also be used
alone from assembly language using 800G. It will place the input string in the
keyboard buffer in standard ASCII terminated by $8D (CR).

3

.

3

B0

-

3

Huntress Line Editor 91

GETLN occupies nearly two pages of memory from $800 to $9AF. Since
Applesoft programs normally reside in this space, it is necessary to move your pro-
gram up in memory to make room for GETLN. This is readily accomplished by
two statements:

POKE 104,10:POKE 2560,0

This line must be executed either from immediate mode or from an EXEC file
before loading the Applesoft program. The short interface routine occupies loca-
tions $300 to $360.

Editing Features

The following edit commands are implemented in GETLN. Except for the
usual Apple <~ and RETURN editing keys, all commands are initiated by hitting
the ESC key.

- Move cursor right, copy character

- Move cursor left

RETURN Terminate line, clear to end of page
ESC — Initiate insert mode, ESC or RET to exit
ESC « Delete character, recursive

ESC sp bar Move cursor to beginning (end) of line
ESC char Move cursor to first occurrence of char

ESC ctrl-shift-M Delete remainder of line

The first three commands operate just as in the Apple monitor line editor.
The monitor ESC functions are replaced with the five ESC functions listed above.
Use ESC — to insert characters at any place in the line. Use the usual monitor >
and « keys to position the cursor over the character where you wish to insert. ESC
— will push right by one character the entire string beginning from the character
under the cursor to the end of the line, leaving a blank under the cursor. As you
type in new characters, the old right-hand string is continuously shifted right. The
+ and — keys work on the inserted substring as before but will not allow editing
left of the first inserted character. In the insert mode, — operates just like the
space bar if keyed at the right-hand end of the substring. To terminate the insert
mode, press ESC or RETURN. The old right-hand string is moved back one space
for reconnection.

The ESC « command deletes the character under the cursor and pulls left the
entire string to the right of the cursor. The function is recursive, so that characters
can continue to be deleted by repeated keying of the « key. The first key pressed
other than « terminates the function.

92 I/0 Enhancements

The ESC space bar command moves the cursor to the end of the line. If the
cursor is already at the end of the line, then it is moved to the beginning. This
function allows rapid transport of the cursor to the beginning or end of the line.

The ESC char command moves the cursor right in the line to the first occur-
rence of the character key pressed after the escape key. If the character is not found
before the end of the line, then the search branches to the beginning of the line. If
the character is not found in the line, then the cursor is not moved.

The ESC ctrl-shift-M command deletes the entire line to the right of the cur-
sor including the character under the cursor. This function allows excess garbage
to be cleared from the line for editing readability.

Together these functions give you an intriguing and powerful text line editor.
It's much more fun than the Apple monitor line input routine. Try it! You'll like it!

B

o

i

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0802
0805
0808
080A
osoc
080E
0810
0812
0814
0816
0816
0816
0816
0819
081B
081D
081F

AOAO
8C0002
EE0308
DOF8
A200
8619
861A
861D
861E
861F

200CFD
c988
FOSB
C99B
FO31

Yol RN WV, UL S

:t*t*tttt*t*t***i*t**tt
ok *
;* SERIAL LINE EDITOR *
P * FOR APPLESOFT

*

I BY

P * WES 4YUNTRESS
;* SIERRA MADRE, CA

;* COPYRIGHT (C) 1982
P* MICRN INK, INC.
; *CHELMSFORD, MA 01824*

;* ALL RIGHTS RESERVED*
ok *

H
o Jede g de e de de de K de de de g de ek ok ke ke ke ke

H

* Ok % ¥ * ¥ *

;EQUATES: CONSTANTS

BS EPZ $88
CR EPZ $8D
CSM EPZ $9D
CTL EPZ $20
ESC EPZ $9B
FIX EPZ STF
NV EPZ $80
NAK EPZ $95
BEND EPZ SFE
ZERO EPZ $00
BLANK EPZ $AO

;s EQUATES: POINTERS

CHAR# EPZ $19
EOL EPZ $1A
STRT EPZ $1B
TEMP EPZ $1C
SUBSTR EPZ $1D
SUBEND EPZ S$1E
MODE EPZ S$1F

:EQUATES: MONITOR ADDRESSES

BUFFER EQU $0200
KEYIN EQU $FDOC
PRINT EQU $FDED
BACKSP EQU $FC10
ADVANC EQU $FBF4
RETURN EQU $FC62
CLREOP EQU $FC42
BELL EQU SFF3A

;

ORG $0800

INITIALIZE KEYBOARD BUFFER

GETLN LDY #BLANK

CLRB STY BUFFER
INC *-§2
BNE CLRB
LDX #ZERO
STX CHAR#
STX EOL
STX SUBSTRT
STX SUBEND
STX MODE

Huntress Line Editor 93

: LOAD BLANK CHARACTER

sSTORE IT IN KEYBOARD BUFFER
:FROM $0200

; TO SO2FF

;SET POINTERS TO ZERO:
;CHARACTER NUMBER IN THE STRING
;END OF LINE POINTER

:SUBSTRING START POINTER
;SUBSTRING END POINTER
;MAINLINE/SUBSTRING MODE FLAG

;MAINLINE CHARACTER ENTRY ROUTINE

GETCHR JSR KEYIN

GETCH1 CMP #BS
BEQ BKSPCE
CMP #ESC
BEQ ESCAPE

:GET CHAR USING MONITOR ROUTINE
: BACKSPACE?

:YES,

GOTO BACKSPACE ROUTINE

: ESCAPE KEY?

:YES,

GOTO ESCAPE VECTOR ROUTINE

94 1/0 Enhancements

0821 C995
0823 FO61
0825 C98D
0827 F063
0829 A619
082B 297F

082D 204508
0830

0830

0830

0830 E619
0832 a619
0834 E41E
0836 FO076
0838 A41a
083A C419
083C B004
083E E61A
0840 FOSF
0842 4Cl1608
0845

0845

0845

0845 9D0002
0848 C920
084A 9002
084C 0980
084E 20EDFD
0851 60
0852

0852

0852

0852 A41F
0854 D048
0856 200CFD
0859 €995
085B FOOF
085D €988
085F FO11
0861 C9A0
0863 FOOA
0865 C99D
0867 FOOC
0869 4C7409
086C 4C0509
086F 4C5509
0872 4CEDOS
0875 4C9A09
0878

0878

0878

0878 A419
087A C41D
087C F005
087E C619
0880 2010FC
0883 4C1608
0886

0886

0886

0886 20F4FB
0889 4C3008
088c

088c

088C

088C A41lF
088E DOOE
0890 A619
0892 861A
0894 9D0002
0897 2042FC
089A 2062FC
089D 60
089E 4C3DN9

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

cMP
BEQ
CcMP
BEQ
LDX
AND

JSR

#NAK
FORWRD
#CR
LINEND
CHAR#
#FIX

STRPNT

: POINTER UPDATING

.

FXPTRS

FXPOUT
;s STORE

STRPNT

PNT

ESCAPE KEY VECTOR ROUTINE

ESCAPE

INSV
ZMMV
DELV
ZAPV

INC
LDX
CPX
BEQ
LDY
cpY
BCS
INC
BEQ
JMP

AND

STA
CMP
BCC
ORA
JSR
RTS

LDY
BNE
JSR
cMP
BEQ
cMp
BEQ
CMP
BEQ
CMP
BEQ
JMP
JMP
JMp
JMp
JMP

;s BACKSPACE

1
BKSPCE

BSOUT

LDY
CPY
BEQ
DEC
JSR
JMp

CHAR#
CHAR#
SUBEND
WHICH
EOL
CHAR#
FXPOUT
EOL
BUFULL
GETCHR

PRINT ROUTINE

BUFFER, X
#CTL
PNT

$INV
PRINT

MODE
SBEXV
KEYIN
#NAK
INSV
#BS
DELV
#BLANK
ZMMV
#CSM
ZAPV
CHRFND
INSERT
ZOOM
DELETE
ZAP

ROUTINE

CHAR#
SUBSTRT
BSOUT
CHAR#
BACKSP
GETCHR

;
s FORWARD ARROW ROUTINE

éORWRD JSR ADVANC

JMP

FXPTRS

;EXIT ROUTINE

LINEND

SBEXV

LDY
BNE
LDX
STX
STA
JSR
JSR
RTS
JMe

MODE
SBEXV
CHAR#
EOL
BUFFER, X
CLREOP
RETURN

SUBEXT

; FORWARD ARROW?

:YES, GOTO FORWARD ARROW ROUTINE
: RETURN?

;YES, GOTO EXIT ROUTINE

:NONE OF THESE, GET CURRENT CHAR#
:FIX NEG ASCII INPUT FOR
APPLESOFT

;STORE AND PRINT CHAR

:INC POSTITION-IN-STRING POINTER
;GET IT

:AT END OF SUBSTRING OR BUFFER?
:YES, GO FIND OUT WHICH

:GET END OF LINE POINTER

:END OF CURRENT LINE?

;NO, SKIP EOL POINTER UPDATE

: INCREMENT END OF LINE POINTER
;256 CHARS! GOTO BUFFER FULL
;DONE. GET ANOTHER CHARACTER

:STORE IN CURRENT BUFFER LOC.
;CONTROL CHARACTER?

;NO, SKIP TO PRINT

:YES, CONVERT TO INVERSE

s PRINT TO SCREEN

:SUBSTRING MODE?

;YES, GOTO SUBSTRING EXIT VECTOR
;GET ANOTHER CHARACTER

;s FORWARD ARROW?

:YES, GOTO INSERT MODE VECTOR
: BACKSPACE?

:YES, GOTO DELETE MODE VECTOR
:1SPACE CHAR?

;YES, GOTO CURSOR ZOOM VECTOR
;CTRL-SHIFT-M?

:YES, GOTO LINE ZAP VECTOR
;NONE OF THESE, GOTO CHAR FIND
1GOTO INSERT ROUTINE

;GOTO CURSOR ZOOM ROUTINE
;1GOTO DELETE ROUTINE

:GOTO DELETE-TO-EOL ROUTINE

7GET POSITION IN LINE

+AT BEGINNING OF LINE/SUBSTRING?
:YES, RETURN

:NO, DECREMENT POSITION IN LINE

: BACKSPACE CURSOR
: RETURN

:ADVANCE CURSOR
sRETURN TO INCREMENT CHAR#

: SUBSTRING MODE?

:YES, GOTO SUBSTRING EXIT

1 STORE CHARACTER COUNT

:IN EOL POINTER

;STORE CR AT END NF STRING
;CLEAR SCREEN TO END OF PAGE
; PERFORM CARRIAGE RETURN
;EXIT TO CALLER

:GOTO SUBSTRING EXIT

3

3

3 3

3

33y 3 3

3y 3 3 3

.

3

Huntress Line Editor 95

e)
08Al 149 ;
08A1 150 ;BUFFER FULL ROUTINE
o 08A1l 151
. 08A1 C61A 152 BUFULL DEC EOL s DECREMENT EOL POINTER
08A3 C619 153 BUFUL1 DEC CHAR# : DECREMENT CURSOR POSITION
08A5 2010FC 154 JSR BACKSP ; BACKSPACE
08A8 203AFF 155 BELEX JSR BELL : SOUND BELL
] 08AB 4C1608 156 JMP GETCHR : RETURN
: 08AE 157
08AE 158 ;DETERMINE MAINLINE OR SUBSTRING MODE
08AE 159
O8AE A41lF 160 WHICH LDY MODE :+ SUBSTRING MODE?
= 08B0 FOF1 161 BEQ BUFULL ;sNO, GOTO BUFFER END ROUTINE
: 08B2 4C1709 162 JMP MOVEFD ;YES, MOVE RIGHT STRING FORWARD
08B5 163
08B5 164 ;MOVE STRING BACK ROUTINE
08BS 165
i) 08B5 A619 166 MOVEBK LDX CHAR# ;GET DESTINATION START
: 08B7 A41B 167 LDY STRT ;GET STRING START
08B9 AS51A 168 LDA EOL ;GET STRING END
08BB 38 169 SEC
08BC ES51B 170 SBC STRT $SUBTRACT STRING START
e 08BE 18 171 CcLC
‘ 08BF 6519 172 ADC CHAR# :ADD PRESENT CURSOR POSITION
08Cl 851C 173 STA TEMP :STORE NEW EOL POINTER
08C3 B90002 174 MVBLP LDA BUFFER,Y :GET STRING CHARACTER
08C6 204508 175 JSR STRPNT :STORE AND PRINT CHARACTER
Fm 08C9 -C8 176 INY ; INCREMENT THE
! 08CA ES8 177 INX ;POSITION POINTERS
08CB C41A 178 CPY EOL ;:END OF STRING?
08CD 90F4 179 BCC MVBLP :NO, GET ANOTHER CHARACTER
08CF 2042FC 180 JSR CLREOP :YES, CLEAR TO END OF PAGE
= 08D2 8A 181 TXA : STORE CURSOR POSITION
) 08D3 A8 182 TAY ;IN Y REGISTER
08D4 A9A0 183 LDA #BLANK $+GET SPACE CHARACTER
08D6 9D0002 184 CLRLP STA BUFFER,X +STORE IN BUFFER BEYOND NEW EOL
08D9 ES8 185 INX : INCREMENT POSITION
o 08DA E41A 186 CPX EOL AT OLD END OF LINE?
! 08DC 90F8 187 BCC CLRLP :NO, DO IT AGAIN
! O8DE A61C 188 LDX TEMP :YES, GET NEW EOL
08E0 861A 189 STX EOL :STORE IT
08E2 98 190 TYA :GET CURSOR POSITION
= 08E3 AA 191 TAX ;s BACK INTO X REGISTER
‘ 08E4 192
08E4 193 ;RESTORE CURSOR ROUTINE
0SE4 194
O8E4 2010FC 195 RESTOR JSR BACKSP ;s BACKSPACE
= 08E7 CcA 196 DEX : DECREMENT CURSOR POSITION
O8E8 E419 197 CPX CHAR# AT PRESENT CHARACTER POSITION?
08EA DOF8 198 BNE RESTOR :NO, DO IT AGAIN
08EC 60 199 RTS :YES, RETURN
08ED 200
o 08ED 201 ;DELETE ROUTINE
: 08ED 202
O8ED A619 203 DELETE LDX CHAR# ;GET PRESENT CHARACTER POSITION
O8EF ES8 204 INX : INCREMENT TO NEXT CHARACTER
O8F0O 861B 205 STX STRT :STORE STRING START POSITION
o 08F2 A4lA 206 DELELP LDY EOL ;GET END OF LINE POINTER
H 08F4 C419 207 CPY CHAR# :SAME AS NEXT CHARACTER POSITION?
08F6 FOOA 208 BEQ DELOUT :YES, NOTYING TO DELETE!
08F8 20B508 209 JSR MOVEBK ;NO, MOVE STRING BACK ONE SPACE
08FB 200CFD 210 JSR KEYIN :GET ANOTHER CHARACTER
= O8FE C988 211 CMP #BS ;ANOTHER BACKSPACE CHARACTER?
i 0900 FOFO 212 BEQ DELELP :YES, DELETE ANOTHER CHARACTER
0902 4C1908 213 DELOUT JMP GETCH1 . :NO, BACK TO MAINLINE
0905 214
0905 215 ;INSERT ROUTINE INITIALIZE
0905 216
ﬁﬁm 0905 A61A 217 INSERT LDX EOL ;GET END OF LINE POINTER
0907 EOFE 218 CPX #BEND ;END OF ALLOWABLE INSERTIONS?
0909 BO9D 219 BCS BELEX :YES, STOP INPUT
090B A619 220 LDX CHAR# ;NO, GET POSITION IN LINE
i 090D E41A 221 CPX EOL ;AT END OF LINE?
= 090F F029 222 BEQ INOUT :YES, NO NEED TO INSERT!
0911 861D 223 STX SUBSTR :NO, STORE SUBSTRING START

96

0913
0915
0917
0917
0917
0917
091A
091D
091F
0921
0922
0925
0928
0929
092B
092D
092E
0931
0932
0935
0938
093A
093D
093D
093D
093D
093F
0941
0944
0946
0948
094A
094cC
094F
0952
0955
0955
0955
0955
0957
0959
095A
095¢
095E
0960
0961
0964
0965
0967
096A
096D
096E
0970
0972
0974
0974
0974
0974
0976
0978
097A
097B
097E
0980
0982
0984
0986
0989
098B
098D
098F
0992
0995
0996
0998

SUBEND
MODE

:STORE PRESENT SUBSTRING END
:SET SUBSTRING MODE FLAG

;
*MOVE STRING FORWARD ROUTINE

ADVANC
BUFFER, X
EOL
SBOUT

BUFFER, X
STRPNT

EOL
MVFLP

RESTOR

STRPNT
BACKSP
SUBEND
GETCHR

EXIT ROUTINE

SUBEND
STRT
MOVEBK
#ZERO
SUBSTR
SUBEND
MODE
GETCHR
BACKSP
BUFULL

;CURSOR ZOOM ROUTINE

1/0 Enhancements
861E 224 STX
851F 225 STA

226

227

228
20F4FB 229 MOVEFD JSR
BD0002 230 LDA
E61A 231 INC
FO2E 232 BEQ
E8 233 MVFLP INX
BC0O002 234 LDY
204508 235 JSR
98 236 TYA
E41A 237 CPX
DOF4 238 BNE
E8 239 INX
20E408 240 JSR
98 241 TYA
204508 242 JSR
2010FC 243 JSR
E61E 244 INC
4C1608 245 INOUT JMP

246 ;

247 ;SUBSTRING

248 ;
A61lE 249 SUBEXT LDX
861B 250 STX
20B508 251 JSR
A200 252 LDX
861D 253 STX
861E 254 STX
861F 255 STX
4C1608 256 JMP
2010FC 257 SBOUT JSR
4CA108 258 JMP

259

260

261 ;
AS1A 262 ZOOM LDA
FOOE 263 BEQ
AR 264 TAX
E519 265 SBC
FOOC 266 BEQ
8619 267 STX
AA 268 TAX
20F4FB 269 ZOOMLP JSR
CA 270 DEX
DOFA 271 BNE
4C1608 272 ZMOUT JMP
2010FC 273 ZBEG JSR
CA 274 DEX
DOFA 275 BNE
8619 276 STX
FOF3 277 BEQ

278 ¢

279 ;CHARACTER

280 ;
297F 281 CHRFND AND
851B 282 STA
A619 283 LDX
E8 284 CHRFLP INX
20F4FB 285 JSR
E419 286 CHRFl CPX
FOOD 287 BEQ
E41A 288 cpx
BOOC 289 BCS
BD0O002 290 LDA
C51B 291 CMP
DOED 292 BNE
8619 293 STX
4C1608 294 CHFOUT JMP
2010FC 295 SBEG JSR
cA 296 DEX
DOFA 297 BNE
FOE4 298 BEQ

EOL
ZMOUT

CHAR#
ZBEG
CHAR#

ADVANC

ZOOMLP
GETCHR
BACKSP

ZBEG
CHAR#
ZMoUuT

SEARCH ROUTINE

$FIX
STRT
CHAR#

ADVANC
CHAR#
CHFOUT
EOL
SBEG
BUFFER, X
STRT
CHRFLP
CHAR#
GETCHR
BACKSP

SBEG
CHRF1

;ADVANCE CURSOR

7GET FIRST STRING CHARACTER

: INCREMENT EOL POINTER

;BUFFER END! STOP INPUT

$POINT TO SECOND CHARACTER

7GET SECOND CHARACTER

;STORE AND PRINT FIRST CHAR

: TRANFER SECOND CHAR TO ACC.

;END OF LINE?

sNO, DO IT AGAIN

:YES

s RESTORE CURSOR

1GET SPACE CHAR INTO ACC.

:STORE & PRINT AT INSERT POSITION
sRETURN CURSOR TO INSERT POSITION
: INCREMENT SUBSTRING END POINTER
:GET ANOTHER CHAR

:GET SUBSTRING END POSITION
7STORE IN STRING START POINTER
sMOVE RIGHT STRING BACK

sRESET TYE

:SUBSTRING START,

s SUBSTRING END POINTERS

;AND MODE FLAG

:BACK TO MAINLINE

: BACKSPACE

?GOTO BUFFER FULL

;GET EOL POINTER

;NULL LINE! RETURN

:STORE EOL IN X REGISTER

;CURSOR AT END OF LINE?

:YES, ZOOM TO LINE START

:STORE CURSOR POSITION (EOL)
:GET ADVANCE COUNT IN X REGISTER
;ADVANCE CURSOR

; DECREMENT ADVANCE COUNT
:ADVANCE AGAIN IF NOT AT EOL
:BACK TO MAINLINE

1 BACKSPACE

;DECREMENT POSITION IN LINE

:DO IT AGAIN IF NOT AT LINE START
$STORE CURSOR POSITION

:BACK TO MAINLINE

;CONVERT NEG ASCII INPUT

:STORE KEY CHARACTER

:GET PRESENT CURSOR POSITION

: INCREMENT CURSOR POINTER
:ADVANCE CURSOR

AT OLD CURSOR POSITION?

;YES, CHARACTER NOT FOUND

;END OF LINE?

;YES, START AGAIN AT LINE START
sGET CHARACTER AT THIS POSITION
sSAME AS KEY?

;NO, TRY AGAIN

:YES, STORE CURSOR POSITION
BACK TO MAINLINE

: BACKSPACE

;s BEGINNING OF LINE?

:NO, BACKSPACE AGAIN

:YES, CONTINUE SEARCH

3

33y 3 3

3

]

bz]

099A
099A
099A
099A
099C
099E
09Al1
09A2
09a4
09A6
09A9
09AC
09AC
09AC
09AC
09AE
09AF
09B2
0985
09B7
09B9
09BB
09BC
09BF
09C1
09Cc4
09C5
09cC?
09C9

A619
A9A0
204508
E8
E41A
90F8
20E408
4C1608

A2FF
E8
200CFD
9D0002
Cc98D
DOF5
861A
E8
BDFFO1
297F
9DFFO1
CA
DOF5
A61A
60

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

B2 ~e e s

AP LDX

LDA
ZAPLP JSR
INX
CPX
BCC
JSR
JMP

CHAR#
#BLANK
STRPNT

EOL
ZAPLP
RESTOR
GETCHR

;DISK INPUT ROUTINE

DISKIN LDX
DISKL1 INX
JSR
STA
CMP
BNE
STX
INX
DISKL2 LDA
AND
STA
DEX
BNE
LDX
RTS
END

#ZERO-$1

KEYIN
BUFFER, X
#CR
DISKL1
EOL

BUFFER-$1,X
#FIX
BUFFER-$1,X

DISKL2
EOL

Huntress Line Editor

ZAP (DELETE TO END OF LINE) ROUTINE

$GET CURSOR POSITION

; LOAD ACC. WITH SPACE CiAR
:STORE AND PRINT IT

;NEXT POSITION

;END OF LINE?

;NO, DO IT AGAIN

;YES, RESTORE CURSOR

;BACK TO MAINLINE

;s INITIATE T™HE

;CHAR# POINTER

;GET A CHARACTER

;STORE IN BUFFER

;CARRIAGE RETURN?

;NO, GET ANOTHER CHARACTER
:YES, STORE CHARACTER COUNT
;INIT FOR ASCII CONVERSION
;GET BUFFER CYARACTER
;CONVERT FOR APPLESOFT
;PUT IT BACK

;COUNT BACK TO ZERO

;LOOP IF NOT FINISHED
;CHAR COUNT IN X REG.
sEXIT TO CALLER

97

98

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0300
0300
0300
0300
0300
0300
0302
0304
0306
0308

030A
030C
030D
030F
0311

0312

0314
0316
0318
031A
031cC
031F
0320
0321

0323
0325

0326
0326
0326
0326

0329
032C
032D
032D
032D
032D

I/0 Enhancements
1 :tti*****itt*iik*i*ti**
2 ;a *
3 ;* INTERFACE CODE *
4 ;* FP - GETLN *
5 *
6 * BY *
7 g+ *
8 :* WES 9JUNTRESS *
9 :* SIERRA MADRE, CA *
10 ;* *
11 :* COPYRIGHT (C) 1982 *
12 :* MICRO INK, INC. *
13 ;*CHELMSFORD, MA 01824*
14 ;* ALL RIGiITS RESERVED*
15 ;* *
16 :t**t******it*****it**t
17
18 ;EQUATES: CONSTANTS & ZERO PAGE
19 ;
20 CURS EPZ $19
21 ZERO EPZ $00
22 BLANK EPZ $A0
23 LENLOC EPZ $02
24 STADRL EPZ $08
25 STADRY EPZ $09
26 STRLEN EPZ $1A
27 VARPTR EPZ $69
28
29 ;EQUATES: BUFFER & ADDRESSES
30
31 BUFFER EQU $0200
32 GETLN EQU $0800
33 EENTRY EQU $0810
34 STRPNT EQU $0845
35 DISKIN EQU $09AC
36 BACKSP EQU $FC10
37 RETURN EQU SFC62
38
39 ORG $03n0
40 OBJ $0800
41
42 ;PRINT X$ SUBROUTINE
43
ANO2 44 PSCRN LDY #LENLOC
B169 45 LDA (VARPTR),Y ;GET X$ STRING LENGTH
851A 46 STA STRLEN ;STORE STRING LENGTY PTR
A900 47 LDA #S00
(3. 48 CMP STRLEN :LEN=0 MEANS JUST A CARRIAGE RETURN
FO19 49 BEQ PSCRNX ;SKIP IF JUST A CARRIAGE RETURN
c8 50 INY
B169 51 LDA (VARPTR),Y ;GET X$ ADDR LOW BYTE
8508 52 STA STADRL ;STORE IN X$ ADDR PTR LOW
cs 53 INY
B169 54 LDA (VARPTR),Y :GET X$ ADDR 41 BYTE
8509 55 STA STADRY ;STORE IN X$ ADDR PTR HI
A000 56 LDY #ZERO ;INITIATE THE
A200 57 LDX #ZERO : COUNTERS
B108 58 PNTLP LDA (STADRL),Y ;GET MID$(XS$,Y,1)
204508 59 JSR STRPNT ;STORE & PRINT
E8 60 INX ; INCREMENT
cs 61 INY ; COUNTERS
c41a 62 CPY STRLEN ;END OF STRING?
90F5 63 BCC PNTLP :NO, GET ANOTHER CHAR
60 64 PSCRNX RTS ;EXIT TO CALLER
65
66 ;PRINT XS TO SCREEN
67
200003 68 PRINT JSR PSCRN ;PRINT X$
2062FC 69 JSR RETURN ;DO A CARRIAGE RETURN
60 70 RTS ;EXIT TO CALLER
71
72 ;EDIT X$
73
200003 74 EDIT JSR PSCRN ;PRINT X$

B R

3 3

R |

3

3y 3y 3y 3 3 3 3

33

(2

0330
0332
0335
0336
0338
033B
033C
033E
0340
0342
0345
0348
0348
0348
0348
0348
034D
034E
0350
0351
0353
0355
0356
0358
035A
0358
035B
0358
035B
035E

A9A0
9D0002
E8
DOFA
2010FC
38
DOFA
A200
8619
201008
4C4B03

200008
A002
SA
9169
c8
A900
9169
cs
A902
9169
60

20AC0N9
4C4B03

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
23
94
95
96
97
98
29
100
101
102
103
104

105

LDA #BLANK
EDLP1 STA BUFFER,X

INX

BNE EDLP1
EDLP2 JSR BACKSP

DEY

BNE EDLP2

LDX #ZERO

STX CURS

JSR EENTRY

JMP TOXS$

:X$ KEYBOARD INPUT

KYBIN JSR GETLN

TOXS LDY #LENLNC
TXA
STA (VARPTR),Y
INY
LDA #ZERO
STA (VARPTR),Y
INY
LDA #LENLOC
STA (VARPTR),Y
RTS

:X$ DOS INPUT
DOSIN JSR DISKIN

JMP TOXS
END

Huntress Line Editor

;PUT SPACE CHAR
: INTO REMAINING
: BUFFER SPACE

:RESTORE CURSOR
; TO LINE START

; STORE CURSOR

; POSITION
;GETLN EDIT ENTRY
;PUT IN X$

;GET A LINE

;s TRANSFER STRING

;s LENGT4 FROM ACC.
; TO X$

STORE
KEYBOARD
BUFFER
ADDRESS
INTO X$

EXIT TO CALLER

o se me se se e

;GETLN DOS INPUT ENTRY
;PUT INPUT IN X$

929

Trick DOS

by Sanford M. Mossberg

Here are a few techniques to help you get more power
from Apple DOS.

On booting a disk, the DOS command table (DCT) comes to reside at RAM loca-
tions $A884-$A908 (decimal 43140-43272). The last letter of each of the 28 DOS
commands is represented by a negative ASCII character which signals the end of
the command. Other letters or numerals are written in positive ASCII code. A zero
marks the end of the DCT. Armed with these simple facts, we can trick DOS 3.2
or 3.3 into obeying our whims and desires.

Listing 1 provides code for TRICK DOS. Following initialization (lines
2000-2060) and optional instructions (lines 2500-2670), a menu is presented (lines
600-710), each item of which is analyzed:

1. Display Current DOS Command Table: The heart of the entire program is
found in the subroutine at lines 100-180. The starting location (START) of the
table never changes. Lines 120-130 search successive memory locations in the
DCT until a zero byte is found. The end address of the table, not including the
zero byte, is assigned to the variable FIN. Line 140 initializes the array DOS$(+,*),
the contents of which are noted in line 102. Lines 150-180 PEEK DCT locations,
fill the two-dimensional matrix and create a string (DOS$) which contains every
character in the DCT. Subsequently, the array variables will be used to format
screen display (lines 860-880 and 1060-1070), and the string variable will be
manipulated to alter the command table by POKEing data into RAM. The
displayed DCT may be listed to a printer (see figure 1).

2. Change DOS Command Table: The program block starting at line 1000
first outputs current commands by utilizing the routine described earlier. The
command to be changed (OCS$) is requested in line 1080. Since keyboard input is
in positive ASCII code, the high bit of the final letter is turned on (line 1090). The
validity of the command is checked in line 1100 and variable PT marks the posi-
tion of the command in the array. An invalid command triggers an error message

3 3 3 3 13

3

Mossberg Trick DOS 101

(line 1110) and returns the user to the prior input request. The replacement com-
mand (NC8$) is solicited in line 1130 and negative ASCII conversion occurs in line
1140. The subroutine at lines 400-500 rearranges the DCT. Commands preceding
and following the changed command are contained in T1$ and T3$, respectively;
the new command is placed in T2$. In line 460, DOSS$ is recreated by concatena-
tion of the above-noted strings. Lines 470-500 POKE the new command table into
memory. An incidental, but important, feature of this entire section, is the effec-
tive error trapping (lines 1080, 1110, 1120, 1130, 1170, 1180, 1210 and 1240)
which prevents potential crashing of the program and assures professionally for-
matted screen display.

Figure 1: Current DOS Commands and Addresses

DEC HEX DEC HEX
43140 A884 INIT 43206 A8C6 APPEND
43144 A888 LOAD 43212 A8CC RENAME
43148 A88C SAVE 43218 A8D2 CATALOG
43152 A890 RUN 43225 A8D9 MON
43155 A893 CHAIN 43228 ABDC NOMON
43160 A898 DELETE 43233 A8E1 PR#

43166 A89E LOCK 43236 ABE4 IN#

43170 A8A2 UNLOCK 43239 ABE7 MAXFILES
43176 A8A8 CLOSE 43247 ASEF FP

43181 ASBAD READ 43249 A8F1 INT

43185 A8B1 EXEC 43252 A8F4 BSAVE
43189 A8B5 WRITE 43257 A8F9 BLOAD
43194 A8BA POSITION 43262 ASFE BRUN
43202 A8C2 OPEN 43266 A902 VERIFY

3. Restore Normal DOS Command Table and

4. Try these commands: Data statements in lines 2100-2110 contain ASCII
code for the normal DCT. Line 1330 reads the data into the variable NDOS$. A
sample table which I have found useful is coded in lines 2120-2130. Line 1340 pro-
duces MYDOSS$. Lines 1380-1390 replace the resident DCT with either of these
strings, thus restructuring the entire command table rapidly.

5. Exit Program: At program termination all text and graphics modes should
be normalized. Line 1510 accomplishes this by successively turning off hi-res,
turning on text page one, clearing the keyboard strobe and setting a full text win-
dow. Although TRICK DOS does not require these steps, the habit is a good one to
cultivate. After the program ends, the new command table will remain viable in
RAM until rebooting occurs or power is discontinued. If you prefer, the new DCT
can be preserved permanently by initializing a disk.

102 I/0 Enhancements

Knowing that DOS intercepts and reviews all commands before the Applesoft
interpreter can process the command, several admonitions are appropriate. Each
newly created DOS command should have a character set that does not duplicate
the first letters of any Applesoft BASIC command. To better understand this pit-
fall, imagine that we have changed "LOAD’’ to ''L'’ and "RENAME'’ to ‘‘RE"’.
Now, if we type “LIST” or "'LEFT$'’, DOS understands this to mean LOAD
(L=LOAD) the file "“IST'' or '"EFT$", and the “FILE NOT FOUND’' error
message is returned. Typing ''REM’’ would produce the same error message as
DOS attempted to RENAME (RE = RENAME) the nonexistent file ‘‘M."’ So far this
is annoying but not harmful.

Consider the results from changing *'INIT'’ to *'I.’’ Any Applesoft command
beginning with an “'I'’ would promptly start initializing the disk. This would be
catastrophic and must be avoided! For the reasons cited above, I advise you to
peruse a list of Applesoft BASIC commands before modifying a DOS command.
Changing ''LOAD'’ to "'LD"’, "RENAME"’ to 'RNM’’ and "'INIT"' to '‘I*"’ would
have avoided the chaos. Choice #4 from the menu will create a table of ‘‘safe’’
commands that I have found to be functional.

When you begin using a newly created DCT, mistakes will be inevitable and
error messages will proliferate. The DCT commands ‘‘LOAD’’ and ''SAVE'"’ are
special in that they also exist as Applesoft commands to a cassette recorder. If
either is used erroneously, the system will hang. Only by pressing ‘'/RESET'’ can
you recover. If you do not have autostart ROM, altering these two commands may
be more of a nuisance than an aid.

Experiment freely and enjoy your newfound power over DOS.

