

\

I

I

TML BASIC

for the Apple IIGS

User Manual

Version 1.0, December 1987
COPYRIGHT© 1987 by TMLSystems, Inc.

8837-B Goodbys Executive Drive
Jacksonville, Horida 32217

(904) 636-8592

All rights reserved
Printed in U.S.A.

TML BASIC™ LICENSE AGREEMENT

This manual and the software described in it were developed and copyrighted by
TML Systems, Inc. and are licensed to you on a non-exclusive, non-transferable basis.
Neither the manual nor the software may be copied in whole or in part except as
follows:

1. You may make backup copies of the software only for your personal use
providing the backup copies bear TML Systems' copyright notice.

2. You have the right to include the object code provided in the several libraries
included with TML BASIC in programs you develop using this software and you
also have the right to use, distribute and license such programs to third parties
without payment of any further license fees providing that you include the
following copyright notice (nno less prominently than your own copyright notice)
in the software and its documentation:

"© 1987 TML Systems, Inc. Certain portions of this software are copyrighted by
TML Systems, Inc."

3. You may not, in any event, distribute any of the source files or the TML BASIC
application provided as part of this software.

4. You may use the software and its documentation at any number of locations or
on any machine so long as there is no possibility of it being used at more than
one location or on one machine at any one particular time.

CUSTOMER SUPPORT AND PRODUCT UPGRADE PLAN

Software Registration. Your registration of TML BASIC is ESSENTIAL for you to
receive the full benefits of TML Systems' customer services. TML BASIC is a very
large and sophisticated software package. From time to time, TML Systems will
improve its product making it even more powerful and useful to you. You can take
advantage of our ongoing development efforts if you have returned your
registration card to us. As a registered TML BASIC user, you will receive
announcements about major improvements for your software. These
announcements will provide you the cost of the upgrade and ordering procedures.
Only registered users will receive these upgrade notices and be eligible to purchase
the upgrade.

Technical Support. We at TML Systems would like you to take the greatest
advantage of your development tools as possible. If you have a technical problem we
will be glad to help. Gather ALL pertinent information to recreate the problem along
with your registration number, and call our Technical Support Department at (904)
636-0118 during our normal support hours. You may also write to:

TML Systems, Inc.
Technical Support Department
8837-B Goodbys Executive Drive
Jacksonville, Florida 32217

Remember, it is required that you include your registration number with all
correspondence and have it available when you call TML Systems. TML Systems
retains the right to deny Technical Assistance to any person unable to identify his
software by registration number.

Version Printing Date

1.0 First Printing December 1987

The information contained in this document is subject to change without notice.
TML Systems makes no warranty of any kind with regard to this written material.
TML Systems shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use of
this manual.

This document is protected by all applicable copyright laws. All rights reserved. No
part of this document may be photocopied, translated to another language, or
reproduced in any manner without the prior written consent of TML Systems, Inc.

Your suggestions and input are extremely valuable in assisting us to continue
providing the most complete development tools possible. If you have any
comments or suggestions regarding either the TML BASIC development system
software or this documentation, please send comments to:

TML Systems, Inc.
Customer Support Department
8837-B Goodbys Executive Drive
Jackson ville, Florida 32217

to Laurrie and Donna

Table of Contents

Introduction

About this manual
Apple IIGS T echnlcal Documentation from Apple
Where to go for more Information
Notational Conventions
System Requirements
Acknowledgements

Part II - TML BASIC User's Gulde

Chapter 1 Starting Out with TML BASIC

Backing up the Distribution Disk
Flies on the Distribution Disk
Textbook versus Toolbox Programming
Setting Up

Single Disk Drive System
Two Disk Drive System
Hard Disk Drive System
A Note on RAM Disks

Compiled versus Interpreted Languages
Line Numbers In TML BASIC

Chapter 2 Using TML BASIC

Running TML BASIC
Examining the Integrated Environment
Opening a Program
Organizing the Editing Environment
Program Integrity
Exiting TML BASIC

Chapter3 Complllng and Running a Program

Looking at Examples
Compiling Alternatives
T estlng a Program's Source Code
Running a Program
Creating a stand-Alone Application
Compiling Libraries
Detecting Errors

Editor Errors
Compiler Errors
Linker Errors
Runtime Errors

Just a Reminder ...

2
5
6
7
8
8

11

11
12
14
14
15
15
15
16
16
17

19

19
20

22
23
25
26

27

27
27
28
30
31
32
33
34
35
36
37
:J;

Chapter4 Advanced Program Editing

Creating a New Editing Window
Using the Clipboard
Editing Commands
Find and Change
Printing
The Preferences Dialog
ProDOS Commands In TML BASIC

Chapter 5 Your First Program

The First Program
The REM statement
The LET statement
The PRINT Statement
The GETS statement
The INPUT Statement
Multiple Statements
Summary

Chapter 6 TML BASIC Menu Reference

The Apple Menu
The File Menu
The Edit Menu
The Search Menu
The Windows Menu
The Compile Menu
The ProDOS Menu
Command-Keys versus the Mouse

Part II - TML BASIC Language Reference

Chapter 7 Language Elements

Source Code Structure
Programs
Libraries

TML BASIC Character Set
Reserved Words

Numbers In TML BASIC
Integers
Double Integers
Long Integers
Single-Precision Reals
Double-Precision Reals
Extended-Precision Reals
The Standard Apple Numeric Environment (SANE)

Strings In TML BASIC
Constants

41

53

53
54
55
56
58
59

60
61

63

63
64
68
70
71
72
79
80

83

83
85
85
85
86
88
88
88
88
89
89
89
90

91
91

Numeric Constants
string Constants

Variables
Reserved Variables

Arrays
Dimensioning Arrays
Dynamic Allocation
Evaluation of the DIM statement
SUbscrlpts
structure Arrays

Expressions
Operators

Arithmetic Operators
Relational Operators
Logical Operators
String Operators

Precedence

Chapter8 Subroutines, Procedure, Functions and Libraries

Subroutines
Procedures

Defining Procedures
Local Variables
Using Procedures

Functions
Defining Functions
Using Functions

Formal versus Actual Parameters
Program Flow
Recursion
A Lesson on stacks
Libraries

Using a Library
Compiling Libraries
Predefined Libraries

Chapter9 Flies

ProDOS 16 Fundamentals
FIienames
Pathnames

Manipulating Flies
CREATE statement
DELETE statement
RENAME statement
LOCK and UNLOCK statements
CATALOG statement
VOLUMES statement

Opening and Closing Files
OPEN statement
CLOSE statement

91
92
93
94
94
94
96
97
98
99
99

100
100
102
103
104
104

107

107
109
109
110
lll
112
112
113
114
114
115
116
117
118
119
120

121

121
121
122
124
124
125
125
126
126
126
127
127
128

File Access Techniques
Sequential Access
Random Access

Accessing Text Files
INPUT# Statement
PRINT# Statement

Accessing BASIC Data Files
Structure of a BDF File
READ# statement
WRITE# statement

Accessing Binary Flies
GET# Statement
PUT# Statement

Other File Operations
ON EOF# Statement
OFF EOF# Statement
EOF Reserved Variable
EOFMARK Function
FILE Function
FILTYP Function
TYP Function
REC Function

Summary

Chapter 1 O Statements and Functions

Part m - Toolbox Programming

Chapter 11 Programming the Toolbox

Review of the Apple IIGS Tools
The Six Basic Tool Sets
Desktop Interface Tools
Device Interface Tools
Operating Enviornment Tools
Specialized Tools

Where are the Tools?
The Toolbox Libraries

The Library Statement
Searching for a Library

The CALL Statement
The R.STACK Functions
Using EXFN instead of CALL
An Example

Chapter 12 Quickdraw Graphics

Drawing to the Screen (and Elsewhere)
Where QuickDraw II Draws

The Coordinate Plane
Pixel Images and the Coordinate Plane

129
129
130
130
131
132
133
133
134
135
136
136
137
138
138
139
139
139
140
140
140
140
141

143

315

316
317
317
318
319
319
320

321
322
323
323
324
325
326

327

327
327
328
330

GrafPort. Port Rectangle. and Clipping
Global and Local Coordinate Systems

How QulckDraw II Draws
The Drawing Pen
Basic Drawing Functions

What QuickDraw II Draws
Points and Lines
Rectangles
Circles. Ovals. Arcs. and Wedges
Polygons
Regions
Pictures

... And Text too
Characters
Fonts

Drawing In Color
Color Tables and Palettes
standard Color Palette (320 Mode)
Dithered Colors in 640 Mode

Chapter 13 Creating a Desktop Application

The Desktop Interface
Human Interface Guidelines
Desktop Elements

Event-driven Programming
The Main Event Loo'p
Event Handling

An Example Desktop Application
The DeskTools Library
Writing a Desktop Application

The startup Tools Procedure
The Shutdown Tools Procedure
The SetUpMenus Procedure
The SetUpWindows Procedure
The SetUpEventsTables Procedure
The MalnEventLoop Procedure

Summary

Part IV - Appendices

Appendix A Error Messages

TML BASIC Editor Errors
TML BASIC Compiler Errors

Lexical Errors
Syntax Errors
Semantic Errors
Library Errors

TML BASIC Linker Errors
TML BASIC Runtime Errors

332
333
336
336
338
338
3:5;

340
342
343
343
344
344
345
347
349
350
351
352

353

355
355
357
358
358
359

363
363
364
365
368
369
372
376
377
380

383

383
385
385
385
387
388
389
390

Appendix B Metastatements

$Checkstack
SCodeSegment
SDataSegment
$Debug
$ EventTrapping
$Keyboard Break
SOnError
$StackSize
$StringPoolSize

Appendix C Apple IIGS Toolbox Libraries

Control Manager
Desk Manager
Dlalog Manager
Event Manager
Font Manager
Integer Math
Line Edit
List Manager
Memory Manager
Menu Manager
Miscellaneous Tools
Note Synthesizer
Print Manager
Quick Draw
QuickDraw Auxiliary
Scheduler
Scrap Manager
Sound Manager
standard File
Text Tools
Tool Locator
Window Manager

Appendix D Comparing TML BASIC with GS BASIC

Compiler / Interpreter Differences
Unsupported statements and Functions
statements Requiring Modification
Execution/ Compilation Order of Programs

Extensions to GS BASIC
IF Block statement
Libraries

TML BASIC Compiler Issues
The TML BASIC Editor and Large Programs
Segmentation
Expression Evaluation

Exporting GS BASIC Programs into TML BASIC

395

401

406
410
412
416
419
421
423
425
427
430

433
436
438
442
457
458
459
460

.462
465
.467
469

475

475
476
477
478
479
479
480
480
480
480
481
481

Appendix E The ASCII Character Set

Appendix F ProDOS 16 Filetypes

Index

483

489

Welcome to TML BASIC for the Apple JIGS. TML BASIC is a programming
language designed to meet the needs of the broadest range of programmers possible
for the Apple IlGS. TML BASIC is a modern, 16-bit, compiled implementation of the
BASIC (Beginner's All-purpose Symbolic Instruction Code) language and is
compatible with Apple Computer's GS BASIC, an interpreted implementation of
the BASIC language.

TML BASIC is an extended version of the BASIC programming language and
includes many new features and statements not found in more traditional
implementations. For example, TML BASIC provides control structures like the
00 ... WHILE ... UNTIL loop and block IF statements, the PRINT USING statement,
user defined, multiline functions and procedures with local variables, and a
mechanism for supporting separately compiled libraries of code.

Programmers familiar with AppleSoft BASIC will find TML BASIC an easier and
more powerful means of developing programs to run on the Apple IIGS. Using the
TML BASIC Translator (a separate product), AppleSoft BASIC programmers are
capable of converting their AppleSoft BASIC programs into TML BASIC programs
for increased performance and easier maintainability on the Apple IlGS.

TML BASIC is a complete programming environment which combines a compiler
with a fully integrated, mouse-based, multi-window editor. Remember, TML
BASIC is a compiled BASIC language. Results of a compiled language are faster and
more efficient programs capable of being created and tested in TML BASIC's
user-friendly environment.

TML BASIC has been designed specifically to take advantage of, and provide access
to, the new features and capabilities of the Apple IlGS. TML BASIC runs in a full
16-bit native mode under ProDOS 16. Complete access to every Apple IIGS Toolbox
routine, including Super HiRes graphics, Menus, Windows, etc., are provided with
BASIC procedures and functions. With TML BASIC, you will be able to develop
stand-alone ProDOS 16 applications capable of running independently of TML
BASIC and transferable to any Apple IlGS disk.

In addition to writing programs which take advantage of the Apple IIGS Toolbox,
TML BASIC allows you to write more traditional programs which use only the text
screen. We call these textbook programs. Textbook programs are the type of
programs you would enter directly from BASIC textbook examples and then
compile them. An understanding of the IIGS Toolbox is not necessary to write a
textbook program.

TML BASIC User's Guide Introduction

About this Manual

No specific knowledge of programming the Apple Iles is necessary to use TML
BASIC, however we do assume you are familiar with the concept of programming
and perhaps have had some experience programming on another machine.

The TML BASIC manual is divided into four major parts. The first part of the
manual is a user's guide, and its chapters discuss how to actually operate TML
BASIC and write your first program. A complete TML BASIC language reference is
provided in the second part, and the third part provides documentation on how to
program using the Apple Iles Toolbox. Finally, the fourth part is a collection of
appendices. This manual assumes you are familiar with the Apple Iles Finder and
the machine itself.

The following paragraphs outline the information contained in each of the
manual's chapters. Use these descriptions to find the information you are looking
for.

Part I: TML BASIC User's Gulde

TML Systems recommends you take the time to study Chapters 1 through 6 prior to
beginning your actual programming work. Chapters 1 - 4 and 6 explain in detail the
capabilities of the product itself, while Chapter 5 instructs you through your first
program. These chapters are certain to prove useful to the programmer who has
taken the time to master them. Each chapter reminds you to close all example
programs opened during the chapter's discussion and to exit TML BASIC, thus
assuring each chapter is treated as an independent learning session of TML BASIC's
integrated environment.

Chapter 1: Starting out with TML BASIC shows you how to make a backup copy of
TML BASIC, discusses what files are on the TML BASIC distribution
disk, explains the differences between Textbook and Toolbox
programming and provides a comparison of compiled versus
interpreted languages.

Chapter 2: Using TML BASIC includes a quick tour of TML BASIC using two
example programs included on the TML BASIC distribution disk.
The chapter's discussion takes you from the first step of running TML
BASIC to performing window manipulation commands.

Chapter 3: Compiling and Running a Program discusses TML BASIC's
compile features while showing you how easy it is to run a TML
BASIC program. Creating libraries as well as detecting and correcting
errors in your program's source code is also discussed.

TML BASIC User's Guide 2 Introduction

Chapter 4: Advanced Prograr:n Editing discusses some of the more powerful
features of TML BASIC's integrated editor, thus enabling you to use
TML BASIC more effectively in creating your own programs.

Chapter 5: Your First Program explains the idea of textbook programming and
begins to introduce some of TML BASIC's language features by
instructing you through your first TML BASIC program.

Chapter 6: TML BASIC Menu Reference provides a summary of TML BASIC's
menus and commands. This chapter should be used as a reference to
the features available within TML BASIC.

Part II: TML BASIC Language Reference

The TML BASIC Language Reference is a complete reference for the TML BASIC
programming language. The first three chapters discuss various components of the
language, while Chapter 10 provides a thorough discussion of each statement and
function available in TML BASIC.

Chapter 7: Language Elements discusses the fundamental components which
make up a TML BASIC program. A discussion of constants, variables,
arrays and expressions is also included.

Chapter 8: Subroutines, Procedures, Functions and Libraries reviews the
language constructs available in TML BASIC which promote
modular programming for better organization of a program's code.

Chapter 9: Flies provides a review of the techniques and operations available in
TML BASIC for reading, writing and manipulating files.

Chapter 10: Statements and Functions is a comprehensive discussion of each
statement and built-in function implemented in TML BASIC. You
will find this chapter most useful during your programming efforts.

Part Ill: Toolbox Programming

This portion of the manual is written for experienced programmers and introduces
the concept of programming the Apple IIGS Toolbox. The Toolbox is the huge
collection of procedures and functions available with every Apple IIGS which
implements features like the Super Hi-Res graphics screen, Menus, Windows,
Dialogs, Sound, etc. Toolbox programming is not for everybody. Obviously more
complicated than textbook programming, Toolbox programming provides a whole
new spectrum of features you can add to your programs.

TML BASIC User's Guide 3 Introduction

Chapter 11: Programming the Toolbox first reviews the contents of the Toolbox
and then introduces the language features available in TML BASIC
for accessing the Toolbox.

Chapter 12: QulckDraw Graphics is the graphics engine for the Apple Iles
which implements all of the drawing operations available for the
Super Hi-Res graphics screen. Because QuickDraw is the soul of the
Apple Iles, this chapter provides a discussion and review of the
principles behind this powerful graphics engine.

Chapter 13: Creating a Desktop Appllcatlon discusses the techniques for
writing programs in TML BASIC which make use of the Desktop
metaphor. The desktop is considered the menu bar, a collection of
windows, dialogs, etc.

Part IV: Appendices

This part of the manual provides a wide collection of useful information for the
TML BASIC programmer. Included is a summary of the error messages generated
by both the TML BASIC compiler and editor. Also included is a complete list of
every Apple Iles Toolbox routine accessible with TML BASIC.

Appendix A: Error Messages provides a list of every error generated by the TML
BASIC editor, compiler, linker and runtime debugger. Along with
each error message is a discussion of what the error message means
and how it might have occurred.

Appendix B: Metastatements describes each of the TML BASIC compiler's
metastatements. Metastatements direct the compiler to behave in a
specific manner.

Appendix C: Apple IIGS Toolbox Libraries is a complete and exhaustive list of
every Toolbox procedure and function available with TML BASIC.

Appendix D: Comparing TML BASIC with GS BASIC is a summary of the
differences between the TML BASIC and GS BASIC languages.

Appendix E: The ASCII Character Set

Appendix F: ProDOS 16 Filetypes

Index

TML BASIC User's Guide 4 Introduction

Apple IIGS Technical Documentation from Apple Computer, Inc.

While the Apple IIGS provides a new degree of friendliness to the user, the
programmer is confronted with the burden of developing software for a much more
sophisticated machine. Without the appropriate technical references, the task of
programming the Apple IIGS and its Toolbox will be nearly impossible. The
following paragraphs outline the technical documentation published by Apple
Computer for the Apple IIGS. Each of these texts is available directly from
Addison-Wesley or the Apple Programmer's and Developer's Association (APDA).

• Technical Introduction to the Apple lies is the first book in the suite of
technical manuals for the Apple Iles. It describes all aspects of the Apple IIGS,
including its features, general design, and Toolbox.

• Apple lies Hardware Reference and Apple JIGS Firmware Reference cover the
hardware details of the Apple IIGS. You will not necessarily need these texts in
order to develop applications for the Apple IIGS, however, reading them might
provide you with a better insight as to how the machine operates.

• Programmer's Introduction to the Apple lies provides an excellent
introduction to the concepts and guidelines you will need to know in order· to
develop quality applications which take specific advantage of the Apple JIGS.
While this text uses TML Pascal for examples, you will find the information
here useful for programming the Apple IIGS Toolbox with TML BASIC.

• Apple lies Toolbox Reference: Volume 1 and Volume 2 is the complete and
authoritative reference for the Apple IIGS's built in set of routines which are
collectively known as the Toolbox. For example, the Toolbox contains the
software necessary to draw graphical objects on the screen (QuickDraw) and for
menus, windows, and sound. The Toolbox supports the Apple desktop user
interface and simplifies development of new and powerful applications.

If you intend to develop applications which take advantage of the Toolbox, you
will find these two volumes absolutely essential. It will be nearly impossible to
program the Toolbox effectively without this documentation.

• Apple lies ProDOS 16 Reference documents the operating system of the Apple
Iles. The details of the System Loader and file manipulation operations are
covered in this text.

• Human Interface Guidelines: The Apple Desktop Interface. This book
documents Apple's standards for the desktop user interface to any program that
runs on an Apple Iles or a Macintosh. If you are writing an application which
is to use the desktop user interface, you should study this manual to ensure
your application conforms to the standards set forth by Apple Computer.

TML BASIC User's Guide 5 Introduction

• Apple Numerics Manual is the reference for the Standard Apple Numeric
Environment (SANE), a full implementation of the IEEE standard for
floating-point arithmetic.

In addition to these texts, Apple Computer publishes a series of Technical Notes for
the Apple Iles on a periodic basis. These notes discuss often asked technical
questions and other mysteries about the Apple Iles. The technical notes are
available on a subscription basis from the Apple Programmer's and Developer's
Association. Below is the address for the Apple Programmer's and Developer's
Association.

Apple Programmer's and Developer's Association
290 SW 43rd Street
Renton, WA 98055
(206) 251-6548

Please note that in order to purchase products from APDA you must first be a
member. There is a nominal annual fee required for membership into APDA.

Where to go for more Information

In addition to technical documentation from Apple Computer, you may find one or
more of the following texts useful in your programming efforts.

The following three books document the Apple Iles Toolbox. While the books do
not use TML BASIC as examples, they still provide a wealth of useful information.
In particular, the Apple Iles Technical Reference by Michael Fischer provides
exhaustive coverage of the Toolbox, but in a much more readable fashion than
Apple Computer's Apple Iles Toolbox Reference volumes.

• Apple Iles Technical Reference, Michael Fischer, Osborne/McGraw-Hill, 1987.

• The Apple Iles Toolbox Revealed, Danny Goodman, Bantam Computer Books,
Prentice Hall Press, 1986.

• Exploring the Apple Iles, Gary Little, Addison-Wesley, 1987.

TML BASIC User's Guide 6 Introduction

Notational Conventions

The following notational conventions are used in this manual. Understanding
these conventions will help make this manual more useful to you.

Notation

Command

Description

Bold typeface as shown in the left column
and appearing within the text of this
manual identifies commands you may
enter from the keyboard or by using the
mouse.

source code The typeface shown in the left column is
used to simulate the appearance of a
program's source code, or both input and
output, that would be printed on your
screen. This notation is used for program
listings as well as references made within
the text of this book to a particular source
code listing.

Source Code and Important words Certain words within the text of this
manual are italicized in order · to
emphasize their importance. Reference to
any portion of source code (i.e. variable
names) within the text of this manual also
appears in italics.

HELLOWORLD.BAS Words appearing in all upper case letters
represent program (file) names contained
either on the distribution disk or programs
(files) you create yourself. A filename with
the .BAS extension represents a program's
source code. A filename without the .BAS
extension represents a stand-alone
application found on disk.

TML BASIC User's Guide 7 Introduction

System Requirements

In order to use TML BASIC, you will need an Apple IIGS with at least one 3.5" BOOK
floppy disk drive, and a memory expansion card with at least 256K bytes of
additional memory for a total of 512K RAM memory. For development of large
applications, TML BASIC can be used with a hard disk and up to 8 megabytes of
memory. TML BASIC supports the ImageWriter and any compatible serial printer
or any compatible parallel printer with an appropriate interface card.

Acknowledgements

TML BASIC™, TML BASIC Translator™, TML Pascal™, TML Speech Toolkit™ and
TML Source Code Library™ are trademarks of TML Systems, Inc.

Apple®, Apple Computer, Inc.®, ImageWriter®, LaserWriter®, Mac®, MacWrite®
and ProDOS® are registered trademarks of Apple Computer, Inc.

Apple IIGS™, GS BASIC™, Finder™, Macintosh™ and SANE™ are trademarks of
Apple Computer, Inc.

TML BASIC User's Guide 8 Introduction

TML BASIC User's Guide

Chapter 1
Starting Out with TML BASIC

Before you begin using TML BASIC, you should make a working copy of your
distribution disk and store the original in a safe place. This chapter explains how to
accomplish this task. It also describes the files on the TML BASIC distribution disk,
thus enabling you to see what files are provided and which of those files you will
need to use TML BASIC. A discussion of compiled versus interpreted languages is
provided, as well as the use of line numbers in TML BASIC.

Before proceeding any further, you should familiarize yourself with the Apple IIGS.
You should be knowledgeable in such tasks as booting your machine, using the
mouse, copying files, and selecting and running applications using the Apple IIGS
Finder. If you are unfamiliar with any of these operations, consult your Apple Iles
Owner's Manual and Apple Iles System Disk User's Guide for information.

Backing up the Distribution Disk

TML BASIC is distributed on one 3.5" SOOK ProOOS 16 disk and includes the Apple
IIGS System Disk's files (version 3.1 or later). In the spirit of TML System's
philosophy - selling software without copy protection - the distribution disk is not
protected from being copied. Thus, you should make a backup copy of the
distribution disk and store the original in a safe place. This manual refers to the
backup copy of TML BASIC as the working copy. You should store the original TML
BASIC disk and use it in only in the event of your working copy being damaged.

Although TML BASIC may be copied, your license agreement specifically states you
may only do so for your own private use and only for the purpose of making a
backup copy. Any other copies are not allowed and are in violation of the United
States Copyright laws.

In order to make a backup copy, you will need an unused 3.5" disk and a disk
copying utility. Included with the Apple IIGS System files on the TML BASIC
distribution disk is the Apple IIGS Finder. The Finder includes the capability of
formatting an unused disk and copying the TML BASIC distribution disk's files onto
the newly formatted disk. Figure 1-1 illustrates the contents of the TML BASIC
distribution disk in an open window on the Apple IIGS desktop.

Refer to your Apple Iles System Disk User's Guide for information on how to use
the Finder, or your Apple Iles Owner's Guide for information about formatting and
copying to a disk.

TML BASIC User's Guide 11 starting Out with TML BASIC

Figure 1-1
TML BASIC Distribution Disk

Files on the Distribution Disk

Table 1-1 lists the TML BASIC distribution disk's contents. The files shipped on the
distribution disk can be grouped into four categories: the TML BASIC compiler,
TML BASIC example programs, the Apple Iles Toolbox libraries and the Apple IIGS
system files required to boot your machine and run TML BASIC or any applications
you might create.

Remember, not all the files included on the distribution disk are required to run
TML BASIC. In the following table, the files required to run TML BASIC are listed
in boldface, while the others are listed in normal typeface. The files listed below are
for the version 1.0 TML BASIC distribution disk. Subsequent releases of this
product may include different files.

/1ML/

TMLBASIC

TML BASIC User's Guide

Tablel-1
TML BASIC Distribution Disk Contents

The name of the TML BASIC distribution disk.

The TML BASIC compiler.

12 starting Out with TML BASIC

TMLBASIC.OPfS

LIBRARIES/

PARTI.EXAMPLES/

PART3.EXAMPLES/

MORE.EXAMPLES/

PRODOS

SYSTEM/

P16

START

LAUNCHER

FINDER

SYSTEM.SETUP/

TOOLS/

DESK.ACCS/

TML BASIC User's Guide

This file saves various options for using TML BASIC such
as tab width, printer port, etc.

This folder (subdirectory) contains all of the library interface
file for the Apple Iles Toolbox. These files are described in
detail in Chapter 11 and Appendix C.

This folder (subdirectory) contains the source code to the
example BASIC programs used in Part I of the TML BASIC
User Manual.

This folder (subdirectory) contains the source code to the
example BASIC programs used in Part III of the TML BASIC
User Manual.

This folder (subdirectory) contains the source code to the
several additional example BASIC programs which
demonstrate many of the capabilities of TML BASIC.

The ProOOS file that is used to begin the booting process of
your Apple Iles.

A folder (subdirectory) containing the ProOOS 16 and Apple
Iles system files necessary to use the Apple Iles. This folder
contains only a subset of the files found on the complete
Apple Iles System Disk necessary for TML BASIC.

The ProOOS 16 operating system.

A program which determines whether or not to run the
Program Launcher or the Apple IIGS Finder.

The Apple Iles Program Launcher.

The Apple Iles Finder.

A folder which contains any necessary boot time
initialization files for the Apple Iles.

A folder which contains all of the RAM based Apple IIGS
Toolbox toolsets.

A folder which contains classic and new desk accessories.
This folder contains only the TML Clock new desk
accessory.

13 starting Out with TML BASIC

DRIVERS/

FONTS/

ICONS/

A folder which contains the various printer and modern
drivers.

A folder which contains Apple IIGS font files. These files
are used by the Font Manager. This folder is empty on the
TML BASIC disk.

A folder which contains icon definition files. These files
are used by the Finder to display applications and
documents with their icons.

Textbook versus Toolbox Programming

The introduction of this book mentioned two different types of programs capable of
being written in TML BASIC. The first type is referred to as a textbook program and
represents the kind of program typically found in most BASIC programming
textbooks - traditional programs that use the computer's text screen. The second
type of program makes use of the special features and capabilities of the Apple IIGS
Toolbox.

Chapter 5 of this manual discusses textbook programming techniques and requires
all of the boldface files and directories listed in Table 1-1 be present on your working
copy of the TML BASIC distribution disk. In addition, you will need the
AVERAGES.BAS example program found in the PARTl.EXAMPLES folder.

Part III of this manual introduces the concept of programming the Apple IIGS

Toolbox and describes the contents of the IIGS Toolbox. In addition to the boldface
filenames appearing in Table 1-1, programs designed to use the IIGS Toolbox will
require the files found in the folder LIBRARIES. You may also wish to have the files
in the folder p ARD.EXAMPLES.

Setting Up

The following three sections describe how you might set up a working environment
for using TML BASIC with a single 3.5" SOOK disk drive system, a dual disk drive
system using either two 3.5" BOOK or one 3.5" SOOK and one 5.25" disk drives, or a
hard disk.

TML BASIC User's Guide 14 starting Out with TML BASIC

NOTE

As noted earlier, TML BASIC is shipped with the contents of the Apple Iles System
Disk version 3.1, or later, and includes the Apple Iles Finder. The Finder requires a
minimum of 512K RAM. On startup, System 3.1 identifies the amount of memory
available. If 512K or greater memory is available, the Finder is displayed. If only
256K RAM is available, neither the Finder nor TML BASIC will run. This manual
assumes your system includes at least 512K RAM and one 3.5" disk drive.

Single Disk Drive System

Users with a single 3.5" SOOK floppy disk will find that TML BASIC can be used
exactly as it is shipped on the distribution disk without having to sacrifice any
functionality or performance. You should create a working single disk system by
making a copy of the distribution disk as described in the section Backing up the
Distribution Disk in the beginning of this chapter.

The only restriction imposed by the single disk system is the size of the programs
you develop will be restricted to available disk space to store them. On your
working copy of TML BASIC, feel free to delete the various folders containing
example programs. The PARTl.EXAMPLES folder includes the example programs used
in the first part of this manual which you should keep on your disk if you intend to
follow the discussions in the next four chapters.

You will still have access to all example programs you choose to delete by copying
them from the original distribution disk as needed. Never delete any of the files
from the original distribution disk.

Two Disk Drive System

If you have a second disk drive, either another 3.5" 800K disk drive or 5.25" disk
drive (formatted for ProOOS 16 of course), then you can take advantage of this extra
storage capacity for developing larger programs. You may find it easier to keep all of
the example programs, as well as any new programs you create, on a separate disk
and access them using your -second disk drive. The LIBRARIES folder (see Table 1-1)
should be kept on the TML BASIC disk, thus allowing the folder's files to be shared
by all programs.

Hard Disk Drive System

While a hard disk is not required to use TML BASIC, you will enjoy the luxury of
faster disk access and an extensive amount of disk storage space available for
creating large programs. To use any ProDOS 16 formatted hard disk drive with TML
BASIC simply copy the necessary TML BASIC files onto your hard disk as outlined

TML BASIC User's Guide 15 starting Out with TML BASIC

in Table 1-1. If your hard disk contains Apple IIGS System files prior to version 3.1,
TML BASIC will not work. In this case, you should copy the System files from the
distribution disk onto your hard disk.

A Note on RAM Disks

Traditionally, Apple II users have found the use of RAM disks advantageous, and
have done so without "stealing" available memory from an application, due to the
Apple II's restriction of permitting only 128K of memory or less to a single
application.

TML BASIC and the Apple IlGS are different however. TML BASIC is a memory
resident application, so there is no advantage in storing TML BASIC on a RAM disk.
Further, TML BASIC maintains in memory, an entire copy of the file(s) it is editing;
inlcuding library files, compiled code, etc., and uses the Apple Iles Memory Manager
to keep track of available memory. Thus, any RAM space you might allocate for a
RAM disk would only decrease the amount of memory TML BASIC has available to
it for editing and compiling.

Compiled versus Interpreted Languages

TML BASIC is a compiled language. In this regard, as well as others, it differs from
interpreted languages such as Apple Computer's GS BASIC. A programming
language is characterized by its collection of statements, expressions and other
components generally known as the syntax, or structure, of the language. While
programs written in a computer language are generally understandable to the
human reader, they are totally incomprehensible to the computer, or in the case of
the Apple IlGS, the 65816 microprocessor.

Before a statement written in a computer language can be executed by the computer,
it must first be translated into code understood by the computer - machine language.
Machine language consists of long lists of binary numbers (O's and 1 's) that are
understood by the computer as a series of off and on states representing operations
the computer is capable of performing. Of course, a long string of O's and l's is not
easily understood or readily comprehended by humans.

A major part of any computer language system is its means of translating programs
into machine language. In an interpreted language, the translation is done while
the program is being executed, sometimes denoted as "on the fly". If a statement in
the program is executed 100 times, the translation is also done 100 times.
Interpreted languages run slower than compiled languages because of the need for
translation to occur during the running of the program.

With a compiled language, however, the translation of programs into machine
language is handled prior to running the program. Thus, each line in the program

TML BASIC User's Guide 16 Starting Out with TML BASIC

is translated only once - during the compilation process. In addition, the
compilation process discloses all of the syntax errors before the program is executed.
Of course, it can't find errors in the program's logic such as infinite loops. Compiled
programs run significantly faster than interpreted programs and they can also run
independently of any language processor. That is, compiled TML BASIC programs
can run by themselves under ProDOS 16 without TML BASIC on the disk.

Additionally, TML BASIC implements an integrated environment as a
memory-resident application that compiles programs with the same interactiveness
as an interpreter. This means that TML BASIC integrates its editor, compiler and the
running program into memory at the same time, thus eliminating the need to read
and write disk files which cause conventional compilers to be so much slower than
an interpreter in translating a BASIC program.

Line Numbers In TML BASIC

Historically, BASIC implementations have required the use of line numbers in
programs, however, TML BASIC does not require line numbers. In fact, TML
BASIC does not even allow the use of line numbers.

Interpretive BASIC language implementations require line numbers in their
program source codes so that the interpreter can locate statements and functions at
execution time that are not in sequential order. Line numbers are also used as a
fundamental component in an interpreter's editing process.

TML BASIC has no need for line numbers as it uses alphanumeric labels to locate
statements and functions in a program's source code. For example, rather than
entering GOTO 1000, in TML BASIC you would enter GOTO SetupProcess, where
SetupProcess is a alphanumeric label used to identify the SetupProcess routine. Use
of alphanumeric labels is illustrated in most of the example programs discussed in
Part III of this manual, as well as the example programs contained on the TML
BASIC distribution disk.

TML BASIC User's Guide 17 starting Out with TML BASIC

Chapter 2

Using TML BASIC

In Chapter 1, you created a working copy of the TML BASIC distribution disk. Now
it's time to run TML BASIC and begin learning about some of the program's
capabilities. Before continuing, be certain you are using the working copy of TML
BASIC and you have stored the original TML BASIC distribution disk in a safe place.

In this chapter, you will learn about the steps necessary to invoke TML BASIC from
the Finder and how to perform file manipulation commands. Rather than creating
a new BASIC program to demonstrate these tasks, this chapter's discussion will use
example programs included within the PARTl.EXAMPLES folder on your TML BASIC
working disk.

Running TML BASIC

Insert your working copy of TML BASIC into the 3.5" floppy disk drive and turn
(boot) the machine on. After the Apple IIGS completes its booting process you will
be presented with the Apple IIGS Finder's desktop. Figure 2-1 illustrates the
desktop's appearance after booting your Apple IIGS.

TML BASIC User's Guide

Figure 2-1
Apple IIGS Desktop

19 Using TML BASIC

The desktop will appear as shown in Figure 2-1 only if your working copy of TML
BASIC contains all of the files contained on the original TML BASIC distribution
disk, and if you booted your computer using that disk. The desktop's appearance
will differ if you are using some other hardware configuration (i.e. hard disk) or
arrangement of files on your working copy of TML BASIC.

Invoke TML BASIC by clicking the mouse once on the TML BASIC icon shown on
the desktop, pull-down the Finder's File menu and then select the Open command
(double-clicking the mouse over the TML BASIC icon accomplishes the same result
as selecting the Open command).

Opening the TML BASIC file results in a splash screen displaying the TML BASIC
logo. This splash screen tells you TML BASIC is loading into the Apple IIGS's
internal memory. Be patient, as the Apple IIGS requires a few moments before it
completes the loading process. Figure 2-2 illustrates TML BASIC's desktop (Main
Menu) after the program has been successfully loaded into memory.

Figu_re 2-2
TML BASIC's Main Menu

Examining the Integrated Environment

TML BASIC has been designed to take full advantage of the Apple IIGS desktop
interface using the mouse, pull-down menus, windows, etc. This user-friendly
environment makes programming easy, as it integrates TML BASIC's editor and
compiler into the same working environment.

TML BASIC User's Guide Using TML BASIC

The seven menus implemented in TML BASIC are designed to logically organize
the several commands available to you in TML BASIC. Using the mouse,
pull-down each menu to discover just how easy it is to use TML BASIC. Within
each menu, you will find the various TML BASIC commands. Most commands
found in the menus may be invoked by typing its corresponding command-key
equivalent rather than pulling down its menu and selecting the command with the
cursor. Command-key equivalents are displayed next to their command names in
each of the pull-down menus. Chapter 6 provides a review of each TML BASIC
menu, its corresponding commands and command-key equivalents.

Editing windows are the tools TML BASIC provides you for entering and modifying
program source code. TML BASIC allows you to have up to four different program
source codes open at one time. Each program is placed in a different editing window
and is independent of any other open windows. Only one editing window can be
active at a time. TML BASIC identifies the active window as the window which is
topmost. All commands issued by the user are performed on the source code
contained in the active window. Figure 2-3 illustrates the various components of a
typical TML BASIC editing window.

Close box

.
Horizontal scroll bar

Zoom box

R Window

Content

Figure 2-3
Editing Window Features

111111

Title bar

Vertical scroll bar

Grow box

TML BASIC also implements dialog boxes as a means of communicating with the
user. The different dialog boxes used in TML BASIC will be discussed individually
as appropriate throughout the chapter discussions ahead. However, a brief mention
of what a dialog box is and how it works is discussed in the following paragraph.

TML BASIC User's Guide 21 Using TML BASIC

A dialog box is a window whose appearance is different than the editing windows
used in TML BASIC. Namely, it does not have a title across the top of the window,
nor does it have scroll bars and it can not be moved around on the screen. A dialog
box is used in TML BASIC to provide the user with requested information, or to ask
the user for required information before continuing. Dialog boxes usually inlcude
OK/Cancel buttons or Yes/No buttons. These buttons allow you to communicate
with TML BASIC to signify when you are finished with the dialog box.

Opening a Program

We will begin our tour of TML BASIC by opening a few example applications on the
TML BASIC disk. TML BASIC is capable of opening up to four separate editing
windows at one time, each independent of the other and containing a different
program. This feature provides you the flexibility of studying the source code of two
or more programs at the same time, or even copying code from one program to use
in another. Chapter 4 discusses the different techniques for copying source code
from one program to use in another.

We will start by opening the TML BASIC Open File Dialog Box, which lists the files
available on the TML BASIC disk. You can accomplish this by either dragging the
cursor down the File menu and then releasing the cursor on the Open command,
or by typing the Open command-key equivalent Regardless of the method
you use, the result on your screen should appear similar to Figure 2-4.

TML BASIC User's Guide

Figure 2-4
Open File Dialog Box

22 Using TML BASIC

The Open File Dialog Box displays the files and folders contained on the TML BASIC
disk. Now, click the mouse on the PARTl.EXAMPLES folder once and then on the
Open button. The files contained in the PARTl .EXAMPLES folder now appear in the
Open File Dialog Box as illustrated in Figure 2-5. Find the HELLOWORLD.BAS file and
click the cursor over its name and then on the Open button to open the file.

(Disk)

Open

(Close)

Figure 2-5
PARTl .EXAMPLES Folder

If your system is operating from either a hard disk or two disk drive system, click the
mouse on the Open File Dialog Box's Drive button until you find the
PARTl.EXAMPLES folder containing the TML BASIC example programs.

Once you have selected the HELLOWORLD.BAS example program, its source code is
read from the disk and placed in a newly created editing window titled
HELLOWORLD.BAS. Now, open a second example program, DEMO.BAS from the
PARTl.EXAMPLES folder, using the same technique described above.

Organizing the Editing Environment

Figure 2-6 illustrates both the HELLOWORLD.BAS and DEMO.BAS windows open and
overlapping each other. TML BASIC provides you the ability of arranging your
open windows at any location on the screen so that you can see the source code in
both windows. Organizing windows can be accomplished either by dragging each
window with the mouse or by invoking one of TML BASIC's window commands.

TML BASIC User's Guide 23 Using TML BASIC

File Edit Search Windows Compile ProOOS
He llowor Id.Bas

PR! Demo.Bas
Message$ = ' TML BASIC is gr·eot!

FOR Counter TO 2 STEP -1
PRINT
PRINT SPC(78-LEN(Messoget
PRINT)-Coun ler-1)

PR! Cour1ler

PRINT
PRINT 'Press any key to cont inue

Figure 2-6
Overlapping (Stacked) Windows

Click once on the HELLOWORLD.BAS window's title bar using the mouse, and drag
the window anywhere on the screen. You should notice when you first click the
mouse on the window it immediately makes HELLOWORLD.BAS the active window,
if the window is not already active, and places it in front of the DEMO.BAS window.
To change the size of an editing window you use the grow box. The grow box is the
small box in the bottom right corner of the editing window which has two small
rectangles in it. Now change the size of the window by clicking the mouse once in
the grow box of the HELLOWORLD.BAS window and dragging the mouse anywhere
on the screen.

Pulling down the Window menu displays TML BASIC's window commands. After
mastering the mouse techniques to change each open window's location, pull-down
the Window menu and select Stack Windows. The result should arrange the
windows similar to when they were originally opened as shown in Figure 2-6.

Now, select the Next Window command and notice how the editor places the
HELLOWORLD.BAS window behind the DEMO.BAS window and makes the DEMO.BAS
window the active window. Finally, selecting Tile Windows results in the two open
windows appearing in a ti.le format as shown in Figure 2-7. When two or more
windows are opened at one time, placing the windows in a tiled position allows you
to see each program's source code at the same time.

TML BASIC User's Guide 24 Using TML BASIC

Edit Windows Pro00S

'

'
'
'
'
'

Hello
Hello Id '
Hello

He 11 o Id'
11 o I d'

Hello
He 11 o Id'

11 owor Id.Bas

Demo.Bos
BASIC

FOR Counter TO 2 STEP -1
Counter-!);

PRIHT

Program Integrity

Figure 2-7
Tiled Windows

Thus far you have learned how to open editing windows (each containing program
source code) as well as the various techniques for reorganizing windows on TML
BASIC's desktop. TML BASIC makes opening and rearranging windows easy with
its three window commands. TML BASIC also provides you a safe means of
maintaining the integrity of your program's source code in the event an
unintentional change to the program's source code has been made.

The example programs opened in this chapter will be of use again later in this
manual's discussions. Therefore, it is important not to alter their original content.
Choosing the Revert command from the FIie menu directs TML BASIC to ignore
any changes inadvertently made to a program's source code since it was last saved.
When selecting this command, TML BASIC re-reads the last version of the
program's source code from disk and places it into the editing window, thus
ignoring all changes that have been made to the source code.

The Revert command should be used anytime an unintentional change has
occurred in a program's source code. Remember, every change made to the
program's source code since the last save will be lost as a result of issuing the Revert
command. TML BASIC will display a dialog box asking if you are certain about
discarding the changes made to the program prior to reverting your changes.

TML BASIC User's Guide 25 Using TML BASIC

When you close an editing window or quit from TML BASIC, and you have not yet
saved the changes made to a program, TML BASIC will ask if you would like to save
the changes made. At this point you have one last chance to decide if you want to
lose or keep your editing changes, or cancel the Close command altogether.

Exiting TML BASIC

In this chapter, we opened two example programs contained on the working disk,
discussed rearranging windows in the editing environment and defined a means to
avoid having unintentional changes saved in a program's source code.

Before leaving this chapter, you should close all open windows, exit TML BASIC
and turn the computer off just as you would clean-up your desk before leaving for
the day.

To close the open windows, select one window at a time by clicking the mouse
anywhere on an open window and then choose Close from the FIie menu (clicking
a window's close box accomplishes the same result). If changes were made to either
program's source code, the Close File Dialog Box will appear asking if you would
like to save those changes. Be sure to click the No button, thus ensuring the
original program source code's integrity. After closing both files, select Quit from
the File menu to exit TML BASIC and return to the Finder's desktop.

TML BASIC User's Guide Using TML BASIC

Chapter 3

Compiling and Running a Program

In Chapter 2, several of TML BASIC's file and window commands were discussed.
In this chapter, we will explore the three different compile options available in TML
BASIC allowing you to compile and run programs. To do this, we will re-open the
same two examples discussed in Chapter 2.

Looking at Examples

Begin by booting your Apple IIGS with your TML BASIC disk and then run TML
BASIC by double-clicking on the TML BASIC icon.

The HELLOWORLD.BAS program used in Chapter 2 is a simple input/ output (I/0)
program. The program is written to demonstrate how TML BASIC writes the line of
text "Hello World" as output to the screen and then recognizes the carriage return
key from the keyboard as input to the program. The DEMO.BAS example program
uses the same I/0 capabilities as HELLOWORLD.BAS but tests various string functions .
of TML BASIC.

Before we begin, let's re-open the HELLOWORLD.BAS and DEMO.BAS example
programs. Recall that to open these programs you select the Open command from
the FIie menu, then open the PARTt.EXAMPLES folder and select the appropriate
filenames from the Open File Dialog Box.

After opening both programs, the TML BASIC editing environment will consist of
two open windows containing each program's source code. Figure 2-6, in Chapter 2,
illustrates what your screen should look like as a result of opening both programs.
You may wish to reorganize the two open windows so that both program source
codes are visible - issue the Tile Windows command from the Windows menu.

Compiling Alternatives

TML BASIC offers the programmer three different options for compiling programs.
The compile commands are found in the Compile menu. You can see each of the
commands by pressing and holding the mouse button down over the Compile
menu. Figure 3-1 shows the two open editing windows in a tiled position with the
Compile menu pulled down.

TML BASIC User's Manual 27 Compiling and Running a Program

Edit Search Windows miir.Ill'J ProDOS
To Run
To Disk

PRINT Hello Id'
Hello

PRINT Hello
Hello Preferences ...

' Hello
PRINT ' Hello

BASIC is great!

FOR Counter TO 2 STEP -1
PR l HT TS Counter-!);
PR I
PR l HT)-Coun ter-1)

NEXT Coun
< JI

Figure 3-1
Compile Menu

-

The first command in this menu is likely to be the one you use most often. The To
Memory & Run command invokes TML BASIC to compile the source code in the
active editing window (the topmost window), and then, upon successful
completion, executes the program directly within the Apple IIGS's internal memory.

The To Disk command is used to invoke TML BASIC to compile a program and
create a stand-alone ProDOS 16 application file on disk. You will use this command
when you have a complete running program free of errors and you wish to execute
the program directly from the Finder.

Finally, the Check Syntax command allows you to quickly verify the syntax of a
TML BASIC program. This option does not run the selected program nor does it
create a disk file . This is the fastest compile option available in TML BASIC.

When a compile option is invoked by selecting any of the three compile commands,
TML BASIC displays the Compile Progress Dialog Box. This dialog is used to display
the compiler's progress during compilation. When the Compile Progress Dialog
Box's indicator bar reaches the right side of the display, the compile process has been
completed.

Testing a Program's Source Code

The Check Syntax command is the fastest of the three compilation techniques

TML BASIC User's Manual 28 Compiling and Running a Program

since it does not cause any code to be generated. Instead, this command instructs
TML BASIC to verify the active program was written using valid BASIC key words,
statements and functions. It cannot, however, check a program for correct logic. For
example, an infinite loop in a program's source code will go undetected by the
Check Syntax command.

Click the mouse once on the HELLOWORLD.BAS window making it the active
window. Pull-down the Compile menu and select the Check Syntax command.
The Compile Progress Dialog Box is immediately displayed indicating the
compiler's progress as it checks the syntax of the source code - Figure 3-2.

Edit Search Windows ProOOS

He 11 o I d'
Hello
Hello

He 11 o

11 owor Id.Bas
PRINT "

PRINT
II

Co11piling: Helloworld.Bas

- 1
•
1 to conce I.

BASIC

FOR Counter TO 2 STEP ·I
Counter-!);

PR I SPC(78-LEN
PR R)-Coun ler-1)

Counter

-

... . ..

Figure 3-2
Compile Progress Dialog Box

When the indicator bar inside the Compile Progress Dialog Box reaches the right
side of the display, the compile is complete. As you will see, TML BASIC takes only
a brief moment to compile the HELLOWORLD.BAS program. The reason for this, of
course, is that TML BASIC is a fast compiler. In addition, the program is quite small
and the Check Syntax command is the fastest of the TML BASIC's three compile
options.

A result of no errors found does not necessarily mean a program is completely free
of all possible errors. However, using the Check Syntax command will ensure the
program does not contain any syntax errors.

TML BASIC User's Manual Compiling and Running a Program

It is important you use the Check Syntax command when you are uncertain
whether your program will run correctly. Since this command does not run the
program after compiling it, you can avoid situations where your program contains
logic errors which might cause the computer to crash.

If an error is detected in the source code of a program, TML BASIC will stop the
compilation process, return to the TML BASIC editor, highlight the exact location of
the discovered error and then display a descriptive error message. Errors are
discussed later in this chapter in the section "Detecting Program Errors".

Running a Program

Once you have determined your program does not contain any syntax errors by
issuing the Check Syntax command, the program can then be run. To do this,
select the To Memory & Run command from the Compile menu. Upon selecting
this command, TML BASIC again displays the Compile Progress Dialog Box. This
time the compiler generates code for the program. the program does not contain
syntax errors the compiled program is immediately run.

To run a compiled program, the TML BASIC environment temporarily shuts down
by hiding its menus, windows, etc. and then transfers control to the compiled
program. The compiled program is now in complete control of the computer as it
executes. When the program has completed execution, the TML BASIC
environment restores its menus and windows allowing you to continue
programming.

Because it is possible the compiled program may contain logic errors causing the
machine to crash, TML BASIC provides a safety feature called Auto Save. If this
option is turned on, TML BASIC automatically saves any changes you have made to
the program's source code prior to compiling. This feature ensures you will not lose
your source code changes in the event of a catastrophic error during your program's
execution. The Auto Save option is discussed in more detail in Chapter 6 under the
"Preferences ... " section.

To compile the HELLOWORLD.BAS program, first, be certain the program is in the
active window (topmost window). If it is not, make it the active window by clicking
the mouse once anywhere in its window. Now select the To Memory & Run
compile command. The HELLOWORLD.BAS program uses the text screen to display
the message "Hello World" at several locations on the screen. The program then
waits for the Return key to be pressed. After the Return key is pressed, program
execution terminates and control is returned to the TML BASIC environment with
the windows restored exactlyy as you left them.

TML BASIC User's Manual Compiling and Running a Program

Creating a Stand-Alone Application

As seen above, the ompile to memory feature of TML BASIC is extremely fast and
interactive. However, there exist one small problem - you must launch TML
BASIC every time you want to run a TML BASIC program. Thus, the third
compilation technique available in TML BASIC - To Disk. This compile option
allows you to create stand-alone ProDOS 16 applications that can be run from the
Apple IIGS Finder by double-clicking on its icon just as you did the TML BASIC icon
to invoke TML BASIC. You can even copy the compiled application to another disk
and run it from there because TML BASIC is no longer required after the program is
compiled to disk.

Let's compile the HELLOWORLD.BAS program to disk. Make the open window
containing the HELLOWORLD.BAS program the active window (remember the
compile commands only work on the active window). Select the To Disk command
from the Compile menu to compile the HELLOWORLD.BAS program and create a
stand-alone application on disk. You will notice the compilation process takes
significantly longer to complete this time.

The reason for this additional amount of time results from the compiled program
being written to disk. The name of the resulting application file on disk is
HELLOWORLD, and it is located in the same folder as the HELLOWORLD.BAS source
code file.

IMPORTANT

Following are the three rules used by TML BASIC to determine a compiled
application's filename when issuing the To Disk compile command.

(1) If the name of a source code file ends with the suffix . BAS then the
application file is assigned the same name as the source code file less the
.BAS suffix. The application file is placed in the same directory as the
source code file.

(2) If the name of a source code file does not end with the suffix .BAS then
the name of the application file is the name of the source code file with
the letters "APP" added to the end of the name. If the source code
filename is greater than 12 characters, TML BASIC uses only the first 12
characters of the source filename. The application file is placed in the
same directory as the source code file.

TML BASIC User's Manual 31 Compiling and Running a Program

(3) If the source code is in a new "Untitled" window, that is, there exist no
disk file containing the new program's source code, then the name of the
application file becomes UNTITLED APP. The application file is placed in
the folder currently open when the Open File Dialog Box is displayed.

Compiling Libraries

In addition to compiling programs, TML BASIC is capable of compiling libraries. A
library contains BASIC program statements, but is not capable of being run
(executed) like a program. Instead, a library is compiled separately from a program
and then used in one or more different BASIC programs. Libraries allow you to
split a program up into smaller, more manageable pieces of code. Chapters 7 and 8
describe libraries in greater detail.

A library looks much like a program except it begins with the statement DEF
LIBRARY and ends with the statement END LIBRARY. The file EXAMPLELIB.BAS in
the PARTl.EXAMPLES folder is an example of a TML BASIC library. Additionally, the
file LIBDEMO.BAS within the PARTl.EXAMPLES folder shows how the EXAMPLELIB.BAS
library's source code is used in a program. Using TML BASIC, you should open
these two files to see how the library mechanism is used in TML BASIC.

The EXAMPLELIB.BAS file is a library containing a procedure declaration that prints
the message "Hello World" just like the HELLOWORLD.BAS program. The
LIBDEMO.BAS file is a program which has only four lines of code. However, when
this program is run, it generates the same output as the HELLOWORLD.BAS program
because it calls the procedure in the EXAMPLELIB.BAS library.

Because a library is not capable of being run, the TML BASIC compiler acts
differently when selecting the various compiler commands in the Compile menu.
As mentioned above, when a library is compiled, it does not create a program that
can be run. However, TML BASIC does save the library's compiled code so that
other programs can use it. Thus, when selecting the To Memory & Run command,
TML BASIC compiles the library but then returns control to the editor instead of
transfering control to the compiled code as it would do for a program. Note that
TML BASIC does save the compiled code in memory so that it can later be used by a
program. To experiment, compile the EXAMPLELIB.BAS file by selecting the To
Memory & Run command. Then compile the LIBDEMO.BAS program using To
Memory & Run as well. Because the LIBDEMO.BAS file is a program, it is run
immediately after successful! compilation

Libraries can also be compiled using the To Disk command. When a library is
compiled to disk, it does not create a ProDOS 16 application, but rather, a TML
BASIC .LIB file. The .LIB file contains the library's compiled source code. When a

TML BASIC User's Manual 32 Compiling and Running a Program

program needs to use a library that has not been compiJed to memory using the To
Memory & Run command, TML BASIC searches for the compiled code on disk in a
.LIB file. Try compiling the EXAMPLELIB.BAS file using the To Disk command and
then look on the disk using the Apple IIGS Finder for its .LIB file.

IMPORTANT

Following are the rules used by TML BASIC to determine a compiled library's
filename when issuing the To Disk compile command.

(1) TML BASIC uses the name of the library as specified in the DEF
LIBRARY statement as the base name of the compiled library file. TML
BASIC then adds the suffix .LIB to the end of the library name to create
the complete filename. The library file is placed in the same directory as
the source code file.

The source code filename has no effect on the name of the compiled
library file. However, to avoid confusion, it is recommended that the
source code filename be the same as the library name with the .BAS

suffix.

(2) If the library name is greater than 12 characters, TML BASIC uses only
the first 12 characters of the library name. The .LIB suffix is then added,
and the file is created in the same directory as the source code file.

The Check Syntax command behaves exactly the same for both programs and
libraries. That is, TML BASIC only verfies the library's source code contains legal
BASIC statements.

Detecting Errors

So far in this chapter we have discussed how to compile programs using TML
BASIC. However, our discussion has been limited to programs known to be correct,
that is, they do not contain any errors. In this section, we will discover how TML
BASIC deals with errors.

First, let's consider the components of the TML BASIC environment. TML BASIC
is an integrated development tool made up of three separate pieces - the editor, the
compiler and the linker. These different pieces work so closely together the user
really only perceives them as one in the same. However, knowing how these pieces

TML BASIC User's Manual 33 Compiling and Running a Program

work together will help you understand the error messages TML BASIC reports to
you.

The editor of course, is where you spend most of your time. It is responsible for the
editing windows and most of the commands available in each TML BASIC menu.
The compiler is invoked whenever you select any of the three compile commands.
The compiler is responsible for checking if syntax errors exist in your program and
then generating code for the program. Finally, the linker component of TML BASIC
is only invoked when you have chosen to compile a program to memory or to disk.
The linker is responsible for combining the compiled code with other pieces of code
your program needs (i.e. libraries). It is also responsible for allocating the internal
memory a program requires in order to run within the Apple IIGS's memory, and
for writing a compiled program to disk.

The editor only reports errors related to the editing environment. It will report an
error when you ask it to find a string in a program that does not exist, when there is
not enough memory to read another program into memory, and other operations
related to the editing environment. The compiler only reports errors related to
illegal BASIC source code. If you misspell a reserved word or forget to put a comma
where one was expected, the compiler reports an error. Finally, the linker reports
errors when an attempt to create a final program fails. This might happen if you
compile a program to disk and the disk is locked or there is not enough room to fit
the compiled program on disk.

When any component of the TML BASIC environment detects an error it first takes
whatever actions necessary to recover without causing any loss of data and then
displays the Error Dialog Box with a descriptive error message. In addition to the
error message, an icon on the left side of the dialog box is also displayed. This icon is
used to indicate which component of TML BASIC detected the error. The icon can
usually help you better understand the error message. In addition, if the error is
related to a particular part of your program's source code, the editor displays that
portion of source code in the editing window and highlights the exact location of the
error. Highlighting usually occurs for detected compiler errors.

Editor Errors

To study how error messages are reported in the TML BASIC environment, first,
close any open editing windows, and then open the file ERRORS.BAS from the
PARTl.EXAMPLES folder. We have intentionally placed several errors in the source
code of this program so that you can see how the TML BASIC error reporting
mechanism works.

The first type of error we will explore is an editor error. To cause an editor error
select the Find What command from the Search menu (we will discuss this feature
in greater detail in Chapter 4, but for now just follow along). The Find Dialog Box
appears asking you to enter the text you wish to find. At this point, enter the string

TML BASIC User's Manual 34 Compiling and Running a Program

"XYZ" without the double quotes, and then click the mouse on the Find button.

The string "XYZ" does not appear in the file ERRORS.BAS, so the editor reports this in
the Error Dialog Box as seen below in Figure 3-3.

Edit Search ProDOS

nol found

.......

Figure 3-3
Error Dialog Box - Editor Error

Note the icon displayed in the left side of the Error Dialog Box. This icon indicates
at the error was detected by the editor. To make the Error Dialog Box go away,
simply click the mouse button or press any key on the keyboard. The editor detects
and reports several different types of errors. For a complete list of the errors
reported by the editor see Appendix A.

Compiler Errors

The ERRORS.BAS program also contains a syntax error in its source code - an illegal
statement. To find this error simply select the Check Syntax command from the
Compile menu. Figure 3-4 shows how the compiler reports syntax errors.

In this example, the message"',' expected" is reported in the Error Dialog Box. This
time a different icon appears - a small green bug. This icon indicates the error was
detected by the compiler. In addition, the editor highlights the exact source code
location of the encountered error in black, thus enabling you to fix the problem.

TML BASIC User's Manual 35 Compiling and Running a Program

Edit ProDOS

11
,

11

Errors.Bas
This example contains syntax and

·This is an I e
I This is miss ing

i 15000
20000
= + 'This statement causes Error
"The su1 of ii; " and is

Figure 3-4
Error Dialog Box - Compiler Error

Again, click the mouse to make the Error Dialog Box go away and then enter the
comma symbol where the compiler expected it. After correcting the syntax error,
again select the Check Syntax command from the Compile menu. This time the
compiler does not report any errors.

Do not compile this program using the To Memory & Run command yet, since
there is another type of error we will discuss below.

Linker Errors

The final component of TML BASIC is the Linker. There exist only a few errors
which the Linker can detect. One of these errors arises when the Linker attempts to
write a program which has been compiled to disk, and an error occurs when writing
to the disk. This error can occur when the disk is full or it has been write protected.

If you would like to see how the linker reports an error message, remove the floppy
disk which contains the ERRORS.BAS source code file and write protect it. Then place
the disk back in the disk drive and select the To Disk command from the Compile
menu. After the Compiler successfully compiles the program it invokes the Linker
to the program and attempts to write the stand-alone application file to disk.
However, you have write protected the disk. Thus, the linker displays the error
message seen in Figure 3-5. The icon used by Linker errors is two small chain links.