-y 3

-3

3

3

2y 3 8 13

3

oI RN RV, RCR OV S

104
106

110
120

130
140

150
160

170

180
300

310
320
330
340
350
400

410
420
430
440
450
460
470
480

490
500
600

610
620
630
640
650
660

Mossberg Trick DOS 103

REM 2222222222222 2222222l

REM * *
REM * TRICK DOS *
REM * SANDY MOSSBERG *
REM * *
REM * COPYRIGIT (C) 1982 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824*
REM * ALL RIGHT RESERVED *
REM * *
REM ***axahhkhhahkhrhhhkhhrhks
TEXT : CALL =~ 936: POKE - 16298,0: POKE - 163N0,0: POKE - 16368,0

GOSUB 2010: GOSUB 3010: GOSUB 251N0: GOTO 610
REM

PEEK COMMAND TABLE
AND CREATE ARRAY

REM ARRAY DOS$(R1-28,C1-2)
C1=COMMAND
C2=START ADDR

REM DOS$=DOS COMMAND TABLE

REM DOS=ADDR COMMAND TABLE

T = START
IF PEEK (TM) = O TYEN FIN = TM - 1: GOTO 140: REM FIND END NF TABL
E

™ = T™ + 1: GOTO 120

T =1: FORJ =1 TO 29: FOR K = 1 TO 2:D0S$(J,K) = "": NEXT K,J:D0OSS(
1,2) = STR$ (START):DOS$ = "": REM INITIALIZE

FOR DOS = START TO FIN
IF ASC (CHRS (PEEK (DOS))) > 127 T4EN DOS$(I,1) = DOSS$(I,1) + CHRS
(PEEK (DOS)):DOS$ = DOS$ + C4R$ (PEEK (DOS)):DOSS((TI + 1),2) = STRS
(DOS + 1):T =1 + 1: GOTO 180: REM IF 49I BYTE INCR I

DOS$(I,1) = DOSS$(I,1) + CHRS (PEEK (DOS)):DOS$S = DOS$ + CHRS (PEEK
(pos))

NEXT DOS: RETURN

REM

DEC --> HEX

4D% = DOS / 256:NBR = 4YD%: GOSUB 340:4B$ = YEXS

LD$ = FN MOD(DOS):NBR = LD%: GOSUB 340:LB$ = 4YEX$

HEXS = 4B$ + LB$: RETURN

4% = NBR / 16 + 1:L% = NBR / 16:L = L% * 16:L% = NBR - L + 1

4EX$ = MIDS (4$,4%,1) + MIDS (4$,L%,1): RETURN
REM
REORGANIZE
COMMAND TABLE
IF PT = 1 TYEN T1$ = "": GOTO 430
T1$ = LEFTS (DOS$, VAL (DOS$(PT,2)) - START)
FOR I = 1 TO LEN (NC$):T2$ = T2§ + MIDS (NCS,I,1): NEXT
IF PT = 28 TYEN T3$ = "": GOTO 460
T3$ = RIGITS (DOSS$,FIN + 1 - VAL (DOSS((PT + 1),2)))

DOS$ = T1$ + T2$ + T3$:T28 = ""

DOS = START
FOR I = 1 TO LEN (DOS$): POKE DOS, ASC (MIDS (DOS$,I,1)):DOS = DOS
+ 1: NEXT

FIN = FIN + LEN (NC$) - LEN (oCS$)

POKE FIN + 1,0: RETURN

REM

MENU

HOME :TT$ = "==============": GOSUB 3110

TT$ = "TRICK DOS MEWU": GOSUB 3110
TT$ = "==============": GOSUB 3110

VTAB 6: PRINT "1.DISPLAY CURRENT DOS COMMAND TABLE.": PRINT
PRINT "2.CHANGE DOS COMMAND TABLE.": PRINT
PRINT "3.RESTORE NORMAL DOS COMMAND TABLE.": PRINT

104

670
680
690

700
710
800

810
820
830
840

850
860

870
880

890
900
910

920
930
1000

1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110

1120
1130

1140
1150
1160
1170
1180
1190
1200
1210
1220
1230

1240
1300

1/0 Enhancements

PRINT "4.TRY SANDY'S COMMANDS.": PRINT

PRINT "5.EXIT PROGRAM.": PRINT : PRINT

VTAB 17: CALL - 958: PRINT " WHICH CHOICE? ";: GET I$: PRINT IS:
CH = VAL (1%)

IFCH <1 ORCH >50R I$ = "" THEN 690

ON CH GOTO 800,1000,1300,1300,1500

REM

DISPLAY CURRENT TABLE

4OME :TT$ = " ": GOSUB 3110
TT$ = "CURRENT DOS COMMANDS & ADDRESSES": GOSUB 3110
TS = ": GOSUB 3110

1F NOT FF THEN VTAB 8: INVERSE :TT$ = " READING DOS COMMAND TABLE

": GOSUB 3110: NORMAL
GOSUB 110: VTAB 4: CALL - 958
PRINT : HTAB 2: INVERSE : PRINT “DEC";: YUTAB 8: PRINT "HEX";: HTAB 2
2: PRINT “DEC";: HTAB 28: PRINT “"HEX": NORMAL : PRINT
FOR I = 1 TO 14
PRINT DOSS$(I,2)" ";:D0S = VAL (DOS$(I,2)): GOSUB 310: PRINT HEX$" "
DOS$(I,1l);: HTAB 21: PRINT DOSS$((I + 14),2)" ";:DOS = VAL (DOS$((I +
14),2)): GOSUB 310: PRINT HEX$" "DOS$((I + 14),1): NEXT
IF FF THEN FOR I = 1 TO 5: PRINT : NEXT : RETURN
VTAB 22: PRINT "LIST TABLE TO PRINTER (Y/N) ? “:;: GET I$
IF I$ = "Y" TYEN FF = 1: HTAB 1: CALL - 998: CALL - 958: PRINT BS:
INVERSE : PRINT " TURN PRINTER ON AND PRESS ANY KEY ": PRINT : HTAB
10: PRINT " EXPECT A PAUSE ";: GET I$: PRINT : NORMAL : PRINT D$;:DOS
$(20,1):1: GOSUB 810:FF = 0: PRINT D$;D0S$(20,1):0: GOTO 610
IF I$ = "N" TMEN 610
HTAB 1: GOTO 900
REM

CHANGE TABLE

HOME :TT$ = “==ss=s=s=======": GOSUB 3110

TT$ = "CHANGE COMMANDS": GOSUB 3110

TT$ = "= ": GOSUB 3110

VTAB 4: CALL - 958: VTAB 8: INVERSE :TT$ = " READING DOS COMMAND T

ABLE ": GOSUB 3110: NORMAL

GOSUB 110: VTAB 5: CALL - 958

FORI =1 TOo 7

PRINT DOS$(I,1);: HTAB 10: PRINT DOS$((I + 7),1);: HTAB 20: PRINT D
0S$((I + 14),1);: HTAB 30: PRINT DOSS$((I + 21),1): NEXT

VTAB 14: CALL - 958: INPUT "TYPE COMMAND TO BE CHANGED: ";0C$: IF
oc$ = "" THEN 1180
oc$ = MIDS$ (0C$,1, LEN (OC$) - 1) + CHRS (ASC (RIGITS (oC$,1)) +
128): REM TURN HI BIT ON IN LAST LETTER OF COMMAND

FOR I = 1 TO 28: IF OC$ = DOS$(I,1) THEN PT = I: GOTO 1130: REM PT=
POINTER TO POSITION OF COMMAND IN ARRAY

IF I = 28 THEN PRINT BS$: VTAB 16: INVERSE : PRINT " NOT A VALID CU
RRENT COMMAND ": NORMAL : FOR J = 1 TO 3000: NEXT : GOTO 1080

NEXT I

VTAB 16: CALL - 958: INPUT “TYPE NEW COMMAND: ":NC$: IF NC$ = "" THEN
1130
NC$ = MID$ (NCS$,l, LEN (NCS$) - 1) + CHRS (ASC (RIGATS (NCS$,1)) +
128): REM TURN 91 BIT AN IN LAST LETTER OF COMMAND

PRINT B$: VTAB 18: "ITAB 3: PRINT "CONFIRM (Y/N) ? ";: GET I$: PRINT
I$

IF IS = "Y" TYEN VTAB 20: INVERSE : PRINT " WRITING COMMAND TABLE
": GOSUB 410: VTAB 18: MTAB 1: CALL - 958: PRINT " CHANGE COMPLETED
": NORMAL : GOTO 1220

IF I$ < > "N" THEN VTAB 18: CALL - 958: GOTO 1150

VTAB 18: CALL - 958: PRINT : PRINT "RETURN TO MENU OR TRY AGAIN (M
/A) ? ":: GET I$: PRINT IS

IF I$ = "A" TiEN GOTO 1080

IF I$ = "M" T4EN 610

GOTO 1180

VTAB 20: CALL - 958: PRINT "ANOTYER CHANGE (Y/N) ? ";: GET I$: PRINT

I$: IF I$ = "Y" THEN 1040
IF I$ = "N" THEN 610
GOTO 1220
REM

RESTORE NORMAL TABLE OR
INSTALL SANDY'S TABLE

]

o

1310
1320
1330
1340

1350
1360

1370
1380
1390

1400
1500

1510
1520

1530

1540
2000

2010
2020

2030
2040

2050

2060
2100

2110

2130

2500

2510
2520
2530
2540

2550
2560
2570

2580

2590

2600
2610
2620

Mossberg Trick DOS 105

VTAB 20: INVERSE : PRINT " WRITING COMMAND TABLE ":
NDOS$ = "":MYDOS$ = ""

FOR I = 1 TO 132: READ D:NDOS$ = NDOSS + C4YRS (D): NEXT

FOR I = 1 TO 67: READ D:MYDNS$ = MYDOS$ + CYRS (D): NEXT : RESTORE
DOS = START

IF CH = 3 TYEN TM$ = NDOSS$:TTS = " NORMAL DOS COMMAND TABLE REESTAB
LISYED ":FIN = START + LEN (NDOSS$) - 1

IF CH = 4 TMEN TM$ = MYDOS$:TT$ = " SANDY'S COMMAND TABLE INSTALLED
":FIN = START + LEN (MYDOS$) - 1

FOR I = 1 TO LEN (TM$): POKE DOS, ASC (MID$ (TMS$,I,1)):DOS = DOS +
1: NEXT

POKE FIN + 1,0
4TAB 1: PRINT TT$: NORMAL : GOSUB 3210: HTAB 1: GOTO 690
REM

END PROGRAM

POKE - 16298,0: POKE - 16300,0: POKE - 16368,0: TEXT : HYOME
VTAB 10: INVERSE :TT$ = " END OF TRICK DOS PROGRAM ": GOSUB 3110: NORMP

VTAB 15: PRINT " INITTALIZING A DISK BEFORE REBOOTING": PRINT "WILL
PRESERVE THE CURRENT DOS COMMANDS"

VTAB 22: END

REM

INITIALIZE

DIM DOS$(30,2)

D$ = CYR$ (4):B$ = CHR$ (7):S8$ = " “: REM 21
SPACES
4$ = "0123456789ABCDEF"

DEF FN MOD(X) = X - 1INT (X / 256) * 256: REM SIMULATE MOD FUNCTIO
N

START = 43140: REM START OF TABLE

RETURN

DATA 73,78,73,212,76,79,65,196,83,65,86,197,82,85,206,67,72,65,73,2
06,68,69,76,69,84,197,76,79,67,203,85,78,76,79,67,203,67,76,79,83,19
7,82,69,65,196,69,88,69,195,87,82,73,84,197,80,79,83,73,84,73,79,206
,79,80,69,206,65,80,80,69,78,196

DATA 82,69,78,65,77,197,67,65,84,65,76,79,199,77,79,206,78,79,77,79
,206,80,82,163,73,78,163,77,65,88,70,73,76,69,211,70,208,73,78,212,6
6,83,65,86,197,66,76,79,65,196,66,82,85,206,86,69,82,73,70,217: REM
NORMAL TABLE

DATA 73,170,76,196,83,214,82,85,206,67,72,206,68,204,76,203,85,76,2
03,67,211,82,196,69,88,195,87,210,80,83,206,79,208,65,208,82,69,206,
67,65,212,77,206,78,77,206,80,163,73,163,77,65,216,70,208,73,78,212,
66,211,66,204,66,210,86,69,210

DATA 77,206,78,77,206,80,163,73,163,77,65,216,70,208,73,78,212,66,2
11,66,204,66,210,86,69,210: REM SANDY'S TABLE

REM

INSTRUCTIONS

HOME :TT$ = "==== ": GOSUB 3110
TT$ = "INSTRUCTIONS": GOSUB 3110
TT$ = "============": GOSUB 3110

VTAB 7: CALL - 958: PRINT "DO YOU WANT INSTRUCTIONS (Y/N) ? ":: GET
I$: PRINT I$: IF I$ = "N" THEN RETURN

IF I$ < > "Y" THEN 2540

POKE 34,4: VTAB 5: CALL - 958

PRINT "1.THE DOS COMMAND TABLE RESIDES AT RAM": PRINT " LOCATIONS
$A884 TO $A908 (DEC 43140": PRINT " TO 43272).": PRINT

PRINT "2.EACH COMMAND IS REPRESENTED BY ASCII": PRINT " CHARACTER
CODES. ONLY THE LAST LETTER": PRINT " OF A COMMAND {AS THE HIGH BIT

ON SO": PRINT " THAT DOS CAN RECOGNIZE THE END OF THE"

PRINT " COMMAND. NOTE THE EXAMPLES BELOW:": PRINT : PRINT " L
OAD = 4C 4F 41 C4": PRINT " INIT = 49 4E 49 D4": PRINT " R
UN = 52 55 CE": PRINT : PRINT

PRINT "3.ZERO MARKS THE END OF TME TABLE."

GOSUB 3210: HOME

PRINT "4.T41IS PROGRAM WILL ENABLE YOU TO ALTER": PRINT " THE COMMA
ND TABLE. YOU MAY DESIRE TO": PRINT " CHANGE 'CATALOG' TO ";: INVERSE

: PRINT "CAT";: NORMAL : PRINT " OR 'SAVE' TO ": PRINT " ";: INVERSE
: PRINT "SV";: NORMAL

106

2630

2640

2650

2660

2670
3000

3005

3010
3020
3030
3040
3050
3060
3070
3080
3100

3110

3120
3200

3210
3220
3230

3240
3250

I/0O Enhancements

PRINT ". BE SURE THAT YOUR NEW DOS COMMAND": PRINT " DOES NOT DUPL
ICATE THE FIRST PART OF": PRINT " AN APPLESOFT BASIC COMMAND, OTHER
WISE": PRINT " UNUSUAL EVENTS MAY OCCUR. EXPERIMENT!"

PRINT " TIREDNESS OR SILLINESS MAY RESULT IN": PRINT " WEIRD SYMB
OLS!11": PRINT

PRINT "5.TYESE MODIFICATIONS WILL TRIGGER A": PRINT " SYNTAX ERROR

IF A DIRECT OR DEFERRED": PRINT " COMMAND UTILIZES 'NORMAL' TERMIN
OLOGY."

PRINT "6.";: INVERSE : PRINT "TRICK DOS";: NORMAL : PRINT " IS MENU
-DRIVEN AND SELF-": PRINT " PROMPTING. YAVE FUN!!!"

POKE 34,0: GOSUB 3210: RETURN

REM

TITLE PAGE
REM SF APPLE CORE FORMAT

INVERSE : VTAB 4

TT$ = SSS: GOSUB 3110: GOSUB 3110
TT$ = " TRICK DOS ": GOSUB 3110
TT$ = SS$: GOSUB 3110: GOSUB 3110
TT$ = " BY SANDY MOSSBERG ": GOSUB 3110
TT$ = SS$: GOSUB 3110: GOSUB 3110: NORMAL

VTAB 16:TT$ = "CUSTOMIZE YOUR SET OF DOS COMMANDS!": GOSUB 3110
GOSUB 3210: RETURN
REM

PRINT CENTER

WIDT™H = 20 - (LEN (TT$) / 2): IF WID™M < = 0 TMEN PRINT TT$: RETURN
HTAB WIDTH: PRINT TT$: RETURN
REM
CONTINUE/END

VTAB 23: HTAB 12: PRINT "[ESC] TO END"

VTAB 24: PRINT TAB(8);"[SPACE] TO CONTINUE ":

PRINT “[1";: HTAB 29: GET 22$: IF 22$ = CHR$ (27) OR Z2$ = CHRS$
(3) T™MEN TEXT : MOME : GOTO 1510

IF 22Z$ = CHR$ (32) THEN RETURN

CALL - 868: CALL - 1008: GOTO 3230: REM

3 3 3

.

3 3 3 3 3

3

3

LACRAB

by N.R. McBurney

This utility produces a logically formatted and
aesthetically pleasing listing of Applesoft programs, as
well as a cross-reference table of their variables. These
two functions not only yield a more professional
looking documentation, but also make the task of
program debugging and maintenance significantly
easier.

Introduction

The following is an example of the screen output produced by the LIST command:

2400 1IP BYTE = Cl THEN RE = 1:KM = KM + 5: REM COMMENT

2410 FOR I = 1 TO 255:BYTE = PEEK (LOC):LOC = LOC + 1: IF BYTE = 0 THEN
RE = 0:LOC = LOC + 2: GOTO 2340

2420 IF RE THEN KM = KM + 1

2430 NEXT

It isn’t very easy to read. In fact, it is rather confusing. Take a second to examine
the program listing at the end of this article, specifically at the listing for lines
2400-2430. I hope that you'll agree that the format of this second listing is con-
siderably easier to read and more informative than the above example.

LACRAB stands for List And Cross Reference Applesoft BASIC. It has
capabilities that make program debugging and documentation significantly easier.
First, LACRAB prints only one statement per line and indents lines to suggest
subordinate relationships. This feature alone greatly improves program readabili-
ty. Second, LACRAB puts REM statements in boxes so that they stand out clearly.
In-line REM statements (i.e., REM statements tacked on to another statement
with a colon) are tabbed out to separate them from executable code and make
them easy to see. Third, user-provided titling is accommodated along with
automatic pagination for professional-quality documentation. Fourth, LACRAB

108 I/0 Enhancements

generates a cross-reference table that identifies each line in which a variable ap-
pears. That table also flags undefined variables, equivalent variables, and variables
that appear on only one line. Finally, the program length, in bytes, is printed out
along with an approximation of the amount of RAM occupied by REM statements.

To be able to perform the above tasks on a program in RAM, we need to know
how the program is represented in RAM and where it begins and ends. A BASIC
statement in RAM starts with two bytes that point to the next BASIC statement.
This is followd by two bytes containing the line number in numeric integer for-

mat, followed by the BASIC statement proper. Finally, a zero byte indicates the
end of the BASIC statement.

Within the BASIC statement, bytes with values less than 128 represent ASCII
characters. Bytes with values greater than 127 represent tokens that the Applesoft
interpreter has substituted for BASIC keywords (e.g., 186 for PRINT). These token
values are described in Appendix F of the Applesoft BASIC manual. Appendix L of
that same manual tells us that the address of the start of the program is contained
in decimal locations 103-104 and the end of the program in locations 175-176.
Armed with this knowledge, one can write a program that examines the necessary

memory locations byte by byte, builds up each line as a string, and outputs it to a
printer. LACRAB is an elaboration of this basic scheme.

Program Operation

To run LACRAB, simply load the program to be listed and type EXEC LIST.
The screen will clear and request heading information as below:

PROGRAM NAMEZLISTER TEST CASE #1
DATE/TIME?AUGUST 11, 1980 8:50 PM

Once that information is provided the menu shown below will appear:

Figure 1: LACRAB Menu
SYSTEM MENU
FOR
PROGRAM TO:
LIST AND CROSS REFERENCE APPLESOFT BASIC
1) LISTING ONLY
2) CROSS REFERENCE ONLY
3) LISTING AND XREF

WHICH OPTION?

3

[

McBurney LACRAB 109

After you've selected one of the above print options, your program will be
listed. LACRAB assumes that the printer interface board is in slot one. If a cross-
reference was requested, a display similar to the one below will appear when the
listing is complete:

Figure 2: LACRAB Cross-Reference Monitor Display

LACRAB

SYMBOL TABLE GENERATION MONITOR
LINE CURRENT OPERATING
NUMBER SYMBOL STATISTICS
1170 BLK
1170 LOC CURR. LINE 1230
1170 LOC LINES PROC. 23
1170 LOC PROG. BYTES 10522
1180 LNE$ CURRENT BYTE 560
1180 LNE % COMPLETE 5%
1180 B5 SYM TABLE LEN 11
1190 BYTE LAST SYMBOL:
1190 LOC C2
1190 LOC
1190 LOC
1210 BYTE
1210 Cl
1220 COMMENTS
1230 BYTE
1230 C2

Frankly, there isn’t any logical requirement for the above display. I provide it
because the cross-reference portion of LACRAB can be time-consuming (approx-
imately 12 minutes to cross-reference LACRAB) and it frustrates me to stare at a
blank screen. Once the cross-reference is complete and has printed out, LACRAB
terminates with the following display:

37 LINES PRINTED.
LISTING COMPLETE....

]

At that point the program you just listed will be available to you.

110 1I/0 Enhancements

How it Works

The first executable statement in LACRAB (line #3440) transfers control to
the initialization routine (lines 3440-3840). This routine and the menu display
section (lines 3850-4260) are located at the end of the program to make the re-
mainder of the program run faster. (As a general rule, infrequently executed code
should always be placed at the end of a program.)

The variables CO$, LINE$ and DF% (dimensioned in line 3450) are used
during the cross-reference to store variable names (CO$), line numbers where the
variable is referenced (LINE$), and a flag to indicate that a variable has been de-
fined (DF%). Each of these variables is dimensioned to 200 and hence limits the
number of variables that LACRAB can cross-reference to 200 — a limit that I've
yet to approach.

The variable CO$ does double duty. In addition to holding variable names, it
is used as temporary storage for consecutive REM statements while LACRAB is
listing. Again, this limits LACRAB's capacity to 200 consecutive REM statements
per program. I don't believe I've ever seen a BASIC program with 200 consecutive
REM statements and don't believe this imposes much of a limitation.

In line 3620, the page width is assigned the value of 76 print positions. This
value can be changed to adapt LACRAB to your particular printer configuration.
The variable S6, defined in line 3790, sets the page length at 66 lines. The function
PAGE, defined in line 3800, is simply a modulo function used in the output sec-
tion to determine when to print page headings. The variable KOMMENT, set in
line 3810, establishes the print position for ‘in-line’ REM statements. Again, at
least in theory, you should be able to set this to any value compatible with your
printer’s capabilities and your own sense of esthetics.

After initialization and selection of output options, control is transferred to
the program listing section (lines 1120-2040). Line numbers 1170 and 1180 pick
up the line number of the next statement to be listed. At line 1190 LACRAB starts
examining the program statement byte by byte. Lines 1200-1270 check for tokens
that will require special formating: REM (C1), colon (C2), THEN (C3), FOR (C4),
and NEXT (C5). If the byte has none of these values, it is translated either into a
character or a BASIC keyword and appended to the next line to be printed. This
process occurs in lines 1290-1360.

If the byte is a REM token | i.e., byte = 178) that immediately follows a line
number, control is transferred to lines 1370-1420. Here the REM statement is
decoded and stored in the CO$ array. The variable COMMENTS, used to keep
track of how many consecutive REM statements have been processed, is in-
cremented by one. LACRAB will continue to ‘save’ REM statements until the first
non-REM statement is detected (line #1220). When that occurs, control is trans-
ferred to the routine in lines 1850-2040 where the comments are boxed and then
output. Note that when LACRAB outputs REM statements the REM keyword is
not printed. In the author's opinion, the output format of LACRAB makes it
perfectly obvious which statements are and are not comment statements.

3 3 3 3

3y 3 3 3 3

3 3

3

3

McBurney LACRAB 111

I have elected to take a contrary approach with implied GOTO statements.
When LACRAB encounters a BASIC statement of the form

IF condition THEN line number

it prints out:
IF condition THEN GO TO line number

Note the space between GO and TO. LACRAB prints ‘GO TO' instead of ‘GOTO’
to indicate that the ‘GOTO’ does not actually exist in the statement.

THEN tokens are processed in lines 1530-1580 and colons (:) are processed in
lines 1450-1520. If the next byte following the colon is a REM token, lines
1460-1500 tabs the REM statement out to the print position specified by KOM-
MENT (currently 41). Since there may be some confusion if the REM keyword is
omitted from in-line REM statements, LACRAB replaces the REM with a ‘!’.

The GOSUB 3240's sprinkled throughout the listing section of LACRAB
transfer control to the line output routine (lines 3240-3310). If you make any
changes to LACRAB (perhaps you're as opinionated as the author as to what con-
stitutes esthetically pleasing program listings!), you should be careful to use this
routine for output. The routine handles pagination, page numbering, and the
'folding’ of lines where appropriate. It is this section of LACRAB that you would
want to modify to make use, for example, of a printer's form feed feature or
perhaps print out titles in an expanded print font. All LACRAB printer output
should be handled by this routine.

The cross-reference portion of LACRAB begins at line 2060. Lines 2060-2260
display the headings for the screen display shown in figure 2.

Lines 2270-2311 involve a bit of trickery. What this code does, in effect, is to
delete lines 1000-2310. The listing portion of LACRAB is no longer needed once
the cross-reference is started. This results in faster execution of LACRAB's cross-
reference procedure. This piece of bit-shuffling wizardry is accomplished by find-
ing the address of where we currently are in the program (line #2290}, skipping
two lines (line #2310), and then resetting the start of program pointer to this new
address (line #2311).

The main cross-reference loop begins at line 2340. At line 2350 the line
number (LNE) is decoded. The rest of line 2350 and line 2360 update the cross-
reference display shown in figure 2.

Lines 2370 through 2780 are a routine that decodes each variable as it is en-
countered. As each variable is decoded, that symbol and its associated line
number are displayed at the bottom of the left-hand side of the display. At line
2710, the line number where the symbol is referenced is stored in the correspon-
ding string array LINES$. This is accomplished by appending the line number
(stored as two bytes in the string). The line number of the reference to the first

112 I/0 Enhancements

variable (CO$(1)) is stored in character positions 1 and 2 of LINE$(1) in integer
word format. The line number of the second reference to the same variable is
stored in character positions 3 and 4, and so on.

There are several ways I could have handled the storage of line references.
One can dimension matrices to handle the maximum number of references an-
ticipated; one can write his own dynamic memory scheme; or one can take the
easy way out and use strings, letting Apple worry about memory management. I
opted for the latter solution.

Since a string can be, at most, 255 characters in length, no more than 127
references to a single variable are possible. More references will generate an error
message at line 2750. In practice, I have never found this limit restrictive.

Once all of the program variables and their references have been decoded and
stored in memory, they are sorted (in lines 2790-2830}. When the sort begins, the
flashing message ''SORTING'' is displayed on the screen. During the sort, every
time an interchange occurs (line #2830}, the Apple’s speaker clicks. As before, I
just like to be assured that something is occurring.

After the sort is complete, LACRAB starts printing the cross-reference table
(lines 2880-3150). As it prints out each variable and its associated line references,
it may prepend one of three symbols to the variable. If during the building of the
cross-reference table LACRAB cannot find a variable definition, that variable is
prepended with ‘' —»>'' during printout. If the variable only occurs in one line, it
is prepended with an asterisk (+) at line 2920. While this may not always indicate
a problem, it generally points to a misspelled variable name. Finally, if a variable
is equivalent to a previous variable, ‘‘++'’ is prepended to the variable name.
Because Applesoft BASIC only recognizes the first two characters of a variable,
SIGMA and SIGN would be flagged as equivalent by LACRAB.

At the end of the cross-reference, an explanation of the symbols described
above is printed (lines 3160-3200) and lines 3210 and 3240 print out the program
length and the amount of RAM taken up by REM statements. LACRAB's last ac-
tivity is to reset the end-of-program and start-of-program pointers (lines
3380-3400) and return control to the user.

Bugs — Real and Imagined

I know of two bugs in LACRAB. First, if one uses numbers in exponential for-
mat (e.g., [=1.0E16), LACRAB will pick up the exponential portion as a variable
during the cross-reference. ‘E16’ in the previous example would be identified as a
variable. The second bug occurs when a statement is attached to a ‘DATA’ state-
ment with a colon (e.g., 10 DATA 25:1=10). During the cross-reference, LACRAB
simply skips to the end of the line when it detects either a ‘DATA’ or a ‘REM’
statement. Hence, in the above example, LACRAB would be unaware of the
reference to ‘I’ in statement number 10. Since I never combine ‘DATA’ with other
type of statements, and rarely use exponential notation, I've never incorporated
the necessary code to resolve those deficiencies.

3

3

.

33 3 3 3 3 3

3

3

McBurney LACRAB 113

Conclusion

LACRAB was written on an Apple II Plus (floating point BASIC-in-ROM) with
48K RAM. With two minor changes LACRAB should work with RAM Applesoft
BASIC. The first location to be examined by LACRAB should be changed in line
3760 from 2051 to 12291 (i.e., 3760 LOC =12291}. Line 3400 POKEs the hex
value $801 into locations 103-104. The value needs to be changed to $3001 (i.e.,
3400 POKE 103,1:POKE 104,48). Since I don’t have RAM BASIC I've not tested
these changes.

LACRAB takes up approximately 10.2K of RAM. Running it through a good
optimizer such as Sensible Software’s AOPT program will reduce that by about
35% to 6.6K, although it will not appreciably speed up processing.

114 1/0 Enhancements

LACRAB
04/05/82
PAGE - 1

omm—— — _——
1000 I Y T
1010 *
1015
1020
1030
1040
1050
1060
1070
1080
1090
1095

*

P R
b oom e e m o e e 0= e e =

APPLESOFT
BASIC PROGRAM LISTER
N. R. MCBURNEY

COPYRIGHT (C) 1982
MICRO INK, INC.
CHELMSFORD, MA 01824
ALL RIGHTS RESERVED

* % % % ¥ ¥ * * *

AR 2222222222222 2222222

GG U

1110 GOSUB 3440: ! CALL INITIALIZATION ROUTINE
1120 ! MAIN PROGRAM !
1140 IF NOT LST THEN

1150 PR# 1
1160 IF LOC > = EOP THEN
GO TO 3320

1170 LNE = PEEK(LOC) + BLK * PEEK(LOC + 1):

LOC = LOC + 2
1180 LNE$ = RIGHTS(" " 4+ STR$(LNE),B5):! CONVERT LINE NUMBER TO STRING
1190 BYTE = PEEK(LOC):

LOC = LOC + 1

+-= +

1200 ! CHECK FOR KEY TOKENS !

+ -

1210 IF BYTE = Cl THEN
GO TO 1380
1220 IF COMMENTS THEN
GO TO 1850
1230 TF BYTE = C2 THEN
GO TO 1450
1240 IF BYTE = C3 THEN
GO TO 1540
1250 IF BYTE = C4 THEN
GO TO 1600
1260 IF BYTE = C5 THEN
GO TO 1750
1270 IF BYTE < C6 THEN
GO TO 1310

1280 BUILD UP T™ME LINE

+ -+
+ -+

1290 TXTS = TXTS + TKNS(BYTE - A8):
IF BYTE < 210 THEN
TXTS = TXTS$ + " "
1300 GOTO 1190
1310 IF BYTE = O THEN
GOSUB 3240:
QUOTE = O:

LACRAB

04/05/82
PAGE - 2

LOC = LOC + 2:
GOTO 1160
1320 TXT$ = TXT$ + CHR$(BYTE)
1330 IF BYTE < > 34 THEN
GO TO 1190
1340 IF QUOTE = O THEN
QUOTE = 1:
GOTO 1190
1350 QUOTE = 0

3 3

23 3

3

3

I

B IR B

3

1360
1370
1380

1400

1420

1440

1450
1460

1470

1480
1490

1500

1510
1520
1530

1540

1570
1580

1590

McBurney

GOTO 1190

COMMENTS = COMMENTS + 1:
COS$ (COMMENTS) = LNES + "! "
BYTE = PEEK(LOC):
LOC = LOC + 1:
IF BYTE = 0 THEN
LOC = LOC + 2:
GOTO 1160
CO$ (COMMENTS) = COS$(COMMENTS) + CHRS(BYTE):
GOTO 1400

TXT$ = TXTS + ":"
IF PEEK(LOC) < > 178 THEN
GO TO 1510: ! CHECK FOR 'REM'
J = LEN(TXT$) + SPACE + BS:
RM = 1:
IF J > KOMMENT THEN
GO TO 1500
FOR I = J TO KOMMENT
TXT$ = TXTS + " “:
NEXT :
QUOTE = 0
TXT$ = TXTS + "1 “:
LOC = LOC + 1:
GOTO 1190
IF NOT QUOTE THEN
GOSUB 3240
GOTO 1190

+
+

| PROCESS 'THEN' |
+

TXT$ = TXT$ + " THEN":
THN = THN + 3:
GOSUB 3240:
SPACE = SPACE + 3:
IF PEEK(LOC + 1) < A3 OR PEEK(LOC) > A4 THEN
GO TO 1190
TXT$ = "GO TO ": ! ADD IMPLIED 'GO TO'
GOTO 1190

| PROCESS 'FOR' |

LACRAB 115

LACRAB
04/05/82
PAGE - 3

1600
1610

1620

1630

1640

1650

1660

1670

1680
1690

TXT$ = TXTS + "FOR "
BYTE = PEEK(LOC):
LOC = LOC + 1
IP BYTE = 0 T4EN
GOSUB 3240:
LOC = LOC + 2:
GOTO 1710
IF BYTE ¢ > C2 THEN
GO TO 1660
IF PEEK(LOC) = Cl THEN
NFR = 1:
GOTO 1230
TXTS = TXTS + ":":
GOSUB 13240:
GOTO 1710
IF BYTE < A8 THEN
GO TO 1690
TXT$ = TXT$ + TKNS(BYTE - A8):
IF BYTE < 210 THEN
TXT$ = TXT$ + " *
GOTO 1610
TXT$ = TXT$ + CHRS(BYTE)

116

1700
1710
1720

1730
1740
1750

1770

1790

1800

1810

1820

1840

1/0 Enhancements

GOTO 1610

SPACE = SPACE + 3

IF BYTE = O THEN
GO TO 1160

GOTO 1190

| PROCESS 'NEXT' |

SPACE = SPACE - 3:

TXTS = TXT$ + "NEXT "

BYTE = PEEK(LOC):

10C = LOC + 1:

IF BYTE = 0 T4EN
GOSUB 3240:
LOC = LOC + 2:
GOTO 1160

IF BYTE = C2 THEN
TXT$ = TXTS + ":":
GOSUB 3240:
GOTO 1190

IF BYTE = A7 THEN
TXT$ = TXTS$ + "
SPACE = SPACE - 3:
GOTO 1770

IF BYTE > A8 TMEN
TXT$ = TXTS + " " + TKNS(BYTE - A8):
GOTO 1770

TXT$ = TXT$ + CHRS$(BYTE):

GOTO 1770

PROCESS COMMENTS

+ -+
+ -+

LACRAB
04/05/82
PAGE - 4

1850
1860

1870
1880

1890
1900

1910
1920
1930
1940
1950
1960

1970
1980

1990
2000
2010
2020
2030
2040

2050

SSPACE = SPACE:
LN = 0O:
SVE$ = LNE$
FOR I = 1 TO COMMENTS:
IF LEN(COS$(I)) > LN T4EN
LN = LEN(CO$(I))

NEXT
SPACE = (WIDTH - LN) / 2:
IF SPACE < 1 THEN
SPACE = 1:
GOSUB 2000:
FOR I = 1 TO COMMENTS
LNE$ = LEFTS$(COS$(I),BS):
TXT$ = MID$(CO$(1),6)
FOR J = LEN(CO$(I)) TO LN
TXTS = TXTS + " ":
NEXT :
TXTS$ = TXTS + “1°
GOSUB 3240:
NEXT
GOSUB 2000
COMMENTS = 0:
LNE$ = SVES$:
SPACE = SSPACE:
IF NOT CX THEN
GO TO 1230
GOTO 3340
LNES = * "
TXTS = "4"
FOR I =1 TO LN - BS:
TXTS = TXTS + “-":
NEXT
TXTS = TXTS + "+":
GOSUB 3240
RETURN

CENTER COMMENTS
BOX ™IS SET OF

GENERATE STATUS DISPLAY

b+

+ -+

SAVE CURRENT SPACING

FIND LENGT OF LONGEST COMMENT

COMMENTS

33

3 3

233 v 3 3

.

3 3

3

S D I B

()

(7

2060

2070
2080
2090
2100

2110
2120
2130
2140

2150
2160
2170

2180

McBurney

XREF = O:

PRINT CHR$(4)

HOME :

PRINT TAB(14);"*** LACRAB ***"
PRINT TAB(5):"SYMBOL TABLE GENERATION MONITOR"

AS = - "2
PRINT AS

PRINT "LINE";TAB(9);"CURRENT":TAB(23):"OPERATING"
PRINT "NUMBER SYMBOL":TAB(23);"STATISTICS"

PRINT LEFT$(AS$,7):" ":LEFT$(AS$,13);" “;LEFTS(AS,18)
POKE 32,22:

HTAB 23

PRINT "CURR. LINE"

PRINT "LINES PROC."