TML BASIC User's Manual Compiling and Running a Program

Edit e ProDOS

Runtime Errors

(DJ Unable to create/open application file.

Errors.Bas
This I e contains syntax and ti

'This is
PRINT 18) 'Th is is a

15000
20000

'This causes an Error
PRINT 'The of ·; • and ·; jl; • is ·;

Figure 3-5
Error Dialog Box - Linker Error

Actually, you might think of TML BASIC as having a fourth component - your
program. When your program runs, it too can generate errors. For example, the
program might attempt to add two numbers which cause an Overflow Error, or
provide a value out of range thus causing an illegal Quantity Error. These errors are
called runtime errors. The built-in TML BASIC debugger is capable of detecting
runtime errors and reporting them back to the TML BASIC environment so that
you can modify your program according! y.

The TML BASIC debugger is available for debugging your programs only if you
choose the To Memory & Run command from the Compile menu. In addition,
you must instruct TML BASIC to turn on the debugger and generate the special
debugging code needed to detect runtime errors by selecting the Debug option from
the Preferences Dialog. The Preferences Dialog is displayed by choosing the
Preferences ... command from the Compile menu. The Preferences Dialog is
discussed in detail in Chapter 6.

When you tum on the debugger by choosing the Debug option from the Preferences
Dialog, the Compiler generates special code everywhere an error might potentially
occur. Please note while this feature provides a powerful mechanism for
developing programs, it does generate a significant amount making your programs
larger and slower. After you have a program working correctly, it is generally a good
idea to turn this option off.

TML BASIC User's Manual 37 Compiling and Running a Program

Finally, the program ERRORS.BAS also contains a runtime error. To see how this
feature works, make sure the the Debug option is turned on (it is on by default) in
the Preferences Dialog, then select the To Memory & Run command from the
Compile menu. If you successfully removed the syntax error in this program as
described in the "Compiler Errors" section of this chapter, the compiler and linker
should complete successfully. The TML BASIC environment then temporarily
shuts down by hiding its menus and windows and runs the compiled program.

Unfortunately, this program has a runtime error in the seventh line. In this line,
the value of sum% is set equal to the sum of the variables i% and j% (15,000 +
20,000). Because the variable sum% in an integer variable, the largest value it can
store is 32,767. Thus, the value 35,000 overflows the capacity of sum%. The TML
BASIC debugger detects this and aborts the execution of the running program.
Upon returning to the TML BASIC environment, the line in which the error was
detected is highlighted and the run time error message "Overflow Error" is displayed
in the Error Dialog Box as seen in Figure 3-6. In this example, the bomb icon is
displayed to indicate the error is a runtime error.

The range and precision of numbers in TML BASIC is discussed in Chapter 7. In
addition, each TML BASIC statement and function described in Chapter 10 lists the
runtime errors that may possibly occur for each statement and function respectively.

Edit Search ProDOS

Over fl error.

Errors.Bas
ih is I e la ins syntax and run ti 1e errors

·This is an I e
PR!Ni 18) 'This is missing a

Figure 3-6
Error Dialog Box - Runtime Error

TML BASIC User's Manual 38 Compiling and Running a Program

There are numerous errors that can occur when your program is running.
Appendix A outlines each of these, along with a brief description of how each error
might occur.

Just a Reminder ...

In the course of editing, compiling, running programs and fixing errors, you may
forget the last error that was detected and reported in the Error Dialog Box. If this
happens, don't despair, it is possible to recall the Error Dialog Box to display the last
error encountered. To do this, simply select the Last Error command in the
Windows menu.

Finally, recall that all editor, compiler, linker and runtime errors are listed in
Appendix A of this manual. Along with each error is a description of the error and
usually some suggestions of how the error might have occurred and how to fix it.

As always, before leaving this chapter, be certain to close all open windows without
saving any changes to the files you might have made. To leave TML BASIC select
the Quit command from the File menu.

TML BASIC User's Manual Compiling and Running a Program

Chapter 41
Advanced Program Editing

In Chapters 2 and 3, the principles of opening, closing, compiling and running
programs were discussed. In this chapter, several additional TML BASIC features
are introduced demonstrating TML BASIC's powerful editing commands.
Additionally, the techniques for printing a file is discussed, and finally, you will
learn about three ProOOS commands which may be issued from within TML
BASIC.

Creating a New Editing Window

filt Edit Windows ProDOS

PRINT I

PRINT '
PRINT '

'
PRINT I

PRINT '

ICll

ICll

lo llorld '
lo

Hello Uorld'

Hello

-

••
t I

Figure4-1
TIied Windows

Once again, boot your Apple Hes using the working copy of TML BASIC and launch
TML BASIC. Set-up your editing environment by first opening the
HELLOWORLD.BAS example program and then selecting the New command from the
FIie menu. Complete the set-up process by selecting the Tile Windows command
from the Windows menu. Figure 4-1 illustrates the resulting screen's appearance
after setting up your working environment.

TML BASIC User's Gulde 41 Advanced Program Editing

Rather than using an example program alone to describe each of the edit features
available to you in TML BASIC, we will create a new program using the empty
window you just created. The result will be a complete program written entirely by
borrowing source code from the HELLOWORLD.BAS example program.

Using the Clipboard

TML BASIC implements an editing feature called the clipboard. The clipboard is a
temporary storage area for text and is used to store words, lines or entire portions of
a program's source code. The fundamental idea of the clipboard allows you to
borrow text from an existing program's source code for use in a different location
within the same program or to use in an entirely different program.

TML BASIC allows you to place portions of text into the clipboard by using any one
of its editing commands - cut, copy, paste, clear and select all - found in the Edit
menu and discussed in the sections ahead. Prior to issuing any one of these four
commands, the range of text to be placed in the clipboard must first be selected.
Three methods are available to you when selecting text - dragging, shift-clicking and
double-clicking. One method may be more appropriate than the other two
depending upon the range of text to be selected.

Before discussing the three different means of selecting text, we will define the
current insertion point . The current insertion point is located where the cursor
appears after clicking the mouse once in the active window. Using the location of ·
the current insertion point you can begin entering or deleting characters, or you can
use the location for marking the beginning of text to be selected.

Dragging is the easiest way to select text, and can be accomplished by moving the
cursor on the screen to the beginning of the text you wish to select, then click and
hold the mouse button down while dragging the cursor to the end of the text to be
selected. You will notice the range of selected text appears in black (inverted) type.
Dragging allows you to be extremely particular about the range of text you select.

Secondly, you can select a range of text by shift-clicking. To shift-click, move the
cursor to the beginning of the text you wish to select and click the mouse once.
Next, move the cursor to the end of the text you wish to select, then hold down the
Shift Key and click the mouse button once to select all of the text between the first
and second mouse clicks. This method is best used to select a large portion of a
program's source code for placement in the clipboard.

Thirdly, to select text by double-clicking, position the mouse over the text you would
like to select, and quickly press the mouse button twice. Double-clicking will select
the entire word which appears under the cursor. Double-clicking is most useful
when only a single word is to be placed in the clipboard.

TML BASIC User's Guide 42 Advanced Program Editing

Editing Commands

At the heart of TML BASIC is its ability to assist you in writing programs. Unlike
conventional editors, TML BASIC provides a full-screen editing environment
enabling you to both write programs more quickly and make necessary source code
changes with little difficulty.

With HELLOWORLD.BAS selected as the active window, issue the Select All command
from the Edit menu. Notice that the entire contents of the HELLOWORLD.BAS
window is inverted and placed in black type. Remember, inverted text represents
the range of selected text. Now, issue the Copy command from the Edit menu.
You will not see any changes on the screen, but rest assured the selected range of text
now exists in TML BASIC's clipboard and may be used to assist in creating a new
program.

Position the cursor anywhere in the "Untitled" window and click the mouse once,
resulting in the "Untitled" window becoming the active window. Now, move the
cursor to the first line in the "Untitled" window and click the mouse once to create
the current insertion point. Issuing the Paste command from the Edit menu at this
time results in the clipboard's present contents being pasted into the "Untitled"
editing window beginning at the current insertion point. Figure 4-2 illustrates the
result of performing this Select All/Copy /Paste command.

File Edit ProDOS

TML BASIC User's Guide

II Id.Bas

Figure 4-2
Pasting Source Code

Advanced Program Editing

Unlike the Copy command, the Cut command results in the selected range of text
being completely removed from its original location in a program's source code and
placed into the clipboard for use elsewhere by issuing the Paste command. If you
had issued the Cut command in place of the Copy command in the last example,
the HELLOWORLD.BAS editing window would appear empty with its entire contents
placed in TML BASIC's clipboard.

That brings to mind one last editing command - the Clear command. Issuing the
Clear command after selecting a program's entire range of text results in the active
window's contents being erased. The program's source code is not placed in the
clipboard and you would have to issue the File menu's Revert command in order
to restore the program's source code. The Clear command is useful when you do
wish to erase a selected range of text or an entire window's text and without
disturbing the clipboard's contents.

Obviously, TML BASIC's editing commands are not limited to selecting an entire
program's source code. Using any one of the three techniques discussed in the
previous section for selecting text (dragging, shift-clicking and double clicking)
enables you to cut, copy, paste and/ or clear any range of text within a program.

Note that the clipboard can only hold one piece of information at a time, so
everytime you cut or copy from a window, any information previously in the
clipboard is replaced. Each time you paste from the clipboard, however, a duplicate
copy of the information remains in the clipboard.

Find and Change

After pasting the HELLOWORLD.BAS program's entire source code into the "Untitled"
window, the next step in our exercise is to change each occurrence of the character
string "Hello World" to "First Attempt" in the "Untitled" window. One way to do
this, of course, would be to move the cursor to the end of the each occurrence of the
string "Hello World", and then backspace over each "Hello World" string and
re-type "First Attempt". This could be an extremely cumbersome and time
consuming task, so let's investigate TML BASIC's ability of finding a string of text
and replacing it with another string of text.

The TML BASIC Secrch menu contains three commands for locating and changing
text in an active window. The first command is the What to Find ... menu item.
Choosing this command displays the TML BASIC Find Dialog Box shown in Figure
4-3. The Find Dialog Box request two entries be made - Find What and Change To,
and three buttons - Find, Cancel and Change All.

TML BASIC User's Guide 44 Advanced Program Editing

Find

Change Ta: First

[Cancel] All]

'

Untitled
Hello

He I lo

to ..
GET$

Figure4-3
Find Dialog Box

The Find What item is where the string to be searched for is specified. For our
example, you should enter the string "Hello World" here. If all you wanted to do
was find the next occurrence of this string then you would press the Find button in
the Find Dialog Box. The dialog would go away, and TML BASIC would search the
program contained in the active window, beginning at the current insertion point
for the next occurrence of "Hello World". However, in our example, you also need
to change the string "Hello World" to "First Attempt" once it is found . Thus, you
should enter the string "First Attempt" in the Change To text edit item, and then
press the Find button.

After pressing the Find button, the string "Hello World" is found, and is
automatically selected by inverting the string in black. To change the string to "First
Attempt", as you specified in the Find Dialog Box's Change To text edit item, simply
issue the Change then Find command from the Search menu. After changing the
string, TML BASIC proceeds to find the next occurrence of "Hello World". Once
every occurrence of the "Hello World" string has been changed using this method,
TML BASIC reports that the string cannot be found in an Error Dialog Box.

Also, you could save yourself the time of locating and changing each occurrence of
the "Hello World" string by pressing the Change All button in the Find Dialog Box.

One final change you should make is to save the program to disk under the new
name of FIRSTATTEMP.BAS. Selecting the Save As command from the File menu
results in the Save File Dialog Box displayed on your screen. The Save File Dialog

TML BASIC User's Guide Advanced Program Editing

Box contains buttons allowing you to determine both the disk and folder you wish
to save the new program in, as well as the name it will be given for future use.

The disk and folder will already by identified as the TML BASIC disk and the
PARTl.EXAMPLES folder respectively, so all you need to do is enter the name
FIRSTATTEMP.BAS at the Save document as: insertion point in the dialog.

The result of these changes, as well as the copy and paste commands performed, is a
new program, which for the most part does exactly what the HELLOWORLD.BAS
program does. Figure 4-4 illustrates the screen's appearance as a result of creating
the new FIRSTATIEMP.BAS program.

Printing

File Edit Search ProDOS

•

•
PRINT •

•
PRINT
PRINT •

PRINT '
PRINT
PRINT '

Hello
Hello
Hello
Hello Uorld'

He 11 o I d'
Hello
Hello

He 11 owor Id.Bos

firs tot tNnp.Bos
First
First

PRINT lo continue ... •

I{ .

Figure4-4
New File - FIRSTATTEMP.BAS

TML BASIC can print the contents of the active editing window using the Print
command from the FIie menu. When selecting this command, the text in the
topmost window is printed to the printer using the current printing options. TML
BASIC prints to either of the serial ports (slots 1 and 2) directly. Thus, TML BASIC
can print to any serial printer, such as the ImageWriter, or to any parallel printer
connected to an interface card in either slot 1 or 2. TML BASIC provides three
commands in the File menu for controlling the way a file is printed: Print Options,
Page Setup and Chooser.

TML BASIC User's Guide Advanced Program Editing

The Print Options command is used to define the information printed on a page.
When selecting this command the Print Options Dialog Box is displayed as shown
in Figure 4-5.

Edit Search ProDOS
Helloworld.Bas

• He I lo Id '
PRINT ' Hello

' Hello
' Hello"

PRINT ' Hell
PR ' He I •
PRINT , rmt e

Print Date/Ti11e
Print

'
'
'

PRINT 'Press any key lo continue ..

(e)

l<,.JI

Figure4-5
Print Options Dialog Box

When TML BASIC prints a file to the printer, it optionally prints a header across the
top of every page. The header can include the name of the file (Print Title), the
current date and time (Print Date/Time), and page numbers (Print Page Numbers).
If an option is checked, TML BASIC prints the corresponding information in the
header. If none of the options are selected, a header is not printed.

The Page Setup menu command displays the Page Setup Dialog Box (Figure 4-6)
when selected. This dialog is used to configure the way TML BASIC prints a page.
There are two options: Continuous and Cut Sheet. If Continuous is selected, a
header is only printed on the first page, and no blank lines are printed at the end or
beginning of a piece of paper. This option maximizes the number of lines that can
be printed on a page. However, if the paper is misaligned, a line of text may print on
the perforation in the paper.

If the Cut Sheet option is used, a header is printed at the top of every page, and blank
lines are printed at the end and beginning of every page. When this option is
selected, the number of lines per page must be set. The default setting is for standard
81/2 by 11 inch paper.

TML BASIC User's Guide 47 Advanced Program Editing

Finally, the Page Setup Dialog Box allows you to enter a special character sequence
representing a Printer Command. The character sequence is sent to the printer
before printing every file. The Printer Command can be used to instruct a printer to
use a special built in font or font size, page size, etc. In order to send a control
character to the printer use the caret character (^) followed by the appropriate letter
that defines the control character. For example, ^? sends an ASCII ?? (an escape
character). See Appendix E for these codes.

Edit Search ProDOS

He 11 o I d"
Hello

Hel I "

Id.Bas

He I Printer

"
PRINT "

'

" I O Continuous

'
PRINT

[E:=:J Per

any lo
Keyl

< JI

Figure 4-6
Page Setup Dialog Box

-

The Chooser menu item allows you to specify to TML BASIC which of the two
serial ports (printer port or modem port) your printer is connected. If you have
changed the Apple IIGS Control Panel so that either slot 1 or slot 2 does not use the
built-in port, but rather a card in that slot, TML BASIC will obey this change so that
you can use a parallel printer with an appropriate card.

This menu command displays the Choose Printer Connection Dialog Box as shown
in Figure 4-7. The Printer icon indicates the built-in printer port or slot 1, and the
phone icon indicates the built-in modem port or slot 2. Click the mouse on the icon
which has the printer connected.

TML BASIC User's Guide 48 Advanc ed Program Editing

Edit Windows Pro DOS

PRINT
PRHIT '

PRINT '

PRINT '
PRINT

11 owor Id.Bas
Hello
Hello Id'
Hello Choose Printer Connection:

He I lo

Hello !!
Hello

PRINT '
PRINT· First
PRINT •

'Press to continue ... •

-

.•.•.•.

<JI

Figure4-7
Choose Printer Connection Dialog Box

In addition to selecting the printer port, you should also make sure the selected port
is properly configured for the type of printer you have. You can change the
configuration of the serial ports using the Apple IIGS Control Panel. If you are not
familiar with this operation see Appendix A of your Apple Iles Owner's Guide.

All of your selections for printing configurations are saved to the TMLBASIC.OPTS file
so that you do not need to specify your selections every time you use TML BASIC.

After selecting the correct printer configuration, click the mouse once on the new
FIRSTATTEMP.BAS program, making it the active window if it is not already, and then
select the Print command from the File menu.

While TML BASIC is printing the contents of the active window a small Print
Dialog Box is displayed in the middle of the editing screen. Before issuing the Print
command, be certain your printer is on and selected. To cancel printing at any time,
press the mouse button or any key on the keyboard.

The Preferences Dialog

The Preferences command found in the Compile menu allows you to customize
the way you use TML BASIC.

TML BASIC User's Guide Advanced Program Editing

The Preferences Dialog contains valuable information allowing you to customize
TML BASIC's functionality to meet your particular programming needs. The
information contained in the dialog is extremely important and ranges from
allowing you to adjust TML BASIC's tab settings to freeing up memory space.
Chapter 6 includes a detailed description of each item found in the Preferences
Dialog Box and should be studied careful! y before you begin programming.

ProDOS Commands in TML BASIC

TML BASIC provides access to three ProDOS commands without requiring you
leave the TML BASIC environment. To see these commands, pull-down the
ProDOS menu. You will see the Rename ... , Delete ... and Transfer ... menu items.
Use of these three ProDOS commands while working within TML BASIC will save
you valuable programming time otherwise lost if you were required to leave TML
BASIC everytime you wished to issue one of the these commands.

Selecting any one of the three ProDOS commands results in a modified version of
the Get File Dialog Box displayed. The modified Get File Dialog Box's Open button
will be changed to an appropriate title matching the command being performed.

Select the Delete ... command from the ProDOS menu. The Get File Dialog Box is
displayed as shown in Figure 4-8 allowing you to select a file to be deleted. Locate
the file FIRSTATTEMP.BAS you created earlier in this chapter and delete it.

File Edit Search Compile

PRINT "
PRINT "
PRINT
PRINT
PRINT
PRINT
PRINT

PRINT "
PRINT II

Hello
Hello

He
Delete which file:

Averages.Bos

Errors.Bos

Finder.Data

He 11 owor 1 d.Bos

(Disk)

Delete)
(Close)

Cancel (
PRINT any
Gm Keyl

-

ICJI .. , . (a

Figure 4-8
Get File Dialog Box - Delete

TML BASIC User's Guide Advanced Program Editing

Before TML BASIC erases the file from the disk it displays the Delete Confirmation
Dialog Box (Figure 4-9). This dialog gives you one last chance to prevent deleting
the wrong file. In this particular case we are certain the FIRSTATTEMP.BAS file should
be deleted, so you should click the mouse on the Yes button to proceed with deleting
the file from your TML BASIC working disk.

File Edit Search Windows · , 11

Hello
Hello

He

Hel loworld.Bas
'

•

'
PRINT
PRINT

ta

PRINT

PRINT

'Press any

Figure 4-9
Delete Confirmation Dialog Box

The second ProDOS command available to you in TML BASIC allows you to
rename a file from within TML BASIC. After selecting a file to be renamed, TML
BASIC displays a Rename Dialog Box allowing you to change the current name of
the selected file. In this respect, each of the three ProOOS commands are alike - you
are always provided a second opportunity to prevent the inadvertent consequences
of deleting, renaming or transferring control to the wrong file.

The third ProDOS command available in TML BASIC is the Transfer command.
The Transfer command is used to leave TML BASIC permanently and transfer
control to another ProOOS application (even one you might have created with TML
BASIC). After transferring control to the chosen application, you can only return to
TML BASIC by first quitting the newly selected application and then re-launching
TML BASIC from the IIGS Finder.

Chapter 6 includes a complete reference to all of TML BASIC's commands and
features and should be referred to for further information about each of the three

TML BASIC User's Guide 51 Advanced Program Editing

ProDOS commands available from within TML BASIC.

In this chapter we have explained some of the advanced editing commands
available to you while creating a new program similar to the HELLOWORLD.BAS
program used throughout Chapter's 2 through 4. You also learned about printing
program listings, and how to issue three powerful ProDOS commands without
leaving TML BASIC. Customizing the TML BASIC environment via the
Preferences Dialog Box was briefly discussed with a forward provided to Chapter 6.

As always, be certain to close all open editing windows used in this chapter and
leave TML BASIC by issuing the Quit command.

The next chapter introduces a few of the fundamental statements which are part of
the TML BASIC language. A thorough understanding of TML BASIC's working
environment, as discussed up to this point, will increase your performance at the
keyboard when following the discussion in Chapter 5.

Chapter 6 includes a brief description of every TML BASIC feature and should be
used as a reference in your programming efforts.

TML BASIC User's Guide 52 Advanced Program Editing

Chapter 5
Your First Program

This chapter assumes you have familiarized yourself with TML BASIC's
programming environment. If you are not already familiar with how TML BASIC
works - in particular the techniques for editing, compiling and running a program -
you should take the time to read Chapter's 1 through 4 before proceeding.

TML BASIC can be used to create two different types of programs: Textbook
programs and Toolbox programs. Textbook programs represent "traditional" style
programs created using the Apple Iles text screen. We use the term textbook
because these are the types of programs you are likely to find in most general BASIC
programming textbooks. Toolbox programs, on the other hand, are those which
make use of the Apple Iles Toolbox. These programs operate within the Apple
IIGS's Super Hi-Res Graphics screen and are usually event-driven applications
which use the mouse. This chapter addresses only textbook programs. Part III of
this manual, "Toolbox Programming", documents the Toolbox and how to write
Toolbox programs.

Although TML BASIC provides a large number of predefined programming
statements and functions, you will find only a small number of these statements
and functions necessary to begin programming. For a complete reference to every
statement and function included in TML BASIC reference Chapter 10.

Statements introduced in this chapter:

REM
LET
PRINT
GET$
INPUT

The First Program

To begin this discussion of textbook programming, launch TML BASIC from your
working disk and open the file AVERAGES.BAS located in the PARTl.EXAMPLES folder.
If you have not already made a working copy of TML BASIC, you should do so now
before proceeding in order to protect your distribution disk from possible damage.
Additionally, if you are not familiar with how to launch TML BASIC and open, edit,
compile and run programs, refer to Chapter's 1 through 4 of this manual.

TML BASIC User's Guide 53 Your First Program

After you have opened the AVERAGES.BAS program, the following source code
should appear in the editing window:

REM A program to compute the average of three numbers
LET Avg= (43 + 27 + 23) / 3
PRINT "The average of the three numbers i.s "; Avg
GET$ Key$

Run the AVERAGES.BAS program by selecting the To Memory & Run command from
the Compile menu. The program is immediately compiled and then run by TML
BASIC. The output from this program should appear similar to the following line
of text on the text screen:

The average of the three numbers is 31

Press any key on your keyboard and the program completes its execution. The TML
BASIC environment reappears with the open window still containing the
AVERAGES.BAS program's source code. Now let's examine how this program
actually works.

The program consists of four lines of source code. Each line contains a statement.
Statements are the fundamental component of a TML BASIC program used to
instruct the computer what actions to perform. Each statement begins with a special
TML BASIC word called a reserved word. The reserved word indicates what kind of
statement is on the line. A list of all the TML BASIC reserved words can be found
in Chapter 7, Table 7-2.

If you are familiar with other implementations of the BASIC language you will
immediately notice there are no line numbers in a TML BASIC program. Line
numbers have traditionally been part of the BASIC language because the editors
used with these older implementations required them. In addition, line numbers
were used in some BASIC statements. TML BASIC, on the other hand, uses
alphanumeric labels instead of line numbers. Alphanumeric labels are discussed in
detail in Chapter 7.

The REM Statement

The first statement used in the AVERAGES.BAS program is the REMark statement.
The REM statement is used in a TML BASIC program to include notes about a
program's purpose, what it does, how it works or any other information you find
useful to describe the program. It is also good programming practice to include REM
statements in your programs in order to "document" their actions.

The REM statement does not instruct the computer to perform any specific action.
In fact, TML BASIC ignores the remainder of a line containing a REM statement.

TML BASIC User's Guide 54 Your First Program

The AVERAGES.BAS program includes one REM statement used to describe the
program's purpose.

TML BASIC offers an alternative to the REM statement called the comment. A
comment behaves exactly like the REM statement except that it consists only of the
single quote (') character followed by appropriate documentation. For example, the
AVERAGES.BAS program can be rewritten as:

'A program to compute the average of three numbers
LET Avg= (43 + 27 + 23) / 3
PRINT "The average of the three numbers is"; Avg
GET$ Key$

The important difference between the REM statement and a comment is that a
comment is not a statement. If a program has a REM statement which appears on
the same line after another statement, a colon must be used to separate the two
statements (colons can be used to separate several statements on the same program
line). However, a comment does not require a preceding colon since it is not a
statement. Consider the following example:

LET Avg= (43 + 27 + 23) / 3
LET Avg= (43 + 27 + 23) / 3

:REM Compute the average
'Compute the average

The first programming line above illustrates two statements included on the same
line and separated by a colon. The second line, however, contains only one program
statement with a proceeding comment to document the line's purpose.

The LET Statement

The LET statement, also called the assignment statement, is used to assign a value to
a variable. Following the reserved word LET is a variable name followed by an
equal sign and then an expression. The variable on the left side of the equal sign is
given the value of the expression on the right side of the equal sign.

A variable is a named entity which stores a numeric or string value. The variable's
value can change during execution of a program by using the LET statement. The
variable name is any sequence of alphanumeric characters that begins with a letter
and does not spell any of the TML BASIC reserved words. A variable name may be
of any length and all characters are significant. If the variable stores a string value,
its name must end with the dollar sign character ($). For more information about
variables see the section "Variables" in Chapter 7. In the AVERAGES.BAS program,
Avg is a numeric variable and Key$ is a string variable.

An expression represents a value. An expression is made up of operands combined
with operators which produce a value when evaluated during execution. Operators

TML BASIC User's Guide 55 Your First Program

are special symbols representing a particular operation to be performed. For
example, the LET statement used in the AVERAGES.BAS program contains both the
addition operator (+) and the division operator (/). Operands are constants,
variables and function calls that operators work on. In the LET statement, the
constants 43, 27, 23 and 3 are operands. Again, more information about expressions
can be found in Chapter 7, in the section titled "Expressions".

The following example shows how the AVERAGES.BAS program can be rewritten to
use several LET statements and variables within an expression.

REM A program to compute the average of three numbers
LET Count= 3
LET Numberl 43
LET Number2 27
LET Number3 23
LET Avg= (Numberl + Number2 + Number3) / COUNT
PRINT "The average of the three numbers is"; Avg
GET$ Key$

As previously mentioned, every TML BASIC program statement must begin with a
reserved word. The only exception to this rule is the LET statement. In the case of
the LET statement, the reserved word LET is optional and need not appear. Thus,
TML BASIC assumes any statement that begins with a variable is, in fact, a LET
statement.

The following example shows how the AVERAGES.BAS program can be rewritten
using the LET statement without the reserved word LET.

REM A program to compute the average of three numbers
Count= 3
Numberl 43
Number2 27
Number3 23
Avg= (Numberl + Number2 + Number3) / COUNT
PRINT "The average of the three numbers is"; Avg
GET$ Key$

Enter these changes in the AVERAGES.BAS program and try running the program to
see for yourself how the LET statement operates.

The PRINT Statement

The PRINT statement displays text on the Apple IIGS text screen. The PRINT
statement is used to print the values of numeric and string expressions. The PRINT
statement may contain any number of expressions separated by either a comma or
semicolon. Each expression is called a print item. Actually, multiple expressions
can be separated by spaces, but it is good programming practice to use either a

TML BASIC User's Guide Your First Program

comma or a semicolon to clearly show that more than one expression is included in
the PRINT statement.

The PRINT statement used in the AVERAGES.BAS program contains two print items
separated by a semicolon. The first item is the string constant

"The average of the three numbers is "

and the second item is the numeric variable Avg.

When a string expression appears in a PRINT statement, the exact characters in the
string are displayed to the text screen at the current text location (the location of the
cursor). When a numeric expression is printed, the binary representation of the
numeric value is first converted to a string and then displayed at the current text
location.

When using the semicolon as a separator between multiple expressions in a PRINT
statement, TML BASIC positions the cursor immediately following the last character
displayed. Thus, the next expression is displayed adjacent to the previous print
item. Using a comma as a separator causes TML BASIC to perform a tab operation
before the next print item is displayed. The tab width of the PRINT statement is 16
characters. The spaces between each tab are called a print zone. The following
diagram illustrates how the 80 columns of a text screen are divided into five print
zones.

1

Print
Zone

1

TML BASIC User's Guide

17 33

Print
Zone

2

Zone Width is
16 characters

49 65 80

Print Print Print
Zone Zone Zone

3 4 5

57 Your First Program

If the PRINT statement from the AVERAGES.BAS program is rewritten to use the
comma separator as shown below,

PRINT "The average of the three numbers is Avg

the output will be displayed as follows:

The average of the three numbers is 31

column 1 column 17 column 33 column49

Because the position of the text cursor is at column 36 after printing the string
constant, the comma causes the cursor to tab to the next print zone beginning in
column 49.

After all print items within a PRINT statement have been displayed as output, the
text cursor is moved to the first column of the next line. If the cursor is on the last
line of the screen, the entire contents of the screen is scrolled up one line. Thus, a
PRINT statement containing no print items will display one blank line.

In some cases, a program may not want the PRINT statement to advance the text
location to the next line after it has displayed all of its print items. Whenever a
PRINT statement ends with a comma or a semicolon, the PRINT statement will not
advance to the next line. For example, the PRINT statement in the AVERAGES.BAS
program can be rewritten using two PRINT statements, and have the output
displayed on one line as before.

REM A program to compute the average of three numbers
LET Avg = (43 + 27 + 23) / 3
PRINT "The average of the three numbers is";
PRINT Avg
GET$ Key$

The TML BASIC language has several other variations and functions which work in
conjunction with the PRINT statement. These include the PRINT USING
statement as well as SHOWDIGITS, SPC and TAB. These are advanced functions
described in detail in Chapter 10.

The GET$ Statement

The GET$ statement is used to assign a single character from the keyboard to a string
variable, without displaying it on the screen and without requiring the Return Key
be pressed.

TML BASIC User's Guide 58 Your First Program

Examining the AVERAGES.BAS program you will notice the GET$ statement is used
without the character read from the keyboard used anywhere else in the program.
The reason for the GET$ statement appearing in this program (as it does in the other
example programs found on disk) is to temporarily halt execution of the running
program before control is returned to the TML BASIC environment. If this
statement did not appear here, the output of the program would be displayed on the
screen and control would return to TML BASIC so fast you would not be able to see
the program's output.

Delete the GET$ statement from the AVERAGES.BAS program and then compile the
program to see how quickly the program returns control to TML BASIC after
completing execution.

Of course, you can use the GET$ statement throughout your program for the specific
purpose of receiving input from the user and then acting upon it. However, for the
purpose of this chapter's discussion, you need only realize the statement is used to
temporarily keep a program from returning control to TML BASIC so that you can
see the program's output.

The INPUT Statement

The AVERAGES.BAS is a fine first program, but it does have one rather serious flaw:
it only averages the three numbers 43, 27 and 23. After running this program a few
times it becomes obvious the average of these three numbers is 31. In this respect,
the program would be much more useful if it could average any three numbers as
input by the user.

The INPUT statement is TML BASIC's means of obtaining one or more numeric or
text values entered at the keyboard. When the INPUT statement is executed, TML
BASIC accepts a value entered from the keyboard and assigns it to the first variable
in the INPUT statement. Consider the following variation of the AVERAGES.BAS

program:

REM A program to compute the average of three numbers
Count= 3
INPUT Numberl
INPUT Number2
INPUT Number3
Avg= (Numberl + Number2 + Number3) / COUNT
PRINT "The average of the three numbers is"; Avg
GET$ Key$

When the INPUT statement is executed, a question mark (?) is displayed on the
screen indicating the program is waiting for input. Try entering this program and
compiling it with TML BASIC to see how the INPUT statement works.

TML BASIC User's Guide Your First Program

The INPUT statement can now accept several values at a time by listing several
variables in the statement separated by commas. For example, the above program
could be rewritten with only one INPUT statement as follows:

REM A program to compute the average of three numbers
Count= 3
INPUT Numberl, Number2, Number3
Avg= (Number}+ Number2 + Number3) / COUNT
PRINT "The average of the three numbers is"; Avg
GET$ Key$

When more than one variable is listed in an INPUT statement, each of the values
entered at the keyboard must be separated by a comma or a Return key. If a Return
key is entered variables still exist which have not been given values, TML BASIC
displays two question marks (??) indicating more data is required by the INPUT
statement.

The INPUT statement may also contain a string which is displayed as the input
prompt instead of the normal question mark. The string must appear immediately
after the reserved word INPUT and must be a string constant and not a string
variable or expression. The following example shows how this variation of the
INPUT statement can be used in the AVERAGES.BAS program.

REM A program to compute the average of three numbers
Count= 3
INPUT "Enter three numbers: "; Numberl, Number2, Number3
Avg= (Number}+ Number2 + Number3) / COUNT
PRINT "The average of the three numbers is"; Avg
GET$ Key$

Of course, the INPUT statement can be used to input string variables as well as
numeric variables by simply listing a string variable as an argument to the INPUT
statement as follows:

INPUT "Enter three names: "; Name1$, Name2$, Name3$

Multiple Statements

TML BASIC programs consist of program lines where each line contains a program
statement. If you desire, it is actually possible to include several statements on a
source code line by separating the statements with a colon (:) character. The only
limit on the number of statements that may appear on a line is the restriction that
TML BASIC source code lines may not exceed 255 characters.

TML BASIC User's Guide Your First Program

The following example illustrates how our modified version of the AVERAGES.BAS
program can be rewritten to include four LET statements on a single line. Note that
between each statement is a colon to separate the two adjacent statements.

REM A program to compute the average of three numbers
Count= 3: Numberl = 43: Number2 = 27: Number3 = 23
Avg= (Numberl + Number2 + Number3) / COUNT
PRINT "The average of the three numbers is"; Avg
GET$ Key$

While this technique reduces the number of lines in a program, it makes the
program harder to read. Unlike interpreted BASIC implementations, TML BASIC
imposes no overhead for using extra program lines. In fact, you can even include
blank lines in TML BASIC without creating errors.

Summary

This chapter introduced some of the most fundamental statements used by any TML
BASIC program. They are the REM, LET, PRINT, GET$ and INPUT statements.

Although the example program used in this chapter's discussion seems relatively
simple, you can probably imagine how complicated programs are capable of being
written with only these statements. Even so, your programming skills are certain to
increase rapidly, thus demanding more powerful statements to include in your
programs.

As mentioned in the onset of this chapter's discussion, Chapter 10 is a complete
guide to all of the statements and functions available to you in TML BASIC.
Reference Chapter 10 at any time while programming for guidance in using each
statement and function.

TML BASIC User's Guide 61 Your First Program

Chapter 6

TML BASIC Menu Reference

This chapter provides a complete reference to the commands available and
contained in each of TML BASIC's seven menus. TML BASIC's seven menus are
the Apple, File, Edit, Search, Windows, Compile, and ProDOS menus. Recall that
most menu commands can be issued by entering command-key equivalents rather
than clicking the mouse on the menu and releasing it over the menu command. If
a menu command has a command-key equivalent, it is shown in the menu
command's heading below. A discussion of command-key equivalents is provided
at the end of this chapter.

The Apple Menu

The Apple menu is a standard menu for Apple IIGS desktop applications such as
TML BASIC, and is always the first menu in the menu bar. In TML BASIC, the
Apple menu has two parts: the About TML BASIC ... command and the list of
installed new desk accessories (NDAs) available in TML BASIC. Because, the list of
desk accessories depends upon which desk accessories are installed on your
particular system disk, Figure 6-1 may not match your menu exactly.

About TML BASIC ...

The About TML BASIC ... menu item displays the About BASIC Dialog Box. The
dialog contains the TML BASIC logo, TML Systems' address and phone number.
More importantly, the version of TML BASIC you are using and TML Systems'
copyright notice also appears in the About BASIC Dialog Box.

Desk Accessories

The desk accessory menu items represent each of the NDAs installed on your
system disk. Recall that desk accessories must be properly installed on your bootable
system disk to be available. For a desk accessory to be properly installed, it must be
in the DESK.Aces folder which is in the SYSTEM folder. Selecting a desk accessory
name from the Apple menu will cause that desk accessory's window to be opened
on the TML BASIC desktop.

TML BASIC User's Guide 63 TML BASIC Menu Reference

The File Menu

Figure 6-1
Apple Menu

The File menu contains the various file related commands (Figure 6-2) in TML
BASIC. The menu items are grouped into three basic categories: accessing disk
files, printing, and exiting TML BASIC. Following is a description of each menu
item contained in the File menu.

New

This item opens a new ("Untitled") window. The new window becomes the active
window ready for editing. If four windows have already been opened, the
maximum allowed by TML BASIC, then this item is disabled.

Open

The Open menu item displays the Open File Dialog Box (Figure 6-3) allowing you
to select a file for editing or compiling. This menu item is disabled if four windows
are already open.

Close

This menu item closes the active (topmost) editing window. If the source code
contained in the active window has had changes made to it since last opened, you
are prompted to save the changes you have made, and if the active window is
untitled, you are asked to name the file.

TML BASIC User's Guide 64 TML BASIC Menu Reference

TML BASIC User's Guide

Figure 6-2
File Menu

(

Open

(

Figure 6-3
Open File Dialog Box

)

)

TML BASIC Menu Reference

Save

The Save menu item saves the contents of the active window. If the window is
already associated with a disk file, the original file on disk is overwritten by the
contents of the current window. If thewindow is untitled, you are prompted with
the Put File Dialog Box to name the window.

Save As ...

Selecting this menu item allows you to save the contents of the active editing
window to a new disk file . To do this, you are again prompted with the Put File
Dialog Box to name a file for this window. If thefilename you choose already exists
in the specified subdirectory, you will be warned of this and asked if you wish to
replace the existing file.

Revert

This menu item will cause all of the editing changes you have made to be replaced
with the most recently saved version of the file. You will be asked to confirm this
choice before the operation is performed.

Print Options ...

This menu item displays the Print Options Dialog Box (Figure 6-4).

TML BASIC User's Guide

Print
Print
Print
Print

Figure 6-4
Print Options Dialog Box

TML BASIC Menu Reference

When TML BASIC prints a file to the printer, it optionally prints a header across the
top of every page. The header can include the name of the file (Print Title), the
current date and time (Print Date/Time), and page numbers (Print Page Numbers).
If an option is checked, TML BASIC prints the corresponding information in the
header. If none of the options are selected, a header is not printed.

Page Setup ...

This menu item displays the Page Setup Dialog Box (Figure 6-5).

0 Continuous
Sheet

Lines Per

a:>

Figure 6-5
Page Setup Dialog Box

The Page Setup Dialog Box is used to configure the way TML BASIC prints a page.
There are two options: Continuous and Cut Sheet. If Continuous is selected, a
header is only printed on the first page, and no blank lines are printed at the end or
beginning of a piece of paper. This option maximizes the number of lines that can
be printed on a page. However, if the paper is misaligned, a line of text may print on
the perforation in the paper.

If the Cut Sheet option is used, a header is printed at the top of every page, and blank
lines are printed at the end and beginning of every page. When this option is
selected, the number of lines per page must be set. The default setting is for standard
81/2 by 11 inch paper.

Finally, the Page Setup Dialog Box allows you to enter a special character sequence

TML BASIC User's Guide 67 TML BASIC Menu Reference

which represent a Printer Command. The character sequence is sent to the printer
before printing every file. The Printer Command can be used to instruct a printer to
use a special built in font or font size, page size, etc. In order to send a control
character to the printer use the caret character (^) followed by the appropriate letter
that defines the control character. For example, ^? sends an ASCII ?? (an escape
character). See Appendix E for these codes.

Chooser ...

The Chooser menu item allows you to specify to TML BASIC which of the two
serial ports (printer port or modem port) your printer is connected. Your selection is
saved to the TMLBASIC.OPTS file so that you do not need to specify your selection
every time you use TML BASIC. If you have changed the Apple IIGS Control Panel
so that either Slot 1 or Slot 2 does not use the built-in port, but rather a card in that
slot, TML BASIC will obey this change so that you can use a parallel printer with an
appropriate card.

Print

The Print menu item causes the contents of the active window to be printed to the
printer through the currently selected serial port (slot). The text is printed using the
built-in font of the printer. TML BASIC does not use the Apple IIGS Print Manager
for printing.

If the Option key is held down when choosing this command, TML BASIC prints
the currently selected text in the active window rather than the entire contents.
This is especially useful when editing large files.

Quit

Selecting Quit closes all open windows, allowing you to verify whether changes
made to each window should be saved, and then exits back to the Apple Iles Finder.

The Edit Menu

The Edit menu contains several useful editing commands. The menu is in the
standard Apple Iles format thus allowing it to be used with desk accessories. See
Figure 6-6.

Undo

Undo does not support the TML BASIC editing windows and is therefore disabled.
However, Undo is enabled whenever a desk accessory window is the active window
so that it is available for the desk accessory.

TML BASIC User's Guide 68 TML BASIC Menu Reference

Cut

Figure 6-6
Edit Menu

This command cuts the currently selected text. The operation deletes the selected
text from the active window and saves it into the clipboard.

Copy

This command copies the currently selected text, but does not delete it from the
active window, and saves it into the clipboard.

Paste

The Paste menu item copies the contents of the TML BASIC clipboard into the
active window at the current insertion point. If text is currently selected then it is
deleted before the paste is perfomed.

Clear

The Clear menu item deletes the currently selected text from the active window,
but does not save it into the clipboard.

TML BASIC User's Guide TML BASIC Menu Reference

Select All

This command selects all text contained in the active window. It is a shortcut for
selecting all text by moving to the beginning of the text, clicking the mouse, and
then moving to the end of the text and shift-clicking.

The Search Menu

The Search menu contains a collection of commands which perform search and
replace operations (Figure 6-7). The Search menu also contains two different Goto
commands that move the insertion point to a specified location in your source code.

What to Find ...

Figure 6-7
Search Menu

This menu item displays the TML BASIC Find Dialog Box allowing you to specify a
search string and an optional replacement string. When choosing this command, if
the active window has a range of text selected which resides on a single line, then
TML BASIC automatically makes this the default search string.

When selecting the Find button in this dialog, the search begins from the current
insertion point (not the beginning of the file). Selecting the Change All button
instructs TML BASIC to change every occurrence of the search string with the
replacement string beginning from the current insertion point to the end of the file.

TML BASIC User's Guide 70 TML BASIC Menu Reference

Find Next

This command searches forward in the active window, from the current insertion
point, for the next occurrence of the Find What string specified in the Find Dialog
Box. Upon locating the next occurrence, the active window scrolls to display the
string. If no occurrence of the string is found an error message is displayed.

Change then Find

The current selection in the active window is replaced with the Change To string
last specified in the Find Dialog Box. The command then searches forward in the
active window for the next occurrence of the Find What string. If an occurrence of
the string cannot be found then an error is reported.

Goto Line ...

The Goto Line menu item allows you to move the insertion point to the beginning
of a specified line within the active window. Upon selecting this command the
Goto Line Dialog Box is displayed allowing you to specify a line number you wish to
be placed on. The default line number is "END" which signifies the last line of the
file.

Goto Selection

This command scrolls the active window so that the insertion point (or currently
selected text) is visible in the window.

The Windows Menu

The Windows menu provides three commands to arrange the open windows
within the TML BASIC desktop. Figure 6-8 shows the contents of this menu.

Stack Windows

The Stack Windows menu item allows you to neatly organize your editing
windows in a stack. The current editing window remains active while the others
are stacked behind it with their title bars showing. This command is useful when
you have moved the open windows and wish to rearrange them neatly.

Tile Windows

This menu item arranges the open windows so that none of the windows overlap.
Using this window configuration allows you to see each open window's source code
without moving from one window to another.

TML BASIC User's Guide 71 TML BASIC Menu Reference

Last Error

Figure 6-8
Windows Menu

This command displays the TML BASIC Error Dialog Box, displaying the most
recently encountered error.

Next Window

The Next Window menu item places the active window .in back of all other open
windows on the screen and brings the window directly behind the previously active
window to the front. This command provides an easy method of switching between
windows when it might not be possible to click on a window because it is completely
covered by another window.

Get Info...

The Get Info command displays a File Information Dialog Box. The dialog box
displays the following information about the active editing window: the full
pathname for the file associated with the editing window, its size in bytes and the
number of lines.

The Compile Menu

The Compile menu (Figure 6-9) contains the commands which invoke the TML
BASIC compiler. When invoking the compiler, the contents of the active editing

TML BASIC User's Guide 72 TML BASIC Menu Reference

window are compiled. Also included is the Preferences ... command which allows
you to customize the way TML BASIC operates.

To Memory & Run

Figure 6-9
Compile Menu

This command invokes TML BASIC to compile the source code contained in the
active editing window. If the compilation completes successfully and the active
window contains a program which is an application (rather than a library), the state
of TML BASIC, including all open windows, is saved and control is transferred to
the compiled application. Upon quitting the compiled program, you are returned to
TML BASIC with all of your windows intact.

If the contents of the active window is a library rather than a program then there is
no program to run and, therefore, no transfer of control out of TML BASIC. Instead,
the compiled code for the unit is retained in memory so that other libraries and
programs which use the unit will have access to its code.

ToDisk

The To Disk menu item invokes the TML BASIC compiler to compile the contents
of the active window to disk creating a stand-alone ProOOS application file.

If the source code contained in the active window is a program then TML BASIC
creates an 516 (filetype $B3) application load file in the same directory as the source

TML BASIC User's Guide 73 TML BASIC Menu Reference

code. On the other hand, if the source code is a library then the library's symbol
table and code are saved to a .LIB file in the same directory as the source code.

For detailed information regarding file naming conventions and other related
information, see Chapter 3.

Check Syntax

The Check Syntax command invokes the TML BASIC compiler only to verify that
the source code contained in the active window consists of legal BASIC statements.

Preferences ...

Selecting the Preferences command displays the Preferences Dialog Box. The
Preferences Dialog Box is used to configure the TML BASIC editor and compiler to
your particular needs. The information presented in the dialog is grouped into
three major categories: Compiler, Editor, Memory. In addition, there are three
buttons: OK, Cancel and Compact Memory. The Preferences Dialog is displayed in
Figure 6-10 with its default settings. The next several paragraphs describe each
component of the dialog in detail.

Before discussing each component of the Preferences Dialog, an explanation of edit
text items and check boxes is in order. An edit text item is an item contained in the
Preferences Dialog which requires input to determine a components value, whereas
a check box acts as an on/off switch. These two mechanisms are the means by which
you modify each component of the Preferences Dialog Box.

Simply position the cursor over an edit text item, click once and begin typing to
enter the value for its component. Check boxes, on the other hand, are modified by
positioning the cursor over the check box and clicking the cursor once to toggle
between on and off states (a check representing "on").

TML BASIC User's Guide 74 TML BASIC Menu Reference

ODebug
On Error

Trapping
Break

D Check Stock

Search Poth:

Editor-------,

Tab
D Auto Save Text

Total
Free
Largest Block:

Figure 6-10
Preferences Dialog Box

K-byte Symbol Table This option allows you to specify the amount of memory
the TML BASIC compiler should allocate for a symbol table.
A symbol table is the data structure the compiler uses to
store the declarations of labels, variables, arrays, procedures
and functions. For most all programs, the default size of
12K bytes is sufficient. However, larger programs may
encounter the Compiler error Symbol Table Space
Exhausted (not to be confused with Out of Memory). If the
compiler of a program encounters this error, then you
should increase the value of this setting. 32K bytes is the
largest setting allowed. This setting can also be lowered if
you are running short of memory and are compiling small
programs. The smallest allowable value is 2K bytes.

K-byte Stack TML BASIC programs require a data structure known as the
Runtime Stack. The runtime stack is used to implement
certain TML BASIC statements including PROC, GOSUB
and LOCAL. The default value of a 8K byte stack should be
sufficient for most TML BASIC programs. This value can
be changed from 1 K to 32K bytes. See Chapter 8 for more
information about the Runtime Stack.

TML BASIC User's Guide

The Stack size may also be changed by using the $StackSize
metastatement. See Appendix B.

75 TML BASIC Menu Reference

K-byte String Pool

Debug

On Error

TML BASIC User's Guide

The String Pool is where TML BASIC stores all values of
string variables for a program. If you assign a string
constant to a string variable, that string constant is copied to
the string pool. If a program is running out of string space
this value should be increased. The maximum size for the
string pool is 64K bytes, the minimum is 1K bytes. For
more information about strings, string data and the string
pool see Chapter 7.

The String Pool size may also be changed by using the
$StringPoolSize metastatement. See Appendix B.

When the Debug option is turned on, the TML BASIC
compiler generates code to support the TML BASIC
debugger. The generated code checks for all runtime errors
such as Overflow Error, Illegal Quantity Error, etc. It also
generates a special data structure called the line number
table so that the TML BASIC debugger can determine in
what line of source code the runtime occurred. If this
option is turned off, then all runtime errors will go
undetected. The runtime errors are listed in Appendix A.

The Debug option makes programs larger and slower to
execute. The option should be turned off when a program
is known to be correct, and no longer requires the debug
code.

This option may also be turned off and on using the $Debug
metastatement. See Appendix B.

The On Error option is used to indicate to the TML BASIC
compiler that a program contains the ON ERR statement
along with the statements RESUME and/or RESUME
NEXT. These statements require that the line number table
be generated so that TML BASIC can determine on which
line to resume or resume next after an error has been
handled by an ON ERR statement list.

If your programs do not contain these statements then it is
best to tum this option off since it will decrease the size of
your applications.

This option may also be turned off and on using the
$0nError metastatement. See Appendix B.

76 TML BASIC Menu Reference

Event Trapping

Keyboard Break

This option must be turned on when a program contains
statements requiring event trapping. These statements are
the ON KBD and ON TIMER When these statements are
used, TML BASIC must generate code between each
statement to check for the occurrence of a keyboard or timer
event. This option should only be turned on when a
program contains these statements since the code necessary
to check for these events makes a program larger and
slower to execute.

This option may also be turned off and on using the
$EventTrapping metastatement. See Appendix B.

The Keyboard Break option is used to implement the ON
BREAK statement. It is also required to allow a program to
be aborted by typing a control-C.

If this option is turned on, TML BASIC generates code
between each statement to check if the control-C character
has been typed. If this option is turned off, it is impossible
to abort the execution of a TML BASIC program. The only
way to do so is to reset the Apple IIGS. If you do not intend
to abort the execution of your programs and do not use the
ON BREAK statement then you should tum this option off
so that your programs will be smaller and faster.

This option may also be turned off and on using the
$KeyboardBreak metastatement. See Appendix B.

Check Stack Overflow This option is used to instruct the TML BASIC compiler to
generate code for each procedure and function's entry code
to check to make sure that there is sufficient space in the
runtime stack to call the procedure and allocate its local
variables. If there is insufficient space, the runtime error
Stack Overflow occurs (If the Debug option is turned on
then the TML BASIC debugger is capable of showing you
what procedure or function caused the stack overflow).

TML BASIC User's Guide

Most programs never need more stack space than the
default 8K bytes, thus this option is turned off by default.
However, if your program is behaving very strangely, it
may be that its stack is growing too large and destroying
memory. Turning this option on will determine if your
program does indeed have this problem. If it does, you
should increase the allocated stack space for the program.

77 TML BASIC Menu Reference

This option may also be turned off and on using the
$CheckStack metastatement. See Appendix B.

Library Search Path The pathname specified here is where the TML BASIC
compiler searches for library files which have been specified
in a LIBRARY statement. The default value for this option
is */LIBRARIES/ which specifies the LIBRARIES folder on the
boot disk. This is the folder which contains all of the TML
BASIC predefined libraries for accessing the Apple IIGS
Toolbox. Recall that TML BASIC first searches in the
current source code folder first for a library file and then the
path specified by this option.

Tab Width This option is used by the Editor to determine how many
spaces wide a tab stop is. The default value for this option is
4 spaces. Any value between 2 and 10 is legal.

Auto Save Text The Auto Save option allows you to specify whether or not
changes to any of the editing windows should be
automatically saved before TML BASIC transfers control to
a compiled to memory application. You should select this
option if your program is in the early stages of development
and might cause the Apple IIGS to crash when run. If this
option is on you will never lose any editing changes you
have made, but not explicitly saved, however, it does slow
down the compile cycle since it must write to the disk.

Total System Memory Obviously, this value can not be changed while TML BASIC
is running. The total system memory is displayed for
informational purposes only. The value represents, in
kilobytes, the amount of RAM memory installed in your
machine.

Free Memory This number indicates how much memory is currently
available. This number is important because, it reflects
whether or not TML BASIC has enough memory to open a
new program file, compile a program to memory, etc.
Because TML BASIC retains various pieces of information
in memory, this number can sometimes be increased by
selecting the Compact Memory button described below.

Largest Memory Block This value indicates the largest block of memory available
for use by TML BASIC.

TML BASIC User's Guide 78 TML BASIC Menu Reference

OK Button

Cancel Button

Compact Memory

The ProDOS Menu

Clicking the mouse in this button (or pressing the Return
key) indicates that you want TML BASIC to accept all the
changes to the Preferences dialog you have made. After
choosing this button, the dialog disappears and TML BASIC
updates all options and settings.

Clicking the mouse in this button causes TML BASIC to
remove the dialog, and to ignore any changes made to the
options and settings and to leave them as they were before
the dialog was opened.

This button is used to release all memory associated with
programs and libraries that have been compiled to memory
or loaded to memory by a LIBRARY statement. Selecting
this button will usually adjust the Free Memory and Largest
Memory Block values. Clicking the mouse in this button
does not cause the dialog box to close.

The ProDOS menu provides access to three ProOOS16 commands (Figure 6-11).

TML BASIC User's Guide

Figure 6-11
ProDOS Menu

79 TML BASIC Menu Reference

Rename ...

The Rename command displays the Rename File Dialog Box allowing you to
choose the file you would like to rename. After selecting a file, you are prompted to
provide the new filename. The new filename must be a legal ProDOS16 filename
otherwise an error results.

Delete ...

The Delete command displays the Delete File Dialog Box allowing you to choose a
file you would like to delete. After selecting a file, you are prompted to confirm that
in fact you would like to delete the file. If you confirm that the file should be
deleted, TML BASIC will permanently delete the file from the disk.

Transfer ...

The Transfer command displays the Transfer Dialog Box allowing you to choose an
application you would like to transfer control. Upon selecting an application, TML
BASIC asks you to save any changed files and then automatically quits and invokes
the specified application without returning to the Apple IIGS Finder. The only way
to return to TML BASIC is to launch it from the Finder again.

Command-Keys versus the Mouse

As discussed earlier in this manual, TML BASIC provides an alternative to
positioning the cursor over a menu, clicking the mouse button once and holding it
down as you drag and release the cursor over a menu item.

Many menu commands can be invoked by typing the menu's command-key
equivalent. Command-keys are quite useful for invoking a menu command when
your hand is on the keyboard, and not the mouse. However, a few menu
commands (generally the less used items) do not have command-keys.

Additionally, when the active window contains a desk accessory, no command keys
are available except for the Edit menu commands. The reason for this is that the
Apple IIGS Desk Manager automatically captures command keys for desk accessories
before TML BASIC even has a chance to see them. In this case, you will either have
to use the mouse to select menu commands or make a different editing window the
topmost window.

One final note. If you are using an upgraded Apple Ile as an Apple IIGS, and do not
have a new IIGS keyboard, the Apple key is the same as the Open-Apple key
immediately to the left of the space bar on the Apple Ile keyboard. The
Closed-Apple key to the right of the space bar is equivalent to the Apple IIGS Option
key.

TML BASIC User's Guide TML BASIC Menu Reference

TML BASIC Language Reference

Chapter 7

Language Elements

This and the following three chapters represent a technical discussion of the TML
BASIC language. If you are a beginning programmer, and require a less technical
introduction to the TML BASIC language, you should read Part I of this manual
with emphasis on Chapter 5. For those programmers interested in programming
the Apple Hes Toolbox with TML BASIC, Part III of the manual provides the
information you will need.

Source Code Structure

The fundamental component of every TML BASIC program is the statement. TML
BASIC programs consist of zero or more lines of statements. Of course, a program
with zero statements is not very useful. Each line of TML BASIC source code is of
the form:

[label :] statement (:statement} ['comment]

or,

$metastatement

Before proceeding any further, the notation used in the above example to describe
TML BASIC statements and lines deserves some explanation. The notation consists
of four parts: BASIC reserved words or special characters, brackets ([]),braces ((}),
and italicized words.

BASIC reserved words and special characters appear in normal type and in all capital
letters (see Tables 7-1 and 7-2). When these words or characters appear in our
notation, they must be used exactly as shown. The brackets are used to indicate that
all the symbols which appear between matching left and right brackets may
optionally appear in the statement or line being described. The braces are used to
indicate that all the symbols which appear between matching left and right braces
may appear zero or more times. That is, the symbols may not appear at all, one
time, two times, three times, etc. Finally, italicized words are used to denote a
sequence of one or more legal TML BASIC language elements that must obey certain
rules. When an italicized word appears, it is usually followed by a sentence or more
which describes what the word represents. An attempt is also made for the word
itself to communicate its meaning.

TML BASIC Language Reference 83 Language Elements

Now, lets examine the structure of a TML BASIC source code line as defined by our
notation.

A source code line may optionally begin with a label. A label is a sequence of one or
more alphanumeric characters that begins with a letter and does not spell any of the
TML BASIC reserved words. A label may also contain the period (.) character. If a
label is used, it must always be followed by a colon regardless if anything else
appears on the line. However, when a label is referenced in a statement (for
example, GOTO myLab) the colon should not appear.

The following are legal TML BASIC labels:

HandleError:
Labl83:
SCREENUPDATE:
Label.with . periods:

Case is insignificant in the spelling of a label. Thus, the following represent the
same TML BASIC label:

MYLAB:
MyLab:
mylab:

Note that TML BASIC statements do not begin with line numbers. In fact, line
numbers do not exist anywhere in a TML BASIC program.

Statements are the fundamental component of TML BASIC programs. There is an
extensive collection of statements available in TML BASIC (see Chapter 10). A line
may contain one, or several statements, each separated by a colon. The only
restriction on the number of statements that may appear on a single line is TML
BASIC's restriction that source code lines are limited to 255 characters. Of course, it
is generally good practice to limit the length of a line to the width of an editing
window. Programs also print better when the length of a line is kept at a reasonable
size. Unlike most BASIC interpreters, there is no penalty in size or speed of a
program for more lines. Additionally, because the TML BASIC debugger only
determines what line an error occurred in, the debugger is a more useful tool when
only one statement appears on a line.

Note that it is legal to have an empty statement. Thus, it is possible to have blank
lines in your program. Blank lines are good for organizing your program's code so
that different sections of the program are visually separated.

Finally, a comment may be added to the end of any line. A comment begins with
the single quote (') character followed by any descriptive text about the program.

TML BASIC Language Reference 84 Language Elements

The comment continues to the end of the line. Comments may be used in place of
REM statements unless the comment appears after a DATA statement. In this case,
TML BASIC interprets the single quote as part of a string in the DATA statement.
Unlike, the REM statement, a colon is not needed to separate the comment from a
preceeding statement. For example,

Interest= Principle* Rate
Interest= Principle* Rate

'Calculate the interest due
: REM Calculate the interest due

MetaStatements are special commands to the TML BASIC compiler that direct it to
behave in certain ways. A line which contains a metacommand must begin with
the dollar character ($) followed by the name of the metacommand and any
parameters. Only one metacommand may appear on a line. TML BASIC provides
metacommands for most of the compiler options which appear in the Preferences
dialog box. A complete list of the TML BASIC metacommands and their use is
given in Appendix B.

Programs

The TML BASIC compiler recognizes two types of source code structures - Programs
and Libraries. A program is a collection of statements that perform some action.
When a program is compiled, TML BASIC creates a complete and stand-alone
application which can either be run immediately from within the TML BASIC
environment using the To Memory & Run compile option or can create a
ProOOS 16 application file using the To Disk compile option. A compiled ProOOS 16
application file can then be run from the GS Finder by double-clicking on its icon.

Libraries

Libraries, on the other hand, cannot be run. A library is considered a repository for
pieces of code. When TML BASIC compiles a library, it saves the compiled code so
that other programs and libraries can use its code just as if its source lines were
textually included in the program that uses it. When a library is compiled to disk,
its code is saved in a special file ending with the suffix .LIB. The source code for a
library is different from a program in that it must have a specific structure. That is,
it must begin with the statement DEF LIBRARY and end with the statement END
LIBRARY. For a complete discussion of libraries see Chapter 8.

See Chapter 3, "Creating a Stand-Alone Application", for a discussion of the TML
BASIC file naming conventions for compiled programs and libraries.

TML BASIC Character Set

TML BASIC character set consists of alphabetic characters, numeric characters, and
several special characters. The alphabetic characters are uppercase letters (A-Z) and

TML BASIC Language Reference 85 Language Elements

the lowercase letters (a-z). The numeric characters are the digits 0-9. The following
table lists the special characters recognized by TML BASIC with a description of their
usage.