L = EOP - 2049:

SIZE = L:

PRINT "PROG. BYTES ":RIGHTS("

| SAVE PROGRAM SIZE
" 4+ STR$(L),S):

LACRAB 117

| BEGIN STATUS DISPLAY

LACRAB
04/05/82
PAGE - 5

2190

2200
2210

2220
2230
2240
2250
2260
2270
2280
2290

2310

2311

2330
2340
2350

2360

2370

L=1L%*0.0099:

POKE 32,0:

VTAB 12:

HTAB 23

PRINT "CURRENT BYTE"
POKE 32,22:

HTAB 23

PRINT "% COMPLETE"
PRINT “SYM TABLE LEN"
PRINT "LAST SYMBOL:"
POKE 34,7:

POKE 32,0

LOC = 8 * BLK + 3:
GOTO 2290

| SET START OF PROGRAM ADDRESS TO START
1 OF CROSS REFERENCE (IE. SPEED UP PROGRAM)
START = PEEK(121) + BLK * PEEK(122):
FORI =1 TO 3
IF PEEK(START) < > O THEN
START = START + 1l:
GOTO 2310
START = START + 1:
NEXT :
POKE 103,PEEK(START):
POKE 104,PEEK(START + 1)

+
+

IF INC > = EOP THEN
GO TO 2790
LNE = PEEK(LOC) + PEEK(LOC + 1) * BLK:
SYMBOL = O:
NN = O:
RD = O:
VTAB 9:
HTAB 35:
PRINT RIGHTS(" " + STR$(LNE),BS5);::
KK = KK + 1:
VTAB 10:
HTAB 35:
PRINT RIGHTS(" "
VTAB 12:
HTAB 35:
PRINT RIGHTS(" " 4+ STR$(LOC - B6),B5)::
VTAB 13:
HTAB 35:

+

STR$ (KK),B5) ;

PRINT RIGHTS(" " + STR$(INT((LOC - B6) / L)) + "%",BS);:

LOC = LOC + 2
BYTE = PEEK(LOC):
LOC = LOC + 1

118

2380
2390

1/0 Enhancements

IF BYTE = Bl OR BYTE = B2 OR BYTE = B3 THEN
RD = 1: ! READ, GET OR INPUT
IF BYTE < > B4 AND BYTE < > Cl THEN

LACRAB
04/05/82
PAGE - 6

2400

2410

2420

2430
2450

2460

2470
2480
2490
2500

2510

2520

2530

2540
2550

2560
2570
2580

2590
2600

GO TO 2450: ! CHECK FOR 'DATA' & 'REM' TOKENS
IF BYTE = Cl THEN
RE = 1:
KM = KM + 5: | COMMENT
FOR I = 1 TO 255:
BYTE = PEEK(LOC):
LOC = LOC + 1:
IF BYTE = 0 THEN
RE = 0:
LOC = LOC + 2:
GOTO 2340
IF RE THEN
KM = KM + 1
NEXT
IF BYTE < > C9 THEN
GO TO 2500: | CHECK FOR QOUTED LITERAL
FOR I = 1 TO BLK:
BYTE = PEEK(LOC):
LOC = LOC + 1
IF BYTE = C9 THEN
GO TO 2550
IF BYTE = 0 THEN
GO TO 2500
NEXT
IF BYTE = O AND NOT WRD THEN
LOC = LOC + 2:
GOTO 2340
IF (BYTE < Al OR BYTE > A2) AND NOT (WRD AND BYTE > = A3 AND BYTE <
= A4) THEN
GO TO 2530: | NON-VARIABLE CHARACTER
SYMBOL$ = SYMBOLS + CHRS$(BYTE):

WRD = 1:
GOTO 2370
IF NOT WRD THEN
LP = 1:
GOTO 2640
IF BYTE = A5 OR BYTE = A6 THEN
GO TO 2520: | '$' OR '§'
WRD = O:
POKE 33,22:
IF SYMBOLS < > "" THEN
VTAB 24:
HTAB 1:
PRINT LNE;TAB(9);SYMBOLS:
IF NOT TEST THEN
SYMBOL = 1
POKE 33,39:
IF KNT = 0 THEN
GO TO 2600
FOR I = 1 TO KNT
IF SYMBOL$ = CO$(I) THEN
GO TO 2630: | NOT A NEW SYMBOL
NEXT
IF SYMBOLS = "" THEN
LACRAB
04/05/82
PAGE - 7

GO TO 2770

2610 KNT = KNT + 1:

I = KNT:

IF KNT > 200 THEN
PRINT "TOO MANY SYMBOLS FOR CROSS REFERENCE":CHR$(7):
STOP

-3

A

I R I R D e e

S I R R B

3

1

™

2620

2630

2640

2650
2660

2670

2680

2690
2700
2710
2730
2750
2770

2780
2790

2800

McBurney

VTAB 14:
HTAB 36:
PRINT RIGHTS(" " + STRS(KNT),4);:
VTAB 16:
HTAB 25:
HTAB 25:
VTAB 16:
PRINT RIGHTS(" " + SYMBOLS,15):
CO$(KNT) = SYMBOLS
SYMBOLS = "":
IF SYMBOL AND NOT NN THEN
NN =1
IF SYMBOL AND (BYTE = C8 OR RD) THEN
DF$(NN) = 1:
SYMBOL = 0
IF BYTE = C7 THEN
TEST = 1: | BEGIN 'IF'
IF BYTE = C2 THEN
SYMBOL = 0:
NN = O: ! 'COLON'
IF BYTE = C3 THEN
TEST = 0:
NN = O:
SYMBOL = 0: | END 'IP'
IF LP THEN
LP = 0:
GOTO 2370
IF LEN(CO$(I)) > MAX THEN
MAX = LEN(cCO$(1))
IF LEN(LINE$(I)) > = 254 THEN
GO TO 27450

LACRAB 119

L§NE$(I) = LINE$(I) + CHR$S(LNE / BLK) + CHR$(LNE - INT(LNE / BLK) * BL
K

GOTO 2770
PRINT "TOO MANY REFERENCES TO “;CO$(I);".":
PRINT "REFERENCES AFTER LINE #":LNE;" IGNORED.":
GOTO 2770
IF BYTE = 0 TYEN

LOC = LOC + 2:

GOTO 2340
GOTO 2370

| SORT CROSS REFERENCE !

+om +

FLASH :

VTAB 20:

HTAB 25:

PRINT "SORTING":
NORMAL

LACRAB
04/05/82
PAGE - 8

2810

2820

2830

FOR L = KNT TO 2 STEP - 1:
K=1:
C$ = LEFT$(COS$(1),2) + RIGIT$(COS$(1),1)
FOR J = 2 TO L:
BS = LEFTS(CO$(J),2) + RIGITS(COS(J),1):
IF BS > C$ TYEN
K= J:
CcS = BS
NEXT :
A$ = COo$(L):
CO$(L) = COS$(K):
CO$(K) = AS:
A$ = LINES(L):
LINE$(L) = LINES$(K):
LINES(K) = AS:

I = DF%(L):

DF$(L) = DF%$(K):

DF%(K) = I:

I = PEEK(- 16336):
NEXT

120 I/0 Enhancements
2850 | OUTPUT CROSS REFERENCE !
2860 PR# 1:
POKE 33,40:
POKE 34,0:
HOME :
BYTE = 1:
SPACE = 0O:
RM = O:
MAX = MAX + 2:
MX = WIDTH - SPACE - MAX:
LNEs = lIII:
TXTS = "
GOSUB 3240:
LNEs = ""!
TXT$ = “"BEGIN CROSS REFERENCE......":
GOSUB 3240
2870 LNES$ = "":
TXTS = * ":
GOSUB 3240:
SPACE = 1:
OLD$ = " “:
I = TRASH: | UNDEFINED SYMBOL FOR TEST
PURPOSES
2880 FOR I = 1 TO KNT
2890 IP CO$(I) = " " THEN
LNE$ = LEFTS$(" ", MAX) :
GOTO 2980
2900 cos$(r) =" * + co$(1)
2910 IF NOT DF$(I) THMEN
co$(1) = "->" + MIDS(COS$(1), 3)
GOTO 2930: UNDEFINED SYMBOL
2920 IF LEN(LINES(I)) = 2 THEN
co$(I) = " *" 4+ MID$(COS$(I),3):1 SYMBOL ONLY OCCURS ON 'ONE LINE
LACRAB
04/05/82
PAGE - 9
2930 LNE$ = LEFTS$(CO$(I) + " " ,MAX)
2940 IF MID$(CO$(1),3,2) < > MID$(OLDS,3,2) THEN
GO TO 2970: | CHECK FOR DUPLICATE SYMBOLS
2950 A$ = RIGHTS(COS(I),1):
IF A$ = "$" OR A$ = "$" THEN
IF RIGMT$(OLDS,1) = A$ THEN
LNES$ = "**" 4+ MID$(LNES,3)
2960 IF A$ > "$" AND RIGHTS$(OLDS,1) > "%" THEN
LNE$ = "*#" 4 MIDS(LNES,3)
2970 IF CO$(I) ¢ > " " THEN
OLDS = COS(I)
2980 FOR J = 1 TO LEN(LINES(I)) STEP 2:! DECODE LINE NUMBERS
3000 L = ASC(MID$(LINES(I),J,1)) * BLK + ASC(MID$(LINES(I),J + 1,1))
3010 IP L < > LOLD THEN
TXT$ = TXT$ + RIGITS(" " + STRS(L),6)
3020 LOLD = L:
IF LEN(TXT$) > = 249 THEN
LINE$(I) = MID$(LINES(I),J + 2):
cos$(1) = " "2
I=1-1:
GOTO 3040
3030 NEXT J
3040 LOLD = 0
3050 IP LEN(TXTS$) < MX THEN
GO TO 3140: | CHECK LINE LENGTH
3060 FORJ = 1 TO MX - 1:
K=MX -J
3070 IF MID$(TXT$,K,1) = " " THEN
GO TO 3090
3080 NEXT J
3090 K=K- 1:
IF MID$(TXT$,K,1) = " " THEN
GO TO 3090
3100 B$ = MIDS(TXTS$,K + 1)

3

I I I |

3

N

-3

3 3

. |

3110

3120
3130
3140
3150
3160

3170
3180
3190
3200
3210

McBurney LACRAB 121

TXT$ = LEFTS$(TXTS,K):
GOSUB 3240:
TXT$ = BS$
LNES = LEFTS(" " ,MAX)
GOTO 3050
GOSUB 3240
NEXT I
LNE$ = "":
TXTS = “ ":
GOSUB 3240:
LNE$ = "NOTES:":
GOSUB 3240
LNE§ = " * INDICATES SYMBOL REFERENCED ONLY ONCE.":
GOSUB 3240
LNE$ = "** INDICATES SYMBOL EQUIVALENT TO PREVIOUSLY DEFINED SYMBOL.":
GOSUB 3240
LNE$ = "-> INDICATES UNDEFINED SYMBOL.":
GOSUB 3240
LNE$ = " PROGRAM IS " + STRS(SIZE) + " BYTES LONG.":
GOSUB 3240
LNE§$ = " COMMENTS ACCOUNT FOR APPROXIMATLY " + STRS(KM) + " BYTES ("

LACRAB
04/05/82
PAGE - 10

3220
3230

3240

3250

3260

3270

3280

3290

3300

3310
3320
3330

+ STR$(INT(KM / SIZE * 100)) + "g)."
GOSUB 3240
GOTO 3320

| PRINT OUT A LINE !
B T T pp—— +

IF NOT FN PAGE(N) THEN

FOR T = 1 TO SKIP:

PRINT " “:

NEXT :

SKIP = 6:

N =N+ 11:

PRINT NAMES:

PRINT TIMES:

AS$ = "PAGE - " + STRS(INT(N / S6) + 1):

PRINT SPC(WIDTH - LEN(AS$)):AS:

PRINT USS:

PRINT " “:

X = FRE(0)
LX = LEN(LNES):
PRINT LNE$;SPC(SPACE);LEFT$(TXT$,WIDTd - SPACE - LX):
IF (LEN(TXT$) + SPACE + LX) < = WIDT THEN

GO TO 3290: | TEXT FITS ON ONE LINE
TXT$ = RIGATS (TXTS$,LEN(TXTS) + LX + SPACE - WIDTH):
IF RM THEN

FOR T = 1 TO KOMMENT - 2 - SPACE:

TXT$ = " “ + TXTS:

IF BYTE = 0 THEN
SPACE = SPACE - THN:
THN = 0

IF NFR THEN
SPACE = SPACE + 3:
NFR = 0O

RETURN

IF COMMENTS THEN
CX = 1:
GOTO 1850

122

3340
3350

3360
3370

1/0 Enhancements

PR% O

IF XREF THEN
GO TO 2050

PR$ 1

FOR I =1 TO 75 - FN PAGE(N):
PRINT “ “:

NEXT
LACRAB

04/05/82
PAGE - 11

3380
3390
3400
3410

3420
3430

3440
3441

3450
3460

3470
3480
3490
3500

3510
3520
3530
3540
3550
3560
3570
3580
3590
3600

POKE 175,PEEK(103):

POKE 176,PEEK(104):

IF PEEK(175) = 255 THEN
POKE 176,PEEK(104) - 1

POKE 103,1:

POKE 104,8:

PR# 0:

HOME :

PRINT N;" LINES PRINTED."

| RESET EOP POINTERS

| RESET SOP POINTERS

PRINT CHR$(7);"LISTING COMPLETE...."

END
+ -—+
| DATA INITIALIZATION SECTION !
- +

BYTE = O:

1LOC = 0:

B5 = 5:

B6 = 2049

DIM TKN$(127),C0$(200),LINES(200),DF%(200)

Cl = 178:

Cc2 = 58:

C3 = 196:

c4 = 129:

Cc5 = 130:

Cc6 = 128:

Cc7 = 173:

c8 = 208:

C9 = 34:

Al = 65:

A2 = 90:

A3 = 48:

A4 = 57:

A5 = 36:

A6 = 37:

A7 = 44:

A8 = 127:

Bl = 190:

B2 = 132:

B3 = 135:

B4 = 131

FOR I =1 TO 107

READ TKNS(TI)

NEXT I

TKNS$(36) = TKNS$S(36) + ":":

TKNS(37) = TKNS(37) + ":"

DATA END,,,DATA, INPUT, DEL,DIM, READ, GR, TEXT

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

PR#, IN#,CALL, PLOT,HLIN, VLIN, ,HGR2 ,HGR,HCOLOR= ,HPLOT

DRAW, XDRAW,HTAB,4OME, ROT=, SCALE=, S1LOAD, TRACE, NOTRACE, NORMAL
INVERSE, FLASH ,COLOR=, POP, VTAB,HIMEM, LOMEM, ONERR, RESUME, RECALL
STORE, SPEED=, LET, GOTO, RUN, IF, RESTORE, &, GOSUB, RETURN

REM, STOP,ON,WAIT, LOAD, SAVE, DEF, POKE, PRINT, CONT

LIST,CLEAR, GET,NEW, TAB(," TO",FN,SPC(,,AT

NOT, " STEP™," +"," -, n #u w [u 2 w aNpe « op®

"oy, M =", " <" SGN, INT,ABS, USR, FRE,SCRN(,PDL, POS

SQR, RND, LOG, EXP,COS,SIN, TAN,ATN, PEEK, LEN

LACRAB

04/05/82
PAGE - 12

3610
3620

DATA
HOME
WIDTH

STR$,VAL,ASC,CHRS, LEFTS,RIGHTS ,MID$

= 76: | ASSIGN PAGE WIDTH

3y 5 3 3

3

-3

-

3630

3640
3650

3660

3670
3680

3690
3700
3710

3720
3730

3740

3750

3760
3770
3780

3790
3800
3810
3820
3830
3840

3850
3860

3870
3880

3920
3930
3940

McBurney LACRAB 123

INPUT " ":NAMES:
INPUT "PROGRAM NAME?":NAMES$
PRINT "DATE/TIME?";
GET AS:
I = ASC(A$):
IF I = 13 THEN
GO TO 3690
IF I = 8 THEN
TIMES = LEFTS(TIMES,LEN(TIMES) - 1):

GOTO 3680

TIME$ = TIMES$ + AS$

VTAB 3:

HTAB 11:

PRINT TIMES::

GOTO 3650

PRINT " "

FOR I = LEN(NAME$) TO WIDTH - 1
NAMES = " " + NAMES:

NEXT

FOR I = LEN(TIME$) TO WID™ - 1
TIMES = " " + TIMES:

NEXT

FOR I =1 TO WIDTH:
US$ = US$ + "=":

NEXT
SKIP = 3:
BLK = 256
LOC = 2051: | START OF PROGRAM
EOP = PEEK(103) + PBEK(104) * BLK - 2:! END OF PROGRAM POINTER
SPACE = 1: | INITIAL SPACING AFTER LINE
NUMBER
S6 = 66
DEF FN PAGE(N) = N - INT(N / S6) * S6:! NEW PAGE DETECTION FUNCTION
KOMMENT = 41: | TABBING FOR IN-LINE COMMENTS
GOSUB 3850: | DISPLAY MENU
HOME
RETURN
tommmmm————————— +
| DISPLAY MENU !
B +
HOME :
INVERSE
FORI =11T0 7
READ J:
IF J < > 0 TMEN
VTAB I:
HTAB J:
PRINT " “;:
GOTO 3880
NEXT

DATA 3,11,16,17,18,21,22,23,24,29,33,34,35,36,0
DATA 3,10,12,15,19,21,25,28,30,33,37,0
LACRAB
04/05/82
PAGE - 13

3950
3960
3970
3980
3990
4000
4010
4020
4030
4040

4050
4060
4070
4080

DATA 3,9,13,15,21,25,27,31,33,37,0

DATA 3,9,13,15,21,22,23,24,27,31,33,34,35,36,0

paTa 3,9,10,11,12,13,15,21,23,27,28,29,30,31,33,37,0
DATA 3,9,13,15,19,21,24,27,31,33,37,0

DATA 3,4,5,6,7,9,13,16,17,18,21,25,27,31,33,34,35,36,0
HTAB 1

VTAB 9

PRINT " u
NORMAL

VTAB 11:

PRINT TAB(15);"SYSTEM MENU"

PRINT TAB(19);"FOR"

PRINT TAB(15);"PROGRAM TO:"

VTAB 15

INVERSE :

PRINT "L";:

NORMAL :

PRINT "IST “:

124

4090

4100

4110

4120

4130

4140

4150
4160

4170
4180

4190
4200
4210

4220
4230

1/0 Enhancements

INVERSE :

PRINT "A";:

NORMAL :

PRINT "ND “;

INVERSE :

PRINT "C";:

NORMAL :

PRINT "ROSS ":

INVERSE :

PRINT "R";:

NORMAL :

PRINT “"EFERENCE ";

INVERSE :

PRINT "A";:

NORMAL :

PRINT "PPLESOFT ";

INVERSE :

PRINT "B";:

NORMAL :

PRINT "ASIC"

VTAB 17:

HTAB 12

PRINT "1) LISTING ONLY"

VTAB 19:

HTAB 12

PRINT "2) CROSS REFERENCE ONLY"

VTAB 21:

HTAB 12

PRINT "3) LISTING AND XREF"

VTAB 23:

HTAB 13:

FLASH

PRINT "WHICH OPTION?";:

NORMAL

GET AS$

IF A$ = "1" OR A$ = "3" THEN
LST = 1:

! SET LISTING FLAG

LACRAB
04/05/82
PAGE - T4

4240

4250

4260

IF A$ = “2" OR A$ = "3" THEN
XREF = 1:

IF A$ < "1" OR A$ > “3" THEN
PRINT CHR$(7):
GOTO 4200

RETURN

| SET CROSS REFERENCE FLAG

4
GRAPHICS

Apple Color Filter
Stephen R. Berggren

True 3-D Images
Art Radcliffe

Apple Bits
Richard C. Vile

127

131

136

Graphics

This section includes programs to help you understand and take advantage of the
Apple I's superb graphics capabilities.

Dick Vile's ‘'Apple Bits'’ makes use of the low-resolution graphics feature
with utilities to build shapes and perform faster screen displays. Also included are
interesting animation examples.

Art Radcliffe’s ''True 3-D Images’’ uses the versatility of the Apple’s high-
resolution system. By developing a stereo-pair of images, your flat monitor is
given a new dimension of depth. Try out the noisy coaster and hold on to your
seat!

‘‘Apple Color Filter’’ by Stephen R. Berggren lets you erase any selected color
from the high-resolution screen without affecting the other colors. This ut111ty
sheds light on how high-resolution color graphics work.

.3y 3 3

33

3

8

3

13

1

-

Apple Color Filter

by Stephen R. Berggren

This short machine-language subroutine will allow you
to filter out any selected color from the Apple hi-
resolution graphics screen.

One of the most fascinating capabilities of the Apple Graphics Tablet is its ability
to separate the colors on the high-resolution graphics screen. It can act like a color
filter, removing all colors from the screen except a chosen one. This can be
extremely useful in doing computer art work, drawing graphs, and, of course, in
game graphics. But now you can have a similar capability without buying the
graphics tablet. Just use this Apple color filter program.

The color filter is a short machine-language program which can erase any
selected color from the high-resolution screen while leaving the other colors un-
affected. To use it, simply load it into page 3 of memory, starting at decimal 768.
Then POKE a number from 1 to 4 into memory location 769 and run it with a call
768. The number POKEd into 769 determines what color is erased: 1 erases green,
2 erases violet, 3 erases blue and 4 erases orange. The program takes only about
one-fourth of a second to filter the entire page-one hi-res screen.

If you are using only green, violet, blue and orange, everything works fine.
But the Apple also draws in white — in fact two kinds of white. This can affect the
results of the filter operation. The Apple makes its two whites by combining
either green and violet (HCOLOR = 3) or blue and orange (HCOLOR =7]. The color
filter ‘'sees’’ the white as a combination of the two colors rather than as a separate
color. Thus when told to erase green, it will erase all green, including the green
part of any white that is made up of green and violet. This turns the white into
violet. Of course, any white made up of blue and orange is left alone. So to erase
white, simply erase the two colors that make it up. To avoid changing the white
to another color, simply draw it in the colors that you do not plan to filter out
later.

128 Graphics

How the color filter works delves deeply into the mysteries of Apple color
graphics. From what I have been able to deduce, it seems that each byte in the hi-
res memory holds seven screen dots. Each set bit in the lower seven bits will turn
on one dot. The highest bit determines whether the dots will be green and violet,
or blue and orange. On even bytes, bits 0, 2, 4 and 6 create violet or blue while bits
1, 3 and 5 create green or orange. On odd bytes, this sequence is reversed. The color
filter masks out all of the bits in the hi-res memory area that would create a par-
ticular color. By changing all of these color bits to 0, it eliminates the color. The

comments in the source program listing give more detail on how the program
operates.

Two bytes of zero-page memory are needed for the indirect addressing. The
program uses bytes 6 and 7, but any two consecutive bytes can be used. As writ-
ten, the program works only on hi-res page one, but by changing the values of
LOSCRN to 40 and HISCRN to 60, you can make it work on hi-res page two.
Finally, if you don’t have an assembler, you can simply load the hexadecimal
values listed in the table using the Apple monitor's data entry function.

The colors I have referred to here are the ones I get from my Apple on my
television. The colors you get may be different. The best approach is to experi-
ment with the program on your system to see what number inputs erase what
colors. The Applesoft BASIC demonstration program listed here should give you a
good idea of how the color filter works on your system.

A

3

3

3

B

-3

3 3

_J

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0006

SCREEN

0020

START

0040
0800
0300
0300
0300

0300 A2 00
E INDEXING
0302 A0 00
N INDEXING
0304 A9 00
CRLOC

0306
0308
030Aa
030C
030C
030E
0310
LE 1
0313
0315
0318
0318
LE 2
031B
031D
031D
031F
0321
0323
LE 3
0326
0328
032B
032B
LE 4
032E
0330
0330
0332
0333
0335
0337

85
a9
85

Bl
30
3D

91
4c

3D
91

E6
Bl
30
3D

91
4c

3D
91

A9
38
65
85
20

BYTES

0339
033B
033C
033E

A9
38
65
85

06
20
07
06
08
45

06
1D

47
06
06
06
08
49

06
30

4B
06
00
06
06
D3
00

07
07

03

03

03

03

03

03

WONOUNA WN -

S e e e e o
S OWVWONONUVBWN O

22

23
24
25
26
27
28

7*****'**i*****t*********

.
;

b se s S Se s se se we e s

:* APPLE COLOR FILTER
* STEPHEN BERGGREN

* COPYRIGHT (C) 1982
* MICRO INK, INC.

* CHELMSFORD, MA 01824
* ALL RIGHTS RESERVED
*

L2222 2222222222222 22222)

* % % * ¥ * ¥ ¥ * *

Berggren Color Filter 129

; PUT NUMBER FOR COLOR TO BE REMOVED IN $301

: 1=GREEN, 2=VIOLET,

3=BLUE, AND 4=0ORANGE

sWHITE #3 NOT AFFECTED BY 3 OR 4
sWHITE #7 NOT AFFECTED BY 1 OR 2

;TO RUN, 300G FROM MONITOR OR CALL 768 FROM BASIC

1
SCRLOC

LOSCRN

HISCRN

;

EVNBYT

DOTAB?2

ODDBYT

DOTAB4

INCLOC

EPZ

EP2Z

EPZ

ORG
OBJ

LDX

LDY

LDA

STA
LDA
STA

LDA
BMI
AND

STA
JMp

AND
STA

INC
LDA
BMI
AND

STA
JMP

AND
STA

LDA
SEC
ADC
STA
BCC

LDA
SEC
ADC
STA

$06
$20
$40

$300
$800

#$00

#$00

#500
SCRLOC
#LOSCRN
SCRLOC+1
(SCRLOC) , Y
DOTAB2
TABLE1, X

(SCrRLOC) ,Y
ODDBYT

TABLE2, X
(SCRLOC) ,Y
SCRLOC
(SCRLOC) ,Y
DOTAB4
TABLE3, X

(SCrRLOC) , Y
INCLOC

TABLE4, X
(SCrLOC) ,Y
#s$00
SCRLOC
SCRLOC
EVNBYT
#500

SCRLOC+1
SCRLOC+1

;ZERO-PAGE LOC. FOR ADDRESSING
sHI-BYTE OF ADDRESS OF SCREEN

sHI-BYTE OF SCREEN END

;PUT COLOR VALUE IN X FOR TABL
sPUT O IN Y FOR INDIRECT SCREE

;SET SCREEN START ADDRESS IN S

:GET SCREEN BYTE
:IF BIT 7 SET, USE TABLE 2
:MASK OFF COLOR BITS USING TAB

;PUT BACK THE BYTE
;DO T™E NEXT BYTE

;MASK OFF COLOR BITS USING TAB
;PUT BACK THE BYTE

:SET UP FOR NEXT SCREEN BYTE
;GET SCREEN BYTE

;IF BIT 7 SET, USE TABLE 4
:MASK OFF COLOR BITS USING TAB

:PUT BACK THE BYTE
GO INCREMENT SCRLOC

sMASK OFF COLOR BITS USING TAB
:PUT BACK THE BYTE

: INCREMENT SCRLOC LO

;IF NOT OVERFLOW, DO ANOTHER 2

: INCREMENT SCRLNC HI

130 Graphics
0340 C9 40 63 CMP #HISCRN :WAS THAT THE LAST PAGE?
0342 DO C8 64 BNE EVNBYT :IF NOT, DO NEXT 2 BYTES
0344 60 65 RTS ;ALL DONE!
0345 66
0345 00 D5 67 TABLEL HEX 00OD5
0347 AA FF 68 TABLE2 HEX AAFF
0349 FF AA 69 TABLE3 HEX FFAA
034B D5 FF FF 70 TABLE4 HEX DSFFFFD5AA
034E D5 AA
0350 7 END
1 REM L2222 222 2222222222222 2022
2 REM * *
3 REM * COLOR FILTER DEMO .*
4 REM * BERGGREN *
5 REM * COPYRIGHT (C) 1982 *
6 REM * MICRO INK, INC. *
7 REM * CHELMSFORD, MA 01824 *
8 REM * ALL RIGHTS RESERVED *
9 REM * *
10 REM EE 2 22222 22 2222222222222
12 REM
14 HGR : HOME : VTAB 22
20 FORI =1T0 7
30 HCOLOR= I
40 HPLOT O0,I * 10 TO 250,I * 10 + 50
50 NEXT I
55 FOR J =1 TO 5000: NEXT J
60 FORI =1 TO 4
70 PRINT : PRINT : PRINT "COLOR FILTER INPUT: "I
80 POKE 769,1
90 CALL 768
100 FOR J = 1 TO 5000: NEXT J
110 NEXT I
120 TEXT
130 END

43 3 1 3

3 3

3

o

True 3-D Images

by Art Radcliffe

Create stereo-pair images for viewing without

accessory devices. The pair of images can be fused
into a three-dimensional pattern by placing a piece of
paper between the viewer’s eyes and the viewing

screen so that each eye sees only the appropriate
image. With practice the paper is no longer needed. The
object used for demonstration is a three-dimensional
Lissajous figure.

This article discusses genuine three-dimensional images such as seen through
your grandparents’ stereopticon, or through more recent systems that require col-
ored eye filters for viewing. The present technique involves not a single projection
of the object, but a pair of images which can be fused into one 3-D image without
auxiliary contrivances.

The Scientific American has published articles accompanied by stereo-pair
images, which can be fused into a stereo scene with a little practice. This program
was inspired by success with such viewing. Some eye training is required, and
some eye strain may be felt initially. What is required is that you stare off into the
distance {eyeball axes essentially parallel) while focussing nearby. The muscles
which direct your eyeball and the muscles which focus your lens are accustomed
to working in a coordinated way for distant or for nearby objects; this muscular
habit can readily be broken. It is not at all difficult for me now to glance at a pair of
images on the screen from anywhere in the room, and see the 3-D pattern.

The viewing images are produced by running rays from each defined point of
the object to points which correspond to eye locations. The object is behind the
screen and the eyes are in typical viewing positions. Points are plotted where
these rays intercept the display plane.

132 Graphics

The object is defined near the origin of an X, Y, Z coordinate system, behind
the screen plane. We can define object points using the notation: (X1,Y1,Z1),
define screen points with: (X2,Y2,Z2), and define the eye locations using:
(X3,Y3,Z3). Z2, the screen distance from the origin, is set at 200 in the program,
and Z3, the eye distance from the origin, is set at 300. Y3 is the same for each eye:
40; and the X3 values for the two eyes are 40 and 120. The direction from which
the object is viewed can be altered by offsetting X1 and Y1.

Use of proportions leads us to the conclusion that (X2-X1)/(Z2-Z1)=
(X3-X1)/(Z3-Z1) and similarly, (Y2-Y1)/(Z2-Z1)= (Y3-Y1)/(Z3-Z1). From these
equations we can derive X2=X1+M(X3-X1) and Y2+ Y1+M(Y3-Y1) where
M=(Z2-21)/(23-Z1).

Listing 1 is an embellishment, with sound effects, of the program as originally
written (see listing 2).

Within the program there are variable substitutions: (X,Y,Z)=(X1,Y1,Z1),
(A,B,C) =(X2,Y2,Z2) and (D,F,G),(E,F,G) = (X3,Y3,Z3). A Lissajous pattern was
chosen for viewing. It can be restricted to a rectangular area, derived from the
property of the sine function, being bounded by 1 and - 1. In the program a raised
sine is used by adding 1 (line 64) to avoid negative values. Thus, the X-coordinates
of the object vary according to one sine function, the Y-coordinates of the object
vary in a coordinated manner according to a second sine function, and the
Z-coordinate varies according to a third sine function.

Random numbers are used to achieve an almost infinite variety of patterns. It
is fun to watch the pattern take shape; the eye can go on a roller-coaster ride with
the leading edge of the pattern as it develops on the screen.

There is an inherent limitation to this method in that the display area is
limited to the space between the primary pair of images. Use of prismatic glasses
might increase the available object size. The program is written for viewing on a
twelve-inch diagonal screen. Users with other size displays may want to alter pro-
gram parameters, first increasing or decreasing the X dimension for eye position
by altering one or both of parameters D and E. It may also be useful to alter the
scale factor N.

Interesting 3-D motion displays could be written in machine language. I can
also imagine game possibilities, including visual 3-D Tic Tac Toe.

I have experimented with more general systems using color filters for view-
ing, and may report on this at some future time. I hope that readers will
experiment with this viewing system, perhaps altering parameters of the given
program or substituting another object. Data points in three dimensions might be
seen as a 3-D swarm of points in which local clusters or correlations could be
detected. This is a new way of seeing things.

3

0

-

T

e

o

m

Radcliffe 3-D Images

1 REM khhkhkhkhkkhhhhkhhhhhhdhddhid

2 REM * *

3 REM * NOISY COASTER *

4 REM * ART RADCLIFFE *

5 REM * *

6 REM * COPYRIGIT (C) 1982 *

7 REM * MICRO INK, INC. *

8 REM * CHELMSFORD, MA 01824*

9 REM * ALL RIGIT RESERVED *

10 REM * *

11 REM I 2222223222222 222 222 22

12 HOME : POKE 36,12: PRINT “NOISY COASTER"

20 DIM A%(299): DIM B%(299): DIM H3(299): DIM S(299)

30A=B=C=D=E=F=G6=H=1=J=0

40K=L=M=N=0=P=Q=T=U=V=0

50 W=X=Y=2%=0:R= - 16336:S = .5:LL =0

60 GOTO 630

65 REM --

70 PRINT CHRS$ (7): PRINT CHRS$ (7): FOR A = 0 TO 1000: NEXT : PRINT
(7)

80 FOR P = 0 TO 299

90 A = PEEK (R)

100 HCOLOR= 3: REM FRONT OF TRAIN

110 B = A%(P):C = B%(P):D = 43%(P)

120 E=B + 1:F=C + 1:6G =D + 1

130 4PLOT B,F: YPLOT E,C: HPLOT E,F

140 HYPLOT D,F: HPLOT G,C: HPLOT G,F

150 Q = P - 10

160 A = PEEK (R)

170 IF Q < O THEN Q = P + 289: REM 0<=Q<=360DEG

180 HCOLOR= O: REM END OF TRAIN

190 B = A%(Q):C = B%(Q):D = 4%(Q)

200 E=B + 1:F=C + 1:G =D + 1

210 HPLOT B,F: HPLOT E,C: HPLOT E,F

220 HPLOT D,F: 4PLOT G,C: HPLOT G,F

230 A = PEEK (R): REM REPLOT TRACK ->

240 4YCOLOR= 3: MPLOT B,C: HPLOT D,C

250 A = PEEK (R)

260 FOR Z = O TO LL - B%(P): NEXT : REM TRAIN SPEED

270 A = PEEK (R)

280 NEXT P

290 PRINT CHRS (7)

300 RETURN

305 REM ——————=——====-=-= --

310 FOR P = O TO 299: REM ESTABLISH PATTERN

320 X = S(I) + L:Y = 2 * S(J) + T:2 = S(K)

330 M= (C -2) / (G- 12)

340 A= INT (S + X +M * (E - X)):A%(P) = A: REM LEFT X

350 B= INT (S +#Y +M* (F - Y)) - 50:B%(P) = B: REM Y

360 H = INT (S +# X + M * (D - X)):48%(P) = 4: REM RIGT X

370 HPLOT A,B: HPLOT A + 2,B: HPLOT 4,B: HPLOT H + 2,B

380 IF LL < B T™EN LL = B

390 I =1 + U: IF I > 299 ™EN I = O

400 J =J + V: IF J > 299 T™MEN J = 0

410 K = K + W: IF K > 299 T™EN K = 0

420 NEXT P

430 RETURN

435 REM ——-————==m—-——m————mmeee

440 0 = 8 * ATN (1) / 300: REM 360DEG/300

450 N = 40: REM OBJECT SCALE FACTOR

460 FOR A = 0 TO 299

470 S(A) =N * (1 + SIN (A * O0)): REM SINE+1>0

480 NEXT A

490 C = 200: REM X CONR'S OF EYES

500 D = 120

510 E = 40: REM Y COOR'S OF EYES

520 F = 40

530 L = 150: REM X,Y,Z COOR'S OF OBJECT

540 T = 250

550 G = 300: REM # CYCLES IN X,Y,Z ->

560 U= INT (1 + 5 * RND (1))

570 V = INT (1 + 5 * RND (1)): IF V = U THEN 570

580 W = INT (1 + 5 * RND (1)): IF W = V OR W = U THEN 580

590 I = INT (300 * RND (1)): REM START POINTS

133

CHRS

134

600
610
620
625
630

640
650
660
670
680
690
700
705
710
720
730
740
750
760
770
780
790
800

Graphics

J = INT (300 * RND (1))
K = INT (300 * RND (1))

RETURN

REM

PRINT

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
REM

: PRINT : PRINT " CREATED BY ART RADCLIFFE,

: PRINT "PLACE 8 INCH BY 12 INCH CARDBOARD
"BETWEEN SCREEN AND TIP OF NOSE SO EACH "
“"EYE SEES ONLY IT'S IMAGE. SOME EYE "
"TRAINING IS NECESSARY. "

: PRINT : PRINT : PRINT : PRINT

"PLEASE BE PATIENT WHILE I MEDITATE TO "
"GET MYSELF READY FOR THIS......ccco0ue0s"

GOSUB
HOME :
LL = O:
GOSUB
FOR A
GOSUB
FOR A
GOSUB

440 REM INITIALIZE
HGR : HCOLOR= 3

REM LOWEST POINT
310 REM LAY TRACK
= 0 TO 999: NEXT

70 REM HOLD TIGHT!
= 0 TO 3000: NEXT
490 REM REINITIALIZE

GOTO 720 REM START OVER

END

ANN ARBOR

"

PRINT

W ONOUTE WN -

REM A2 AR A2 22222222 2222 2]

LISSAJOUS FIGURES
ART RADCLIFFE

*

*

*

*

* COPYRIGHT (C) 1982

* MICRO INK, INC.
REM * CHELMSFORD, MA 01824

* ALL RIGHTS RESERVED

*

*

s

* % % % % % * *

L2222 2222222 222222222223

F
[o]

G
14

[}
]
[}

=(c-2)/ (G-212
= INT (S + X +
= INT (S + Y +
= INT (S + X + (D - X)
PLOT A,B: HPLOT

=IX XX
OW * * #—

(-9

+ U:s IF I > T™HEN I
+ V: IF J > 199 T™EN J
+ W: IF K > 199 THEN K

FOR Z = 0 TO 5000: NEXT 2

0= .04 * ATN (1)
FOR A = 0 TO 199

S(A) =N * (1 + SIN (B))

Cc = 200

D = 120

E = 40

F = 40

G = 300

T = 250

L = 150

U= INT (1 +5* RND (1))
V= INT (L +5* RND (1)):
W= INT (1L +5 * RND (1)):
I = INT (199 * RND (1))

J = INT (199 * RND (1))

K = INT (199 * RND (1))

S =

POKE 49234,0
GOTO 24

(E - X))
(F - Y))

Radcliffe

HCOLOR= 3: PRINT : PRINT

[=N=Ne)

o

PRINT

non
o

3-D Images

"WAIT"

135

Apple Bits

by Richard C. Vile

This article describes several aids to faster and more
efficient low-resolution graphics programming,
including machine-language routines.