Table 7-1
TML BASIC Special Characters

Symbol

$
%
&

()

*
+

I

<

>
@
I\

Description

Exclamation point
Double quote
Number sign
Dollar sign
Percent sign
Ampersand
Single quote
Parentheses

Asterick
Plus sign
Comma
Minus sign
Period

Slash
Colon
Semicolon
Less than
Equal sign
Greater than
At symbol
Caret
Underscore

Function

Structure array type character
String constant delimiter
Double-precision real type character
String type character, metastatement prefix
Integer type character
Long integer type character
Comment delimiter
Parameter lists, array indexing,

expression precedence
Multiplication operator
Addition operator, string concatenation operator
Delimiter
Subtraction operator, negation operator
Used to form variable, array, procedure,

function and label names
Division operator
Statement delimiter
Delimiter
Relational operator
Assignment operator, relational operator
Relational operator
Double integer type character
Exponentiation operator
Alternate for the CALL statement

These are the only characters that may appear in a TML BASIC program. The only
exception is that comments and string constants may contain any character.

Reserved Words

TML BASIC reserves several words for special meaning, typically for a function or
statement name. Reserved words cannot be used for label, variable, array, or

TML BASIC Language Reference 86 Language Elements

procedure and function names. Attempting to use a reserved word as an identifier
will cause TML BASIC to signal a syntax error in your program. The following table
summarizes the reserved words in TML BASIC.

Table 7-2
TML BASIC Reserved Words

ABS AND ANU APPEND
AS ASC ASSIGN ATN
AUXID BDF BREAK BTN
CALL CAT CATALOG CHAIN
CHR CLEAR CLOSE COMPI
CONV cos CREATE DATA
DATE DEF DELETE DIM
DIV DO DYNAMIC ELSE
ELSEIF END EOF EOFMARK
ERASE ERR ERROR EVENTDEF
EXCEPTION EXEVENT EXFN EXP
EXPl EXP2 FILE FILTYP
FIX FN FOR FRE
FREMEM GET GOSUB GOTO
GRAF HEX HOME HPOS
IF IMAGE INPUT INSTR
INT INVERSE JOYX JOYY
KBD LEFT LEN LET
LIBRARY LOCAL LOCATE LOCK
LOG LOGB LOGl LOG2
MENUDEF MID MOD NEGATE
NEXT NORMAL NOT OFF
ON OPEN OR OUTPUT
POL PDL9 PEEK PFX
PI POKE POP PREFIX
PRINT PROC PUT R.STACK
RANDOMIZE READ REC REM
REMDR RENAME REP RESTORE
RESUME RETURN RIGHT RND
ROUND RUN SCALB SCALE
SECONDS SET SGN SHOWDIGITS
SIN SPACE SPC SQR
SRC STEP STOP STR
SUB SWAP TAB TAN
TASKPOLL TASKREC TEN TEXT
TEXTPORT THEN TIME TIMER
TO TXT TYP UBOUND
UCASE UIR UNLOCK UNTIL
UPDATE USING VAL VAR
VARPTR VPOS WHILE WRITE
XOR

TML BASIC Language Reference 87 Language Elements

Numbers in TML BASIC

Numbers are one of the most important components of any program. They allow a
program to count, compute, calculate and otherwise do its job. Traditionally, BASIC
implementations have provided only a single type of number for programs to do its
job. Because of this, programs have had little concern for such matters as the speed,
precision and memory requirements of numbers - there was only one type of
number, and there was no choice to be made.

However, TML BASIC offers several "types" of numbers: integers, double integers,
long integers, single-precision real and double-precision real. Thus, programs that
require space efficiency or faster calculations can use the smaller, faster numbers,
while those that require a high degree of accuracy can use the slower, but more
precise numbers.

Integers

The smallest, fastest data type in TML BASIC is the integer type. An integer is a
number with no decimal point and is in the range -32,768 to 32,767. The reason for
this range of values is that integers are stored as 16-bit (two bytes) signed values.
One bit is used to indicate the sign of the number and 15 bits are used to represent
the magnitude: 215 is 32,768.

While integers are somewhat constrained in the range of values they can represent,
they make up for this with their speed. The Apple IIGS is most efficient when
handling integer numbers. Programs should use integers in FOR. . .NEXT loops, as
counters, etc. in order to produce the most efficient code possible.

Double Integers

Double integers behave just like normal integers with the exception that double
integers provide significantly more precision than integers. Double integer values
range from -2,147,483,648 to 2,147,483,647. Of course, to achieve this much precision,
twice as much storage is required than integers - four bytes. Whenever integers will
not suffice, try to use double integers next, since these numbers are the second fastest
and smallest in TML BASIC.

Long Integers

Again, long integers behave just like integers and double integers, except that they
provide an incredible range of values: -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807. Long integers require eight bytes of storage (64 bits). Long
integers provide the greatest range of values among the integer types, however, they
are the slowest integer type for performing computations.

Many types of financial programming can take advantage of this data type. In order

TML BASIC Language Reference 88 Language Elements

to avoid any round-off errors, calculations can be performed in pennies using long
integers, then scaled when output.

Single-Precision Reals

Single-precision reals are the smallest of the real numbers. A single-precision value
is a number that may contain a decimal point and an exponent in the approximate
range -3.4E38 to 3.4E38 with up to 7-8 significant digits. That means you can have a
number as small as 0.00000000000000000000000000000000000001 or as large as
100,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo,ooo, but of course only 7 to 8 digits are
significant. Single-precision reals occupy 4 bytes of memory.

While the single-precision reals represent a very large range of numbers, it does
have a somewhat limited number of significant digits. When a large amount of
precision is necessary, the long integers or double-precision reals may be more
appropriate.

Double-Precision Reals

Double-precision reals are the largest of the real numbers in TML BASIC. They
require twice as much space as the single-precision reals (8 bytes), but they have a
much greater range and precision. A double-precision value is a number in the
approximate range -1.7E308 to 1.7E308 with up to 15-16 significant digits.

Double-precision real numbers should be able to handle any computational need in
your program. However, use it with care in large arrays, etc. because of the large
amount of storage it requires.

Extended-Precision Reals

There is actually one more type of number in TML BASIC called the
extended-precision real. Extended-precision is an internal number type that is used
by TML BASIC to perform all of its real number calculations. That is, whenever a
program performs an arithmetic, relational or logical operation (discussed later in
this chapter), TML BASIC internally uses extended-precision numbers. TML BASIC
will automatically convert single-precision and double-precision numbers to
extended-precision before performing an operation and then convert the
extended-precision result back to the appropriate type. This technique allows TML
BASIC to avoid round-off errors in its calculations, thus providing your program
with the most accurate result possible.

The extended-precision number requires 10 bytes (80 bits) of storage and can
represent values in the approximate range -1.1E4932 to 1.1E4932 with 19 to 20
significant digits.

TML BASIC Language Reference Language Elements

Understanding the implications of TML BASIC's technique for performing real
number calculations is important to writing successful programs. While this
technique offers your programs greater accuracy for its calculations, there are some
side effects you should be aware of when writing programs. Since the extended
precision number provides a greater number of significant digits, some information
may be lost when converting the result of an expression to a single- or
double-precision number. Thus, you might be surprised with the following code's
output:

aDblReal# = 1.0/3 . 0
IF aDblReal# = 1 . 0/3.0 THEN PRINT "Everything is working fine"
ELSE PRINT "Something strange is going on"

When this program is executed, the output is "Something strange is going on". The
reason for this is that the extended precision result of the operation 1.0/3.0 contains
significant digits beyond the storage capacity of the double-precision reals. Thus,
when the double-precision variable, aDblReal#, is assigned the result of this
calculation it is no longer exactly equal to the representation of this number in
extended-precision. When the test for equality is done, extended-precision is used,
and of course the values are not equal.

To solve this problem, a program should ensure the representation of both
operands of a relational operator are in the same precision. This can be done by
making sure both operands are simple variables of the same type, or by using one of
the CONV functions. For example, the following variation of the program produces
the expected result.

aDblReal# = 1.0/3.0
IF aDblReal# = CONV#(l.0/3.0) THEN PRINT "Everything is working fine"
ELSE PRINT "Something strange is going on"

Because of the way TML BASIC uses extended-precision numbers, it may sometimes
be advantageous to perform a calculation in one large expression rather than several
smaller ones which store temporary results in a real type with less precision.

Note, that all TML BASIC built-in numeric functions which return a real number,
actually return an extended-precision result.

The Standard Apple Numeric Environment (SANE)

The Standard Apple Numeric Environment, also called SANE, is the floating point
engine used by TML BASIC for all of its real number operations and functions. The
SANE implementation is based upon the IEEE Standard 754 for Binary
Floating-Point Arithmetic and provides for an extensive collection of numeric
operations, not all of which are available in TML BASIC.

TML BASIC Language Reference Language Elements

SANE is a standard toolset in the ROM of every Apple IIGS. For more information
about SANE, see the Apple Numerics Manual.

Strings In TML BASIC

The string type is the only other type of data available in TML BASIC besides the
five number types. A string is a sequence of characters along with a count that
indicates how many characters are in the string. In TML BASIC, a string may
contain zero characters up to a maximum of 255 characters. If a string contains zero
characters, it is said to be a null-string.

In TML BASIC, all strings are stored in a special area of memory called the String
Pool. When a sequence of characters is assigned to a string variable, the characters
are copied to the string pool. These characters are called the string data. A string
variable requires only two bytes of memory which is an offset into the string pool to
where its string data is stored. The string data consists of a sequence of bytes
containing the characters in the string. There is also an additional byte of memory
which stores the number of characters in the string.

Strings are extremely powerful in TML BASIC. They can be converted to numbers
and back to strings again, and can be manipulated with a large assortment of
predefined string functions.

Constants

Constants are predefined values that do not change during the execution of a
program. There are two types of constants in TML BASIC: numeric and string.

Numeric Constants

Numeric constants are positive or negative numbers. There are three classes of
numeric constants in TML BASIC: integer, fixed-point and floating-point.

An integer constant contains only the digits 0-9 with an optional sign prefix (+or-).
If the constant is in the range -32,768 to 32,767, the constant is treated as an integer.
Otherwise, the constant is treated as a double integer and must be in the range
-2,147,483,648 to 2,147,483,647. Integer constants outside of this range are errors.
Examples of integer constants:

1
2569
721039

TML BASIC Language Reference 91 Language Elements

A fixed-point constant contains the digits 0-9 with an optional sign prefix and a
decimal point. All fixed point constants are treated as extended precision reals.
Examples of fixed-point constants follow:

1.0
34.9
238540923423.482

Finally, a floating-point constant is represented in exponential form. A
floating-point constant consists of a fixed-point number called the mantissa
followed by the letter E or e and an optionally signed integer exponent. The
exponent is a power of ten, by which the mantissa is multiplied to obtain the value
of the floating-point number. All floating-point constants are treated as extended
precision reals. Examples of floating-point constants follow:

1.0eO
349.2001E-23
9.98765e+78

String Constants

String constants are simply a sequence of zero to 255 printable ASCII characters
enclosed by double quotes. For example:

"Apple IIgs"
11 123.45 11

It is not possible to create a string constant which contains the double quote
character since the double quote is used to delimit the string constant. Instead, the
CHR$ function can be used to create a single character string which is the double
quote. For an example of how this is done see the CHR$ Function in Chapter 10.
When the two double quotes appear next to each other, no characters are in the
string constant. This is called a null-string.

TML BASIC provides one special exception to the above rule. The non-printable
null character whose ASCII value is zero (0) may be represented in a string constant
with the backslash character (\) followed by the zero character (0). For example:

"Hello\0"

This string constant consists of six characters: H, e, l, l, o, and the null character.

This exception is provided for easier programming of the Apple IIGS Menu Manager
for creating programs which use menus. For more information on how to program
with the Menu Manager and the other Apple IIGS Toolbox libraries see Chapters 11
through 13.

TML BASIC Language Reference 92 Language Elements

Variables

A variable is a named entity which represents a numeric or string value. Unlike a
constant, the value of a variable can change during the execution of a program. The
name of a variable must begin with a letter followed by any number of letters and
digits that do not spell any of the TML BASIC reserved words. A variable name may
also contain the period (.) character. TML BASIC places no restriction on the length
of a name except that it must fit on a line (255 characters). The length of a name has
no effect on the size or execution speed of a program, so you should always use
descriptive and meaningful names for variables.

TML BASIC supports six different variable types. The last character of a variable
name determines its type. Table 7-3 lists the legal type characters for TML BASIC.
Note that if no type character appears after a variable name, it is treated as a
single-precision real.

%
@

&

$

Table 7-3
TML BASIC Type Characters

Integer
Double Integer
Long Integer
Single-precision real
Double-:precision real
String

2 bytes
4 bytes
8bytes
4 bytes
8 bytes
2 bytes for string variable
1 byte for each character in the string
1 byte to store the length of the string

Variables are created when they are first used in a program. When TML BASIC sees
a variable name in a statement, it first checks to see if a variable with the same name
has already been used in the source code above the current line. If it has, TML
BASIC knows where in memory to read or store the value of the variable. If not,
TML BASIC automatically enters the name into its symbol table and allocates
storage for the variable.

Note that X%, X@, X&, X, X# and X$ are different variable names.

TML BASIC initializes all numeric variables with the value zero and all string
variables with the null string.

TML BASIC Language Reference 93 Language Elements

Reserved Variables

TML BASIC provides a collection of reserved variables. A reserved variable is
special in the sense that in most cases, it does not have memory allocated for it in
the normal way. But instead is associated with a special feature of the Apple Iles.
For example, the PI reserved variable contains the value of Pi, but that value is
actually obtained from SANE.

Programs can only read the value of most reserved variables. However, some
reserved variables may be given new values. These are called modifiable reserved
variables. The HPOS reserved variable is a good example of a modifiable reserved
variable. HPOS contains the value of the horizontal location of the text screen
cursor. When you read this variable, the text screen firmware is actually read to
obtain this value. Since this is a modifiable reserved variable, a new value may be
assigned to HPOS. In this case, the text screen firmware is instructed to change the
horizontal location of the cursor to the new value.

The name of a reserved variable is one of the TML BASIC reserved words. All of
the reserved variables are discussed in Chapter 10.

Arrays

An array is a collection of values of the same type referred to by the same variable
name. The individual values of an array are called elements. Array elements are
also variables, and can be used anywhere a simple variable can be used. As with
variables, the last character of the array name defines the type of the array elements.
The process of declaring the name, element type and setting the number of elements
in the array is known as dimensioning the array.

Array elements can be any of the simple variable types: integer, double integer, long
integer, single-precision real, double-precision real and string. In addition, TML
BASIC supports a special array type called the structure array. The structure array
element is a byte size integer value in the range O through 255. The type character
for a structure array is the exclamation point (!). Structure arrays are described in
more detail below.

Dimensioning Arrays

The DIM statement is used to declare the name, element type, number of
dimensions and size of each dimension of an array. For example:

DIM Sales%(11)

creates a one-dimensional array variable Sales%, consisting of 12 integer elements,
numbered O through 11. Note that because the first numbered element is 0, the

TML BASIC Language Reference 94 Language Elements

largest numbered element is one less than the number of elements in the array
dimension. The array variable Sales% is distinct from the simple integer variable
Sales%.

Arrays can have one or more dimensions, up to a maximum of eight. A
one-dimensional array such as Sales% is a simple list of values. A two-dimensional
array is a matrix of values with rows and columns of information.
Multi-dimensional arrays are also possible, but do not have a real world analog.

DIM arrayl (4)
DIM array2 (12, 8)
DIM array3(39,3,5)

'One-dimensional array
'Two-dimensional array
'Three-dimensional array

The maximum number of elements per dimension is 32,768. The maximum total
size of a single array is 64K bytes. You may have as many 64K byte arrays as available
memory permits. The following table reviews the memory requirements for each
element type and the total number of elements possible in a 64K array.

Table 7-4
TML BASIC Array Element Sizes

% Integer 2 bytes 32,768 elements per 64K
@ Double Integer 4 bytes 16,384 elements per 64K
& Long Integer Sbytes 8,192 elements per 64K

Single-precision real 4 bytes 16,384 elements per 64K
Double-precision real 8 bytes 8,192 elements per 64K
$ String 2 bytes 32,768 elements per 64K

Structure 1 byte 65,536 elements per 64K

When a TML BASIC program begins execution, all array elements are initialized to
zero except for string arrays which are initialized to the null string.

It is possible to reference an element of an array variable which has not been
declared with a DIM statement. If the reference appears on the left side of a LET
statement (assignment), TML BASIC automatically declares the array variable with
the same number of dimensions as are referenced. Each dimension contains 11
elements. TML BASIC declares the array so that storage exists for the value to be
assigned. For example, if the statement

Count@(2,3) = 55

TML BASIC Language Reference 95 Language Elements

is executed without having first DIMensioned the array variable Count@, therefore
TML BASIC automatically defines the array variable just as if the statement

DIM Count@(l0,10)

had preceeded the assignment statement. This is called implicit DIMensioning.
Every element of the array Count@ is automatically given an initial value of zero
just as arrays normally declared with the DIM statement.

If an undeclared array is referenced anywhere besides the left side of a LET
statement, TML BASIC does not automatically declare the array. Instead, a dummy
zero value is returned (or null string). This is unlike most other BASIC
implementations which will also implicitly declare an array any time it is
referenced. Thus, if the statement

PRINT Count@(4,2)

is executed before the array Count@ is dimensioned, a zero is displayed.

It is generally good practice to declare arrays used in a program with the DIM
statement rather than allowing TML BASIC to automatically declare them.

Dynamic Allocation

Arrays declared using the DIM statement or those implicitly declared by TML BASIC
are known as Static Dimensioned arrays. These arrays have a fixed size which is
determined by the number and size of elements in the array. TML BASIC allocates
the storage for these arrays before a program begins execution, and their size may
not change.

A static array must be declared with constant values for the sizes of its dimensions.
If an expression or variable is used to dimension a static array, TML BASIC gives the
error "Static arrays must have constant dimensions". For example, the following
are illegal declarations using the DIM statement.

DIM Sales%(numMonths%)
DIM Count@(eltsNeeded%+3)

Further, a static dimensioned array may not be declared more than once in a
program. If a program attempts to declare a static array more than once, TML BASIC
gives the error "Duplicate declaration of a static array". For example, the following
is not legal in TML BASIC:

DIM Sales%(10)
DIM Sales%(20)

TML BASIC Language Reference Language Elements

Static dimensioned arrays are very efficient in TML BASIC, however, some
programs require the ability to dimension an array dynamically at execution time.
This is done with the DIM DYNAMIC statement in TML BASIC. The DIM
DYNAMIC statement allows the program to use a variable or an expression as the
number of elements in an array. For example, a program might allow a user to
enter a variable number of sales figures into an array.

INPUT "How many sales figures?"; numSales%
DIM DYNAMIC Sales%(numSales%)
FOR i% = 1 to numSales%

INPUT "Enter a sales figure: "; Sales%(i%)
NEXT i%

Of course, it is still possible to declare arrays with static dimension values. For
example, the following statement creates a dynamic array variable with 30 elements.

DIM DYNAMIC Sales%(29)

Unlike static dimensioned arrays, dynamic dimensioned arrays can be dimensioned
more than once in a program. This allows a program to change the size of an array
during its execution depending upon the needs of the program. To deallocate all of
the space used by a dynamic array, use the ERASE statement.

Static dimensioned arrays allow TML BASIC to generate code which is faster and
smaller than code for dynamic arrays. A program should only use dynamic arrays
when absolutely necessary.

Evaluation of the DIM Statement

The DIM statement works differently in TML BASIC than BASIC interpreters like
GS BASIC and AppleSoft BASIC. Unlike interpreters, the TML BASIC compiler
processes the DIM statement when a program is compiled and not when it is
executed. Thus, TML 'BASIC determines the number of dimensions and elements
of an array, and allocates memory for the array before the program is executed.

Because TML BASIC processes a program in its textual order, rather than its
execution order, you must be careful how you use the DIM statement. The
following example would execute without any error in GS BASIC, but TML BASIC
would give an error for the statement marked (b). The reason for this is that TML
BASIC will process the statement marked (a) before the statements below it. Since
this statement references the array variable anArr% which has not yet been declared,
TML BASIC implicitly declares the array with 11 elements. Thus, when the
statement marked by (b) is processed, TML BASIC gives the error "Duplicate
declaration of a static array".

TML BASIC Language Reference 97 Language Elements

GOTO doDIM

doLET:
(a) LET anArr%(9)

GOTO Continue

doDIM:
(b) DIM anArr% (2 9)

GOTO doLET

Continue:

99

'Go dimension the array

'Assign the value 99 into the 9th element
'Continue execution

'DIMension the array with 30 elements
'Go assign a value

'Continue program execution

Another example illustrating this difference between TML BASIC and BASIC
interpreters is shown below.

IF Flag%= 0 THEN DIM anArr%(10)
ELSE DIM anArr%(250)

Again, TML BASIC would give the error "Duplicate declaration of a static array"
since it ignores the fact that during execution, only one of the DIM statements is
executed.

Arrays declared using the DIM DYNAMIC statement, however, do not behave in
this manner. Since the DIM DYNAMIC statement is evaluated during program
execution, an array may be declared and re-declared as many times as required by the
program. For example:

IF Flag%= 0 THEN DIM DYNAMIC anArr%(10)
ELSE DIM DYNAMIC anArr%(250)

is legal in TML BASIC. However, it is not possible to re-declare an array using DIM
DYNAMIC after it has been declared with the DIM statement.

Subscripts

Individual elements of an array variable are selected using subscripts (integer
expressions within parentheses to the right of an array variable's name). For
example, Sales% (3) references the fourth element of the Sales% array variable. It is
not legal to use a subsrcipt value for an element of the array which does not exist.
For example, the statements

DIM Sales% (11)
Sales%(20) = 44

will cause a runtime error because the Sales% array does not have an element
whose subscript is 20.

TML BASIC Language Reference 98 Language Elements

When referencing an array, you must also provide a subscript for each dimension of
the array. If an array has three dimensions, you must provide three subscript values
when referencing the array. If you provide too few or too many subscripts, TML
BASIC gives the error "Array subscript error".

Structure Arrays

TML BASIC provides a special type of array called the structure array for
manipulating bytes of memory. The type character for a structure is the exclamation
point (!). Structures may only be declared with the DIM statement and are not
allowed as simple variables. The elements of a structure array are bytes of memory
which are treated as unsigned integers in the range O through 255.

Individual structure array elements may be referenced just like normal arrays. The
value of a structure element is automatically converted to an integer before it is
used in an expression. TML BASIC also provides the VAR and SET statements for
reading or writing successive bytes of a structure. See Chapter 10 for a discussion of
these statements.

Structures are typically used for representing data structures to be used with the
Apple Iles Toolbox. See Chapter 13 and Appendix C for examples of how structures
are used with the Toolbox.

Expressions

An expression represents a value. An expression consists of a collection of operands
combined together by operators to produce a value when the expression is
evaluated. Operators are special symbols representing a particular operation to
perform. Operands are the constants, variables and function calls that operators
work on. In TML BASIC there are two types of expressions - string and numeric.

String expressions consist of string constants, string variables and string functions,
optionally combined with the string concatenation operator (+). String expressions
evaluate to a string; that is, a sequence of ASCII characters with a known fixed
length. Examples of string expressions include:

"TML BASIC"
str$
"Apple"+ gs$
LEFT$ (a$,5)
MID$(UCASE$(a$),4,6)

Numeric expressions consist of numeric constants, numeric variables and numeric
functions, optionally combined with the several numeric operators. Numeric
expressions may evaluate to any of the five TML BASIC numeric types (integer,
double integer, long integer, single-precision real, double-precision real) or to the

TML BASIC Language Reference Language Elements

special internal SANE Extended-precision real type. Examples of numeric
expressions include:

123
123 + 4
myint
COS(ang)
SQR ((a"2) + (b"2))

Operators

Operators are special characters or reserved words that represent some arithmetic,
relational, logical or string operation to perform. TML BASIC provides an extensive
collection of operators that allow programs to perform just about any operation.

Operators must have compatible operands or else TML BASIC reports a Type
Mismatch error. That is, a numeric operator requires both of its operands be a
numeric value, while a string operator requires its operands be string values.

When an operator is used that has operands of different numeric types, TML BASIC
automatically converts the numeric value with less precision/range to a value of
the larger precision/range. For example, consider the following expression which
uses the addition operator to add the value of an integer variable to a double integer
variable:

myint% + myDblInt@

Before TML BASIC, performs the addition, it automatically converts the value of
mylnt% to a double integer and then performs the addition.

There are four classes of operators: arithmetic, relational, logical and string. Each of
these classes of operators is discussed in the following sections.

Arithmetic Operators

The arithmetic operators provided in TML BASIC perform the traditional
mathematical operations for numeric values. Table 7-5 lists each of the arithmetic
operators along with their respective operation.

TML BASIC Language Reference 100 Language Elements

Table 7-5
TML BASIC Arithmetic Operators

+

*̂
I
DIV
MOD
REMDR
+

Identity (unary operator)
Negation (unary operator)
Exponentiation
Multiplication
Floating-point division
Integer di vision
Modulo (Integer only)
SANE remainder
Addition
Subtraction

Note that TML BASIC provides two different division operators - integer and
floating-point. The DIVoperator is provided for efficient integer division. The DIV
operator always converts its operands to integers and then performs the division to
produce an integral quotient with no remainder. To obtain the remainder of an
integer division, the MOD operator can be used. Like the DIVoperator, its operands
are always converted to integers before the operation is performed.

In TML BASIC, the evaluation of an arithmetic operation may sometimes cause an
overflow error. An overflow error occurs when the result of an operation produces
a value which is outside the storage capacity of the numeric type being used. For
example, the code fragment

x% 20000
x% x% + 25000

overflows the storage capacity of the integer type (-32,768 to 32,767) since the result of
the addition operator in the second statement is 45,000. Of course, addition is not
the only arithmetic operator which can produce an overflow error. Consider the
code fragment:

x% - 20000
x% x% - 25000

In this example, the result of the subtraction is -45,000 which again is outside the
capacity of the integer type. In the two examples above, the error can be avoided by
using a numeric type with a larger storage capacity, such as double integers.

TML BASIC Language Reference 101 Language Elements

It is also possible to cause an error by performing division by zero. This can occur
when the second operand of the /, DIV and MOD operators is zero, and when the
exponentiation operator(") is used to raise zero to a negative power.

If a program is compiled with the Debug preference turned on (see Chapter 6 and
Appendix B), TML BASIC generates code so that both of these types of errors are
detected. The action taken when an overflow or division by zero error occurs
depends upon whether the program contains an ON ERR statement which has been
executed. If a program contains such a statement, control will transfer to the
statement list after the ON ERR statement to process the error. Otherwise, execution
of the program aborts and the appropriate runtime error message is reported.

If a program is compiled with the Debug preference turned off, an overflow or
division by zero error will go undetected.

Relational Operators

The relational operators in TML BASIC allow programs to compare two values.
The result of a comparison is a Boolean value which is either true or false. The
result of a comparison is typically used to make a decision regarding program flow
using the IF or 00 ... WHILE ... UNTIL statements.

Since TML BASIC does not have a special boolean type, the values true and false are
expressed as integer values. Any non-zero value is considered true, while the value
zero is considered false. TML BASIC uses the non-zero value one (1) to represent
the value of true for the relational operators. Thus, the expression 3=3 is true and
has the value of 1, while 3=4 is false and has the value of 0. Strings are also
considered to have a boolean value. If the string contains one or more characters
then it is considered to have the boolean value true, and null strings (strings with
zero characters) are considered to have the value false.

Table 7-6
TML BASIC Relational Operators

=
<>or><
<
>
<=or=<
>= or=>
<=>

TML BASIC Language Reference

Equality
Inequality
Less than
Greater than
Less than or equal to
Greater than or equal to
Ordered (vs. unordered)

102 Language Elements

Note that when arithmetic and relational operators appear in the same expression,
the arithmetic operators are evaluated first. For example, the following expression
evaluates to true if A minus Bis less than C plus D.

A-B<C+D

Logical Operators

The logical operators perform logical (Boolean) operations. Table 7-7 lists the logical
operators available in TML BASIC.

NOT
AND
OR
XOR

Table 7-7
TML BASIC Logical Operators

Logical complement
Conjunction
Disjunction (inclusive or)
Exclusive or

The following table illustrates the behavior of the logical operators. The variables x
and y may be any compatible type. See the section on relational operators for a
discussion of what values constitute true and false.

Table 7-8
Values Returned by the Logical Operators

X y NOTx xANDy xORy xXORy

true true false true true false
true false false false true true
false true true false true true
false false true false false false

TML BASIC Language Reference 103 Language Elements

String Operators

There is only one operator in TML BASIC which returns a string value. This is the
concatenation operator which is represented by the plus symbol (+). This is the
same symbol used for addition when its operands have numeric values.
Concatenation is the process of combining two strings together to make one string.
For example, the following code fragment shows how to combine a volume name
with a filename to create a file's complete pathname.

vo1Name$ "/TML/"
fileName$ = "STRINGS.BAS"
pathName$ = vo1Name$ + fileName$

Remember that TML BASIC strings are limited to 255 characters. If a program
attempts to create a string which is longer than 255 characters; TML BASIC will not
perform the concatenation, but generate the String Too Long error.

Strings may also be used with the relational operators. String comparisons are
performed by taking the corresponding characters from each string operand and
comparing their ASCII codes. If the ASCII codes are the same for all the characters
in both strings, the strings are considered equal. If the ASCII codes differ, the string
containing the lower ASCII code is considered less than the other. If the end of one
string is reached before the other then the shorter string is considered less than the
other if they have been equal up to that point. The ASCII codes are listed in
Appendix E. The following relational operations are ALL true:

"A"= "A"
"A"< "a"
"aa" > "aB"
"a"<= "aaaa"

If a program must compare two strings without regard for the case of the alphabetic
letters, then the UCASE$ function should be used (see Chapter 10).

Precedence

In evaluating expressions which contain more than one operator, TML BASIC uses
a set of precedence rules in order to determine which operator to evaluate first, and
thus, which operands belong to which operators. TML BASIC defines three rules of
precedence.

1. In an expression with more than one operator, the operator with the
highest priority is evaluated first.

2. If an expression contains two or more operators of the same priority, then
they are evaluated in order, from left to right.

TML BASIC Language Reference 104 Language Elements

3. The use of parentheses always overrides the priority of an operator to force a
specific order of evaluation.

Table 7-9 lists each of the TML BASIC operators from highest to lowest priority.

Table 7-9
TML BASIC Operator Priority

+,-,NOT
I\

*,/
DIV
MOD,REMDR
+, -
=, <>, ><, <, >, <=, =<, >=, =>, <=>
AND
OR,XOR

TML BASIC Language Reference 105 Language Elements

Chapter 8
Subroutines, Procedures, Functions and Libraries

Subroutines, procedures, functions and libraries provide the mechanisms in TML
BASIC to divide and organize a program's source code into a more organized and
more maintainable structure. They are often used to organize a collection of
statements that must be frequently executed throughout a program.

A subroutine is a labeled set of statements executed when a GOSUB statement
specifying the label is executed. A procedure is a named collection of code that
behaves much like a subroutine, except that it provides for additional advanced
programming features. A function is also a named collection of code like a
procedure; but when executed returns a value. The value can then be used in an
expression.

Procedures and functions in TML BASIC provide significant advantages over the
traditional technique of organizing programs using GOSUB/RETURN. Procedures
and functions offer the capability of parameters, local variables and recursion. If you
have never programmed with these type of language features, you should make an
effort to do so and discover their programming power.

Finally, a library is a special source code construct that groups together-procedure
and function declarations so that they can be compiled separate from any program.
A library can be thought of as a repository for code which is used by one or more
programs.

The next several sections discuss the implementation of subroutines, procedures,
functions and libraries in TML BASIC and programming issues you should be aware
of when using these language features.

Subroutines

A subroutine represents the traditional technique for BASIC programmers to
organize a program into computational chunks. A subroutine begins with a label
followed by a group of statements ending with the RETURN statement. A
subroutine is executed by using the GOSUB statement.

A GOSUB statement indicates that execution should temporarily suspend at the
current statement and control should transfer to the statement indicated by the label
in the GOSUB statement. When the RETURN statement is encountered, the
subroutine terminates and control returns to the statement immediately after the
calling GOSUB. The following code fragment illustrates the use of a subroutine.

TML BASIC Language Reference 107 Subroutines. Procedures. Functions and Libraries

GOSUB CalculateGrade
PRINT Grade
END

CalculateGrade :
Tot a l= 0
FOR i = 1 to NumGrades

Total= Tota l + Grades(i)
NEXT i
Grade= Total/ NumGrades

RETURN

A subroutine may call other subroutines, which in turn may call yet other
subroutines. TML BASIC keeps track of where execution should resume when the
RETURN statement is encountered with a data structure called the Runtime Stack.
Each time a GOSUB statement is executed, TML BASIC pushes the program counter
for the statement immediately after the GOSUB onto the stack. Then, when a
RETURN statement is encountered, the program counter is removed from the stack
and made the current program counter - the place where execution continues.

In some special cases, a program may not want to return from a subroutine back to
the caller. This might happen when an error occurs, and a program decides it
should continue execution elsewhere. To do this, the program must first remove
the program counter value stored in the Runtime Stack by using the POP statement.
When the POP statement is executed it removes the program counter from the
runtime stack, and then continues execution with the next statement after the POP.

When using the RETURN and POP statements, your program must be certain that a
corresponding GOSUB has been executed so that a program counter value has been
placed on the Runtime Stack. If your program attempts to execute a RETURN or a
POP without a matching GOSUB, the runtime error "RETURN/POP without
matching GOSUB" occurs. If you compile a program with the Debug option turned
off then this error will go undetected, and the execution of your program will
certainly go astray.

A subroutine may also be called using the ON ... GOSUB statement. The
ON ... GOSUB statement works just like the normal GOSUB statement except that it
chooses among several subroutines to call depending upon the value of an
expression. For example, the following statement calls the lssuePayCheck,
lssueBonusCheck or lssueExpenseCheck subroutine depending upon the value of
the variable doCheck%.

ON doCheck% GOSUB IssuePayCheck,IssueBonusCheck,IssueExpenseCheck

If the value of doCheck% is 1 then the first named subroutine is called -
lssuePayCheck, and if its value is 2 the second named subroutine is called, etc. If the
value of the expression is O or greater than the number of named subroutines, the

TML BASIC Language Reference 108 Subroutines. Procedures. Functions and Libraries

statement is skipped. As with the GOSUB statement, control returns to the
statement immediately after the ON ... GOSUB when a RETURN is executed.

For µ1ore information about the TML BASIC Runtime Stack see the section "A
Lesson on Stacks" later in this chapter, and the discussion of the Preferences dialog
in Chapter 6. Also read about the $StackSize metastatement in Appendix B.

Procedures

Procedures are a group of statements that are surrounded by the DEF PROC and
END PROC statements. A procedure behaves much like a subroutine except the
PROC statement is used to call a procedure. When a procedure is called using the
PROC statement, execution temporarily suspends at the current statement and
control is transferred to the procedure. When the procedure returns, execution
continues with the first statement after the PROC statement.

Procedures however, provide for several additional language features: zero or more
parameters, local variables and local labels. These features allow you to write blocks
of code which are isolated from the rest of the program. The ability to hide the
names of parameters and local variables from the main program allows you to use
names that are also used in the main program, but which retain separate values and
do not affect those in the main program. Local label names can also be the same as
labels in the main program (or other procedures) since they are also hidden.

The use of local variables and labels allows for true modular design of your
programs. In fact, you can create procedures that work in several different programs
without considering the issue of duplicate variable names. TML BASIC provides a
powerful language feature for sharing procedures (and functions) between several
programs - the Library. Libraries allow you to group useful procedures and
functions together and then automatically provide them to several different
programs. Libraries are discussed later in this chapter.

Defining Procedures

A procedure definition begins with the DEF PROC statement and continues until a
matching END PROC statement. The DEF PROC statement is required to be the first
statement on a line. Using the notation defined in Chapter 7, the general syntax for
defining a procedure is as follows:

DEF PROC procedurename [(parameter { , parameter})]
LOCAL variable { , variable}

• statements

END PROC [procedurename

TML BASIC Language Reference 100 Subroutines. Procedures. Functions and Libraries

The procedurename declares the name of the procedure. The name for the
procedure must follow the same rules for names as variables, and must not appear
in any other DEF PROC statements. Procedure names do not have a type character
at the end of their names. The following are example procedure names:

DEF PROC MyProc
DEF PROC Proc123
DEF PROC Do • It

Following procedurename is the optional formal parameter list. The formal
parameter list defines the names and types of variables which are passed to the
procedure when it is called. Parameters are separated by commas and they can be
any type of simple variable. Parameters receive their values when the procedure is
called, thus, they do not retain their values between calls to the procedure. If a
procedure must retain the values of variables between calls, it must use global
variables or arrays.

Each parameter becomes a local variable when a procedure is called and has an
initial value equal to the corresponding actual parameter given in the PROC
statement. Additional local variables may be defined using the LOCAL statement
described below. Procedures are limited to 16 parameters.

The statements between the DEF PROC and END PROC are called the body of the
procedure. When the procedure is called, execution begins with the first statement
after the DEF PROC and continues until the matching END PROC. Within the body
of the procedure it is illegal to define another procedure or function. It is also not
possible for a GOTO or a GOSUB statement to branch to a label outside of the body of
the procedure; however, other procedures and functions may be called. TML BASIC
also restricts the use of the DIM statement within the body of a procedure to
dynamic arrays (see Chapter 7).

Local Variables

Procedures (and functions) provide a mechanism for defining temporary variables
which are created when the procedure is called and destroyed when the procedure
completes and returns to the caller. These variables are called local variables.
Variables which are not local variables are called global variables because they exist
for all procedures, functions and the main program to use.

As mentioned above, parameters are equivalent to local variables except they have
initial values which correspond to the matching actual parameters. Additional local
variables are created with the LOCAL statement. Following is an example of the
LOCAL statement.

TML BASIC Language Reference 110 Subroutines. Procedures. Functions and Libraries

DEF PROC myP roe
LOCAL anint%, aDblint@, aString$
LOCAL anotherString$

• statements

END PROC

A procedure may contain zero or more LOCAL statements and each LOCAL
statement may declare one or more variables. However, TML BASIC restricts the
use of the LOCAL statement. The LOCAL statements in a procedure must appear
after the DEF PROC, but before any other statement. The only exception is that the
REM statement may appear before a LOCAL statement.

When a procedure is called, storage for the local variables is created on the Runtime
Stack. Local numeric variables are initialized with the value zero and local string
variables are initialized with the null string. When the procedure returns control to
the calling statement, storage for the local variables is deallocated. Thus, local
variables do not retain their values between procedure calls. For example the
following procedure will always print an empty line regardless of how many times
it is called.

DEF PROC SillyProc(newMsg$)
LOCAL Msg$
PRINT Msg$
Msg$ = Msg$ + newMsg$

END PROC

When a value is assigned to a variable which is not declared as a local variable, it
assigns the value into the global variable with the given name. If the global variable
does not exist, TML BASIC automatically creates the global variable and then assigns
the value. It is possible to guarantee that an assignment statement references a local
variable using the FN form of the assignment statement.

FN anyVar = expression

By preceeding the assignment statement with the reserved word FN, TML BASIC
checks to guarantee that the variable anyVar is declared as a local variable, otherwise
it gives the error "Variable is not LOCAL".

Using Procedures

A procedure is called by using the PROC statement in a program. The PROC
statement specifies the name of the procedure to call followed by any required
parameters in parentheses. For example:

PROC P rintLine ("Tot als",Tot alDebits@,To talCredits@)

TML BASIC Language Reference 111 Subroutines. Procedures. Functions and Libraries

In this example, the procedure PrintLine has three parameters - one string
parameter, followed by two double integer parameters. To call the procedure, TML
BASIC first creates the procedure's formal parameters and then assigns them with
the values of their matching actual parameters. Control is then passed to the
procedure PrintLine. When the procedure returns, execution continues with the
first statement after the PROC statement.

Functions

There are two types of functions in TML BASIC: single-expression (simple)
functions and multiline functions. Functions are used to group together one or
more statements that compute and return a value. Single-expression functions
contain only one expression for computing the value of the function. These are the
traditional style functions found in older BASIC implementations such as
AppleSoft BASIC. Multiline functions are constructed similar to procedures except
that the DEF FN and END FN statements are used to group the function's
statements. Both the single-expression and multiline functions can have formal
parameters. Additionally, multiline functions can have local variables.

Defining Functions

As mentioned above, TML BASIC supports two types of functions:
single-expression and multiline. A single-expression function is one whose code is
contained on a single line of source code. The general sytnax for a single-expression
function is as follows:

DEF FN functionname [%1@1&1#1$] [(parameter { , parameter })] = expression

The functionname declares the name of the function. Following the function name
is an optional type character used to specify the type of the function's result value. If
no type character is given the function returns a single-precision real value. A
function may optionally have a sequence of parameters whose values are used to
compute the value of the function. TML BASIC limits a function to 16 parameters.

The expression specifies the computation to be performed when the function is
called. If the function returns a string value, the expression must evaluate to a
string. Likewise, if the function returns a numeric value, the expression must
evaluate to one of the numeric types. The following are examples of simple
single-expression functions which convert between degress Celcius and degrees
Fahrenheit.

DEF FN CtoF(degreesC)
DEF FN FtoC(degreesF)

TML BASIC Language Reference

1.8 * degreesC + 32
(degreesF - 3 2) * 0.555555

112 Subroutines. Procedures. Functions and Libraries

The second type of function supported in TML BASIC is the multiline function.
The general syntax for defining a multiline function is as follows:

DEF FN functionname [%1@1&1#1$] [(parameter { , parameter})]
LOCAL variable , variable}

• statements

FN functionname [%1@1&1#1$] expression

END FN [functionname]

The syntax for a multiline function is exactly the same as a procedure with two
exceptions. First, the function name is optionally followed by a type character which
specifies the type of the function's result value. Second, the statements in the body
of the function must contain at least one assignment statement which gives the
function its value.

The assignment statement which gives the function its value must begin with the
reserved word FN followed by the function's name and optional type character. As
with single-expression functions, the expression assigned to the function must be
compatible with the function type. The following is an example of a multiline
function which computes the factorial of a number.

DEF FN Factorial#(n%)
LOCAL total#
IF n% < 0 THEN

FN Factorial#= 1
ELSE

FOR i% = n% TO 2 STEP -1
total#= total#* i%

NEXT i%
FN Factorial#= total#

END IF
END FN Factorial#

Using Functions

Functions return values. As such, functions are used within expressions to
compute values. A function is called by using the FN reserved word followed by a
function name. The function name is then followed by the appropriate number of
actual parameters enclosed in parentheses. For example:

tempF = 100
tempC = FN FtoC(tempF)
PRINT tempF, tempC

TML BASIC Language Reference 113 Subroutines. Procedures, Functions and Libraries

In this example, the function FtoC is called to convert degrees Fahrenheit to Celcius.
After the reserved word FN, the function name FtoC along with its parameter.

Formal versus Actual Parameters

Procedures and functions actually have two types of parameters: formal and actual.
The parameters that appear in a parameter list of a DEF PROC or DEF FN statement
are called formal parameters. Formal parameters are essentially local variables of
the defined procedure or function and are completely separate from the rest of a
program. To illustrate this, consider the following statements:

height%= 16
DEF FN Perimeter%(height%,width%) = 2 *height% + 2 * width%
PRINT height%, FN Perimeter%(8,4), height%

The variable height% in the first and third lines is unrelated to the formal
parameter height% in the function definition in the second line. When these
statements are executed, the value of height% in the third line is unaffected by the
function call.

The parameters of the function Perimeter% in the third line are actual parameters.
The values of the actual parameters are implicitly copied into the formal parameters
when the function is called. If the value of a formal parameter changes during
execution of the function, the value of the actual parameter remains unchanged.

Program Flow

The location of a procedure or function definition in the source of a program is not
important. The PROC or FN statements can be used to call a procedure or function
anywhere in the program even if the procedure or function is declared later in the
source code. Before TML BASIC compiles a program, it first scans the source file for
all DEF PROC and DEF FN statements and records their names and the number and
type of parameters. Thus, when a procedure or function is called using the PROC or
FN statements, TML BASIC knows if the procedure or function has been defined
and if the correct number of parameters have been given.

A program need not direct its flow of control around procedure and function
definitions. When executing statements in the main program and a DEF PROC or
DEF FN statement is encountered, the next statement executed is the first statement
which appears after the corresponding END PROC or END FN. The DEF
PROC ... END PROC and DEF FN .. . END FN act as large comments around its
enclosing statements. The only way to execute the statements of a procedure or
function is to call it using the PROC or FN statements respectively.

TML BASIC Language Reference 114 Subroutines. Procedures. Functions and Libraries

Consider the following code fragment:

PROC PrintMessage
DEF PROC PrintMessage

PRINT "Hello"
END PROC
PRINT "Goodbye"
END

The output of this code is

Hello
Goodbye

and not

Hello
Hello
Goodbye

The second "Hello" is not output because control passes completely around the
PrintMessage procedure and continues with the PRINT "Goodbye" statement.

Recursion

TML BASIC procedures and functions are recursive. By recursive we mean that a
procedure or function may call itself, or it may call another procedure which in turn
calls the same procedure or function.

The following is an example of how to write a recursive multiline function which
computes a factorial.

DEF FN Factorial(n%)
IF n% > 1 THEN

FN Factorial n% * Factorial(n%-1)
ELSE

FN Factorial 1
END IF

END FN Factorial

As you can see, recursion is a powerful mechanism for expression algorithms. In
the case of the Factorial function, the factorial of a number is computed without any
loops or local variables.

Writing programs which use recursive procedures and functions can sometimes
require that you increase the size of the runtime stack. Since every time a procedure
or function is called, its parameters, local variables and return address is placed on
the runtime stack, it is possible to exhaust the available runtime stack space in a

TML BASIC Language Reference 115 Subroutines, Procedures, Functions and Libraries

program that uses recursion extensively. To increase the runtime stack size use the
$StackSize metastatement or change the K-byte Stacksize option in the Preferences
dialog. See the section "A Lesson on Stacks" below for more information.

While recursion is a very powerful programming technique, it can also be the
source of complicated program errors. The most common error when using
recursion is omitting a termination condition. By not providing a termination
condition for the recursion, a procedure or function will continue to call itself over
and over again, until finally memory has been exhausted and the machine crashes.
In the Factorial function above, the recursion terminates when the parameter n % is
less than or equal to 1.

A Lesson on Stacks

Before leaving this chapter, a discussion concerning the Runtime Stack used by TML
BASIC programs is in order. As mentioned in the previous sections of this chapter,
TML BASIC provides for user defined subroutines, procedures and functions.
Procedures and functions may have parameters and local variables and may also be
called recursively.

To support these language features, TML BASIC implements a data structure called
the Runtime Stack. This stack is used to save the program counter of the statement
immediately following the GOSUB, PROC and FN statements so that when these
routines return, the program knows where to resume execution. The stack is also
used to reserve storage for procedure and function parameters and local variables. If
a procedure or function is called recursively, then multiple copies of the parameters
and local variables exist in the Runtime Stack.

The runtime stack does not have an unlimited size. In fact, the default size
allocated for the runtime stack is 8K bytes. While this amount of storage is quite
sufficient for most all TML BASIC programs, it is possible that a program which is
highly recursive and declares many parameters and local variables could exceed this
size.

TML BASIC provides two ways to change the size of the runtime stack created for
programs. In the Preferences dialog you can change the edit-text item which appears
next to the message "K-byte Stack" as described in Chapter 6. After this change has
been made, all subsequent compiles will create a runtime stack of the new size. The
second technique, and the preferred technique for programs which need a larger
stack, is to use the TML BASIC $StackSize metastatement (see Appendix B). If a
program uses the $StackSize metastatement, it overrides the value specified in the
Preferences dialog, ensuring the required stack size is allocated.

TML BASIC Language Reference 116 Subroutines. Procedures. Functions and Libraries

The amount of memory that can be requested for the runtime stack is not
unlimited. The smallest size that can be requested for the runtime stack is lK bytes,
and the largest is 32K bytes. This number is very large for a runtime stack, and no
program should ever need to request that size. The TML BASIC runtime stack is
allocated in Bank O of the Apple Iles memory. The total available memory in this
bank is approximately 40K bytes, and since this memory is required for many other
uses as well, it is not wise to wastefully allocate more memory than is needed by
your program.

TML BASIC also provides a mechanism which allows you to determine if a
program is using more space for the runtime stack than has been allocated to it. If
you select the Check Stack Size option in the Preferences dialog then TML BASIC
will gene:rate code which checks the available runtime stack space everytime a
procedure or function is called. In there is not sufficient space left in the runtime
stack to successfully make the call, the runtime error "Stack Overflow" occurs. To
determine the stack size required for a particular program, repeatedly increase the
"K-byte Stack Size" option in the Preferences dialog until the program executes
without causing the "Stack Overflow" error.

Libraries

A library is a special source code construct that groups together procedure and
function declarations so that they can be compiled separate from any program. TML
BASIC allows code which is compiled in a library to be used in other libraries and in
programs just as if the code were textually included in the source code file. A library
can be thought of as a repository for code.

Libraries provide two major benefits. First, libraries allow for easy code sharing
among different programs. A collection of commonly used procedures and
functions can be grouped together in a library and then provided to one or more
different programs. Second, libraries provide a more manageable way to create large
programs. Using libraries, it is possible to partition your program into smaller
pieces which can be developed and tested separately from the rest of the program.
Because libraries are compiled separately, they also keep you from having to
recompile an entire program when only changing a small part of the source code.

Libraries are also used by TML BASIC to define the interfaces to the Apple IIGS
Toolbox. Libraries and the Toolbox are described in detail in Chapter 11.

The source code for a library is almost exactly the same as a program, except for two
simple rules. First, the source code must begin with the DEF LIBRARY statement
and end with the END LIBRARY statement. The DEF LIBRARY statement must be
the first statement in the source code since it is the only means that TML BASIC
uses to distinguish between a program and a library. And second, the only legal

TML BASIC Language Reference 117 Subroutines. Procedures. Functions and Libraries

statements that may appear in the body of the library are REM, DIM, DEF PROC and
DEF FN. Any legal BASIC statement may appear within the body of a procedure or
multiline function declaration.

The following is an example of a simple library that implements a fixed size integer
stack.

DEF LIBRARY IntegerStack

REM This library implements a simple 100 element integer stack.

DIM theStack%(99)

DEF PROC ClearStack
stackTop% = -1

END PROC ClearStack

DEF PROC Push(aValue%)
IF stackTop% < 99 THEN

'Declare the stack

'Make the stack empty

'Push a new value onto the stack

stackTop% = stackTop% + 1
theStack%(stackTop%) = aValue%

END IF
END PROC Push

DEF FN Pop% 'Remove the top element of the stack
IF stackTop% >= 0 THEN

FN Pop% = theStack%(stackTop%)
stackTop% = stackTop% - 1

END IF
END FN Pop%

END LIBRARY

This simple library implements two procedures, a function and declares two global
variables. Note that only the REM, DIM, DEF PROC and DEF FN statements are
used in the body of the library, but that assignment, IF statements or any other
statements are allowed in the body of a procedure or function in the library. No
other statements are allowed in the body of the library because a library can not be
run like a program. The only code that is executed in a library are procedures and
functions which are called by a program.

Using a Library

The code defined in a library can be used by other libraries or a program. The
LIBRARY statement is used to make the code from a library available in a program.
When the LIBRARY statement appears in a program, TML BASIC behaves as if all
of the code in the specified library were actually in the program at the point where
the LIBRARY statement occurs. Thus, a program can call the procedures and
functions defined in the library or use any of its global variables.

TML BASIC Language Reference 118 Subroutines. Procedures. Functions and Libraries

For example, the following program uses the IntegerStack library defined above.

LIBRARY "IntegerStack"

PROC ClearStack

DO
HOME

PRINT" Integer Stack Demo"
PRINT" (1) Push an integer"
PRINT" (2) Pop an integer"
PRINT" (3) Quit"
INPUT "Enter an option: "; option%

IF option%= 1 THEN
INPUT "Enter the integer: "; newValue%
PROC Push(newValue%)

ELSEIF option%= 2 THEN
PRINT "The top stack element was: "; FN Pop%

END IF
UNTIL option%= 3

END

By simply including the LIBRARY statement at the beginning of the program, all of
the declarations in the IntegerStack library are available to the program. In addition,
the same library can be used by different programs without having to edit or
recompile the IntegerStack library.

You should use libraries to develop your own collections of useful procedures and
functions which can be shared among the types of programs you write.

Compiling Libraries

Because a library is not a program, it can not be run. Thus, the behavior of the TML
BASIC To Memory & Run and To Disk compile commands is different than
compiling programs. When you choose to compile a library to memory using the
To Memory & Run command, TML BASIC compiles its source code, and then
returns to the editor without executing the source code. The compiled source code
is retained in memory so that other programs can use the code without having to
recompile the library.

The To Disk command compiles the library's source code and then creates a .LIB file
which contains a permanent copy the compiled code for the library. Thus, when a
program specifies a particular library in the LIBRARY statement, and its compiled
code is not in memory, TML BASIC can read it directly from the disk without
having to recompile the library's source code over again.

For more information about compiling techniques, see Chapter 3.

TML BASIC Language Reference 119 Subroutines, Procedures, Functions and libraries

Predefined Libraries

TML BASIC provides a collection of predefined libraries which define the interface
to the Apple IIGS Toolbox. Using these libraries, BASIC programs may call the
Toolbox to use graphics and sound, create menus and windows, etc. These libraries
are described in Appendix C and found in the LIBRARIES folder of the TML BASIC
distribution disk.

See Chapters 11 through 13 for information on how to use these libraries for
programming the Toolbox.

TML BASIC Language Reference 120 Subroutines, Procedures. Functions and Libraries

Chapter 9
Files

This chapter discusses the language features and capabilities of TML BASIC for
manipulating disk files and devices. If you are unfamiliar with the concepts of files,
volumes, disks and ProOOS you should study the Apple Iles Owner's Guide for an
introduction to the ProOOS operating system.

ProDOS 16 Fundamentals

ProOOS 16 is the operating system for the Apple JIGS. As such, it is responsible for
implementing much of the interface between Apple JIGS hardware and applications.
It manages the creation and modification of files. It accesses the disk devices on
which files are stored and retrieved. It dispatches interrupt signals to interrupt
handlers. It also controls certain aspects of the Apple JIGS operating environment,
such as pathname prefixes and routines for quitting programs and starting new
ones.

FIienames

A disk file is an ordered collection of information is stored on a disk and has several
attributes, including a filename and a filetype. Because TML BASIC operates within
the ProDOS 16 operating system, the file naming conventions and operations in
TML BASIC must abide by the rules of ProOOS 16.

A filename for a disk file in TML BASIC can be any sequence of 15 or fewer letters
(A-Zand a-z), digits (0-9) or periods (.); where the first character in a filename must
be a letter. If a program attempts to use a filename longer than 15 characters, or a
name that contains an illegal character, an error will occur.

Peripheral devices such as the keyboard, screen and printer connected to the Apple
JIGS are also treated as files in TML BASIC. These are called character files rather
than disk files. The naming conventions for character files is the same as disk files,
except that the name begins with a period (.). For example, ".PRINTER" refers to the
the printer device connected to slot 1. TML BASIC predefines some character
filenames, and a program can define others using the ASSIGN statement. See
Chapter 10 for a discussion of the ASSIGN statement and the predefined character
filenames. By treating peripheral devices as files, TML BASIC provides a single
consistent method for performing input and output in a program.

The filetype attribute is a special integer value which indicates the contents of a file.
There are filetypes which indicate text files, ProOOS 16 directories, BASIC Data Files,
etc. Appendix F provides a list of the most common filetypes.

TML BASIC Language Reference 121 Files

To open a file for input and/ or output, the OPEN statement is used. The OPEN
statement associates a character or disk file with a filenumber which is used by TML
BASIC file input and output statements. TML BASIC supports up to 32 open files in
a program, numbered from O to 31. File number 31 has a special purpose in TML
BASIC. It is used by the CATALOG statement to read a disk directory. If a program
has all 32 files opened and executes the CATALOG statement, an error will occur.
Currently, ProOOS 16 version 1.x only allows up to eight files to be opened at once,
however, when new versions of ProDOS 16 become available which support more
than 8 open files, TML BASIC will be able to open up to 32 files.

Pathnames

The ProDOS 16 filetypes include the special directory filetype. A directory file
contains the names and disk locations of other files on a disk. A directory file can
contain other directory files, thus creating a hierarchy for the file organization on a
disk. These nested directories are sometimes called subdirectories. Every volume
contains at least one directory called the root directory. The root directory file has
the same name as the volume. All other files and directories are contained in this
directory.

The following figure illustrates part of the directory organization of the TML BASIC
distribution disk.

TML

TMLBASIC SYSTEM PARTl .EXAMPLES PART3 . EXAMPLES

\
DESK.ACCS TOOLS FONTS HELLOWORLD.BAS

TMLCLOCK TOOL014 TOOL015 TOOL0 16

To access a file using ProDOS 16, more than just its filename is required. ProOOS 16
requires a pathname to fully specify a file . A pathname is merely a series of
filenames, each preceded by the slash (/) character. The first filename in a pathname
is the root directory's filename (volume name). Successive filenames indicate the
path, from the root directory to the file that ProDOS 16 must follow to find a
particular file. For example, the pathname for the the file TMLCLOCK in the above
diagram is as follows:

TML BASIC Language Reference 122 Files

/TML/SYSTEM/DESK.ACCS/TMLCLOCK

The maximum length for a pathname is 64 characters.

A pathname which begins with the filename of the root directory (volume name) is
called a full pathname. Files can also be designated with a partial pathname. A
partial pathname is a portion of a pathname that does not begin with a root
directory name and does not begin with the slash character. The following are
partial pathnames for the file TMLCLOCK.

TMLCLOCK
DESK.ACCS/TMLCLOCK
SYSTEM/DESK.ACCS/TMLCLOCK

Whenever a partial pathname is used, ProDOS 16 automatically adds a prefix to the
partial pathname to create a full pathname. A prefix is a pathname that indicates a
directory. A prefix always begins with a slash and a root directory name followed by
zero or more directory names. The following are legal prefix pathnames from the
example above:

/TML/
/TML/SYSTEM/
/TML/SYSTEM/DESK.ACCS/
/TML/PARTl.EXAMPLES/

The slashes at the end of these prefixes are optional, but are helpful reminders that
these are prefix pathnames and not full pathnames to the respective directory files.

ProOOS 16 stores eight prefixes numbered O through 7. Prefix number O is called the
default prefix. Whenever a partial pathname is given, ProDOS 16 automatically
joins prefix Oto the front of the partial pathname to create a full pathname. A prefix
pathname can be a maximum of 64 characters long. Since partial pathnames can
also be up to 64 characters long, it is possible to create pathnames up to 128 characters
long. The TML BASIC modifiable reserved variable PREFIX$ contains the value of
the Pro00S 16 prefix 0. TML BASIC also provides the PREFIX statement and the
PFX$ function for manipulating prefixes.

Finally, it is possible to override the use of prefix O when using partial pathnames
and designate any prefix by preceding a partial pathname with a prefix number and a
slash character. For example:

1/DESK.ACCS/TMLCLOCK
6/HELLOWORLD.BAS

TML BASIC Language Reference 123 Files

Manipulating Files

TML BASIC provides several statements which provide direct access to the ProOOS
16 operating system for manipulating files. These statements allow programs to
create and delete files, rename files, lock and unlock files, catalog a directory, and
determine what volumes are available. Each of these statements is discussed in
detail in Chapter 10, however, a quick review of these operations is provided below.

CREATE Statement

The CREATE statement is used to create disk files. The CREATE statement can be
used to create directories, text files, BASIC data files, and any other valid ProDOS 16
filetype. The following is the syntax for the CREA TE statement

CREATE Pathname [,FILTYP= DIRITXTISRCIBDFIFiletype [,SubType]]

The reserved word CREA TE is followed by the pathname of the file to be created.
Optionally, a pathname may be followed by the filetype specification and subtype
specification. If the optional filetype specification does not appear in a CREATE
statement, a text file is created. The following table shows the predefined filetype
names, their alternate names and meaning.

Table 9-1
FIL TYP= names

Filetype Alternate
Mnemonic Mnemonic Meaning

DIR CAT Subdirectory
TXT TEXT Text file
SRC Source file
BDF DATA BASIC Data File

Appendix F contains a list of the most often used ProOOS 16 filetypes.

If the FILTYP= argument appears in a CREATE statement, it may optionally be
followed by a file subtype specification. The subtype is an unsigned integer value in
the range Oto 65,535. If the subtype is not specified, the default value of zero is used
except for the case of BASIC Data Files. If the specified file type is a subdirectory
(DIR) then the subtype is zero regardless of the value specified. The meaning of the
subtype varies depending upon the file type.

BASIC Data Files require the subtype value be in the range 3 through 32,767. The

TML BASIC Language Reference 124 Files

reason for this is that TML BASIC uses the subtype of a BASIC Data File as the file's
logical record size. The logical record size of a BASIC Data File must be known in
order to support random-access to the file's records. See the "Accessing BASIC Data
Files" section later in this chapter for more information about BASIC Data Files.

An attempt to create an already existing file using the CREATE statement causes the
"Duplicate File Error" to occur.

The following are three examples of the CREA TE statement. The statements create
a directory, a text file and a BASIC Data file respectively.

CREATE 11 /TML/MY.EXAMPLES", FILTYP=DIR 'Create a new subdirectory

CREATE "GRADES" 'Create a text file

CREATE "MYROLODEX",FILTYP=BDF,100 'Create BASIC Data File
'with record size (subtype) of 100

DELETE Statement

The DELETE statement is used to remove a disk file from a volume. A directory file
can only be deleted if all the files in the directory have been deleted. It is, of course,
impossible to delete the root directory. The following is the syntax of the DELETE
statement:

DELETE Pathname

Any number of errors may occur when using the DELETE statement if the file is
currently in use, locked, on a write protected disk, etc. See Appendix A for a
complete list of the possible runtime errors.

RENAME Statement

The RENAME statement is used to change the name of a volume, directory or any
other file. The syntax for the RENAME statement includes the old pathname
followed by a comma and then the new pathname.

RENAME OldPathname, NewPathname [,FILTYP= TXTISRCIBDFIFiletype]

The OldPathname must be the name of an existing file, and the NewPathname may
be any legal ProOOS 16 path. Using RENAME it is possible to change the name of a
file and even move the file into a different directory; however, it is impossible to
move a file to another disk by merely changing its pathname. For example:

RENAME "HELLOWORLD.BAS", "HELLO.BAS"
RENAME "HELLO.BAS", "/TML/HELLO.BAS"

TML BASIC Language Reference 125

'Change file name
'Change file's directory

Files

If the optional FIL TYP= argument is used, the filetype of the renamed file is changed
as well. It is possible to change only the filetype of a file using the FILTYP=
argument when the OldPathname and NewPathname are the same.

LOCK and UNLOCK Statements

The LOCK and UNLOCK statements are used to change a file's protection. The
syntax for these statements includes only the reserved word LOCK or UNLOCK
followed by the pathname of the file whose protection is to be changed.

LOCK Pathname
UNLOCK Pathname

The LOCK statement prohibits writing to, renaming or deleting the named file. Any
filetype, including directories can be locked except for the root directory. The
UNLOCK statement removes the protection placed upon a file by the LOCK
statement.

CATALOG Statement

The CATALOG statement is used to display a listing of the files contained in a
directory. The CAT statement is a short form of the CATALOG statement that only
displays a subset of the directory information. Optionally, following the reserved
word CATALOG can be the pathname of a directory.

CATALOG [Pathname]
CAT [Pathname]

If the pathname is a volume name, all the files in the volume's root directory are
displayed. Otherwise, the pathname should specify the name of a subdirectory file,
in which case all of its files are displayed. If the pathname is omitted, the pathname
in the ProOOS 16 prefix O is displayed.

The CATALOG statement displays the filename, filetype, size, modification date,
creation date and subtype for each file in a specified directory.

VOLUMES Statement

The VOLUMES statement is used to read the volume name for each ProDOS 16
device and display its name. The ProOOS 16 devices are numbered .01 through .D9
inclusive. The display lists the device name, its volume name and the number of
free bytes of storage available on the volume.

TML BASIC Language Reference 126 Files

Opening and Closing Files

Before a program can read from or write to a file that has been created, it must be
opened. After a program is finished accessing a file it should be closed. As noted
before, TML BASIC allows up to 32 files to be open simultaneously, however, the
current versions of ProOOS 16 (version 1.x) only support eight open files. Only later
versions of the operating system will allow programs to take advantage of TML
BASIC's ability to open up to 32 files.

OPEN Statement

The OPEN statement is used to open files for access, and must precede any file 1/0
routines accessing a given file. The following is the general syntax for the OPEN
statement:

OPEN Pathname, [FILTYP= DIRITXTISRC1BDF1Fi1etype]
[FOR INPUTIOUTPUTIAPPENDIUPDATE] AS # Filenumber [, Recordsize]

The minimum required arguments following the reserved word OPEN are the file's
pathname followed by a comma, the reserved word AS and a file reference number.
The file must have been previously created and must exist on a disk currently
mounted in a disk drive. If a partial pathname is used, it is joined with prefix O to
create the full pathname. The file reference number is used in all subsequent TML
BASIC 1/0 statements for accessing the file. The following are some examples of the
OPEN statement:

OPEN "HELLOWORLD.BAS", AS #10
OPEN "/TML/MYSTUFF/INVOICES", AS #20
OPEN ".PRINTER", AS #1
OPEN ".MODEM", AS #2

It is generally good programming practice to adopt a convention for the use of file
reference numbers. One good convention is to use the file reference numbers 1
through 7 for character device files where the file reference number corresponds to
its slot, and the numbers 10 through 31 for disk files.

The optional FOR clause in the OPEN statement is used to qualify the access mode
for the file. The supported access modes are INPUT, OUTPUT, APPEND and
UPDATE. If the FOR clause is not used, the file is opened for UPDATE. The FOR
INPUT clause specifies that the file is opened for read-only access, and cannot be
written to. For example:

OPEN myFile$, FOR INPUT AS #10

TML BASIC Language Reference 127 Files

The FOR OUTPUT clause specifies that the file is opened for write-only access, and
cannot be read from. For example:

OPEN myFile$, FOR OUTPUT AS #10

The FOR APPEND option is a variant of the FOR OUTPUT clause. It is used for
sequential access (discussed later) and allows the PRINT# and WRITE# statements
to append new information to the end of a file without disturbing any existing data
in the file. For example:

OPEN myFile$, FOR APPEND AS #10

Finally, the FOR UPDATE clause is used to open a file for read-write access as long as
the filetype supports such access. For example, you cannot read from a printer.

The optional FIL TYP= clause of an OPEN statement is used to specify the type of a
file. The FILTYP= clause is primarily used to ensure that a file being opened is of the
expected filetype. If a program attempts to open a file using the FIL TYP= clause and
the file's type does not match the specified filetype, the file is not opened and an
error is reported. Any of the predefined filetype names (see CREATE) can be used
with the FILTYP= clause or an unsigned integer value.

The FIL TYP= clause is also used with the OPEN statement to open files which have
not been created. If the OPEN statement finds that the specified file does not exist,
and the FILTYP= clause is given, it will implicitly call the CREATE statement first
and then open the newly created file.

Finally, the optional RecordSize argument is used to specify the record size for
random access to the file using the INPUT# and GET# statements for non-Basic
Data Files. If the file being opened is an existing BASIC Data File, the record size

1 argument is ignored and the record size used is the size specified when the file was
created. For more information about random file access see the "Accessing Text
Files", "Accessing BASIC Data Files" and "Accessing Binary Files" sections below.

CLOSE Statement

The CLOSE statement is used to close a file previously opened with the OPEN
statement. After a file has been closed, no further access is possible. A program
should always close a file after it has finished accessing it. The following is the
syntax of the CLOSE statement:

CLOSE
CLOSE# FileNurnber

The CLOSE statement alone closes all files which are currently open. In addition,
TML BASIC closes all open files when the RUN and END statements are executed

TML BASIC Language Reference 128 Files

and when a program terminates.

A variation of the CLOSE statement, the CLOSE# statement, can be used to close a
single file. With this statement a program specifies the file reference number of the
file to be closed. For example:

CLOSE #10

File Access Techniques

Each of the six file access statements discussed in the next three sections can be used
for both sequential and random file access. Sequential file access is like reading a
book; access begins at the beginning of the file and continues in order to the end of
the file. Random file access on the other hand allows a program to read or write to
arbitrary locations in the file.

The following paragraphs define the concepts of sequential and random file access as
they relate to TML BASIC. For specific information on the different TML BASIC
statements which access files, see the sections "Accessing Text Files", "Access BASIC
Data Files", and "Accessing Binary Files" later in this chapter.

Sequential Access

TML BASIC stores a current file position for every file opened with the OPEN
statement. When a file is first opened, the current file position is set to the
beginning of the file, unless the file was opened with the FOR APPEND option, in
which case the current file position is set to the end of the file. The current file
position is the location where each TML BASIC I/0 statement reads from or writes
to a file.

Sequential access is the most common technique for file access. When a file is read
from or written to, the file is accessed at the current file position. After the file is
accessed, the current file position is updated to point to the very next data element
in the file so that the next file access begins where the previous access left off. If a
program is writing to the file and the current file position reaches the end of the file,
the size of the file is extended by the size of the data being written to the file. After
the data is written, the current file position is updated to point to the new end of
file.

Sequentially accessed files, opened using the FOR UPDATE (the default) access
mode, pose some interesting questions. Using this access mode the current file
position is initially set to the beginning of the file. After the program writes new
information to the file, where is the file's end of file, and what data does it actually
contain? Is the end of file at the end of the original contents of the file or the new
contents? Depending on the situation, the answer could be either the original or the

TML BASIC Language Reference 129 Files

new. If the original contents of the file have been fully overwritten, all of the
original information is lost and the end of file is at the end of the new contents. If
only a portion of the original information is overwritten then some of the original
information still exists in the file and the end of file is at the end of the original
contents of the file.

To avoid the problem of old file contents remaining in a file after it has been written
to using the FOR UPDATE access mode, a program should first delete the existing
file, and then re-create and open the file.

Random Access

In contrast to sequential access, random file access allows each of the TML BASIC
1/0 statements to specify a file record number as the new location of the file's
current file position before file access occurs. In order to specify a record number,
however, a file must first be organized into a collection of records. A record is a data
structure consisting of a fixed number of bytes. The first record in a file is numbered
zero, the second record is numbered one, etc. Each successive record lies adjacent to
the next, with no intervening storage. Thus, a file containing N records, each B
bytes large, contains records numbered in the range O through N-1, and a file size of
N*B bytes.

When a file is written to using random access to a record which does not yet exist in
the file, the file is extended to create the specified record.

BASIC Data Files are always organized into records because the record size must be
specified when the file is created using the CREA TE statement. Once a BASIC Data
File is created, its record size can never be changed. Files of other types can be given
a different record size when the file is opened using the OPEN statement as
discussed above.

Remember, text files are organized as variable length lines of characters each ending
with the return character. Th us, it generally makes sense to access a text file
randomly if it is known that each line is exactly the same length and equal to the
record size. Text files which contain variable length lines and are accessed randomly
with the INPUT# statement will most certainly read partial lines.

Accessing Text Files

A text file is a special type of file which contains ASCII characters organized as lines.
A line is a sequence of up to 255 characters ending with the Return character (ASCII
13). A text file is created with the TML BASIC CREATE statement where the
FILTYP= argument is the value TXT.

TML BASIC provides two statements for accessing text (disk) files and character

TML BASIC Language Reference 130 Files

(device) files: INPUT# and PRINT#. These statements are only with text files. If a
program uses these statements for other filetypes, TML BASIC reports the error "File
Type Error".

INPUT# Statement

The INPUT# statement reads a line of text from a file into an input buffer and then
processes the input text according to the list of input variables in its argument list. If
the INPUT# statement does not encounter a return character after reading 255
characters, it terminates reading the file, appends a return character to the input
buffer, and processes the characters as a single line.

The following is the syntax of the INPUT# statement

INPUT# FileNumber [, RecordNumber] [; VariableName {, VariableName }]

The reserved word INPUT# is followed by the file reference number of an open file,
a semicolon, and then a list of variables separated by commas. The following is an
example of the INPUT# statement which reads a line into a string variable:

INPUT #10; aLine$

This form of the INPUT# statement performs sequential access, reading a line of text
beginning at the current file position. To perform random access using the INPUT#
statement, include a record number after the file reference number. Recall that the
file must be opened using the OPEN statement with the optional record size
argument specified in order to define the size of a record for the text file. Consider
the following statements:

OPEN "AFILE", AS #10, 15
INPUT #10,4; aLine$

The OPEN statement opens the file AFILE with the record size defined as 15 bytes.
The INPUT# statement then reads a line of text beginning at the fourth record in
the file. The file position for the fourth record is computed with the equation
(RecordNumber - 1) *RecordSize. Thus, the new current file position for the
INPUT# statement is calculated as:

(4-1) * 15 = 45

Therefore, TML BASIC positions the file at the 45th byte of the file before reading
the line. Recall that both record numbers and bytes are counted from zero.

The INPUT# statement may contain both string and numeric variables. If a
numeric variable is used in an INPUT# statement, TML BASIC automatically
converts the string representation of a number into the appropriate numeric type

TML BASIC Language Reference 131 Files

(similar to the VAL statement). When a numeric variable is used in an INPUT#
statement and the input line does not contain a string which represents a legal
numeric value a "Type Mismatch Error" occurs. If there is not enough data in the
input line, the file is read again until all of the variables have been given values.

PRINT# Statement

The PRINT# statement writes a line of text to a file in the same way the PRINT
statement does to the screen. The following is the syntax for the PRINT# statement:

PRINT# FileNumber [, RecordNumber] [;Expression{, I; Expression}]

The reserved word PRINT# is followed by the file reference number of an open file,
a semicolon, and then a list of expressions separated by commas or semicolons. The
following is an example of the PRINT# statement which writes several variables to
a file:

PRINT #10; anint%, aReal, aStr$

PRINT# automatically performs any necessary numeric-to-string type conversions
before writing to the file. Numeric values are formatted using the same rules as the
PRINT statement. That is, SHOWDIGITS controls the format of numbers generated
by PRINT#. Using the comma as the separator between expressions performs a tab
to the next print zone before writing the expression, while the semicolon does not.
The SPC and TAB functions can be used as well.

This form of the PRINT# statement performs sequential access, writing a line of text
beginning at the current file position. To perform random access using the PRINT#
statement, include a record number after the file reference number. Recall that the
file must be opened using the OPEN statement with the optional record size
argument specified to define the size of a record in the text file. Consider the
following statements:

OPEN "AFILE", AS #10, 20
PRINT #10, 6; aLine$

The OPEN statement opens the file AFILE with the record size defined as 20 bytes.
The PRINT# statement then writes a line of text beginning at the sixth record in the
file. The PRINT# statement begins at the beginning of the specified random record,
and writes the entire value of each expression in its argument list without regard for
record size or boundaries. This behavior is unlike that of the WRITE# statement
discussed in the next section.

TML BASIC Language Reference 132 Files

Accessing BASIC Data Files

A BASIC Data File is a special binary coded filetype which provides much faster file
access than text files. BASIC Data Files are also called BDF or DAT A files. BDF files
are faster than standard text files because no text to binary translation is necessary
when reading or writing a file. BDF files store data using the same binary
representation as the values stored in memory.

TML BASIC provides two statements for accessing BDF files: READ# and WRITE#.

Stucture of a BDF File

BASIC Data files are stored in a special file structure format. Unlike other filetypes,
BDF files are always organized as fixed size records, regardless of whether or not the
file is accessed sequentially or randomly. The record size for a BDF file is specified
when the file is created and cannot be changed. If the record size is not specified in
the CREA TE statement, a default size of 512 bytes is used. When a record size is
specified in an OPEN statement for a BDF file, the value is ignored and the record
size specified when the file was created is used. The record size for a BDF file is
stored as the file's ProOOS 16 filetype.

As mentioned above, the data values stored in a BDF file are in the same binary
format as the values stored in memory. To identify the type of a value, BDF files
also store a tag byte immediately preceding a value which uniquely defines the
data's type. Table 12-2 shows the values and meaning of each BDF tag byte. The
table also shows the number of bytes required to store a value of the given type in a
BDF file.

Table 9-2
BDF Tag Byte Values

Tag Byte Meaning Bytes in BDF file

0 End-of-file 1
1 not used
2 Integer 3
3 Double Integer 5
4 Long Integer 9
5 Single-precision Real 5
6 Double-precision Real 9
7 String 2 + characters in string

TML BASIC Language Reference 133 Files

Each data value and its tag byte together are called a field. All of the bytes for a field
must fit entirely within a record; a field may not span a record boundary. If
insufficient space is left in a record to write a field, the field is written to the next
record. If the field does not fit within any record, an error occurs.

The following diagram illustrates how various data values might be written to a
BDF file containing four records whose record size is 10 bytes. The integer values in
the records are tag bytes followed by a description of the data value in brackets. The
bytes in each record shown in grey indicate unused storage in the file because the
next field in the file could not fit in the record.

byte 0 2 3 4 5 6 7 8 9
. . .

2 value]

. . .

2 value] value] record 0

record 1 3
. . .

2 value]

record 2 7

record 3 3 3

If a program attempted to write a string value to this hypothetical file whose size
was greater than 10 bytes, an error would occur since the value would not fit within
a single 10 byte record.

READ# Statement

The READ# statement reads information from a BDF file into one or more
variables. The following is the general syntax for the READ# statement:

READ# FileNumber [, RecordNumber] [; VariableName {, VariableName }]

The reserved word READ# is followed by the file reference number of an open BDF
file, a semicolon, and then a list of variables separated by commas. The following is
an example of the READ# statement which reads three integers:

READ #10; anintl%, anint2%, anint3%

TMI BASIC I anguage Reference 134 Files

This form of the READ# statement performs a sequential access, reading one field
after the other from successive records in the file. If the values stored at the current
file position in the BDF file are not integer values (tag byte not equal to 2), the value
must be converted.

If a READ# statement contains a numeric variable, the value at the current file
position in the BDF file must also be a numeric value. If the file contains a string
value, the "Type Mismatch Error" occurs. If the file does contain a numeric value,
but its type does not match the variable in the READ# statement, the value is
converted using the same rules as the CONV functions. Thus, it is possible that the
conversion will lose precision or even cause an "Overflow Error". If the READ#
statement contains a string variable, the value at the current file position must be a
string value, otherwise a "Type Mismatch Error" occurs.

An optional form of the READ# statement permits random access to a BDF file. To
perform random access using the READ# statement, include a record number after
the file reference number. Consider the following statement:

READ #10,3; aStr$, aDblint@

This READ# statement reads a string value beginning at the third record in the file,
and then a double integer value. Recall that both record numbers and bytes are
counted from zero.

WRITE# Statement

The WRITE# statement writes information to a BDF file . The following is the
syntax for the WRITE# statement:

WRITE# FileNumber [, RecordNumber] [; Expression {, I ; Expression }]

The reserved word WRITE# is followed by the file reference number of an open file,
a semicolon, and then a list of expressions separated by commas or semicolons. The
following is an example of the WRITE# statement which writes several variables to
a file:

WRITE #10 ; anint% , aReal, aStr$

This form of the WRITE# statement performs sequential access, writing each
successive value at the current file position . Each expression in the WRITE#
argument list causes a field to be written to the BDF file . Recall that a field is a tag
byte follow ed by the binary representation of the value. If a record does not contain
enough room to hold all the fields being written to it, the extra fields are written to
the next record. If a field cannot fi t in any record (it is larger than the record size), an
error occurs.

TML BASIC Language Reference 135 Files

An optional form of the WRITE# statement permits random access to a BDF file.
To perform random access using the WRITE# statement, include a record number
after the file reference number. Consider the following variation of the above
statement:

WRITE #10,6; anint%, aReal, aStr$

Accessing Binary Files

A binary file is simply a file consisting of a sequence of bytes without any particular
organization or structure such as the BDF files or text files. When a binary file is
accessed, the specified number of bytes at the current file position are transferred
without any translation into a structure array. Any filetype can be opened and
accessed as a binary file, including BDF and text files. One important use of binary
files in TML BASIC is the reading and writing graphics files.

The TML BASIC GET# and PUT# statements implement access to binary files. By
default, these statements transfer a number of bytes equal to the record size of the
opened file being accessed. Thus, a file which is accessed using these statements
should specify the optional record size argument in the OPEN statement.

GET# Statement

The GET# statement reads a number of bytes from a binary file into a structure
array. The following is the syntax of the GET# statement:

GET# FileNumber [, [Length] [, RecordNumber]]; StructureVariableReference

The reserved word GET# is followed by the file reference number of an open binary
file, a semicolon, and then a structure array variable reference (includes a subscript).
The number of bytes transferred is equal to the record size of the file . The following
statements illustrate the use of the GET# statement:

DIM myData ! (99)
OPEN "SomeFile", AS #10, 100
GET #10; myData! (0)

The DIM statement declares a structure array with 100 elements, thus occupying 100
bytes of storage. The OPEN statement opens a binary file whose record size is 100
bytes and sets the current file position to the first record of the file. Finally, the
GET# statement reads the first record (100 bytes) of the file into the structure array
beginning at index position 0. Note that the OPEN statement is solely responsible
for determining the number of bytes transferred by the GET# statement by defining
the record size.

TML BASIC Language Reference 136 Files

Using the optional Length argument in the GET# statement enables a program to
override the number of bytes transferred to some value other than the record size.
However, the override length value must be less than or equal to the record size.
For example, the following GET# statement only transfers 50 bytes from the file.

GET #10,50; myData! (0)

Each of the above forms of the GET# statement performs sequential access to the
binary file. The GET# statement can also be used for random access using the
optional RecordNumber argument. For example, the following statement reads the
second 100 byte record (record numbers begin at 0) from the binary file:

GET #10,,1; myData! (0)

And the following statement reads only 50 bytes from the second 100 byte record:

GET #10,50,1; myData! (0)

PUT# Statement

The PUT# statement writes a number of bytes from a structure array to a binary file.
The following is the syntax of the PUT# statement:

PUT# FileNumber [, [Length] [, RecordNumber]]; StructureVariableReference

The reserved word PUT# is followed by the file reference number of an open binary
file, a semicolon, and then a structure array variable reference (includes a subscript).
The number of bytes transferred is equal to the record size of the file. The following
statements illustrate the use of the PUT# statement:

DIM myData ! (99)
FOR i% = 0 to 99

myData! (i%) = i%
NEXT i%
OPEN "SomeFile", AS #10, 100
PUT #10; myData ! (0)

The DIM statement declares a structure array with 100 elements, thus occupying 100
bytes of storage. The structure array is initialized with the FOR loop. The OPEN
statement opens a binary file whose record size is 100 bytes and sets the current file
position to the first record ,af the file. Finally, the PUT# statement writes the
contents of the structure array to the first record (100 bytes) of the file. Note that the
OPEN statement is solely responsible for determining the number of bytes
transferred by the PUT# statement by defining the record size.

Using the optional Length argument in the PUT# statement, it is possible to
override the number of bytes transferred to some value other than the record size.

TML BASIC Language Reference 137 Files

However, the override length value must be less than or equal to the record size.
For example, the following PUT# statement only transfers 50 bytes to the file.

PUT #10,50; myData! (0)

Each of the above forms of the PUT# statement performs sequential access to the
binary file. The PUT# statement can also be used for random access using the
optional RecordNumber argument. For example, the following statement writes to
the second 100 byte record (record numbers begin at 0) from the binary file:

PUT #10,, 1; myData ! (0)

And the following statement writes only 50 bytes to the second 100 byte record:

PUT #10,50,1; myData! (0)

Other File Operations

In addition to the file operations discussed thus far, TML BASIC offers several other
statements and functions related to the manipulation of files. The most significant
are those statements which relate to detecting and handling an end of file condition.
These and other file handling statements and functions are discussed below.

ON EOF# Statement

The ON EOF# statement allows a program to specify what actions to take when a file
input statement such as INPUT# or READ# attempts to read past the end-of-file
(EOF) mark of a file. The ON EOF# statement has a single argument, a file reference
number, followed by a sequence of one or more statements. For example:

ON EOF #10 PRINT "End of file": CLOSE #10: END

When the normal execution of a program encounters an ON EOF# statement, it
records that the file associated with the given file reference number has an active
ON EOF# statement. The statements on the same line after the ON EOF# statement
are not executed.

When a file's end-of-file mark has been reached, there is no more data in the file for
an input statement to read, thus the input statement cannot return any value.
Without the ON EOF# statement, the program would abort execution, returning the
error "Out of Data Error". However, if an ON EOF# statement has been executed for
the file whose file reference number matches that in the ON EOF# statement,
control automatically transfers to the statements after the ON EOF# statement.

The following program shows how the ON EOF# statement can be used in a very
simple program.

TML BASIC Language Reference 138 Files

OPEN "Test", AS #10
ON EOF #10 CLOSE #10: END
ReadAgain: INPUT #10; aLine$

PRINT aLine$
GOTO ReadAgain

The program opens a text file, executes the ON EOF# statement and then proceeds to
read one line at a time from the file and print it to the screen. When the end-of-file
is encountered, TML BASIC automatically transfers control to the statements after
the ON EOF# statement. In this example, the statements close the open file and
then terminates execution of the program.

OFF EOF# Statement

The OFF EOF# statement cancels the effect of the ON EOF# statement. After an OFF
EOF# statement has been executed for a file reference number, reading past that
file's end-of-file will cause TML BASIC to abort execution of the program and report
the error message "Out of Data Error".

EOF Reserved Variable

When TML BASIC encounters an end-of-file, it assigns its file reference number to
the reserved variable EOF. The EOF reserved variable can then be used in the code
which handles the end-of-file condition for one or more files to determine exactly
which file has reached its end-of-file mark. The following is a simple example of
using the EOF reserved variable:

ON EOF # 10 GOTO HandleEOF
ON EOF # 15 GOTO HandleEOF
ON EOF # 17 GOTO HandleEOF

HandleEOF: PRINT "End of file encountered for file#"; EOF
CLOSE #EOF

EOFMARK Function

The EOFMARK function is used to determine the exact location of the end-of-file
mark for an open file. The function has a single parameter which is a file reference
number of an open file. If the file is not open, an error results. The following
example shows how to use the EOFMARK function:

FileSize@ = EOFMARK(lO)

EOFMARK can only be used with disk files. Character device files such as a printer
or modem cannot have an end-of-file mark.

TML BASIC Language Reference 139 Files

Fl LE Function

The FILE function is used to determine if a file exists as a disk file. The FILE
function has a string parameter which specifies the pathname of the file to test for
existence. If the file does exist, the FILE function returns a value of one (true),
otherwise it returns a value of zero (false). The following example demonstrates
how the FILE function might be used.

FileOk = 0
DO

INPUT "Enter a file to open: "; theFilename$
IF FILE(theFilename$)

THEN F ileOk = 1
ELSE PRINT "Sorry, that file does not exist"

UNTIL FileOk
OPEN theFilename$, AS #10

The FILE function can also have an optional second parameter which specifies a
filetype. If the second parameter is given, the FILE function not only checks for the
file's existence, but also that its filetype matches the filetype specifed in the second
parameter. The second parameter uses the FIL TYP= reserved word as described
previously with the CREA TE statement.

FILTYP Function

The FIL TYP function is used to obtain the filetype of an open file. The function has
a single parameter which must be a file reference number for an open file. The
function returns a integer which is the file's type.

TYP Function

The TYP function is only used with BASIC Data Files. This function examines the
type of the next value to be read from an open BASIC Data File and returns an
integer which is the tag byte of the next value in the file. The function has a single
parameter which is the file reference number of an open file. Table 9-2 defines the
tag byte values.

REC Function

The REC function is used with random access files to obtain the current record
number of a file. The function has a single parameter which must be a file reference
number for an open file. The function returns a double integer which is the record
number corresponding to the file's current position. The following is a simple
example of the REC function:

CurrentRecordPos@ = REC(lO)

TML BASIC Language Reference 140 Files

Summary

TML BASIC provides an extensive collection of statements and functions for
manipulating files. This chapter has provided an overview of file concepts as
related to ProOOS 16, the operating system of the Apple IIGS, as well as a review of
the individual TML BASIC statements, functions and reserved variables which
provide for file manipulation in TML BASIC programs. You should also reference
chapter 10 for more information regarding each of the statements and functions
discussed in this chapter.

TML BASIC Language Reference 141 Files

Chapter 10

Statements and Functions

The TML BASIC language has nearly 200 statements, functions and reserved
variables. This chapter serves as a complete reference for each of these language
elements with each appearing on its own page.

Statements are the fundamental building block of TML BASIC programs. The
source code for a program consists of one or more statements, each appearing on a
separate line or on the same line separated by colons. For example:

LET Average= (Vall+ Val2 + Val3) / 3
CALL MoveTo(30,20)

Predefined functions perform a calculation and return a single value. Therefore,
functions are used in expressions. Most of the predefined functions have at least
one or more parameters, although some have no parameters. For example:

x = SIN (angle)
Message$= RIGHT$(Message$,5)
Paddle%= PDL9

Finally, reserved variables are special predefined variables which control or return
special system values. Some reserved variables can be assigned values. These are
called modifiable reserved variables.

theDate$ = DATE$
HPOS = 17

For more information about these language elements, see Chapter 7.

The description of each statement, function and reserved variable includes a
definition of the syntax for using the language element, a discussion of what action
it performs along with a description of its arguments and/ or parameters, restrictions
and error conditions. Also given is an example of how the language element might
be used in a program. Where appropriate, references to other language elements are
given to help you better understand its use, and in the case where TML BASIC
differs from GS BASIC, a discussion of those differences is provided.

TML BASIC Language Reference 143 statements and Functions

The Syntax Notation

The syntax notation used in this chapter is the same notation described in Chapter 7.
The following is an example of the syntax notation used to define a procedure call.

PROC Procedurename [(Expression { , Expression})]

Words which appear in all capital letters denote TML BASIC reserved words and
must be used exactly as shown. In the example above, PROC is a reserved word
which must appear exactly as shown.

Brackets ([]) indicate that the elements between the matching left and right brackets
may optionally appear in the syntax. Braces ({}) indicate that the elements between
the matching left and right braces may appear zero or more times in the syntax. The
example above, indicates that a procedure's parameter list is optional since it
appears in brackets. If a parameter list appears, it may have one or more Expression
parameters separated by commas as indicated by the braces.

A vertical bar (I) is used to indicate an option. When two or more syntactic
elements are separated by a vertical bar, any one of the elements may appear in the
syntax, but only one. The vertical bar is not used in the example above.

Special symbols other than braces ({}), brackets ([]) and the vertical bar (I), have
special meaning to the syntax for the statement or function being defined, and must.
appear exactly as shown. For example, the parentheses and commas shown in the
example above must appear exactly as shown.

Italicized words indicate that the word is to be substituted with a specific TML BASIC
language construct. The italicized word is chosen to· help imply the language
construct it represents. For example, Procedurename is meant to imply that a legal
procedure name should appear in its place. Whenever an italicized word appears in
the syntax definition, the accompanying text defines the exact meaning of the word.
Throughout the syntax, four general italicized words are used: Expression,
NumericExpression, StringExpression and Pathname.

Expression means that any legal TML BASIC expression is to be used in its place.
Expressions are constants, variables, functions and operators which evaluate to any
type. Expressions are described in Chapter 7. Sometimes the word Expression is
qualified as either NumericExpression or StringExpression. In this case, the type of
the expression is required to be one of the numeric types or the string type
respectively.

The word Pathname means that a legal ProOOS 16 pathname must appear. This
word is used only in those statements and functions which implement ProDOS 16
operations. Pathnames are described in Chapter 9.

TML BASIC Language Reference 144 statements and Functions

ABS Function

Syntax

ABS(NumericExpression)

AcHon

The ABS function returns the absolute value of the NumericExpression. The
NumericExpression may be any TML BASIC numeric type, and ABS returns a value
which is the same type as NumericExpression.

The absolute value of a numeric expression is its magnitude without regard to its
sign. For example, the absolute value of -12 is 12; and the absolute value of + 12 is 12.
The absolute value of zero is zero.

Example

A= -438
PRINT ABS(438)
PRINT ABS (A)
PRINT ABS(-34.92)

OUTPUT:

438
438
34.92

TML BASIC Language Reference 145 Statements and Functions

ANU Function

Syntax

ANU(Rate, Periods)

Action

The annuity function, computes the annuity, ANU(Rate, Periods) that is equal to
the following calculation:

(1 - (1 +Rate) ^ (-Periods)) / Rate

where Rate and Periods can be any numeric type. Rate indicates the interest rate and
Periods represents the number of time periods for which to compound the interest.

The calculation ANU(Rate, Periods) is more accurate than the straightforward
computation of the expression shown above using normal arithmetic and
exponentiation operations. The annuity function is directly applicable to the
computation of present value and future value of ordinary annuities.

An annuity is a series of equal payments made at regular intervals with interest
compounded at a certain rate . The number of payments is always one more than
the number of time periods. Present value can be calculated using the annuity
function alone but future value is calculated with the annuity function and also the
compound function .

See Also

COMP!

Example

PRINT ANU(0 .08, 1 80)

Amount
Rate

1 00 00
0 .08

Periods= 4

' In itial inve stment a mount
' Intere st r ate
1 Number o f time periods

" ; Amount * ANU (Ra t e , Pe riods) PRINT "Pre sent Va l u e
PRI NT "Futu re Va l ue " ; Amount * COMP I (Ra t e , Pe riods) * AN U (Rat e , Pe riods)

OUT PUT:

1.25
Present Valu e 33 121.2 7
Fut ure Value 450 61 .1 2

TML BASIC Language Referenc e 146 Statements and Functions

ASC Function

Syntax

ASC(ScringExpression)

Action

The ASC function returns an integer value which is the ASCII (American Standard
Code for Information Interchange) character code for the first character of
StringExpression. If the value of StringExpression is a null string then the result is
-1.

To convert an integer which represents an ASCII character code into a string, use the
function CHR$, which creates a single character string from the given character
code.

See Also

CHR$
Appendix E

Example

S$ = "hello"
PRINT ASC (S$)
PRINT ASC("TML BASIC")
PRINT ASC (" ")

OUTPUT:

104
84
-1

TML BASIC Language Reference 147 statements and Functions

ASSIGN Statement

Syntax

ASSIGN DeviceName, SlotNumber [,AUTO]

Action

The ASSIGN statement associates a character device with a slot or port number.
DeviceName is a string expression beginning with a period, followed by a letter
(A-Z, a-z) followed by zero or more letters or digits, that indicates a filename (case is
not significant). The SlotNumber argument is an integer value in the range -1 to 7.
The optional AUTO argument indicates that TML BASIC should also send a
line-feed after each carriage-return sent to the device.

After a device name has been defined it can be used in the OPEN statement as a
character device filename. The device can then be accessed as a file using TML
BASIC's file 1/0 statements.

TML BASIC allows up to 12 device names to be defined (including the six
predefined names). The device names are stored in an internal device table. A
value of 1 through 7 defines the slot number of the character device. A value of
zero (0) defines a null device, and the value -1 deletes a device name from the
current device table.

TML BASIC predefines six character device names. These names can be deleted if
needed. The following table lists the six predefined device names.

DeviceName

.CONSOLE

.PRINTER

.MODEM

.MEMBUFR

.NETPTRl

.NULL

See Also

OPEN

Example

Slot

3
1
2

7
0

ASSIGN ".MYPLOTTER", 6

Auto Line-feed Description

Off C3COUT1
On
Off
Off Pseudo device (255 byte buffer)
On AppleTalk printer driver
Off A bit bucket, read=CR

'Define the device .MYPLOTTER at slot 6

TMI Basic Language Reference 148 statements and Functions

ATN Function

Syntax

ATN(NumericExpression)

Action

The ATN function returns, in radians, the trigonometric arctangent (inverse
tangent) of NumericExpression. In other words, A TN returns the angle whose
tangent is NumericExpression.

The value returned represents an angle in the range -Pi/2 to +Pi/2 radians.

See Also

cos
PI
SIN
TAN

Example

PI# = ATN(l.0) * 4
PRINT PI#

OUTPUT:

3.141593

'Calculate the value of PI using ATN

TML BASIC Language Reference 149 Statements and Functions

AUXID@ Reserved Variable

Syntax

AUXID@

Action

The AUXID@ reserved variable is set each time an OPEN or FILE statement is
executed. It returns a double integer which is the subtype of the file specified in the
last executed OPEN or FILE statement.

See Also

OPEN
FILE

Example

Exists%= FILE("/TML/TMLBASIC")
PRINT Exists%, AUXID@

OUTPUT:

1 0

TML BASIC Language Reference 150 statements and Functions

BREAK ON, BREAK OFF Statements

Syntax

BREAK ON
BREAK OFF

Action

During normal program execution, TML BASIC programs monitor the keyboard for
a Control-C keypress. If aControl-C is typed, program execution aborts and returns
control to TML BASIC (for Compile to Memory) or to the Apple Iles Finder (for
Compile to Disk). TML BASIC only monitors the keyboard between statements.
Thus, it is not possible to abort using Control-C while an INPUT statement is
waiting for user input.

Control-C monitoring can be suppressed by the BREAK OFF statement and
re-enabled with the BREAK ON statement. If aControl-C is typed while BREAK
OFF is active, it is treated like any other character and program execution continues
normally. All programs begin with BREAK ON enabled.

Because TML BASIC must generate code between each statement in a program to
check for the Control-C keypress, programs are larger and slower than if the
Control-C is not checked. TML BASIC allows programs to tum off this code
generation entirely using the $KeyboardBreak metastatement or by turning off the
Keyboard Break option in the Preferences Dialog. If Control-C code generation
checking is turned off, programs will run faster and be smaller, however, it will be
impossible to abort execution of the program using Control-C regardless if BREAK
ON is active.

See Also

ON BREAK
Chapter 6, Preferences Dialog
Appendix B

Example

BREAK OFF 'Turn off Control-C checking while updating screen
GOSUB UpdateScreen
BREAK ON 'Restore Control-C checking

TML BASIC Language Reference 151 Statements and Functions

BTN Function

Syntax

BTN(ButtonNumber)

AcHon

The BTN function returns the state of the three Apple Iles sense inputs.
ButtonNumber must be an integer in the range O to 2. Any number outside this
range will produce an "Illegal Quantity Error".

BTN returns the integer values O or 1 reflecting the state of the input. Various
devices can control the state of these inputs including the buttons on paddles or
joysticks, and the Open-Apple and Option keys.

The following shows the legal values for ButtonNumber and the input it tests.

Command

BTN(O)
BTN(l)
BTN(2)

Example

Input Address

$EOC061
$EOC062
$EOC063

Explanation

returns 1 if Open-Apple key is down, 0 if up
returns 1 if option key is down, 0 if up

IF BTN(O)=l THEN PRINT "Open Apple Down" ELSE PRINT "Open Apple Up"
IF BTN(l)=l THEN PRINT "Option Key Down" ELSE PRINT "Option Key Up"

TML BASIC Language Reference 152 statements and Functions

CALL Statement

Syntax

CALL ToolboxName [(Expression {, Expression })]
ToolboxName [(Expression{, Expression})]

Action

The CALL statement executes a named procedure or function in an Apple Iles
toolset. The declarations for Toolbox procedures and functions are defined in the
several predefined libraries shipped with TML BASIC in the folder LIBRARIES. See
Appendix C for a complete list of the Toolbox libraries and the procedures and
functions declared in them.

Following the reserved word CALL is the name of the toolbox procedure. If the
procedure has parameters, they are given after the toolbox name enclosed in
parentheses. The rules for matching parameters are the same as for normal BASIC
procedures. If the Toolbox routine is a function then its return values are placed in
the CALL return stack See the description of the reserved variable R.STACK for a
description of the Call return stack.

In order to call a Toolbox procedure, the library containing the declaration of the
routine must appear in a LIBRARY statement, otherwise TML BASIC reports the
error "Toolbox procedure xxx is not defined", where xxx is the name of the
procedure.

TML BASIC allows the use of the underscore character (_) as a shorthand form of
the CALL reserved word. Any time a CALL statement is used, it can be substituted
with the underscore character. See the example below.

Chapter 11 provides a detailed discussion of the Apple Iles Toolbox and how to
access it from TML BASIC.

See Also

CALL%
R.STACK
Chapter 11
Appendix C

Example

LIBRARY "QuickDraw"
CALL MoveTo(l0,23)
_MoveTo (10, 23)

'Load the QuickDraw library
'Call the MoveTo procedure in the QuickDraw library

TML BASIC Language Reference 153 Statements and Functions

CALL % Statement

Syntax

CALL% FunctionNumber, ToolSetNumber, ResultSize
[(Expression{, Expression})]

Action

The CALL% statement is a variation of the CALL statement for calling the Apple
Iles Toolbox procedures and functions. The CALL% statement allows a program to
call a Toolbox procedure by specifying its FunctionNumber, ToolSetNumber and
function ResultSize; while the CALL statement calls a Toolbox procedure by its
name.

As described in Chapter 11, section "The Toolbox Libraries", the Apple IIGS Toolbox
is divided into a collection of individual toolsets, each assigned a unique Tool set
number. Furthermore, each procedure and function within a toolset is assigned a
unique function number. Together, these two numbers uniquely identify every
procedure and function in the Toolbox. It is these two numbers that are used in the
CALL% statement to call a Toolbox routine. Appendix C lists each of the procedures
and functions in the Toolbox with their tool set and function numbers.

If the procedure has parameters, they are given after the toolbox name enclosed in
parentheses. The rules for matching parameters are the same as for normal BASIC
procedures.

See Also

CALL
R.STACK
Chapter 11
AppendixC

Example

CALL% 58,4,0 (10,23) 'Call the MoveTo procedure in the QuickDraw library

LIBRARY "QuickDraw" 'Load the QuickDraw library
CALL MoveTo(l0,23) 'Equivalent to the CALL% statement

TML BASIC Language Reference 154 statements and Functions

CATALOG Statement

Syntax

CATALOG [StringExpression]
CAT [StringExpression]

Action

CATALOG or CAT displays a listing of the disk contents of the current directory.
The CAT statement only displays a subset of the complete information displayed by
the CATALOG statement. The current directory is the ProOOS 16 prefix O which is
also the value of the reserved variable PREFIX$.

If the optional StringExpression argument appears, the contents of the directory
indicated by StringExpression is displayed. If the value of StringExpression does not
represent a valid ProDOS 16 pathname of a directory file, the error "Path Not
Found" occurs.

If OUTPUT# is set to anything other than 0, the directory listing will be sent to the
specified OUTPUT# file and not to the screen.

See Also

OUTPUT#
PREFIX$
Chapter 9, Pathnames

Example

CATALOG "/TML/PARTl.EXAMPLES"
CAT "/TML"

TML BASIC Language Reference 155 Statements and Functions

CHAIN Statement

Syntax

CHAIN PathName

AcHon

The CHAIN statement is used to launch another ProOOS 16 application from a TML
BASIC program. When the CHAINed application quits, control returns to the TML
BASIC program at the statement immediately after the CHAIN statement. When
control returns, all open files remain open and all variables remain in tact. The
PathName argument is a string expression which must represent a legal pathname
to a ProDOS 16 application.

Complier /Interpreter Dlff erences

TML BASIC can only chain to compiled ProOOS 16 applications, while GS BASIC
chains control to GS BASIC source code programs. Because GS BASIC chains to
source code, an optional line number or label may be specified as the location to
begin execution in the program. TML BASIC only transfers control to the beginning
of an application.

Example

CHAIN "PAYROLL"

PART2$ = "/ACCOUNTING/TAXPROGRAM"
CHAIN PART2$

TML BASIC Language Reference 156 Statements and Functions

CHR$ Function

Syntax

CHR$(NumericExpression)

Action

The CHR$ function returns a one character string whose single character has the
ASCII code which is NumericExpression. The value of NumericExpression must be
in the range O to 255 inclusive. If the value is outside this range then the error
"Illegal Quantity Error" occurs. Real values passed will automatically be rounded to
the nearest integer.

The CHR$ function complements the ASC function, which returns the ASCII code
of the first character of a string.

See Also

ASC
Appendix E

Example

PRINT CHR$ (65)
PRINT CHR$(34);"HELLO"; CHR$(34) 'CHR$(34) is double quote character

OUTPUT:

A
"HELLO"

TML BASIC Language Reference 157 statements and Functions

CLEAR Statement

Syntax

CLEAR

Action

The CLEAR statement is used to set all numeric variables to zero, string variables to
null, and closes all open files. Note that if CLEAR is used inside a loop, the loop
counter is cleared causing an infinite loop.

The ERASE statement should be selectively free storage for arrays.

Compiler /Interpreter Differences

Unlike GS BASIC, TML BASIC does not support dynamically setting the stack and
data segments. Thus, the CLEAR statement in TML BASIC does not support any
arguments for specifying the new size of a data segment.

See Also

ERASE

Example

DIM StrArray$(1)

StrArray$(0) = "TML BASIC"
StrArray$(1) = "TML Pascal"

PRINT"*"; StrArray$(0); "*"; StrArray$(1);
CLEAR
PRINT"*"; StrArray$(0); "*"; StrArray$(1);

OUTPUT:

*TML BASIC*TML Pascal*

TML BASIC Language Reference 158

"*"

"*"

Statements and Functions

CLOSE and CLOSE# Statements

Syntax

CLOSE [# FileNurnber]

Action

The CLOSE and CLOSE# statements are used to close files that were previously
opened with an OPEN statement. CLOSE# closes the file whose file reference
number is equal to FileNumber. The FileNumber parameter is an integer in the
range O to 31. If FileNumber is outside this range, or if no open files have the
specified file number, the "File Not Open Error" occurs.

Before ending program execution, all open files should be closed using the CLOSE#
or CLOSE statements. Any files closed during program execution must be reopened
before they can be accessed again.

CLOSE closes ALL files that are open when the statement is executed. In addition,
TML BASIC closes all open files when the RUN and END statements are executed
and when a program terminates. Unlike the RUN statement, the CHAIN statement
does not cause any files to be closed.

Example

CLOSE #4
CLOSE

'Close file previously opened as file number 4.
'Close all open files

TML BASIC Language Reference 159 statements and Functions

COMPI Function

Syntax

COMPI(Rate, Periods)

AcHon

The compound interest function, COMPI(Rate, Periods), computes the expression:

(1 + Rate) " Periods.

where Rate and Periods can be any numeric type. Rate indicates the interest rate and
Periods represents the number of periods for which interest in calculated.

When the rate is small, COMPI(Rate, Periods) gives a more accurate result for the
computation than does the straightforward computation of (l+Rate)"Periods by
addition and exponentiation. COMP! is directly applicable to computation of
present and future values.

See Also

ANU

Example

Rate 0.08 'Interest rate is 8%
Periods 10 'Investing for 10 years compounding annually
Amount 10000 'Principle to invest is $10,000

PRINT COMPI(Rate,Periods) * Amount

OUTPUT:

21589.25

TML BASIC Language Reference statements and Functions

CONV Functions

Syntax

CONV [#|%|@|&|$] (AnyExpression)

Acflon

The CONV functions are a set of generalized conversion functions which convert
any numeric or string expression into a value of the specified type. The type
character used with the CONV function indicates the result type of the function.

If anumeric expression evaluates outside of the specified result type, an "Overflow
Error" occurs. If astring expression is converted to a numeric type, the string value
must represent a legal numeric string, otherwise, the value zero (0) is returned.
When AnyExpression is a string expression, the effect is the same as the VAL
function.

See Also

VAL
Chapter 7

Example

PRINT "My address is"+ CONV$(12*4) +"Memory Lane"
myReal = 43.21
PRINT CONV%(myReal)
PRINT CONV%(60000) 'This statement causes an Overflow Error

OUTPUT:

My address is 48 Memory Lane
43

TML BASIC Language Reference 161 statements and Functions

COS Function

Syntax

COS(NumericExpression)

Action

Returns the trigonometric cosine of NumericExpression. NumericExpression is an
angle expressed in radians. To convert radians to degrees, multiply by 180/Pi To
convert degrees to radians, multiply by Pi/180.

See Also

ATN
PI
SIN
TAN

Example

PRINT "Cosine of 45 degrees

OUTPUT:

0. 7071068

TML BASIC Language Reference

'; COS(45 * PI/180)

162 statements and Functions

CREATE Statement

Syntax

CREATE PathName [,FILTYP= DIRITXT1SRCIBDF1Fi1eType [,SubType]]

Action

The CREATE statement is used to create a disk file. The created file may be a
subdirectory, text file, Basic Data File, or any other valid ProOOS 16 filetype.

The PathName argument is a string expression which must represent a legal
ProOOS 16 filename or pathname. If an invalid PathName is given then the "Bad
Path Error" occurs. If the CREATE statement attempts to create a file on a disk
which is write protected, the "Write Protect Error" occurs.

The FIL TYP= argument may optionally appear after the PathName argument to
specify the filetype of the created file. FILTYP= may specify one of the four
predefined filetypes using the filetype's mneumonic name or an arbitrary filetype by
specifying an unsigned integer FileType value. If the FIL TYP= argument does not
appear, then the CREATE statement creates a text file (TXT) by default. The table
below summarizes the predefined filetype names, their alternate names and
meaning.

Filetype Alternate
Mneumonic Mneumonic

DIR
TXT
SRC
BDF

CAT
TEXT

DATA

Meaning

Subdirectory
Text file
Source file (a text file)
Basic Data File

Appendix F contains a list of the most often used ProOOS 16 filetypes.

If the FILTYP= argument appears, then it may optionally be followed by a file
subtype specification. SubType is an unsigned integer value in the range O to 65,535.
If the subtype is not specified the default value of zero is used except for the case of
Basic Data Files. If the specified file type is a subdirectory (DIR) then the subtype is
zero regardless of the value specified. The meaning of the subtype varies depending
upon the file type (See Chapter 9).

Basic Data Files require that the subtype value be in the range 3 through 32,767. The
reason for this is that TML BASIC uses the subtype of a Basic Data File as the file's
logical record size. The logical record size of a Basic Data File must be known in
order to support random-access to the file's records. See Chapter 9 for a discussion

TML BASIC Language Reference 163 statements and Functions

of files in 1ML BASIC.

An attempt to create an already-existing file using the CREATE statement cases the
"Duplicate File Error" to occur.

Example

CREATE "/TML/MY.EXAMPLES", FILTYP=DIR 'Create a new subdirectory

CREATE "GRADES" 'Create a text file

CREATE "MYROLODEX",FILTYP=BDF,100 'Create Basic Data File
'with record size (subtype) of 100

IllegalFileName$ = "() #$%^"
CREATE I1lega1FileName$,FILTYP=0 'Causes Bad Path Error

TML BASIC Language Reference 164 statements and Functions

DATA Statement

Syntax

DATA constant{, constant}

Action

The DATA statement declares constant values for the READ statement. A DATA
statement contains one or more constants separated by commas. A constant can be a
string constant or any floating-point or integer constant.

A program can have as many DATA statements as required, and they need not be
located on successive lines. During execution, READ statements access the DA TA
constants from left to right and top to bottom in the order in which they appear in
the source code. A "Type Mismatch Error" occurs if a READ statement attempts to
read a string constant into a numeric variable.

The RESTORE statement is used to reread constants from the first DAT A statement
in the program or any specified DATA statement. If a program attempts to READ
more data than exists in DATA statements, an "Out of Data" error occurs.

See Also

READ
RESTORE

Example

READ A$,B$

RESTORE Names
READ C$,D$

PRINT A$,B$,C$,D$
END

Names: DATA "Apple", "Orange"
DATA "Pear", "Grape"

OUTPUT:

Apple Orange Apple

TML BASIC Language Reference

Orange

165 Statements and Functions

DATE Function

Syntax

DATE(NumericExpression)

Action

The DATE function reads the Apple IIGS clock to return the current date
information as an integer rather than a string as returned by the DATE$ function.
The value of NumericExpression must be in the range O through 4 inclusive,
otherwise the "illegal Quantity Error" occurs.

The following table shows the values returned by the DA TE function for each legal
parameter value.

Function Value returned

Year -1900
Year

DATE(O)
DATE(l)
DATE(2)
DATE(3)
DATE(4)

Month, where l=January, 2=February, ... 12=December
Day of the month, 1 through 31
Day of week, 1 through 7 where l=Sunday

Actually, the Apple IIGS clock is only read when the parameter value is zero.
DATE(O) reads the Apple Iles clock for all date information and then updates the
values which will be returned by the other DATE function calls. This feature
protects programs from classical "clock rollover" problem.

Example

ReadDate% DATE(O) 'Read the Apple IIGS Date information
Year% DATE(l)
DayOfWeek% DATE(4)

PRINT "The year is"; Year%
IF (DayOfWeek% = 1) OR (DayOfWeek% 7) THEN PRINT "This is the weekend!"

OUTPUT:

The year is 1987
This is the weekend!

TML BASIC Language Reference 166 Statements and Functions

DATE$ Function
DATE$ Statement

Syntax

DATE$
DATE$ Year, Month, DayOfMonth

Action

DATE$ is both a function and a statement in TML BASIC. The DATE$ statement
has three arguments, while the DATE$ function has none.

The DATE$ function reads the Apple Iles clock and returns the current date as a
string. The form of the string depends upon the date format chosen in the Apple
Iles control panel. The date formats are MM/DD/YY, DD/MM/YY, YY /MM/DD,
where MM stands for the month, DD stands for the day and YY stands for the year.
See your Apple JIGS Owner's Guide for information on how to use the Control
Panel.

The DATE$ statement is used to change the date settings of the Apple IIGS clock.
The year is specified by the Year parameter/ the month by the Month parameter and
the day of the month by the DayO/Month parameter. The Year parameter is the year
minus 1900 and must be in the range O through 255 inclusive. For example, 87
indicates the year 1987. Month should be in the range 1 through 12 inclusive and
DayO/Month should be in the range 1 through 31 inclusive.

Example

DATE$ 66,12,6 'Set Apple IIGS clock to December 6, 1966
PRINT DATE$; "was a memorable date."

OUTPUT:

12/ 6/66 was a memorable date.

TML BASIC Language Reference 167 Statements and Functions

DEF FN Statement

Syntax

DEF FN functionname [%1@1&1#1$)

DEF FN functionname [%1@1&1#1$)
LOCAL variable (, variable}

• statements

FN functionname [%1@1&1#1$)

END FN [functionname]

Action

parameter{, parameter} expression

parameter{, parameter}

expression

The DEF FN statement is used to define functions. Functions are used to group
together one or more statements that compute and return a value. Functions are
called using the reserved word FN.

There are two types of functions in TML BASIC: single-expression (simple)
functions and multiline functions. Simple-expression functions are contained on a
single line and have only one expressibn for computing the value of the function.
The type of the expression must be compatible with the function name. Multiline
functions may contain several statements bracketed by the DEF FN and END FN
statements. At least one of the statements must be an assignment statement to the
function variable.

The functionname in a function declaration declares the name of the function. The
name may not be any of the TML BASIC reserved words. Following the function
name is an optional type character used to specify the type of the function's result
value. If no type character is given the function returns a single-precision real
value. A function may optionally have a sequence of parameters whose values are
used to compute the value of the function. A parameter may be any numeric or
string type, but not an array.

The position of a function declaration in the source of a program has no effect on
program flow or when the function can be called. A function declaration behaves
like a large comment around all the statements in the function so that a program
does not have to direct program flow around the function declaration. In addition,
a function can be called anywhere in the program, even if the function is declared
later in the source code.

See Chapter 8 for a complete discussion of functions.

TML BASIC Language Reference 168 Statements and Functions

See Also

DEFPROC
LOCAL
Chapter 8

Example

DEF FN Circumf(X) = X*2*PI

DEF FN Factorial#(n%)
LOCAL total#
IF n% < 0 THEN

FN Factorial#= 1
ELSE

FOR i% = n% TO 2 STEP -1
total# total#* i%

NEXT i%
END IF

END FN Factorial#

TML BASIC Language Reference 169 Statements and Functions

DEF LIBRARY Statement

Syntax

DEF LIBRARY LibraryName

• statements

END LIBRARY

Action

The DEF LIBRARY statement is used to create a library. A library is a special source
code construct that groups together procedure and function declarations so that they
can be compiled separately from any program. Libraries can then be used in other
programs just as if the source code in the library textually appeared in the program.
A library essentially behaves as a repository of code for other programs to use.

The source code for a library must begin with the DEF LIBRARY statement. It must
be the first non-empty, non-comment line in the source code. In addition, the
source code must end with the END LIBRARY statement. All of the statements
between the DEF LIBRARY and the END LIBRARY statements are part of the
library. Only five types of statements are allowed in a library: LIBRARY, REM, DIM,
DEF PROC and DEF FN. No other statements are allowed in the library (including
the DIM DYNAMIC statement). The reason for this is that the code in a library does
not create a program that can be executed. It only contains code that other programs
can call. Because a library is never executed, it does not make sense for it to contain
executable statements.

Of course, the statements within a procedure or function declaration (DEF PROC
and DEF FN) may be any legal TML BASIC statements. These statements are
executed whenever the procedure or function is called by a program that uses the
library.

To use a library in a program, the LIBRARY statement is used. When the LIBRARY
statement appears in a program (or even another library), TML BASIC makes all of
the declarations in the library available to the program just as if the source code in
the library appeared in the program itself.

See Chapter 8 for a complete discussion of libraries.

TML BASIC Language Reference 170 statements and Functions

See Also

LIBRARY
Chapter 8
Chapter 11

Example

DEF LIBRARY IntegerStack

REM This library implements a simple 100 element integer stack.

DIM theStack%(99) 'Declare the stack

DEF PROC ClearStack
stackTop% = -1

END PROC ClearStack

'Make the stack empty

DEF PROC Push(aValue%) 'Push a new value onto the stack
IF stackTop% < 99 THEN

stackTop% = stackTop% + 1
theStack%(stackTop%) = aValue%

END IF
END PROC Push

DEF FN Pop% 'Remove the top element of the stack
IF stackTop% >= 0 THEN

FN Pop%= theStack%(stackTop%)
stackTop% = stackTop% - 1

END IF
END FN Pop%

END LIBRARY

TML BASIC Language Reference 171 Statements and Functions

DEF PROC Statement

Syntax

DEF FN procedurename [(parameter {, parameter})]
LOCAL variable{, variable}

• statements

END FN [procedurename

Action

The DEF PROC statement is used to define procedures. A procedure is a construct
that allows a program to group together related statements. Procedures behave
much like subroutines (GOSUB) except they provide additional capabilities not
available with subroutines. Procedures are called using the PROC statement.

The procedurename in a procedure declaration declares the name of the procedure.
The name may not be any of the TML BASIC reserved words. A procedure may
optionally have a sequence of parameters whose values are used in the statements
within the procedure. A parameter may be any numeric or string type, but not an
array.

A procedure may contain the LOCAL statement to declare variables local to the
procedure. Procedures may also call themselves recursively.

The position of a procedure declaration in the source of a program has no effect on
program flow or when the function can be called. A procedure declaration behaves
like a large comment around all the statements in the procedure so that a program
does not have to direct program flow around the procedure declaration. In addition,
a procedure can be called anywhere in the program, even if the procedure is declared
later in the source code.

See Chapter 8 for a complete discussion of procedures.

See Also

DEFFN
LOCAL
Chapter 8

TML BASIC Language Reference 172 statements and Functions

Example

REM Test parameter passing for a procedure

anint% = 1
aDblint@ 44 932
aLongint& = -482
aSglReal = 932.8
aDblReal# = 34.238e43
aString$ = "Hello"

PROC TestParams(anint%,aDblint@,aLongint&,aSglReal,aDblReal#,aString$)

DEF PROC TestParams(I%,D@,L&,Sgl,Dbl#,Str$)
PRINT I%, D@, L&

PRINT Sgl, Dbl#, Str$
END PROC

TML BASIC Language Reference 173 Statements and Functions

DELETE Statement

Syntax

DELETE PathName

Action

The DELETE statement is used to remove a subdirectory or file from a disk.
PathName is a string expression that contains the filename or subdirectory to be
deleted. PathName must be a legal ProOOS 16 pathname, otherwise the "Bad Path
Error" occurs.

A subdirectory may be removed only if all files in that subdirectory have been
deleted. Even if all files in a root directory have been deleted, the root directory
itself cannot be deleted.

See Also

CREATE
Chapter 9

Example

DELETE "MYFILE"

SomeFile$ = "/TML/MY.EXAMPLES/XYZ.BAS"
DELETE SomeFile$

TML BASIC Language Reference 174 Statements and Functions

DIM Statement
DIM DYNAMIC Statement

Syntax

DIM ArrayName (Subscript {, Subscript})
{, ArrayName (Subscript {, Subscript}) }

DIM DYNAMIC ArrayName (Subscript {, Subscript})
{, ArrayName (Subscript {, Subscript}) }

Action

The DIM statement is used to declare one or more array variables and their size and
number of dimensions. An array is a collection of values of the same type referred
to by the same variable name. Each subscript in a DIM statement defines the
number of elements in that array dimension. The number of elements in a
dimension is one greater than the value given. This is because the array elements
are referenced from zero. For example,

DIM Sales% (11)

defines a one-dimensional integer array variable Sales%, consisting of 12 elements
and numbered O through 11. TML BASIC sets each element of a numeric array to
zero, and each element of a string array to the null string when the array is created.

Arrays can have one or more dimensions, up to a maximum of eight. The
maximum number of elements per dimension is 32,768. The maximum total size
of a single array is 64K bytes.

If an array variable is used without a preceding DIM statement, TML BASIC
implicitly DIMensions the array. The array is declared with the same number of
dimensions as are referenced in the undeclared array, and each dimension is created
with 11 elements (numbered O through 10).

The DIM statement is used to create static sized array variables. Static arrays have a
fixed size that may not change during execution of a program. To create an array
that can change size during execution or one whose size cannot be determined at
compile time, use the DIM DYNAMIC statement.

See Chapter 7 for complete details about arrays in TML BASIC.

TML BASIC Language Reference 175 Statements and Functions

See also

UBOUND
Chapter 7

Example

DIM MyArray% (15,20,3), YourArray (5,2,9)
DIM QDString ! (255)

DIM DYNAMIC Scores@(n%)

TML BASIC Language Reference 176 statements and Functions

DO ... WHI LE ... UNTIL Statements

Syntax

DO

• Statements

[WHILE [Expression]]

• Statements

UNTIL [Expression

WHILE [Expression

• Statements

UNTIL [Expression

Action

The 00 ... WHILE ... UNTIL statements are used to create powerful looping constructs.
Using different combinations of the three reserved words, just about any control
structure can be created. UNTIL is used to create loops that repeat until an
expression evaluates to true. And the reserved word WHILE is used to create loops
that repeat while an expression remains true.