Part 1

This is the first part in a series dealing with the use of Apple II low-resolution
graphics features. Some techniques will be described that use machine language to
enhance the speed of graphics applications and reduce the amount of memory re-
quired in order to represent certain screen patterns.

The basic techniques described will enable you to display patterns 8 x 8 in
size or smaller, and consisting of a single color. Larger patterns must be con-
structed from smaller pieces which fit these requirements. A modification of the
machine-language routine will allow multiple colors to be obtained by overlaying.

Bit-encoding a Picture
Consider the following eight hexadecimal numbers:

38,38,12,FE,90,28,44,83

Believe it or not, they contain a picture! To see how, let's first rewrite the

numbers in binary, using the following table to convert each hex digit into a 4-bit
binary ‘'nibble:"’

Hex Binary
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

)

Vile Apple Bits 137

e
We arrive at the following numbers:
b)
00111000
00111000
- 00010010
11111110
10010000
00101000
e 01000100
1 0000011
mm Do you see the picture yet? Just in case you don't, let’s transform the pattern
of 0's and 1's onto ‘‘graph paper’’ by superimposing a grid of squares on top of the
above list, like so:
0jloj1f{1]1]0]0]o0
0joj1t1f1}j0jo0]o0
0]010}1j0]J0Ofj1]0
mn [1jihfifi]1]o
1]ojoj1fojofolo
ofojijoj1jojofo
o 0J1]o0]ofof1]ojo
1/]0]0[0]0]0]1}1
P Now, erase all the 0's and completely blacken the squares containing the 1’s.
That gives the grid shown next:
)
Now, of course, you see the ‘‘picture.’’ Erasing the grid lines should make the
— correspondence with the lo-res display pretty obvious as well. The question now

becomes: ‘How do we turn the above process into a program?’’

Shown in listing 1 is a machine-language program which will carry out the
o process. It “‘assumes’’ that certain information has been set up for it. This infor-
mation will be illustrated by listing 2 (in Integer BASIC).

) The BASIC program does a series of POKEs which set up the machine-
language routine’s information:

12 POKE 2048,7: POKE 2049,7

@™

indicates the width and height of the patterns to be displayed.

138 Graphics

28 POKE 36,COL: POKE 37,ROW

indicates the ROW and COLUMN of the lo-res screen where the upper-left corner
of the pattern to be displayed will be.

60 POKE 60,(3072 + OFFSET)MOD 256
65 POKE 61,(3072 + OFFSET)/256

stores the address in Apple Il RAM where the numerical codes for the pattern to be
displayed begin.

The machine-language program is invoked by the line:
70 CALL 2058
Running the Fireworks Animation
The numerical data the program uses must first be entered into memory. This
data resides at locations CO0 to D27 (3072-3367). Once you have entered it using

the monitor, save it on tape (C00.D27W) or on disk

*3DOG
>BSAVE SPARKS,A$C00,L$127

to avoid keying it in again later. Likewise, enter the machine-language program
using the monitor or the mini-assembler and save it:

*800.857W (Tape)
or

*3DOG

> BSAVE APPLE-BITS,

A$800,L$57 (Disk)

To run the program, you should issue the command
>LOMEM:4096
so that BASIC doesn’t clobber the machine-language program.

Assuming you are using a disk-based system, the entire sequence of com-
mands needed to run the animation would be:

> BLOAD APPLE-BITS
> BLOAD SPARKS

> LOMEM:4096
>RUN FIREWORKS

(If you'd rather not key in long command sequences, cook up an EXEC file with
the commands in it.}

Vile Apple Bits 139

Listing 1 080A- A5 30 LDA $30
080C- 8D 04 08 STA $0804
080F- AC 00 08 LDY $0800
08l2- B8C 03 08 STY $0803
n815- CE 03 08 DEC $0803
0818- 30 31 BMI $084B
081A- AE 01 08 LDX $0801
08lD- 8E 02 08 STX $0802
0820- CA DEX
0821- 30 F2 BMI $0815
0823- BD 50 08 LDA $0850,X
0826- AC 03 08 LDY $0803

0829- 31 3¢ AND ($3¢),Y
082B- DO 04 BNE $0831
082D- A9 00 LDA #$00
0R2F- 85 30 STA $30
0831- A5 24 LDA $24
0833- 18 cLC

0834- 6D 03 08 ADC $0803
0837- A8 TAY

0838- A5 25 LDA $25

083a- 8E 02 08 STX $0802
083D- 6D 02 08 ADC $0802
0840- 20 00 F8 JSR $F800
0843- AD 04 08 LDA $0804

0846- 85 30 STA $30
0848- 4C 20 08 JMp $0820
084B- 60 RTS

084C- 80 22?2

084D- 10 10 BPL $08SF
084F- ¥8 SED

0850- 01 02 ORA ($02,X)
0852- 04 2?2

0853- 08 vae

0854- 10 20 BPL $0876
0856- 40 RTI

0857- 80 22?2

0858- A8 TAY

0859~ BO 08 BCS $0863
085B- 28 PLP

*

Listing 2
1 REM L2 2222222222222 22222222
2 REM * *
3 REM * FIREWORKS *
4 REM * R. C. VILE *
5 REM * *
6 REM * COPYRIGIT (C) 1982 *
7 REM * MICRO INK, INC. *
8 REM * CHELMSFORD, MA 01824*
9 REM * ALL RIGHTS RESERVED*
10 REM * *

12 REM L2222 222222222222 22222

14 GR : PRINT : PRINT : PRINT

15 POKE 2048,7: POKE 2049,7

17 ROW=7+ RND (27)

20 COL=7+ RND (27)

25 COLOR= RND (15)+1

28 POKE 36,COL: POKE 37,ROW

30 FOR J=1 TO RND (10)

40 SPARK=1+ RND (20)

50 OFFSET=SPARK*7

60 POKE 60, (3072+OFFSET) MOD 256
65 POKE 61, (3072+OFFSET) /256

70 CALL 2058

72 FOR DE=1 TO 25: NEXT DE

75 NEXT J)

80 COLOR=0: FOR J=0 TO 6: HLIN COL,COL+6 AT ROW+J: NEXT J
85 GOTO 17

140 Graphics

Part 2
The Pattern Maker Program

This program lets you create patterns and store them in tables for subsequent
use by animation programs. It begins by asking a couple of questions:

HEIGHT AND WIDTH OF PATTERNS?
TABLE ADDRESS IN DECIMAL?

The patterns created may be up to 8 rows high by 8 columns wide, but may be
smaller than that as well. For example, one set of patterns that I use consists of 7
rows by 5 columns. They form a ‘'giant’’ character set that may be used to create
billboard messages on the Apple screen. The table of patterns is stored in Apple
RAM and manipulated by PEEKs and POKEs. Thus, it is necessary to tell the pro-
gram where in memory the table is located. I typically store tables at 3072 ($C00).
The tables must be saved on tape or disk for eventual use by animation programs.

The program will display a rectangular border enclosing an area equal in size
to the patterns specified, as shown in figure 1. Inside the pattern border you'll see
a blinking cursor. You may move this cursor about, inside the border, and either
add or delete parts of a pattern in the process.

The pattern maker will respond to any of the following commands:

PATTERN

VERIFY

MODIFY

RECORD

SAME

HELP

QUIT, BYE, STOP, EXIT

The commands are typed in full, or abbreviated to the first letter. If you forget
what the commands are, simply type ‘'HELP'' or ‘'H’’ and the menu of commands
will be listed for you. (Note: You will probably lose any pattern in progress if you

do that.)

The commands have the following effects:

PATTERN: The area inside the border is erased, the cursor appears inside, and
the user may begin creating a new pattern.

MODIFY: Recalls a given pattern from the table, so the user may modify it.
SAME: Returns to the same pattern as the one most recently created or

modified {allows the user to recover from accidently striking ''ENTER’’ while
creating a pattern.)

3

Vile Apple Bits 141

VERIFY: Displays the numeric codes for the pattern under construction or
modification. Mainly included for debugging the pattern maker program itself.

HELP: Displays the menu of commands.

QUIT, BYE, STOP, EXIT: Cause the termination of the program. Note that
the screen is cleared and returned to TEXT mode.

The program operates in mixed low-resolution graphics mode and uses the
bottom four lines of the screen for entering commands and prompts. The program
will prompt you by typing

COMMAND?

and then wait for a response. If any of the above commands are entered, the pro-
gram will take the corresponding action, otherwise it simply reprompts the user.
The P, ““M"’, and ''S"”’ commands will transfer the cursor inside the rectangle
on the graphics portion of the screen. While there, you may enter 'cursor control
keys'’ or ''pattern control keys'’ to shift the cursor around the pattern and create
or erase parts of the pattern.

Figure 1: Building the Pattern

The cursor control keys and their results are listed in table 1 and the pattern
control keys and their results are listed in table 2.

When RECORDing or MODIFYing patterns, the program will request a KEY
to associate with the pattern. You should respond to this request by simply striking
the desired key (do not hit ENTER, unless that is the desired key). Control keys
(except for Control-C) are included. The association that is made '‘internally’’ by
this is as follows: The program converts the ASCII value of the key struck to a
table offset. This offset is then used when storing or retrieving the corresponding
pattern from memory. The same idea will be used by animation programs in order
to point the machine language driver at the correct positions in memory for a
given pattern.

The pattern-maker program does not LOAD and SAVE the pattern tables
itself. This is the responsibility of the user. For example, suppose you have
created a table which starts at location $C00 and extends as far as $FFF. After
exiting the pattern-maker program and returning to the Integer BASIC command

142 Graphics

level, you would give the following command, assuming that you have a disk-
based system:

BSAVE PATTERN TABLE XYZ,A$C00,L$7FF

To save the same table on tape, you would enter the monitor and (after setting up
your recorder, etc.) type

*CO00.FFFW

and wait for the monitor to write it all out to the cassette.

Table 1
KEY EFFECT

—> Move the cursor one column to the right. If the cursor is
already at the far right of the rectangle, then ‘‘wrap’’
around to the far left of the pattern, but one row further
down. If at the extreme bottom right of the pattern, then
""wrap'’ around to the extreme top left of the pattern.

R Same as —> .
<— Move the cursor one column to the left. At the extreme

positions '‘wrap’’ around in a fashion analogous to that
described above for the —> or R keys.
y

L Same as <— .
U Move the cursor up one row. (Wrap around also)
D Move the cursor down one row. (Wrap also)

ENTER Return the cursor to the command area of the screen.

ESC Same as for 'ENTER"’.

Table 2
KEY EFFECT

+ Add a solid blob to the pattern in the position indicated
by the current location of the cursor.

- Erase the part of the pattern (if any) located at the cur-
rent position of the cursor.

2y 3 3 3

3

9

Vile Apple Bits 143

Note: If you store your tables in low memory, be sure to protect them from
the BASIC program itself. For example, when I use the area from $C00 (decimal
3072) to $FFF, I first issue the command:

LOMEM: 4096
Final Note

The pattern-maker program uses the machine-language driver program (in
order to support the Modify command). Thus, the following complete sequence of
commands would be used to run the pattern maker to add or modify patterns
previously saved in file BPATS:

> BLOAD BPATS

> BLOAD APPLE-BITS

> LOMEM: 4096

>RUN PATTERN MAKER

If no previous file of patterns, such as BPATS, is being used, then the first com-
mand in the sequence may be omitted.

144

VOOV HLEWN O

80
90

100
110
120

500
510
515
517
520
530
540
550
551
555
557
560
1000
1010
1500
1505
1510
1512
1515
1520
1522
1525
1530
1532
1535

1540
1545
1550
1555
1560
2000
2001

Graphics
REM hhkhkhdekhhdkhhhhhhdhhhddhhddik
REM * *
REM * PATTERN MAKER *
REM * R. C. VILE *
REM * *
REM * COPYRIGHT (C) 1982 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA. 01824 *

REM * ALL RIGHTS RESERVED *

REM **kkkkhhkhhhhhhrhhhohrrhhhhd

DIM PTTERN(7),BITS(7),A$(25): GOSUB 10000

INPUT "COMMAND? ",A$: IF AS$S="P" OR A$="PATTERN" THEN GOSUB 50

IF A$="V" OR A$="VERIFY" THEN GOSUB 1000

IF M" OR A$="MODIFY" THEN GOSUB 1500

IF R" OR A$="RECORD" T4EN GOSUB 2000

IF A$="S" OR AS$S="SAME" THEN GOSUB 52

IF A$="4" OR A$="HELP" TIEN GOSUB 2500

IF A$="Q" OR A$="QUIT" OR A$="BYE" OR A$="STOP" OR AS$="EXIT" THEN GOTO

GOTO 11

FOR I=0 TO 7:PTTERN(I)=0: NEXT I: GR

COLOR=1: YLIN 14,14+WIDT4+1 AT 14: HLIN 14,14+WIDTH+1 AT 14+{EIGHT+
1: VLIN 14,14+{ETGIT+1l AT 14: VLIN 14,14+4EIGIT+1 AT 14+WIDTH+1
SAVCOLR= SCRN(15+COL,15+ROW) :KEY= PEEK (XBD): IF KEY>=128 THEN 57
COLOR=15: PLOT 15+COL,15+ROW: FOR I=0 TO 10: NEXT I: COLOR=0: PLOT
154COL, 154ROW: FOR I=0 TO 10: NEXT T: IF SAVCOLR#15 THEN 52
COLOR=15: PLOT 15+COL,15+ROW: COLOR=0: GOTD 52

POKE CLR, O

IF KEY=141 OR KEY=155 TYEN RETURN : COLOR=15

IF KEY# ASC("R") AND KEY#149 THEN 70:COL=COL+l: IF COL<WIDTH THEN 52
:ROW=ROW+1:COL=0: IF ROW<4EIGYT THEN 52:ROW=0: GOTO 52

IF KEY# ASC("L") AND KEY#136 THEN 80:COL=COL-1: IF COL>=0 THEN 52:COL=
WIDTH -1 :ROW=ROW-1: IF ROW>=0 THEN 52:ROW=MEIGiT-1:COL=WIDT4-1: GOTO
52

IF KEY# ASC("U") THEN 90:ROW=ROW-l1: IF ROW>=0 TIEN 52:ROW=HEIGHT-1:
COL=COL-1: IF COL>=0 TYEN 52:COL=WIDT™H-1: GOTO 52

IF KEY# ASC("D") TYEN 100:ROW=ROW+l: IF ROW<HEIGHT TIEN 52:ROW=0:COL=
COL+1: IF COL<WIDTY THEN 52:COL=0: GOTO 52

IF KEY# ASC("+") THEN 110:VALUE=1: GOSUB 500: GOTO 52

IF KEY# ASC("-") TYEN 120:VALUE=0: GOSUB 500: GOTO 52

VTAB 23: PRINT "INVALID KEY": FOR K=1 TO 25: NEXT K: VTAB 23: TAB 1
: PRINT " ": GOTO 52

TEMP=PTTERN(COL)

FOR B=0 TO 7:BITS(B)=TEMP MOD 2:TEMP=TEMP/2: NEXT B8

BITS (ROW)=VALUE

TEMP=BITS(7)

FOR B=6 TO 0O STEP -1

TEMP=2*TEMP+BITS(B)

NEXT B

PTTERN (COL)=TEMP

IF VALUE=0 THEN COLOR=0

PLOT 15+COL, 15+ROW

COLOR=15

RETURN

FOR I=0 TO 7: PRINT PTTERN(I);" ":;: NEXT I

RETURN

INPUT "WHICH KEY?"

KEY= PEEK (KBD): IF KEY<128 THEN 1505

POKE CLR, 0:OFFSET=(KEY-128)*WIDT

POKE 2048,WIDTH: POKE 2049,4YETIG4T

POKE 60, (ADDR+OFFSET) MOD 256

POKE 61, (ADDR+OFFSET) /256

GR

POKE 36,15: POKE 37,15

COLOR=15: CALL 2058

POKE 36,0: POKE 37,23

COLOR=1: 4LIN 14,14+WIDT4+1 AT 14: 4LIN 14,14+WIDTH+l AT 14+HEIGIT+
1

VLIN 14,14+44EIGIT+l AT 14: VLIN 14,14+HEIGYT+1 AT 14+WIDTH+1

FOR I=0 TO WIDTH-1

PTTERN(I)= PEEK (ADDR+OFFSET+I)

NEXT I

GOTO 52

PRINT "W4ICH KEY?"

KEY= PEEK (KBD): IF KEY<128 T4EN 2001

2002
2005
2010
2020
2030
2500
2501
2510
2515
2520
2525

2526
2527

2529
2530
2531

2533
2535
2536
2537
2539
2541
2542
2543
2585
2587
2590
2599
3000
3001
3005
3010
3015
3020
3025
10000
10005
10007
10010
10011
10012
10013
10015
10016
10017
10018
10020
10025
10030

Vile Apple Bits 145

POKE CLR, 0:KEY=KEY-128:0FFSET=KEY*WIDTH

FOR I=0 TO WIDTH-1

POKE ADDR+OFFSET+I,PTTERN(I)

NEXT T

RETURN

REM HELP SUBROUTINE

REM

TEXT : CALL -936

VTAB 2: TAB 2: PRINT "COMMAND";: TAB 12: PRINT "EFFECT"
TAB 2: PRINT "=======";: TAB 12: PRINT "======="

VTAB 5: TAB 2: PRINT "PATTERN";: TAB 12: PRINT "STARTS A NEW PATTERN"

PRINT
TAB 2: PRINT "MODIFY":;: TAB 12: PRINT "CALLS UP AN OLD PATTERN FOR"

TAB 12: PRINT "MODIFICATIONS."
PRINT
TAB 2: PRINT "RECORD";: TAB 12: PRINT "SAVES CURRENT PATTERN IN THE"

TAB 12: PRINT "PATTERN TABLE. IT WILL BE"

TAB 12: PRINT "ASSOCIATED WITH A KEY."

PRINT

TAB 2: PRINT "SAME":: TAB 12: PRINT "RETURNS TO PATTERN AREA"
TAB 12: PRINT "WITHOUT DESTROYING THE"

TAB 12: PRINT "CURRENT PATTERN."

PRINT

TAB 2: PRINT "HELP";: TAB 12: PRINT "DISPLAYS TiIS MESSAGE."
PRINT : TAB 2: PRINT " TO QUIT, TYPE ANY OF TE FOLLOWING:"
TAB 2: PRINT " 'QUIT','Q','STOP','BYE', OR 'EXIT'"
GOSUB WAIT

RETURN

REM WAIT SUBROUTINE

REM

POKE CLR,0

KEY= PEEK (KBD): IF KEY<128 T4EN 3010

POKE CLR, O

IF KEY# ASC("Q") THEN RETURN

TEXT : CALL -936: END

TEXT : CALL -936

KBD=-16384:CLR=-16368:WAIT=3000

FOR I=0 TO 7:PTTERN(I)=BITS(1)=0: NEXT I

INPUT "HEIGIT OF PATTERNS " ,HEIGHT

IF HEIGIT<9 THEN GOTO 10013

HEIGIT=8: VTAB 23: PRINT "DEFAULTING TO YEIGHT = 8 ":
TAB 1: VTAB 3

INPUT "WIDT OF PATTERNS ",WIDTH

IF WIDT<9 T4EN GOTO 10018

WIDTH=8: VTAB 23: PRINT "DEFAULTING TO WIDTY = 8 "
TAB 1l: VTAB 5

INPUT "TABLE ADDRESS IN DECIMAL “,ADDR

CALL -958

RETURN

146 Graphics

Part 3

Now I'll discuss the use of the machine-language driver program and the pattern-
maker program in the creation of ‘‘animations’’ for the low-resolution screen. The
major example considered is a program for converting the lo-res screen into a ter-
minal that displays ‘‘giant’’ letters and other patterns. (Note: the information
displayed is not passed on as commands to BASIC, although with some effort that
could be accomplished.)

Giant Letters — The Patterns

The first step in creating any Apple Bits application is to design a set of pat-
terns. In this case, the patterns will be letters and other characters that can be
plotted on the screen when their associated keys are struck. The pattern size that
works with the Integer BASIC program presented is 5 x 7. By suitable modifica-
tions to that program (left as an exercise to the reader), other character pattern
sizes can be used as well.

To design your character set, run the pattern-maker program. Following the
instructions given in Part 2, create patterns for each character on the Apple
keyboard. You can also create patterns for keys which do not produce displayable
graphics (control keys). The pattern maker will accept control keys as well as nor-
mal keys. For example, for the keys "'A,’" 2, and "' G'' (Control-G), you might
use the following:

When you are satisfied with your results, stop the pattern maker by typing
"'Q'" or ""QUIT" and then BSAVE your patterns. This takes a little calculating.
Suppose your pattern table was started at location 3072 (decimal, or $CO0 hex)
and the patterns are, of course, 5 x 7 in size. To store the patterns for the
characters Control-A through Z, you would consume 5 x 96, or 480 bytes. Thus,

BSAVE LETTERS,A3072,L480
would do. I normally just reserve all the space from $CO00 to $FFF for patterns; that
is more than enough, even for 96 patterns of 8 x 8 characters. I simply use the

command:

BSAVE LETTERS,A$C00,L$3FF

3

3

Vile Apple Bits 147

Once you have created your patterns, the program to ‘‘drive’’ the screen is shown
in listing 1. Don’t forget to set LOMEM:

> LOMEM: 4096

There are some generally useful points to note in this program. You may be
able to make use of them in other programs of your own.

In lines 10 and 15:
10 GR : POKE —16302,0 : COLOR=0
15 FOR =40 TO 47 : HLIN 0,39 AT | : NEXT |

The POKE statement selects FULL SCREEN graphics. This causes any infor-
mation already displayed on the bottom four lines of the screen to suddenly
change to living color.’’ Line 15 blackens the bottom four lines again.

In line 12:
12 POKE 32,0 : POKE 33,40 : POKE 34,0 : POKE 35,24

These statements set the ‘'text window'’ back to the full screen. But why do
that? This is a graphics program, but it is also a text program as well: the letters are
just a bit larger than usual! So when your screen fills with maxi-alphabetics, how
do you make room for more? Scroll! Look at line 60:

60 FORJ=1TO 4 :CALL —912 : COLOR=0: HLIN 0,39 AT 47 : NEXT J

The routine at —912 is the normal monitor routine for text scrolling. It uses the
settings of the window variables in locations 32 - 35 to determine what portion of
the screen to scroll. The GR statement sets these variables so that only the bottom
four lines will scroll. Our POKEs in line 12 have fooled the monitor into thinking
that the whole screen should be scrolled. The Apple will then scroll the graphics
display, without a whimper. Since the lines which appear at the bottom during the
scrolling process will be WHITE, we use the HLIN statement to re-blacken them.

If you study the listing further, you will discover that the left and right arrow
keys will function in a manner similar to their normal text interpretation. In addi-
tion, the ENTER key will cause the display to proceed to the beginning of the next
""line.”” The ESC key functions as a '‘Clear Screen’’ key. It also causes the next
character to appear at the upper left-hand corner of the display. I leave it to you to
dig out the details of these points.

A Random Walk

Listing 2 presents an animation. It causes a little ‘‘man’’ to walk across the
screen from the lower right corner to the upper left corner. The actual path taken
is different each time, consisting of a random pattern of moves to the left and/or up.

148 Graphics

The data for the patterns of program 2 is presented in listing 3.

Computer Choo-Choo

Listing 4 moves a locomotive across the screen from right to left. The train
gives off ‘'smoke’’ as it goes and periodically toots its whistle. The whistle is pro-
duced by calling a routine in the Apple Programmer’s Aid ROM. If you do not have
this installed in your Apple, you will have to locate and remove the CALL
statements in the program. They could be replaced by CALLs to your own tone-
producing routine.

The data for the locomotive program is presented in listing 5.
Notes on Implementing Animations

In both the random walk program and the locomotive program, only a small
number of patterns was needed. Notice that the pattern selected for display by the
programs at any given time is specified by a small positive number. For example,
examine lines 535 to 540 of listing 2. The patterns are associated with these
numbers because of the pattern-maker program. The control keys correspond to
numbers 1 through 26. Thus, when you use the pattern maker to create a set of
patterns and record a particular one using, say, Control-E, then that pattern
becomes the 5th pattern in the table.

To set up the address of this pattern (so the machine-language driver knows
which one to display], the statements in lines 536 and 537 of listing 2 would be
used. These are similar to the statements appearing in lines 60 and 65 of the
Fireworks Animation presented in Part 1.

Let's review the general form of the set-up instructions:

POKE 60, (TABLE + OFFSET)MOD 256
POKE 61,(TABLE + OFFSET)/256

where,

TABLE — represents the address in Apple II RAM of the very beginning of the
Pattern Table. In all of our examples this has been 3072, decimal.
However, it could be other values as well.

Note: The numbering of the entries in the table actually begins at 0. The Oth entry
is inaccessible, since the pattern maker cannot accept a key whose character code
is 0. Also, the entry in the table which corresponds to the Control-C key (number
3) will always contain ‘‘garbage.’’ This is the reason for the IF test in line 535 of
listing 2.

'3 3y 3 1}

.

)

o

T

Vile Apple Bits 149

OFFSET —represents the distance (in bytes) from the beginning of the pattern
table at which a given pattern may be found. This offset may be calcu-
lated using the formula:

OFFSET = WIDTH * KEY
where,

WIDTH — is the width of the patterns in the table.

KEY — is the number of the pattern you wish to retrieve.

150 Graphics

Listing 1

o REM Jede e dededededededede dededede dededod e deodedr ek ke ok
1 REM *

2 REM * LARGE DRIVER *
3 REM * R. C. VILE *
4 REM * *
5 REM * COPYRIGHT (C) 1982 *
6 REM * MICRO INK, INC. *
7 REM * CHELMSFORD, MA. 01824 *
8 REM * ALL RIGHTS RESERVED *
9 REM 22T S22 22222 2 2 2 2)

12 GOSUB 1000
15 FOR I=40 TO 47: YLIN 0,39 AT I: NEXT I
20 ROW=0 :COL=0
22 COLOR= RND (15)+1
25 GOSUB 700
30 POKE 36,COL: POKE 37,ROW
35 POKE 60, (30724+5*K1) MOD 256
40 POKE 61, (3072+5*K1)/256
42 COLOR= RND (15)+1
45 CALL 2058
50 COL=COL+6: IF COL<36 T4EN 25
55 COL=0:ROW=ROW+8: IF ROW<=40 THEN 25
60 FOR J=1 TO 4: CALL -912: COLOR=0: HLIN 0,39 AT 46: 4YLIN 0,39 AT 47:
NEXT J
65 COLOR= RND (15)+1
70 ROW=40:COL=0: GOTO 25
700 KEY= PEEK (KBD): IF KEY<128 THEN 700
705 POKE CLR,O
710 K1=KEY-128
712 IF K1#27 THEN 718
713 COLOR=0: FOR I=0 TO 47: HLIN 0,39 AT I: NEXT I: COLOR= RND (15)+1
715 ROW=0:COL=0: GOTO 700
718 IF K1=13 THEN 785
719 IF Kl=7 THEN 775
720 IF (K1#8 AND K1#21) THEN RETURN
722 IF K1#21 THEN 725
723 K1=32: RETURN
725 COL=COL-6: IF COL>=0 THEN 750
730 COL=30:ROW=ROW-8: IF ROW>=0 T4EN 750
735 ROW=0 :COL=0
750 COLOR=0
755 FOR J=0 TO 7
760 HLIN COL,COL+5 AT ROW+J
765 NEXT J
770 COLOR= RND (15)+1: GOTO 700
775 PRINT "";: RETURN
785 ROW=ROW+8: IF ROW>=48 TYEN 790
787 COL=0: GOTO 700
790 COLOR=0
792 FOR J=1 TO 4: CALL -912
793 HLIN 0,39 AT 46: HLIN 0,39 AT 47
794 NEXT J
799 ROW=40:COL=0: COLOR= RND (15)+1: GOTO 700
1000 KBD=-16384:CLR=-16368
1009 POKE 2048,5: POKE 2049,7
1010 GR : POKE -16302,0: COLOR=0
1015 POKE 32,0: POKE 33,40: POKE 34,0: POKE 35,24
1016 RETURN

VWONOUNHL WO

536
537
540
545
555
560
562
570
600
610

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

FOR I=40 TO 47: HLIN 0,39 AT I: NEXT I

Listing 2

LA A AR 2 R s 222 22222222222 22

* % % * * * #

*

RANDOM WALK
R. C. VILE

COPYRIGIT (C) 1982
INC.
MA. 01824
ALL RIGITS RESERVED
L R R R Rt

MOVE=500: GR : POKE -16302,0: COLOR=0

MICRO INK,
CHELMSFORD,

POKE 2048,8: POKE 2049,8

POKE 36, RND (32): POKE 37,
COLOR= RND (15)+1

D= RND (2)

IF D#0 TMEN
DX=0:DY=-1:
IF D#1 THEN
DX=-1:DY=0:
IF D#2 TYEN

55
GOSUB MOVE: GOTO 35
65
GOSUB MOVE: GOTO 35
75

* % * * ¥ * *

*

RND (40)

DX=1:DY=0: GOSUB MOVE: GOTO 35
DX=-1:DY=0: GOSUB MOVE:
COL= PEEK (36):ROW= PEEK (37)

COL=COL+DX:

ROW=ROW+DY:

POKE
KEY=
POKE
POKE
CALL

GOTO 35

36,COL: POKE 37,ROW
RND (5)+1: IF KEY=3 THEN 535
61, (3072+8*KEY) /256
60, (3072+8*KEY) MOD 256

2058

FOR TIME=1 TO 25: NEXT TIME
COLOR=0

HLIN COL,COL+7 AT ROW+7
VLIN ROW,ROW+7 AT COL+7

RETURN
COLOR=0: FOR I=0 TO 7: HLIN COL,COL+7 AT ROW+I: NEXT I
RETURN

Vile

Apple Bits

IF COL<32 THEN 510: GOSUB 600:COL=0
IF COL>0 THEN 515: GOSUB 600:COL=32
IF ROW<40 THEN 520: GOSUB 600:ROW=0
IF ROW>0 THEN 530: GOSUB 600:ROW=40

151

0C00-
0cos-
0C10-
0c18-
0C20-
0c28-
0C30-
0C38-
0C40-
0Cc48-
0C50-
0C58-
0C60-
0Cé68-
0C70-
0c78-
*

Listing 3

FF
48

FF
2B
4B
41
CcB
88
08
78
48
7F
68
77
49
18
41
1c

15
3F
3F
5D
3F
6B
1C
40
7F
59
49
41
7F
1C
7F
3E

1F
4B
2B
41
6B
1F
2A
6C
09
49
7F
77
22
18
3E
7F

7E
88
48
77
cs
2B
49
64
OF
6B
7F
41
55
10
1C
08

c
10
84
78
04
cc
08
7c
F
49
49
77
49

08
1cC

78

00
3C
on
80

64
41
4D
7F
7P
55
63
00
3E

152

VONOVNHE WO

10

11
15

32

33

35

40

50

55
500
505
510
515
530
535
536
537
540
542
545
550
555
560
562
570
600
610
700

705
710
800
810
815
818
820
830
840

Graphics
Listing 4
REM Ak hkhkhhhhhkhhhhrhhhhhddd
REM * *
REM * LOCOMOTIVE *
REM * R. C. VILE *
REM * *
REM * COPYRIGYT (C) 1982 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA. 01824 *

REM * ALL RIGH
REM **aatddadras

TS RESERVED *
AEERRRRRRRRR R RS

MUSIC=-10473: POKE 767,40: POKE 766,30: POKE 765, 32:MOVE=500:SMOKE=

22
GR : POKE -16302

+0: COLOR=0

FOR I=40 TO 47: HLIN 0,39 AT I: NEXT I
POKE 2048,8: POKE 2049,8
POKE 36,20: POKE 37,24

CC= RND (15)+1
COLOR=CC
D=1

DX=-1:DY=0: GOSUB MOVE

GOTO 35

COL= PEEK (36):ROW= PEEK (37)
COL=COL+DX: IF COL<32 THEN 510: GOSUB 600:COL=0

IF COL>0 THEN 51
REM

POKE 36,COL: POK
KEY=1

5: GOSUB 600:COL=32:CC= RND (15)+1

E 37,ROW

POKE 61, (3072+8*KEY) /256
POKE 60, (3072+8*KEY) MOD 256

CALL 2058
GOSUB 800

FOR TIME=1 TO 25
IF RND (25)=0 T4
COLOR=0

HLIN COL,COL+7 A
VLIN ROW,ROW+7 A
RETURN

COLOR=0: FOR I=0
RETURN

CALL MUSIC: REM

MER'S AID ROM

: NEXT TIME
EN GOSUB 700

T ROW+7
T COL+7

TO 7: HLIN COL,COL+7 AT ROW+I: NEXT I

*****REPLACE WITY RETURN IF YOU DN NOT HAVE THE PROGRAM

POKE 766,100: FOR I=1 TO 50: NEXT I

CALL MUSIC: POKE
PLOT COL+1,SMOKE
COLOR=0: PLOT CO
IF SMOKE=22 THEN

766,30: RETURN

L+2,SMOKE+1
PLOT COL+2,1

IF COL=32 THEN PLOT 2,SMOKE+l

SMOKE=SMOKE -1

IF SMOKE=0 THEN SMOKE=22

RETURN

Listing 5

0C00- FF FF FF 15 1F 7E 7C 78
0C08- FC BF FC 3C FF B9 F9 1F
0C10- 7D FD FO 78 70 FE F2 3E
0C18- 48 77 41 5D 41 77 78 3C
*

3

33

3

fiz)

Numerical Data for Fireworks

0C00- FF
0Co8- 00
0Cl0- 14
0C18- 00
0C20- 00
0C28- 00
0C30- 00
0C38- 00
0C40- 22
0C48- 14
0C50- 08
0Cc58- 08
0C60- 08
0ceé8- 08
0C70- 00
0c78- 08
0Cc80- 08
ocss- 77
0C90- 08
0C98- 12
0OCAO- 15
OCA8- 0A
0CBO- 00
0CB8- 0A
0CCO- FF
0ccs8- 0A
0Ccpo- 15
0oCcD8- 1F
OCEO- 1F
OCE8- 02
OCFO- 1F
OCF8- 1A
0D00- 10
0D08- 1B
0D10- 13
oD18- 11
0D20- FF
*

FF
00
00
00
00
00
41
22
14
08
00
00
00
00
08
00
3E
08
08
11
09
15
10
oa
FF
1F
11
04
1F
1F
05
17
1F
04
FF
1F
FF

FF
08
14
22
41
00
22
14
00
14
00
00
08
00

15
00
00
00
on
22
00
08
14
22
00
00
00
08
36
00
08
08
12
oA
15
17
00
FF
1F
11
05
11
19
OE
1F
1D
10
03
FF
FF
FF

1F
00
00
41
00
14
on
14
22
41
00
08
00
1C
08

15
00
00
00
14
0n
00
22
41
00
00
00
41
o8
08
08
08
08
10
1F
19
1F
FF
01
1F
11
1F
11
10
1F
17
1F
1F
03
FF
FF
FF

F5
00
22
00
08
14
22
00
41
00
08
22
00
00
00
00
08
08
19
04
05
00
FF
15
1F
(o4
11
18
10
11
1F
01
08
19
FF
FF
FF

00
00
00
on
14
22
41
41
22
00
14
00
00
00
08
08
08
7F
15
17
03
oa
oA
07
15
1F
19
11
1F
1F
05
1F
1F
15
00
FF
FF

Vile

Apple Bits

153

5

TUTORIAL/REFERENCE

Apple Byte Table 157
Kim G. Woodward

How Microsoft BASIC Works 164
Greg Paris

Tutorial/Reference

Any computer can be made easier to program and use if there is information
available that explains how it works, or concise and complete documentation. We
had these points in mind when we prepared this chapter.

‘‘Apple Byte Table’’ by Kim Woodward is a handy reference to byte-values
within your system. If you ever need to read a monitor dump, this table will help
you decipher the meaning of all those hexadecimal codes. You'll want to keep this
table around for other duties, such as converting hex to decimal, or hex to binary.

‘'How Microsoft BASIC Works'' by Greg Paris explains how the various ver-
sions of Microsoft BASIC deal with variable storage. With this knowledge you are
able to make a BASIC program more efficient through wise use of variables, or
pass variables to assembly language subroutines, etc.

_

0 I |

3

3

3

Apple Byte Table

by Kim G. Woodward

This useful reference table will simplify the task of
decoding byte-values in the Apple’s memory. For all
numerical values, hex or decimal, each possible
meaning is listed, ranging from ASCII to Applesoft
token. If you ever tackle a hex dump, the Apple byte
table will prove invaluable.

If you look at a single byte in the Apple or any other 8-bit microcomputer, it will
mean different things at different times. Data and instructions are represented in
the same manner in the computer: one byte may be data, an address, a token, or a
command. I have put together a simple table which will be helpful no matter what
the relationship is between the byte and your software. (Columns F, G, H, and I
will be especially useful to the Apple owner.) The table is composed of 10 col-
umns which represent:

A.

B.

The equivalent decimal value of the byte (assuming the byte is not signed).

The equivalent hex value of the byte.

. The equivalent binary value of the byte (very useful for assembly language

masking).

. The value of the byte if it is looked at as the high byte of an address.

The corresponding ASCII character for the byte (if there is one).

The equivalent displayed screen character. (I-Inverse, F-Flashing, N-Normal.)

. The equivalent key to be pressed to get the byte. (If there is one, note all keys

> $7F. C after character means CTRL key held down.)

158 Tutorial/Reference

H. The corresponding Integer BASIC token for the byte. The Integer BASIC
tokens can be found by keying:

> CALL -155 Go to monitor

* CA:00 10 Set program start

* 4C:14 10 Set program end

* 1000:13 Set length byte

* 1001:0A 00 Set line number

* 1003: 16 bytes of your choice
* 1013:01 End of line token

* Return via CTRL-C
>LIST

I The corresponding Applesoft BASIC token for the byte. The Applesoft tokens
can be found by keying:

CALL -155 Go to monitor
* 67:01 08 Set program start
* AF:16 08 Set program end
* 801:16 08 Pointer to next line
* 803:0A 00 Set line number
* 805: 16 bytes of your choice
* 815:00 End of line token
* 816:00 00 00 End of program pointer
* 0G Back to BASIC
LIST

J. The corresponding 6502 machine language opcode.

Let’s note some of the subtleties in the table’s usage. First of all, if a particular
pattern for a mask operation is needed, then it is a simple matter of looking down
the table until the correct binary (column 3) pattern is found. Then on the same
line, read the decimal equivalent for a POKE command, or the hex equivalent for
assembly language use. In a similar manner you can do the following:

A. Decimal to hexadecimal conversion — scan the table in column 4 to find the
highest number not exceeding the decimal number. If the number is negative
(such as addresses in Integer BASIC larger than 32767), add 65536 before the
conversion. Write down the hex value and subtract the decimal number just
found. Then find the decimal remainder in the table and write down the hex
value for it. The first hex value is the high byte and the second is the low byte.
For example, find the hex equivalent of —936 (clear].

-936 + 65536 = 64600 : the number to find. Find 64512 ($FC) : highest
number less than 64600 -64512 = 88 : find difference. Find 88 ($58) : re-
mainder. Value of —936 decimal is $FC58.

b

N

-3

Woodward Byte Table 159

B. Hexadecimal to decimal conversion — separate the hex number into two
bytes. Scan the table for the value of the high order byte in column 4. Then
scan the table for the value of the low order byte in column 1, add the two
numbers together and get the result. For negative addresses (> $7FFF) simply
subtract 65536 from the number.

C. Relative addressing — the formula for relative addressing on the 6502 is: ad-
dress of branch to address - address of branch inst. - 2. For example, to branch
from location $345 to $313 you could find the decimal equivalent of $345 as per
(A) above, 837, and of $313, 787. Thus 787 -837 - 2 is —52. Add 256 to — 52 giv-
ing 204. Look up 204 in the table as $CC. $CC is then the relative address offset.

Columns F and G in the table can be found in the Apple Reference Handbook
by Apple Computer, Inc.

160

Dec

001
002
003

007

009
010
011
012
013

059
060
061
062
063
064

Tutorial /Reference

-
x

ases8

RRERE838BIRGR

Binary

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111
00010000
00010001
60010010
00010011
00010100
00010101
00010110
00010111
00011000
00011001
00011010
0011011
00011100
00011101
00011110
00011111
00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010

00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111
01000000

The Apple Byte Table

High

[}
256
512
768
1024
1280
1536
1792
2048
2304
2560
2816
3072
3328
3584
3840
4096
4352
4608
4864
5120
$376
5632
5888
6144
6400
6656
6912
7168
7424
7680
7936
8192
8448
8704
8960
9216
9472
9728

10240
10496
10752
11008
11264
11520
11776
12032
12288
12544
12800

13056
13312
13568
13824
14080
14336
14592
14848
15104
15360
15616
15872
16128
16384

Asc

NUL
SOH
sTX
ETX
EOT

4w~ o ROn .-

).

QUVHA==QgDNCADPU N=ON"

Sc

el
Al
BI
C1
DI
El
FI1
61
HI
11
JI
KI
LI
NI
NI
o1
PI
*)
RI
Ss1
TI
ur
vI
[}
X1
Y1
21
[
\1

Ky

HIMEM:
EOS

-

s
LOAD
SAVE

PDL
RNDX
(

NOT

LEN(
ASC (
8CRN(

Aps Bs

STX
ETX
EOT

tw—w~ s 2Res

BVVRA==QBNCARDPU N=ON"

ORAIX

ORAZ
ASLZ

PHP
ORAIM
ASLA

ORA
ASL

BPL
ORALY

ORAZX
ASLZX

CcLC
ORAY

ORAX
ASLX

JSR
ANDIX

BITZ
ANDZ
ROLZ

PLP
ANDIM
ROLA

BIT
AND
ROL

BMI
ANDIY

ANDZX
ROLZX

SEC
ANDY

ANDX
ROLX

RTI

3

Woodward Byte Table 161

Dec Hx Binary High Asc Sc Ky Int Bs Aps Bs 6502
065 41 01000001 16640 A AF] A EORIX
066 42 01000010 16896 B BF (B

067 43 01000011 17152 C CF , [

068 44 01000100 17408 D DF , D

069 45 01000101 17664 E EF 3 E EORZ
070 46 01000110 17920 F FF] F LSRZ
071 47 01000111 18176 G GF 3 [c]

072 48 01001000 18432 H HF . H PHA
073 49 01001001 18688 1 IF , I EORIM
074 4A 01001010 18944 J JF . J LSRA
075 4B 01001011 19200 K KF TEXT K

076 4C 01001100 19456 L LF GR L JMP
077 4D 01001101 19712 M MF CALL M EOR
078 4E 01001110 19968 N NF DIM N LSR
079 4F 01001111 20224 O oF DIM 0

080 50 01010000 20480 P PF TAR P BVC
081 51 01010001 20736 @ QF END Q EORIY
082 S2 01010010 20992 R RF INPUT R

08X S3 01010011 21248 S SF INPUT]

084 5S4 01010100 21504 T TF INPUT T

085 S5 01010101 21760 U UF FOR u EORZX
086 S6 01010110 22016 V VF = v LSRZX
087 57 01010111 22272 W WF TO W

088 S8 01011000 22528 X XF STEP X cLI
089 S9 01011001 22784 Y YF NEXT Y EORY
090 SA 01011010 23040 Z ZF . z

091 SR 01011011 23296 [CF RETURN [

092 SC 01011100 23552 \ \F GOSUB \

093 SD 01011101 23808] aF REM] EORX
094 SE 01011110 24064 ~ ~F LET ~ LSRX
095 SF 01011111 24320 - _F GOTO -

096 60 01100000 24576 ’ F IF RTS
097 61 01100001 24832 a 'F PRINT ADCIX
098 62 01100010 25088 b “F PRINT

099 63 01100011 25344 ¢ #F PRINT

100 64 01100100 25600 d $F POKE

101 65 01100101 25856 e %F R ADCZ
102 &6 01100110 26112 § &F COLOR= RORZ
103 67 01100111 26368 g °F PLOT

104 68 01101000 26624 h (F N PLA
105 69 01101001 26880 i)F HLIN ADCIM
106 &A 01101010 27136 *F s RORA
107 6B 01101011 27392 &k +F AT

108 &C 01101100 27648 1 oF VLIN JMPI
109 &D 01101101 27904 @ -F N ADC
110 &4E 01101110 28160 n .F AT ROR
111 &F 01101111 28416 o /F VTAB

112 70 011100600 28672 P OF = BVS
113 71 01110001 28928 q 1F = ADCIY
114 72 01110010 29184 r 2F)

115 73 01110011 29440 s 3F)

116 74 01110100 29696 t 4F LIST

117 75 01110101 29952 u SF . ADCZX
118 76 01110110 J0208 v &F LIST RORZX
119 77 01110111 30464 w 7F POP

120 78 01111000 30720 x 8F NODSP SEI
121 79 01111001 30976 vy 9F NODSF ADCY
122 7A 01111010 31232 2 iF NOTRACE

123 7B 01111011 31488 § 3 F DSP

124 7C 01111100 31744 ' <FF DSP

125 7D 01111101 3JI2000)} = TRACE ADCX
126 7€ 01111110 32256 ~ >F PR# RORX
127 7F 01111111 32512 RUR ?F ING

128 80 10000000 32768 &N NUL END

129 81 10000001 33024 AN AC SOH FOR STAIX
130 82 10000010 33280 BN BC STX NEXT

131 83 10000011 33536 CN CC ETX DATA

132 84 10000100 33792 DN DC EOT INPUT sTYZ
133 85 10000101 34048 EN EC ENQ DEL STAZ
134 86 10000110 34304 FN FC ACK DIM STXZ

135 a7 10000111 343560 GN GC BEL READ

162

Dec

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201

202
203
204
209
206
207
208

Tutorial/Reference

Hx Binary High
88 10001000 34816
89 10001001 3%072
8A 10001010 35328
8B 10001011 35584
8C 10001100 35840
8D 10001101 346096
8E 10001110 36352
8F 10001111 36408
90 10010000 36864
91 10010001 37120
92 10010010 37376
93 10010011 37632
94 10010100 37888
95 10010101 38144
96 10010110 38400
97 10010111 38656
98 10011000 38912
99 10011001 39168
9A 10011010 39424
9B 10011011 39680
9C 10011100 39936
9D 10011101 40192
9E 10011110 40448
9F 10011111 40704
A0 10100000 40960
A1 10100001 41216
A2 10100010 41472
A3 10100011 41728
A4 10100100 41984
AS 10100101 42240
A6 10100110 42496
A7 10100111 42752
AB 10101000 43008
A9 10101001 43264
AA 10101010 43520
AR 10101011 43776
AC 10101100 44032
AD 10101101 44288
AE 10101110 44544
AF 10101111 44800
BO 10110000 45056
Bl 10110001 45312
B2 10110010 45568
BI 10110011 45824
BA 101101000 46080
BS 10110101 46336
B6 10110110 86592
B7 10110111 44848
B8 10111000 47104
B? 10111001 47360
BA 10111010 47616
BB 10111011 47872
BC 10111100 48128
BD 10111101 48384
BE 10111110 48640
BF 10111111 48896
CO 11000000 49152
C1 11000001 49408
C2 11000010 49664
C3 11000011 49920
C4 11000100 S0176
€S 11000101 S0432
C6 11000110 50688
C7 11000111 S0944
C8 11001000 S1200
C9 11001001 51456
CA 11001010 S1712
CB 11001011 51968
CC 11001100 52224
CD 11001101 52480
CE 11001110 52736
CF 11001111 52992
DO 11010000 53248

Asc

Ky

HC
1C
Jc
KC
Lc
MC

ac
PC

RC
sC
TC
uc

xc
YC
4o
ESC

MCU

+ T~ R ='-%
(3]

| e

VOZIFXU~IONMMOODDEOIVHEA==QAONCHDUNRO N

Int Bs

BS
HT

vT
FF
CR
S0
sI
DLE

DC2
DC3
DCa

SYN

+H~~ R0

VOZIFXU~IOMMOODDOEIVHAS=JONOCUDUNSO N

Aps Bs

GR
TEXT
PR#
IN#®
CALL
PLOT
HLIN
VLIN
HGR2
HGR
HCOLOR=
HPLOT
DRAW
XDRAW
HTAR
HOME
ROT=
SCALE=
SHLOAD
TRACE
NOTRACE
NORMAL
INVERSE
FLASH
COLOR=
POP
VTAB
HIMEM:
LOMEM:
ONERR
RESUME
RECALL
STORE
SPEED=
LET
GOTO
RUN

IF
RESTORE
&
80SuUB
RETURN
REM
STOP
ON
WAIT
LOAD
SAVE
DEF
POKE
PRINT
CONT
LIST
CLEAR
GET
NEW
TAB(
70

FN
SPC(
THEN
AT

NOT
STEP

+

6502
DEY

XA

STY
STA
STX

BCC
STAIY

STYZX
STAZX
sTXZY

TYA
STAY
TXS

STAX

LDYIM
LDAIX
LDXIM

LDYZ
LDAZ
LDXZ

TAY
LDAIM
TAX

LDY
LDA
LDX

BCS
LDAIY

LDYZX
LDAZX
LDXzy

CLv
LDAY
TSX

LDYX
LDAX
LDXY

CPYIM
CMPIX

CPYZ
CMPZ
DECZ

INY
CMPIM
DEX

CPY
CMP
DEC

3

4

]

Dec

209
210
211
212
21X
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
2335
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
235

Hx

D1
D2
D3
D4
DS
D&
D7
D8
D9
DA
DB
DC
DD
DE
DF
EO
E1l
E2
E3
E4
ES
E6
E7
E8
E9
EA

EC
ED
EE
EF
2]
F1
F2
F3
Fa
F5
Fo
F7
F8
Fo
FA
FB
FC
FD
FE
FF

Binary

11010001
11010010
11010011
11010100
11010101
11010110
11010111
11011000
11011001
11011010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
1111100t
11111010
11111011
11111100
11111101
11111110
11111111

High

33504
53760
54016
54272
54528
54784
55040
55296
55552
55808
56064
56320
56576
56832
57088
57344
37600
57856
58112
58368
58624
58880
59136
39392
59648
39904
60160
60416
60672
60928
61184
61440
61696
61952
62208
62464
62720
62976
63232
63488
63744
64000
64256
64312
64768
63024
65280

Asc

Sc

N
RN
SN
™
UN
VN
WN
XN
YN
N
CN
\N
N
~N
-N

'N
“N
#N
SN
BN
&N
’N
(N
N
N
+N
N
=N
N
/N
ON
iN

3N
4N
SN

7N
8N
9N
N
sN
<N
=N

Ky

N<XECCHNDO

MCU

Int Bs

yH/MN<xE<CCAHODD

Woodward

Byte Table
Aps Bs 6502
< CMPIY
SGN
INT
ABS
USR CMPZX
FRE DECZX
SCRN (
PDL cLD
POS CMPY
SGR
RND
LOG
EXP cMPX
cos DECX
SIN
TAN CPXIM
ATN SBCIX
PEEK
LEN
STRs CPXZ
VAL SBCZ
ASC INCZ
CHR¢
LEFTS INX
RIGHTS 8BCIM
MID$ NOP
SYNTAX CPX
RWO GSB SBC
OUT DTA INC
ILL GNT
OVERFLW BEQ
OUT MEM SBCIY
UNF STM
BD SURS
RDM ARY
DIV ZER SBCZX
ILL DIR INCZX
TYP MIS
STR LNG SED
FRM CPX SBCY
CANTCNT
UNDFNC
ERROR
« SBCX
« INCX

(

163

How Microsoft BASIC Works

by Greg Paris

What is a variable? How are variables manipulated?
This article gives the answers to both of these
questions and discusses the similarity of FNx
definitions to variables as well.

All computer languages are, to some extent, symbolic in nature. This means that
addresses, constants, and variables may be used throughout a program and
manipulated by their labels, instead of using absolute or true values. Although the
use of symbols is often merely convenient — as in assembler texts — in many cir-
cumstances the concept permits manipulations which otherwise would be im-
possible. Algebraic variables in BASIC or FORTRAN are just one important case.
For these reasons, how a computer language defines and manipulates symbols is
fundamental to the structure and operation of whatever interfaces between the
user and the opcodes — an interpreter, compiler, etc.

The varieties of symbol types allowed in any language determine, to a great
extent, the power of that language to solve certain programming problems. The in-
herent accuracy of mathematical calculations is another example where the for-
mat of variable storage is critical.

For these reasons, a logical first step in dissecting the operation of the BASIC
interpreter is to find out how it defines its symbols, and how it stores them.

This article is organized as follows. First, I offer a few definitions. This will
level out most readers’ backgrounds, and obviously may be skipped if you know
the jargon. Next I describe the actual formats of both numeric and string variables.
Then I discuss how BASIC uses RAM. Finally, I combine all of the above to
describe variable storage formats, and explain their coding.

Definitions

I caution the more advanced reader that I am not a software development
engineer, and may not use the approved industry-standard terminology.

3

Paris Microsoft 165

Legal Variable Name: The BASIC manual defines a legal variable name to be
“'any alphabetic character, and [it] may be followed by any alphanumeric
character... Any alphanumeric characters after the first two are ignored.’’ In addi-
tion, one cannot embed reserved words into the variable name (A$ and AAAAAAA
are legal variable names; %A is not, and neither is AGOTO).

Variable: To the interpreter, a variable is anything that is not an array (no
joke!). Any time you need to refer to only one number, or one string, or one
whatever, it will be called a variable. For example, X1 is a floating-point (or FP)
variable, X1% is an integer variable, and X1$ is a string variable. They are stored
in different ways internally so the interpreter cannot be confused by these three
identical variable symbols. You may be confused however, so use caution in such
cases.

Array: An array is any group of variables which is referred to by a common
legal variable name, followed by a list of subscripts — also called indices. The
BASIC manual sometimes refers to arrays as '‘matrices.’’ An array may contain
either integer or FP numeric data or strings, but no more than one type per array.
You are, in theory, allowed 255 subscripts; the real restriction is the line length
which limits you to twenty or so. For example, DIM X1(2) allots space for a singly
subscripted FP array, and has room for 3 numbers — X1(0), X1(1}, and X1(2). Fur-
ther, DIM X19%(20) allots space for an array of 21 integer variables, and DIM
X1$(10,3) partitions space for a doubly subscripted array of 44 [(10+1) x (3 +1])]
different strings. (A technical note: if an array is not dimensioned before it is used,
the interpreter will automatically execute a DIM command and thus assign each
subscript the default value of 10.)

Header: 1 define a header as any information about a variable (how it is stored
or referred to) that is stored along with the data to which it refers. For example, if
the interpreter requires information about an array, including its size, how many
subscripts, and the values of those subscripts, then the interpreter will group all
this information, along with the variable name, into a header — the small block of
"data’’ which immediately precedes the real data in the array. A header may be as
short and simple as the 2 bytes of an encoded variable name, or as detailed as the
example just given.

.WOR Address Format: When a 16-bit address is to be stored in an 8-bit
machine, it can be stored first byte (MSB) first, second byte (LSB) second, or in the
reverse order. In assembler notation, the MSB-first arrangement is often referred
to as '".DBY"’ (for ''Double BYte'’), whereas the reversed order — LSB-first — is
called "' WOR'' order (for “WORd'’). Almost all addresses handled by the BASIC
interpreter are stored in .WOR format, including those that may be embedded in
headers.

Numeric Variables

There are two types of numeric data allowed in BASIC: integer and floating-
point (FP). An integer number is stored in two bytes, and can represent any integer
between +32,767 and —32,768. An FP number is stored in 5 bytes (4 bytes on

166 Tutorial/Reference

OSI) and can represent numbers between +1.7x10% and +2.94 x 10-3%, and

zero. This format for FP numbers allows at least 9 decimal digit accuracy at all
times.

Since FP arithmetic as done by the BASIC interpreter is not germane, I will
not detail its function in this article. Suffice it to say that there exists, in zero-page
RAM, temporary storage areas for two FP numbers. The one most used is the
floating-point accumulator (or FPA) and is located at the addresses shown in figure
1-A. The FPA is five to seven bytes long — the second byte of the FPA contains the
sign of the mantissa, which is incorporated into the leftmost bit (MSB) of the
mantissa whenever a number is removed from the FPA. (The use of this bit for the
sign need not confuse you, since in the FPA this bit is defined as being set, unless
the number equals zero. Therefore, if it will always be 1, then it can be ignored
during storage and used for another purpose, namely, to store the sign of the man-
tissa compactly.) In addition, there is a byte (see figure 1-A) which actually ex-
tends the FPA mantissa by 8 bits. It is used internally in all arithmetic operations,
but is rounded off and stripped whenever a variable is removed from the FPA. The
first byte of the FPA is the exponent of the number plus $80. If the number equals
zero, then this byte is zero.

Both types of variables, if referred to before being assigned a specific numeric
value (i.e., if you use a previously undefined variable), will be filled with 0's —
hence, the default value in each case is zero.

Figure 1-A: Locations of Floating-Point Accumulators.

0s1
(BASIC- Old PET New PET
Computer: AIM 65 Applesoft in-ROM) (1.0) (2.0, 4.0)

Length of FPA 6 bytes 7 bytes 5 bytes 6 bytes 6 bytes

Address of FPA $00A9- $009D- $00AC- $00BO- $005E-
$00AE $00A3 $00BO $00B5 $0063

FPA extension $00B8 ($00A3) $00B2 $00B7 $0065

String Variables

The ''value'” of a string variable, and the information stored in a string
variable (or array) in RAM, are two different things. The two items actually stored
in the ‘‘variable'’ or ''array’’ are a pointer (or a list of pointers) in .WOR format to
the start of the string, and the length of the string. The string may be embedded in
a program line, or stored in '‘top free space’’ (high RAM).

If the string is empty ('‘null’’), then the byte for string length is set to zero,
and although it will then be ignored, both bytes of the pointer are zeroed. The size
of any string is limited to 255 characters because a single byte is used to indicate
its length.

3y 3 ¥ 3 3

A

B I |

3 3 3 1

3

3

3

Paris Microsoft 167

User Functions

DEF and FNx are BASIC program statements which allow a user to define a
unique function. Each FNx is labeled by a legal variable name, and this is why I
discuss this statement in an article on variables. As detailed later, the BASIC in-
terpreter stores a reference to each function definition in a complex header, filed
under the variable name which is assigned to it by the user.

How BASIC Uses RAM

A memory map of how BASIC partitions space for its various needs is shown
in figure 1-B. ‘'Top free space’’ may be a new term to some readers. When BASIC
is commanded to operate on strings, it designates an area in unused memory as
work space (from $UNUN to $TTTT - 1), and then stores the result of any opera-
tion in ‘‘top free space’’ (from $TTTT to $NONO - 1}.

Also listed in figure 1-B are the zero-page locations which are reserved by
BASIC to store pointers to various addresses which are used frequently. These
pointers are initialized upon entry into BASIC, and are updated any time the pro-
gram is changed or run. All pointers are stored in .WOR format.

Figure 1-B: BASIC Utility Pointers.

OSI
(BASIC-
Computer: AIM 65 Apple in-ROM) OIld PET New PET
Address of pointer to:
Start of
BASIC program $0073 $0067 $0079 $007A $0028
(address:) ($0212) ($0801) ($0301) ($0402) ($0402)
Start of
variable storage $0075 $0069 $007B $007C $002A
($PPPP)
Start of
array storage $0077 $006B $007D $007E $002C
($RRRR)
Start of
free space $0079 $006D $007F $0080 $002E
($UNUN]

Top (end) of free space $007B $006F $0081 $0082 $0030
($TTTT)

Top of memory $007F $004C $0085 $0086 $0034
($NONO)

168 Tutorial/Reference

How Variable Names are Encoded

BASIC reserves 2 bytes for the variable name (symbol). However, since the
same name could refer either to an integer, FP variable, or a string, it must
distinguish between them. It does this by setting or clearing, in various combina-
tions, the otherwise unused leftmost bit (MSB) of each of the two bytes in the
name. All four possible permutations are used. The interpreter performs this en-
coding during a RUN whenever a new variable name is encountered, and uses the
format described in table 1. If a variable name is only a single character, then the
second character space allotted to it is filled with 0's, except for the MSB, which is
set or cleared as needed.

Storage Formats

Most of the details of variable format and variable name encoding have been
described. All that remains is to put the information together and describe what is
actually found in memory from $PPPP to SUNUN - 1.

Variables are stored together, but separate from the arrays. However, integer
numeric, FP numeric, string, and FNx definition variables are all intermixed.
Arrays are stored in the next higher allocated RAM, and are also intermixed. In
both cases, the jumbled order is actually a function of when they are defined dur-
ing the RUNning of a program. Each variable or array that is interpreted is assigned
a space in the order in which it is encountered, with the variables and the arrays
each shuttled off to their respective spaces.

There is a reason for separating variables from arrays. Each item stored as a
variable takes up exactly 7 bytes. This makes searching for variables very easy, as
the interpreter’s variable pointer need only increment by 7 bytes to look for the
next variable. Since arrays can vary greatly in size, this technique is not appli-
cable, and scanning for individual array entries is somewhat more time consuming.

Table 1: Format for encoding different types of variable names.
If the legal variable name is AC, then:

if the variable is then the symbol is encoded
as these two bytes:

a floating point numeric (no suffix) $41, $43 (MSB each byte clear)
an integer numeric (suffix = %) $C1, $C3 (MSB each byte set)
a string (suffix = §) $41, $C3 (MSB first byte clear,

MSB second byte set)

an FNx definition variable $C1, $43 (MSB first byte set,
MSB second byte clear)

R

Paris Microsoft 169

Each time the program begins RUNning, it executes a CLEAR instruction,
which erases any reference to any variables and arrays which may have previously
been defined. This CLEAR instruction sets the pointers located at $0075, $0077,
and $0079 (on the AIM) to the same value — the address of the last byte of pro-
gram storage, plus one. Similarly, the pointer at $007B (‘'top free space’’) is set to
equal the address in $007F (top usable memory + 1).

The headers for variables and arrays, and the formats in which they are stored
in RAM, are shown in figure 2.

Figure 2: Variable and Array Storage Formats
VARIABLES:
Floating Point Numeric

XX XX 12345

N—)
-

encoded \
variable floating point number in
name storage format

Integer Numeric

XX XX 12 0000 00

— e —

encoded i
variable intege& allotted, but unused and

name number filled with zeros

String Header

—A—
XX XX ## P1 P1 00 00

S
encoded
variable \ numpointer, .WOR format

name of bytes to first byte in string
in string
FNx Header
XX XX P2 P2 P3 P3 QQ first byte of actual
en CNO ded / = definition for this FNx
variable pointer to first byte of FP number
name

used as dummy argument variable
(byte numbered 1 above)

pointer to the first byte of FNx
definition in BASIC program storage

170 Tutorial/Reference

ARRAYS:

Floating Point Numeric

header
N
/ \
XX XX ## ## ## XN XN XM XM ...
e — e v J
encgded \ number of
variable subscripts
name dimensioned five byte
floating point
number
v)
number of bytes in XN XN is the maximum index

for each subscript (including

neludi
array, including header zero): .WOR format

and all subsequent
bytes: .WOR format

two byte integer number
(.DBY storage format)

Integer Numeric

XX XX ## ## ## XN XN XM XM ...,

A’

||II>—-} .
Il

header same as above;
variable name encoded
differently

number of
bytes in

string
String

XX XX ## ## ## XN XN XM XM...)

—V

header same as above;

vgnable name encoded -—

differently two byte pointer
to string: .WOR
format

3 3 13

3

i

e

Paris Microsoft 171

The definition of a header should be clearer now. In both types of numeric
variables, the header is simply the 2 bytes of the encoded variable name. More
complicated arrangements are seen in the FNx header and the various array headers.

Variables: For an FP variable, all 7 bytes are utilized. The last 5 bytes repre-
sent the FP number, in RAM storage form as described above.

An integer variable only uses 4 of the 7 bytes allotted to it. Use of integer
variables in your program therefore wastes some space, but could save time during
interpretation.

The string ‘‘variable’’ has a 5-byte header, made to fill 7 bytes by tacking a
bunch of zeros on the end.

The FNx header is very interesting. It is filed as a variable because it is defined
with a variable name. Any legal variable name may be used as its label. In addi-
tion, any legal variable name may be used as the dummy argument variable, even
one used elsewhere in the program, because before the interpreter evaluates an
FNx statement, it saves the value which was originally stored in the dummy
variable on the stack. If the dummy variable is a new variable, it is automatically
created, allotted 7 bytes of space after the FNx header, and appropriately labeled as
an FP variable. The FNx header is set up whenever a DEF FNx is performed. If this
particular FNx is later redefined, only the original header is changed. The last byte
in the header might not be used by the interpreter; it seems to be there only to
clear the stack completely during the DEF FNx operation.

Arrays: Not only do arrays have longer headers, but they also utilize space
more efficiently. There is no minimum allotment of space, and consequently, no
filler bytes are necessary. FNx arrays are not supported in this version of BASIC.

The headers for each type of array are essentially identical in format and con-
tent. The first two bytes are the encoded array name (see table 1). The next pair of
bytes is a 16-bit number (.WOR format), the total number of bytes in the array.
This includes the header with all its subscripts spelled out, and all the space allot-
ted for the variables or string pointers. The fifth byte represents the number of
subscripts used. The remainder of the header is a list of subscripts — a series of
16-bit numbers in .WOR format, one for each subscript — in an order that is the
REVERSE of the listed order in the DIM statement.

The actual storage format of the array contents is much the same as for a
single variable. Each member of an FP array is allotted five bytes for storage, and
each member of an integer array is allotted two bytes. Therefore, in contrast to an
integer variable, using integer arrays not only saves interpreting time but also a
tremendous amount of space as well. Each entry in a string array is allotted three
bytes, as before.

Within the array, individual members are ordered in straightforward fashion,
but not as simply as you'd expect. Just as in the array header, the individual
members of an array are in a ‘‘reversed’’ ascending sequence. For example, if the

172 Tutorial/Reference

statement DIM A(2,4) has been executed, then the order of members in the array
is A(0,0), A(1,0), A(2,0), A(0,1), A(1,1), A(2,1),..., A(1,4), A(2,4). By analogy, this
can be extended to any number of subscripts.

An example is seen in figure 3. This program is intended only to demonstrate
variable and array assignment. Note that all the pointers — FNQ and strings —
point to the beginning of their respective referents. All the variables are ordered in
the sequence in which they were interpreted; the arrays are similarly arranged in
higher RAM. Note the encoded variable names for each assignment.

Summary

The following conclusions are of interest to anyone wishing to save execution
time and/or memory space. 1) The use of an integer variable is generally a waste,
for two reasons: the integer must be defined by a *'%’’ each time it occurs {at the
cost of 1 byte per occurrance), and, since it takes up 5 bytes anyway, even this
doesn't save space. 2) An integer array really does save space, if it is of sufficient
size. 3) You can save a few bytes, and shorten execution time slightly, by using as
a dummy argument variable one that has already been used in the program. Its ac-
tual value will not be lost during the execution of an FNx.

These storage formats are not specific to one machine, and apply to those ver-
sions of Microsoft BASIC which are used on AIM, SYM, PET, OS], Apple, etc.

Legend for Figure 3

A. Test program in BASIC.
B. Zero page pointers to partitions in RAM (see figure 1-a).
C. Dump of tokenized test program (partial).
Note that D$ is found at $025B, and the definition of FNQ at $0241.

D. Dump of variable and array storage.

Note that the order of space assignment is identical to the discovered order
in the program.

E. Contents of '‘top free space’’, includes ‘value’ of E23, found at $0FF1.

[

A.

10
20
30
40

50
60
70
80
90

B
M

<
<
<
<
<
<

C

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<M

Paris Microsoft

Figure 3
DIM AA(2),B%(2,3)
AA=2:B%=17
DEF FNQ(X)=X*AA
Cc=5.7207
D$="A STRING"
DIM C(2)
F$=-24
E2$="1IS NOT "+D$
STOP

5>=0073 12 02 BASIC PROGRAM STARTS AT $0212

S 0075 98 02 VARIABLES START AT $0298

> 0077 DO 02 ARRAYS START AT $02DO

> 0079 1D 03 FREE SPACE STARTS AS $031D
> 007B F1 OF FREE SPACE ENDS AT $0FF1

> 007F 00 10 TOP OF MEMORY IS $1000

>=0212 26 02 NEXT LINE IS AT $0226
> 0214 0A 00 THIS IS LINE 10

> 0216 85 20 'DIM' TOKEN, SPACE

> 0218 41 41 'AA’

> 021A 28 32 ‘' (2'

> 021Cc 29 2¢ '),°

> 021E 42 25 'B%’'

> 0220 28 32 '(2'

> 0222 2¢ 33 ',3'

> 0224 29 00 ')', END OF LINE

> 0226 35 02 NEXT LINE IS AT $0235

> 0228 14 © THIS IS LINE 20
> 022A 41 41 'AA’
> 022C AC 32 '=' TOKEN, '2'

> 022E 3A 42 ':B'

> 0230 25 AC 's', '=' TOKEN

> 0232 31 37 '17'

> 0234 00 END OF LINE

> 0235 46 02 NEXT LINE IS AT $0246
> 0237 1E 00 THIS IS LINE 30

> 0239 95 20 'DEF' TOKEN, SPACE

> 023B 9F 51 'FN' TOKEN, 'Q'

> 023D 28 58 ' (X'

> 023F 29 AC ')', '=' TOKEN

> 0241 58 A6 'X', '*' TOKEN

> 0243 41 41 'AA!'

> 0245 00 END OF LINE

> 0246 53 02 NEXT LINE IS AT $0253
> 0248 28 00 THIS IS LINE 40

> 024A 43 AC 'C', '=' TOKEN

> 024C 35 2E 'S.'

> 024E 37 32 '72'

> 0250 30 37 '07'

> 0252 00 END OF LINE

> 0253 65 02 NEXT LINE IS AT $0265
> 0255 32 00 THIS IS LINE 50

> 0257 44 24 'D$!

> 0259 AC 22 '=' TOKEN, '"'

> 025B 41 20 'A ‘'

> 025D 53 54 'ST'

> 025F 52 49 'RI’

> 0261 4E 47 'NG'

> 0263 22 00 '"', END OF LINE

173

174 Tutorial/Reference

D.
<M>=0298
< > 029A
< > 029C
< > 029E
< > 029F
< > 02Aa1
< > 02A3
< > 02A5
< > 02a6
< > 02A8
< > 02AA
< > 02AC
< > 02AD
< > 02AF
< > 02B1
< > 02B3
< > 02B4
< > 02B6
< > 02B8
< > 02BA
< > 02BB
< > 02BD
< > 02BE
< > 02C0
< > 02C2
< > 02C4
< > 02Cé6
< > 02cs8
< > 0209
< > 02CB
< > 02cc
< > 02CE

> 02D0
> 02D2
> 02D4
> 02D5S
> 02D7

> 02E6
> 02ES8
> 02EA
> 02EB
> 02ED
> 02EF

AAAAAA AAAAA

E.
<M>=0FF1
< > OFF3
< > OFF5
< > OFF7
< > OFF9
< > OFFB
< > OFFD
< > OFFF

49
20
4F
20
20
54
49

41
00
00

80
11
00

00
02
02

00
00
00

00
F9
80

02
00
80
E8
00

B2

OF
00

41
00

03
00

80
00

04
03
00

53
4E
54
41
53
52

FP VARIABLE 'AA'
VALUE IS 2

INTEGER VARIABLE 'B'
VALUE IS 17

FN 'Q'
DEFINED AT $0241
DUMMY VARIABLE VALUE AT $02AF

FP VARIABLE 'X'
VALUE IS 0

FP VARIABLE 'C'
VALUE IS 5.7207

STRING VARIABLE 'D' (D$)
8 BYTES OF DATA
AT $025B

INTEGER VARIABLE 'F' (F%)
VALUE IS -24

STRING VARIABLE '2' (E2%)
15 BYTES OF DATA
AT $0FF1

FP ARRAY 'AA'

USES 22 BYTES

1 SUBSCRIPT

SUBSCRIPT = 2

ARRAY ELEMENTS ARE ALL 0

INTEGER ARRAY 'B' (B%)
USES 33 BYTES
2 SUBSCRIPTS
SUBSCRIPT 2 = 3
SUBSCRIPT 1 = 2
ARRAY ELEMENTS ARE ALL 0

118"
' N!
lolrl
1) Al
' g
ITRI
'IN!
G

6

RECREATION/APPLICATIONS

A Simple Securities Manager 177
Ronald A. Guest

Solar System Simulation 186
Dave Partyka

Othello 196
Chatrles F. Taylor, |r.

Musical Duets 201
Rick Brown

Recreational/Applications

For your entertainment we've included ‘‘Othello’’ by Charles Taylor, Jr., and
"Musical Duets’’ by Rick Brown. Othello is a fascinating board game for two
players that is easy to learn and takes a lifetime to master. Musical Duets is a pro-
grammable music player that, with the help of a cassette recorder, even plays in
stereo. A rendition of ‘‘Blue Bells of Scotland’’ is included.

For enlightenment, there is ‘‘Solar System Simulation’’ by David Partyka,
which displays the motions of the first six planets against a star background. With
this simulation you can see how the sky looked in the past or how it will look in
the future. An advantage the program has over sky and telescope is that it can be
used any time. So, if you ever get the urge to gaze at the stars and planets on a
cloudy day or during lunch hour, get your Apple and gaze away!

When you're not keeping your eyes on shooting stars, maybe you should be
watching the rise and fall of your stocks. ‘’A Simple Securities Manager'’ by
Ronald Guest can help you keep track of dividends paid, appreciation, and the cur-
rent status of your portfolio.

-1

'3

3

A Simple Securities Manager

by Ronald A. Guest

Manage your stocks more carefully in these volatile
times! Use this simple program to record security
transactions, keep track of gains and losses, and
evaluate your holdings at any time.