The expressions used with either the WHILE or the UNTIL statements may be any
valid TML BASIC expression. If the expression evaluates to a non-zero value, it is
considered as TRUE. If the expression evaluates to the value zero, or a null string, it
is considered as FALSE.

The first form of the DO ... WHILE ... UNTIL statement is the simple DO ... UNTIL
construct. For example,

DO

• statements

UNTIL Val% = 10

In this case, the loop executes the statements between the DO and the UNTIL
statements until the expression Val% = 10 becomes true. If the expression never
becomes true, the loop repeats indefinitely. This form of the loop may have a
WHILE statement added between the DO and the UNTIL statements. In this case,
the loop will terminate if the expression after the WHILE statement becomes false.

TML BASIC Language Reference 177 statements and Functions

The second form of the 00 ... WHILE ... UNTIL statements is the WHILE ... UNTIL
statement. For example,

WHILE Val%= 10

• statements

UNTIL

In this example, the loop executes the statements between the WHILE and the
UNTIL statements while the expression Val% = 10 remains true. If the expression
never becomes true, the loop repeats indefinitely. This form of the loop may also
have an expression after the UNTIL, in which case, the loop must satisfy both
conditions in order to repeat. For example,

WHILE Val% = 10

• statements

UNTIL anotherVal <> 0

Although TML BASIC does not care about the format of source code, it is generally a
good idea to indent the source code statements a few spaces to better indicate the
statements contained in the loop.

TML BASIC Language Reference 178 Statements and Functions

END Statement

Syntax

END

Action

END terminates execution of a TML BASIC program. Before the END statement
terminates the program, it first closes all open files. TML BASIC automatically
inserts an END statement after the last statement in a program so that a program
does not "run off the bottom".

If a program was run from within the TML BASIC environment using the To
Memory & Run compile option, control returns back to TML BASIC after the END
statement is executed. If the program was launched from the Apple Iles Finder,
control returns to the Finder after the END statement is executed.

There are other forms of the END statement. In particular, the END FN, END PROC
and END LIBRARY statements. See the statements DEF FN, DEF PROC and DEF
LIBRARY for more information about these variations of the END statement.

See Also

DEFFN
DEFPROC
DEF LIBRARY
STOP

Example

PRINT "This is a very short program"
END

OUTPUT:

This is a very short program

TML BASIC Language Reference 179 statements and Functions

EOF Reserved Variable

Syntax

EOF

Action

The EOF reserved variable is assigned the file reference number of the file for which
the end of file has most recently been detected. If no file has yet encountered its end
of file then EOF contains the value zero.

See Also

ONEOF#
Chapter 9

Example

PRINT "End of file was most recently detected for file#"; EOF

TML BASIC Language Reference 180 Statements and Functions

EOFMARK Function

Syntax

EOFMARK(FileNumber)

Action

The EOFMARK function returns the current end-of-file mark for the file opened
with FileNumber as its file reference number. The end-of-file mark indicates the
current size of the file on disk. The value returned is a double integer.

See Also

OPEN
Chapter 9

Example

OPEN "MYFILE", AS #1
PRINT EOFMARK(l) 'Print the value of the End of file mark for MyFile

TML BASIC Language Reference 181 Statements and Functions

ERASE Statement

Syntax

ERASE ArrayVariable {, ArrayVariable }

Action

The ERASE statement deletes dynamic arrays and resets static arrays. Following the
reserved word ERASE are one or more array variable names separated by commas.
The array variable names must already be declared before appearing in the ERASE
statement, otherwise resulting in an error.

If the named array is a dynamic array, the memory allocated for the array is released
making it available for other program needs. If the named array is a static array, the
memory allocated to the array cannot be deallocated, however, every element in the
array is assigned the value zero or the null string depending upon the element type
of the array.

The CLEAR statement can be used to erase all arrays at once.

See Also

CLEAR
DIM

Example

PRINT FRE 'Print available memory

DIM DYNAMIC BigArray(2000)
BigArray(943) = 123

'Allocate a large dynamic array

PRINT FRE

ERASE BigArray
PRINT FRE
END

TML BASIC Language Reference

'Print available memory

'Print available memory

182 statements and Functions

ERR Reserved Variable

Syntax

ERR

Action

When TML BASIC detects a run time error in a program, it assigns the reserved
variable ERR to the number of the error which was detected. ERR is typically used
in the sequence of statements after the ON ERR statement. ERR returns an integer
value.

Appendix A defines all the runtime errors and their error numbers.

See Also

ON ERR
Appendix A

Example

ON ERR GOTO ErrHandler
i% = 20000
i% = i% + 25000
PRINT "i% = "; i%
END

ErrHandler:
IF ERR = 1 THEN

i% = 0
RESUME

ELSE
STOP

END IF

OUTPUT:

i% = 25000

TML BASIC Language Reference 183 Statements and Functions

ERROR Statement

Syntax

ERROR ErroxNumber

Action

ERROR is used for generating user-defined errors at execution time, which can be
trapped by the ON ERR statement. ErrorNumber is an integer constant in the range
1 to 255. The reserved variable ERR is assigned the value of ErrorNumber.

TML BASIC reserves the error numbers 1 through 127, inclusive, for its own use.
Several of these error numbers are currently defined in Appendix A. Error numbers
128 through 255 are available for any user defined meaning.

See Also

ERR
ON ERR
Appendix A

Example

ERROR 1
ERROR 128

'Equivalent to the TML BASIC Overflow Error
'User defined error 128

TML BASIC Language Reference 184 statements and Functions

EVENTDEF Statement

Syntax

EVENTDEF Index, Label

AcHon

The EVENTDEF statement is used to store subroutine labels in the Event Dispatch
Table. The event dispatch table is a special data structure defined for directing
program control to event-handling subroutines when an event occurs in a desktop
application. Events are detected by the TASKPOLL statement.

The event dispatch table has 64 entries numbered O through 63. The first 32 entries
(0 through 31) are reserved for use with the TASKPOLL statement. The entries
correspond directly to the event codes returned by the Window Manager
TaskMaster routine which are the events detected by the T ASKPOLL statement.

The following table shows the meaning of the T ASKPOLL event codes:

Event Code
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

TASKPOLL Event Codes

Meaning
Null Event
Mousedown
Mouse up
Key down
Undefined
Auto key
Update
Undefined
Activate
Switch
Desk accessory
Device driver
Application #1
Application #2
Application #3
Application #4

Event Code
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Meaning
In desk
In menu bar
In system windows
In content region
In drag region
Ingrowbox
In go away box
In zoom box
In information bar
Undefined
Undefined
In window frame
In special menu item (edit menu)
Undefined
Undefined
Undefined

If a program implements a particular event type, a subroutine label should be
defined using the EVENTDEF statement for that event. When TASKPOLL detects
an event, the event code is used as an index into the event dispatch table to
determine the subroutine which handles the event. If a subroutine label is defined,
program control transfers to that subroutine. The subroutine should end with the

TML BASIC Language Reference 185 Statements and Functions

RETURN O statement. This special form of the RETURN statement is necessary to
support the special calling mechanism for event-handling subroutines.

Event number 17 in the event dispatch table is a special case. If no event handling
subroutine is defined for event 17 (In Menubar), TML BASIC assumes that the
program has defined menu handling routines using the MENUDEF statement.

The second 32 entries in the event dispatch table (numbered 32 through 63) are used
with the EXEVENT statement for obtaining the machine addresses of subroutines
for implementing definition procedures. See the EXEVENT statement for more
information regarding this use of the event dispatch table.

See Chapter 13 for a complete discussion on how to write event-driven, desktop
applications.

See Also

EXEVENT
MENUDEF
TASKPOLL
Chapter 13

Example

EVENTDEF 8,doActivate
EVENTDEF 22,doCloseBox

TML BASIC Language Reference 186 statements and Functions

EXCEPTION Statements

Syntax

EXCEPTION ON Mask
EXCEPT ION OFF
EXCEPTION 0

Acflon

TML BASIC implements floating-point arithmetic operations using the SANE
(Standard Apple Numeric Environment) mathematical routines and provides the
programmer with control over the exceptions generated by the tool set. There are
three modes available in handling these exceptions that can be selected by the
EXCEPTION statement.

The default mode is selected with EXCEPTION OFF. Selecting any other option for
the EXCEPTION statement should only be done if you have a complete
understanding of what SANE exceptions are and how they work. In the default
mode, TML BASIC returns the standard error messages for the important
mathematical calculation exceptions and ignores the unimportant exceptions.

EXCEPTION O (zero) is used to disable all SANE exceptions and will cause all
exceptions to be ignored and pass through as NaN's for expression results.

EXCEPTION ON is used to enable exception trapping in your program of a specific
type beyond the normal default settings. The SaneMask parameter must be a
number between O and 63 and is used as a mask to filter the SANE exceptions. The
SANE halt vector is always enabled, and all halts are received by TML BASIC. The
mask is used to determine if any specific exception will generate a BASIC error
message or be ignored.

See Also

ON EXCEPTION

TML BASIC Language Reference 187 statements and Functions

EXEVENT@ Function

Syntax

EXEVENT@(EventCode)

Action

The EXEVENT@ function returns the machine address for one of 32 external event
entry points in the Event Dispatch Table. As described with the EXEVENT
statement, the event dispatch table is a special data structure defined for directing
program control to event-handling subroutines when an event occurs in a desktop
application. The event dispatch table has 64 entries numbered O through 63. The
first 32 entries (0 through 31) are reserved for use with the TASKPOLL statement.
The remaining 32 entries are used with EXEVENT@.

The implementation of several Toolbox features requires the ability to directly call
subroutines written in a TML BASIC program. The Toolbox defines these
subroutines, definition procedures. For example, when creating a window with the
NewWindow function, a program can specify a Content definition procedure for the
window. The content definition procedure is automatically called by the Toolbox
whenever the contents of the window need to be drawn or re-drawn.

When providing a definition procedure to the Toolbox, a machine address is
required. To obtain the address of a subroutine label, the label is first entered into an
element of the event dispatch table using the EVENTDEF statement. Then the
EXEVENT@ function is used to obtain the address.

See Chapter 13 for a complete discussion on how to write event-driven, desktop
applications.

See Also

TASKPOLL
EVENTDEF

Example

EVENTDEF 63, DrawMyWindowContent
defproc@ = EXEVENT@ (63)
SET(WindowParamBlock! (58),4) = defproc@

TML BASIC Language Reference 188 statements and Functions

EXFN_ Function

Syntax

EXFN[%|@|&|#|$] ToolName [(Expression{, Expression})]

AcHon

The EXFN function executes a named procedure or function in an Apple Iles toolset
and returns a value. The declarations for Toolbox procedures and functions are
defined in the several predefined libraries shipped with TML BASIC in the folder
LIBRARIES. See Appendix C for a complete list of the Toolbox libraries and the
procedures and functions declared in them.

Following the reserved word EXFN and the underscore character (_) is the name of
the toolbox procedure or function to execute. If the routine has parameters, they are
given after the toolbox name enclosed in parenthesis. The rules for matching
parameters are the same as for normal BASIC procedures. If the Toolbox routine is
a function, the EXFN function returns the result value. The result values are placed
in the CALL return stack. If the Toolbox routine is a procedure, the EXFN function
returns the Toolbox error code, indicating the success or failure of the operation.
See the description of the reserved variable R.ST ACK for a description of the Call
return stack.

In order to call a Toolbox procedure or function, the library containing the
declaration of the routine 1must appear in a LIBRARY statement, otherwise TML
BASIC reports the error "Toolbox procedure xxx is not defined", where xxx is the
name of the procedure.

Chapter 11 provides a detailed discussion of the Apple Iles Toolbox and how to
access it from TML BASIC.

See Also

CALL
R.STACK
Chapter 11
Appendix C

Example

LIBRARY "Memory" 'Load the Memory Manager library
MyID% = EXFN_MMStartUp 'Start the memory manager
MyHndl@ = EXFN_NewHandle(1024,MyID%,O,O) 'Allocate a lK block of memory

TML BASIC Language Reference 189 statements and Functions

EXP, EXP 1 and EXP2 Functions

Syntax

EXP (x)
EXPl (x)
EXP2 (x)

Actton

The EXP function returns e to the x power, where xis a numeric expression and e is
the base for natural logarithms (approximately equal to 2.718282). To calculate the
exact value of e use EXP(l).

The EXPl function accurately computes eX-1. If the value of x is small, then the
computation of EXPl is more accurate than EXP(x)-1.

Finally, the EXP2 function returns 2 to the x power.

In all three functions, xis a numeric expression.

Example

FOR i% = 1 to 10
PRINT i%, EXP(i%), EXPl(i%), EXP2(i%)

NEXT i%

TML BASIC Language Reference 190 Statements and Functions

FILE Function

Syntax

FILE(PathName [, FILTYP=TXTISRCIBDFIFileType])

Action

The FILE function is used to determine whether or not a file exists.

FILE is an integer function which returns the value one (1) if the file specified by the
PathName string expression exists, otherwise it returns zero (0). If the optional
FILTYP= parameter exists, the FILE function also checks that the file also has the
filetype specified by the FILTYP= parameter. If the file exists, but the filetype does
not match, then FILE returns zero (0).

If the file does exist then the AUXID@ reserved variable is updated to contain the
subtype of the specified file, and the FIL TYP(O) function call returns the file type of
the specified file.

If an illegal ProDOS 16 pathname is specified in PathName then the "Bad Path
Error" occurs. For a thorough description of the FILTYP= parameter see the
CREATE statement.

See Also

AUXID@
CREATE
FILTYP
Chapter 9

Example

AFile$ = "AnyFile"

IF FILE(AFile$) THEN
OPEN AFile$, AS #1

ELSE
PRINT "The file " ;AFile$;" does not exist and can not be open"

END IF

TML BASIC Language Reference 191 Statements and Functions

Fl LETYP Function

Syntax

FILTYP(FileNumber)

Action

The FIL TYP function returns the file type of a file previous! y opened with
FileNumber as its file reference number. FileNumber is a numeric expression that
must be an integer from O to 31, otherwise an "illegal Quantity Error" occurs. If
FileNumber is a legal file number, but no open files have the specified file number,
the "File Not Open" error occurs.

FIL TYP(O) is a special case that returns the file type of the last FILE function call.

See Also

FILE
Chapter 9

Example

OPEN "SOMEFILE", AS #5
PRINT "The file type for file #5 is"; FILTYP(5)

TML BASIC Language Reference 192 statements and Functions

FIX Function

Syntax

FIX(NumericExpression)

Action

The FIX function truncates the absolute value of NumericExpression and returns
the signed integer portion. Note that this is different than the INT function which
returns the next lower number for a negative NumericExpression.

FIX is equivalent to the expression: SGN(x) * (INT(ABS(x))

See Also

INT

Example

PRINT FIX(l.5), FIX(-1.5)
PRINT INT (1.5), INT (-1.5)

OUTPUT:

1
1

-1
-2

TML BASIC Language Reference 193 statements and Functions

FN = Statement

Syntax

FN VariableName AnyExpression

Action

The FN assignment statement is a special case of the assignment statement which
can only be used within a multiline procedure or function. The purpose of the FN
assignment statement is to ensure that the destination of the assignment statement
is a local variable, a formal parameter or a function result variable, otherwise TML
BASIC will give the "Not Local" error.

The purpose for this variation of the assignment statement is to ensure that an
assignment statement within a multiline procedure or function does not reference a
global variable. Even more important is to ensure that a new global variable is not
created by an assignment. A side effect of this feature is that statements become
self-documenting with respect to whether a local or global variable reference is being
made.

See Also

DEFFN
DEFPROC
LOCAL
LET

Example

DEF FN Add% (Num1%, Num2%)
LOCAL Temp%
FN Temp%= Num1% + Num%
FN Add%= Temp%

END FN Add%

TML BASIC Language Reference 194 statements and Functions

FOR ... NEXT Statement

Syntax

FOR Counter= Start TO End [STEP Increment]
statements

NEXT [Counter {, Counter }]

Action

The FOR ... NEXT statement is a looping construct. The statement groups one or
more statements and executes them repetitively, a specified number of times.
Counter must be a numeric variable (not a string variable or array element) which is
the loop control variable. Start, End and Increment must all be numeric expressions
whose values are compatible with the type of the variable Counter, otherwise a
"Type Mismatch Error" occurs.

When the FOR statement is first encountered, the value of Start is assigned to the
variable Counter, and the values of End and Increment are evaluated and stored in
a temporary location. If the optional STEP Increment does not appear, then a
default Increment of one (1) is used. Following this, the sequence of statements after
the FOR statement are executed until the NEXT statement is encountered. If the
NEXT statement does not specify a Counter variable then it matches to the most
recent FOR statement. If a Counter variable is given then it must match the
Counter variable in the most recent unmatched FOR statement (FOR ... NEXT
statements may be nested).

The NEXT statement increments the Counter variable by the value of Increment
and then tests to see if the loop should be repeated. If the value of Increment is
positive then the NEXT statement checks to see if Counter is less than or equal to
End. If the value of Increment is negative then the NEXT statement checks to see if
Counter is greater than or equal to End. If this test passes, control loops back to the
first statement after the matching FOR statement. This process continues until the
test fails, execution then continues with the statement after the NEXT statement.

If a FOR statement does not have a matching NEXT statement then a "FOR Without
Matching NEXT" error occurs. And likewise, if a NEXT statement does not have a
matching FOR statement then a "NEXT Without Matching FOR" error occurs.

TML BASIC Language Reference 195 statements and Functions

Example

FOR SKIP%= 0 TO 10 STEP 2
PRINT SKIP%

'Print even numbers between O and 10

NEXT

FOR CountDown = l D TO 1 STEP -1 'A simple countdown loop
PRINT CountDown

NEXT
PRINT "DONE!"

FOR Row%= 1 TO 3
FOR Column%= 1 TO 4

PRINT"("; Row%;
NEXT Column%
PRINT

NEXT Row%

OUTPUT:

0
2
4
6
8
10

", " ,

10 9 8 7 6 5 4 3 2 1 DONE!

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)
(3, 1) (3, 2) (3, 3) (3, 4)

TML BASIC Language Reference

'Nested FOR ... NEXT loops

Column%; ")";

196 statements and Functions

FRE Reserved Variable

Syntax

FRE

Action

FRE is a reserved variable that returns the amount of free memory available in the
Apple Iles.

Compiler /Interpreter Differences

In GS BASIC, the FRE reserved variable returns the amount of memory in the
program data segment. Since TML BASIC can use all available memory in the
Apple Iles for data storage, the FRE reserved variable is redefined to return the
amount of free memory in the machine rather than a special data segment.

See the description of the $DSeg metastatement in Appendix B for a description of
data segmentation in TML BASIC.

See Also

FREMEM
Chapter 7

Example

'Show available memory
PRINT "Free memory in Apple IIGS: 11

; FRE

'Allocate a few large dynamic arrays
DIM DYNAMIC BigArray1%(1000), BigArray2@(400)

'Now print available memory ...
PRINT "Free memory in Apple IIGS: 11

; FRE

TML BASIC Language Reference 197 Statements and Functions

FREMEM Function

Syntax

FREMEM(NumericExpression)

AcHon

The FREMEM function is used to return information about the use of memory in
the Apple Hes. The NumericExpression parameter must be an integer value in the
range O through 9, otherwise an "Illegal Quantity Error" occurs. The information
returned by FREMEM depends upon the value of NumericExpression.

The meaning of FREMEM for each value of NumericExpression is defined as
follows:

0-6 Returns the total available free memory in the Apple IIGS. (Same as
FRE)

7 Returns the total available free memory in the Apple JIGS after
performing a Memory Manager CompactMem call.

8 Returns the size of the Memory Manager's largest free contiguous block
of memory.

9 Returns the total memory installed in the Apple JIGS.

Compiler /Interpreter Differences

In GS BASIC, the FREMEM function returns special values related to the way the GS
BASIC interpreter executes programs when the value of NumericExpression is in
the range O through 6. The values returned indicate such things as the size of the
program, the size of the data segment, the size of the library segment, and other data
structures not implemented by TML BASIC. Because TML BASIC is a compiler
which produces stand-alone programs, the various data structures implemented by
GS BASIC to execute a program are not required. In these cases, the value of
FREMEM is the same as FRE.

TML BASIC Language Reference 198 statements and Functions

GET# Statement

Syntax

GET# FileNumber [, [Length] [,RecordNumber]]; StructureVariable

Action

The GET# statement reads a record from the binary file previously opened with
FileNumber as its file reference number and stores the data into the
StructureVariable. The StructureVariable may have an index expression. The
GET# statement can read data from a file of any file type.

The number of bytes read by the GET# statement is determined by the RecordSize
parameter specified in the OPEN statement. If the RecorrISize was not specified in
the OPEN statement then the file's subtype is the record size. The number of bytes
read may be overridden by specifying the optional Length parameter in the GET#
statement. You should not attempt to read more data than the StructureVariable
can hold.

The GET# begins reading at the current position in the file. To begin at a random
record position, the optional RecordNumber parameter must be used.

See Chapter 9 for a complete discussion of Files in TML BASIC.

See Also

OPEN
PUT#
Chapter 9

Example

DIM myData ! (11)
OPEN "SOMEFILE", FILTYP=O AS #1, 4 'Open a binary file whose record size is 4

GET #1; myData! (0)
GET #1, ,3; myData! (4)
GET #1,12,5; myData! (0)

CLOSE #1

TML BASIC Language Reference

'Read first 4 bytes of file
'Read 4 bytes starting at record 3
'Read 12 bytes starting at record 5

199 Statements and Functions

GET$ Statement

Syntax

GET$ [# FileNurnber [,RecordNurnber]];StringVariable

Action

The GET$ statement reads a single character into the StringVariable.

By default, GET$ reads the character from the keyboard, without displaying it to the
screen, and without waiting for the Return key to be pressed.

If the optional FileNumber appears, then the GET$ statement reads the character (a
single byte) from the file previously opened with FileNumber as its file reference
number. The RecordNumber option allows the character to be read from the
beginning of specified record.

Since files can contain values that are not defined as ASCII characters, it is the
responsibility of the program to ensure the file contains valid characters. For
example, reading a byte with a value of zero may cause unpredictable results later
when using the string.

GET$ treats Control-C like any other character; it does not interrupt program
execution.

Example

PRINT "Press any key to continue.";
GET$ A$

TML BASIC Language Reference statements and Functions

GOSUB Statement

Syntax

GOSUB Label

Action

The GOSUB statement causes execution to temporarily suspend and branch to the
statement indicated by Label. When the subsequent sequence of statements
encounters a RETURN statement, execution branches back to the statement
immediately after the most recently executed GOSUB.

The group of statements indicated by the label and the RETURN statement are
collectively called a subroutine. Subroutines provide BASIC programmers an
effective means to organize their code into logically organized components. A
subroutine may call another subroutine, which in turn may call yet other
subroutines. TML BASIC automatically keeps track of where execution should
resume when the RETURN statement is executed.

See Also

ON ... GOSUB
POP
RETURN
Chapter 7, Labels
Chapter 8, Subroutines

Example

GOSUB Subl
END
Subl: PRINT "In Subroutine 1"

GOSUB Sub2
PRINT "Leaving Subroutine 1"
RETURN

Sub2: PRINT "In Subroutine 2"
PRINT "Leaving Subroutine 2"
RETURN

OUTPUT:

In Subroutine 1
In Subroutine 2
Leaving Subroutine 2
Leaving Subroutine 1

TML BASIC Language Reference 3)1 statements and Functions

GOTO Statement

Syntax

GOTO Label

Action

The GOTO statement causes execution to unconditionally branch to the statement
indicated by Label . It is normally considered better programming practice to use
TML BASIC's structured control statements such as the DO ... WHILE ... UNTIL,
IF ... THEN and FOR ... NEXT statements rather than the GOTO statement. GOTO
statements generally make programs difficult to read and debug.

See Also

ON ... GOTO
Chapter 7, Labels.

Example

GOTO CalculateAverage
GOTO TryAgain

TML BASIC Language Reference Statements and Functions

GRAF INIT, GRAF OFF and GRAF ON Statements

Syntax

GRAF !NIT O I 320 I 640
GRAF OFF
GRAF ON

Action

The GRAF statements are used to initialize, tum on and tum off the Apple IIGS
Super Hi-Res graphics screen.

The GRAF INIT statement must be called before GRAF ON or GRAF OFF, and
before any calls to the QuickDraw routines using CALL or CALL%. The GRAF INIT
statement allocates the memory needed for the QuickDraw graphics engine and
properly initializes it. If the value following GRAF JNIT is 320 then the Super
Hi-Res screen is placed in 320 mode. If the value is 640 then the Super Hi-Res screen
is placed in 640 mode. If a value of O is specified then QuickDraw is shut down, the
Super Hi-Res screen is turned off and the text screen becomes active. Note that the
GRAF INIT statement does not initialize the QuickDraw Auxiliary tool set. If a
program uses any of these routines, it is responsible for loading and properly
initializing QuickDraw Auxiliary tool set.

The GRAF ON statement is used to make the Super Hi-Res screen the current
screen mode. GRAF INIT 320 or GRAF INIT 640 must have already been called.
This statement is the same as the QuickDraw _ GrafOn procedure.

The GRAF OFF statement is used to temporarily turn off the Super Hi-Res screen
and make the text screen the current screen mode. Again, GRAF INIT 320 or GRAF
INIT 640 must have already been called. This statement is the same as the
QuickDraw _GrafOn procedure.

Example

GRAF INIT 640
GRAF ON
_ClearScreen(-1)
_LineTo (60, 45)
GRAF OFF
GRAF INIT 0

'Initialize QuickDraw with the 640 Super Hi-Res screen
'Turn on the Super Hi-Res graphics screen
'Make the screen white
'Draw a line
'Turn the Super Hi-Res graphics screen off
'Shutdown QuickDraw

TML BASIC Language Reference Statements and Functions

HEX$ Function

Syntax

HEX$(NumericExpression)

Action

The HEX$ function returns an eight character string which is the hexidecimal (base
16) representation of NumericExpression. If the hexadecimal representation
requires fewer than 8 digits then leading zeros are inserted so that 8 characters are
always returned. NumericExpression must be in the range -2"32 to 2"32-1 or else an
"Illegal Quantity Error" occurs.

Example

PRINT HEX$(32767)
PRINT HEX$ (10)

OUTPUT:

00007FFFF
00000000A

TML BASIC Language Reference 204 Statements and Functions

HOME Statement

Syntax

HOME

Action

Clears the contents of the current text window and places the cursor in the upper left
corner of the text window. Note that HOME only clears the contents of the current
text window. By default the text window is the entire text screen, however, this can
be changed using the TEXTPORT statement.

See Also

HPOS and VPOS
TEXTPORT

Example

HOME

TML BASIC Language Reference Statements and Functions

HPOS and VPOS Modifiable Reserved Variables

Syntax

HPOS
HPOS

VPOS
VPOS

Action

NumericExpression

NumericExpression

HPOS and VPOS are modifiable reserved variables which contain the horizontal
and vertical positions, respectively, of the current text screen cursor position. In
addition, the variables may be assigned new values to change the current cursor
position.

Assigning a value greater than the height of the current text window causes the
cursor to move to the bottom line within the text window. Likewise, assigning a
value greater than the width of the current text window causes the cursor to move
to the right margin of the text window. In any case, the value of
NumericExpression must be within O to 255 inclusive or an "Illegal Quantity Error"
occurs. Note that the text window is normally the entire text screen, however, this
can be changed using the TEXTPORT statement.

See Also

TEXTPORT

Example

HPOS 10
VPOS = 21

PRINT "The current cursor position is ("

OUTPUT:

The current cursor position is (10,21)

HPOS II II
I VPOS ") II

TML BASIC Language Reference Statements and Functions

IF ... THEN ... ELSE Statement
IF ... GOTO Statement

Syntax

IF Expression THEN StatementList [:ELSE StatementList]

IF Expression GOTO Label

Action

The IF statement in TML BASIC forms a structure for deciding which statements in
a program to execute. An IF statement has a condition (any legal expression) which
may contain relational operators like < and > (less than and greater than), logical
operators like OR and AND, and arithmetic operators. If the condition is true (any
non-zero value), TML BASIC executes the statements following the THEN. If the
condition is false (a zero value), TML BASIC ignores the statements following the
THEN.

The simplest form of the IF statement is the single-line IF statement. For example:

IF RND(l) < 0.5 THEN PRINT "Heads, you win"

In this statement, the expression RND(l) < 0.5 is evaluated. If the expression is true,
the statements following the reserved word THEN are executed; otherwise control
passes to the statement after the IF statement.

TML BASIC provides several other variations of the IF statement. The
IF ... THEN ... ELSE statement is the simplest of these variations. The ELSE part of the
statement allows a program to specify statements to be executed only when the IF
condition is false. For example,

IF RND (1) < 0. 5 THEN PRINT "Heads, you win" :ELSE PRINT "Tails, I win"

Notice that a colon must precede the reserved word ELSE.

TML BASIC allows this statement to be rewritten on two lines as follows:

IF RND(l) < 0.5 THEN PRINT "Heads, you win"
ELSE PRINT "Tails, I win"

In addition, the IF statement can be rewritten on three lines as follows:

IF RND(l) < 0.5
THEN PRINT "Heads, you win"
ELSE PRINT "Tails, I win"

TML BASIC Language Reference 207 statements and Functions

In each of these last two formats, the THEN and ELSE statements must be on the
lines immediately following the IF statement, and the statements following the
reserved words THEN and ELSE must fit on one line.

The final variation of the IF statement is the IF ... GOTO statement. When an IF
statement has only a THEN part, and the only statement following the reserved
word THEN is a GOTO statement, the IF ... GOTO statement can be used. For
example,

IF RND(l) < 0.5 GOTO PrintMsg

See Also

IF Block

TML BASIC Language Reference Statements and Functions

IF Block Statement

Syntax

IF Expression THEN

• Statements

ELSEIF Expression THEN

• Statements . }

ELSE

• Statements .]
END IF

Action

A much more powerful variation of the IF statement available in TML BASIC is the
IF Block statement. This variation of the IF statement allows programs to place the
statements normally appearing after the reserved word THEN on one or more lines
after the IF statement. An IF block is ended by the END IF statement. The following
example illustrates how the IF block statement can be used.

IF RND(l) < 0.5 THEN

PRINT "Heads, you win"
CountHeads = CountHeads + 1

END IF

If the expression RND(1) < 0.5 is true then all the statements between the IF and the
END IF are executed. If the expression is false, control passes to the statement after
the END IF statement.

The IF block statement can be used to create even more powerful control structures
using the ELSE statement. In the following example, when the expression RND(1) <
0.5 is false control passes to the statement after the ELSE statement. The ELSE
statement also marks the end of the THEN part as well.

IF RND(l) < 0.5 THEN

PRINT "Heads, you win"
CountHeads = CountHeads + 1

ELSE
PRINT "Tails, I win"
CountTails = CountTails + 1

END IF

TML BASIC Language Reference statements and Functions

Finally, the IF block statement can be used with the ELSEIF statement to create
sophisticated control structures. The ELSEIF statement allows the program to create
multi-part IF statements, each having a different condition to satisfy. The following
example illustrates how the tosses of a "three headed" coin might be recorded.

IF RND(l) < 0.3 THEN

PRINT "Head 1, you win"
CountHeadl = CountHeadl + 1

ELSEIF RND(l) < 0.6 THEN
PRINT "Head 2, I win"
CountHead2 = CountHead2 + 1

ELSE
PRINT "Head 3, someone else wins"
CountHead3 = CountHead3 + 1

END IF

This variation of the IF statement allows complex branching be added to a program.
If the first condition contained in an IF block statement is not true, control is
immediately passed to the next ELSE or ELSEIF statement until either a true
condition is met or the ENDIF statement is encountered.

See Also

IF ... THEN ... ELSE

TML BASIC Language Reference 210 statements and Functions

IMAGE Statement

Syntax

IMAGE Specification{, Specification}

Action

The IMAGE statement is used to control formatting of print items in the PRINT
USING and PRINT# USING statements. In the following paragraphs the statement
PRINT USING implies both PRINT USING and PRINT# USING.

The PRINT USING statements include a Using Specification which is used by TML
BASIC to control the formatting of print items in the statement. A Using
Specification contains one or more individual Specifications, each corresponding to
an individual print item. The Using Specification can be included directly in the
PRINT USING statement in the form of a string constant, string variable or as a
label reference to an IMAGE statement. Regardless of the way a Specification is
defined, the formatting of information is the same. For example, the following
forms of a Using Specification are equivalent:

PRINT USING "SC, ###.##"; Msg$, Number

PrintSpec$ = "SC, ###.##"
PRINT USING PrintSpec$; Msg$, Number

PRINT USING Printimage; Msg$, Number
Printimage: IMAGE SC, ###.##

A Specification is a collection of special letters, numbers and/ or symbols which
define a formatting code. Each individual specification must be separated by a
comma. However, note that the commas in the PRINT USING statement only
serve to separate the individual print items, they do not cause a tab action to the
next print zone as in the PRINT statement.

There are three different types of PRINT USING Specifications: string specification,
literal specification and numeric specification. A string specification controls the
formatting of string values in a PRINT USING statement. A literal specification
inserts either one or more spaces, one or more line returns or one or more specified
characters into the text displayed by the PRINT USING statement. Finally, a
numeric specification controls the formatting of numeric values in a PRINT USING
statement. The following paragraphs describe each of these different types of
specifications.

A String Specification defines the field format and width for a string value. Three
formats are available: left-aligned, centered, right-aligned. The codes for these

TML BASIC Language Reference 211 statements and Functions

formats are as follows:

A Left-aligned
R Right-aligned
C Centered

The width of the string can be defined by either specifying the number of characters
in the field, or by preceding the specification character with an integer which is the
width value. For example, the following two specifications define a 6 character
centered string value:

cccccc
6C

The integer preceding the specification character is called a repeat factor, and only
affects the single character immediately following it. For example, the following
specifications also define a 6 character centered string value.

4CCC
CCC3C

A repeat factor must be in the range 1 through 255. If astring value exceeds the
string specification, its value is truncated.

A Literal Specification does not format any value contained in the PRINT USING
statement, but rather inserts one or more spaces, line returns or specified characters
into the printed text. There are three literal specification codes:

X Prints a space
/ Prints a line return

Encloses a literal string

Again, a repeat factor can be used with the codes. For example,

4X Prints 4 spaces
2/ Prints 2 line returns
4"ab" Prints: abababab

Finally, a Numeric Specification formats numeric values in fixed-point, scientific or
engineering formats. There are three numeric specification codes which are used in
all three numeric formats. They are called the digit specification codes.

Reserves one numeric digit position, suppresses leading zeros
Z Reserves one numeric digit position, prints leading zeros
& Reserves one position for a digit or a comma

TML BASIC Language Reference 212 statements and Functions

Again, a repeat factor can be used with the specification characters.

The fixed-point numeric specification controls the formatting of fixed-point
numbers. Fixed-point numbers are any numbers displayed without exponents, both
integer and real. TML BASIC provides additional specification characters for
fixed-point numbers.

+

$

Reserves one character position for a number sign(+ or-)
Reserves one character position for a minus sign if negative
Reserves one character position for a dollar sign $ Prints asterisks instead of leading spaces

++ Reserves rightmost positions for a dollar sign (if any)

$$
Same as ++, except minus sign printed only if number is negative
Reserves leftmost positions for a dollar sign (if any)

If the ** specification characters are used, they must be the first characters, and
should only be used with # and & since the Z specification character leaves no
unused digit positions. If the width of a numeric specification is insufficient for the
number of digits required to display a value, the width of the display is filled with
exclamation points (!).

To format numeric values in scientific notation, the E specification character is used
to define the width of the exponent. Scientific notation contains only one or zero
digits to the left of the decimal point, then the desired number of significant digits to
the right of the decimal point, followed by the number of digits for the exponent.
The width of the exponertt must be at least three or four character positions. The
following are legal scientific notation specifications:

#.#####EEEE
#.5#4E
.6#3E
+.#########4E

Engineering notation specifications are defined using a variation of the scientific
notation specifications. In scientific notation specifications, only one or zero digit
positions are permitted to the left of the decimal point. Engineering specifications,
on the other hand, specify three digit positions. However, the number of digits
actually displayed varies so that the exponent value is always a multiple of 3. For
example, the following are legal engineering notation specifications because the
number of digit positions to the left of the decimal point is three.

3#.4#4E
###.####EEEE
###.2#4E

TML BASIC Language Reference 213 Statements and Functions

Thus, only zero, one or three digit positions are permitted in a numeric specification
that includes an exponent. If the number of digits is zero or one, scientific notation
is used, if the number of digits is three, engineering notation is used.

If a Using Specification contains an illegal specification (ie. illegal code characters, or
improper use of legal characters), the runtime error "Illegal Using Specification"
occurs.

See Also

PRINT USING
PRINT# USING

Example

PRINT USING Bigimage; "BASIC", "BASIC",
Bigimage: "123456789", 9A, /, 9R, /, 9C

PRINT USING
PRINT USING

PRINT USING
PRINT USING

PRINT USING
PRINT USING

OUTPUT:

123456789
BASIC

BASIC
BASIC

1
22

333
4444

$ 23.40
$1293.22

123.4560E+03
1. 2345E+06

123.4560E+03
001.2345E+06

"####, /"; 1,22,333,4444
"$####.##, /"; 23.4, 1293.32

"3#.4#4E"; 123456
"3#.4#4E"; 1234567

"3Z.4Z4E"; 123456
"3Z.4Z4E"; 1234567

"BASIC"
'Literal and String specifications

'Fixed point specifications

'Engineering specifications

'Engineering specifications

TML BASIC Language Reference 214 Statements and Functions

INPUT Statement

Syntax

INPUT [StringConstant, |;] VariableName {,VariableName}

Action

The INPUT statement is used to obtain one or more numeric or text values entered
at the keyboard. When the INPUT statement is executed, TML BASIC accepts one or
more values entered from the keyboard and assigns them into the variables listed in
the INPUT statement. When more than one variable is listed in an INPUT
statement, each of the values entered at the keyboard must be separated by a comma
or a Return key.

When the INPUT statement is executed, a question mark (?) is displayed on the
screen indicating the program is waiting for input. If a Return key is entered and
variables still exist which have not been given values, TML BASIC displays two
question marks(??) indicating more data is required by the INPUT statement.

The INPUT statement may also contain a string which is displayed as the input
prompt instead of the normal question mark. The string must appear immediately
after the reserved word INPUT and must be a string constant and not a string
variable or expression.

The INPUT statement also works in the Super Hi-Res graphics screen. When the
INPUT statement is executed, it examines the current screen mode. If the screen is
in text mode (the default), text is input in the normal fashion. However, if the
screen is in graphics mode, text is input from the current GrafPort (window) using
QuickDraw graphics calls. Text is drawn beginning at the current location of the
QuickDraw pen. None of the TML BASIC screen position commands work in the
graphics screen. To move the pen, QuickDraw commands such as Move and
MoveTo must be used. For more information about Quick.Draw see Chapter 12.

See Also

INPUT USING
PRINT

Example

REM A program to compute the average of three numbers
INPUT "Enter three numbers: "; Numberl, Number2, Number3
Avg= (Numberl + Number2 + Number3) / 3
PRINT "The average of the three numbers is"; Avg
GET$ Key$

TML BASIC Language Reference 215 Statements and Functions

INPUT# Statement

Syntax

INPUT# FileNumber [,RecordNumber] [;VariableName {,VariableName }]

Action

The INPUT# statement reads a line of text from a file into an input buffer and then
processes the input text according to the list of input variables in its argument list. If
the INPUT# statement does not encounter a return character after reading 255
characters, it terminates reading the file, appends a return character to the input
buffer, and processes the characters as a single line.

FileNumber is a file reference number of an open text file. The list of comma
separated VariableNames may be both string and numeric variables. If a numeric
variable is used in an INPUT# statement, TML BASIC automatically converts the
string representation of a number into the appropriate numeric type (similar to the
VAL statement). When a numeric variable is used in an INPUT# statement and
the input line does not contain a string which represents a legal numeric value a
"Type Mismatch Error" occurs. If there is not enough data in the input line, the file
is read again until all of the variables have been given values.

If the optional RecordNumber argument does not appear, the INPUT# statement
reads sequentially beginning at the current file position. To perform random access
using the INPUT# statement, include a record number after the file reference
number. Recall that the file must be opened using the OPEN statement with the
optional record size argument specified in order to define the size of a record for the
text file.

See Also

PRINT
Chapter 9

Example

DEF PROC ReadFile(FileNam$)
LOCAL aLine$
OPEN FileNam$, AS #1
ON EOF #1 GOTO Finished
NextLine: INPUT #1; aLine$

PRINT aLine$
GOTO NextLine

Finished: CLOSE #1
END PROC

TML BASIC Language Reference 216 Statements and Functions

INSTR Function

Syntax

INSTR(Stringl, String2 [,NumericExpression])

Action

The INSTR function searches for the first occurrence of the substring designated by
the string expression String2 in the string String1 and returns the starting position
of the substring. If the substring String2 does not exist in the string String1 the
search fails and returns the value zero (0). Note that the search is case sensitive.

If the optional NumericExpression is present, it specifies the character position
within String1 where the search should begin. If a NumericExpression is not
present the search begins at the first character of String1. If the value of
NumericExpression is less than 1 or greater than the length of the string then an
"illegal Quantity Error" occurs.

Example

PRINT INSTR ("TML BASIC is great", "basic")
PRINT INSTR("TML BASIC is great", "BASIC")
PRINT INSTR("TML BASIC is great", "BASIC", 10)

OUTPUT:

0
5

0

TML BASIC Language Reference 217 statements and Functions

INT Function

Syntax

INT(NumericExpression)

Action

Returns the largest whole number less than or equal to the value of
NumericExpression . The whole number returned is actually a real value and not
an integer. This function is often misunderstood for negative numbers, see
example.

See Also

FIX

Example

PRINT FIX(l.5), FIX(-1.5)
PRINT INT(l.5), INT(-1.5)

OUTPUT:

1
1

-1
-2

TML BASIC Language Reference 218 statements and Functions

INVERSE Statement

Syntax

INVERSE

Action

The INVERSE statement is used to change the display of all subsequent characters
written to the text screen using "inverse video". If you are using a monochrome
display, INVERSE causes characters to be displayed as black on a white background.
If you are using a color display then the effect depends upon the settings of your
monitor. In this case, it is more appropriate to use the terms text background and
foreground color.

INVERSE does not affect any characters which are already displayed on the screen,
only the screen output after INVERSE is executed. INVERSE does not effect
characters written to files.

See Also

NORMAL

Example

NORMAL
PRINT "This is normal display"
INVERSE
PRINT "This is inverse display"

TML BASIC Language Reference 219 .statements and Functions

JOYX Function
JOYY Reserved Variable

Syntax

JOYX(PaddleNumber)
JOYY

Action

The JOYX and JOYY functions are used to read the current value of the game
paddles.

JOYX reads two of the four game paddle inputs (if they are plugged in) specified by
PaddleNumber. PaddleNumber must be an integer in the range O to 2, otherwise an
"Illegal Quantity Error" occurs. JOYX reads the value of the indicated paddle,
returns the value, and also sets the JOYY reserved variable. The reserved variable
JOYY is set to the value of the paddle indicated by PaddleNumber + 1.

Example

HOME
Start: PRINT JOYX(l), JOYY

GOTO Start

OUTPUT:

12 34 these are paddle values as paddle knobs are turned
12 55
12 34
12 55
12 34
12 55
12 34
12 55
12 34
12 55
12 34
12 55

TML BASIC Language Reference statements and Functions

KBD Reserved Variable

Syntax

KBD

Action

The KBD reserved variable contains an integer value which is the ASCII code of the
last key pressed from the keyboard. A table of the ASCII codes can be found in
Appendix E.

When using the KBD reserved variable in the ON ... GOTO or ON ... GOSUB
statement, it must be enclosed in parenthesis in order to create an expression syntax
and thus distinguish between these statements and the ON KBD statement. For
example, the following statement is treated as the ON KBD statement which turns
on event trapping for keypresses.

ON KBD GOTO HandleKeyPress

However, the following is the ON ... GOTO statement which branches to the label
Dolt if the value of the reserved variable KBD is one (1).

ON (KBD) GOTO Dolt

See Also

ONKBD

Example

ON KBD GOTO ShowKey 'Activate keyboard event trapping

Wait: GOTO Wait 'Infinite loop to wait for keypresses

ShowKey: PRINT "The key= ";KBD
IF KBD = ASC(".") THEN END 'Quit when the pe r iod is pressed
ON KBD GOTO ShowKey 'Reactivate keyboard event trapping
RETURN

TML BASIC Language Reference 221 Statements and Functions

LEFT$ Function

Syntax

LEFT$(StringExpression, NumericExpression)

Action

The LEFT$ function returns the NumericExpression string of characters appearing
left-most in the string StringExpression.

StringExpression may be any string variable, string constant or string expression. If
NumericExpression is a real value, it is rounded to the nearest whole number. The
value of NumericExpression must be an integer in the range 1 through 255
inclusive or an "Illegal Quantity Error" occurs. To find the number of characters in
the string, use the LEN function.

See Also

LEN
MID$
RIGHT$

Example

PRINT LEFT$("TML BASIC is great",9)

OUTPUT:

TML BASIC

TML BASIC Language Reference 222 Statements and Functions

LEN Function

Syntax

LEN(StringExpression)

Action

The LEN function returns an integer which is the number of characters in the
String Expression.

Example

Name$= "TML BASIC"
PRINT LEN(Name$)

OUTPUT:

9

TML BASIC Language Reference statements and Functions

LET Statement

Syntax

[LET] VariableName

Action

AnyExpression

The LET statement, also known as the assignment statement, assigns the value of
AnyExpression to the variable VariableName. VariableName may be any simple
variable or array element. Only one assignment per statement is allowed. Note that
the reserved word LET is optional.

If the type of the variable VariableName is a numeric type then AnyExpression may
be any numeric type. TML BASIC automatically converts the value of
NumericExpression to the type of the variable if the numeric types do not match.
Finally, if the value cannot be represented in this type then an "Overflow Error"
occurs. A "Type Mismatch Error" occurs if AnyExpression is a string expression.

If the variable is a string, then Any Expression must also be a string, otherwise, a
"Type Mismatch Error" occurs.

See Also

FN=
Chapter 7, Arrays

Example

LET Valuel 30
LET Value2 23
LET Value3 = 8
LET Sum= Value1 + Value2 + Value3

OR

Valuel 30
Value2 23
Value3 = 8
Sum= Valuel + Value2 + Value3

TML BASIC Language Reference 224 Statements and Functions

LIBRARY Statement

Syntax

LIBRARY [PathName]

Action

The LIBRARY statement is used in a program to load a compiled library file to
memory and enter all of the procedure and function declarations of the library into
the program's symbol table just as if the declarations had been made in the source
code. There are two types of libraries in TML BASIC: user defined libraries created
with the DEF LIBRARY statement, and predefined libraries which provide access to
the Toolbox.

The LIBRARY statement can appear anywhere in a program. Before TML BASIC
compiles a program, it first scans the file for all occurrences of the LIBRARY
statement. As each LIBRARY statement is encountered, its declarations are entered
into the program's symbol table, making them available throughout the entire
program.

LIBRARY statements which name predefined Toolbox libraries serve a second
purpose. As described in Chapter 11, several of the Toolbox tool sets are not
available in ROM, but rather are implemented in disk files which must be loaded
into RAM. When a LIBRARY statement names a tool set which is not in ROM,
TML BASIC automatically generates code to load the disk file into RAM.

When a library name is specified in the LIBRARY statement, TML BASIC searches
for the library's compiled library file. The library file is not the source code for the
library, but its compiled declarations and code. As described in Chapter 3, the name
for a library file is the name of the library with the suffix ".LIB". For example, the
library filename for the toolbox library QuickDraw is QUICKDRAW.LIB.

TML BASIC searches in three locations to find a library file. First, it looks to see if
the library file is already in memory. Second, it searches in the same folder as the
source code file containing the LIBRARY statement. And finally, if the file is not
found there, it searches in the directory specified in the Library Search Path option of
the Preferences Dialog (see Chapter 6 for more information about the Preferences
Dialog). If the file is not found in any of these locations then TML BASIC reports an
error. However, it is possible to override TML BASIC by specifying the complete
pathname of the library file.

TML BASIC Language Reference 225 statements and Functions

See Also

DEF LIBRARY
Chapter 8
Chapter 11

Example

LIBRARY "Memory"
LIBRARY "QuickDraw"
LIBRARY 11 /TML/LIBRARIES/QUICKDRAW"

TML BASIC Language Reference 226 statements and Functions

LOCAL Statement

Syntax

LOCAL VariableName {, VariableName }

Action

The LOCAL statement is only allowed within a multiline procedure or function.
LOCAL is used to declare a simple variable as a temporary variable local only to the
procedure or function. Local arrays are not supported.

When a procedure or function is called, the storage for the local variables is
temporarily allocated and initialized to zero or the null string. When the procedure
or function exits, the storage is deallocated. Local variables do not retain their
values between calls. It is good programming practice to use the FN = variation of
the assignment statement within a procedure or function to ensure that only local
variable references are made. Using the FN = statement also promotes
self-documenting code.

See Also

DEFFN
DEFPROC
FN=
Chapter 8, Local Variables

Compiler /Interpreter Differences

GS BASIC allows the LOCAL statement to appear anywhere among the statements
of a multiline procedure or function. In fact, the LOCAL statement may even
appear after an IF statement so that a local variable is conditionally declared.

TML BASIC restricts the use of the LOCAL statement. The LOCAL statements in a
procedure or function must appear immediately after the DEF PROC or DEF FN
statements and before any other statements with the exception of the REM
statement.

Example

DEF PROC AverageThree(Vall,Val2,Val3)
LOCAL Sum
LOCAL Average
FN Sum= Vall+ Val2 + Val3
FN Average= Sum/ 3
PRINT "The average is"; Average
END PROC AverageThree

TML BASIC Language Reference 227 statements and Functions

LOCATE Statement

Syntax

LOCATE [Row] [,Column]

Action

The LOCATE statement is used to change the horizontal and vertical position of the
text screen cursor. This statement essentially duplicates the functionality of the
HPOS and VPOS reserved variables.

Both Row and Column must be numeric expressions. The Row argument changes
the vertical position of the cursor to the specified value and should be in the range 1
through 24 inclusive. The Column argument changes the horizontal position of
the cursor and should be in the range 1 through 80 inclusive. Both the Row and the
Column arguments are optional. If only one of the arguments appears, the other
component of the cursor position is unaffected. Of course, using the LOCATE
statement without either of the arguments is meaningless, but legal.

See Also

HPOS and VPOS

Example

LOCATE 5,2
LOCATE ,10
LOCATE 6

PRINT "Hello" 'Change vertical and horizontal cursor position
PRINT "Goodbye" 'Change only the horizontal cursor position
PRINT "Good Day" 'Change only the vertical cursor position

TML BASIC Language Reference 228 Statements and Functions

LOCK AND UNLOCK Statement

Syntax

LOCK PathName
UNLOCK PathName

AcHon

The LOCK and UNLOCK statements are used to change a file's write protection.

The LOCK statement prohibits writing to, saving, or deleting the file named in
PathName. PathName is a string expression and must represent a legal ProOOS 16
pathname. A volume cannot be locked but subdirectories can. Any subsequent
attempt to change the contents of a locked file will result in .the "File Locked" error.

UNLOCK removes the protection placed upon a file by the LOCK statement. An
unlocked file may be deleted, renamed, changed, or saved.

See Also

Chapter 9, Files

Example

LOCK myFile$
UNLOCK myFile$

LOCK 11 /TML/PARTl.EXAMPLES/HELLOWORLD.BAS"

TML BASIC Language Reference statements and Functions

LOG, L0GB%, LOG 1 and LOG2 Functions

Syntax

LOG(x)
L0GB% (x)
LOGl (x)
LOG2 (x)

AcHon

The LOG function returns natural logarithm of x. The natural logarithm is to the
base e.

The LOGB% function returns the binary exponent of the real value x as a signed
integer.

The LOGl function accurately computes the natural logarithm of x+l. If xis small,
then the computation of LOGl is more accurate than LOG(x+ 1).

Finally, the LOG2 function returns the base 2 logarithm of x.

In all four functions, x is a numeric expression.

Example

PRINT LOG(EXP(l))
PRINT LOGB%(100.0)
PRINT LOGl(EXP(l))
PRINT LOG2(32)

OUTPUT:

1
6
1.313262
5

TML BASIC Language Reference 230 statements and Functions

MENUDEF Statement

Syntax

MENUDEF ItemNumber, Label {,Label}

Action

The MENUDEF statement is used to store subroutine labels in the Menu Item
Dispatch Table. The menu item dispatch table is a special data structure defined by
TML BASIC for directing program control to menu item handling subroutines. The
MENUDEF statement works in conjunction with the TASKPOLL and EVENTDEF
statements.

The menu item dispatch table has 128 entries numbered O through 127. As
discussed in Chapter 13, every menu contains one or more menu items. Each menu
item has associated with it a unique menu item identification number (menu item
id). The menu item ids for menus created by TML BASIC programs must be in the
range 250 through 377 inclusive. These menu item ids correspond directly to the
entries in the menu item dispatch table. The mapping of menu item ids to dispatch
table entries is performed by subtracting 256 from the menu item id value.

When the TASKPOLL statement is executed and detects the In Menu Bar event,
control is transferred to the menu item handling subroutine specified in the menu
item dispatch table. For this to occur, the Event Dispatch Table for the In Menu Bar
event must be zero (index 17), otherwise, control transfers to the event handling
subroutine specified there. If index 17 of the event dispatch table is empty,
TASKPOLL subtracts 250 from the menu item id of the selected menu item and
looks up the menu item handling subroutine in the Menu Dispatch Table. If a
subroutine has been defined, control transfers to the specified subroutine, otherwise
TASKPOLL continues normal execution.

Menu item handling subroutines end with the RETURN O statement rather than
the normal RETURN statement.

See Also

EVENTDEF
TASKPOLL

Example

MENUDEF O,doNew
MENUDEF l,doOpen
MENUDEF 2,doClose

TML BASIC Language Reference 231 statements and Functions

MID$ Function

Syntax

MID$(StringExpression, Start [,Length])

Action

The MID$ statement returns a string of Length characters from StringExpression,
beginning with the Start character.

Start and Length must be numeric expressions whose values are in the range 1
through 255, otherwise an "Illegal Quantity Error" occurs. If the Length parameter
does not appear, or if there are fewer characters to the right of the Start character
then MID$ returns all of the right-most characters. If Start is greater than the
number of characters in the string, MID$ returns a null string.

To determine the number of characters in a string use the LEN function.

See Also

LEFT$
LEN
RIGHT$

Example

INPUT "Binary number "; Binary$

DecimalVal@ = 0
FOR i% = 1 to LEN(Binary$)

'Input a binary number as a string

Digit$= MID$(Binary$,i%,1) 'Get individual digit
DecimalVal@ = 2 * DecimalVal@ + VAL(Digit$)

NEXT i%

PRINT "Decimal number "; DecimalVal@

OUTPUT:

Binary number= 101001
Decimal number= 41

TML BASIC Language Reference 232 statements and Functions

NEGATE Function

Syntax

NEGATE(NumericExpression)

Action

The NEGATE function returns the negation of NumericExpression (ie.
- NumericExpression). This seemingly simple function is included in TML BASIC
because of the special infinity and NaN results possible using the Apple Hes SANE
floating point engine.

See Also

Chapter 7

Example

someValue = 5.2394
PRINT NEGATE(someValue)

OUTPUT:

-5.2394

TML BASIC Language Reference 233 statements and Functions

NORMAL Statement

Syntax

NORMAL

Action

The NORMAL statement is used to change the display of all subsequent characters
written to the text screen in "normal video" (as opposed to inverse video). If you
are using a monochrome display, NORMAL causes characters to be displayed as
white on a black background. If you are using a color display then the effect depends
upon the settings of your monitor. In this case, it is more appropriate to use the
terms text background and foreground color.

NORMAL does not affect any characters which are already displayed on the screen,
only the screen output after NORMAL is executed. NORMAL does not effect
characters written to files.

See Also

INVERSE

Example

NORMAL
PRINT "This is normal display"
INVERSE
PRINT "This is inverse display"

TML BASIC Language Reference 234 Statements and Functions

ON BREAK and OFF BREAK Statements

Syntax

ON BREAK statementlist
OFF BREAK

Action

The ON BREAK statement is used in a program to control what action to take when
a Control-C character (the break character) is typed. The ON BREAK statement is a
special case of the ON ERR statement which is used to handle all other runtime
errors. The ON BREAK statement must be executed to activate the break handling
mechanism.

When a Control-C character is typed, and an ON BREAK statement has been
executed, control will temporarily suspend and transfer to the sequence of
statements following the ON BREAK. After the break has been handled, control
may resume at the previous point by executing the RESUME statement.

The OFF BREAK statement cancels the ON BREAK statement. If no ON BREAK
statement is active when a Control-C is typed, execution of the program terminates.

If the BREAK OFF statement has been executed, TML BASIC does not check for the
Control-C character. Thus, it is impossible to invoke the user break mechanism to
transfer control to the ON BREAK statement list or abort the program. BREAK ON
turns the checking for Control-C back on.

See Also

BREAK ON and BREAK OFF
ON ERR
RESUME

Compiler /Interpreter Differences

The ON BREAK statement requires a significant amount of code to be generated by
TML BASIC to implement this statement. Since most programs do not use the ON
BREAK statement, TML BASIC allows you to tum off the code generation needed to
support this statement. This is done by turning off the On Error option in the
Preferences Dialog or by using the $0nError metastatement. If the On Error code
generation is turned off and a program uses this statement, TML BASIC will give
the error:

"On Error option must be ON for this Statement".

TML BASIC Language Reference 235 Statements and Functions

Further, you must instruct TML BASIC to generate code to check for the Control-C
character. This is done by turning on the Keyboard Break option in the Preferences
Dialog or with the $KeyboardBreak metastatement. If you use the ON BREAK
statement (and $0nError is ON), but forget to tum on the Keyboard Break option,
TML BASIC will give the error:

"Keyboard Break must be ON for this Statement".

Example

ON BREAK GOTO HandleBreak

Wait:
PRINT "Wait for break"
GOTO Wait

HandleBreak:
PRINT "Break occurred"
GET$ A$
IF A$="" THEN END
RESUME

TML BASIC Language Reference 236 Statements and Functions

ON EOF# and OFF EOF# Statements

Syntax

ON EOF# FileNumber StatementList
OFF EOF# FileNumber

AcHon

The ON EOF# statement allows a program to control what action to perform when
an attempt is made to read a file past its end of file mark. If an ON EOF# statement
has been previously executed when a read past the end of file occurs, program
control unconditionally transfers to the sequence of statements after the ON EOF#
statement. FileNumber must be the file reference number of an open file.

The OFF EOF# statement cancels the end of file trapping that was activated with the
ON ERR# statement. If a program attempts to read past the end of file and no ON
EOF# statement is active the standard TML BASIC enor mechanism is used. That
is, if an ON ERR statement is active, the sequence of statements associated with that
statement is executed, otherwise, execution aborts.

Unlike the ON BREAK, ON KBD and ON ERR and ON EXCEPTION statements,
program control unconditionally branches to the sequence of statements after the
ON EOF#. You cannot use the RETURN or RESUME statements when handling
the end of file error. The ON EOF# statement does not require the $0nError
metastatement be ON.

See Also

EOF
EOFMARK
Chapter 9, Files

Example

OPEN SomeFile$, AS #1

ON ERR #1 GOTO EofEncountered

NextLine:
INPUT #1; Line$
PRINT Line$
GOTO NextLine

EofEncountered:
PRINT "EOF encountered for file"; EOF
CLOSE #1
END

TML BASIC Language Reference 237 Statements and Functions

ON ERR and OFF ERR Statements

Syntax

ON ERR Statementlist
OFF ERR

Action

The ON ERR statement is used in a program to control what action to perform
when a runtime error occurs.

When a runtime error such as an "Overflow Error" or "Illegal Quantity Error"
occurs, and an ON ERR statement has been executed, control will temporarily
suspend and transfer to the sequence of statements following the ON ERR. After
the error has been handled, control may resume at the previous point by executing
the RESUME statement, or at the statement following the error by executing the
RESUME NEXT statement.

The reserved variable ERR may be used in the sequence of statements handling the
error in order to determine exactly what runtime error occurred and to respond
accordingly.

If a program contains more than one ON ERR statement the most recently executed
ON ERR statement is the one which receives control. A user break error (typing a
Control-C) is handled separately by the ON BREAK statement.

See Also

ON BREAK
RESUME

Compiler /Interpreter Differences

The ON ERR statement requires a significant amount of code be generated by TML
BASIC to implement this statement. Since many programs do not use the ON ERR
statement, TML BASIC allows you to tum off the code generation needed to support
this statement. This is done by turning off the On Error option in the Preferences
Dialog or by using the $0nError metastatement. If the On Error code generation is
turned off and a program uses this statement, TML BASIC will give the error:

"On Error option must be ON for this Statement".

TML BASIC Language Reference 238 statements and Functions

Further, you should instruct TML BASIC to generate debugging code to check for
runtime errors such as "Overflow Error", "Illegal Quantity Error", etc. This is done
by turning on the Debug option in the Preferences Dialog or with the $Debug
metastatement.