One of the many uses of a home computer is for record keeping. And one of the
most profitable types of record to keep is security transactions. It has become in-
creasingly more important to have accurate information readily at hand; a small
computer can be a big help.

I have written a program to assist in making decisions about my holdings.
This program runs on a 32K Apple with ROM Applesoft and a Disk II. The output
of the program is heavily oriented toward the standard 24 x 40 Apple display, but
as you will see, it produces adequate results when used with a hardcopy printer.
Three types of reports may be generated, and four types of operations may be per-
formed on the securities data.

The stock manager program is tailored to fit my own needs, and others may
require different reports or formats. I will try to provide sufficient information in
this article to allow the program to be modified easily.

Reports

Three types of reports which may be requested are: a listing of the data in the
current portfolio, a listing of the appreciation in the portfolio, and a (very) rough
estimate of the dividends paid by the portfolio. In all three of the reports, the user
may select that all securities be listed, that all unsold securities be listed, or that
all sold securities be listed.

The LIst report outputs all of the information stored in the disk file for the
selected class of holdings. The information printed includes the first five
characters of the name, the purchase and sale dates, the purchase and sale prices,
the per share dividend, and the number of shares (figure 1). Up to five holdings
may be printed per page, and the totals of the purchase prices and sale prices will

178 Recreation/Applications

be printed on the final page. For an explanation of the meaning of the sale date and
sale price for a security which has not yet been sold, see the paragraphs on adding
an entry and on reading a data file.

The appreciation report lists the dollar and percent gains (losses) for each of
the stocks listed. At the end of the report, the total dollar gain and the percent gain
(loss) based on the purchase price are printed for the holdings selected (figure 2). If
a security was sold 12 or more months after it was purchased, or if the security
was purchased 12 or more months prior to the current date, then the name is
displayed in inverse video indicating that the holding may be eligible for long-
term gain.

A report of the dividends paid for the selected stocks provides an estimate of
the dollar amount paid from the time the security was purchased to the time it
was sold (or the current date if not yet sold). Only the selected securities with
non-zero dividends are listed. The estimate is based on the number of months a
security was held (figure 3). Since most securities pay dividends on specific dates,
holdings which are quickly sold may show a dividend on the report, but have
never been paid out. Since my investment goals are heavily oriented toward
capital appreciation, the discrepancy does not bother me. People with different in-
vestment goals may wish to improve the estimates.

Operations on Data

The stock manager stores information in a sequential text file. A free format
is used which allows each element to vary in length. The first element of the data
file is a count of the number of entries in that file. The remainder of the file con-
tains the entries. A security’s entry, in the order of appearance, is: name, purchase
date, sale date, purchase price, sale price, dividend, and number of shares.

When first run, the stock manager will have no entries, so the first command
to execute is the ADd command. ADd requests the information which will be
stored in the data file. All dates should be entered in the form MMDDYY with no
slashes or other separators. The date must be six characters in length, so each field
must be zero-filled. For instance, February 2, 1979 would be entered as 020279.
When adding an entry for an as yet unsold security, enter a single blank for the
sale date.

After adding all of the entries desired, a WRite command should be performed.
WRite will prompt for a file name, and then output the entries to disk. Before any
reports are generated, a REad command should be executed. The REad will ask for
the file name and then read the data file. After closing the data file, REad will
prompt for the current price of all holdings which have not yet been sold. This
price is then used in generating reports. Note that the price entered should be the
total price, not the per share price.

If an error is made adding an entry, or if a holding is sold, the data may be up-
dated with the CHange command. CHange searches for the given name and then
requests the new information. If a holding is to be deleted, enter an * for the

1

-3

4

Figure 1

Guest Securities Manager

ALI/NCTSCLE/SCIT ALL
PRESS 'RETURE' WHEN REALY
NAMF FLCATF SCATE PPRICE SPRICE TIV

CETRI 21379 082772 1517.3 €875.5 o
200

MBI 060179 2€32.3 5124.3 3.5
10C

PLUMM C31479 C71579 57€6.8 €514.1 0
200

TURKE (52278 €27.3 1159.5 .8
400

4M 120579 879.3 °45.8 1.3
150

TCTALS
PPRICES 11843
SFRICFS 1€619.1
PRESS 'RETURN' WHEN REALY

179

Figure 2

CURRENT DATE (MMIDYY) 0331€C
PLI/NGTSCIT/SCLL ALL
PRFSS 'RETURN' WHFN REALY
NAMFE SGAIN $GAIKN

GETR1 -641.8 -42.3
MEI 2221.95 £0.92
PLUMM 2727.2 47.13
TURKE 332.2 40.15
4M 66.45 7.56

TCTALS SGAIN 4776.1
$CAIN 40

PRESS 'RFTURM' WHEN REATY

Figure 3

CURRENT [ATE (MMLCCYY) 0331€0
ALL/NOTSOLD/SCLLC ALL
PRESS 'RFTURK' WHEN REALY

NAME $GAIN $GAIN
MBI 262.5 9
TURKE 586.€7 71
4N 48.75 €

TOTALS SGAIN 897.92
#GAIN 20

PRESE 'RFTURK' WHEN REALY

180 Recreation/Applications

name. Be sure to do a WRite if the changes are to be permanent. If more than one
entry in a portfolio has the same name (to the 25th character), the month purchased
or some other difference should be introduced to allow a unique search. When the
stock manager is EXited, it asks if the file should be updated. An answer of ‘yes’
will cause a WRite to be performed.

The stock manager was written to allow new commands or data fields to be
added easily. To add a command, choose an unused entry in CMD$ (denoted by
‘XX') and substitute the first two characters of the new command (lines 130-133).
Between lines 330-399, output the command name and description for the menu.
On line 510, change the entry in the GOSUB list corresponding to the index into
CMDS$ to the line number of the new command.

Adding a new data field is just as easy. Simply dimension the new field appro-
priately in lines 100-110. Then add a line in 36240-36280 to input the field, add a
line in 38240-38255 to print the field, and add a line in 40110-40190 to enter the
field into the data area. A list of the major variables and their usage is given in
table 1 and a list of the subroutines is in table 2.

Users without a disk should change the REad routine to use BASIC READ and
DATA statements. The WRite, CHange, and ADd routines can then be deleted
since changes to the entries can be made by retyping the appropriate DATA state-
ment. With these modifications, the program should easily run on a 16K cassette
system (Applesoft in ROM).

See figure 4 for a sample of the displayed menu.

Figure 4 STOCK MANAGER 1.0
BY R.A. CUEST

MENU
ACD HOLLDING
APPRECIATION
CHANGE HCLDING
DIVIDENDS
LIST HOLLINCS
READ DATA FILE
WRITE CATA FILE
EXIT

COMMANL: REAC

FILE NAME TEMP
MBI
CURRENT PRICE 5124.25
TURKE
CURRENT PRICE 1159.50
aM
CURRENT PRICE 945.75

MENU
ACD EOLDING
APPRECIATION
CHANGE HCLDINC
DIVIDENDS
LIST HOLDINGS
REAC CATP FILE
WRITE DATA FILE
EXIT

CCMMPND:

3

3

Guest Securities Manager 181

Table 1: List of Variables.

ANS

CC
CD$
CMD$
COUNT
D$
DG
Dv

F$
INDEX
LINE
MN
NM$
PD$
PP
SD$
SH

SP
TPP
TSP
TV

YR

Indicates what class of stocks to list
All(0) / Notsold(1) / Sold(2)

Index of last entry in CMD$

Current date

Array of two character command names
Number of holdings in current file
Control-D for DOS

Dollar gain

Array of per share dividends

File name containing stocks

Index to stock holdings

Number of lines being displayed
Number of months between sale (or current) date and purchase date
Array of stock names

Array of purchase dates

Array of purchase prices

Array of sale dates (1 blank if not sold)
Array of number of shares

Array of sale prices

Total purchase prices

Total sale prices

Same as TPP

Number of years between sale (or current) date and purchase date

Table 2: Routines and Their Uses

20000-21999 Appreciation Report

24000-25999 Change an Entry

28000-29999 Estimated Dividends Report

32000-33999 List Securities Entries

36000-37999 Read Securities from Disk

38000-39999 Write Securities to Disk

40000-41999 Add a New Entry

50000-50500 Print Header for List of Securities
51000-51500 Wait for Return to be Pressed

52000-52500 Print Header for Appreciation and dividend

182

250
300
310
320
325
330
340
350
360
370
380
390
395
399
400
410
415
420
430
440
500
510

600

Recreation/Applications

REM *odhhdahhhhhhhrthrhhhhhdhd

REM * *
REM * STOCK HOLDINGS MGR *
REM * R. A. GUEST *
REM * *
REM * COPYRIGHT (C) 1982 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
REM * *
REM *hdhkhhkdhhhhbhhhhhhhhhdn
REM

REM

DIM NM$(25),PD$(25),SD$(25),PP(25),SP(25),DV(25)
DIM CMD$(10),S4(25)
REM ** INIT COMMAND STRINGS **
CMD$(0) = "AP":CMD$(1) = "EX":CMD$(2) = "CH"
CMD$(3) = "XX":CMD$(4) = "DI":CMD$(5) = "XX"
CMD$(6) = "LI":CMD$(7) = "XX":CMD$(8) = "RE"
CMD$(9) = "WR":CMD$(10) = "AD"
COUNT = 0
CC = 10: REM LAST COMMAND
D$ = CHRS$ (4)

TEXT : HOME
VTAB 8: HTAB 12

PRINT "STOCK MANAGER 1.0"

VTAB 12: HTAB 13: INVERSE

PRINT "BY R.A. GUEST": NORMAL

FOR I = 1 TO 1000: NEXT I

REM DISPLAY MENU

HOME :T = FRE (0): REM CLEAN UP STRINGS

VTAB 2: HTAB 18

REM ** PRINT COMMANDS **

PRINT "MENU"

VTAB 4: INVERSE : PRINT "ADD";: NORMAL : PRINT " HOLDING"
INVERSE : PRINT "APPRECIATION"

PRINT “CHANGE":;: NORMAL : PRINT " HOLDING"

INVERSE : PRINT "DIVIDENDS": NORMAL

INVERSE : PRINT "LIST";: NORMAL : PRINT " HOLDINGS"
INVERSE : PRINT "READ";: NORMAL : PRINT " DATA FILE"
INVERSE : PRINT "WRITE";: NORMAL : PRINT " DATA FILE"
INVERSE : PRINT “EXIT": NORMAL

VTAB 22: HTAB 10

INPUT "COMMAND: ";YN$

REM ** SEARCH FOR COMMAND **

FOR I = 0 TO CC: IF CMDS$S(I) = LEFT$ (YNS,2) GOTO 500
NEXT

GOTO 400
I=1+1

ON I GOSUB 20000,13000,24000.19000.28000,19000,32000,19000,36000,330
00,40000

GOTO 300

18000 REM ** EXIT **
18020 INPUT "DO YOU NEED TO UPDATE FILE “;YNS$

18040 IF LEFT$ (YNS,1) = "Y' THEN GOSUB 38000: REM CLEAR AND UPDATE

18060 END

19000 REM ** UNIMPLEMENTED **

19040 PRINT "NO SUCH COMMAND"

19060 RETURN

20000 REM CAPITAL GAINS(AP)

20010 REM HOLDINGS >1 YEAR

20020 REM INVERSED FOR LTG

20080 INPUT "CURRENT DATE (MMDDYY) ";CD$

20100 HOME : VTAB 10: HTAB 13

20120 INPUT "ALL/NOTSOLD/SOLD Y3 YNS

20140 ANS = 0: IF LEFTS (YN$,1) = "N" ™EN ANS = 1
20160 IF LEFT$ (YNS,1) = "§" TqEN ANS = 2
20200 REM

20210 INDEX = 0: HOME :LINE = 30:DG = 0:TV = 0
20220 IF INDEX > = COUNT GOTO 20900: REM DONE
20230 IF ANS = 0 GOTO 20300

20240 IF (ANS = 1) AND (SD$S(INDEX) ¢ > " ") GoTo 20540

20250 IF (ANS = 2) AND (SD$S(INDEX) = * *) GoTo 20540
20260 REM ** USE 'ADD' TO ENTER INFOR **
20300 REM OUTPUT HEADER

3

33

Guest Securities Manager

20320 IP LINE > 18 THEN GOSUB 52000

20330 F1 = O0: REM IF NOT SOLD, USE CURRENT DATA

20340 IF SD$(INDEX) = " " THEN Fl1 = 1:SDS(INDEX) = CD$

20349 REM ** CALCULATE YEAR DIFFERENCE **

20350 TP = VAL (RIGHTS (SD$(INDEX),2)) - VAL (RIGITS (PDS$(INDEX),2))
20351 TP = TP * 12: REM CONVERT TO MONTHS

20355 REM ** CALCULATE MONTH DIFFERENCE **

20360 TP = TP + VAL (LEFT$ (SD$(INDEX),2)) - VAL (LEFT$ (PD$(INDEX),2))

20362 REM ** DELETE ENTRY **

20365 IF TP < 12 GOTO 20395

20370 INVERSE : REM LONG TERM GAIN

20395 IF F1 TYEN SD$(INDEX) = " "

20400 PRINT LEFT$ (NM$(INDEX),10);:: NORMAL : HMTAB 12

20410 REM ** CALCULATE DOLLAR GAIN **

20420 TP$ = STR$ (INT ((SP(INDEX) - PP(INDEX)) * 100 + .5) / 100)

20430 IF LEN (TPS$) < 8 T™EN TPS = " " + TP$: GOTO 20430

20440 PRINT TP$:: HTAB 20 :

20450 DG = DG + VAL (TP$): REM TOTAL DOLLAR VALUE

20460 TV = PP(INDEX) + TV: REM TOTAL VALUE

20465 REM ** CALCULATE % GAIN **

20470 TT = (VAL (TP$) / PP(INDEX)) * 100

20480 TT$ = STR$ (INT (TT * 100 + .5) / 100): REM PERCENT GAIN

20490 IF LEN (TT$) < 7 THEN TT$ = " " + TT$: GOTO 20490

20500 PRINT TT$

20520 LINE = LINE + 1

20540 INDEX = INDEX + 1

20560 GOTO 20220: REM DO NEXT ONE

20890 REM ** PRINT TOTALS **

20900 PRINT : PRINT “TOTALS":: UTAB 10: PRINT "$GAIN ";DG

20910 IF TV = 0 GOTO 20940

20920 HTAB 10: PRINT “"$GAIN “;(INT ((DG / TV) * 100 + .5))

20940 PRINT

20960 GOSUB 51000: REM WAIT FOR KEY PRESS

20970 RETURN

24000 REM ** CYANGE/DELETE HOLDING **

24020 REM ** INPUT '*' FOR NAME TO DELETE **

24040 REM ** INPUT A BLANK FOR SALE DATE IF NOT YET SOLD **

24200 INPUT "SEARCH STRING “;TS$

24220 FOR K = 0 TO (COUNT - 1)

24222 IF TS$ = LEFT$ (NM$(K), LEN (TS$)) GOTO 24300

24225 NEXT K

24240 PRINT "NOT FOUND": FOR KK = 1 TO 300: NEXT : RETURN

24300 TP = COUNT:COUNT = K

24302 PRINT NM$(K): PRINT PD$(K): PRINT SD$(K): PRINT PP(K): PRINT SP(K)
: PRINT DV(K): PRINT SH(K)

24320 PRINT "ENTER '*' FOR NAME TO DELETE."

24330 FOR KK = 1 TO 400: NEXT

24340 GOSUB 40100: REM GET FIELDS

24360 IF NM$(K) < > “"*" THEN COUNT = TP: RETURN

24365 COUNT = COUNT - 1

24367 REM ** MOVE REST DOWN IN LIST **

24370 FOR K = COUNT TO TP - 2

24380 K1 = K + 1

24390 NM$(K) = NM$(K1):PD$(K) = PD$(K1l):SD$(K) = SD$(K1l)

24400 PP(K) = PP(K1):SP(K) = PP(K1):DV(K) = DV(K1l):SH(K) = SH(K1)

24420 NEXT

24440 COUNT = TP - 1

24460 RETURN

26000 REM ** CLEAR SALE PRICE OF UNSOLDS **

26100 FOR I = O TO COUNT - 1

26120 IF SD$(I) = " " THEN SP(I) = O

26140 NEXT

26200 RETURN

28000 REM ** ESTIMATE DIVIDEND GAIN **

28020 INPUT "CURRENT DATE (MMDDYY) ";:CD$

28040 HOME : VTAB 10: HTAB 13

28060 INPUT “"ALL/NOTSOLD/SOLD “;YN$

28080 ANS = O: IF LEFT$ (YN$,1) = "N" THEN ANS = 1

28100 IF LEFTS (YNS,1) = "S" THEN ANS = 2

28120 INDEX = O: HOME :LINE = 30:DG = 0:TV = 0

28180 REM ** TEST IF DONE **

28200 IF INDEX > = COUNT THEN 28900

28220 IF ANS = 0 GOTO 28280

28240 IF (ANS = 1) AND (SD$(INDEX) ¢ > " ") GOTO 28620

28260 IF (ANS = 2) AND (SD$(INDEX) = " ") GOTO 28620

183

184

36000
36100
36120
36140
36200
36220
36240
36260
36280
36285
36290
36300
36320
36325
36330
36340
36350
36360
36370
36400
38000
38050
38100
38120
38140
38200
38220
38240
38242
38260
38300
38320
40000
40080
40100
40110
40120
40140
40145
40150
40155
40160
40170
40180
40190
40300
40400
50000
50010
50020
50100
50110
50120
50130
50140
50150
50160
50170
50200
50300
51000
51010
51020
51050
51100
51200
52000
52020
52040
52060
52080
52100
52120
52140
52160
52180

Recreation/Applications

REM ** READ STOCK LISTING FILE **
INPUT "FILE NAME ";F$

PRINT D$;:"OPEN ";F$

PRINT D$;"READ “;F$

INPUT COUNT

FOR I = 0 TO (COUNT - 1)

INPUT NM$(I): INPUT PD$(I): INPUT SDS(I)
INPUT PP(I): INPUT SP(I)

INPUT DV(I): INPUT SH(TI)

REM ** CHYECK FOR NOT SOLD **

IF LEN (SD$(I)) < 6 THEN SD$(I) = " "
NEXT

PRINT D$:"CLOSE “;F$

REM ** GET PRICES FOR STOCKS NOT SOLD **
FOR I = 0 TO (COUNT - 1)

IF SD$(I) < > " " GOTO 36370

PRINT NM$(I)

INPUT "CURRENT PRICE ";SP(I)

NEXT

RETURN

REM ** UPDATE STOCK LISTING FILE **
GOSUB 26000: REM CLEAR NOT SOLD PRICES
INPUT "FILE NAME ";F$

PRINT D$;"OPEN ";F$

PRINT D$; "WRITE ";F$

PRINT COUNT

FOR I = 0 TO (COUNT - 1)

PRINT NMS(I): PRINT PD$(I): PRINT SD$(I)

PRINT PP(I): PRINT SP(I): PRINT DV(I): PRINT SH(T)

NEXT
PRINT D$:"CLOSE ";F$

RETURN

REM ** ADD A HOLDING **

HOME : VTAB 4

INPUT "NAME ";NMS$(COUNT)

PRINT "INPUT DATES IN THE FORM (MMDDYY)"
NM$ (COUNT) = LEFT$ (NM$(COUNT),25)

INPUT "PURCH DATE ":PD$(COUNT):PD$(COUNT) =

PRINT "ENTER A SINGLE BLANK IF NOT SOLD"
INPUT "SALE DATE ";SD$(COUNT):SD$(COUNT)
IF SD$(COUNT) = "" THEN SD$(COUNT) = "
INPUT "PURCH PRICE ";PP(COUNT)

INPUT “SALE PRICE ";SP(COUNT)

INPUT “DIVIDEND/SHARE ";DV(COUNT)

INPUT "SHARES “;SH(COUNT)
COUNT = COUNT + 1

RETURN

REM ** WAIT FOR (CR) THEN **

REM ** OUTPUT HEADING FOR 'LIST' **
REM

GOSUB 51000: HOME

PRINT "NAME “;

PRINT "PDATE ";

PRINT “SDATE ";

PRINT "PPRICE ";

PRINT “"SPRICE "“;

PRINT "DIV *

PRINT

LINE = 2

RETURN

REM ** WAIT FOR (CR) TO BE PRESSED **
VTAB 23: HTAB 5

PRINT “PRESS 'RETURN' WHEN READY "

POKE - 16368,0

IF PEEK (- 16384) = 141 THEN RETURN
GOTO 51100

REM ** WAIT FOR (CR) AND **

REM ** PRINT HEADER el

REM ** FOR APPRECIATION AND DIVIDEND **
GOSUB 51000: HOME : HTAB 4

PRINT "NAME":: HTAB 14

PRINT “$GAIN";: HTAB 21

PRINT "$GAIN"

PRINT

LINE = 2

RETURN

LEFT$ (PD$(COUNT),6)

LEFT$ (SD$(COUNT),6)

28270
28280
28290
28300
28305
28310
28315
28320
28323
28325
28327
28330
28340
28400
28410
28420
28440
28460
28480
28490
28495
28500
28510
28520
28540
28560
28580
28600
28620
28640
28900
28920
32000
32100
32110
32120
32130
32140
32210
32300
32302
32304
32306
32308
32310
32320
32330
32340
32350
32360
32380
32390
32395
32400
32410
32420
32425
32430
32440
32450
32455
32460
32465
32466
32470
32480
32800
32810
32820
32880
32900
32910
32920
32960
32970

Guest Securities Manager

REM ** PRINT HEADER **

IF LINE > 18 THEN GOSUB 52000

REM ** USE CURRENT DATE OR UNSOLDS **

IF DV(INDEX) = O GOTO 28620: REM DON'T USE

F1 =0
IP SDS(INDEX) = " " THEN F1 = 1:SD$(INDEX) = CD$
REM ** CALCULATE MONTHS **
MS = VAL (LEFTS (SD$(INDEX),2)) - VAL (LEFTS (PD$(INDEX),2))

REM ** CALCULATE YEARS **
YR = VAL (RIGHTS (SD$(INDEX),2)) - VAL (RIGIT$ (PDS$(INDEX),2))
REM ** CONVERT TO MONTHS **
MN = MN + YR * 12
IF F1 THEN SDS(INDEX) = " "
PRINT LEFTS (NM$(INDEX),10):: HTAB 12
REM ** ESTIMATE DIVIDENDS PAID **
TP = INT ((DV(INDEX) * SH(INDEX) * (MN / 12)) * 100 + .5) / 100
T$ = STRS (TP)
IF LEN (TP$) < 8 THEN TPS$ = " " + TP$: GOTO 28460
PRINT TP$;: YTAB 20
REM ** CALCULATE DOLLAR GAIN AND **
REM ** TOTAL VALUE **
DG = DG + VAL (TP$):TV = TV + PP(INDEX)
REM ** CALCULATE % GAIN **
TT = INT ((VAL (TP$) / PP(INDEX)) * 100 + .5)
Tr$ = STRS (TT)
IF LEN (TT$) < 7 THEN TTS = " " + TT$: GOTO 28560
PRINT TT$
LINE = LINE + 1
INDEX = INDEX + 1
GOTO 28200
GOSUB 20900: REM OUTPUT TOTALS
RETURN
REM ** LIST CURRENT HOLDINGS **
HOME : VTAB 10: HTAB 10
INPUT "ALL/NOTSOLD/SOLD ";YN$
ANS = 0: REM ALL

IF LEFT$ (YN$,1) = "N" THEN ANS = 1: REM NOTSOLD
IF LEFT$ (YN$,1) = "S" THEN ANS = 2: REM SOLD
INDEX = O: HOME :LINE = 30:TPP = 0:TSP = 0

IF INDEX > = COUNT GOTO 32900

IF ANS = 0 GOTO 32310

IF (ANS = 1) AND (SD$(INDEX) = " ") GOTO 32310

IF (ANS = 2) AND (SD$(INDEX) < > " ") GOTO 32310

INDEX = INDEX + l: GOTO 32300
IF LINE > 18 THEN GOSUB 50000: REM WATIT AND PRINT HEADER
PRINT LEFT$ (NM$(INDEX),5):: HTAB 7
PRINT LEFT$ (PDS$(INDEX),6):: HTAB 14
PRINT LEFTS$ (SD$(INDEX),6):: HTAB 21
REM ** PURCHASE PRICE **

T™$ = STR$ (INT (PP(INDEX) * 10.0 + 0.5) / 10.0)
IF LEN (TP$) < 7 THEN TP$ = " " + TP$: GOTO 32380
PRINT TP$;: HTAB 29
REM ** SALE PRICE **

T™P$ = STRS (INT (SP(INDEX) * 10.0 + 0.5) / 10.0)
IF LEN (TP$) < 7 THEN TP$ = " " + TP$: GOTO 32410
PRINT TP$;: HTAB 37
REM ** DIVIDEND **

TP$ = STR$ (INT (DV(INDEX) * 10.0 + 0.5) / 10.0)
IF LEN (TP$) < 3 THEN TP$ = " " + TP$: GOTO 32440
PRINT TP$
REM ** NUMBER OF SHARES **

PRINT " “;SH(INDEX)
REM ** COMPUTE TOTAL SALES AND **
REM ** TOTAL PURCHASE PRICES **

TSP = TSP + SP(INDEX):TPP = TPP + PP(INDEX)
PRINT

LINE = LINE + 3

INDEX = INDEX + 1
GOTO 32300
REM ** PRINT TOTALS **

PRINT : PRINT “TOTALS"

HTAB 10: PRINT "PPRICES ";TPP

YTAB 10: PRINT "SPRICES ";TSP

GOSUB 51000: REM WAIT FOR KEY PRESS
RETURN

185

Solar System
Simulation

by Dave Partyka

This program will print information about the first six
planets of the Solar System, and plot their positions. In
the printing mode, information such as distance from
the earth and sun, and other data about the earth and
planet relation is printed. In the plot mode, the planets’
positions against the zodiac, as seen from the earth,
are plotted, using hi-res graphics and scaling factors.

This program deals with the first six planets, but instead of being heliocentric (sun
centered) it's geocentric (earth centered). It gives a display of the planets as seen
from the earth. The planets are displayed against a star background and their mo-
tions through the zodiac are very good representations of the actual positions of
the planets. Using this program, you can watch as a planet makes its retrograde
loop through a constellation, see how close two or more planets come to each
other, or watch how close a planet comes to a bright star.

The program is set up in two parts. One part prints values on the screen for
each planet and the sun, and the other plots the positions of the planets against a
star background. If you choose to print, at the top of the screen is the starting date

and the number of days that the display is for. The program then prints the follow-
ing data for each planet:

D-S; the distance in million miles that the planet is from the sun.
A-S; the angle in degrees that the planet is located around the sun.
D-E; the distance in million miles that the planet is from the earth.

R.A.; the right ascension in hours and minutes that the planet appears from the
earth.

DEC.; the declination in degrees and minutes that the planet appears from the
earth.

B N |

-

1

Partyka Solar System 187

You can display the values for all the planets, or for specific ones. You can
display a single day, or a range of days with any number of days between the
displays. The program will pause after each display, and then wait for you to press
RETURN to continue with the display, or with a set of questions for a new display.

If you choose to plot, another set of questions will be asked. These are needed
to set the limits for the star display and to determine if you want point or con-
tinuous plots. Just like printing, you can plot for single or multiple days, with any
number of days between plots. You can plot single points (with the previous plot
erased before the current one is plotted), or continuous plots (where the points
aren’t erased but remain on the screen). After that you'll be asked for a scaling fac-
tor: 0 or 1-20. A scaling factor of zero will display the full star field, right ascen-
sion 0 to 24 hours, and declination 90 to — 90 degrees.

A scaling factor equal to or greater than 1 (a factor between zero and one is not
allowed) displays another question, '‘Enter center coordinates for R.A. and DEC."
This will determine the center coordinates of the display, and is in hours and
decimal hours, degrees and decimal degrees. The scaling factor you entered, along
with the center coordinates, will determine the right and left, top and bottom
limits of the display.

The higher the scaling factor, the less of a constellation you'll see, but the
greater the movement of the planet per plot. A scaling factor of 1 displays approx-
imately 18 hours in right ascension and 180 degrees in declination, and a factor of
10 displays, approximately 2 hours in right ascension and 19 degrees in declination.

The only constellations in the star table are for the zodiac. If you want to in-
crease the number of stars within the zodiac, or if you want to add more constella-
tions, it's an easy process. The table is set up with four values per star. The first
two are for right ascension in hours, minutes; the next two are for declination in
degrees, minutes. The stars in the table don’t have to be in any particular order.
The whole table is read when the plot portion of the program is used. The only
table requirements are the two values for right ascension and two values for
declination. If the declination is negative, then both values for declination have to
be negative. To end the table, four zeros are necessary — 0,0,0,0.

You may want to split this program to make one that just displays the stars on
the screen. Just begin where the question for a scaling factor is asked, and delete
everything else that isn’t used. You can add more tables to the new program: one
for galaxies, another for star clusters, another for nebulae, or even one for the
Messier objects. The tables you add will be whatever you need, and by adding
more questions, you can display the different tables, either alone or combined.

Let’s go through two examples of the program, first for figure 1, and second
for figure 2. The first question that will be asked is if you want to display the same
planets as your last run. Since this is the first run, enter N. Then it will ask '‘What
planets do you want to display?"’ Enter a 1 for each planet. Then a starting date is
asked. Use 11,1,1979. After that, it says '‘Enter the number of days to plot.”’ Enter
150. Then it asks to print or plot. Enter a 1 to print. The screen will then clear,

188 Recreation/Applications

print the starting date and the plot day’s value at the top of the screen, and then
continue to print for the planets and the sun.

After finishing the page, it will pause and display ‘‘Press return for next
display.’ After you press return it will start printing again, changing the plot day’s
value at the top of the page and the values for the planets and the sun. It will con-
tinue to do this until the plot day’s value is equal to or greater than the day’s that
you wanted to print for. After that, it will ask you to press return to start again.
When you press return, it will ask if you want to display the same planets as your
last run.

Figure 1: Example of the print routine for all planets, starting date 11/1/1979 for
240 days at 50-day intervals at the 150th day.

Starting Date 11/1/1979 Plot Days 150

Earth D-S. 92.8887 Sun D-E. 92.8887
A-S. 189.4489 R.A. 0 34.7
DEC. 3 446
Mercury D-S. 43.1581 Venus D-S. 66.8181
A-S. 245.1156 A-S. 140.7176
D-E. 77.2616 D-E. 70.0302
R.A. 22 55.3 R.A. 3 28.3
DEC. -8 7.1 DEC. 21 55
Mars D-S. 154.4251 Jupiter D-S. 502.2398
A-S. 170.2956 A-S. 158.0192
D-E. 73.2592 D-E. 425.652
R.A. 9 56.5 R.A. 10 15.9
DEC. 167 DEC. 12 9.5

Saturn D-S. 875.6875
A-S. 174.1555

D-E. 785.842
R.A. 11 35.7
DEC. 515

Press return for next display.

For example 2, enter an N to the last question so that it will ask you which
planets you want to display. Enter a O (zero) for all the planets except Mars. Enter
11,1,1979 for the starting date, 240 for the number of days to plot, and 10 for the
number of days between plots. When it asks to print or plot, enter a 0 (zero) to
plot. Three requests will then be made: the first, ‘‘enter O for point, or 1 for con-
tinuous plots.’’ Since we want all the points to remain on the screen, enter 1 for
continuous plots. The next question is the scaling factor. Enter a 5. After that will
be the center coordinates. Since I already know that the planet Mars will be in the
constellation Leo, enter 10.5 for right ascension, and 18 for declination.

-3

S ET D

-

A

N I

-3

]

Partyka Solar System 189

When you do plots for other planets and you don’t know where they will be,
run the print program first and get the right ascension and declination. After enter-
ing the center coordinates, the screen will clear and a window will appear on the
screen. After a few seconds the constellation Leo will appear as the star table is
read, and any stars within the display limits will be plotted. A few more seconds
will pass as the rest of the table is read. Once the end of the table is found, the pro-
gram will beep to signal the start of the calculations.

Since the planet Mars was the only planet picked, the program will calculate
the positions of the earth and Mars. The position of the earth is always calculated,
but only printed during the print option, (if you choose to print it). The program
will continue to plot the position of Mars, beeping each time it starts a new se-
quence of calculations. It will plot 25 times — one for the starting date and 24 for
240 days, at 10-day intervals.

The program will then do a double beep to signal the end of the simulation
and wait until you press return before starting a new sequence of questions. The
purpose of the single beep at the beginning of the calculations is to identify what
planet is being plotted. The planets are plotted in their order from the sun. If you
plot more than one planet in the same display, you can figure out which is which
by the plotting order.

Figure 2: Example of the plot routine for Mars, starting date 11/1/1979 for 240 days
at 10-day intervals, continuous plots.

- /\\

P

v N
/

190 Recreation/Applications

Since the date doesn’t appear anywhere on the display for plotting, you can do
a CNTL-C to stop the program, type ''TEXT", and then return to see the starting
date and the plot day’s value. To continue, do POKEs to set graphics mode
(~16304) and display the secondary page | —16299), type “‘CONT"’ and return.
The program will pick up where you left off. If you follow these examples, the
results you get should match figure 1 at day 150 for printing, and figure 2 at the
end of the plotting sequence. The solid and dotted lines in figure 2 were used to
show the motion of Mars and the stars of the constellation Leo, and will not be in
the actual display. Once you run the two examples to become familiar with the
program, then you can enter any values for the questions to display whatever for
whenever you want.