Example

ON ERR GOTO HandleError

x% = 20000
x% = x% + 15000
PRINT "x%=";x%
END

HandleError:
IF ERR = 1 THEN

x% = 0
RESUME

ELSE

'An Overflow Error

PRINT "RUNTIME ERROR="; ERR
END

END IF

OUTPUT:

x%=15000

TML BASIC Language Reference Statements and Functions

ON EXCEPTION and OFF EXCEPTION Statements

Syntax

ON EXCEPTION statementlist
OFF EXCEPTION

Action

The ON EXCEPTION statement is a separate version of the ON ERR statement for
errors that occur in floating-point mathematical computations. TML BASIC
implements floating-point operations using the built-in Standard Apple Numeric
Environment (SANE) floating-point engine. SANE defines several error conditions
which might occur while performing floating-point operations. They are

• Invalid operation (such as SQRT(-2))
• Overflow
• Underflow
• Divide by zero
• Unordered compare
• Inexact result

It is possible to define which of these errors are signaled to a TML BASIC program .
using the EXCEPTION ON statement.

The ON EXCEPTION statement is used in a program to control what action to take
when the EXCEPTION ON statement has defined that certain floating-point errors
should be signaled. The behavior of the ON EXCEPTION statement is exactly like
the ON ERR statement. See the description of this statement for more information.

TML BASIC Language Reference 240 statements and Functions

ON KBD and OFF KBD Statements

Syntax

ON KBD StatementList
OFF KBD

Action

The ON KBD statement is used to cause program control to automatically execute a
sequence of statements whenever a keypress is detected at the keyboard.

After an ON KBD statement is executed, the program continues executing normally.
But, as soon as a key is pressed, execution branches to the sequence of statements
included in the ON KBD statement. Note that when the ON KBD statement is
encountered during normal program execution, the statements following the
reserved words ON KBD are not executed.

The branch to the ON KBD statement list is treated as a GOSUB to a subroutine.
Therefore, the sequence of statements should end with a RETURN statement to
continue normal program execution. The effect of executing the ON KBD statement
is disabled after a keypress occurs. To re-enable it, the ON KBD statement must be
executed again.

To disable the effect of ON KBD, execute the OFF KBD statement.

Note that when ON KBD is in effect, the program cannot be aborted using the
Control-C character. This is because, the keypress is treated like any other keyboard
character, and program control transfers to the sequence of statements after the ON
KBD statement.

See Also

GOSUB
KBD

Example

ON KBD GOTO ShowKey 'Activate keyboard event trapping

Wait: GOTO Wait 'Infinite loop to wait for keypresses

ShowKey: PRINT "The key= ";KBD
IF KBD = ASC(". 0

) THEN END 'Quit when the period is pressed
ON KBD GOTO ShowKey 'Reactivate keyboard event trapping
RETURN

TML BASIC Language Reference 241 Statements and Functions

ON ... GOSUB Statement

Syntax

ON NumericExpression GOSUB Label {,Label}

Action

The ON ... GOSUB statement is used to cause program control to branch to a
subroutine based upon the value of a NumericExpression. After the reserved word
GOSUB is a list of one or more labels separated by commas. The labels must
designate subroutines which end with the RETURN statement.

The value of the NumericExpression determines which subroutine is executed. The
value of NumericExpression must be an integer in the range O to 255. If the value is
equal to one (1), control transfers to the subroutine designated by the first label, if the
value is equal to two (2), control transfers to the subroutine designated by the second
label, etc. If the value equals zero (0), or greater than the number of labels specified,
the statement is ignored, and execution continues with the next statement.

See Also

GOSUB
ON ... GOTO
Chapter 7, Labels
Chapter 8, Subroutines

Example

PRINT "Dat abase options . .. "
PRINT " 1) Sort"
PRINT " 2) Print"
PRINT " 3) Enter record"
PRINT " 4) Delete record"
PRINT " 5) Quit"
PRINT "Enter selection: "· '
GET$ Option$
Option% = ASC(Opt i on$) - ASC("l") + 1
ON Option% GOSUB doSort,doPrint,doEnter,doDelete,doQuit

TML BASIC Language Reference 242 Statements and Functions

ON ... GOTO Statement

Syntax

ON NurnericExpression GOTO Label {,Label}

Action

The ON ... GOTO statement is used to cause program control to branch to a label
based upon the value of a NumericExpression. After the reserved word GOTO is a
list of one or more labels separated by commas.

The value of the NumericExpression determines to which label execution transfers.
The value of NumericExpression must be an integer in the range O to 255. If the
value is equal to one (1), control transfers to the statement designated by the first
label, if the value is equal to two (2), control transfers to the statement designated by
the second label, etc. If the value equals zero (0), or greater than the number of
labels specified, the statement is ignored, and execution continues with the next
statement.

See Also

GOTO
ON ... GOSUB
Chapter 7, Labels

Example

PRINT "Database options ... "
PRINT " 1) Sort"
PRINT " 2) Print"
PRINT II 3) Enter record"
PRINT " 4) Delete record"
PRINT " 5) Quit"
PRINT "Enter selection: ";
GET$ Option$
Option%= ASC(Option$) - ASC("l") + 1
ON Option% GOTO doSort,doPrint,doEnter,doDelete,doQuit

TML BASIC Language Reference 243 statements and Functions

ON TIMER and OFF TIMER Statements

Syntax

ON TIMER(Seconds) StatementList
OFF TIMER

Action

The ON TIMER enables event trapping using the I-second interrupt capability of the
Apple Iles clock. Seconds is an integer expression that sets a countdown interval of
the value of Seconds. Seconds must be in the range 2 to 86400.

When the interval counter reaches zero, the countdown is complete, and execution
branches (like a GOSUB) from the currently completed program statement, to the
ON TIMER StatementList. StatementList must end with a RETURN statement to
return control to the next sequential statement in the program.

The TIMER countdown is approximate only and does not guarantee a precise
amount of time. Some higher priority operations, such as disk 1/0 or AppleTalk
communications might even lock out the timer interrupt for more than a second.
The ON TIMER statement will have no effect unless the I-second interrupt is
enabled by the TIMER ON statement.

OFF TIMER disables the most recently executed ON TIMER statement.

See Also

GOSUB
RETURN
TIMER ON

TML BASIC Language Reference 244 statements and Functions

OPEN Statement

Syntax

OPEN Pathname, [FILTYP= 0IRITXTISRCIBDF1Fi1etype)
[FOR INPUTIOUTPUTIAPPENDIUPDATE] AS # Filenumber [, Recordsize]

Action

The OPEN statement is used to open files for access, and must precede any file 1/0
routines accessing a given file. The minimum required arguments following the
reserved word OPEN are the file's pathname followed by a comma, the reserved
word AS and a file reference number. The file must have been previously created
and must exist on a disk currently mounted in a disk drive. If a partial pathname is
used, it is joined with prefix O to create the full pathname. The file reference
number is used in all subsequent TML BASIC 1/0 statements for accessing the file.

The optional FOR clause in the OPEN statement is used to qualify the access mode
for the file. The supported access modes are INPUT, OUTPUT, APPEND and
UPDATE. If the FOR clause is not used, the file is opened for UPDATE. The FOR
INPUT clause specifies that the file is opened for read-only access, and cannot be
written to. For example:

OPEN myFile$, FOR INPUT AS #10

The FOR OUTPUT clause specifies that the file is opened for write-only access, and
cannot be read from. For example:

OPEN myFile$, FOR OUTPUT AS #10

The FOR APPEND option is a variant of the FOR OUTPUT clause. It is used for
sequential access (discussed later) to allow the PRINT# and WRITE# statements to
append new information to the end of a file without disturbing any existing data in
the file. For example:

OPEN myFile$, FOR APPEND AS #10

Finally, the FOR UPDATE clause is used to open a file for read-write access so long
as the filetype supports such access. For example, you can't read from a printer.

The optional FILTYP= clause of an OPEN statement is used to specify the type of file.
The FILTYP= clause is primarily used to ensure that a file being opened is of the
expected filetype. If a program attempts to open a file using the FIL TYP= clause and
the file's type does not match the specified filetype, the file will not be opened and
an error message wil be reported. Any of the predefined filetype names (see
CREA TE) can be used with the FIL TYP= clause or an unsigned integer value.

TML BASIC Language Reference 245 statements and Functions

The FIL TYP= clause is also used with the OPEN statement to open files which have
not been created. If the OPEN statement finds that the specified file does not exist,
and the FILTYP= clause is given, it will implicitly call the CREATE statement first
and then open the file.

Finally, the optional Recordsize argument is used to specify the record size for a
random access to the file using the INPUT# and GET# statements for non-Basic
Data Files. If the file being opened is an existing BASIC Data File, the record size
argument is ignored and the record size used is the size specified when the file was
created.

See Also

CLOSE
Chapter 9

Example

OPEN "HELLOWORLD.BAS", AS #10
OPEN "/TML/MYSTUFF/INVOICES", FOR INPUT AS #20
OPEN aFile$, FOR UPDATE AS #20, 100
OPEN ".PRINTER", AS #1
OPEN ".MODEM", AS #2

TML BASIC Language Reference 246 statements and Functions

OUTPUT# Statement

Syntax

OUTPUT #FileNumber

AcHon

The OUTPUT# statement is used to redirect output which is normally directed to
the Apple IIGS text screen to a file previously opened with FileNumber as its file
reference number. Recall that devices can be opened with a file reference number,
thus allowing output to be redirected to devices as well. The printer is an example
of a device.

The PRINT and CATALOG statements are the only statements affected by the
OUTPUT# statement. To restore output back to the text screen use the statement
OUTPUT #0.

See Also

CATALOG
OPEN
PRINT

Example

OPEN SomeFile$, AS #1
OUTPUT #1

PRINT "The following are fhe files on my disk"
PRINT
CATALOG

OUTPUT #0
CLOSE #1
END

TML BASIC Language Reference 247 Statements and Functions

PDL Function
PDL9 Reserved Variable

Syntax

PDL(NumericExpression)
PDL9

Action

The POL function reads the position of the game control paddle and returns its
position as an integer value in the range O to 255.

The POL function actually reads the position of the paddle twice as fast as the
original Apple II routines and discards the least significant bit, thus eliminating the
uncertainty caused by the variable processor speed of the Apple IIGS. The reserved
variable PDL9 returns the 9-bit result calculated by the prior execution of the POL
function.

NOTE: Reading any paddles in quick succession will tend to produce unstable
results because of the hardware coupling among all four paddles. Using the JOYX
function will eliminate this interaction when reading two paddles of both axes of a
joystick.

Example

ReadPaddles: PRINT PDL(O), PDL9
GOTO ReadPaddles

TML BASIC Language Reference 248 statements and Functions

PEEK Function

Syntax

PEEK(NumericExpression)

Action

The PEEK function reads a byte from the memory address specified by
NumericExpression and returns an integer value in the range O to 255 inclusive.
The NumericExpression must be a positive integer less than 2"24 and must
represent a legal Apple Iles memory address.

The PEEK function should only be used in special circumstances in a program. You
should exercise great care when using PEEK not to read memory mapped 1/0
devices and control registers, since merely reading those addresses can cause
unpredictable side effects, including system crash.

Programmers concerned about writing programs that will run on new versions of
the Apple Iles product family should avoid the use of the PEEK function with
addresses that might not be compatible with future machines or system software.

See Also

POKE

Example

'Use hard coded address to read the Option key sense i nput
OptionKey% = PEEK(14729314) 'Hex address EOC062
PRINT OptionKey%

'Use variable address to read a byte of memory in a variable
myStr$ = "TML BASIC"
Address@= VARPTR$(myStr$)
PRINT CHR$(PEEK(Address@+l)) 'Display first letter of string in memory

OUTPUT:

127
T

TML BASIC Language Reference 249 statements and Functions

PFX$ Function

Syntax

PFX$ (Prefix)

Action

The PFX$ function returns a string which is the current value of the indicated
ProOOS 16 prefix. Prefix must be a numeric expression in the range O through 8
inclusive, otherwise an "illegal Quantity Error" results. The prefix values O through
7 return the ProDOS 16 prefix by that number, the prefix value 8 returns the
pseudo-prefix equal to the boot volume name.

See Also

PREFIX
PREFIX$
Chapter 9 - Files

Example

'Print each of t he ProDOS 16 prefixes
FOR i% = 0 to 8

PRINT PFX$ (i%)

NEXT i%

TML BASIC Language Reference statements and Functions

Pl Reserved Variable

Syntax

PI

Action

PI is a reserved variable whose value is Pi,accurate to 20 decimal digits. The value of
PI is stored as a SANE extended precision real value in order to provide the greatest
amount of accuracy possible in expressions. TML BASIC automatically converts PI
to any numeric type on assignment, with of course a loss of accuracy.

Example

Radians= Degrees* PI/ 180 'Convert degrees to radians

TML BASIC Language Reference 251 statements and Functions

POKE Statement

Syntax

POKE NumericExpression, Value

Action

The POKE statement writes a byte Value to the memory address specified by
NumericExpression. Value must be in the range O to 255 or an "Illegal Quantity
Error" occurs. The NumericExpression must be a positive integer less than 2^24 and
must represent a legal Apple Iles address.

The POKE statement should only be used in special circumstances in a program.
You should exercise great care when using the POKE statement not to accidentally
write to memory mapped 1/0 devices, control registers or other addresses not
allocated to your program.

Programmers concerned about writing programs that will run on new versions of
the Apple Iles product family should avoid the use of the POKE statement with
addresses that might not be compatible with future machines or system software.

See Also

PEEK

Example

anint% = 0
PRINT anint%
POKE VARPTR(anint%),2
POKE VARPTR(anint%)+1,1
PRINT anint%

OUTPUT:

0
258

TML BASIC Language Reference

'Assignment the HARD way!

252 statements and Functions

POP Statement

Syntax

POP

Action

The POP statement is used to jump out one nested subroutine level by removing
the subroutine "return address" from the TML BASIC Runtime Stack. Thus, when
the next RETURN statement is executed, instead of branching back to the statement
after the most recently executed GOSUB statement, control branches to the
statement after the second most recently executed GOSUB statement.

If a POP is executed in a program without having executed a GOSUB statement the
"RETURN/POP without matching GOSUB" error occurs.

See Also

GOSUB
RETURN

Example

Print "Start Program"
GOSUB First
PRINT "End Program"
END

First:
PRINT "Enter subroutine First"
GOSUB Second
PRINT "Leave subroutine First"
RETURN

Second:
PRINT "Enter subroutine Second"
POP
PRINT "Exit subroutine Second"
RETURN

OUTPUT:

Start Program
Enter subroutine First
Enter subroutine Second
Exit subroutine Second
End Program

TML BASIC Language Reference statements and Functions

PREFIX Statement

Syntax

PREFIX DirectoryPath

PREFIX PrefixNum, DirectoryPath

Action

The PREFIX statement is used to set a ProDOS prefix. The first form of the
statement sets the ProOOS prefix O to the pathname specified by DirectoryPath. The
second form of the statement sets any prefix numbered O through 7 as specified by
the PrefixNum argument. If the pathname used in the PREFIX statement is illegal,
the "Bad Path Error" occurs.

Compiler /Interpreter Dlff erences

GS BASIC provides variations of the PREFIX statement that display the current
values of prefixes. This is not supported in TML BASIC.

See Also

Chapter 9

Example

PREFIX "/TML/PARTl.EXAMPLES"
PREFIX 4,"/TML/MYWORK/NDA"

TML BASIC Language Reference Statements and Functions

PREFIX$ Modifiable Reserved Variable

Syntax

PREFIX$

Action

PREFIX$ is a modifiable reserved variable whose value is the ProDOS 16 default
prefix. That is, prefix zero (0). If a new value is assigned to the reserved variable,
the ProDOS 16 prefix zero is changed to reflect the new pathname. If an illegal
ProDOS 16 pathname is assigned to PREFIX$, the "Bad Path Error" occurs.

See Also

PFX$
PREFIX
Chapter 9 - Files

Example

PRINT "The current default prefix="; PREFIX$

INPUT "Enter a new default prefix: "; NewPrefix$
PREFIX$= NewPrefix$

TML BASIC Language Reference 255 statements and Functions

PRINT Statement

Syntax

PRINT { [, I;] [AnyExpression] } [, I;]

Action

The PRINT statement displays text on the Apple IIGS text screen. The PRINT
statement is used to print the values of numeric and string expressions. The PRINT
statement may contain any number of expressions separated by either a comma or
semicolon. Each expression is called a print item. Actually, multiple expressions
can be separated by spaces, but it is good programming practice to use either a
comma or a semicolon so it is clearly understood that more than one expression is
included within the PRINT statement.

When a string expression appears in a PRINT statement, the exact characters in the
string are displayed to the text screen at the current text location (the location of the
cursor). When a numeric expression is printed, the binary representation of the
numeric value is first converted to a string and then displayed at the current text
location. The conversion is controlled by the SHOWDIGITS reserved variable. If
the numeric expression contains an integer value, it is displayed as an integer unless
SHOWDIGITS is too small, in which case the number is displayed in scientific
notation.

When using the semicolon as a separator between multiple expressions in a PRINT
statement, TML BASIC positions the cursor immediately following the last character
displayed. Thus, the next expression is displayed adjacent to the previous print
item. Using a comma as a separator causes TML BASIC to perform a tab operation
before the next print item is displayed. The tab width of the PRINT statement is 16
characters. The spaces between each tab is called a print zone. The diagram on the
next page illustrates how the 80 columns of a text screen are divided into five print
zones.

After all print items in a PRINT statement have been displayed, the text cursor is
moved to the first column of the next line. If the cursor is on the last line of the
screen, the entire contents of the screen is scrolled up one line. Thus, a PRINT
statement containing zero will display a blank line.

In some cases, a program may not want the PRINT statement to advance the text
location to the next line after it has displayed all of its print items. Whenever a
PRINT statement ends with a comma or a semicolon, the PRINT statement will not
advance to the next line.

TML BASIC Language Reference statements and Functi.ons

1

Print
Zone

1

17 33

Print
Zone

2

Zone Width is
16 characters

49 65 80

Print Print Print
Zone Zone Zone

3 4 5

The PRINT statement also works in the Super Hi-Res graphics screen. When the
PRINT statement is executed, it examines the current screen mode. If the screen is
in text mode (the default), text is displayed in the normal fashion. However, if the
screen is in graphics mode, text is displayed to the current Graf Port (window) using
QuickDraw graphics routines. The text is drawn beginning at the current location of
the QuickDraw pen. None of the TML BASIC screen position commands work in
the graphics screen. To move the pen, QuickDraw commands such as Move and
MoveTo must be used. For more information about QuickDraw see Chapter 12.

See Also

PRINT USING
PRINT#
SHOWDIGITS
SPC
TAB

Example

PRINT "The average of three numbers is "; (43 + 27 + 23) / 3

FOR i% = 1 TO 5
PRINT SPACE$(i%); i%

NEXT i%

PRINT tbll,tbl2,tbl3

TML BASIC Language Reference 257 Statements and Functions

PRINT USING Statement

Syntax

PRINT USING UsingSpecification [;Expression{, Expression}] [;]

Action

The PRINT USING statement is an advanced form of the PRINT statement. The
PRINT USING statement contains the special UsingSpecification which controls the
format of the individual print items displayed to the text screen.

The UsingSpecification may be a string variable, string constant or a label which
contains an IMAGE statement. In each case, the the information is expressed in the
same way. See the descrition of the IMAGE statement for a complete list of the
formatting specifications available.

In the PRINT USING statement, the print items (Expressions) are separated by
commas. The commas do not cause a tab action to the next print zone as they do in
the PRINT statement since formatting is controlled by the UsingSpecification. The
trailing semicolon can still be used, however, preventing the PRINT statement from
advancing to the next line.

See Also

PRINT
IMAGE

TML BASIC Language Reference 258 Statements and Functions

PRINT# Statement

Syntax

PRINT# FileNumber [, RecordNumber] [; Expression {, I; Expression }] [;]

Action

The PRINT# statement writes a line of text to a file in the same way that the PRINT
statement does to the screen. The reserved word PRINT# is followed by the file
reference number of an open file to write to, a semicolon, and a list of expressions
separated by commas or semicolons.

PRINT# automatically performs any necessary numeric to string type conversions
before writing to the file. Numeric values are formatted using the same rules as the
PRINT statement. That is, SHOWDIGITS controls the format of numbers generated
by PRINT#. Using the comma as the separator between expressions causes the tab
action to the next print zone, while the semicolon does not. The SPC and TAB
functions can be used as well.

An optional form of the PRINT# statement permits random access to a text file. To
perform random access using the PRINT# statement, include a record number after
the file reference number. Recall that the file must be opened using the OPEN
statement with the optional record size argument specified to define the size of a
record in the text file. Consider the following statements:

See Also

PRINT USING
PRINT
SHOWDIGITS
SPC
TAB
Chapter 9

Example

PRINT #10; anint%, aReal, aStr$ 'Sequentially write several values to a file

OPEN "AFILE", AS #10, 20 'Open a file for random access
PRINT #10,6; aLine$ 'Write a line of text at random record 6

TML BASIC Language Reference statements and Functions

PRINT# USING Statement

Syntax

PRINT# FileNumber [, RecordNumber] USING UsingSpecification
[; Expression {, I; Expression }] [;]

Action

The PRINT# USING statement is an advanced form of the PRINT# statement. The
PRINT# USING statement contains the special UsingSpecification which controls
the format of the individual print items written to a text file.

The UsingSpecification may be a string variable, string constant or a label which
contains an IMAGE statement. In each case, the the information is expressed in the
same way. See the descrition of the IMAGE statement for a complete list of the
formatting specifications available.

In the PRINT# USING statement, the print items (Expressions) are separated by
commas. The commas do not cause a tab action to the next print zone as they do in
the PRINT# statement since formatting is controlled by the UsingSpecification. The
trailing semicolon can still be used, however, preventing the PRINT# statement
from advancing to the next line.

TML BASIC Language Reference Statements and Functions

PUT# Statement

Syntax

PUT# FileNurnber [, [Length] [,RecordNurnber]];StructureVariable

Action

The PUT# statement writes a number of bytes from a structure array to a binary file.
The reserved word PUT# is followed by the file reference number of an open binary
file to write to, a semicolon, and a structure array variable reference (includes a
subscript). The number of bytes transferred is equal to the record size of the file.

Using the optional Length argument in the PUT# statement, it is possible to
override the number of bytes transferred to some value other than the record size.
The PUT# statement can also be used for random assess using the optional
RecordNumber argument.

See Also

OPEN
GET#
Chapter 9, Files

Example

DIM rnyData ! (11)

'Open a binary file whose record size is 4
OPEN "SOMEFILE", FILTYP=O FOR OUTPUT AS #1, 4

PUT #1;myData ! (0)
PUT #1,,3; rnyData! (4)
PUT #1,2,5; rnyData! (0)

CLOSE #1

TML BASIC Language Reference

'Write 4 bytes to first record in file
'Write 4 bytes starting at record 3
'Write 2 bytes starting at record 5

261 statements and Functions

R.STACK Functions

Syntax

R.STACK%(NumericExpression)
R.STACK@(NumericExpression)
R.STACK&(NumericExpression)

Action

The R.STACK functions return data from the CALL return stack. The CALL return
stack is a 32 byte (16 words) buffer used by the CALL, CALL% and EXFN_ statements
for storing the values returned by an Apple Iles Toolbox routine.

Because each toolbox routine returns a variable amount of information in different
data types, the CALL return stack can be accessed for integer, double integer and long
integer values. The NumericExpression parameter is a word offset into the stack.
The number of bytes read from the stack beginning at that point depends upon
which R.STACK function is called. R.STACK% returns an integer value reading 2
bytes of data from the stack; the R.ST ACK@ function returns a double integer
reading 4 bytes of data from the stack; and finally, R.STACK& returns a long integer
reading 8 bytes of data from the stack. Thus, R.STACK% may be indexed in the
range Oto 16, R.STACK@ in the range Oto 15, and R.STACK& in the range Oto 13.

R.STACK%(0) returns the error code returned by the toolbox routine. If the value is
zero, then no error occurred. If the value is non-zero, an error occurred during the
execution of the toolbox routine, and your program should take appropriate action.

R.STACK%(1) is the first word of data returned on the CALL stack.

See Also

CALL
CALL%
EXFN_
Chapter 11

Example

CALL NewHandle(1024,myMemoryID%,O,O)

IF R . STACK%(0) = 0 THEN
myHandle@ = R.STACK@(l)

ELSE
PRINT "Unable to allocate memory handle, error: ";R.STACK%(0)

END IF

TML BASIC Language Reference 262 Statements and Functions

RANDOMIZE Statement

Syntax

RANDOMIZE NumericExpression

Action

Reseeds the random number generator with the value of NumericE:xpression as the
new seed. NumericExpression must be in the range 1 to 2^31-2. Good values to use
as a seed are values from the TIME function or the SECONDS@ reserved variable
after the TIMER ON statement has been executed.

See Also

SECONDS@
TIME
TIMER ON

Example

RANDOMIZE 8849391
RANDOMIZE SECONDS@
RANDOMIZE TIME(2)*60+TIME(3)

TML BASIC Language Reference Statements and Functions

READ Statement

Syntax

READ VariableName {, VariableName}

Action

The READ statement assigns into one or more variables, values obtained from a
program's DATA statements. The values are read beginning at the current DATA
list pointer. The DAT A list pointer initially points to the first constant in the first
DATA statement of the program. The list pointer advances as values are read. It
can also be changed to point to any DATA statement using the RESTORE statement.

If a READ statement attempts to assign a string data element to a numeric variable, a
"Type Mismatch Error" occurs.

See Also

DATA
RESTORE

Example

READ A$,B$

RESTORE Names
READ C$,D$

PRINT A$,B$,C$,D$
END

Names: DATA Apple, Orange
DATA Pear, Grape

OUTPUT:

Apple Orange Apple

TML BASIC Language Reference

Orange

statements and Functions

READ# Statement

Syntax

READ# FileNumber [, RecordNumber] [; VariableName {, VariableName }]

Action

The READ# statement reads information from a BASIC Data File (BDF) into one or
more variables. The reserved word READ# is followed by the file reference number
of an open BDF file to read from, a semicolon, and a list of variables separated by
commas.

If a READ# statement contains a numeric variable, the value at the current file
position in the BDF file must also be a numeric value. If the file contains a string
value, the "Type Mismatch Error" occurs. If the file does contain a numeric value,
but its type does not match the variable in the READ# statement, the value is
converted using the same rules as the CONV functions. Thus, it is possible the
conversion will lose precision or even cause an "Overflow Error". If the READ#
statement contains a string variable, the value at the current file position must be a
string value, otherwise a "Type Mismatch Error" occurs.

An optional form of the READ# statement permits random access to a BDF file. To
perform random access using the READ# statement include a record number after
the file reference number.

See Also

WRITE#
Chapter 9

Example

READ #10; anint1%, anint2%, anint3% 'Sequential access of a BDF file
READ #10,3; aStr$, aDblint@ 'Random access of a BDF file

TML BASIC Language Reference statements and Functions

REC Function

Syntax

REC (FileNurnber)

Action

The REC function returns the current record number of the file previously opened
with its file reference number equal to FileNumber.

When using INPUT# or READ# statements to access the catalog of a directory, REC
will return the number of the line currently being accessed.

See Also

OPEN
INPUT#
READ#

Example

OPEN "SOMEFILE", AS #1

FOR i% = 1 TO 5
READ# 1,i%; mylnt%
PRINT "Record"; REC(l); "has integer value"; mylnt%

NEXT i%

CLOSE #1

TML BASIC Language Reference Statements and Functions

REM Statement

Syntax

REM AnyText

Action

The REM statement, also called the remark statement, is used to place descriptive
information about your code in a program. The REM statement continues to the
end of the current line. It is not possible to follow the REM statement with another
statement on the same line separated by a colon. When compiling a program, TML
BASIC ignores the REM statement so that it has no effect on the program.

TML BASIC offers an alternative to the REM statement called the Comment. A
comment behaves just like a REM statement, but consists only of the single quote (')
character.

See Also

Chapter 7, Comments

Example

REM The following lines show how REM and' can be used

Interest Principle* Rate
Interest= Principle* Rate

TML BASIC Language Reference

: REM Calculate the interest due
'Calculate the interest due

267 Statements and Functions

RENAME Statement

Syntax

RENAME OldPathname, NewPathname [,FILTYP= TXT1SRCIBDF1Fi1eType]

Acflon

The RENAME statement is used to change the name of a volume, subdirectory or
any other file. The arguments OldPathname and NewPathname must be string
expressions which represent legal ProDOS 16 pathnames. The OldPathname must
be the pathname of an existing file which is given the new pathname specified by
NewPathname. Using RENAME, it is possible to change the local name of a file or
to move the file to another subdirectory, but it is not possible to move the file to
another disk by merely changing its name.

When the optional FIL TYP= argument is used, the file type of NewPathname will
be changed after the file is successfully renamed. It is possible only to change the file
type of a file by using the FIL TYP= where the value of OldPathname is the same as
the NewPathname.

See Also

Chapter 9, Files

Example

'Make current directory be the PARTl.EXAMPLES folder on the TML BASIC disk
PREFIX "/TML/PART1.EXAMPLES"

'Rename the HELLOWORLD.BAS file to HELLO.BAS
RENAME "HELLOWORLD.BAS", "HELLO.BAS"

'Rename HELLO.BAS so that it is now in the PART2.EXAMPLES folder
RENAME "HELLO.BAS", "/TML/PART2.EXAMPLES/HELLO.BAS"

TML BASIC Language Reference Statements and Functions

REP$ Function

Syntax

REP$(StringExpression,NumericExpression)

Action

The REP$ function returns a string containing a number of characters equal to
NumericExpression whose characters are all equal to the first character of
String Expression.

NumericExpression must be an integer in the range 1 to 255 inclusive or an "Illegal
Quantity Error" will occur. If the value of StringExpression is a null string then
REP$ returns a string of question mark characters(?).

See Also

SPACE$

Example

Msg$ = "TML BASIC"
PRINT Msg$
PRINT REP$("-",LEN(Msg$))
PRINT

PRINT REP$("",5)

OUTPUT:

TML BASIC

?????

TML BASIC Language Reference statements and Functions

RESTORE Statement

Syntax

RESTORE [Label]

AcHon

The RESTORE statement is used to move TML BASIC's DATA list pointer to the
first data item in the DATA statement indicated by Label. After the RESTORE
statement is executed, the next READ statement will begin reading values starting
with the indicated DATA statement. If a Label is not given in the RESTORE
statement, the next READ will begin reading from the first DAT A statement in the
program. Using this statement, a DA TA statement can be read and re-read as many
times as a program needs.

If the line indicated by Label does not contain a DATA statement then the result of
the next READ statement is unpredictable.

See Also

DATA
READ

Example

READ A$,B$

RESTORE Names
READ C$,D$

PRINT A$,B$,C$,D$
END

Names: DATA Apple, Orange
DATA Pear, Grape

OUTPUT:

Apple Orange Apple

TML BASIC Language Reference

Orange

270 statements and Functions

RESUME Statement

Syntax

RESUME
RESUME NEXT

AcHon

The RESUME statements restart execution of a program after error handling was
trapped by the ON BREAK, ON ERR or ON EXCEPTION statements.

The RESUME statement causes execution to restart with the statement that caused
the error. The RESUME NEXT statement causes execution to restart with the
statement immediately following the statement which caused the error.

If the RESUME statement is executed when the program has not encountered an
error, it has no effect, and execution continues with the next statement.

See Also

ON BREAK
ON ERR
ON EXCEPTION

Compiler /Interpreter Differences

The RESUME statement requires a significant amount of code be generated by TML
BASIC to implement this statement. Since most programs do not use the ON
ERR ... RESUME statements, TML BASIC allows you to tum off the code generation
needed to support this statement. This is done by turning off the On Error option in
the Preferences Dialog or by using the $0nError metastatement. If the On Error code
generation is turned off and a program uses this statement, TML BASIC will report
the error: ''On Error option must be ON for this Statement".

Example

ON BREAK GOTO HandleBreak

Wait:
PRINT "Wait for break"
GOTO Wait

HandleBreak :
PRINT "Break occurred"
GET$ A$
IF A$= "" THEN END
RESUME

TML BASIC Language Reference 271 statements and Functions

RETURN Statements

Syntax

RETURN
RETURN 0

Action

RETURN causes program execution to branch to the statement after the most
recently executed GOSUB instruction.

When a GOSUB statement is executed, TML BASIC stores the address of the
statement following the GOSUB statement on the Runtime Stack. When the
RETURN statement is executed, the address on the Runtime Stack is removed, and
control is transferred to that address. If the RETURN statement is executed without
having first executed a GOSUB statement, the runtime error "RETURN/POP
without matching GOSUB"is reported.

RETURN O is a special case of RETURN statement used for event-handling
subroutines defined by EVENTDEF and MENUDEF. These subroutines are
implicitly called by the T ASKPOLL statement. This special form of the RETURN
statement is required because of the different calling mechanism used by the
TASKPOLL statement. As such, the RETURN O statement should never be used by
a subroutine which is called by a normal GOSUB statement.

See Also

GOSUB
EVENTDEF
MENUDEF
POP
TASKPOLL

Example

MainProgramStart: PRINT "Main program"
GOSUB MySubroutine

MySubroutine:

OUTPUT:
Main program

PRINT "Main program again"
END
PRINT "Hi from MySubroutine"
RETURN

Hi from MySubroutine
Main program again

TML BASIC Language Reference statements and Functions

RIGHT$ Function

Syntax

RIGHT$(StringExpression, NumericExpression)

Action

The RIGHT$ function returns the NumericExpression string of characters occurring
rightmost in the string StringExpression.

StringExpression may be any string variable, string constant or string expression. If
NumericExpression is a real value, it is rounded to the nearest whole number. The
value of NumericExpression must be between 1 through 255 inclusive or an "Illegal
Quantity Error" occurs. To find the number of characters in the string, use the LEN
function.

See Also

LEFT$
LEN
MID$

Example

PRINT RIGHT$ ("TML BASIC is great",5)

OUTPUT:

great

TML BASIC Language Reference 273 statements and Functions

RND Function

Syntax

RND(NumericExpression)

Action

The RND function returns a random, real value, between O and 1.

Numbers generated by RND are not actually random, but are the result of a
pseudo-random algorithm to a starting seed value. Given the same seed value,
RND will produce the same sequence of "random" numbers. To set the seed value
use the RANOOMIZE statement.

Calling RND with NumericExpression equal to zero (0) returns the previous
random number, any other value returns the next "random" number in the
sequence.

See Also

RANDOMIZE

Example

dummy%= TIME(O)
RANDOMIZE TIME(3)

FOR i = 1 to 5
PRINT RND(i)

NEXT i

OUTPUT:

0.6561249
0.4910289
0.7219557
0.9089912
0.415245

'Read the Apple IIGS clock
'RANDOMIZE given the current seconds

'Compute 5 random numbers

TML BASIC Language Reference 274 Statements and Functions

ROUND Function

Syntax

ROUND(NumericExpression)

Action

The ROUND function returns the integer value nearest the value of
NumericExpression. ROUND should be used in place of the commonly used
INT(NumericExpression + 0.5), since it returns a result consistent with other SANE
capabilities.

See Also

INT
Chapter 7

Example

FOR i = 1 TO 2 STEP 0.1
PRINT i,ROUND (i)

NEXT i

OUTPUT:

1 1
1.1 1
1.2 1
1.3 1
1.4 1
1.5 2
1. 6 2
1. 7 2
1.8 2
1. 9 2

TML BASIC Language Reference 275 statements and Functions

RUN Statement

Syntax

RUN PathName

Action

The RUN statement is used to directly execute another program from the current
program without having to return to the Apple Iles Finder. When the RUN
program terminates, control returns to the Finder. To return control back to the
calling program use the CHAIN statement.

PathName must be a string expression which is a legal ProDOS 16 pathname for an
executable program. The pathname can be the name of any compiled TML BASIC
program or any other application you might own.

Compiler /Interpreter Differences

TML BASIC does not allow the optional Label argument that GS BASIC supports.
When the RUN statement is executed, TML BASIC begins execution of the next
program at its beginning.

See Also

CHAIN
Chapter 9, Files

Example

'Ask user for the next program to run
INPUT "Enter the name of the program you wish to run: "; ProgName$

'Now run the requested program
RUN ProgName$
END

TML BASIC Language Reference 276 statements and Functions

SCALB Function

Syntax

SCALB{Scale, NumericExpression)

Action

The SCALB function scales the NumericExpression by 2"Scale. The function
effectively shifts the value of NumericExpression right or left Scale binary digits.

LOGB is related to SCALB, returning the Scale for a given NumericExpression.

See Also

LOGB

Example

PRINT SCALB(4,12)

OUTPUT:

192

'Equivalent to 2^4 * 12

TML BASIC Language Reference 277 statements and Functions

SCALE Function

Syntax

SCALE(Scale, NumericExpression)

Action

The SCALE function is used in conjunction with the PRINT USING statement.
SCALE converts the NumericExpression argument to its string representation and
then shifts the decimal point to the right Scale number of digits. If the value of
Scale is positive then the decimal point is moved to the right, otherwise the decimal
point is moved to the left.

See Also

PRINT USING

Example

A& = 12345678901234567
PRINT USING "$$20&#.##";SCALE(-2,A&)

OUTPUT:

$123,456,789,012,345.67

TML BASIC Language Reference 278 statements and Functions

SECONDS@ Reserved Variable

Syntax

SECONDS@

Action

The SECONDS@ reserved variable contains the value of a counter maintained by
the TIMER ON statement. SECONDS@ returns a double integer value in the range
-1 through 86400. The value zero is returned until a TIMER ON statement has been
executed. If TIMER OFF mode is currently in effect, the value of SECONDS@ does
not change.

Due to the presence of numerous interrupt sources in the Apple Hes, many of
which have higher priority than the I-second clock interrupt, the SECONDS@ value
is not always exact. However, SECONDS@ will always be exact immediately after
execution of the TIMER ON statement. TIMER ON may be used as often as needed
during a program.

See Also

TIMER ON and TIMER OFF
ON TIMER

Example

TIMER ON
RANDOMIZE SECONDS@

TML BASIC Language Reference 279 statements and Functions

SET Statement

Syntax

SET (StructureArrayReference [, Size]
SET (StructureArrayReference [, Size]
SET (StructureArrayReference [, Size]

Action

NumericExpression
^ Str ingVar iable
*di var [, Length]

The SET statement is used to store a variable or an expression into a structure array.
There are three different forms of the SET statement, each discussed separately
below.

The Struct ureArrayReference must be a structure array variable which has been
previously declared. The optional Size argument determines the number of bytes
transferred into the structure array variable. The value of Size must be a positive
integer greater than or equal to one (1), but not larger than the size of the structure
array. If the Size argument does not appear, the number of bytes transferred is the
size of the expression after the equal sign.

The first form of the SET statement assigns the value of NumericExpression into
the structure array variable. To ensure the type and size of the NumericExpression
value, the CONV functions can be used. See Chapter 7 for a complete description of
the TML BASIC numeric types and their respective sizes.

The second form of the SET statement is used to store a TML BASIC string into a
structure array as a counted string (Pascal string). StringExpression can be a string
expression or a string variable. A length byte is stored in the first specified element
of the structure array followed by the elements of the string expression.

The third form of the SET statement allows two types of direct memory assignment
to a structure array. When the Length expression is omitted, the value of the double
integer variable is used as the memory address of a 1 byte count, followed by O to 255
characters of string data that are assigned to the field in the structure array. If the
Length expression is present, the address used is the address of length bytes of data.
The count byte or the length parameter may be zero, and the length may be up to
32767.

See Also

DIM
VAR
Chapter 7

TML BASIC Language Reference statements and Functions

SGN Function

Syntax

SGN(NumericExpression)

Action

The SGN function is used to determine the sign of a NumericExpression. SGN
returns the integer value -1 if NumericExpression is negative, zero if
NumericExpression is equal to 0, and 1 if NumericExpression is positive.

Example

PRINT SGN(-1234)
PRINT SGN (0)
PRINT SGN (5342)

OUTPUT:

-1
0
1

TML BASIC Language Reference 281 Statements and Functions

SHOWDIGITS Modifiable Reserved Variable

Syntax

SHOWDIGITS
SHOWDIGITS = NumericExpression

Action

The SHOWDIGITS modifiable reserved variable controls how many significant
digits are displayed for numeric values by the PRINT statement.

The default value of SHOWDIGITS is 7, the number of significant digits in a
single-precision real number. SHOWDIGITS can be set to integer values in the
range 2 through 28.

SHOWDIGITS only effects the behavior of the PRINT statement and not the PRINT
USING statement.

See Also

PRINT
PRINT USING

Example

FOR i% = 2 to 7
SHOWDIGITS = i%

PRINT PI
NEXT i%

OUTPUT:

3.1
3.14
3.141
3.1416
3.14159
3.141593

TML BASIC Language Reference 282 statements and Functions

SIN Function

Syntax

SIN(NumericExpression)

Action

Returns the trigo.nometric sine of NumericExpression. NumericExpression is an
angle expressed in radians. To convert radians to degrees, multiply by 180/Pi. To
convert degrees to radians, multiply by Pi/180.

See Also

ATN
cos
PI
TAN

Example

PRINT "Sine of 45 degrees '; SIN(45 * PI/180)

OUTPUT:

0.7071068

TML BASIC Language Reference 283 statements and Functions

SPACE$ Function

Syntax

SPACE$(NumericExpression)

Action

The SP ACE$ function returns a string containing a number of spaces equal to
N umericExpression.

NumericExpression must be an integer in the range O to 255 inclusive or an "lliegal
Quantity Error" will occur.

See Also

REP$

Example

FOR i% = 0 to 5
PRINT SPACE$ (i%),"X"

NEXT i%

OUTPUT:

X
X

X
X

X
X

TML BASIC Language Reference 284 Statements and Functions

SPC Function

Syntax

SPC(NumericExpression)

Action

The SPC function is used to skip NumericExpression spaces after the last printed
character in a PRINT or PRINT# statement.

NumericExpression must be an integer value in the range O through 255, otherwise
an "Illegal Quantity Error" occurs. Do not confuse SPC with SPACE$. The SPC
function does not return a string value like the SPACE$ function, but merely
instructs the PRINT statement to skip a certain number of spaces. If you attempt to
use the SPC function in any statement other than PRINT a syntax error will occur.

Note that if the SPC function appears at the end of a PRINT argument list with or
without a following semicolon, a carriage return is not output.

See Also

PRINT
PRINT#
TAB

Example

PRINT "xxx"; SPC(3)
PRINT "yyy"; SPC(3)
PRINT "zzz"

myString$ = SPC (10)

OUTPUT:

XXX YYY zzz

'This is an ILLEGAL use of the SPC function

TML BASIC Language Reference Statements and Functions

SQR Function

Syntax

SQR(NurnericExpression)

AcHon

The SQR function returns the square root of NumericExpression.

NumericExpression must be a positive number, otherwise a runtime error occurs.
The SQR function is faster than raising a number to the 0.5 power.

Example

FOR i = 1 to 10
PRINT i, SQR (i)

NEXT i

OUTPUT:

1 1
2 1.414214
3 1. 732051
4 2
5 2.236068
6 2.44949
7 2.645751
8 2.828487
9 3
10 3.162278

TML BASIC Language Reference 286 Statements and Functions

STOP Statement

Syntax

STOP

Action

The STOP statement aborts the execution of the program, closes all open files and
causes the runtime error: "Program Interrupted".

Example

STOP

TML BASIC Language Reference 287 statements and Functions

STR$ Function

Syntax

STR$(NumericExpression)

Action

The STR$ function evaluates the given NumericExpression and returns the value
as a string. That is, it returns a string which is equivalent to what you would see on
the screen if you were to PRINT NumericExpression.

The complementary function is VAL, which takes a string argument and returns a
numeric value.

See Also

VAL

Example

someNum = 123.456 'Set the variable someNum

someString$ = STR$(someNum) 'Convert the value to a string

PRINT someNum, someString$ 'Make sure they print the same thing

IF someNum = VAL(someString$) THEN
PRINT "STR$ and VAL work!"

END IF

OUTPUT:

123.456 123.456
STR$ and VAL work!

TML BASIC Language Reference 288 statements and Functions

SUB$ Statement

Syntax

SUB$(StringVariable, Start [,Count])

Action

StringExpression

The SUB$ statement replaces a substring of a string variable with another string
value.

SUB$ substitutes the value of StringExpression into the StringVariable beginning
with the Start character in the string. If the optional Count parameter does not
appear, then the number of substituted characters is the number of characters in
StringExpression, otherwise only Count characters are replaced. If Start is greater
than the number of characters in the StringVariable, then the SUB$ statement does
nothing. Both Start and Count are integer expressions which should be in the range
1 through 255.

Example

Str$ = "TML BASIC"
SUB$(Str$,5) = "Pascal"
PRINT Str$

Str$ = "TML BASIC"
SUB$(Str$,5,2) = "Pascal"
PRINT Str$

OUTPUT:

TML Pascal
TML PaSIC

TML BASIC Language Reference statements and Functions

SWAP Statement

Syntax

SWAP(Variablel,Variable2)

Action

The SW AP statement exchanges the values of two variables.

Variable1 and Variable2 are two simple variables or array elements of the same type.
If the two variables are not of the same exact type, a "Type Mismatch Error" occurs.

The SWAP statement is handy because it is not possible to simply trade the values
of two variables with the statements:

varl = var2: var2 = varl

When the second assignment is done, the value of var1 already has the value of
var2. Instead, it is necessary to introduce a temporary variable and a third
statement:

temp= varl : varl = var2: var2 = temp

Example

var1% = 10
var2% = 43
PRINT var1%, var2%

SWAP var1%, var2%
PRINT var1%, var2%

OUTPUT:

10
43

43
10

TML BASIC Language Reference statements and Functions

TAB Function

Syntax

TAB(NumericExpression)

Action

The TAB function is used to tab to the specified print position NumericExpression
in a PRINT or PRINT# statement.

The TAB function causes the current print position to move to the
NumericExpression space from the left margin of the line. If the current print
position is already beyond the specified position, the TAB function has no effect.

NumericExpression must be an integer value in the range 1 through 255, otherwise
an "Illegal Quantity Error" occurs. If you attempt to use the TAB function in a
statement other than PRINT a syntax error will occur.

Note that if the TAB function appears at the end of a PRINT argument list with or
without a following semicolon, a carriage return is not output.

See Also

PRINT
PRINT#
SPC

Example

FOR i% = 1 TO 10
PRINT "X"; TAB (i%); "Y"

NEXT i%

OUTPUT:

XY
XY
X y

X y

X y

X y

X y

X y

X y

X y

TML BASIC Language Reference 291 Statements and Functions

TAN Function

Syntax

TAN(NumericExpression)

Action

Returns the trigonometric tangent of NumericExpression. NumericExpression is an
angle expressed in radians. To convert radians to degrees, multiply by 180/Pi. To
convert degrees to radians, multiply by Pi/180.

See Also

ATN
cos
PI
SIN

Example

PRINT "Tangent of 45 degrees '; TAN(45 * PI/180)

OUTPUT:

1

TML BASIC Language Reference statements and Functions

TEN Function

Syntax

TEN(HexStringExpression)

Action

The TEN function returns the decimal (base 10) equivalent of the hex digits in the
specified String Expression. The returned value is a double integer.
HexStringExpression may contain leading spaces followed by an optional dollar sign
character, but the next eight or fewer characters of the string must represent a
hexadecimal number; otherwise an "lliegal Quantity Error" occurs.

See Also

HEX$

Example

PRINT TEN("$E1000")

OUTPUT:

921600

TML BASIC Language Reference Statements and Functions

TASKPOLL INIT Statement
TASKPOLL Statement

Syntax

TASKPOLL INIT NumericExpression
TASKPOLL NumericExpression

Action

The TASKPOLL statements are used for writing event-driven, desktop programs.
The TASKPOLL INIT statement is used to define the types of events detected, while
the TASKPOLL statement is used to actually detect events. Writing event-driven
programs is not a trivial task, be sure to have a solid understanding of the
information presented in Chapters 11 through 13 before writing event-driven
programs.

The TASKPOLL statements in TML BASIC use the Toolbox Window Manager
TaskMaster routine for detecting events. Thus, to use the TASKPOLL statements in
a program it is necessary for a program to properly load and initialize the required
desktop tools, in particular the Window Manager. For complete information on
what tools are required, and how to load and initialize them see Chapter 13.

As discussed with the EVENTDEF statement, the TASKPOLL statement is capable of
detecting 29 different events. The first 16 events are the standard Event Manager
event types, while the remaining 13 events are those detected by TaskMaster when a
mouse-down event occurs in special places on the desktop. It is possible to control
which of the latter 13 events are actually detected by TaskMaster by setting its
TaskMask. TaskMask is an integer value specified by the NumericExpression
argument to the TASKPOLL INIT statement. Following are the individual
TaskMask values. The individual values are added together to form the complete
TaskMask. Thus, a TaskMask value of 8191 (sum of all values) would indicate that
TaskMaster should detect every possible event type.

1 Detect menu keys
2 Perform automatic window updating
4 Perform FindWindow
8 Perform MenuSelect

16 Perform OpenNDA
32 Perform SystemOick
64 Perform DragWindow

128 Perform SelectWindow if mouse down in content
256 Perform TrackGoAway
512 Perform TrackZoom

1024 Perform GrowWindow
2048 Perform automatic scrolling support
4096 Handle special menu items

TML BASIC Language Reference 294 statements and Functions

The TASKPOLL INIT statement must be executed before the TASKPOLL statement
in order to define a TaskMask value. If a program must change the TaskMask, the
TASKPOLL INIT statement can be executed again.

The TASKPOLL statement is used to detect events. When an event occurs, the
TASKPOLL statement examines the Event Dispatch Table and Menu item Dispatch
Table for the appropriate event-handling subroutine. These tables are defined by the
EVENTDEF and MENUDEF statements. Normally, a program executes the
TASKPOLL statement in a loop, allowing the TASKPOLL statement to automatically
call event-handling subroutines.

The NumericExpression argument defines the EventMask. The EventMask is used
to indicate which events should be returned by the TASKPOLL statement. If an
event exists, but the EventMask indicates the event should not be returned, it
remains in the Event Manager event queue until T ASKPOLL is called with an
EventMask which allows the event to be returned.

The following are the individual EventMask values. The individual values are
added together to form the complete EventMask. Thus, a EventMask value of -1 (all
bits set) indicates that TaskMaster should return every possible event type.

2
4
8

32
64

256
512

1024
2048
4096
8192

16384
-32768

Mouse down
Mouse up
Key down
Auto key
Update
Activate
Switch
Desk Accessory
Device Driver
Application defined #1
Application defined #2
Application defined #3
Application defined #4

See Chapter 13 for a complete discussion of how to write event-driven programs.

See Also

EVENTDEF
EXEVENT@
MENUDEF
TASKREC%
Chapters 11 through 13

TML BASIC Language Reference 295 Statements and Functions

TASKREC% and TASKREC@ Functions

Syntax

TASKREC%(NumericExpression)
TASKREC@(NumericExpression)

Action

The T ASKREC functions return a single or double integer result from the Task
Master TaskRec. NumericExpression is an integer value which represents a word
offset into the Task Record data structure. A Task Record is an internal TML BASIC
variable which is declared as an Event Manager Event Record. The definition of an
Event Record is as follows (from Appendix C):

DIM anEventRecord! (19)

Element(s)

0 .. 1
2 .. 5
6 .. 9
10 .. 13
14 .. 15
16 .. 17
18 .. 19

Value

Integer
Double Integer
Double Integer
Point
Integer
Double Integer
Double Integer

Description

Event code specifying which event occurred
Event message which has additional information about event
Number of ticks since startup
Mouse location where event occurred
Modifier flags
Task Data for Task Master
Task Mask for Task Master

For example, the function call TASKREC@(2) returns the Event Message field from
the Event Record as a double integer value.

The TASKREC functions are used in event-handling subroutines. An
event-handling subroutine extracts information in the event record to determine
exactly what action to take in response to an event. For example, the TASKREC
function can be used to determine the location of the mouse for a mouse-down
event.

The meaning of each field depends upon the event type returned. For a complete
description of meaning for these fields see Chapter 13. The Apple Iles Toolbox
Reference is also a good source of information regarding this data structure.

TML BASIC Language Reference statements and Functions

TEXT Statement

Syntax

TEXT

Action

The TEXT statement sets the display screen to the full screen text mode, clearing any
other text or graphics mode in use. The cursor is positioned on the first line at the
left margin at the top of the screen.

See Also

GRAF INIT
GRAF ON
GRAF OFF
HOME

Example

TEXT

TML BASIC Language Reference 297 statements and Functions

TEXTPORT Statement

Syntax

TEXTPORT Left,Top TO Right, Bottom

Actton

The TEXTPORT statement sets the size and position of the text window within the
text screen. After executing the TEXTPORT statement, all subsequent output to the
text screen is constrained to the text window. The remainder of the text screen is
undisturbed.

Left, Top, Right, Bottom define the boundries of the text window. If the specified
text window boundries define a window larger than the size of the text screen (24
rows by 80 columns) then the text window is truncated to fit.

Example

TEXTPORT 10,10 TO 20,20

TML BASIC Language Reference 298 statements and Functions

TIME Function

Syntax

TIME(NumericExpression)

Action

The TIME function reads the Apple IIGS clock to return the current time
information as an integer rather than a string, as returned by the TIME$ function.
The value of NumericExpression must be in the range O through 3 inclusive,
otherwise the "illegal Quantity Error" occurs.

The following table shows the values returned by the TIME function for each legal
parameter value.

Function

TIME(O)
TIME (1)
TIME (2)
TIME (3)

Value returned

Hour (0 through 23), reads the clock
Hour (0 through 23)
Minute (0 through 59)
Second (0 through 59)

Actually, the Apple IIGS clock is only read when the parameter value is zero.
TIME(O) reads the Apple IIGS clock for all time information and then updates the
values which will be returned by the other TIME function calls. This feature
protects programs from classical "clock rollover" problem.

Example

ReadTime% = TIME(O) 'Read the Apple IIGS Time information
Hour% = TIME(l)
Minute% = TIME(2)
Second% = TIME(3)

PRINT "The time is "; Hour%;

OUTPUT:

The time is 14:32:15

TML BASIC Language Reference

...... . , Minute%; , Second%

statements and Functions

TIME$ Statement

Syntax

TIME$
TIME$ Hour, Minute, Second

Action

TIME$ is both a function and a statement in TML BASIC. The TIME$ statement has
three arguments, while the TIME$ function has none.

The TIME$ function reads the Apple IIGS clock and returns the current time as a
string. The form of the string depends upon the time format chosen in the Apple
Iles control panel. The time format is HH:MM:SS, where HH stands for the hour,
MM stands for the minute and SS stands for the second. The variations of this
format are between a 12 and 24 hour clock. See your Apple lies Owner's Guide for
information on how to use the Control Panel.

The TIME$ statement is used to change the time settings of the Apple Iles clock.
The hour is specified by the Hour parameter, the minute by the Minute parameter
and the second by the Second parameter. The Hour parameter should be in the
range O through 23, while the Minute and Second parameters should be in the range
0 through 59.

Example

T !ME$ 8 , 2 0 , 4 0
PRINT TIME$

OUTPUT:

8:20:40 AM

'Set the clock to 8:20:40 AM.

TML BASIC Language Reference Statements and Functions

TIMER ON and TIMER OFF Statement

Syntax

TIMER ON
TIMER OFF

Action

The TIMER ON statement initiates a process which reads the time from the Apple
Iles clock and calculates a "seconds from midnight" (a number from O to 86399)
value and stores it in the SECONDS@ counter variable. The counter is updated
once a second using the Apple Iles I-second clock interrupt. After TIMER ON is
executed, a program may initiate a one-shot interval timer using the ON TIMER
statement. TIMER OFF disables the I-second clock interrupt and thus freezes the
SECONDS@ counter.

Due to the low priority of the I-second interrupt and other factors in the system, it is
possible for the counter to miss an interrupt and not reflect the actual number of
seconds since midnight.

See Also

ON TIMER
SECONDS@

Example

TIMER ON
RANDOMIZE SECONDS@

TML BASIC Language Reference :rll statements and Functions

TYP Function

Syntax

TYP(FileNumber)

Action

The TYP function returns the type of the next data item to be read from the specified
Basic Data File on its next access. The function is typically used to ensure that a
READ statement with a variable of the proper type is used when the exact elements
of the file are not known.

The FileNumber argument is the file reference number of the file previously
opened with that number. The number returned by the TYP function denotes what
type of data will next be read from the specified file. TYP returns the following
values:

Value Meaning

End of File
Next datum is of type Integer(%)
Next datum is of type Double Integer(@)
Next datum is of type Long Integer (&)

0
2
3
4
5
6
7

Next datum is of type Single Real (no suffix)
Next datum is of type Double Real (#)
Next datum is of type String ($)

If the type of file referenced by FileNumber is not a Basic Data File (BDF), a "File
Type Error" occurs. If FileNumber does not refer to a currently open file, the "File
Not Open Error" occurs.

Example

nextTyp% = TYP(l)
IF nextTyp% = 2 THEN

READ# 1; nextint%
ELSE IF nextTyp% = 3 THEN

READ# 1; nextDblint@
ELSE IF nextTyp% = 4 THEN

READ# 1; nextLongint&
ELSE IF nextTyp% = 5 THEN

READ# 1; nextSglReal
ELSE IF nextTyp% = 6 THEN

READ# 1; nextDblReal#
ELSE IF nextTyp% = 7 THEN

READ# l; nextString$
END IF

TML BASIC Language Reference Statements and Functions

UBOUND Function

Syntax

UBOUND (ArrayName [()] [, DimNumber])

Action

The UBOUND function returns the upper bound (largest possible subscript) of the
specified dimension of an array. The array is given by ArrayName, optionally
followed by the left and right parentheses. If the array is a multi-dimensional array,
the optional DimNumber can be used to specify which dimension UBOUND should
return as the upper bound. If DimNumber is not specified then UBOUND returns
the upper bound of the first dimension of the array.

UBOUND is typically used with dynamic arrays in order to determine their current
size. The lower bound of an array is always zero.

See Also

DIM

Example

i% = 5
j% = 45
DIM DYNAMIC someArray(i%,j%)
PRINT UBOUND (someArray,1), UBOUND(someArray,2)

OUTPUT:

5 45

TML BASIC Language Reference Statements and Functions

UCASE$ Function

Syntax

UCASE$(StringExpression)

AcHon

The UCASE$ function returns a string which is the value of StringExpression with
all lowercase letters, a through z, converted to upper case letters, A through Z.

Example

PRINT UCASE$("tml BaSic")

OUTPUT:

TML BASIC

TML BASIC Language Reference statements and Functions

VAL Function

Syntax

VAL(StringExpression)

Action

The VAL function evaluates StringExpression and returns the value as a real or
integer number.

The evaluation is carried out from left to right. If the beginning characters of
StringExpression do not evaluate to a legal numeric value, the value returned is
zero. If StringExpression begins with legal numeric characters followed by
non-numeric characters, only the numeric characters are evaluated.

The complementary function is STR$, which takes a numeric argument and returns
a string value.

See Also

STR$

Example

someString$ = "123.456" 'Set the variable someString$

someNum = VAL(someString$) 'Convert the value to a number

PRINT someString$, someNum 'Make sure they print the same thing

IF someString$ = STR$(someNUM) THEN
PRINT "VAL and STR$ work!"

END IF

OUTPUT:

123.456 123.456
VAL and STR$ work!

TML BASIC Language Reference statements and Functions

VAR Function

Syntax

VAR(StructureArrayReference, VariableType [,Length])
VAR(MemoryAddress, VariableType [,Length])

Action

The VAR function is used to extract values from a structure array variable. This
statement is the inverse of the SET statement.

The Struct ureArrayReference must be a structure array variable which has been
previously declared. The VariableType argument is used to indicate the type of the
value to be extracted from the structure array. The type implicitly defines the
number of bytes to be extracted from the array. Following are the legal values for
the VariableType argument:

1 extended real
2 integer
3 double integer
4 long integer
5 single real
6 double real
7 string

The above values are the same as the values returned by the TYP function. The
only exception is the value 1, since extended reals are not stored in BDF files.

The Length parameter may be used with the integer types to specifiy a size smaller
than the default integer sizes (2, 4, 8), and it must be used with the string type. For
integers, Length may be 1 or 2; for double integers, Length may be 1, 2, 3 or 4; and for
long integers, it may be 1 through 8. When an integer is created from a reduced size,
the result is always a positive number; that is, no sign extension is provided. For
strings, Length must be in the range from 1 to 255.

The second form of the VAR function effectively implements a multibyte peek
operation. MemoryAddress is a double integer which specifies a location in memory
that is essentially treated as a structure array. The VariableType and Length
parameters are used as above to control the data which is extracted.

TML BASIC Language Reference statements and Functions

See Also

SET
TYP

Example

i%
i%

VAR(aStruct! (0),2)
VAR(aStruct! (0),2,1)

'Extract two bytes as an integer
'Extract one byte as an integer

msg$ = VAR(aStruct! (12),7,10) 'Extract 10 bytes as a string

i% = VAR(aPointer@,2) 'A multi-byte peek to read an integer

TML BASIC Language Reference 307 Statements and Functions

VAR$ Function

Syntax

VAR$(MemoryAddress [,Length])

Action

The VAR$ function creates a TML BASIC string value from the counted string at
the memory address specified by MemoryAddress. MemoryAddress is a numeric
expression which must be a legal Apple Iles address pointing to a counted string.
The optional Length parameter specifies the number of characters to extract from
memory.

The VAR$ function is typically used to extract a counted string from a data structure
returned by an Apple Iles Toolbox routine.

TML BASIC Language Reference statements and Functions

VARPTR and VARPTR$ Functions

Syntax

VARPTR (VariableName)
VARPTR$(StringVariable)

Action

The VARPTR function returns the address of the indicated VariableName. For
string variables, V ARPTR will return the address of the string descriptor, NOT the
address of the string data. To obtain the address of an array, specify the array name
indexed by zero.

The V ARPTR$ function is used to obtain the address of the string data for a string
variable. If the specified string variable is a null string, V ARPTR$ returns zero. If a
numeric variable is passed to V ARPTR$, a "Type Mismatch Error" occurs.

Both VARPTR and V ARPTR$ return a double integer. If an undefined variable is
specified as the argument to these functions, the "Undefined Variable" error is
reported.

Example

DIM rnyArray%(50)

theAddr@
theAddr@
theAddr@
theAddr@

VARPTR(rnyArray%(0))
VARPTR(theAddr)
VARPTR(rnyString$)
VARPTR$(rnyString$)

TML BASIC Language Reference

'Address of the array rnyArray%
'Address of the simple variable theAddr
'Address of the string variable rnyString$
'Address of the string variable's data

Statements and Functions

VOLUMES Statement

Syntax

VOLUMES

Action

The VOLUMES statement is used to read the volume name for each ProDOS 16
device and display its name. The ProOOS 16 devices are numbered .Dl through .D9
inclusive. The display lists the device name, its volume name and the number of
free bytes of storage available on the volume.

See Also

Chapter 9

TML BASIC Language Reference 310 Statements and Functions

WRITE# Statement

Syntax

WRITE# FileNumber [, RecordNumber] [;Expression{, I; Expression}]

Action

The WRITE# statement writes information to a BDF file. The reserved word
WRITE# is followed by the file reference number of an operi file to write to, a
semicolon, and a list of expressions separated by commas or semicolons.

This form of the WRITE# statement performs sequential access, writing each
successive value at the current file position. Each expression in the WRITE#
argument list causes a field to be written to the BDF file. Recall that a field is a tag
byte followed by the binary representation of the value. If a record does not contain
enough room to hold all the fields being written to it, the extra fields are written to
the next record. If a field cannot fit in any record (it is larger than the record size), an
error occurs.

An optional form of the WRITE# statement permits random access to a BDF file.
To perform random access using the WRITE# statement, include a record number
after the file reference number.

See Also

READ#
Chapter 9

Example

WRITE #10; anint%, aReal, aStr$
WRITE #10; "hello"
WRITE #10, 6; anint%, aReal, aStr$

TML BASIC Language Reference 311 statements and Functions

Toolbox Programming

Chapter 11
Programming the Toolbox

In this and the following two chapters, the techniques for writing TML BASIC
programs which utilize the features of the Apple IIGS Toolbox are discussed. The
Toolbox is the name used to designate the large collection of software routines
developed by Apple Computer and built into every Apple Iles. The Toolbox
routines implement features like drawing to the Super Hi-Res graphics screen,
sound, menus, windows, dialogs, and much more. Each of the Toolbox routines are
available in TML BASIC for creating programs which make use of these advanced
capabilities of the Apple Iles.

The Toolbox software is organized into several functional components called tool
sets (or managers). Each tool set defines a collection of procedures, functions and
data structures. For example, the tool set responsible for the creation and
manipulation of windows on the screen is called the Window Manager, the tool set
responsible for drawing in the Super Hi-Res graphics screen is called QuickDraw,
and so on. In addition to providing applications with a powerful collection of
software, the Toolbox also serves to insulate your program from the details of
machine hardware. By using the tool sets, Apple Computer can actually change the
Apple Iles hardware, provide new versions of the tool sets without affecting your
program's ability to operate.

This chapter provides a review of the Apple IIGS Toolbox and its ·organization. Also
discussed are the features available in the TML BASIC language for programming
with the Toolbox. Chapter 12 provides a thorough discussion of the QuickDraw
graphics engine. Together, the Super Hi-Res Graphics screen and the QuickDraw
graphics engine form the foundation of the Apple IIGS's graphics capabilities. Most
all of the other tool sets rely upon QuickDraw for their implementation, thus a good
understanding of how QuickDraw works is necessary to your success in
programming the other tool sets. Finally, Chapter 13 discusses the issues and TML
BASIC features related to creating event-driven programs which use the Apple
Desktop Interface. Programs which use the Apple Desktop Interface are those which
make use of the mouse, menus, windows, dialogs, etc.

Appendix C provides a complete reference for the TML BASIC predefined Toolbox
libraries. The appendix contains a listing of every procedure and function in the
tool sets.

Toolbox Programming 315 Programming the Toolbox

Review of the Apple IIGS Toolbox

The following paragraphs are an introduction to the various tool sets in the Apple
IIGS Toolbox. While it is intended this information provide you with a good
understanding of the contents and organization of the Toolbox, it is by no means
complete. The Apple Iles Toolbox Reference, Volumes 1 and 2, published by Apple
Computer, is the most complete and thorough documentation on the Toolbox and
is absolutely necessary for writing programs which make significant use of the
Toolbox.

The Apple IIGS Toolbox consists of numerous tool sets implementing a broad range
of operations. The tool sets may be grouped into five major functional categories:
the six basic tools, the desktop interface tools, the device interface tools, the
operating environment tools and the specialized tools. The following diagram
illustrates the functional organization of the tool sets.

Print Manager

Line Edit
Manager Standard File

Font Manager

Device Interface Tools
Desktop Interface Tools

Scheduler

The Six Basic Tool Sets
System Loader

Operating Environment Tools
Note Sequencer

Specialized Tools

Toolbox Programming 316 Programming the Toolbox

The Six Basic Tool Sets

The six basic tool sets provide the framework upon which all of the other tools are
built upon. All of these tools are used in event-driven programs.

Tool Locator

Memory Manager

Miscellaneous Tools

QuickDraw

QuickDraw Auxiliary

Event Manager

Desktop Interface Tools

The Tool Locator is the most important of the Apple
JIGS tool sets. The Tool Locator allows you to load
tool sets from disk in to RAM and is responsible for
locating a tool set routine when a program calls a
Toolbox procedure or function.

The Memory Manager is the second most important
tool set. This tool is entirely responsible for the
allocation, deallocation, and repositioning of
memory blocks on the Apple IIGS. The Memory
Manager keeps track of how much memory is free
and what parts are allocated and to whom.
Whenever a program needs memory, it must ask the
Memory Manager to allocate it.

The Miscellaneous Tools consist mostly of
system-level routines that must be available to most
other tool sets.

QuickDraw is the tool set that controls the graphics
environment of the Apple IIGS and draws simple
objects and text in the Super Hi-Res graphics screen.
All other tools which create graphical objects such as
the Menu and Window Manager call the QuickDraw
tool set.

This tool contains additional graphics routines which
complement the QuickDraw tool set.

The Event Manager is responsible for detecting
system events such as mouse-clicks, keystrokes,
window updates, etc. It queues the events and then
delivers the events to an applicatton as requested.

The tool sets in this group support the Apple Desktop Interface. The desktop
interface is the visual interface between the user of an application and the computer.
It includes the menu bar and the blue colored area on the screen. Applications
usually have documents on the desktop displayed in windows and perhaps other
graphic objects such as icons. Applications implementing the desktop will always

Toolbox Programming 317 Programming the Toolbox

use the Menu, Window and Control managers, and usually most of the others as
well. New Desk Accessories are supported by the Desk Manager.

Control Manager

Desk Manager

Dialog Manager

Font Manager

Line Edit

List Manager

Menu Manager

Scrap Manager

Window Manager

Device Interface Tools

The Control Manager consists of all the routines
necessary to manipulate controls. Examples of
controls include scroll bars, radio buttons, check
boxes, etc.

The Desk Manager is the tool which enables an
application to support both classic desk accessories
and new desk accessories.

The Dialog Manager provides the routines which
allow an application to create and use both dialog
boxes and alerts as a means of communication
between a user and your program.

The Font Manager is the tool set which allows an
application to make use of different text fonts, font
styles, etc. within QuickDraw.

Line Edit is used to display and edit a line of text on
the screen and allow a user to edit the text.

The List Manager is used to create, display and allow
selection of a variable amount of similar data.

The Menu Manager controls and maintains the use
of pull-down menus and items in the menus.

The Scrap Manager implements the desk scrap,
which implements the Cut, Copy, and Paste
operations of an application.

The Window Manager creates the desktop
environment and is responsible for the creation and
manipulation of windows.

The tool sets in this group are used to manage input and output between the
computer and peripheral devices and a program.

Toolbox Programming 318 Programming the Toolbox

Apple Desktop Bus

Print Manager

Standard File

Text Tools

The Apple Desktop Bus is a method and a protocol
for connecting input devices, such as keyboards and
mice with the Apple IIGS. The routines in this tool
set are used to send commands and data between the
Apple Desktop Bus Microcontroller and the rest of
the system.

The Print Manager allows an application to use
QuickDraw routines to print text and graphics to an
Imagewriter or Laser Writer.

The Standard File tool set implements the standard
user interface for specifying a file to be opened or
saved.

The Text Tools provide an interface between the
Apple II character device drivers, which must be
executed in emulation mode, and applications
running in native mode.

Operating Environment Tools

The operating environment tools control the interaction between low-level
hardware and software functions. While not listed here, the Memory Manager and
Miscellaneous Tools tool sets implement similar low-level operations characteristic
of the Operating Environment tools and in many cases interact with these tool sets.

Scheduler

System Loader

Speclallzed Tools

The Scheduler delays the activation of a desk
accessory or other system task until the resources that
the task/ desk accessory requires become available.
This avoids potential system crashes when more
than one task attempts to use the same resource at
the same time.

The System Loader is responsible for loading and
relocating code for applications and desk accessories
to memory.

The specialized tool sets are those which do not fit into any of the above groups.
These tool sets can be grouped into two categories: those related to sound and those
related to mathematical operations. The sound tools provide access to the powerful
sound capabilities of the Apple IIGS sound hardware, in particular the ENSONIQ
DOC chip. The mathematical tools implement floating-point and integer
calculations.

Toolbox Programming 319 Programming the Toolbox

Sound Manager The Sound Manager provides access to the Apple IIGS's sound
hardware for creating basic sounds.

Note Synthesizer The Note Synthesizer is used to create complex musical sounds
simulating a variety of instruments using the Apple IIGS's sound hardware.

Note Sequencer The Note Sequencer is used to string together notes from the Note
Synthesizer into sequences, patterns and phrases that make up a song.

Integer Math This tool set consists of a varied collection of operations for integers,
long integers and signed fractional numbers. These include multiplication,
division, conversions, etc.

SANE SANE implements the Standard Apple Numeric Environment. It is an
extended-precision IEEE 754 conformant implementation of floating point
arithmetic and transcendental functions.

Where are the Tools?

As of System Disk release version 3.1, 28 tool sets have been defined for the Apple
IIGS Toolbox. Many of these tools are located in the Read-Only Memory (ROM) built
into every Apple IIGS. Other tool sets are located on disk and must be loaded into
Random Access Memory (RAM) before they are used. Some of the RAM based tool
sets are located in RAM because there was not sufficient space left in the ROM to
include the tool set there, while others are in RAM because they were either not
completed or have been added since the ROM was created. Fortunately, a program
does not have to concern itself with the exact location of a particular procedure or
function in a tool set. This is the responsibility of the Tool Locator tool set. This
design for the Toolbox allows Apple Computer to move existing tool sets into ROM,
move the location of tool sets within ROM or RAM and even add new tool sets to
the Toolbox without affecting existing programs.

The only requirement of a program using the Toolbox is to ensure the tool sets used
by a program which are not in ROM are available on the system disk so that they can
be loaded into RAM. Tool sets residing on disk must be located in the TOOLS folder
within the SYSTEM folder of the system disk used to boot the Apple IIGS. The name
of a tool set file is TOOLxxx where the xxx is a three digit number corresponding to
the tool set's assigned tool number. For example, the Window Manager tool set file
has the name TOOL014 because the Window Manager is tool set number 14. The
TML BASIC distribution disk is shipped with all of the RAM based tool sets
available on the Apple Iles System Disk.

Table 11-1 lists of all 28 Apple IIGS tool sets with their names and whether or not the
tool set is currently located in ROM or RAM. This information is accurate for

Toolbox Programming 320 Programming the Toolbox

System Disk version 3.1 and ROM version 01.

Table 11-1
Apple IIGS Toolbox

ToolNumber Tool Name RAM ROM

1 Tool Locator X
2 Memory Manager X
3 Miscellaneous Tools X
4 QuickDraw II X
5 Desk Manager X
6 Event Manager X
7 Scheduler X
8 Sound Manager X
9 Apple Desktop Bus X

10 SANE X
11 Integer Math X
12 Text Tools X
13 Reserved for System Use
14 Window Manager X
15 Menu Manager X
16 Control Manager X
17 System Loader X
18 QuickDraw Auxilary Routines X
19 Print Manager X
20 Line Edit X
21 Dialog Manager X
22 Scrap Manager X
23 Standard File X
24 Disk Utilities X
25 Note Synthesizer X
26 Note Sequencer X
27 Font Manager X
28 List Manager X

The Toolbox Libraries

Recall from Chapter 8 that a library is an independent collection of TML BASIC
source code which is compiled separately from a program. A compiled library can be
used in other libraries and programs. In addition to allowing user defined libraries,
TML BASIC provides several predefined libraries which define the interfaces to each
Apple IIGS Toolbox tool set. These predefined libraries are called the Toolbox
Libraries. The toolbox libraries are found in the LIBRARIES folder on the TML BASIC
distribution disk.

Toolbox Programming 321 Programming the Toolbox

Each of the Toolbox Libraries contain procedure and function declarations for a
particular tool set. The source code to these libraries is not shipped with TML
BASIC, however, Appendix C provides a complete listing of the source code for
these libraries. For example, the QuickDraw library contains declarations for every
procedure and function defined for the QuickDraw tool set. Note, the code
implementing each procedure and function is not given after the DEF PROC and
DEF FN statements. Instead, the special TOOL directive is specified after the
parameter list. The TOOL directive is followed by two integers: the function
number and tool set number respectively. TML BASIC uses this information to tell
the Tool Locator how to locate the code for a toolbox procedure or function. Note
that the TOOL directive is not legal TML BASIC, and thus, cannot be used in your
own programs. The TOOL directive is a special extension only used to define the
toolbox libraries.

Each of the tool sets in the Toolbox is assigned a unique number called the tool set
number. Given this number, the Tool Locator knows which tool set a toolbox
procedure or function belongs. In addition, each procedure and function within a
given tool set is assigned a unique integer called the function number. The tool set
number and function number together are used by the Tool Locator to uniquely
identify every procedure and function in the Toolbox. For example, the MoveTo
procedure in the QuickDraw tool set is declared:

DEF PROC MoveTo(H%,V%) TOOL 58,4

This declaration defines the MoveTo procedure to have two integer parameters
(representing the horizontal and vertical position to locate the QuickDraw pen), and
that the procedure is implemented as function number 58 in the QuickDraw tool set
(tool set number 4).

The LIBRARY Statement

To use a tool set library in a program its name must be specified in a LIBRARY
statement. When the LIBRARY statement is used, TML BASIC enters all of the
procedure and function declarations of the library into its symbol table just as if the
declarations had been made in the source code. For example, the QuickDraw library
can be used in a program with the following statement:

LIBRARY "QuickDraw"

The LIBRARY statement can appear anywhere in a program. Before TML BASIC
compiles a program, it first scans the file for all occurrences of the LIBRARY
statement. As each LIBRARY statement is encountered, its declarations are entered
into the program's symbol table, making them available throughout the entire
program.

Toolbox Programming 322 Programming the Toolbox

The LIBRARY statement also serves another purpose. As noted above, several of
the tool sets are not available in ROM, but rather are implemented in disk files
which must be loaded into RAM. When a LIBRARY statement names a tool set
which is not in ROM, TML BASIC automatically generates code to load the disk file
into RAM. To do this, it generates a toolbox call to the LoadOneTool procedure in
the Tool Locator tool set. See Chapter 13 for more information about loading tool
sets into RAM.

Searching for a Library

When a library name is specified in the LIBRARY statement, TML BASIC searches
for the library's compiled library file. The library file is not the source code for the
library, but its compiled declarations and code. As described in Chapter 3, the name
for a library file is the name of the library with the suffix ".LIB". For example, the
library filename for the toolbox library QuickDraw is QUICKDRAW.LIB.

TML BASIC searches in three locations to find a library file. First, it looks to see if
the library file is already in memory. Second, it searches in the same folder as the
source code file containing the LIBRARY statement. And finally, if the file is not
found there, it searches in the directory specified in the Library Search Path option of
the Preferences Dialog (see Chapter 6 for more information about the Preferences
Dialog). If the file is not found in any of these locations, TML BASIC then reports an
error.

It is possible to override TML .BASIC by specifying the complete pathname of the
library file. For example, the following statement indicates the QuickDraw library
file is in the /TML/LIBRARIES subdirectory:

LIBRARY "/TML/LIBRARIES/QUICKDRAW"

Note, even though the complete pathname is specified, the ".LIB" suffix is not
included. This is because TML BASIC automatically adds the suffix regardless of
whether the full pathname is used or not.

The CALL Statement

While the toolbox procedures and functions are declared using the DEF PROC and
DEF FN statements as shown in Appendix C, they are not normal procedures and
functions. As such, they are not called using the PROC and FN reserved words.
Instead they are called using the CALL statement. The CALL statement is a special
reserved word used to indicate that a program is calling a Toolbox procedure or
function. For example, the QuickDraw MoveTo procedure is called as follows:

CALL MoveTo(l0,23)

Toolbox Programming 323 Programming the Toolbox

TML BASIC allows the use of the underscore symbol (_) as a shorthand form of the
CALL reserved word. Thus, the statement shown above can be rewritten as follows:

_Move To (10,23)

If a program attempts to CALL a toolbox procedure or function in a tool set which
has not been named in a LIBRARY statement within the program, TML BASIC will
report the error "Toolbox procedure xxx is not defined", where xxx is the name of
the procedure or function.

When calling a toolbox procedure, the number and type of parameters must match
the declaration of the procedure in its library file. If the parameter list does not
match, TML BASIC reports an error. The rules for matching parameters are the
same as for normal BASIC procedures and functions.

As described in Chapter 7, TML BASIC stores strings in a data structure called the
string pool, and the value of a string variable is an integer offset into the string pool
where the string data is stored. Whenever a toolbox procedure has a string
parameter, TML BASIC automatically converts the value of a string variable into
the machine address of the string data and passes that value for the parameter.
Toolbox procedures with string parameters expect the address of the string data,
where the string data is stored as a counted string. A counted string is represented as
an integer byte whose value is the number of characters in the string followed by the
actual characters in the string. Unlike GS BASIC, TML BASIC stores string data in
the string pool as counted strings, therefore, no conversion is necessary.

The R.STACK Functions

Many of the toolbox routines are implemented as functions, which of course return
values. In addition, every toolbox routine returns an error code indicating whether
the routine executed successfully or not. The error code and function result values
are saved in a special data structure called the CALL return stack. The stack is a 32
byte buffer (16 words). The R.ST ACK functions are used to read values out of the
stack. The syntax for calling the R.STACK function is as follows:

R.STACK%(NumericExpression)
R.STACK@(NumericExpression)
R.STACK&(NumericExpressi on)

Because each toolbox function can return a different amount of information and
different data types, the CALL return stack can be accessed for integer, double integer
and long integer values. The NumericExpression parameter is a word offset into
the stack. The number of bytes read from the stack beginning at that point depends
upon which R.STACK function is called.

Toolbox Programming 324 Programming the Toolbox

R.ST ACK% returns an integer value reading 2 bytes of data from the stack; the
R.STACK@ returns a double integer reading 4 bytes of data from the stack; and
finally, R.STACK& returns a long integer reading 8 bytes of data from the stack.
Thus, R.STACK% may be indexed in the range Oto 16, R.STACK@ in the range Oto
15, and R.ST ACK& in the range O to 13.

R.STACK%(0) returns the error code returned by the toolbox procedure or function.
If the value is zero, then no error occurred. If the value is non-zero, an error
occurred during the execution of the toolbox routine, and your program should
take appropriate action.

R.STACK%(1) is the first word of data returned on the CALL stack.

The following code fragment illustrates how the R.STACK function is used:

CALL NewHandle(1024,myMemoryID%,O,O)

IF R.STACK%(0) = 0 THEN
myHandle@ = R.STACK@(l)

ELSE
PRINT "Unable to allocate memory handle, error: ";R.STACK%(0)

END IF

Using EXFN Instead of CALL

The EXFN reserved word is an alternate form of the CALL statement used to call
tool set functions from within an expression. By using EXFN, the result of the
function can then be used directly in an expression without having to reference the
R.STACK function. The syntax for using EXFN is as follows:

EXFN [%1@1&1#1$] functionname (parameter list)

Note that the underscore symbol MUST precede the tool set name.

The following example shows how the above example can be rewritten using the
EXFN reserved word.

myHandle@ = EXFN@_NewHandle(l024,myMemoryID%,O,O)

IF R.STACK%(0) <> 0
THEN PRINT "Unable to allocate memory handle, error: ";R.STACK%(0)

In the example above, the type character @ was used after the EXFN reserved word.
This character signifies the function result value is a double integer. The use of a
type character after EXFN is strictly optional since TML BASIC knows the result type

Toolbox Programming 325 Programming the Toolbox

from the function's declaration. In fact, TML BASIC ignores the type character if it is
not correct. For example, consider the following variation of the previous example:

myHandle@ = EXFN%_NewHandle(1024,myMemoryID%,O,O)

Here the % type character is used. However, TML BASIC ignores the type character
and NewHandle still returns a double integer.

A tool set routine which is defined as a procedure can also be called using the
EXFN_ reserved word. In this case, however, the resulting value is the error code
returned by the procedure since a procedure does not have a function result.

An Example

The following is a small example program which uses the QuickDraw library to
paint the Super Hi-Res screen white and then draw several lines on the screen.

LIBRARY "QuickDraw"

GRAF INIT 320
GRAF ON

_ClearScreen(-1)

FOR i% = 0 TO 100 STEP 20
_MoveTo(30+i%,SO+i%)
_LineTo(70+i%,90+i%)

NEXT i%

GET$ Key$
GRAF OFF
END

'Make the QuickDraw tool set available

'Initialize the Super Hi-Res screen in 320 mode
'Turn the graphics screen on

'Paint the screen white

'Move the QuickDraw pen
'Draw a line

'Wait for a keypress
'Turn the graphics screen off (text screen on)

This example shows how simple it is to program simple graphics using the Toolbox.
You should now read Chapter 12 to discover more about QuickDraw graphics and
then Chapter 13 for information on how to create much more sophisticated
programs which use the Toolbox. Example programs in the P ART3.EXAMPLES and
MORE.EXAMPLES folders also illustrate how to program using the Toolbox.

Toolbox Programming 326 Programming the Toolbox

Drawing to the Screen (and Elsewhere)

Chapter 12

Quickdraw Graphics

Any time your desktop application needs to draw something, it uses the Apple IIGS
tool set QuickDraw II (and its extension, QuickDraw II Auxiliary). QuickDraw II is an
adaptation and extension of the Macintosh toolbox component QuickDraw-it
performs similar operations but has been enhanced to support Apple lIGS color.

QuickDraw II allows you to perform graphic operations easily and quickly.
QuickDraw draws text in different fonts with styling variations such as italics and
boldface. It draws lines and shapes of various sizes and patterns. It can also draw
items in a variety of colors or gray scales.

QuickDraw Il can draw to the screen or to other parts of Apple IIGS memory. In fact,
printing a document with the Print Manager involves using QuickDraw to "draw"

your document into a memory buffer used by the Print Manager.

NOTE

For brevity, we'll use the terms QuickDraw and QuickDraw II synonymously here.
Unless otherwise explicitly stated, QuickDraw means the Apple IIGS tool sets
QuickDraw II and QuickDraw II Auxiliary, not the Macintosh version.

To get our bearings, we'll first consider where QuickDraw JI draws. Then we'll briefy
discuss how it draws, and finally look at what it draws. The chapter ends with two
examples that tie together several of the key ideas.

Where QuickDraw II Draws

The question of where QuickDraw II draws involves consideration of Apple IIGS
memory (including screen memory) as well as QuickDraw's own internal
representation of its drawing universe. These are the main concepts:

• Drawings are stored in Apple IIGS memory as pixel images, ordered collections
of bytes that represent rectangular arrays of pixels. Screen memory contains a
special pixel image-its contents are displayed on the computer's monitor.

Toolbox Programming 327 Quickdraw Graphics

• QuickDraw II draws its text and graphic objects on an abstract two-dimensional
mathematical surface called the coordinate plane. Points on a plane are much
easier to visualize and manipulate than addresses in memory. Locations on the
QuickDraw II coordinate plane are related to pixel-image memory locations by
specific location information supplied to QuickDraw.

• Quickdraw draws most objects within the context of graphic ports. A port is a
complete drawing environment and defines, among other things, a specific
part of memory and a specific rectangular area on the coordinate plane where
drawing can occur. There can be many open ports at a time--some for drawing
to the screen, some for drawing to other parts of memory. Different ports'
drawing spaces may be separate from each other or they may overlap.

• QuickDraw II can be made to clip, or constrain its drawing, to within limits of
arbitrary size, shape, and location.

• By manipulating two independent sets of coordinates (global coordinates and
local coordinates), an application can easily control both what gets drawn inside
a port's drawing space and where, on the screen or other pixel image, that
drawing space appears.

The Coordinate Plane

QuickDraw locates every action it takes in terms of coordinates on a
two-dimensional grid (Figure 12-1). The grid is QuickDraw's coordinate plane;
coordinates on the plane are integers ranging from -16K to +16K in both the X- and
Y-directions. The point (0,0), therefore, is in the middle of the grid. Note also that
grid values increase to the right and downward on the plane; this is different from
what you might be used to, but it is the same direction and order in which video
scan lines are drawn.

Distances on the grid are measured in pixels. Thus a 10 x 10 "square" on the
coordinate plane is equivalent to a rectangle 10 pixels by 10 pixels on the display
screen (which would not be a square, of course, because Apple IIGS pixels are not
square). Only a very small portion of the coordinate plane can be displayed on the
screen at any one time-the plane is 32,000 pixels on a side, whereas the screen can
show a maximum of 640 pixels by 200 pixels at a time. Figure 12-1 shows the
approximate size of the screen (and user) compared to the coordinate plane.

IMPORTANT

QuickDraw must not be asked to draw outside the coordinate plane. Commands to
draw outside this space will produce unpredictable results. They won't generate
errors.

Toolbox Programming 328 Quickdraw Graphics

Macintosh programmers: This conceptual drawing space is not the same size as that
used by QuickDraw on the Macintosh. On the Macintosh, the drawing space is 64K
by 64K pixels centered around 0,0, thus making the boundary coordinates -32K,-32k
and 32K,32K.

-16.384

11 1111111111111 I I I I I I I I I I I I I I I
...

+16.384

+16.384

Figure 12-1
The QuickDraw II coordinate plane

To understand how QuickDraw does its drawing, we need to consider how it
represents some basic graphic elements. On the coordinate plane, grid lines are
considered to be infinitely thin. A point is defined as the intersection of two grid
lines, so it also has no dimensions. Pixels, on the other hand, have a definite size;
they are thought of as falling between the lines of the grid. The smallest element
that QuickDraw can draw is a pixel, so if it were to draw a point at the location (3,3)
on the coordinate plane, it must draw a single pixel. But which one? Four pixels
touch the point. QuickDraw defines the pixel corresponding to each point on the
plane as the pixel immediately below and to the right of the point. See Figure 12-2.

Toolbox Programming Qulckdraw Graphics

(0,0) 3 4

Figure 12-2
Grid lines. points. and pixels on the coordinate plane

Pixel Images and the Coordinate Plane

A pixel image is an area of memory that contains a graphic image. The image is
organized as a rectangular grid of pixels occupying contiguous memory locations.
Each pixel has a value that determines what color in the graphic image is associated
with that pixel.

Macintosh programmers: QuickDraw H's pixel images are similar to Macintosh
QuickDraw's bit images. The major difference is that a pixel is described by more
than a single bit.

As described above, QuickDraw II draws to the coordinate plane. However, the
coordinate plane is really just an abstract concept. Inside the Apple IIGS drawing
actually occurs by modifying pixel images-that is, by modifying the contents of
certain memory locations. In particular, drawing something visible on the screen
involves modifying the contents of screen memory.

The data structure that ties the coordinate plane to memory is the Loclnfo (for
location information) record. The Loclnfo record tells QuickDraw where in memory
to draw, how the pixel image in that part of memory is arranged, and what its
position on the coordinate plane is. In TML BASIC, the Loclnfo data structure looks
like this:

DI M aLocinfoRec! (15)

Element(s)

0
2 .. 5
6 .. 7
8 .. 15

Toolbox Programming

Value

Integer
Double Integer
Integer
Rect

Description

Scanline control byte (portSCB)
Pointer to a pixel image (ptrToPixlrnage)
Width
BoundsRect

Quickdraw Graphics

The record consists of four fields:

•

•

•

•

portSCB (a replica of the scan-line control byte) tells QuickDraw how many bits
per pixel there are in this image-two for 640 mode, four for 320 mode.

The scan-line control byte and the differences between 640 mode and 320 mode
are discussed further under "Drawing in color", later in this section.

ptrToPixlmage (or image pointer) is the memory address of the image. It points
to the first byte of the pixel image, which contains the first (upper-leftmost)
pixel.

width (or image width) specifies the width (in bytes, not pixels) of each line in
the pixel image. QuickDraw needs to know this so it can tell where each new
row in the image starts. (The image width must be an even multiple of 8 bytes.)

boundsRect (for boundary rectangle) is a rectangle that maps the pixel image
onto the coordinate plane. The upper-left point in the rectangle corresponds to
the first pixel in the image. The lower-right comer of the rectangle describes the
extent of the pixel image (as far as QuickDraw is concerned). See Figure 12-3.

.. . .
pointer :

Origin=

Boundary
rectangle

Pixel image in

Lower right =

l byte(= 2 pixels in 640 mode)

Figure 12-3
Pixel image and boundary rectangle

Toolbox Programming 331 Quickdraw Graphics

NOTE

Remember, what separates one pixel image from another is where in memory it is
stored, not where on the QuickDraw coordinate plane its boundary rectangle
happens to be. You can think of each pixel image as having its own private copy of
the entire coordinate plane to play with, so that even if two pixel images have
overlapping coordinate plane locations, there won't be any conflict between them if
they occupy completely different parts of computer memory.

GrafPort, Port Rectangle, and Clipping

Most drawing takes place in conjunction with a data structure called a GrafPort (for
graphic port). Each GrafPort contains a complete specification of a drawing
environment, including the location information (Loclnfo structure) described
above. In addition to the location information, a GrafPort contains three other fields
that restrict where drawing in a pixel image can take place: the port rectangle,
clipping region, and visible region.

The port rectangle (or portRect) is a rectangle on the coordinate plane. Any drawing
in a GrafPort occurs only inside its portRect. When you look at a window on the
screen in a desktop application, its interior (everything but its frame) corresponds to
a port rectangle.

Windows are described further in Chapter 13.

The port rectangle can coincide with the boundary rectangle or it can be different.
You can think of it as a movable opening, allowing access to all or part of the pixel
image. As Figure 12-4 shows, QuickDraw can draw only where the boundary
rectangle and port rectangle overlap.

Toolbox Programming Quickdraw Graphics

Boundary rectangle

Port rectangle

Figure 12-4
Boundary rectangle/port rectangle Intersection

The clipping region (or clipRgn) is provided for an application to use. When a
GrafPort is opened or initialized, the clipping region is set to the entire coordinate
plane (effectively preventing any clipping from occuring). The program can use the
clipRgn in any way it wants. Any drawing to a pixel image through a GrafPort occurs
only inside the clipping region.

The visible region (or visRgn) is normally maintained by the Window Manager. An
application can have multiple windows on the screen, each one associated with a
GrafPort. Windows can overlap, and each port's visible region represents the parts
of the window that are visible.

In summary, drawing occurs in a pixel image only in the intersection of the
boundary rectangle, port rectangle, clipping region, and visible region.

Global and Local Coordinate Systems

Everything is positioned in Quick.Draw's universe in terms of coordinates on the
plane. However, if you think of multiple open windows on the screen, you can see
that there are at least two different ways in which you might want to locate objects:

• You may want to specify where windows appear on the screen (for example,
when they are moved).

• You may want to specify where objects appear within windows (for example,
when scrolling), independently of where on the screen the windows may be.

Toolbox Programming 333 Quickdraw Graphics

The toolbox needs global coordinates whenever more than one GrafPort share the
same pixel map; the global coordinates tell QuickDraw exactly where every port
rectangle is compared to every other one. The global coordinate system for each
GrafPort is that in which the boundary rectangle for its pixel map has its origin at
(0,0) on the coordinate plane. For drawing to the screen, you can think of global
coordinates as screen coordinates, where the upper-left comer of the screen is the
point (0,0).

The origin of a rectangle, in QuickDraw II, is its upper-left comer.

However, each port also has its own local coordinate system. For example, when
drawing into a port it might be more convenient to think in terms of distance from
the port rectangle's origin rather than the boundary rectangle's origin. By defining
the port rectangle as starting at (0,0), you can base all your drawing commands on
distance in from the left edge and down from the top of the portRect.

That's convenient for drawing in a window, but local coordinates are more of a
convenience than that. They aren't constrained to a value of (0,0) for the port
rectangle origin-you can set them to any coordinate-plane value. Why would you
want to? Because of the way drawing commands work.

Suppose you are using a window to display portions of a document that is larger
than the port rectangle in size-a fairly common occurrence. You are using drawing
commands that draw the entire document, and you know that's no problem because
the drawing will be automatically clipped to the port rectangle. But how do you
control which part of the document shows in your window? You do it by adjusting
local coordinates.

All QuickDraw's drawing commands are based on the current port's local coordinate
system. So if location (0,0) in your GrafPort's local coordinates corresponds to the
port rectangle's upper-left comer, any time you draw your document into that port,
its upper-left corner will be displayed. If you define your local coordinates
differently, different parts of your document will appear in the window. Thus you
can think of local coordinates as document coordinates-the upper-left comer of the
document being viewed in the port has the value (0,0) in local coordinates. See
Figure 12-5.

Toolbox Programming 334 Quickdraw Graphics

Port
rectangle --------·

Size of

being drawn
into port

(0.0)

(0,0)

(50,250)

Figure 12-5

b. PortRect origin = (50,250)
in local coordinates

Drawing different parts of a document by changing local coordinates

NOTE

When the local coordinates of a GrafPort are changed, the coordinates of the
GrafPort's boundary rectangle and visible region are similarly recalculated, so (as
noted) the port will not change its relative position on the screen or in relation to
other open ports on the screen.

However, when the local coordinates are changed the GrafPort's clipping region and
pen location are not changed-that is, they appear to shift right along with the
image that is being viewed in the port. It makes sense to have the pen, which is used
to modify the image being viewed, and the dipping region, which is used to mask
off parts of the image being viewed, "stick" to it.

Pen location and other pen characteristcs are described next, under "How
QuickDraw II Draws".

Toolbox Programming 335 Quickdraw Graphics

How QuickDraw II Draws

How QuickDraw II draws any of its objects depends on the drawing environment
specified in the current Graf Port. Each GrafPort record includes location and clipping
information (described above), information about the graphics pen (described next),
information about any text that will be drawn (described under ". ... And Text Too",
later in this section), and other information such as the patterns to draw with.

The Drawing Pen

Each open port has its own drawing pen. By means of several characteristics
modifiable by the application, the pen controls where and how drawing (of both text
and graphics) occurs.

Pen location: The pen has a coordinate-plane location (in local coordinates). The pen
location is used for drawing lines and text only-other shapes are drawn
independently of pen location.

Pen size: The pen is a rectangle that can have almost any width or height. Its default
size is 1 x 1 (pixels). If either the width or height is set to 0, the pen will not draw.

Pen pattern: The pen pattern is a repeating array (8 pixels by 8 pixels) that is used like
ink in the pen. Wherever the pen draws, the pen pattern is drawn in the image.
The pattern is always aligned with the coordinate plane so that adjacent areas of the
same pattern drawn at different times will blend in a continuous manner.

Background pattern: The background pattern is an array similar to the pen pattern.
Erasing is the process of drawing with the background pattern.

Drawing mask: The drawing mask is an 8-bit by 8-bit pattern that is used to mask, or
screen off, parts of the pattern as it is drawn. Only those pixels in the pattern aligned
with an on (=1) bit in the mask are drawn. Figure 12-6 shows how a mask affects
drawing with a pattern.

Toolbox Programming 336 Quickdraw Graphics

8x8 pattern

•••••••• • • • •••••••• • • •

8x8
drawing mask

•

8x8 pattern
with mask applied

• • • •
•
• • • •

•

Figure 12-6

Repeated
every 8 pixels

.........................
• I

Drawing with pattern and mask

Note that drawing with a mask in which every bit has the value 1 is like drawing
with no mask at all-all pen pixels are passed through to the image. Likewise,
drawing with a mask that is all zeros is like not drawing at all-all pen pixels are
blocked.

Pen mode: The pen mode specifies one of eight logical operations (COPY, notCOPY,
OR, notOR, XOR, notXOR, BIC and notBIC) that determine how the pen pattern is to
affect an existing image. When the pen draws, QuickDraw II compares pixels in the
existing image with their corresponding pixels in the pattern, and then uses the pen
mode to determine the value of the resulting pixels. For example, with a pen mode
of COPY, the existing pixels' values are ignored-a solid black line is black regardless
of the image already on the plane. With a pen mode of notXOR, the bits in each pen
pixel are inverted and then combined in an exclusive-OR operation with the bits in
each corresponding existing pixel. Figure 12-7 shows a rectangle drawn over an
existing circle, in both COPY and notXOR mode.

The Apple Iles Toolbox Reference contains further information about pen modes in
its section titled "QuickDraw II".

Toolbox Programming 337 Quickdraw Graphics

COPY mode notXORmode

Figure 12-7
How pen mode affects drawing

Basic Drawing Functions

QuickDraw draws lines with the current pen size, pen pattern, drawing mask, and
pen mode. QuickDraw draws other shapes (rectangles, rounded-corner rectangles,
ovals, arcs, polygons and regions) in five different ways:

QuickDraw's shapes are described next, under ''What QuickDraw II Draws".

• Frame: QuickDraw draws an outline of the shape, using the current pen size,
pen pattern, drawing mask, and pen mode.

• Paint: QuickDraw fills the shape, using the current pen pattern, drawing mask,
and pen mode.

• Erase: QuickDraw fills the shape, using the current background pattern and
drawing mask.

• Invert: QuickDraw inverts the pixels in the shape, using the drawing mask.

• Fill: QuickDraw fills the shape, with a specified pattern and using the drawing
mask.

QuickDraw draws text as described under ". ... And Text Too", later in this section.

What QuickDraw II Draws

QuickDraw II can draw a number of graphic objects into a pixel image. It draws text
characters in a variety of monospaced and proportional fonts, with styling
variations that include italics, boldfacing , underlining, outlining, and shadowing. It
draws straight lines of any length, width, and pattern. It draws hollow or
pattern-filled rectangles, circles, and polygons. It draws elliptical arcs and filled
wedges, irregular shapes and collections of shapes. It also draws

Toolbox Programming 338 Quickdraw Graphics

pictures-combinations of these simple shapes. Figure 12-8 summarizes them.

Lines

Polygons

Points and Lines

Rectangles and
rounded-corner

rectangles

Regions

Circles
and ovals

Normal
Bold
Italic
Underlined

Text

Figure 12-8
What QuickDraw II draws

Arcs and
wedges

A point is represented mathematically by its Y- and X-coordinates-two integers. A
line is represented by its ends-two points, or four integers. Like a point, a line is
infinitely thin. When drawing a line, QuickDraw II moves the upper-left comer of
the pen along the straight-line trajectory from the current pen location to the
destination location. The pen hangs below and to the right of the trajectory, as
illustrated in Figure 12-9.

Toolbox Programming Quickdraw Graphics

Starting
pen location

Pen and
pattern

Destination location

Figure 12-9
Drawing lines

The line as drawn

Before drawing a line, you can use QuickDraw calls to set the current pen location
and other characteristics such as pen size, mode, and pattern.

IMPORTANT

QuickDraw's data structure that defines a point has the vertical coordinate first (y,x)
rather than (x,y).

Rectangles

A rectangle (Figure 12-10) is also represented by two points: its upper-left and
lower-right comers. The borders of a rectangle are infinitely thin. Rectangles are
fundamental to QuickDraw; there are many functions for moving, sizing, and
otherwise manipulating rectangles.

Toolbox Programming Quickdraw Graphics

0 2 3 4 5 6 7 8
·

_

Figure 12-10
A rectangle

The pixels associated with a rectangle are only those within the rectangle's bounding
lines. Thus the pixels immediately below and to the right of the bottom and
right-hand lines of the rectangle are not part of it.

Rectangles may have square or rounded corners. The corners of rounded-corner
rectangles are sections of ovals (described next); they are specified by an oval height
and oval width.

Figure 12-11
Rounded-corner rectangle

IMPORTANT

The QuickDraw data structure that defines a rectangle has coordinates in the
following order: top, left, bottom, right. Thus the defining coordinates for the
rectangle in Figure 12-10 are (1,2,7,6). This may seem strange, but it is consistent with
the (y,x) ordering of points.

Toolbox Programming 341 Quickdraw Graphics

Circle, Ovals, Arcs, and Wedges

Ellipses and portions of ellipses form another class of shapes drawn by QuickDraw II.
An oval is an ellipse, and it is defined just like a rectangle-the only difference is
that QuickDraw is told to draw the ellipse inscribed within the rectangle rather than
the rectangle itself. If the enclosing rectangle is a square, the resulting oval is a circle.

Pixel shape: Remember, Apple IIGS pixels are not square. A true circle on the screen,
or a true square, will have unequal horizontal and vertical dimensions in terms of
pixels.

Figure 12-12
Oval

An arc is a portion of an oval, defined by the oval's enclosing rectangle and by two
angles (the starting angle and the arc angle), measured clockwise from vertical.

If an arc is painted, filled, inverted, or erased, it becomes a wedge; its fill pattern
extends to the center of the enclosing rectangle, within the area defined by the lines
bounding the arc angle.

Toolbox Programming

arc angle

Figure 12-13
Arc

342

starting angle

Quickdraw Graphics

Polygons

A polygon is any sequence of connected lines. You define a polygon by moving to
the starting point of the polygon and drawing lines from there to the next point,
from that point to the next, and so on.

------------------.

Figure 12-14
Polygon

I
I
I
I
I
I
I

Polygons are not treated in exactly the same manner as other closed shapes such as
rectangles. For example, when QuickDraw II draws (frames) a polygon, it draws
outside the actual boundary of the polygon, because the line-drawing routines draw
below and to the right of the pen locations. When it paints, fills, inverts, or erases a
polygon, however, the fill pattern stays within the boundary of the polygon. If the
polygon's ending point isn't the same as its starting point, QuickDraw adds a line
between them to complete the shape.

Regions

A region is another fundamental element of QuickDraw, one that can be
considerably more complex than a line or a rectangle. A region can be thought of as
a collection of shapes or lines (or other regions), whose outline is one or more
closed loops. Your application can draw, erase, move, or manipulate regions just
like any other QuickDraw structures.

You can define regions by drawing lines, framing shapes, manipulating existing
regions, and equating regions to rectangles or other regions.

Toolbox Programming 343 Quickdraw Graphics

Figure 12-15
Region

Regions are particularly important to the Window Manager, which must keep track
of often irregularly shaped, noncontiguous portions of windows in order to know
when to activate the windows or what parts of them to update.

Pictures

A picture is a collection of any QuickDraw drawing commands. Its data structure
consists of little more than the stored commands. QuickDraw plays the commands
back when the picture is reconstructed with a DrawPicture call. A complex
mechanical drawing produced from an Apple IIGS drafting program might be saved
as a single QuickDraw II picture .

. . . And text too

QuickDraw II doesn't draw graphic images only-it also does all text drawing for
desktop applications. As an application programmer, you can easily control the
placement, size, style, font, and color of display text with QuickDraw calls.

Your program can provide QuickDraw II with text in a number of formats:

•

•

•

Character: A single ASCII character at a time

Pascal string: A length byte followed by a sequence of ASCII characters

C string: A sequence of ASCII characters terminated by a zero byte

Text block: An arbitrary number of ASCII characters in a buffer

Toolbox Programming 344 Quickdraw Graphics

NOTE

TML BASIC automatically converts BASIC strings into Pascal strings for Toolbox
routines which have string parameters. See Appendix C for more information.

However it receives the text, QuickDraw II draws it in the same way. It draws each
character at the current pen location, with the current font, using the current text
mode, with the current character style, and using the current foreground and
background colors. After drawing each character, QuickDraw updates the pen
location for drawing the next one.

Providing QuickDraw with various fonts and character styles is the job of the Font
Manager. The Font Manager is a tool set that supports QuickDraw's
character-drawing ability by providing an application with different fonts and styled
variations of fonts. If you want to allow the user to choose from all of the fonts
available when the application is run, or if you're developing an application that
requires a specific font, the Font Manager can help you.

Characters

To help understand just where text appears and how much space it takes up, let's
define a few terms. Refer to Figure 12-16.

Text fonts are made up of individual characters. A character is represented in
memory as a rectangular array of bits, called a character image, representing rows
and columns of pixels. The on (=1) bits are the foreground pixels; the off bits (=0) are
the background pixels.

Every character in a font has a baseline. The base line is a horizontal line, in the
same position for every character in the font. Any foreground pixels of a character
image that lie below the base line constitute the character's descender (characters like
leftand q have descenders). The ascent line is the horizontal line just above the top
row of a character (including any blanks); the distance from the base line to the
ascent line is the font's ascent, and is equal to the height of the tallest chartacter in
the font. The descent line is the line just below the bottom row of the character
(including any blanks); the distance from the base line to the descent line is the
font's descent, and is equal in size to the largest descender in the font.

Each character's origin is a point on the baseline that is used to position the character
for drawing. This point need not touch any foreground pixels of the character image.
When the character is drawn, it is placed in the destination location so that its
character origin coincides with the current pen location. For many letters, the
character origin is located on the left edge of the character image; then, when the

Toolbox Programming 345 Quickdraw Graphics

character is drawn, its leftmost foreground pixels fall just to the right of the pen
location.

The font height is the sum of the ascent and descent heights, and it is the same for
all characters in a font. The character width is the number of pixels the pen position
is to be advanced after the character is drawn. It includes the width of the character
itself and any needed space between it and the next character to be drawn.

Font height, ascent, descent, character width, and leading (the vertical space between
lines of text) are needed for calculating string lengths and line spacings when you
display text on the screen.

Base
line

Descent
line

Character
origin

Character width

Figure 12-16
A character image

Font
height

Next character
origin

The basic commands necessary to draw characters on the screen are quite simple.
The following four commands illustrate how the message "One moment please ... "
is drawn with white letters and a black background.

_SetBackColor(O)
_SetForeColor(15)
_MoveTo (20, 20)
_DrawString("One Moment Please ... ")

'Background color= black
'Foreground color= white
'Move pen to upper left of screen
'Write the message

Once the foreground and background colors are set, all that's needed to display a
character string is to move the pen to the desired location, and call the QuickDraw
routine DrawString.

Toolbox Programming 346 Quickdraw Graphics

Fonts

Each collection of related characters is called a font. With the font manipulation
capabilities of the Font Manager, your Apple IIGS applications can show
sophisticated text display in a variety of fonts, sizes, and styles.

The font strike: All the character images making up a font are stored in memory as
a font strike. A font strike is a long, rectangular array of bits consisting of the
character images of every defined character in the font, placed sequentially in order
of increasing ASCII code. The character images in the font strike abut each other; no
blank columns are left between them.

Figure 12-17
Part of a font strike

A given font strike need not contain a character image for every possible ASCII code.
The font may leave some characters undefined; these are called missing characters.
Immediately following the last defined character in the font strike is a character
known as the missing symbol, which is to be used in place of any missing character.
In many fonts the missing symbol is a hollow rectangle; in the Apple IIGS system
font, it's a white-on-black question mark. Whenever the QuickDraw II text-handling
routines encounter a missing character, they substitute the missing symbol for the
character.

Choosing a font: Fonts for the Apple TIGS are grouped into font families. Individual
fonts within families can have various characteristics, as noted in the following list.
When your application requests a font, the Font Manager searches all available fonts
and chooses the one which most closely matches the request, in these categories:

• Name: Every font family has a name. The name refers to both plain-styled
characters of all sizes, and any styled variations, such as bold or italics.

• Number: Every font family has a number, also independent of point size or
style modifications. Every family number is unique, and corresponds to a single
family name. $0000 represents the system font. Whenever an application
requests a font whose family number is not available, the Font Manager
substitutes the system font.

Toolbox Programming 347 Quickdraw Graphics

Size: An individual font has a size, described in points. A point is a typesetting
measure equal to about 1/72nd of an inch. The Font Manager can provide both
real and scaled fonts. A real font is one that actually exists on disk at a particular
point size. Conversely, a scaled font is one that was enlarged or reduced by
calculation from a font of a different size. The Font Manager may scale a font
from an existing size if the requested size is not available. Real fonts generally
have a better screen appearance than scaled fonts.

• Style: An individual font also has a style (or combination of styles). The
presently defined styles are

Plain
Bold
Italic
Underline
Outline
Shadow

There are two different ways to obtain styled variations of fonts. First, the Font
Manager will provide a styled font if one is available-one whose characters are
designed with (for example) bold or italic styling. Second, QuickDraw II can style a
font-that is, it can produce a bold or italicized version of a plain-styled font. In fact,
it can produce any combination of the defined styles.

Fonts that are already styled will not be further styled (in the same manner) by
QuickDraw II, regardless of the text styling selected. For example, an italic font is not
further italicized if that option is selected on a style menu. However, it could be
underlined.

Text cannot be underlined unless the font's characters have a descent value
(distance between the base line and descent line) of at least 2 pixels. The Apple Iles
system font (Shaston 8) has a descent value of 1, and therfore cannot be underlined.

IMPORTANT

The Font Manager looks for fonts in the subdirectory called FONTS/ in the
SYSTEM/ subdirectory on the system disk. This subdirectory must contain all fonts
(except the system font) that are to be available to applications. See Appendix C.

Your application can allow the user to select a font by calling the Font Manager
routine ChooseFont.

Toolbox Programming 348 Quickdraw Graphics

Drawing in Color

The video display hardware of the Apple IIGS includes advanced color capabilities.
Although tool calls make it unneccessary for you to manipulate the hardware
directly, knowledge of a few background concepts will help you understand the way
QuickDraw II manipulates the colors on the screen.

The Apple IIGS offers two Super Hi-Res graphics modes. Both modes have 200 scan
lines, but the scan lines differ in horizontal resolution-one mode has 320 pixels
(the color of each specified by 4 bits), and the other has 640 pixels (the color of each
specified by 2 bits). In changing from 320 mode to 640 mode, the horizontal
resolution is doubled at the expense of dividing the color resolution by four.

Both modes use a chunky pixel organization (in which the bits for a given pixel are
contained in adjacent bits within one byte), as opposed to bit planes (in which
adjacent bits in memory affect adjacent pixels on the screen). Therefore the 4 bits of a
pixel in 320 mode are in the same memory locations as the 4 bits of a pair of adjacent
2-bit pixels in 640 mode.

Colors on the Apple Iles are determined from master color values, which are
mathematical combinations of the primary red, blue, and green hues available on a
color monitor. A master color value is a 2-byte number. The low-order nibble of the
low-order byte controls the intensity of the color blue. The high-order nibble of the
low-order byte controls the intensity of the color green. The low-order nibble of the
high-order byte controls the intensity of the color red. The high-order nibble of the
high-order byte is not used. Figure 12-18 illustrates the format of a master color
value.

Byte I Byte 0

Bit: 15 14 13 12 11 10 9 6 5 4 3 2 1 0

Value: (not used) red green

Figure 12-18
Master color value format

blue

A 3-digit hexadecimal number can describe each master color, with one digit ($0-$F)
for each primary color. Thus a master color value of $000 denotes black, $FFF is
white, $00F is the brightest possible blue, $080 is a medium-dark green, and so on.
Because each primary color has 16 possible values, a total of 4096 colors are possible.
At any one time, the Apple IIGS can display only a small subset of all possible colors.
An application specifies its colors by constructing one or more color tables, short lists
of the available colors for any one pixel.

Toolbox Programming 349 Quickdraw Graphics

Color Tables and Palettes

Applications cannot specify pixel colors directly, using master color values. Pixels
contain only 2 or 4 bits, and it takes 12 bits to specify a master color value. That's why
color tables are necessary. A color table is a table of 16 2-byte entries. Each entry in the
table is a master color value; any of the 4096 possible color values may appear in any
position in the color table.

An application determines the color of a given pixel by specifying an offset into the
color table. The number of bits used to describe a pixel limits how far into the table it
can reach. The colors available to the application, as specified in its color tables,
constitute its palette. See Figure 12-19.

Pixels in 320 mode are represented in memory by 4-bit integers. For each pixel, that
4-bit value is used as an a offset into a color table. With 4 bits, there are 16 possible
pixel values, so the palette in 320 mode is 16 colors-the entire color table.

Pixels in 640 mode are represented in memory by 2-bit integers. With 2 bits, there are
4 possible pixel values to offset into the color table, so the palette in 640 mode
consists of only 4 colors. That would seem to leave three-quarters of the color table
unused in 640 mode, and severely restrict the use of color, but it's not really so.

In the first place, each 4 adjacent pixels in 640 mode use 4 different parts of the same
color table; a color table, then, consists of four mini-palettes, which needn't have the
same sets of master colors. Therefore, although each individual pixel in 640 mode
can have one of only four colors, groups of four pixels can have a total of 16 colors
from which to choose. How to use this ability to create a large variety of colors is
described under "Dithered Colors in 640 Mode", later in this section.

Toolbox Programming Quickdraw Graphics

Color Color
Table Table

0
1 pixel =4 bits

0
1 pixel =2 bits

Mini- Pixel value=

2 palette 3 2
offset into table

3 3 (Maximum

4 4
value= 3)

5 Mini-
6 Pixel value= palette4

offset Into table

Palette
7
8 8

9 9

10 palette 1 10

11 11

12 12

13 13

14 palette2 14

15 (Maximum 15
value= 15)

320 640
mode mode

Figure 12-19
Accessing the color table In 320 mode and 640 mode

An application may construct as many as 16 different color tables to choose from .
Each of the 200 scan lines in Super Hi-Res graphics can use any one of the 16 tables.
For each scan line, a scan line control byte (SCB) decides which color table is active.
The SCB also controls screen display mode (320 or 640), interrupt mode (whether or
not to generate an interrupt during horizontal blanking), and fill mode (whether or
not pixel values of zero can be used to fill areas of color in 320 mode).

Standard Color Palette (320 Mode)

The standard palette (the default color table) for 320 mode is shown in Table 12-1. In
the table, offset means positon in the color table, and value means master color
value, the hexadecimal value controlling the fundamental red-green-blue
intensities.

Toolbox Programming 351 Quickdraw Graphics

Offset

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Table 12-1
standard palette-320 mode

Color

Black
Dark Gray
Brown
Purple
Blue
Dark Green
Orange
Red
Beige
Yellow
Green
Light Blue
Lilac
Periwinkle Blue
Light Gray
White

Value

000
777
841
72C
OOF
080
F70
DOO
FA9
FFO
OEO
4DF
DAF
78F
CCC
FFF

The standard palette was selected because of its flexibility and appearance; we
recommend that you use it unless you have a specific need to change it.

Dithered Colors In 640 Mode

As explained above, only four colors are available for each pixel in 640 mode. But
when small pixels of different colors are next to each other on the screen, their
colors blend. For example, a black pixel next to a white pixel appears to the eye as a
larger gray pixel. By cleverly choosing the entries in the color table we can make
more colors appear on the screen. This process is called dithering.

At the same time, in order to preserve the maximum resolution for displaying text,
both black and white must be available for each pixel. This leaves only two
remaining colors per pixel to choose from, which seems like a severe restriction. But
with dithering, you can have 640-mode resolution for text and still display 16 or
more colors, if you are willing to resort to a few simple tricks.

Toolbox Programming 352 Quickdraw Graphics

Consider the following byte with four pixels in it:

Bit value o o o o
Plxel number

Each pixel has the value 1, which is an index into the second place in each of the
color table's minipalettes (as shown in Figure 12-19). So pixel l's color is determined
by entry 1 in minipalette 1, pixel 2's color is determined by entry 1 in minipalette 2,
and so on. If we use the standard 640-mode color table (shown in Table 12-2) then
pixels 1 and 3 will appear blue ($00F), and pixels 2 and 4 will appear red ($000). The
eye will average these colors and see violet.

There are 16 different combinations of values that a pair of pixels can assume in 640
mode, meaning that you can obtain 16 colors by this dithering method. To
implement it, just make sure that the pattern you use for drawing or filling consists
of a repeating array of 4-bit (= 2-pixel) values.

Table12-2
Standard palette-640 mode

Offset Color Value (minipalette offset)

0 Black 000 0
1 Blue OOF 1
2 Yellow FFO 2
3 White FFF 3

4 Black 000 0
5 Red 000 1
6 Green OEO 2
7 White FFF 3

8 Black 000 0
9 Blue OOF 1
10 Yellow FFO 2
11 White FFF 3

12 Black 000 0
13 Red DOD 1
14 Green OEO 2
15 White FFF 3

Toolbox Programming 353 Quickdraw Graphics

Black and white: Note that the entries in the minipalettes for the standard
640-mode color table are set up so that black and white appear in the same positions
in each palette . This arrangement provides pure black and white at full 640
resolution, allowing crisper text display.

Toolbox Programming 354 Quickdraw Graphics

Chapter 13
Creating a Desktop Application

In this chapter, the issues and techniques for creating desktop applications using the
Apple Iles Toolbox are discussed. In addition, the TML BASIC language statements
and functions for implementing desktop programs are discussed in the context of
the esDEMO.BAS example application.

Desktop applications are one of the most advanced types of programs you can create
for the Apple Iles. Not only are good programming skills required, but a solid
understanding of the Apple Iles Toolbox, especially the desktop tool sets, is a must.

This chapter serves only as an introduction to creating desktop applications. While
some attention is given to the details of using particular Toolbox routines, especially
those used to create menus and windows, no effort is made to describe how all of
the Toolbox routines work. The Apple Iles Toolbox Reference is the definitive
reference for the Toolbox, and anyone attempting to write more than the simplest of
programs will find this reference absolutely necessary.

Appendix C provides a complete list of the Toolbox libraries provided with TML
BASIC, and Chapter 11 describes how to use the libraries in a program.

The Desktop Interface

The Apple Desktop Interface is a collection of human interface guidelines developed
by Apple Computer which define the look and feel of applications using the Apple
Iles Toolbox. The "look and feel" of an application is the communication between
the computer and the user.

The goal of the guidelines is to create a standard behavior for applications that is
accessible, nonthreatening and predictably consistent to the user. Applications
which faithfully follow the guidelines will be familiar to the user, and thus more
likely to be successful.

The complete set of guidelines are documented in the Human Interface Guidelines
published by Apple Computer.

Human Interface Guidelines

The following is a brief summary of the principles found in the human interface
guidelines. If you plan to write desktop applications, the guidelines should be
followed so that regardless of the functionality of your program, it will

Toolbox Programming Creating a Desktop Application

communicate with the user in a consistent and standard fashion.

Metaphors from the real world. Use concrete metaphors and make them plain, so
that users have a set of expectations to apply to computer environments.
Whenever appropriate, use audio and visual effects that support the metaphor.

Direct Manipulation. Users want to feel that they are in charge of the computer's
activities. They expect their actions to have results, and their tools should provide
feedback.

See-and-point instead of remember and type. Users select actions from alternatives
presented on the screen. Users rely on recognition, not recall; they shouldn't have
to remember anything the computer already knows.

Consistency. Effective applications are both consistent within themselves and
consistent with one another. An application should develop a standard mechanism
for manipulating related objects. If certain operations are common between
different applications (cut, copy, paste), the mechanism for using them should be the
same.

WYSIWYG - what you see is what you get. There should be no secrets from the
user, no abstract commands that only promise future results. There should be no
significant difference between what the user sees on the screen and what is
eventually printed.

User-initiated actions. The user, not the computer, initiates and controls all actions.

Feedback and dialog. Keep the user informed. Provide immediate feedback.

Forgiveness. Users make mistakes; forgive them.

Perceived stability. Users feel comfortable in a computer environment that remains
understandable and familiar rather than one which changes randomly.

Aesthetic integrity. Visually confusing or unattractive displays detract from the
effectiveness of human-computer interactions. Users should be able to control the
superficial appearance of their computer workplaces-to display their own style and
individuality.

Toolbox Programming 356 Creating a Desktop Application

Desktop Elements

To implement the principles defined by the human interface guidelines, Apple has
defined two classes of standard interface elements for the Apple Desktop Interface:

Screen elements that define the "look" of the interface,

Human-computer interactions that account for the "feel" of the interface.

Screen elements provide the basic visual context for applications. There are three
fundamental screen elements: the desktop, windows and menus (see Figure 13-1}
The desktop establishes the metaphor for the interface. It is the "surface" on which
the other elements of the interface are placed upon. A window is a frame for
viewing the objects that an application manipulates. Windows in the Apple Iles
Finder are used to view files and folders on a disk, while windows in TML BASIC
are used for viewing text files containing BASIC source code. Finally, pull-down
menus provide the central mechanism for users to direct an application to perform
an operation. Menus hide the details of using an application, but, at the same time,
makes them quickly and easily accessible.