10 REM *%*kkkkhhkhhhkrhrhhkhhkdhn

15 REM * *
20 REM * SOLAR SYSTEM *
25 REM * SIMULATION *
27 REM * DAVE PARTYKA *
30 REM * *
35 REM * COPYRIGHT (C) 1982 *
40 REM * MICRO INK, INC. *
44 REM * CHELMSFORD, MA 01824 *
45 REM * ALL RIGHTS RESERVED *
50 REM * *
55 REM * *
60 REM hkkkhhhh bk hhdhddd
65 REM

70 REM

75 REM

100 GOTO 650

110 IF TY = 1 THEN 210

120 IFH > TP ORY < BT TYEN 210

130 HCOLOR= 0

140 IF RG > LF THEN 180

150 IF F < RG OR F > LF T4EN 210

160 HPLOT 279 - (F - RG) * SC,(TP - 4) * sC
170 GOTO 210

180 IF F > LF AND F < RG THEN 210

190 IF F = < LF ™MEN F = F + 360

200 HPLOT 279 - (F - RG) * sC,(TP - 4) * gC
210 IF G > TP OR G < BT THEN RETURN
220 HCOLOR= 3

230 IF RG > LF THEN 270

240 IF B < RG OR B > LF THEN RETURN
250 HPLOT 279 - (B - RG) * sC,(TP - G)
260 RETURN

270 IF B > LF AND B < RG TYEN RETURN
280 IF B = < LF THEN B = B + 360

290 HPLOT 279 - (B - RG) * SC,(TP - G) * sSC
300 RETURN

*

sC

310 D = 2Z - INT (22 / SRD) * SRD
320 B=Q - (D / SRD * Q2)

330 IF Y > 0 THEN RA = 270

340 RV =2 - (P / (1L +E* cos (B)))
350 V= PE / RV - EZ

360 IF V= >1 THEN V = VL

370 IF V= < -1 TENV = - VL
380 VA= - ATN (V/ SQR (-V *V + 1)) + T
390 IF D > SRD / 2 T™EN VA = Q2 - VA
400 VA = VA + J

410 ZX = VA * Tl - C

420 IF ZX > 360 THEN ZX = 2X - 360
430 IF 2ZX < O THEN ZX = 360 + 2X

440 zZX = 2X / T1

450 LA = SIN (2X) * 1

460 XA = RV * COS (LA) * cos (VA)
470 YA = RV * COS (LA) * SIN (va)
480 ZA = RV * SIN (1Aa)

B |

3

3

3

S 3y 3 3 3

3 3

3

o

partyka Solar System

490 XB = XA - X3:YB = YA - Y3:2B = ZA - 23

500 VA = VA * Tl

510 IF VA > 360 THEN VA = VA - 360

520 IF EE = 0 THEN RETURN

530 ED = SQR (XB * XB + YB * YB)

540 X = XB

550 Y = YB * COS (IN) - zB * SIN (IN)

560 2 = YB * SIN (IN) + ZB * COS (IN)

570 RA = 90

580 IF Y < O THEN RA = 270

590 IF X < > O TIEN RA = ATN (Y / X) * Tl

600 IF X < O THEN RA = RA + 180

610 IF X > O AND Y < O THEN RA = RA + 360

620 Dz = 2 / ED

630 DC = ATN (DZ / SQR (1 - DZ * Dz)) * Tl

640 RETURN

650 T = 1.5708:T1 = 57.2957795

660 IN = 23.434 / Tl

670 Q = 3.14159265

680 Q2 = 6.2831853

690 VL = .99999999

700 HOME

710 PRINT "DO YOU WANT TO DISPLAY *

720 PRINT : PRINT "THE SAME PLANETS AS YOUR LAST RUN"

730 PRINT : INPUT "Y OR N ";A$

740 IF A$ = "N" THEN 790

750 IF A$ ¢ > "Y" THEN 710

760 IF S1 ¢ > O THEN 1590

770 IF SC ¢ > O THEN 2785

780 PRINT : PRINT "YOU HAV'NT PICKED THE PLANETS YET": PRINT : PRINT :
800

790 HOME

800 PRINT "CHOOSE T™E PLANETS YOU WANT TO DISPLAY"

810 PRINT

820 PRINT "ENTER A 1 FOR YES, 0 FOR NO"

830 PRINT

840 REM SPACIFIC VALUES FOR EACY PLANET

850 REM S1=ORBITAL PERIOD: Pl=Al*(1-E1*El)/2

860 REM E1=ECCENTRICITY: Ul=P1/El: K1=1/El

870 REM Al=MINIMUM + MAXIMUM DISTANCE FROM SUN

880 REM J1=LONGITUDE OF PERIHELION IN RADIANS

890 REM W1=DAYS FROM O DEGREES TO PERIHELION FOR 1980

892 REM C1=ASCENDING NODE IN DEGREES

894 REM TI1=INCLINATION IN DEGREES / Tl TO CONVERT TO RADIANS

900 INPUT "DISPLAY MERCURY ":ME

910 S1 = 87.969

920 E1 = .2056

930 Al = 43.403 + 28.597

940 P1 = Al * (1 - E1 * E1) / 2

950 K1 = 1 / El

960 Ul = P1 / El

970 J1 = 77.1 * Q / 180

980 W1 = 37.53

990 Cl = 48.1

1000 11 =7 / T1

1010 INPUT "“DISPLAY VENUS “;VE

1020 S2 = 224.701

1030 E2 = .0068

1040 A2 = 67.726 + 66.813

1050 P2 = A2 * (1 - E2 * E2) / 2

1060 K2 = 1 / E2

1070 U2 = P2 / E2

1080 J2 = 131.3 * 0 / 180

1090 W2 = 140.5

1100 C2 = 76.5

1110 12 = 3.4 / T1

1120 INPUT "DISPLAY EARTH “:EA

1130 S3 = 365.256

1140 E3 = .0167

1150 A3 = 94.555 + 91.445

1160 P3 = A3 * (1 - E3 * E3) / 2

1170 kK3 = 1 / E3

1180 U3 = P3 / E3

1190 J3 = 102.6 * Q / 180

1200 W3 = - 3.82

191

GOTO

192

1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1590
1600

1610

1620

1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1785

1786
1790
1800
1810
1830

1840
1845
1848
1850

1855

Recreation/Applications
c3I =0

13 =0

INPUT "DISPLAY MARS ":MA
S4 = 686.980
E4 = .0934
A4 = 154.936 + 128.471
P4 = a4 * (1 - E4 * E4) / 2
K4 =1 / E4
U4 = P4 / E4
J4 = 335.7 * Q / 180
W4 = 287
C4 = 49.4

14 =1.85 / Tl

INPUT "DISPLAY JUPITER ":JU
S5 = 4332.125

E5 = .0478
A5 = 507.046 + 460.595

PS5 = A5 * (1 - ES * E5) / 2
KS =1 / ES

Us = pP5 / ES
JS5 = 13.6 * Q9 / 180
W5 = 1608
C5 = 100.24
I15=1.3/ T

INPUT "DISPLAY SATURN ":SA
S6 = 10825.863
E6 = .0555
A6 = 937.541 + 833.425
P6 = A6 * (1 - E6 * E6) / 2
K6 = 1 / E6
U6 = P6 / E6
J6 = 95.5 * 9 / 180
wé = 2090
C6 = 113.51
I6 = 2.49 / T1

HOME

PRINT "ENTER BEGINNING DATE? MM,DD,YYYY": INPUT "

" MM, DD, YY

DF = (MM = 2) * 31 + (MM = 3) * 59 + (MM = 4) * 90 + (MM = 5) * 120 +
(MM = 6) * 151 + (MM = 7) * 181 + (MM = 8) * 212 + (MM = 9) * 243 +
(MM = 10) * 273 + (MM = 11) * 304 + (MM = 12) * 334
ZY = INT (YY * 365 + INT (YY / 4) + DD + DF + 1 - INT (YY / 100) +
INT (YY / 400) / 1)

IF INT (YY / 4) < > YY / 4 THEN 1680

IF INT (YY / 400) YY / 400 THEN 1660

IF INT (YY / 100) = YY / 100 THEN 1670

IF MM > 2 THEN 1680

2Y = 2Y - 1
ZY = ZY - 723180
2T = - 2Y

PRINT : PRINT : INPUT "ENTER # OF DAYS TO PRINT/PLOT ";:DN
PRINT : PRINT : PRINT
INPUT "ENTER # OF DAYS BETWEEN PRINT/PLOTS ":DA
IF DA < > O T4EN 1760
PRINT : PRINT
PRINT "O NOT ALLOWED": GOTO 1710
9OME
INPUT "ENTER 1 TO PRINT, 0 TO PLOT ";PL
IF PL < > O AND PL < > 1 THEN 1760
IF PL = 0 THEN PRINT : PRINT "DO YOU WANT": PRINT : I[NPUT "POINT (

0) OR CONTINUOUS (1) PLOTS “;TY
IF TY < > O AND TY < > 1 TiEN 1785
IF PL = 0 T4EN GOSUB 2750
REM EARTY
4OME :EE = 0

A = A3:P = P3:

W:C = C3:I = 1
GOSUB 310:EE = 1

X3 = XA:Y3 = YA:23 = ZA:R3 = RV:V3 = VA
HOME
VTAB l: HTAB 1: PRINT “STARTING DATE ";™MM;"/";DD:;"/":YY:" PLOT DA

YS ";2T + 2Y
IF PL = O THEN VTAB 23: PRINT "STARTING DATE ";MM;"/";DD:"/";YY;:"

PLOT DAYS ";2T + ZY: PRINT "": GOTO 1930: REM EMPTY PRINT [S A ON

TL-G (BELL)

E = E3:PE = U3:EZ = K3:SRD = S$3:J = J3:W = W3:22 = 2Y +
3

33y 3 3

5 I R

3

_d

3 3 3 3

3

3

3

Partyka Solar System 193

1870 IF EA = O THEN 1980
1880 VTAB 2: ATAB l: PRINT "EARTH D-S. "; INT (RV * 10000) / 10000

1890 VTAB 3: H4TAB 7: PRINT "A-S. ": INT (V3 * 10000) / 10000
1900 REM SUN
1910 XB = - X3:YB = - Y3:2B = - Z3:ED = R3

1920 GOSUB 540
1930 VTAB 2: HTAB 21: PRINT "SUN D-E. "; INT (ED * 10000) / 10000

1940 VTAB 3: 4TAB 28: PRINT "R.A. "; INT (RA / 15);" “:; INT ((RA - INT
(RA / 15) * 15) * 40) / 10

1950 IF DC < O TIEN DC = - DC:DB =1

1960 VTAB 4: HTAB 28: PRINT "DEC. "; INT (DC):" “; INT ((DC - 1INT (DC)
) * 600) / 10

1970 IF DB = 1 THEN VTAB 4: HTAB 32: PRINT "-":DB = O

1980 REM MERCURY

1990 IF ME = 0 THEN 2130

2000 A = Al:P = Pl:E = El:PE = UL:EZ = KL1:SRD = S1:J = J1:W = W1:22 = Y +
W:C = Cl:I = Il

2010 GOSUB 310: IF PL = 1 THEN 2050

2020 F = Fl:d4 = H1:B = RA:G = DC: GOSUB 110

2030 Fl1 = RA:d1 = DC: GOTO 2130

2040 IF PL = O THEN GOSUB 110

2050 VTAB 6: HTAB l: PRINT "MERC D-S. "; INT (RV * 10000) / 10000

2060 VTAB 7: HTAB 7: PRINT "A-S. "; INT (VA * 10000) / 10000

2070 VTAB 8: HTAB 7: PRINT "D-E. "; 1

2080 VTAB 9: HTAB 7: PRINT "R.A. "; I

(RA / 15) * 15) * 40) / 10

NT (ED * 10000) / 10000
NT (RA / 15):" “: INT ((RA - INT

2090 IF DC ¢ 0 TMEN DC = =- DC:DB =1

2100 VTAB 10: 4TAB 7: PRINT "DEC. "; INT (DC):" “; INT ((pCc - INT (nC)
) * 600) / 10

2110 IF DB = 1 THEN VTAB 10: HTAB 1l: PRINT "-":DB = 0

2120 REM VENUS

2130 IF VE = 0 THEN 2260

2140 A = A2:P = P2:E = E2:PE = U2:EZ = K2:SRD = S2:J
W:C = C2:I = I2

2150 GOSUB 310: IF PL = 1 THEN 2180

2160 F = F2:H = H2:B = RA:G = DC: GOSUB 110

2170 F2 = RA:H2 = DC: GOTO 2260

2180 VTAB 6: 9TAB 21: PRINT "VENUS D-S. “; INT (RV * 10000) / 10000

2190 VTAB 7: YTAB 28: PRINT "A-S. ": INT (VA * 10000) / 10000

2200 VTAB 8: HTAB 28: PRINT "D-E. "; INT (ED * 10000) / 10000

2210 VTAB 9: WTAB 28: PRINT "R.A. “; INT (RA / 15);" “: INT ((RA - INT
(RA / 15) * 15) * 40) / 10

2220 IF DC < O THEN DC = - DC:DB =1

2230 VTAB 10: HTAB 28: PRINT "DEC. ":
)) * 600) / 10

2240 IF DB = 1 THEN VTAB 10: HTAB 32: PRINT "-":DB = 0O

2250 REM MARS

2260 IF MA = 0 THEN 2390

2270 A = A4:P = P4:E = E4:PE = U4:EZ = K4:SRD = S4:J = J4:W = W4:22 = ZY +
W:C = C4:1 = I4

2280 GOSUB 310: IF PL = 1 THEN 2310

2290 F = F4:4 = H4:B = RA:G = DC: GOSUB 110

2300 F4 = RA:H4 = DC: GOTO 2390

J2:W = W2:22 = ZY +

INT (DC);" *“; INT ((DC - INT (DC

2310 VTAB 12: HTAB 1: PRINT "MARS D-S. "; INT (RV * 10000) / 10000

2320 VTAB 13: HTAB 7: PRINT "A-S. "; INT (VA * 10000) / 10000

2330 VTAB l4: 1TAB 7: PRINT "D-E. ": INT (ED * 10000) / 10000

2340 VTAB 15: 'ITAR 7: PRIND "R.A. “: INT (RA / 15):;" “; INT ((RA - INT
(RA / 15) * 15) * 40) / 10

2350 IF DC < O THEN DC = - DC:DB = 1

2360 VTAB 16: YTAB 7: PRINT "DEC. ": INT (DC):" "“: INT ((DC - INT (DC)
) * 600) / 10

2370 IF DB = 1 THEN VTAB 16: HTAB ll: PRINT "-":DB = 0O

2380 REM JUPITER
2390 IF JU = 0 THEN 2520

2400 A = A5:P = P5:E = E5:PE = US:E% = K5:3RD = 35:J = J5:W = W5:22 = 2Y +
Wil = C5:1 = IS5

2410 GOSUB 310: IF PL = 1 THEN 2440

2420 ¢ = 31 = {3:B = RA:G = DT: GOSUB 110

2430 PS5 = RA:15 = DC: GOTO 2520

2440 VTAB 12: 4TAB 21: PRINT "JUPTR D-S. "; INT (RV * 10000) / 10000

2450 VTAB 13: HTAB 28: PRINT "A-S. "; INT (VA * 10000) / 10000

2460 VTAB l14: HTAB 28: PRINT "D-E. “; INT (ED * 10000) / 10000

2470 VTAB 15: MTAB 28: PRINT "R.A. "; INT (RA / 15);" ": INT ((RA - INT

(RA / 15) * 15) * 40) / 10
2480 1IF DC < O THEN DC = - DC:DB =1

194

2490

2500
2510
2520
2530

2540
2550
25619
2570
2530
2590
2600

2610
2620

2630
26490
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2785
2800
2810
2820
2830
2340
2850
2860
2870
2880
2890
2900

2910
2929
2930
2940

2950

2960
2970

2980

2990

3000

3010
3020
3030
3040

3050
3060

3070
3n380

3090
3100

3110
3120

Recreation/Applications

VTAB 16: ITAB 28: PRINT "DEC. "; INT (DC):" *; INT ((DC -

)) * 600) / 10

INT (DC

IF DB = 1 T™HEN VTAB 16: {TAB 32: PRINT "-":DB = 0

REM SATURN
IF SA = 0 T4EN 2640

A = A6:P = P6:E = E6:PE = U6:EZ = K6:SRD = S6:J = J6:W = W6:22 = 2Y +

W:C = C6:1I = I6
GOSUB 310: IF PL = 1 TMEN 2570

F = F6:1 = H6:B = RA:G = DC: GOSUB 110

F6 = RA1d6 = DC: GOTO 2640
VTAB 18: HTAB l: PRINT "SATN
VTAB 19: ITAB 7: PRINT "A-S. "
VTAB 20: HTAB 7: PRINT "D-E. "
VTAB 21: HTAB 7: PRINT "R.A. "3
(RA / 15) * 15) * 40) / 10

D-S. "; INT (RV * 10000) / 10000

INT (VA * 10000) / 10000
INT (ED * 10000) / 10000
INT (RA / 15);" “; INT ((RA - INT

IF DC < O THEN DC = - DC:DB = 1

VTAB 22: HTAB 7: PRINT "DEC. “;
) * 600) / 10

INT (DC):" "; INT ((DC - INT (DC)

IF DB = 1 THEN VTAB 22: HTAB Ll: PRINT "-":DB = 0

2Y = 2Y¥ + DA
IF 2T + ZY > DN TiEN 2700
IF PL = 0 THEN 2690

VTAB 23: HTAB l: PRINT "PRESS RETURN FOR NEXT DISPLAY": GET AS$

VTAB 23: HTAB l: PRINT "
GOTO 1830
ZY = 0:DE = 0

PRINT "";""

INPUT "PRESS ENTER TO START AGAIN";AS

TEXT : RESTORE
GOTO 650
4COLOR= 3

PRINT : INPUT "ENTER FACTOR: O OR 1 - 20 ":sC

IF SC < > 0 THEN 2785
RG = 0:LF = 360:BT =
If 3T < 1 TIEN 2760

= 90:TP = 110:5C = .75: GOTO 2890

PRINT : PRINT "ENTER CENTER COORDINATES": PRINT

PRINT " R.A. DEC.": PRINT
INPUT "HH.H4 , DD.DD "“;R,D
RG R * 15 - 139 / sC
LF R * 15 + 139 / sc
BT D - 95 / sc
TP D + 95 / sc
IF RG < O THEN RG = RG + 360
IF LF > 360 TYEN LF = LF - 360
4GR2
4PLOT 0,0 TO 279,0
1PLOT TO 279,191
iPLOT TO 0,191
1PLOT TO 0,0
READ 8,B1,G,G1
B =18B™*15+ Bl * .25:G = G + Gl
IF B =0 AND G = 0 THEN RETURN
GOSUB 210: GOTO 2940
REM PISCES
DATA 1,11,24,19,1,17,27,0,1,18,
26,0,53,26,56,1,28,15,5,1,43,8,54
DATA 1,39,5,14,1,28,5,53,1,11,7
3,37,5,21,23,40,1,30,23,25,6,6,23
REM ARIES
DATA 1,51,19,3,1,52,20,34,2,1,2
REM PLEIADES
DATA 3,42,24,8,3,42,23,57,3,42,
,57,3,43,23,48
TAURUS
DATA 5,23,28,34,4,39,22,52,5,35
51,4,17,15,31,4,23,17,49,4,26,19,
REM GEMINI

/ 60

28,29,1,9,29,49,0,55,28,43,0,47,27,
+1,59,2,31
,19,1,0,7,37,0,46,7,19,23,57,6,35,2
.18,5,6,23,15,3,1,23,24,0,59

5,42

24,18,3,43,24,13,3,43,24,24,3,45,23

.21,7,5,4,18,35,4,33,16,25,4,26,15,
4

DATA 6,12,22,31,6,20,22,3
9,7,17,22,5,7,1,20,39,6, 35,

2,6,41,25,11,7,8,30,20.7,31,32,0,7,42,28,
16,27,6,42,12,57

REM CANCER

PDATA 3,14,9,20,8,18,24,11,8,130,
.39,8,56,12,3,8,44,28,57

REM LEO

DATA 9,43,24,0,9,50,26,15,10,14,
13,11,11,20,48,11,47,14,51,11,12,

20,37,8,29,18,16,8,42,18,20,8,40, 21

23,40,10,17,20,6,10,5,17,0,10,6,12,
15,42

3

33 3

5 D

3

33y 3 3

3 3 3

0 I |

1

3130
3140

3200
3270
3280
3320
3330
3420

3470
3430

3570
3580

3650
3720
3740
3830
3840

]

Partyka Solar System

REM VIRGO

pATA 11,43,6,49,11,48,2,3,12,17,-0,-23,12,39,-1,-11,12,53,3,40,13,
0,11,14

DATA 13,7,-5,-16,13,23,-10,-54,14,13,-5,-46,14,40,-5,-27,14,44,2,6
,13,59,1,47,13,32,-0,-20

REM LIBRA

DATA 14,48,-15,-50,15,10,-19,-28,15,14,-9,-12,15,33,-14,-37

REM SCORPILUS

DATA 15,57,-22,-29,16,3,-19,-40,16,18,-25,-28,16,28,-26,-19,16,33,
-28,-7,16,47,-34,-12,16,48,-37,-58,16,50,-42,-17

DATA 17,9,-43,-11,17,34,-42,-58,17,44,-40,-7,17,39,-39,-0,17,30,-3
7,-4

REM SAGITTARIUS

DATA 13,3,-30,-26,18,14,-36,-47,18,21,-34,-25,18,18,-29,-51,18,25,
-25,-27,18,43,-27,-3,18,52,-26,-22,18,59,-29,-57,19,4,-27,-45

REM CAPRICORNUS

DATA 20,15,-12,-40,20,24,-18,-23,20,36,-15,-8,21,3,-17,-26,21,19, -
17,-3,21,37,-16,-53,21,44,-16,-21

DATA 21,40,-19,-6,21,34,-19,-41,21,26,-22,-2,21,24,-22,-38,21,4,-2
5,-12,20,49,-27,-6,20,43,-25,-27

REM AQUARIUS

DATA 22,3,-0,-34,22,23,1,7,22,26,-0,-17,22,33,-0,-23,22,50,-7,-51,
22,47,-13,-51,22,52,-16,-5,23,12,-6,-19,23,13,-9,-22,23,16,-9,-53,23
,40,-14,-49

REM END OF TABLE (ZEROS)

DATA 0,0,0,0

195

Othello

by Charles F. Taylor, |r.

This program simulates the popular board game
Othello. Designed for two players, the program
maintains the Othello board on the Apple lo-res
graphics screen. Written in Applesoft BASIC, Othello
should be easily modifiable to other dialects of BASIC.

Most computer game programs are designed for one user. The computer plays the
role of opponent, scorekeeper, referee, and manager of the display. This results in
a ''man-against-machine’’ scenario. The objective is to ‘’beat the computer’’ and
thereby establish your intellectual superiority over silicon circuitry. (Never mind
that you are really playing against an algorithm designed by another person.)

This game program is designed for two persons. The computer no longer is the
opponent, but plays the role of slave, keeping track of the board position, checking
for illegal moves, keeping score, and managing the display.

Background

I wrote this program for my ten-year-old son. Othello is a good game for inter-
action across the generation gap because it is more than challenging enough for
me, but not too difficult for my son. He beats me more often than I care to admit!

Perhaps the best way to describe the game of Othello is to describe how it is
played as a board game, without the aid of the computer. The playing board is
eight squares by eight squares, much like a checker or chess board, except that all
squares are usually the same color. The playing pieces are disks, black on one side
and white on the other. Each player starts with 32 pieces; one player is designated
‘'white’’ and the other '‘black.”’

The game begins with two pieces of each color in the center of the board in the
configuration shown in figure 1. White has the first turn. He must place a white
piece (a piece with the white side up) in such a manner as to ‘'capture’’ a black
piece. A piece is captured when it is ‘'surrounded’’ by pieces of the opposite color,
either horizontally, vertically, or diagonally. Captured pieces are turned over and
become the color of the captor. More than one piece can be captured at a time.

3

N R |

3 3 ¥y 3 3 3 3

3

I I |

3

[en)

Taylor Othello 197

Figure 2 illustrates the capture of two black pieces by a white piece. A move is
not legal unless it accomplishes one or more captures. The game is won by either
capturing all of your opponent'’s pieces, or by having more pieces than your oppo-
nent at the end of the game.

Implementation

The program was written in Applesoft BASIC on an Apple II Plus. Low-
resolution graphics are used to display the game board, thus pieces are shown as
square rather than round. The selection of colors is easily changed to suit your
own display (see lines 280 - 300). I am currently using a ‘‘green screen’’ monitor
and find it hard to judge colors as they might appear on another display.

The program is shown in listing 1. The coding is straightforward, but perhaps
a few comments are in order. The board is represented internally by the array
"BOARD."" The function 'FN M2(Q}"’ finds the modulus base 2 of a number (the
remainder after integer division by 2) and is used to compute whose turn it is. The
legality of each move is checked. The subroutine at 1430 searches for and executes
all possible captures, beeping for each capture. The score is displayed after each move.

Play

To move, a player types the row and column where he wants to place his
piece. Columns are labeled A-H, left to right; rows are labeled 1-8, bottom to top.
The lower left corner is then Al, the lower right corner H1, and so on. Should you
ever find yourself in a position such that no legal moves are possible, type ‘'P"’ for
"'Pass.’’ Play tends to ebb and flow like the tides, but without any predictability.
A player can be comfortably ahead at one moment and hopelessly behind the next.

Figure 1 Figure 2

O0e®

® O
O | @ | [oloolo

198

VO N B W N~

Recreation/Applications

REM Ak hkkhkhAhhhdhhhhhhdkhhd

REM * *
REM * GAME OF OTMELLO *
REM * C.F. TAYLOR *
REM * *
REM * COPYRIGMT (C) 1982 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *

REM * *

REM Ahhkkkkhkhhkhhhkhhthhhhhhd

REM

REM

REM

REM INITIALIZE

DIM BOARD(9,9)

DIM CC(2): REM HOLDS CURRENT COLOR

DIM PROMPTS(2)

DIM Sc(2)

DIM DX(8): DIM DY(8)

DEF FN M2(Q) = Q - INT (@ / 2) * 2
PROMPTS$ (1) = "INPUT WHITE MOVE:"
PROMPTS$ (2) = "INPUT BLACK MOVE:"
BLACK = 0
WHITE = 15
CC(1) = WHITE
CC(2) = BLACK
BC = 12: REM BACKGROUND COLOR

TC = 13: REM TITLE COLOR
DC = 4: REM BORDER COLOR
DATA 1,0,-1,-1,-1
DATA ,-1,-1,0,1
FOR I READ DX(I): NEXT I
FOR I READ DY(I): NEXT I
FOR I
FOR J
BOARD(I,J
NEXT J,1
GOSUB 78
COLOR= WHITE
X =5:¥ =5
BOARD(X,Y) =
GOSUB 126: REM CALL BLOT
X =4:Y = 4
BOARD(X,Y) =
GOSUB 126: REM CALL BLOT
SC(1) =
COLOR= BLACK
X = 4:Y =5
BOARD(X,Y) =
GOSUB 126: REM CALL BLOT
X =5:¥Y = 4
BOARD(X,Y) = 2

~

Olﬂ

mouwnr~o
.

-1
8:
8
9
9

23333

1,
1,
1
1
0
0
)

GOSUB 126: REM CALL BLOT
sc(?2) =

TURN = 2

REM BEGIN MAIN LOOP

FOR Q = 1 TO 100

TURN = FN M2(TURN) + 1

COLOR= CC(TURN)

PRINT "SCORE IS: WHITE ":;SC(l):" BLACK ";SC(2)

PRINT PROMPTS (TURN)

GOSUB 133: REM CALL GETMOVE

IF PASS THEN 70

IF BOARD(X,Y) ¢ > O THEN 62

GOSUB 143: REM CALL MOVES

IF FLAG = 0 THEN 62

IP ((sc(1) + sc(2)) = 64) ™EN 71

IF ((sc(1) = 0) OR (sC(2) = 0)) THEN 71
NEXT Q

IF SC(1) > sC(2) THEN PRINT “"WHITE WINS!":

GOTO 74

IP SC(1) < sSC(2) THEN PRINT "“BLACK WINS!": GOTO 74

PRINT "IT'S A TIELl"

PRINT "FINAL SCORE: WHITE ";SC(1):" BLACK ":;SC(2)

INPUT "WOULD YOU LIKE TO PLAY AGAIN?":AS$

3 3y 3 3 3

3

3 3

5 3

33 3 3 3

3

Taylor Othello 199

76 1IF LEFTS (AS$,1) = "Y" THEN 35
D

78 REM SUBROUTINE TO DRAW OTHELLO BOARD
79 GR

80 COLOR= BC

81 FOR I =0 TO 39

82 HLIN 1,39 AT I

83 NEXT I

84 COLOR= TC: REM TITLE COLOR

85 REM PLOT "OTHELLO"

86 REM FIRST "O"

87 VLIN 1,5 AT 7

88 PLOT 8,1

89 PLOT 8,5

90 VLIN 1,5 AT 9

91 REM NEXT "T"

92 HLIN 11,13 AT 1

93 VLIN 2,5 AT 12

94 REM NEXT "dH"

95 VLIN 1,5 AT 15

96 PLOT 16,3

97 VLIN 1,5 AT 17

98 REM NEXT “E"

99 VLIN 1,5 AT 19

100 HLIN 20,21 AT 1

101 PLOT 20,3

102 HLIN 20,21 AT 5

103 REM NEXT TWO "L"S

104 VLIN 1,5 AT 23

105 HLIN 24,25 AT 5

106 VLIN 1,5 AT 27

107 HLIN 28,29 AT 5

108 REM FINALLY ANOTHER "O"

109 VLIN 1,5 AT 31

110 PLOT 32,1

111 PLOT 32,5

112 VLIN 1,5 AT 33

113 REM NOW DO BOARD ITSELF

114 COLOR= DC: REM BORDER COLOR
115 FOR I = 7 TO 39 STEP 4

116 HLIN 4,36 AT I

117 NEXT I

118 FOR I = 4 TO 36 STEP 4

119 VLIN 8,38 AT I

120 NEXT I

121 RETURN

122 REM SUBR MAP FINDS SCREEN COORDS (XS,YS) GIVEN BOARD COORDS (X,Y)
123 XS =1 + 4 * X

124 YS = 40 - 4 * Y

125 RETURN

126 REM SUBR BLOT FILLS IN A SQUARE WITH THE CURRENT COLOR
127 GOSUB 122

128 X2 = XS + 2

129 HLIN XS,X2 AT YS

130 HLIN XS,X2 AT YS + 1

131 HLIN XS,X2 AT YS + 2

132 RETURN

133 REM SUBR GETMOVE

134 INPUT MOVES

135 PASS = 0

136 IF LEFT$ (MOVES,l) = "P" THEN PASS = 1: RETURN
137 IF LEN (MOVES$) < > 2 THEN 134
138 X = ASC (LEFT$ (MOVES$,1)) - 64
139 IF X < 1 OR X > 8 THEN 134

140 Y = ASC (RIGHTS (MOVES,1)) - 48
141 IF Y < 1 ORY > 8 THEN 134

142 RETURN

143 REM FIND AND EXECUTE MOVES

144 FLAG = 0

145 OP = 3 - TURN: REM COLOR OF OPPONENT

146 FORI =1 TO 8

147 NR = O

148 XN = X:¥N = Y

149 XN = XN + DX(I):YN = YN + DY(I)

150 IF BOARD(XN,YN) = OP THEN NR = NR + l: GOTO 149

200 Recreation/Applications

151 IF (BOARD(XN,YN) = 0) OR (NR = 0) THEN 170
152 REM IF WE GET HERE, CAPTURE IS POSSIBLE
153 FLAG = 1

154 COLOR= CC(TURN)

155 IF BOARD(X,Y) < > O THEN 159
156 GOSUB 126: REM CALL BLOT

157 BOARD(X,Y) = TURN

158 SC(TURN) = SC(TURN) + 1

159 FOR J = 1 TO NR

160 XN = XN - DX(I):YN = YN - DY(I)
161 BOARD(XN,YN) = TURN

162 XTEMP = X:YTEMP = Y

163 X = XN:Y = YN

164 GOSUB 126: REM CALL BLOT

165 X = XTEMP:Y = YTEMP

166 PRINT CHRS (7)

167 SC(TURN) = SC(TURN) + 1

168 sc(opP) = sc(op) - 1

169 NEXT J

170 REM

171 NEXT I

172 RETURN

-y 3 3 3 3y 3 3y 3y 3 3 3

N I B

)

Musical Duets

by Rick Brown

Music generated by the Apple II, without extra
firmware, is usually limited to one voice. Here are two
Applesoft programs which, with the help of an ordinary
amplifier, add a new dimension to Apple music —
harmony.

Anyone who has ever done any serious game-playing on the Apple II surely
realizes how a catchy tune played through the Apple’s speaker can enhance a pro-
gram. A short machine language program is all that is needed to generate notes
with a wide range of frequencies and durations. Such a tone-generating program is
very nice, but it only generates one voice, which is to say, only one note at any
given time can be played through the speaker. The usual way to acquire extra
voices is to open the piggy bank and buy a music board or some other peripheral
device designed for synthesizing music. For the serious music lover, it may be that
nothing less will do. But can anything be done to satisfy the rest of us, whose stan-
dards (or finances) may not be as high? I chose to try to add, through software, a
second voice to the Apple.

Now, before we go further, a little information about how a tone-generating
program works is in order.The assembly language instruction LDA $C030 will
toggle the Apple’s speaker once every time it is executed, resulting in a little
“*click.’”” Any sound whatsoever coming from the speaker is nothing but a series of
such clicks, and the nature of the sound depends only on the interval of time be-
tween one click and the next. In the simplest case, this time interval is constant,
and a steady, single-frequency, ''pure’’ tone is generated. One convenient way to
control the length of the pause between clicks is to use a ‘'do-nothing’’ loop in the
program, which generates a pause that is proportional to the number of times the
loop is executed. The longer the pause between clicks, the lower the frequency of
the resultant tone.

202 Recreation/Applications

It occurred to me that it might be possible, by interleaving two such ‘‘do-
nothing’’ loops, to superimpose one tone upon another and thus create the Apple’s
second voice. Consider two tones, one with a frequency of 500 Hz, and the other
with a frequency of 300 Hz. To generate the first, we make the speaker click at in-
tervals of 0.002s (s = seconds); that is, at these instants: 0,000s, 0.002s, 0.004s,
0.008s, 0.010s, etc.

Similarly, the 300 Hz tone would click at these instants: 0.0000s, 0.0033s,
0.0067s, 0.0100s, etc. Now, to generate both tones simultaneously, we should (it
would seem|) click the speaker at these instants: Os, 0.002s, 0.0033s, 0.004s,
0.0067s, 0.008s, 0.01s, and so on. The problem of the two tones '‘clicking’’ at the
same instant (e.g., at Os and at 0.01s) is taken care of by a sort of '‘phase shift'’ in-
herent in the way the two ‘'do-nothing’’ loops are interleaved.

Well, it all looks good on paper, and it might even work, were we using
sinusoidally varying pulses instead of instantaneous clicks. But in fact, what
results from the above technique is one of the most awful noises I've ever heard
coming from the Apple speaker.

A More Promising Technique

All is not lost. There is another assembly language instruction, LDA $C020,
which toggles not the speaker, but the cassette output. This produces a ‘‘click’’ on
a cassette recording. Or, if the output jack is connected to an amplifier, an audible
click is produced. This is the secret to the second voice. There are several ways to
amplify the signal. Perhaps the simplest is to plug an external speaker into your
cassette recorder, and set the recorder in the ‘‘record’’ mode. Then, any input to
the microphone jack will be amplified through the external speaker. Alternatively,
you could patch from the cassette output jack to the computer to the auxiliary in-
put of a stereo set. This method will probably give you more control over volume
and tone. Now, by clicking the Apple speaker at a fixed interval, and clicking the
alternate speaker at a different fixed interval, we can produce two distinct
simultaneous tones. The Apple now harmonizes with itself!

Making Music

The core of the programs presented here is a machine language routine which
generates two simultaneous notes of different pitches (P1 and P2), and different
durations (D1 and D2). These notes are stored in two tables: one contains the
melody and the other contains the harmony. After a note (either melody or har-
mony) is completed, the routine fetches the next pitch and duration from the ap-
propriate table, and plays the next note. When a duration of zero is encountered in
either table, the song is considered to be complete, and the machine language
routine terminates. A listing of this routine is given in figure 1.

For each note, the pitch and duration take up one byte apiece. Thus there are
256 variations of pitch, and 255 possible durations (recall that a duration of zero
will end the song). The value of P (the pitch) is proportional to the time delay be-
tween two successive '‘clicks’’ of the speaker, so that the highest values of P will
produce the lowest notes. Because of this, P should be considered proportional to
the wavelength, rather than to the frequency, of the note.

33 b

4

3

3

I D I N R

B R

33

3 3

Brown Musical Duets 203

Although we have 256 wavelengths to choose from, most of them produce
notes which are ‘‘between the keys of a piano.’’ In other words, in order to make
use of the isotonic scale to which we are accustomed, and in which music is com-
monly written, we must use only twelve notes per octave, and discard those
values of P which produce non-isotonic notes. The range of 256 wavelengths
available to us covers exactly eight octaves. The maximum number of isotonic
notes we can use is 8 x 12, or 96. (In practice, the number is limited still further,
as explained below.)

The ratio of wavelengths of two consecutive notes on the isotonic scale is a
constant 2 (1/12), or about 1.059, so that the ratio of wavelengths of two notes
an octave apart is always 2:1. Thus wavelengths 128 and 64 are an octave apart, as
are wavelengths 20 and 10, 2 and 1, and so forth. This fact imposes an obvious
limitation on the higher notes.

Suppose we have a very high note — say of wavelength 4. The note one octave
higher, then, has a wavelength of 2. Now, since the program uses only integers to
represent wavelengths, it cannot generate the 11 isotonic notes between these two
wavelengths (in fact, it can only generate one, corresponding to wavelength 3).

Another problem arising out of the use of integers for wavelengths is that the
higher notes have an unavoidable tendency to go off-key. Suppose that the exact
isotonic wavelength of a particular note (a low note, in this example) is calculated
to be 154.43 on a scale from 1 to 256. This is rounded off to 154, creating a relative
error of 0.29%. Consider now, a much higher note, whose exact wavelength is
15.43. This is rounded to 15, causing a much higher relative error of 2.8%, and it
is this relative error (rather than the absolute error), which is detected by the ear.

Taking into account the limitations discussed earlier, I designed the program
to use the lowest 65 isotonic notes available, covering a little more than five oc-
taves, and using wavelengths from 6 to 256 (the latter wavelength is represented
by zero in the routine). The highest notes are still a bit off-key, but generally they
are rarely used and won't create much of a problem. As far as the durations of the
notes are concerned, they remain, as far as the ear can tell, faithfully proportional
to their numerical values, throughout the range from 1 to 255.

The two programs presented here can be used to play duets. However, the
main purpose of the first program is to assemble the note tables from the data in-
put by the user and to save the song on disk, while the second program is used only
to load and play previously-recorded songs.

The Note-Table Assembler Program

This program provides an easy way to input a song, listen to it, edit it accord-
ing to taste, and finally to save it on disk for later use. The song is input to the pro-
gram through the use of DATA statements, which are typed in by the user each
time the program is run. All such DATA statements must have line numbers
greater than 696. The elements in these DATA statements will indicate the key

204 Recreation/Applications

signature (if any), the name and relative duration of each note, and the end of each
part (melody or harmony) of the song. There are also special DATA elements
which indicate that a particular part of the song is to be repeated. To facilitate the
entry of these data, the notes are called by their alphabetic names
(A,B,C,D,E,F,G) and converted by the program to the appropriate numerical
values. The key signature, by default, determines whether a given note is to be
played sharp, flat, or natural, but the signature may be overridden by appending
the character “'#'' (sharp), '&'’ (flat), or *'N’’ (natural) to the note’s name.

Notes of different octaves are indicated by a single digit appended to the note
name. If no such digit appears, octave 0 (zero) is assumed (this is the lowest octave
which can be notated). Thus, G3 is one octave above G2, and D#1 is one octave
above D#. The lowest letter-name within an octave is A, and the highest is G.
Thus A2 is just a little above G1, while G#4 and A&S5 designate the same note. A
detailed description of the formats of the data elements follows:

1. Key Signature (optional): If the music is written in a key other than C, the first
two data elements should indicate the key signature. The first element should
consist of the word ‘'SHARP" or “'FLAT'"’, and the second element should be a
string consisting of the letter names (in any order) of the notes to be sharped or
flatted. Example:

730 DATA FLAT,ADBE

2. Note Names: Each note name is an alphanumeric data item of the form XYM,
where:

X is one of the letters A, B, C, D, E, F, G, or R (rest)...

Y is an optional character indicating sharp (#), flat (&), or natural (NJ. Any of
these characters will override the key signature...

M is a number from 0 to 9, indicating which octave the note belongs to.
(However, the range within one song is limited to 65 notes, or about 5% oc-
taves.] M can be omitted if it equals zero.

If X equals ‘'R", then Y and M are omitted. Each note name must be followed
by its note-duration.

3. Note Duration: This is a numerical quantity indicating the relative duration of
the note that precedes it (the absolute duration will be calculated later). For ex-
ample, if a quarter-note is given a duration of 1, then a half-note would have a
duration of 2, etc. Example:

740 DATA F1,.5,F#1,1,R,2,BN,1.5
4. Repeat Flags: An asterisk followed by a single digit is a repeat flag. Repeat flags

should be placed at the beginning and end of any segment of the song which is
to be repeated. Repeat flags do not actually initiate a repetition, but merely

3

3

3 3 ¥ 3y 3y 3 3 3

I

3

Brown Musical Duets 205

serve as pointers which the REPEAT keyword (see below) can refer to. The
repeat flags marking the beginning and end of the segment must contain dif-
ferent digits. Example:

850 DATA G,3,+1,F,2,D,2,A,1,%2

5. Repeat: When the word REPEAT is used in a DATA statement, it indicates that

all the notes between some pair of previous repeat flags are to be repeated. The
two DATA elements following REPEAT must be single-digit integers indicating
which two of the preceding repeat flags delimit the segment to be repeated. For
example,

800 DATA REPEAT,2,5

will cause everything between flags *2 and *5 (including, possibly, other
REPEATS) to be repeated, assuming flags *2 and *5 have occurred as previous
DATA elements. A particular repeat flag may appear in several places without
error; a REPEAT command referring to that flag will always use the most recent
occurrence.

6. END1: In a duet, the data element ''END1’’ must follow the first part (melody)
of the song.

7. Second Part: Note names and durations for the second part (harmony) of the
song must follow '‘END1"’, in the format indicated in 2 and 5. The key
signature (if any) is still in effect and should not be repeated here.

8. END2: The DATA element 'END2'' must follow the second part (harmony) of
the song.

The above format applies to duets. There is also an option for entering and
playing 1-part solos. To do this, enter key signature, note names, note durations
and REPEAT specifications for one part, as described above, but following the last
note duration, enter the string "ENDSOLO’’ as the last data element. This will
cause the same tune to be played through both speakers. Figure 2 has been included
on disk under the name ‘‘BROWN NOTES'’ and can be EXEC’ed into the Note-
Table Assembler program.

Running the Program

Before running the program as shown, you may find it necessary to change the
value of M in line 10. HIMEM will be set to this value, which will be the highest
byte occupied by the note tables, plus 1. The value shown in the listing is for a
48K system without DOS. Modify line 10 if necessary, then save the program on
disk as shown (without any DATA statements).

Now, each time you load the program, type in the DATA statements accord-
ing to the format explained above, remembering to give them line numbers higher

206 Recreation/Applications

than 696. Caution: for alphanumeric data, trailing blanks are considered to be part

of the string, and may cause the data to be misinterpreted by the program. Avoid
trailing blanks!

After all the necessary DATA statements have been entered, type 'RUN"’. In
a few seconds, you will see the prompt ""TEMPO,KEY?’ The tempo you input
will be proportional to the length of the song, so that higher values will actually
produce slower music. Notice that this is opposite from the usual interpretation of
tempo. The tempo is multiplied by the relative note duration obtained from the
DATA statement, the product is rounded to the nearest integer, and the final value
is POKEd into the note table. So, for best results, you should input a tempo which,
when multiplied by the note duration, always yields an integer (thus avoiding any
rounding error|. In no case may the product of the tempo and the relative note
duration exceed 255. A product of 255 will produce a note about 3.0 seconds long.
All other durations are proportionally shorter.

The KEY is an integer value (positive, negative, or zero) indicating how many
semitones the song will be shifted up or down on the isotonic scale. Thus, for ex-
ample, a key of 22 is one octave (12 semitones) higher than a key of 10. If the input
key causes any note to fall outside the available range of 65 notes, an error
message will be given.

After the tempo and key have been input, the program begins assembling the
note tables. As the program processes the DATA statements, error or warning

messages may be given, generated either by the program or by Applesoft. These
messages are described in detail in table 1.

Program Commands

After the note tables are assembled, you will be prompted with a question
mark. In response to this, you may type one of the following commands:

GO plays the song, in harmony and stereo, with as many repetitions as
desired. (Be sure your amplifier is properly connected.)

SWAP causes parts 1 and 2 to switch speakers. Before this command is ex-

ecuted, part 1 plays through the Apple speaker, part 2 through your amplifier.
- .nother SWAP will restore the original speakers.

CHANGE allows you to change the tempo and key, and reassemble the note
tables.

EDIT lists the DATA statements and ends the program, allowing you to
modify the song.

SAVE requests a song title, then saves the note tables on disk. Since the pro-
gram uses the GET command to input the title, any characters may be input,
including colons, commas, and quotes. A carriage return terminates the input
and causes recording instructions to be displayed.

B R I

N D B R .

S I I R R e

S R B

Brown Musical Duets 207

Table 1: Error/ Warning Messages

PROBABLE CAUSE
Tempo = 0

MESSAGE

ILLEGAL QUANTITY ERROR
BAD SUBSCRIPT ERROR Illegal note name in DATA statement
OUT OF DATA ERROR No ""END2'’, or no ""ENDSOLO"’

Bad DATA statement format; data
type mismatch

SYNTAX ERROR

ERROR: KEY IS TOO HIGH Key would cause notes
to be outside of
ERROR: KEY IS TOO LOW allowable range

ERROR: TEMPO IS TOO LONG Tempo * Relative Duration > 255

for some note

DATA statements plus note tables
take up too much memory

ERROR: INSUFFICIENT MEMORY
FOR NOTE TABLES

The sums of the durations obtained
from the DATA statements do not
match. Song will play up to the
end of the shorter part.

WARNING: PART X IS XXX
UNITS SHORTER THAN PART X.
SONG WILL END EARLY.

WARNING: DURATIONS OF SOME
NOTES WERE ROUNDED TO THE
NEAREST INTEGER. TUNES MAY

Tempo * Relative Duration does
not equal an integer for some
note(s).

NOT BE SYNCHRONIZED.

The Playback Program

After I wrote the program just described (the first version of which did not in-
clude the SAVE command), it occurred to me that you could spend a lot of time in-
putting a masterpiece, and lose it all when the computer was turned off. Of
course, it's always possible to save the entire program, and thus preserve the
DATA statements, but this can run into a lot of disk space if you make a habit of
it. Another drawback of this method is that every time the program is reloaded,
the note tables have to be re-assembled, a process which can take several minutes
for long songs. With all this in mind, I added the SAVE feature to the note-table
assembler program, and wrote another program whose sole purpose was to load
and play previously recorded songs. Since this playback program loads note tables
which are already assembled, we do not experience the delay associated with
assembling, and of course a lot of time and tape is saved for anyone who wants to
build up a library of songs.

208 Recreation/Applications

As can be seen from the listing, line 10 of this program is the same as line 10
of the note-table assembler program. If necessary, modify this line as previously
described before running the program.

In line 180, ET is set to the beginning address of the file BLOADed in line 130.
The addresses PEEKed in line 180 are for a 48K system The correct addresses for a
smaller system can be found on page 144 of the DOS 3.3 manual.

After typing 'RUN"’, you will be prompted with a question mark. In response
to the question mark, any of the following commands can be typed:

GO plays the song. Same as the GO command described earlier.

SWAP switches the speakers. Same as the SWAP command described earlier.
CAT prints a catalog of the files on the disk.

LOAD allows you to load and play another song from disk.

Note that there are no CHANGE or EDIT commands here; this is a ‘‘read-only’’
type program. When running the first program, then, you should be sure the tempo
and key are adjusted to their most pleasing values before SAVEing the song.

A Sample Song

In figure 2, the DATA statements for a short song are given. This is a folk song
entitled ''Blue Bells of Scotland.’” The recommended tempo and key for this song
are 30, 20. These DATA statements illustrate several techniques which come in
handy when you're inputting a song:

1. Input one measure per DATA statement. This way, if you get a warning
that the two parts are not of the same length, you can simply check each DATA
statement until you find the measure that doesn’t ‘'add up.’’ This technique also
helps you to relate the DATA statements to the sheet music.

2. Choose note durations which will take the least amount of typing. In this
example, quarter notes are represented by 1, and eighth notes by .5. If a song con-
tains a preponderance of eighth notes, on the other hand, it might be wiser to
represent eighth notes by 1, and quarter notes by 2, etc., so that you would not
have to type in so many decimal points. This would simply require a corres-
ponding adjustment in the TEMPO when the program is run.

3. Number the DATA statements so that a measure in the melody can be
easily related to the corresponding measure in the harmony. In the example,
DATA statements of corresponding measures have line numbers separated by 100.

The Applesoft programs described provide a convenient method for transfer-
ring a song from sheet music to the computer. However, the assembly language
routine can be used independently, as long as note tables are created, and the

A

24y 1 3y 3 3 3 3 ¥ 3 1

S I

S

Brown Musical Duets 209

pointers to the beginnings of the note tables are initialized. Thus it is possible to
experiment with more exotic kinds of music, using all 256 wavelengths instead of
just the 65 to which my note-table assembler is limited. CALL 777 will start the
song playing. If the song is interrupted (as with a RESET), CALL 840 will cause it
to pick up where it left off.

Figure 2: Blue Bells of Scotland

800 DATA G,1
801 DATA +1,C1,2,B1,1,Al,1
802 DATA G,2,Al,1,B1,5,Cl,.5
803 DATA E,1,E,1,F,1,D,1

804 DATA C,3,%2,G,1

805 DATA REPEAT,1,2,G,1
806 DATA E,1,C,1,E 1,G,1

807 DATA Cl1,2,Al,1,B1,.5,Cl,.5
808 DATA B1,1,G,1,A1,1,F#,1
809 DATA G,2,Al,1,B1,1

810 DATA REPEAT,1,2

811 DATA ENDI

900 DATA R,1

901 DATA *3,R,1,E,1,4,F,1,F,1
902 DATA E,2,F,2

903 DATA G,1,C,1,D,1,F,1

904 DATA E,3,+5,R,1

905 DATA REPEAT,3,5,R,1

906 DATA C1,3,D1,1

907 DATA Al,2,F,1,G,.5Al1,5
908 DATA D1,2,C1,2

909 DATA B1,1,D1,1,G,1,E,1
910 DATA E,2,REPEAT,4,5

911 DATA END2

When you create the note tables ‘‘by hand’’, (without the aid of the note-table
assembler program), follow the structure illustrated in figure 3, POKEing the first
note into the highest memory location, and working your way down. The first
pointer (decimal locations 773,774) should be set to the location of the first pitch
of the first part, plus one. Similarly, the second pointer (decimal locations
775,776) should be set to the location of the first pitch of the second part, plus
one. In the case of solos, the first part is the second part, so both pointers are set to
the same location. By judicious placement of these pointers, you can play duets,
play solos, create a short delay between the two speakers for an '‘echo’’ effect, or
even '‘listen’’ to the computer’s ROM. For another interesting effect, execute the
following instruction:

POKE 835,80 — PEEK(835)

210 Recreation/Applications

Then, when you do a CALL 777, both parts of the song will be sent through the
same speaker. This will provide an excellent demonstration of why I chose to use
two speakers instead of one.

Whether you use the machine language routine independently, or with the
programs described in this article, or within your own BASIC programs, there is
plenty of room for experimentation.

Figure 3: Structure of Note Tables for Duets

These Pointer to B2 (Low Byte) HIMEM
pointers are Pointer to B2 (High Byte)
relative to Bl Pointer to ET (Low Byte)
Pointer to ET (High Byte) Bl
Pitch
Duration] Note 1
Pitch
J Duration

Note 2

Melody

L Duration Note n

500

500 B2

(Pitch Note 1

Duration Note
Pitch X

J Duration Note 2
I

Pitch }

Harmony .
| . |
|

Pitch

U Duration } Note m
$00
$00
Title (First Byte) ET

Title [Last Byte]
$0D (Carriage Return]

.y 8 3 3 B

S B

N5 D R N

31

4

3

0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0800
0006
0007
0008
0009
0800
0800
0300
0301
0302
0303
0304
0305
0306
0307
0308
0800
0800
0309
0309
0309
0309
030C
030E
0311
0313
0316
0318
031B
031D
031F
0322
0325
0328
0329
032B
032C
032F
0332
0332
0335
0338
0339
033B
033C
033F
0342
0342
0345
0348
D OF
034B
034D
0350
0352

0355
0358
035A

035D

AD
85
AD
85

85
AD
85
a9

20
20
CA
FO
EA
AD
4C

AE
88
FO
EA

4C

AC
CE

30
o1

07

11
48

20
03
00

NOTES

DO
CE
DO
20
CE
20

4cC

DB
02
03
60

N4
CE
84

28

03
03
03
03
03

03
03

11
03

co
03

11
03

co
03
03
03
03
03
03

03

WONONDWN~

7**k*iii***ittk*i******i*

;* 2-TONE GEN. ROUTINE

:* COPYRIGHT (C) 1982
MICRO INK,
;* CHELMSFORD, MA 01824
:* ALL RIGHTS RESERVED

RICK

TONE

BROWN

GEN

INC.

* * % % % % % % * * ¥

7
IS 222222222222 222222222222

7

INDX1L
INDX1H
INDX2L
INDX2H

7

:

I
Pl
D1
P2
D2
IlL
I14
I2L
I24

.
?
.
;

LBL1

TONE1

LBL2

TONE?2

LBL3

LBL4

EPZ
EPZ
EPZ
EPZ

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

ORG
OBJ

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
JSR
JSR
DEX
BEQ
NoOP
LDA
JMP

LDA
LDX
DEY
BEQ
NOP
LDA
JMP

LDA
LDY
DEC

BNE
DEC
BNE
JSR

DEC
BNE
JSR

JMP

$06
$07
so8
$09

$300
$301
$302
$303
$304
$305
$306
$307
$308

$309
$800

IlL
INDX1L
I14
INDX1H
I2L
INDX2L
I24
INDX2H
#$00

I
READ1
READ2

TONEL

$1111
LBL2

$C030
Pl

TONE2

S$1111
LBL3

$C020
P2
I

LBL1
Dl
LBL4
READL

D2
LBL1
READ2

LBL1

Brown

s INITIALIZE
s POINTERS

: TO

;s BEGINNING
:ADDRESSES
:OF

:NOTE

: TABLES

Musical Duets 211

FETCH FIRST NOTE OF MELODY
;FETCH FIRST NOTE OF HARMONY

;THESE TWO INSTRUCTIONS CAUSE

:A 6~-CYCLE TIME DELAY

;CLICK SPEAKER AFTER Pl LOOPS

sRESET X-REGISTER

:T™MESE TWO INSTRUCTIONS CAUSE

;A 6-CYCLE TIME DELAY

;CLICK SPEAKER AFTER P2 LOOPS

:RESET Y-REGISTER

;AFTER 256 LOOPS, CHECK FOR EN

:END OF MELODY NOTE?

$NO, CHECK HARMONY NOTE

:YES, FETCH NEXT NOTE
:END OF HARMONY NOTE?
:NO, LOOP AGAIN

;YES, FETCH NEXT NOTE

s TMEN LOOP AGAIN

OF HARMO

OF HARMO

212

0360
0360
0362
0364
0366
0368
036A
036C
036F
0371
0373
0375
0377
0379
037¢C
037E
037F

Recreation/Applications

A2
AS
DO
cé
Ccé
Al
8D
AS
DO
Cé6
Ccé
Al
8D
DO
68
68

OGRAM

0380
0383
0384
0384
0386
0388
038a
038C
038E
0390

NOTE

0393
0395
0397
0399
0398
039D
03a0
03A2
03a3

OGRAM

03a4
03A7
03a8

AC
60

00
06
02
07
06
06
o1
06
02
07
06
06
02
02

01

03

03

03

03

03

03

03

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94

100
101
102
103
104
105
106
107
108

109
110
111

READ1

LBL5

LBL6

LBL7

READ2

LBL8

LBL9

LBL10O

LDX
LDA
BNE
DEC
DEC
LDA
STA
LDA
BNE
DEC
DEC
LDA
STA
BNE
PLA
PLA

LDX
RTS

LDY
LDA
BNE
DEC
DEC
LDA
STA

LDA
BNE
DEC
DEC
LDA
STA
BNE
PLA
PLA

LDY
RTS
END

#$00
INDX1L
LBLS
INDX1H
INDX1L
(INDX1L, X)
Pl
INDX1L
LBL6
INDX1H
INDX1L
(INDX1L,X)
D1 :DURATION OF MELODY NOTE
LBL7
:IF D1=0, POP RETURN ADDRESS
;OFF STACK, SO RTS WILL END PR

Pl

#s00

INDX2L

LBL8

INDX2H

INDX2L

(INDX2L),Y

P2 ;PITCH (WAVELENGTH) OF HARMONY

INDX2L

LBL9

INDX2H

INDX2L

(INDX2L),Y

D2 :DURATION OF HARMONY NOTE

LBL10
:IF D2=0, POP RETURN ADDRESS
;OFF STACK, SO RTS WILL END PR

P2

3 v 3 3 1 3y 3y 3 31 3 3 1B

4

1

N I B

WONOUVDWNHFO

210
220
230
235

237
240
250
255
260
270
280
290
295
300
310
320
330
340
350
355
360
370
375

380
385
390
395

400
405
410

420

430
440
450

Brown Musical Duets 213

REM AR A TRk kkhhhhhrhhhhhdd

REM * *
REM * NOTE-TABLE ASSEMBLER *
REM * RICK BROWN *
REM * *
REM * COPYRIGHT (C) 1982 *
REM * MICRO INK, INC. *
REM * CHELMSFORD, MA 01824 *
REM * ALL RIGHTS RESERVED *
REM * *
REM LA 222222 222222222222 22223
REM

REM

M = 38400: REM M=HIGHEST AVAILABLE ADDRESS
Bl =M - 4: HIMEM: M

DIM N%(65),P%(7),M(10),L(10)

DEF FN HI(X) = INT (X / 256)

DEF FN LO(X) = X - FN HI(X) * 256

REM LOAD MACHINE LANGUAGE PROGRAM

PRINT CHR$ (4)"BLOAD BROWN/TONE GEN.CODE"

Ng(0) = 1:N%(1) = 0
REM SET ISOTONIC WAVELENGTHS
FOR I = 2 TO 65

N3(1) = 256 / (2 ~ ((I - 1) / 12)) + .5
NEXT I
REM ABCDEFG

P3(1) = 0:2%(2) = 2:P%(3) = 3:P%(4) = 5

P%(5) = 7:P%(6) = 8:P%(7) = 10

E=M- FRE (0) - 65536 * (FRE (0) < 0) + 200: HIMEM: E

D$ = CHRS (4)

BS = CHR$ (7) + "ERROR: "
RESTORE : INPUT "TEMPO,KEY? ";
READ P$: IF P$ = "SHARP" OR PS$
RESTORE :LN = 0
FOR I =Bl -1 TO E STEP - 2
READ P$: IF LEFT$ (P$,3) = "END" THEN 370

T™,K%:L = 0:F1 = 0
= "FLAT" TYEN 680

IF P$ = "R" TYEN P = O: GOTO 330

IF LEFT$ (P$,1) = "*" TYEN MK = VAL (MID$ (P$,2)):M(MK) = I:L(MK)
= L: GOTO 220

IF LEFT$ (P$,6) = "REPEAT" THEN 692

P = P3(ASC (PS) - 64) + 12 * VAL (RIGHTS (P$,1)) + K%
AS$ = MID$ (P$,2,1)

IF A$ = "N" THEN 310

IF AS = "#" THEN P = P + 1: GOTO 310

IF A$ = "&" THEN P = P - 1: GOTO 310

IF LN = 0 THEN 310

FOR J = 1 TO LN

IF MIDS (SF$,J,1) = LEFTS$ (P$,1) THEN P = P + Q: GOTO 310
NEXT

IF P < 1 ™EN PRINT B$;"KEY IS TOO LOW": GOTO 180

IP P > 65 THEN PRINT B$;"KEY IS TOO HIGH": GOTO 180
READ DD:L = L + DD:DD = DD * ™:D = INT (DD + .5)

IF D > 255 THEN PRINT B$;"TEMPO IS TOO LONG": GOTO 180
IF D < > DD THEN F1 =1

REM POKE PITCH & DURATION INTO NOTE TABLE

POKE I,N%(P): POKE I - 1,D: GOTO 390

POKE I,0: POKE I - 1,0

IF LEFT$ (P$,7) = "ENDSOLO" THEN B2 = Bl:ET = I - 2:L2 = Ll: GOTO 4
00

IF LEFT$ (P$,4) = "END2" THEN ET = I - 2:L2 = L - Ll: GOTO 400

B2 =1 - 1:L1 =L

NEXT I

PRINT B$:"INSUFFICIENT MEMORY": PRINT "FOR TUNE TABLES": HIMEM: M: END

POKE M - 1, FN LO(Bl - B2): POKE M - 2, FN HI(Bl1l - B2)

POKE M - 3, FN LO(Bl - ET): POKE M - 4, FN HI(Bl - ET)

IF L1 < > L2 THEN SH = .5 * (3 - SGN (L2 - L1)): PRINT : PRINT “WA
RNING: PART ";SH:;" IS "; ABS (Ll - L2):" UNITS SHORTER": PRINT "THAN
PART ":3 - SH;". SONG WILL END EARLY."

IF F1 THEN PRINT : PRINT "WARNING: DURATIONS OF SOME NOTES WERE": PRINT
"ROUNDED TO THE NEAREST INTEGER. TUNES": PRINT "MAY NOT BE SYNCHRON
IZED."

POKE 773, FN LO(Bl): POKE 774, FN HI(B1)

POKE 775, FN LO(B2): POKE 776, FN HI(B2)

PRINT : INPUT COMS

214

460
470
480
490
500
510
515

520
530
535
540
550

552
555
557
560
565
570
580
590
600
680
690
692
694
696

Recreation/Applications

IF LEFTS$ (COM$,2) < > “"GO" THEN 500

INPUT “REPETITIONS? ";R

FORI =1 TO R

CALL 777: NEXT I: GOTO 450

IF LEFT$ (COMS,6) "CHANGE" THEN 180

IF LEFT$ (COMS$,4) "EDIT" THEN HIMEM: M: LIST 697,: END

IF LEFTS (COMS,4) “SWAP" T4EN POKE 819,80 - PEEK (819): POKE 83
5,80 - PEEK (835): GOTO 450

IF LEFT$ (COMS$,4) < > "SAVE" TMEN PRINT “WHAT?": GOTO 450

PRINT "TITLE (1-30 CHARACTERS):"
FILE$ = “"

FOR I =1 TO 31

GET P$: IF P$ = CHRS (8) THEN I = I + 1l: PRINT " "; CHR$ (8); CHRS
(8):: GOTO 550

IF P$ = ", TIEN P$ = “;°

IF P$ = CHR$ (21) THEN 550

IF P$ = CHRS$ (24) THEN PRINT CHR$ (92): GOTO 535

PRINT P$;: IF P§ = CHR$ (13) THEN 580
FILE$ = FILES$ + P$

NEXT I: PRINT : PRINT B$:"TITLE TOO LONG": GOTO 530

PRINT D$"BSAVE “;FILES$:",A":;ET;",L":M - ET

PRINT DS"LOCK ":;FILES

GOTO 450
Q=1: IF P$ = "FLAT" ™MEN Q= -1

READ SF$:LN = LEN (SF$): GOTO 210

READ M1,M2: IF I + M(M2) - M(M1l) < E THEN 395

IF M(M2) > = M(M1l) THEN 220

FOR K = M(M1) TO M(M2) + 1 STEP - 1: POKE I + K - M(M1l), PEEK (K): NEXT
:I =1+ K- M(ML):L =L + L(M2) - L(M1l): GOTO 220

REM L2222 2222222222222 22222 2%

WONOVHWN -
g
* % % % % * ¥

MUSICAL DUETS
RICK BROWN

COPYRIGHT (C) 1982
MICRO INK, INC.
CHELMSFORD, MA 01824
ALL RIGHTS RESERVED

* % % ¥ % * * F *

=
2

REM **dkhkkdkthhhhhhhhrhhhhhr

12 M = 38400: REM MUST BE SAME ADDRESS AS IN ASSEMBLER-PROGRAM

260
270
280
290
300
310
330
340

REM LOAD MACHINE LANGUAGE PROGRAM
PRINT CHR$ (4)"BLOAD BROWN/TONE GEN.CODE"
DEF FN HI(X) = INT (X / 256)
DEF FN LO(X) = X - FN HI(X) * 256
HOME : GOTO 240
HIMEM: M:Bl = M - 4
PRINT
INPUT “"TITLE? “;FILES
PRINT CHR$ (4);"BLOAD ";FILES
B2 = Bl - (PEEK (M - 1) + 256 * PEEK (M - 2))
T =Bl - (PEEK (M - 3) + 256 * PEEK (M - 4))
ET = PEEK (43634) + PEEK (43635) * 256: REM CONTAINS BEGINNING ADD
RESS OF FILES$(FOR 48K SYSTEM)
HIMEM: ET
POKE 773, FN LO(Bl): POKE 774, FN HI(B1)
POKE 775, FN LO(B2): POKE 776, FN HI(B2)
PRINT : INPUT COMS$
IF COM$ < > “"GO" THEN 280
INPUT "REPETITIONS? ";R
FOR I = 1 TO R: CALL 777: NEXT I: GOTO 240
IF COM$ = "LOAD" THEN 100
IF COM$ < > “"SWAP" THEN 330
POKE 819,80 - PEEK (819): POKE 835,80 - PEEK (835)
GOTO 240
IF COM$ < > “CAT" THEN PRINT "WHAT?": GOTO 240
PRINT CHR$ (4)"CATALOG": GOTO 240

_.3

3

8

.

3 5 5 8 3 3

-

-

-

Language Index

APPLESOFT BASIC

AMPER-SEARCH1 Amper-Search for the Apple, Hill 9
AMPER-SEARCH2 Amper-Search for the Apple, Hill 9
VARIABLE LISTER Applesoft Variable Lister, Albright 24
FIAT-LOADER Fast Fractional Math Package, Huntress 65
ERROR1-CALLER Applesoft Error Messages from Machine Language,
Cochard 84
TRICK DOS Trick DOS, Mossberg 100
LACRAB List and Cross Reference Applesoft BASIC, McBurney 107
LACRAB INSTRUCTIONS List and Cross Reference Applesoft BASIC, McBurney 107
COLOR FILTER DEMO Color Filter, Berggren 127
LISSAJOUS FIGURES 3-D Images, Radcliffe 131
NOISY COASTER 3-D Images, Radcliffe 131

STOCK HOLDINGS MGR A Simple Securities Manager for the Apple, Guest 177
SOLAR SYSTEM

SIMULATION Solar System Simulation, Partyka 186
OTHELLO Othello, Taylor 196
NOTE TABLE ASSEMBLER Musical Duets, Brown 201
MUSICAL DUETS PLAYBACK Musical Duets, Brown 201
INTEGER BASIC
FIREWORKS Apple Bits, Vile 136
PATTERN MAKER Apple Bits, Vile 136
LARGE DRIVER Apple Bits, Vile 136
RANDOM WALK Apple Bits, Vile 136
LOCOMOTIVE Apple Bits, Vile 136
MACHINE LANGUAGE
LINE FINDER Applesoft Line Finder Routine, Meyer 5
AMPER-SEARCH Amper-Search, Hill 9
APPLESOFT VARIABLE

LISTER OB] Applesoft Variable Lister, Albright 24
SHELL-METZNER SORT Applesoft Variable Lister, Albright 24
DISASSMB Double Barrelled Disassembler, Rosenberg 39
DISASSMB-SC Double Barrelled Disassembler, Rosenberg 39
ROSS-ASSEMBLER X-REFFING 6502 Programs with the Apple, Bongers 48
CROSS-SLOT-ZERO X-REFFING 6502 Programs with the Apple, Bongers 48
FIAT Fast Fractional Math Package, Huntress 65
ERRORI1 Applesoft Error Messages from Machine Language,

Cochard 84
ERROR2 Applesoft Error Messages from Machine Language,

Cochard 84
GI Serial Line Editor, Huntress 89
GETLNA Serial Line Editor, Huntress 89
COLOR FILTER Color Filter, Berggren 127
APPLE-BITS Apple Bits, Vile 136
SPARKS Apple Bits, Vile 136
LARGE LETTERS Apple Bits, Vile 136
LITTLE MEN Apple Bits, Vile 136
TRAIN Apple Bits, Vile 136
TONE GEN Musical Duets, Brown 201
TEXT FILES
LIST List and Cross Reference Applesoft BASIC, McBurney 107

BROWN NOTES Musical Duets, Brown 201

Author Index
(Biographies included)

Albright, Richard. 24
Employed by the U.S. Department of Transportation to develop software
systems for nationwide deployment. Formed Sienna Software in 1981.

Berggren, StephenR.., 127
Captain in the U.S. Air Force. Has owned an Apple for several years; especially
interested in programming games.

Bongers, Comnelis. i 48
Assistant professor of statistics at Erasmus University in Rotterdam, The
Netherlands.

Brown, Rick....... ... i 201
Bachelors degree in physics. His programming interests include utilities,
physical simulations, and artificial intelligence.

Cochard, Steve........... ...t 85
A principal of Scientific Software. Also, structural engineering supervisor with
a large engineering/construction firm.

Guest, Ronald A.. 177
Computer scientist with Bell Telephone Laboratories. Involved in exploratory
work in the area of operating systems.

Hill, Alan. . ..o 9
Apple owner and enthusiast since early 1978. Specialty: writing utility programs.

Huntress, Wes. i e e e e 65, 89
Space scientist at the Jet Propulsion Lab in Pasadena. He works on the chem-
istry of planetary atmospheres. Has found the Apple very useful in his work.

McBurney, N R e 107
Southern Region Manager, Custom Applications, for General Electric's Infor-
mation Services Co. Uses his Apple as an interface to his company’s MIS.

Meyer, Peter].G. e 5
Previously wrote programs in FORTRAN for scientific and technical applica-
tions. Currently is designing a system for interfacing Applesoft programs with
machine-language subroutines.

2

2y 3)

S R R |

3

B D R .

4 3

3

3

3

3

N5 DA B B D I

3

i 3

Author Index 217

Mossberg, Sanford M.. 100
Although a physician by profession, also a programming enthusiast, and col-
umnist for a club newsletter.

Paris, GIeg.i i 164
Involved in neurobiology research; interested in programming micro-
computer-based instrumentation.

Partyka, David.t e 186
Works as a programmer on an IBM 3031 OS for the May Department Stores Co.

Radcliffe, Art. 131
Has acquired 32 patents in computer and communication circuits and systems
while working for IT & T, Radiation Inc., and Burroughs over 25 years. Also
worked in optics and holography.

Rosenberg, David L.. i i e 39
Analyst with the Management Sciences department of Holiday Inns, Inc. Has
been in computer field for nine years.

Taylor, Charles F., Jr..o e 196
Member of the faculty at the Naval Postgraduate School in Monterey, CA,
where he teaches Operations Research and Computer Science.

Vile, Richard C., Jr..o e e e e 137
Manager of a Software Technology group for Bell Northern Research, in Ann
Arbor, MI.

Woodward, Kim G.. 157
Works as a computer scientist for the U.S. Coast Guard in Washington, D.C.

218 Disk Information

002 HELLO

003 DISASSMB

003 DISASSMB-SC

006 CROSS ASSEMBLER

006 CROSS-SLOT-ZERO

006 FIAT

003 FIAT-LOADER

002 ERROR1-CALLER

002 ERRORI1

002 ERROR2

008 AMPER-SEARCH1

010 AMPER-SEARCH2

005 AMPER-SEARCH

002 LINE FINDER

016 VARIABLE LISTER

002 APPLESOFT VARIABLE LISTER OBJ
002 SHELL-METZNER SORT
031 STOCK HOLDINGS MGR
039 SOLAR SYSTEM SIMULATION
014 OTHELLO

002 TONE GEN

015 NOTE TABLE ASSEMBLER
004 BROWN NOTES

006 MUSICAL DUETS PLAYBACK
002 COLOR FILTER

003 COLOR FILTER DEMO
005 LISSAJOUS FIGURES
011 NOISY COASTER

004 APPLE-BITS

004 FIREWORKS

010 SPARKS

010 LARGE LETTERS

016 PATTERN MAKER

007 LARGE DRIVER

006 RANDOM WALK

003 LITTLE MEN

003 TRAIN

006 LOCOMOTIVE

002 GI

003 GETLNA

031 TRICK DOS

042 LACRAB

006 LACRAB INSTRUCTIONS
002 LIST

012 BFILE PARAMETER LIST

PEAPPPHIHPIOTAHHIOHDIPPIPEPAPOPPIPEE PP P PO PP EEEEEP

S I T R |

Ay vy oy)

-3

S R R R R R

AR

Warranty
MICRO on the Apple

Although we've worked to create as perfect a diskette as possi-
ble, including hiring a reputable, reliable disk manufacturer to
copy the diskettes, there is no guarantee that this diskette is
error-free.

To cover the few instances of defective diskettes, we are
providing the following warranty (this card must be filled out
and returned to MICRO INK, Inc., immediately after purchase):

If within one month of purchase you find your diskette is
defective, return the diskette to MICRO, along with $1.00 to
cover shipping and handling charges.

If after one month of purchase, but within no time limit,
this diskette proves defective, return it to MICRO with $6.00
to cover replacement cost, shipping and handling.

Your date of purchase must be validated by your dealer; if
purchased directly from MICRO, the valid date appears on this
card.

Defective diskettes must be returned to MICRO to enable
our quality assurance personnel to test and check the diskette.
We need to know what caused the defect to avoid similar prob-
lems in the future.

We recommend that you try LOADing or BLOADing each
program on the diskette immediately after purchase to ensure
that the diskette is not defective.

Signature Date of purchase (Volume 2)

Address (please print):

Name

Street

City State/Province/Country Code

QAL

R

R AR AN

Other Products from MICRO

In addition to the MICRO on the Apple series, MICRO INK, Inc., pro-
duces several other products, including MICRO magazine, a monthly
journal which reports on new 6502/6809 microprocessor family appli-
cations, systems, and developments. Other books published include
the Best of MICRO series (anthologies of some of the best general-
interest articles from MICRO), and What’s Where in the Apple, (a
detailed Atlas and memory map for the Apple II computer).

Ask your dealer for MICRO, or subscribe by completing this form:
Yearly Rates (U.S Dollars)

Surface Air Mail
United States $24.00 n/a
Canada 27.00 n/a
Europe 27.00 $42.00
Mexico, Central America
Middle East, North Africa
Central Africa 27.00 48.00
South America, South Africa
Far East, Australasia 27.00 72.00
MICRO Books
At Your Dealer Ordered by Mail
Surface Air Mail
(Not U.S./Canada)
Best of MICRO, Vol. 1 $ 6.00 $ 8.00 $12.00
Best of MICRO, Vol. 2 8.00 10.00 15.00
Best of MICRO, Vol. 3 10.00 12.00 18.00
What's Where in the Apple 14.95 16.95 19.95
MICRO on the Apple
(each volume) 24.00

Note: Circle desired item.

Subscription rates are subject to change without notice. These prices
are current as of January 1982.

O Check enclosed for $
O Bill VISA
O Bill MasterCard

Signature Card Number Expires

Please print

Name

Street

City State/Province/Country Code

Notice to Purchaser
When this book is purchased, this pocket should contain

A. One floppy disk entitled MICRO on the Apple,
Volume 3.
B. A warranty card pertaining to the disk.

If either is missing, make sure you ask the seller for a copy.

The publisher hereby grants the retail purchaser the right
to make one copy of the disk for back-up purposes only.

Any other copying of the disk violates the copyright laws
and is expressly forbidden.

Preliminary article selections were made by Ford Cavallari, Editor of Volumes 1 and 2.
| Final article selectmn program testing and modifications were made by Apple expert

. Tim stnm;wha‘s s’{as an Editor on the staff of MI RO Many authors provuied
their own updates and improvements. . .

* MICRO INK, Inc.
P.O. Box 650;
Chelmsford Massachusetts 01824