Edit Special Color

Figure 13-1
The Finder Desktop

Direct manipulation by the user is foremost to human-computer interaction. A
pointing device such as the mouse, provides the user direct control of the objects in
the desktop. The user can point to objects on the screen, select them with a click of
the mouse, move objects, and choose actions which apply to selected objects. The

Toolbox Programming 357 Creating a Desktop Application

keyboard is also part of the interaction between the user and computer. While the
keyboard is generally used for data entry, it usually provides alternatives for moving
or selecting objects.

Event-driven Programming

Writing programs which implement the desktop and provide direct manipulation
capabilities requires a different style of programming than you may be accustomed.

In the old days, computer programs were executed in batch mode. A stack of cards
were fed into the computer, the computer then processed the cards one after the
other in the same order every time the program was run. Then came the computer
terminal. Users could now interact with a program while it was running. Programs
allowed users to send commands that affected the way a program performed. While
the user interacted with the program, the program still controlled the choices and
the sequence in which operations were performed. The user was still controlled by
the program.

Event-driven programming, together with the Apple Desktop Interface, is the
complete opposite of these more traditional ways of programming. Event-driven
programming means, simply, that the user is in control rather than the program.
The basic principle of event-driven programming is that there are many choices
available to the user at any one time, and the user controls the sequence of
operations performed. For example, the user can invoke operations from
pull-down menus, open or close windows, or do work such as word processing or
drawing. With few exceptions, any of these operations are available at any one time.
That is, a program is modeless.

The activities which cause these actions are called events. Events can be keypresses,
mouse clicks, a disk inserted into a disk drive, data arriving through a serial port, or
even events generated by the program itself.

The Main Event Loop

The basic structure of an event-driven program is actually quite simple. The
program spends most of its time in a loop called the main event loop. The only
activity performed in the loop is to wait for an event to occur. When an event
occurs, it decides what type of event it is and takes appropriate action.

Figure 13-2 presents a conceptual representation of the execution flow in an
event-driven program written in TML BASIC. A program contains a simple loop
which repeatedly calls the TASKPOLL statement. Every time the TASKPOLL
statement is executed it examines the event queue to see if any event has occurred.
If so, the event is removed from the queue and handed off to an event-handling
subroutine. The subroutine is selected from the Event Dispatch Table.

Toolbox Programming 358 Creating a Desktop Application

Event Queue

Event

Event

Event Handling

Figure 13-2
Main Event Loop

Event-handling
subroutine

Event
_ Dispatch

Table

There are 29 different event types currently defined by the Toolbox. Each of these
events is detected by the TASKPOLL statement. Table 13-1 lists each of these events.
The first 16 events (numbered 0-15) are the Event Manager Events. These are the
lowest level events, and are detected by the Event Manager tool set. The events
numbered 16 through 28 are the Window Manager TaskMaster Events. These are
high level events which indicate a mouse-down event in a special part of the
desktop, either a window or a menu. They represent the result values from the
FindWindow toolbox routine.

Event Code Meaning

0 NullEvent
1 Mouse-Down
2 Mouse-Up
3 Key-Down

Toolbox Programming

Table 13-1
Event Manager Event Types

Description

Reported when no other event is available.
Generated when the user presses the mouse button.
Generated when the user releases the mouse button.
Generated when the user presses any character key on the
keyboard or keypad. The character keys include all keys except the
Shift, Caps Lock, Control, Option and Apple keys which are
modifier keys.

Creating a Desktop Application

4
5

6

7
8

9
10

11

12-15

16
17

18
19
20
21
22
23
24
25
26
27
28

Undefined
Auto-Key

Update

Undefined
Activate

Generated when the user holds a key down . The auto-key is generated
after an initial delay and then at periodic intervals.
This is an internally generated event indicating that the contents of a
window need to be updated (redrawn).

This is an internally generated event when a window becomes active or
inactive. That is, when a window moves from back to front or from front
to back respectively.

Switch Generated when a switch control is pressed.
DeskAccessory Generated when the Oassic Desk Accessory menu is invoked via the

Control-Apple-Escape key sequence.
Device Driver Generated when a device driver performs a PostEvent due to some

circumstance, usually when data transmission has occurred or has been
interrupted.

Application There are four different application defined events generated. The

InDesk
InMenuBar

InSysWindow
InContent
InDrag
InGrow
InGoAway
InZoom
Inlnfo
Undefined
Undefined
InFrame

meaning of these events are defined by the application and entered into
the event queue using PostEvent.
A mouse-down event occurred in the desktop (not in any window).
A mouse-down event occurred in the menu bar and then released over a
menu item which was not a desk accessory from the Apple menu or from a
menu added by a desk accessory. TaskMaster tracks the mouse until it has
been released over a particular menu item, thus selecting it.
A mouse-down event occurred in a system window.
A mouse-down event occurred in the content region of a window.
A mouse-down event occurred in the drag region of a window.
A mouse-down event occurred in the grow icon of a window.
A mouse-down event occurred in the close box of a window.
A mouse-down event occurred in the zoom box of a window.
A mouse-down event occurred in the information bar of a window.

A mouse-down event occurred in the frame of a window.
InSpecialMenu Same as the InMenuBar event, except the selected menu item

was one of the Gose, Undo, Cut, Copy, Paste or Oear items which did not
apply to a desk accessory.

When TASKPOLL detects an event, the event type is used as an index into a special
data structure implemented internally by TML BASIC-the Event Dispatch Table.
The table contains the labels for subroutines which handle events. To enter a label
into the table, the EVENTDEF statement is used. For example, the statement

EVENTDEF 3, HandleKeyDown

enters the label HandleKeyDown into index 3 of the table. Thus, when TASKPOLL
detects a key-down event, the HandleKeyDown subroutine is automatically called to
handle the event. Event-handling subroutines must end with the statement
RETURN O rather than the normal RETURN statement.

Toolbox Programming Creating a Desktop Application

TML BASIC implements a second data structure called the Menu Item Dispatch
Table. This table allows a program to specify the labels for subroutines which
implement each of the menu items in a program. The table contains 128 entries
numbered O through 127. Subroutine labels are entered into this table using the
MENUDEF statement. For example, the statement:

MENUDEF 6,DoAbout

enters the label DoAbout into index 6 of the table. Thus, when TASKPOLL detects
an InMenuBar (event 17) or InSpecialMenu (event 28) event, and no subroutine
label has been specified in the Event Dispatch Table for the event, the appropriate
menu item handling subroutine is called from the Menu Item Dispatch Table.

As discussed in the "SetUpMenus" section later in this chapter, every menu item is
given a unique integer identifier. The menu item identifiers are in the range 250 to
377 inclusive. Thus, TASKPOLL subtracts 250 from the menu item identifier to
obtain the index into the Menu Item Dispatch Table.

To use the TASKPOLL statement, a program must first initialize event processing.
This is done with the TASKPOLL INIT statement. The statement has one argument
which is the TaskMask value. The TaskMask controls which events the TASK.POLL
statement is allowed to handle. As noted before, the 29 event types are divided into
two classes: Event Manager and TaskMaster. The Event Manager events are the
low level events which are always detected. However, the high level TaskMaster
events and other operations are controlled by the TaskMask.

The TaskMaster events are detected as a result of further analyzing and tracking a
mouse-down event in a menu or window. Since every desktop program contains
menus and windows, the event-handling for certain mouse-down events can be
handled in a standard way. For example, every-time the mouse button is clicked
over the menu bar, the mouse must be tracked in order to pull-down menus and
select a menu item. Further, if a desk accessory name is selected, the desk accessory
must be opened. The code to perform this operation can be done in a standard way
for all programs. TaskMaster (ie TASKPOLL) can perform these operations if
requested. The operations TaskMaster should perform are specified by the
TaskMask value in the TASKPOLL INIT statement. A mask is the sum of the
individual values. Table 13-2 lists the TaskMask values.

Toolbox Programming 361 Creating a Desktop Application

Value

1
2
4
8

16
32
64

128
256
512

1024
2048
4096

Table 13-2
T ASKPOLL INIT Mask Values

Description

Detect menu keys
Perform automatic window updating
Perform FindWindow
Perform MenuSelect
Perform OpenNDA
Perform SystemClick
Perform DragWindow
Perform SelectWindow if mouse down in content
Perform TrackGoAway
Perform TrackZoom
Perform GrowWindow
Perform automatic scrolling support
Handle special menu items

Thus, a TaskMask value of 8191 (the sum of every value) specifies that TaskMaster
should perform all possible high level event processing.

Finally, it is possible to filter certain events from being detected by using the
EventMask argument of the TASKPOLL statement. Table 13-3 contains the list of
event mask values. Again, a complete event mask is obtained by adding the
individual values. Of course, a program should generally process all events.

Value

2
4
8

32
64

256

Toolbox Programming

Table 13-3
TASKPOLL Event Mask Values

Description

Mouse down
Mouse up
Key down
Auto key
Update
Activate

362 Creating a Desktop Application

512
1024
2048
4096
8192

16384
-32768

Switch
Desk Accessory
Device Driver
Application defined #1
Application defined #2
Application defined #3
Application defined #4

An event mask of -1 indicates that no events should be filtered.

An Example Desktop Application

The remainder of this chapter is dedicated to illustrating the techniques of
event-driven programming in the context of the Apple Desktop Interface. The
discussions are centered around the example application GSDEMO.BAS. This program
is a simple desktop application which has two windows and four menus.

The GSDEMO.BAS program uses the DeskTools library found in the LIBRARIES folder.
The DeskTools library contains several procedures and functions which implement
operations that most desktop applications require. The complete source code to the
library is included so that you can change their behavior as appropriate for your own
applications.

Before continuing, you should compile this program and experiment with its
features so that you can better appreciate the code necessary to create each element of
the program.

The DeskTools Library

Several operations related to desktop applications must be implemented in the
source code of every desktop program. These include the loading and initialization
of the Apple IIGS Toolbox tool sets used by the application, creating menus and
windows and finally, shutting down the tool sets when the program is complete.
Since these operations are nearly identical in every program, TML BASIC includes
the complete source code to a library of procedures and functions which implement
these tasks. This library is the DESKTOOLS.BAS library found in the LIBRARIES folder
of the distribution disk.

The following is a list of the procedures and functions declared in the DeskTools
library:

Toolbox Programming 363 Creating a Desktop Application

DEF LIBRARY DeskTools

DEF PROC StartUpTools(ScreenMode%,LoadPrintTools%)
DEF PROC ShutDownTools

DEF PROC StdAppleMenu
DEF PROC StdEditMenu
DEF PROC StdFileMenu(FullMenu%)
DEF PROC DrawMenus

DEF FN StdWindow@(Left%,Top%,Right%,Bottom%,Title@,DrawingProc@)
DEF FN StdDialog%(Msgl$,Msg2$,NumButtons%)

END LIBRARY

The complete source code for this library is found in the file DESKTOOLS.BAS. The
procedures and functions in this library are central to the implementation of the
GSDEMO.BAS program. As such, they are discussed in the context of the GSDEMO.BAS
program throughout the next several sections. Because TML BASIC libraries can be
used in any program by using the LIBRARY statement, you will find the routines in
this library invaluable when creating your own desktop programs.

In fact, you should create your own libraries which implement common routines
among your applications. For example, a library which implements printing would
be an extremely useful library.

Writing a Desktop Appllcatlon

The main part of most desktop programs consists of only six procedure calls. They
are the following:

PROC StartUpTools(320,0)
PROC SetUpMenus
PROC SetUpWi ndows
PROC SetUpEventTables
PROC MainEventLoop
PROC ShutDownTools

The StartUpTools and ShutDownTools procedures are responsible for loading,
initializing and then shutting down the Toolbox tool sets used in a program. The
SetUpMenus and SetUpWindows procedures are used to create the application's
menus and windows. The SetUpEventTables procedure enters subroutine labels
into the Event Dispatch Table and Menu Item Dispatch Table. And finally, the
MainEventLoop procedure detects and processes events.

The remaining six sections of this chapter explore the operations of each of these
procedures as implemented in the GSDEMO.BAS program and the DESKTOOLS.BAS

Toolbox Programming 364 Creating a Desktop Application

library. While the examples are specific to these source code files, the discussion is
applicable to any desktop program.

The StartUpTools Procedure

StartUpTools is always the first procedure to be executed in an application which
uses the Apple IIGS Toolbox. The procedure is responsible for loading and
initializing every tool set used by the application. As discussed in Chapter 11, not all
of the tool sets reside in the Apple IIGS read-only memory (ROM), but instead on the
system disk. These disk-based tool sets must be loaded to random access memory
(RAM) before they can be used.

The Apple Iles Toolbox currently contains 28 tool sets, however, most applications
use only a subset of these tools. In fact, most desktop applications use only the
following 12 tool sets:

Memory
Miscellaneous Tools
QuickDraw
Event Manager
Window Manager
Control Manager
Menu Manager
Line Edit
Dialog Manager
Standard File
Scrap Manager
Desk Manager

Programs that use the Print Manager for printing documents also use four
additional tool sets:

QuickDraw Auxiliary
List Manager
Font Manager
Print Manager

Of course, any particular program may use a subset of these tool sets or other tool
sets not listed here, most notably the sound related tool sets.

The following is the source code for the StartUpTools procedure from the DeskTools
library which illustrates the technique for loading and initializing the tool sets.

Toolbox Programming 365 Creating a Desktop Application

DEF PROC StartUpTools(ScreenMode%,LoadPrintTools%)

'Save the startup parameters in globals
svScreenMode% = ScreenMode%
svLoadPrintTools% = LoadPrintTools%

'Initialize the graphics screen
GRAF INIT Mode%
GRAF ON

'Give a message while waiting for tools to load and start
_MoveTo(40,40)
_SetBackColor(O)
_SetForeColor(lS)
_DrawString("Please wait, starting tools ... ")

'Load the standard tools to memory (also load TML BASIC .LIB files)

LIBRARY LOAD "Memory"
LIBRARY LOAD "MiscTool"
LIBRARY LOAD "QuickDraw"
LIBRARY LOAD "Event"
LIBRARY LOAD "Window"
LIBRARY LOAD "Control"
LIBRARY LOAD "Menu"
LIBRARY LOAD "LineEdit"
LIBRARY LOAD "Dialog"
LIBRARY LOAD "StdFile"
LIBRARY LOAD "Scrap"
LIBRARY LOAD "Desk"

'Load the printing tools if requested
PrintToolsLoaded% = PrintTools%
IF PrintTools% THEN

LIBRARY LOAD "QDAux"
LIBRARY LOAD "List"
LIBRARY LOAD "Font"
LIBRARY LOAD "Print"

ELSE
LIBRARY" QDAux"
LIBRARY "List"
LIBRARY "Font"
LIBRARY "Print"

END IF

'Start the memory manager
AppMemoryID% = EXFN_MMStartUp

'Allocate 10 pages of memory in bank O for tool set globals
' (1 page = 256K bytes)
ToolZeroPageH@ _NewHandle(6*256,AppMemoryID%,-16379,0)
ToolZeroPageP@ FN Deref(ToolZeroPageH@)
ToolZeroPage% EXFN_LoWord(ToolZeroPageP@)

Toolbox Programming 366 Creating a Desktop Application

'Start the standard desktop tools
_MTS tart Up
_WindStartUp(AppMemoryID%,ToolZeroPage%)
_Ct1StartUp(AppMemoryID%,Too1ZeroPage%+256)
_MenuStartUp(AppMemoryID%,ToolZeroPage%+512)
_LEStartUp(AppMemoryID%,ToolZeroPage%+768)
_DialogStartUp(AppMemoryID%,ToolZeroPage%+1024)

SFStartUp(AppMemoryID%,ToolZeroPage%+1280)
_ScrapStartUp
_DeskStartUp

'Start the printing tools if requested
IF PrintTools% THEN

_QDAuxStartUp
_ListStartUp
_FMStartUp(AppMemoryID%,ToolZeroPage%+1536)
_PrintStartUp(AppMemoryID%,ToolZeroPage%+1792)

END IF

'Draw the desktop
_Refresh(O)

'Initialize and display the mouse cursor
InitCursor
ShowCursor

END PROC StartUpTools

The StartUpTools procedure is written so that it can be used by most programs that
use the Toolbox. As such, it has two parameters. The first parameter indicates
whether the desktop should be initialized in 320 or 640 mode, and the second
indicates whether the printing tool sets are necessary.

The LIBRARY statement is used to load the required tool sets to memory. The
LOAD clause is added after the reserved word LIBRARY to indicate the code
necessary to load the tool set to memory should be generated. Note, the printing
tool sets are only loaded if the parameter LoadPrintTools% is non-zero.

After the tool sets have been loaded, they must be initialized. This is done by calling
the Startup procedure for each tool set. The order in which the tool sets are
initialized is very important. The order shown in the StartUpTools procedure is the
required order for proper initialization. If additional tool sets are used, they should
be started after those listed in the StartUpTools procedure. Most of the Startup
procedures require the application's MemoryID and a block of memory to use for
storing its global variables. The memory required to start several of the tool sets
must be allocated in bank O of the Apple IIGS memory as indicated by the parameters
to NewHandle.

The final operation in this procedure is to draw the desktop and display the mouse
cursor.

Toolbox Programming 367 Creating a Desktop Application

The ShutDownTools Procedure

The ShutDownTools procedure is always the last procedure called by a desktop
application. The procedure is responsible for informing the Toolbox that the
application is finished using each of the tool sets it initialized in the StartUpTools
procedure, deallocating the memory used by those tool sets, and turning off the
graphics screen.

To signal the Toolbox that an application has finished using a tool set, its ShutDown
procedure is called. Again, the order in which the tool sets are shut down is
important, and should be the reverse order in which the tool sets were started.

The following is the ShutDownTools procedure from the DeskTools library.

DEF PROC Shut DownTools
'This procedure is used to shut down each of the Apple IIGS
' Toolbox tool sets which were started by the procedure
' StartUpTools

GRAF OFF

IF PrintToolsLoaded% THEN
PMShut Down
FMShut Down
ListShutDown

_ QDAuxShutDown
END IF

DeskShut Down
_S crapShut Down

SFShutDown
_DialogShutDown

LEShutDown
MenuShutDown
CtlShutDown
WindShutDown
EMShutDown
MTShutDown

_Di sposeHandle(ToolsZeroPageH@)

_MMShutDown(AppMemoryID%)
END PROC Shut DownTools

The first statement in the procedure is GRAF OFF. This statement turns off the
super hi-res graphics screen and is equivalent to calling the corresponding
QuickDraw procedure.

Toolbox Programming 368

Note that DisposeHandle is called to deallocate memory before the MMShutDown
routine is called. Obviously, it would not make much sense to deallocate memory
(a Memory Manager routine) after shutting down the Memory Manager tool set.

The SetUpMenus Procedure

As stated earlier, pull-down menus are one of the fundamental screen elements of
the Apple Desktop Interface. Pull-down menus consist of three components: the
menu bar, the menu titles, and the menu items.

The menu bar is the area across the top of the screen which contains each of the
individual menu titles. Each menu title represents a different pull-down menu.
Three menu titles are considered standard, and should be present in every desktop
application. They are the Apple, File and Edit menus, and should appear in that
order as the first menus in the menu bar. Menu titles specific to the application
appear to the right of these menus. Finally, menu items are the list of phrases
contained in each menu. The menu items correspond to the operations available in
an application. If a menu item is dimmed (non-selectable), the operation is not
currently available.

The Apple menu normally contains an About... menu item followed by a list of the
desk accessories that are currently installed on the system. The menu changes as the
user installs new desk accessories or deletes an existing one. The File menu
contains operations related to creating, opening, closing and printing documents.
At a minimum, the File menu contains the Quit menu item for exiting the
application. The Edit menu contains the standard Clipboard editing operations.
The Edit menu should always contain the Undo, Cut, Copy, Paste and Clear menu
items. Even if the application does not support them, they should be included for
desk accessories. Of course, application specific editing operations such as Select All
or Show Clipboard can be added to the Edit menu.

Every menu and menu item must have an identifier. The identifier is a unique
integer value which the Menu Manager uses to identify each menu and menu item.
Menu identifiers are number from 1 going left to right across the menu bar. Menu
item identifiers are numbered in the range 250 to 377. Certain menu item
identifiers are reserved. Table 13-4 lists the reserved menu item identifiers.

Toolbox Programming Creating a Desktop Application

Table 13-4
Menu Item Identifiers

Value Meaning

250 Undo Menu Manager reserved values
251 Cut
252 Copy
253 Paste
254 Clear
255 Close

256 About... TML BASIC DeskTools values
257 New
258 Open ...
259 Save
260 Save As .. .
261 Chooser .. .
262 Page Setup ...
263 Print...
264 Quit

265 First application specific identifier

To create a menu, the Menu Manager NewMenu function is used. The menu is
defined using a menu string parameter. A menu string contains the name of the
menu title followed by the names of one or more menu items. Associated with
each name are a collection of attributes which define the appearance of the items as
well as its item identifier. The following menu string is used in the StdAppleMenu
procedure from the DeskTools library to define the Apple menu:

MenuStr$ = "»@\XNl\O==About ... \N256\0==-\N377D\0."

As you can see, the menu string is a bit cryptic. The menu title, which appears first
in the menu string, is preceded by two greater than symbols (>>), followed by the
menu title name, its attributes and finally, a zero byte.

Each menu item is preceded by two equal symbols(==), followed by the menu item
name, its attributes and finally, a zero byte. The last character in the menu string
must always be a period (.). In TML BASIC, the null character (a zero byte) is created
by using the backslash character followed by a zero (\0).

Toolbox Programming 370 Creating a Desktop Application

Since it is impossible to type in the name of the colored Apple symbol, the @ symbol
is used instead. The letters "\XNl" are the attributes for the menu title. Similarly,
the attributes for the "About ... " menu item are "\N256". The attributes in menu
strings use special codes recognized by the NewMenu function. Table 13-5 shows
the legal attribute characters for menu strings. Any combination of attributes may
be used, however the Nor H attribute must always be specified in order to define
the menu item identifier.

\ \

B
C
D
H
I
N
u
V
X

Table13-5
Menu Item Attributes

Beginning of special attribute characters
Followed by a primary, then alternate character to be used as a
keyboard equivalent.
Bold the menu title
Followed by a character to mark the item
To dim the item (disable the item)
Hexidecimal menu item identifier follows
Italicize the menu title
Decimal menu identifier follows (between 256 and 3xx)
Underline the menu title
Places a dividing line under the item without using a separate item
Use color replace, and not XOR highlighting.

Because the Menu Manager maintains pointers back into the application where the
menu strings are stored, it is required that the menu strings be stored as global
variables. Further, the storage for the global variables cannot move during program
execution. Since string data is stored in a string pool which can move from time to
time, the only alternative is to store menu strings in structure array variables. The
SET statement is used to assign a string value into a structure array. For example:

DIM AppleMenuStr! (38)
MenuStr$ = "»@\XN1\0==About ... \N256\0==-\N377D\0."
SET(AppleMenuStr! (0)) = ^MenuStr$

After a menu is created using the NewMenu function, it is added to the menu bar by
calling the InsertMenu procedure. Menus are insterted into the menu bar in the
reverse order in which they appear on the screen. After all of the menus have been
defined, the menu bar is drawn. Consult the procedures StdEditMenu, StdFileMenu
and SetUpMenus for further examples of creating menus.

Toolbox Programming 371 Creating a Desktop Application

The SetUpWindows Procedure

Windows are the third fundamental screen element of the Apple Desktop Interface.
A window is a frame which presents information. Windows can be of any size or
shape, and there can be multiple overlapping windows on the desktop.

Within the frame of a window are several elements. Figure 13-3 illustrates these
elements.

Close box Zoom box

D Window

Content

Horizontal scroll bar

Figure 13-3
Window Elements

Title bar

Information bar

Vertical scroll bar

Grow box

Note that not all windows necessarily have each of these elements. Some windows,
such as dialogs, have only a frame and the content, others may contain just a title
and a scroll bar, while others may of course contain every element. The following is
a short description of each window element:

• The title bar displays the window's title, and can hold the close and
zoom boxes. It can also be the drag region for moving the window.

• The close box is used to remove the window from the screen

• The zoom box is used to make the window grow to its maximum size
and then return it to its previous size.

Toolbox Programming 372 Creating a Desktop Application

• The vertical scroll bar allows the user to scroll vertically through the
data in the window.

• The horizontal scroll bar allows the user to scroll horizontally
through the data in the window.

• The grow box is used to change the size of the window.

• The information bar is used to display information which is not
affected by the scroll bars.

In order to create a window on the desktop, the Window Manager function
New Window is used. The function has a single parameter which fully describes the
components and behavior of the window. While only a single function is required
to create the window, its parameter is very complex. The parameter is a pointer to a
NewWindowParamBlk. The definition of a NewWindowParamBlk is as follows
(from Appendix C):

DIM aNewWindowParamBlk! (73)

Element(s)

0 .. 1
2 .. 3
4 .. 7
8 .. 11
12 .. 19
20 .. 23
24 .. 25
26 .. 27
28 .. 29
30 . .31
32 .. 33
34 .. 35
36 .. 37
38 .. 39
40 .. 41
42 .. 43
44 .. 47
48 .. 49
50 .. 53
54 .. 57
58 .. 61
62 .. 65
66 .. 69
70 .. 73

Value

Integer
Integer
Double Integer
Double Integer
Rect
Double Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Double Integer
Integer
Double Integer
Double Integer
Double Integer
Rect
Double Integer
Double Integer

Toolbox Programming

Description

Number of bytes in NewWindowParamBlk (=74)
Bit vector that describes the window
Pointer to window's title : StringPtr
Application RefCon
Size and position of content when zoomed
Pointer to window's color table : WindowColorTblPtr
Content's vertical origin
Content's horizontal origin
Entire height of document
Entire width of document
Maximum height of content allowed by GrowWindow
Maximum width of content allowed by GrowWindow
Number of pixels to scroll vertically for arrows
Number of pixels to scroll horizontally for arrows
Number of pixels to scroll vertically for page
Number of pixels to scroll horizontally for page
Information bar refcon
Height of information bar
Address of standard window definition procedure : ProcPtr
Address of information bar procedure : ProcPtr
Address of content update draw procedure : ProcPtr
Starting position and size of window
Window's starting plane
Address of memory to use for window record

373 Creating a Desktop Application

One of the most important fields in this data structure is the window frame bit
vector stored in elements 2 and 3. The bit vector is used to indicate the type of
window frame to draw and what elements to create for the window. The definition
for each bit in the bit vector follows:

bit O 1=frame highlighted, 0=unhighlighted
bit 1 1=currently zoomed, 0=not zoomed
bit 2 1=record was allocated, 0=record provided by application
bit 3 1=control's state is independent, 0=inactive window has inactive controls
bit 4 1=window has information bar, 0=no information bar
bit 5 1=currently visible, 0=invisible
bit 6 1=mouse down in content reported even when used to activate window
bit 7 1 =title bar is drag region, 0=no drag region
bit 8 1=zoom box in title bar, 0=no zoom box
bit 9 1=GrowWindow and Zoom Window won't change the origin
bit 10 1=grow box in window, 0=no grow box
bit 11 1=window frame has horizontal scroll bar, 0=no horizontal scroll bar
bit 12 1= window frame has vertical scroll bar, 0=no vertical scroll bar
bit 13 1 =alert type window frame, O=document type window frame
bit 14 1=dose box in title bar, 0=no close box
bit 15 1=title bar, 0=no title bar

To create a window then, all that is necessary is to declare a structure array variable
and assign the appropriate values into the structure using the SET statement. An
example of this is found in the StdWindow@ function declared in the DeskTools
library.

The following paragraphs examine how the Std Window@ function creates the
NewWidowParamBlk. In particular, the definition of the window frame bit vector
and the drawing procedure. For detailed information about the
NewWindowParamBlk, reference the "Window Manager" chapter of the Apple JIGS
Toolbox Reference.

The following statement is used to assign the window frame bit vector in the
StdWindow function:

SET(myWind! (2)) = CONV%(-8800)

The CONV% function is used to ensure that the SET statement assigns two bytes
into the structure variable as an integer (see the description of the SET in Chapter
10). The value -8800 is equivalent to the binary value "1101 1101 1010 0000". Thus,
based on the definition of the window frame bit vector given above, the window is
defined as follows:

Toolbox Programming 374 Creating a Desktop Application

bit 0 0 unhighligh ted
bit 1 0 not zoomed
bit 2 0 record provided by application
bit 3 0 inactive window has inactive controls

bit 4 0 no information bar
bit 5 1 currently visible
bit 6 0 mouse down in content not reported when inactive
bit 7 1 title bar is drag region

bit 8 1 zoom box in title bar
bit 9 0 Grow Window and Zoom Window change the origin
bit 10 1 grow box in window
bit 11 1 window frame has horizontal scroll bar

bit 12 1 window frame has vertical scroll bar
bit 13 0 document type window frame
bit 14 1 close box in title bar
bit 15 1 title bar

The second statement of significant interest is the one which assigns the address of
the window's update drawing subroutine.

SET(myWind! (58)) = UpdateProc@

This statement defines the address of the subroutine which draws the content of the
window. For example, the second window in the GSDEMO.BAS _example draws the
message "TML BASIC is Great!" several times. The follpwing subroutine is
responsible for printing the message.

DrawWindow2:
FOR i% = 1 to 10

_MoveTo(i%*11+20,i%*9+10)
_DrawString("TML BASIC is Great!")

NEXT i%
RETURN 0

To obtain the address of this subroutine, its label is first entered into one of the latter
32 entries in the Event Dispatch Table using the EVENTDEF statement. For
example:

EVENTDEF 93,DrawWindow2

Then the address is obtained using the EXEVENT@ function. For example:

UpdateProc@ = EXEVENT@(63)

This subroutine is then automatically called by TASKPOLL any time the content of
the window needs to be redrawn.

Toolbox Programming 375 Creating a Desktop Application

Study the Std Window@ function in the DeskTools library and the other desktop
applications in the MORE.EXAMPLES folder for more information regarding the
creation of windows.

The SetUpEventTables Procedure

The SetUpEventTables procedure is responsible for entering labels for
event-handling subroutines into the Event Dispatch Table and Menu Item Dispatch
Table.

As described earlier in the "Event Handling" section, the TASKPOLL statement
transfers control to event-handling subroutines automatically when an event is
detected. It does this by indexing the Event Dispatch Table and Menu Item Dispatch
Tables with the event type to locate the event-handling subroutine.

The GSDEMO.BAS application is a simple desktop application which relies upon
TASKPOLL to handle most events in the standard fashion. Recall that this is done
by setting the TaskMask to 8191 in the TASKPOLL INIT statement. However,
GSDEMO.BAS does implement the InGoAway event, and seven menu items.

The InGoAway event is implemented by the HandleGoAway subroutine. Since the
InGoAway event is event number 22 (see Table 13-1), the HandleGoAway label is
entered into the 22nd element of the Event Dispatch Table using the EVENTDEF
statement.

EVENTDEF 22,HandleGoAway

The following seven menu items are implemented in GSDEMO.BAS: About, Quit,
Window #1, Window #2, Rects, Ovals, and Round Rects. Menu items are
implemented by NOT entering any subroutine label in the Event Dispatch Table for
event numbers 17 (InMenuBar) and 28 (InSpecialMenu), but instead entering menu
item handling subroutine labels in the Menu Item Dispatch Table. This is done
with the MENUDEF statement. The index position used for a menu item is its
menu item identifier minus 250. Thus, the following statements are used to enter
the menu item handling subroutine labels into the Menu Item Dispatch Table:

MENUDEF 6,DoAbout 'Menu identifier #256
MENUDEF 14,DoQuit 'Menu identifier #264
MENUDEF 15,DoWindowl 'Menu identifier #265
MENUDEF 16,DoWindow2 'Menu identifier #266
MENUDEF 17,DoRects 'Menu identifier #267
MENUDEF 18,DoOvals 'Menu identifier #268
MENUDEF 19,DoRRects 'Menu ident i fier #269

Toolbox Programming 376 Creating a Desktop Application

Subroutines which implement event-handling must end with the RETURN O
variation of the RETURN statement. This is because the TASKPOLL statement
called the subroutine and not the GOSUB statement. As such, the conventions for
calling an event-handling subroutine are different.

The MalnEventloop Procedure

The heart of every event-driven application is the MainEventLoop procedure. This
is the procedure responsible for detecting events such as a mouse-down, a
key-down, a menu-selection, window activates and updates, etc. When an event is
detected, it dispatches control to the appropriate subroutine to handle the event.
While this sounds like a rather complicated procedure, it is actually quite simple.

The MainEventLoop procedure consists of a loop which repeatedly calls the
TASKPOLL statement to detect events. When an event is detected, the T ASKPOLL
statement automatically calls the appropriate event-handling subroutine as specified
in the Event Dispatch Table. The following source code is the MainEventLoop
procedure from the GSDEMO.BAS program:

DEF PROC MainEventLoop
Quit% = 0

DO
PROC CheckMenus
TASKPOLL -1

UNTIL Quit%
END PROC

The first statement assigns the value zero to the global variable Quit%. The Quit%
variable is set to a non-zero value when the user has selected the Quit menu item
from the File menu. This is done in the subroutine DoQuit. When the value of
Quit% becomes non-zero, the loop terminates.

Note that the loop does not contain a call to the subroutine DoQuit. Instead, it is
automatically called by the TASKPOLL statement when an lnMenu event is detected
which selects the Quit menu item. The subroutine is automatically called because
the SetUpEventTables procedure entered its label into the Menu Item Dispatch
Table.

Like the DoQuit procedure, the other event-handling subroutines whose labels are
in the Event Dispatch Table, or the Menu Item Dispatch Table, are automatically
called by the TASKPOLL statement when its corresponding event is detected.

In many cases, the event-handling subroutine needs to know more about the event
which has occurred. For example, an application which draws in the content a
window must know where a mouse-down event occurred so that it can draw at the
indicated location. Information about an event can be obtained using the
TASKREC% and TASKREC@ functions . These functions return an integer or

Toolbox Programming 377 Creating a Desktop Application

double integer value from the TaskRecord data structure. The TaskRecord is an
internal TML BASIC variable which is declared as an Event Manager Event Record.
The definition of an Event Record follows (from Appendix C):

DIM anEventRecord! (19)

Element(s) Value Description

0 .. 1
2 .. 5

6 .. 9
10 .. 13
14 .. 15
16 .. 17
18 .. 19

Integer
Double Integer

Double Integer
Point
Integer
Double Integer
Double Integer

(what)
(message)

(when)
(where)
(modifiers)
(Task Data)
(Task Mask)

Event code specifying which event occurred
Event message which has additional information
about event
Number of ticks since startup
Mouse location where event occurred
Modifier flags
Task Data for Task Master
Task Mask for Task Master

Each of the T ASKREC functions has an integer parameter. The parameter specifies a
word (2 bytes) offset into the TaskRecord. Thus, to determine the location of the
mouse for a mouse-down event, TASKREC@(S) is called to return the Point field
from the TaskRecord as a double integer value. Of course, T ASKREC% (5) and
T ASKREC% (6) can be called to return the individual horizontal and vertical
components of the Point.

The meaning of each field depends upon the event type returned. Table 13-6 lists
the meanings of the TaskRecord fields.

what

message

Table13-6
TaskRecord Fields

Indicates which of the event types occurred.

Contains information specific to the event that has occurred.

Mouse-down
Mouse-up
Key-down
Auto-key
Activate
Update
Device-driver
Application

Button number in low order word
Button number in low order word
ASCII code in low-order byte
ASCII code in low-order byte
Pointer to window to activate (deactivate)
Pointer to window to update
Defined by the device driver
Defined by the application

Toolbox Programming 378 Creating a Desktop Application

when Is the time that the event occurred. The time is given in the
number of ticks (1 tick is 1/60th of a second) that have elapsed
since you booted the Apple IIGS.

where Specifies the location of the mouse when the event occurred.
The location is given in global coordinates.

modifiers Offers more specific information when appropriate. Each bit
in this field signifies a different piece of information. For
example, certain bits indicate whether the Shift, Option,
Apple or Control keys were pressed.

TaskData This field contains the menu identifier and menu item
identifier for the InMenuBar and InSpecial events. For all
other Task.Master events, this field contains the Window
Pointer of the effected window.

Task.Mask This field is contains the Task.Mask value specified in the
T ASKPOLL INIT statement.

Use of the TASKREC function is illustrated in the HandlelnGoAway subroutine.
When a user clicks the mouse in the close box of a window, the window is hidden.
The window can be made visible again by selecting its name from the Windows
menu. When TASKPOLL detects an InGoAway event, the HandlelnGoAway
subroutine is called. In order for the HandlelnGoAway subroutine to determine
which window to close, it must examine the TaskData field of the Task Record. For
example:

HandleinGoAway:
theWindow@ = TASKREC@(8)
_HideWindow(theWindow@)
RETURN 0

The main event loop may contain other operations which maintain the current
state of the desktop. For example, the GSDEMO.BAS program, enables and disables the
Edit menu items depending upon the type of the topmost window. The
GSDEMO.BAS windows do not support the editing operations found in the Edit
menu. Therefore, they should be disabled in order to communicate to the user that
they have no affect. However, if a desk accessory window is topmost, the editing
operations may be supported, and thus enabled. The main event loop contains a
call to the procedure CheckMenus which checks the topmost window and enables or
disables the Edit menu items appropriately. Most desktop applications should
implement a CheckMenus procedure, and depending upon the nature of the
application, other operations may be appropriate as well.

Toolbox Programming 379 Creating a Desktop Application

Summary

This chapter has introduced the principles of well-engineered desktop applications
which follow the Apple Human Interface Guidelines. In addition, the techniques
for writing event-driven programs which use the Apple IIGS Toolbox have been
reviewed in the context of the GSDEMO.BAS application.

Other desktop applications can be found in the MORE.EXAMPLES folder. These
examples further illustrate the techniques for writing event-driven programs.

Toolbox Programming Creating a Desktop Application

Appendices

Appendix A
Error Messages

This appendix lists all editor, compiler, linker and runtime errors which may occur
while using TML BASIC. All errors are reported in the standard Error Dialog Box as
described in Chapter 3. Each error is also displayed with an icon which indicates the
component of TML BASIC which detected the error. Editor errors are displayed
with the upside down yield sign, compiler errors with a green bug, linker errors
with two chain links, and runtime errors with an exploding bomb.

Explanatory notes follow most of the error messages to help clarify their meaning,
and in some cases additional notes appear explaining how to correct the error.

Some messages contain the caret character(") which is substituted by TML BASIC at
the time the error is displayed with an identifier, label, or some other value to help
make the error message more meaningful. For example, the compiler error
message:

Procedure "^" is not declared

might appear in the error dialog as:

Procedure "DrawBoxes" is not declared

if TML BASIC detected that the procedure DrawBoxes was called but not declared.

TML BASIC Editor Errors

Memory is getting low. Oose a document window.

TML BASIC has detected that you are running dangerously
low on memory. In order to avoid the potential loss of data,
you are recommended to free memory by closing a document
window. You may also choose the Compact Memory option
from the Preferences dialog. See Chapter 6.

Error reading file.

An error occurred while reading the document from disk.
This might happen if the file is damaged or the disk has been
removed from the disk drive.

Appendices Error Messages

Error saving file.

This error is reported when TML BASIC is unable to save the
contents of a document window to disk. This is usually
occurs because the disk is locked, removed from the disk
drive or the disk is full.

Error deleting file.

This error is reported after you have chosen to delete a disk
file using the Delete ... command from the ProDOS menu
and the disk has been removed from the disk drive or the
disk is locked.

Error renaming file.

This error is reported after you have chosen to rename a disk
file using the Rename ... command from the ProDOS menu
and you have specified an illegal filename, the disk has been
removed from the disk drive or the disk is locked.

Error occurred while loading Print Tools.

This error only occurs in the Network version of TML
BASIC. The message indicates that one or more of the
necessary system files needed to use the Print Manager could
not be loaded to memory.

Can't open that file . File already open in another window.

You are not allowed to open the same file more than once.

Unable to complete that operation. File would become too large.

The editing operation you just attempted would have caused
the file to become greater than 32K bytes.

File too large to open. Maximum file size is 32K bytes.

TML BASIC can only open files which are less than or equal
to 32K bytes in size.

Appendices 384 Error Messages

Insufficient memory available to open that file.

Even though the file you are attempting to open is smaller
than 32K bytes, there is insufficient memory available to read
the file into memory.

Insufficient memory to complete that operation.

An operation has failed due to the lack of available memory.

TML BASIC Compiler Errors

Lexical Errors

String constant must not exceed source line.

A string constant literal is missing its closing quote.

Error in numeric literal.

The syntax for a numeric literal value is incorrect.

Illegal character in input.

An illegal character has been detected in the source file. See
Chapter 7 for the legal BASIC characters.

Syntax Errors

Identifier expected.
String constant expected.
Integer constant expected.
")" expected.
"(" expected.
":" expected.
"," expected.
";" expected.
"THEN" expected.
"END PROC" or "END FN" expected.
"END LIBRARY" expected.
Unexpected symbol.

These error messages indicate that the program contains
illegal BASIC syntax. While the error message indicates the
symbol expected at the time the error was detected, it is

Appendices 385 Error Messages

possible that other symbols could also repair the syntax error.
If you are unfamiliar with BASIC syntax then you should
study Chapters 7 through 10.

Error in Expression.

An expression containing illegal BASIC syntax was detected
that contains an error for which there is no specific error
message.

Error in Statement.

A statement containing illegal BASIC syntax was detected
that contains an error for which there is no specific error
message.

THEN without matching IF
ELSE without matching IF

The THEN or ELSE statement appeared on a line by itself
without a preceding IF statement.

Block IF statement without matching END IF
ELSEIF / END IF statement without matching Block IF statement.

The Block IF, ELSEIF or END IF statements appear without
the necessary matching statements. For further information
see Chapter 10.

UNTIL without matching DO or WHILE.
WHILE without matching UNTIL.
00 without matching UNTIL.

The DO, WHILE or UNTIL statements appear without the
necessary matching statements. For further information see
Chapter 10.

NEXT without matching FOR.
FOR without matching NEXT.

The FOR or NEXT statements appear without the necessary
matching statement. For further information see Chapter 10.

Appendices 386 Error Messages

Semantic Errors

Type Mismatch Error.

The type of an expression is inappropriate for the context in
which it is used. For example, assigning a string expression
to a numeric variable or vice versa.

May not declare LOCAL arrays.

The LOCAL statement can only be used to declare simple
variables.

Duplicate declaration of LOCAL variable or parameter.

A LOCAL statement attempted to declare the same name as
previously declared in a WCAL statement or the same name
as a parameter.

Illegal use of the LOCAL statement.

The program attempted to use the LOCAL statement in the
main program or in a procedure or function, but after an
executable statement.

Illegal Parameter Type.

It is not legal to have a structure array element as a parameter
type.

Procedure "^" is not declared.

The user defined procedure or function referenced in a PROC
or FN statement is not defined in the program.

Toolbox procedure "^" is not defined.

The Toolbox procedure or function referenced in a CALL or
EXFN_ statement is not defined. Make sure that the name is
spelled correctly and that the required Toolbox library name
appears in a LIBRARY statement.

Appendices 387 Error Messages

Number of parameters does not match declaration.

The number of parameters in the parameter list of a
procedure, function or toolbox routine call does not properly
match its declaration. Check the declaration of the procedure,
function or toolbox routine.

Label "^" is referenced, but not defined.

The specified label is referenced in a GOTO, COSUB,
EVENTDEF, or MENUDEF statement; but is not defined
anywhere in the program.

Duplicate declaration of a static array.

An array variable can only appear once in a DIM statement
throughout the entire program. If an array must be
redimensioned in a program, the DIM DYNAMIC statement
must be used. See Chapter 7.

Static arrays must have constant dimensions.

An array variable in a DIM statement must be dimensioned
with static values. If an array must be dynamically
dimensioned, the DIM DYNAMIC statement must be used.
See Chapter 7.

Arrays limited to eight dimensions.

The maximum number of dimensions an array may have is
eight.

Library Errors

Unable to find/ open library file.

The ".LIB" file for the named library cannot be found in
either the current unit prefix or the Library File search
directory specified in the Preferences dialog.

Unable to write compiled library file.

The compiler is unable to create, open or write to the library's
".LIB" file. The disk may be locked, removed from the disk
drive or full.

Appendices 388 Error Messages

Incompatible version of library file.

Whenever you receive a new version of TML BASIC you
must recompile all of your libraries.

Symbol table space exhausted.

The number of declarations in this library has exhausted the
available memory allocated for the library's symbol table.
You should adjust the symbol table size in the Preferences
dialog. See Chapter 6.

TML BASIC Linker Errors

Out of Memory.

Insufficient memory is available for the linker to allocate the
data structures it requires to link the program. Try closing a
document window to release memory.

Segment "^" specified as both CODE and DATA.

You have specified the same segment name in a
($CodeSegment segname} and ($DataSegment segname}
compiler directive.

Segment "^" too large.

A CODE or DATA segment became larger than 64K bytes.
You must resegment your program so that the segment does
not exceed this limit. See Appendix B.

Unresolved linker reference to symbol""".

An externally defined label cannot be found by the linker.
You should recheck the spelling of the symbol to make sure it
is correct.

Unable to create/open application file.

After a Compile To Disk completes successfully, the linker
attempts to write the application file to disk. The error is
reported if this file cannot be created and/ or opened. This
usually happens when the disk is locked or has been

Appendices Error Messages

removed from the disk drive.

Error in writing to application file.

This error is reported when TML BASIC was able to create
and/or open the output application file, but encountered an
error during writing. This is usually caused because of a
locked disk or a disk becoming too full to write the entire file
contents of the file to disk.

TML BASIC Runtime Errors

Runtime errors are detected during program execution. That is, the compiler has
successfully compiled the program without any lexical, syntax or semantic errors
and has generated machine code for the program. However, when the program
runs, an error occurs. If a program is run directly from TML BASIC using the To
Memory & Run compile option, TML BASIC selects the line of text containing the
runtime error and displays the error message in the standard Error Dialog Box. If
the error is detected in a compiled to disk application, execution aborts and displays
the runtime error number. The error number should be compared to those below
to determine the error which occurred.

Following is the list of possible run time errors:

1 Overflow Error.

This error occurs when the result of a numeric calculation
produces a value which is too large (or too small) to be
represented in the indicated numeric type.

2 illegal Quantity Error.

A parameter to a function or statement was not in the legal
range of values specified for the function or statement.

3 Out of DATA.
A READ statement ran out of DATA statement values.

4 Divide by 0.

An attempt was made to divide by O or raise zero to a
negative power.

Appendices Error Messages

5 RETURN /POP without matching GOSUB.

A RETURN or POP statement was executed without a
matching GOSUB. That is, there is nothing to return to.

6 Program Interrupted.

The STOP statement was executed or the program was
aborted by typing the Con trol-C character.

7 Out of Memory.

Many situations may cause this error to arise. If your
program attempts to create a dynamic array using the DIM
DYNAMIC statement for which there is insufficient memory
to allocate, the error occurs. Or if the string pool overflows.

8 RESUME without an error.

The program executed a RESUME statement while not
handling an error.

9 File Not Open.

The program attempted to use a file reference number which
has not been associated with a file via the OPEN statement.

10 File Open.

This error occurs if a program attempts to open, rename or
delete a file which is currently open.

11 File (Path) Not Found.

The pathname specified in a TML BASIC I/0 statement or
function is either illegal or the file does not exist.

12 Volume Not Found.

The volume name specified in a pathname of an I/0
statement does not match the volume name of any currently
mounted volume.

Appendices :J}l Error Messages

13 File Locked.

The program attempted to modify a locked file.

14 File Type Error.

This error occurs when the program attempts to reference a
file in such a way which is incompatible with its file type. See
Chapter 10 I/0 statements.

15 Duplicate File Error.

This error occurs when the CREATE statement is used to
create an already existing file.

16 Write Protect Error.

The program attempted to modify a file on a write-protected
disk.

17 Device Not Found.

This error occurs when the program specifies a device name
which contains an illegal character.

18 Bad Path Error

This error occurs whenever an illegal character appears in a
pathname.

19 Disk Full.

This error is reported when there is no additional space left
on the disk necessary to complete an I/0 statement.

20 illegal Using Specification

The using specification or IMAGE statement contained an
illegal specification definition.

Appendices Error Messages

21 Stack Overflow Error.

The program contained too many procedure, function or
subroutine calls; or declared too many local variables for the
size of the Runtime Stack. This error is only detected if the
Check Stack option is turned on in the Preferences Dialog.

Appendices Error Messages

Appendix B

Metastatements

Metastatements are compiler directives. Strictly speaking, metastatements are not
part of the TML BASIC language, but rather a special construct used by programs to
control the behavior of the TML BASIC compiler. For example, a metastatement
can be used to specify the size of the string pool.

Most of the metastatements correspond to an option in the Preferences Dialog.
However, the effect of a metastatemen t always overrides the setting of an option in
the Preferences Dialog. The metastatements which also appear in the Preferences
Dialog are:

$CheckStack
$Debug
$EventTrapping
$KeyboardBreak
$0nError
$StackSize
$StringPoolSize

See Chapter 6 for information regarding the Preferences Dialog.

A metastatement must appear on a line by itself, and must begin with a dollar sign
($), immediately followed by the name of the metastatement. If the name does not
spell one of the legal TML BASIC metastatements, TML BASIC reports the error
"Unknown metastatement". Following the name are the metastatement
arguments. An argument can be the reserved words ON and OFF, a numeric
constant, or a string constant. The following code fragment shows how
metastatements can be used in a program.

$StringPoo1Size 1
$KeyboardBreak OFF
$Debug ON
INPUT "How many numbers to average:
Total = 0
FOR i% = 1 to howMany%

PRINT "Number "; i%; 11
•

11

INPUT nextValue
Total= Total+ nextValue

NEXT i%

howMany%

PRINT "The average is: "; Total/howMany%

Appendices 395 Compiler Metastatements

The following paragraphs describe the actions and arguments for each of the TML
BASIC metastatements.

$Check5tack

Syntax: $CheckStack ON I OFF

Default: $CheckStack OFF

As discussed in Chapter 8, TML BASIC implements a data structure called the
Runtime Stack. This stack is used for implementing the GOSUB, PROC and FN
statements as well as allocating storage for parameters and local variables with the
LOCAL statement. The stack has a limited fixed size as specified by $StackSize
metastatement or its corresponding option in the Preferences Dialog. Thus, it is
possible to write programs which exceed the storage capacity of the stack.

This option is used to instruct the TML BASIC compiler to generate special code for
each procedure and function's entry code. This code checks to be sure that there is
sufficient space in the runtime stack to call the procedure and allocate its local
variables. If there is insufficient space, the runtime error "Stack Overflow" occurs.
If the Debug option is turned on then the TML BASIC debugger is capable of
showing you what procedure or function caused the stack overflow.

Most programs never need more stack space than the default BK bytes, thus this
option is turned off by default. However, if your program is behaving very
strangely, it may be that its stack is growing too large and destroying memory.
Turning this option on will determine if your program does indeed have this
problem. If it does, you should increase the allocated stack space for the program.

$Code5egment

Syntax: $CodeSegment "segmentname"

Default: $CodeSegment "main"

An Apple Iles application may consist of one or more code segments. A code
segment is a special Apple Iles data structure implemented by the System Loader. A
code segment contains the binary code for a program, its relocation information and
other special values. Every code segment has a unique name.

TML BASIC programs have two code segments by default: "main" and "mainprog".
The segment "mainprog" contains all the code for the main program, while the
segment "main" contains all the code for user defined procedures and functions. In

Appendices Compiler Metastatements

addition, the code for separately compiled libraries is contained in the code segment
"main". Small programs usually only consist of these two segments, but larger
programs must be divided into several code segments because the Apple IIGS limits
the size of an individual code segment to 64K bytes. The reason for the size
restriction is that a code segment must not cross the boundries of a bank of memory.
On the Apple IIGS, a bank of memory is 64K bytes.

The $CodeSegment metastatement is used to control the code segment that code for
procedures and functions are generated. It is not possible to segment the main
program (statements not contained in a procedure or function). When the
$CodeSegment metastatement appears in the source code, the code for all
subsequent procedures and functions is generated to the new code segment.

$Data5egment

Syntax: $DataSegment "segmentname"

Default: $DataSegment "-global"

Like code segments, an Apple IIGS application may consist of one or more data
segments. A data segment is a special Apple IIGS data structure implemented by the
System Loader. A data segment contains the information necessary to allocate
storage and initialize memory for global variables. Every data segment has a unique
name.

TML BASIC programs have one data segment by default: "-global". Programs
usually only consist of a single data segment, but programs which declare a large
number of global variables or arrays which are very large, must divide the global
storage into several data segments because the Apple IIGS limits the size of an
individual data segment to 64K bytes. The reason for the size restriction is that a
data segment must not cross the boundries of a bank of memory. On the Aple IIGS, a
bank of memory is 64K bytes.

The $DataSegment metastatement is used to control the data segment in which
storage for global variables are allocated. TML BASIC allocates storage for a global
variable or array when it is first used, or when an array variable is declared in a DIM
statement. At the point of declaration, TML BASIC allocates storage for the variable
in the current data segment. To change the current data segment use the
$Data Se gm en t metas ta tern en t.

$Debug

Syntax: $Debug ON I OFF

Default: $Debug ON

Appendices 397 Compiler Metastatements

The $Debug metastatement is used to control the generation of debugging code by
the TML BASIC compiler which is used by the TML BASIC debugger to detect and
report runtime errors. The generated code checks for all runtime errors, such as
Overflow Error, Illegal Quantity Error, etc. It also generates a special data structure
called the line number table so that the TML BASIC debugger can determine in what
line of source code the runtime occurred. If this option is turned off, all runtime
errors will go undetected. The runtime errors are listed in Appendix A.

The Debug option makes programs larger and slower to execute. The option should
be turned off when a program is known to be correct, and no longer requires the
debug code.

$EventTrapplng

Syntax: $EventTrapping ON I OFF

Default: $EventTrapping ON

This metastatement must be turned on when a program contains statements
requiring event trapping. These statements are the ON KBD and ON TIMER.
When these statements are used, TML BASIC must generate code between each
statement to check for the occurrence of a keyboard or timer event. This option
should only be turned on when a program contains these statements since the code
necessary to check for these events makes a program larger and slower to execute.

If a program contains the statements ON KBD or ON TIMER, and event trapping is
turned off, TML BASIC will report an error. See Chapter 10 for more information
regarding these two statements.

$KeyboardBreak

Syntax: $KeyboardBreak ON I OFF

Default: $KeyboardBreak ON

The KeyboardBreak metastatement is used to implement the ON BREAK statement.
It is also required to allow a program to be aborted by typing a control-C.

If this option is turned on, TML BASIC generates code between each statement to
check if the control-C character has been typed. If this option is turned off, it is
impossible to abort the execution of a TML BASIC program. The only way to do so
is to reset the Apple JIGS. If you do not intend to abort the execution of your
programs and you do not use the ON BREAK statement, then you should turn this
option off so that your programs will be smaller and, in turn, run faster.

Appendices 398 Compiler Metastatements

$0nError

Syn tax: $0nError ON I OFF

Default: $0nError ON

The OnError metastatement is used to indicate to the TML BASIC compiler that the
program contains the ON ERR statement along with the statements RESUME
and/ or RESUME NEXT. These statements require that the line number table be
generated so that TML BASIC can determine on which line to resume or resume
next after an error has been handled by an ON ERR statement list.

If your programs do not contain these statements then it is best to turn this option
off since it will decrease the size of your applications. However, if this option is
turned off and a program contains the ON ERR, RESUME or RESUME NEXT
statements, TML BASIC will report an error.

$StackSize

Syntax: $StackSize number

Default: $StackSize 8

As described in the $CheckStack metastatement, TML BASIC implements a data
structure called the Runtime Stack for implementing the GOSUB, PROC, FN and
LOCAL statements. The default size for the Runtime Stack is 8K bytes. However,
some programs may require a larger stack because it uses a large number of
procedure calls or local variables. The stack size can be changed with the $StackSize
metastatement to a size from 1K to 32K bytes. The argument to the $StackSize
metastatement must be a numeric integer constant. The value is expressed in
K-bytes. Thus, the value 1 means 1K bytes, 2 means 2K bytes, etc. See Chapter 8 for
more information about the Runtime Stack.

$StringPoo1Size

Syntax: $StringPoolSize number

Default: $StringPoo1Size 10

The values for all string variables and string constants are stored in a special data
structure called the String Pool. The string pool has a fixed, limited size which is set
by the $StringPoolSize metastatement or its corresponding option in the Preferences
Dialog. The default size of the string pool is 10K bytes. If a program is running out

Appendices Compiler Metastatements

of string space this value should be increased. The maximum size for the string
pool is 64K bytes, the minimum is 1K bytes. The value is expressed in K-bytes.
Thus, the value 1 means 1K bytes, 2 means 2K bytes, etc. For more information
about strings, string data and the string pool see Chapter 7.

Appendices Compiler Metastatements

Appendix C
Apple IIGs Toolbox Libraries

As discussed in Chapters 11 through 13 of this manual, the Apple Iles Toolbox is the
large collection of software routines developed by Apple Computer and built into
every Apple Iles computer. The Toolbox routines implement the super hi-res
graphics screen and the QuickDraw graphics engine. It also implements sound,
menus, windows, dialogs and much more. As discussed in Chapter 11, the Toolbox
is divided into a collection of tool sets (or managers). Each of these tool sets
implements a related collection of procedures, functions and data structures.

TML BASIC provides programmer access to the Toolbox with a collection of
libraries, each defining the interface to an individual tool set. The libraries are
shipped on the TML BASIC distribution disk in the LIBRARIES folder. The source
code to the libraries is not provided, however, the contents of each library is listed in
this Appendix in alphabetical order. The libraries provided with TML BASIC are
shown in the following table.

Appendices

Apple IIGS Tool Set

Control Manager
Desk Manager
Dialog Manager
Event Manager
Font Manager
Integer Math
Llne Edit
List Manager
Memory Manager
Menu Manager
Miscellaneous Tools
Note Synthesizer
Print Manager
QuickDraw
QuickDraw Auxiliary
Scheduler
Scrap Manager
Sound Manager
Standard File
Text Tools
Tool Locator
Window Manager

401

TML BASIC Library Name

Control
Desk
Dialog
Event
Font
IntMath
LlneEdit
List
Memory
Menu
MiscTool
NoteSyn
Print
QuickDraw
QDAux
Scheduler
Scrap
Sound
StdFile
TextTool
Tool Locator
Window

Apple IIGS Toolbox Libraries

The discussion of each tool set is divided into four parts: Introduction, Special
Values, Data Structures and Routines. The following paragraphs describe the
contents of these parts and the notational conventions used. While this appendix
provides a thorough description of the contents of each tool set, and the data
structures they use, it is in no way a substitute for a good reference on how the
Toolbox works. The definitive reference is of course Apple's technical publication
entitled Apple Iles Toolbox Reference: Volumes 1 and 2. Anyone attempting to
program the Toolbox beyond the simple use of QuickDraw graphics which is fully
documented in Chapter 12 should obtain a good reference describing the details of
the Toolbox.

Introduction

Before describing the data structures, procedures and functions of a tool set, a brief
description of the particular tool set's functions and capabilities is given.

Special Values

This section is used to highlight various important values used or returned by the
procedures and functions in the tool set. For example, the Memory Manager
provides the function NewHandle@ which is used to allocate a block of memory.
One of the parameters to this function specifies various attributes about the block to
be allocated. The attributes are defined by the program with special predefined
values. If you did not know the meaning of the values for this parameter, it would
be impossible to properly allocate a block of memory.

Not every conceivable special value used by the procedures and fucncions in a tool
set is defined in this section, but only the most important and most commonly used
values. The special values are presented in a table which defines the integer value
and its meaning. In some cases, a paragraph is provided which describes how the
collection of values are used.

Data Structures

Many of the Toolbox procedures and functions manipulate data structures rather
than just simple values. Data structures are collections of values grouped together
into a single variable. In TML BASIC these data structures are represented as array
or structure variables. Because BASIC does not offer a typing mechanism similar to
those found in languages like Pascal or C, it is not possible to define new types from
which variables can be declared. Instead, the programmer must declare array and/ or
structure variables in an appropriate fashion and use them in a way consistent with
the meaning the Toolbox has given a particular data structure.

This section of the appendix provides a template of how an array or structure
variable might be declared and used for a particular Toolbox data structure. The
template includes a paragraph describing the purpose of the data structure, an

Appendices Apple IIGS Toolbox Libraries

example DIM statement that a program might use to create an instance of the data
structure, and a definition of the meaning for each element in the array or structure
variable. The example template is not necessarily the only way the .data structure
might be defined, but is generally the best.

The following is an example of the Point data structure used by the Quick.Draw
graphics routines. A Point defines a location in the two-dimensional drawing space
of the QuickDraw super hi-res screen. As such, it includes two integer values which
define the horizontal and vertical position of the Point.

DIM aPoint% (1)

Element(s)

0
1

Value

Integer
Integer

Description

Horizontal coordinate
Vertical coordinate

As seen in the data structure definition, a Point has been described as an integer
array containing two elements. The first element is the horizontal coordinate and
the second element is the vertical coordinate.

Data structures which do not contain elements all of the same type are usually
defined as a structure rather than an array. Certain ranges of bytes within the
structure then make up each element of the data structure. In this case, simple
assignments to each element of the data structure are not possible. Instead, the SET
and VAL statements are used to access the elements of the data structure. The
following is the Pen State data structure also used by QuickDraw.

DIM aPenState ! (47)

Element(s)

0 .. 3
4 .. 7
8 .. 39
40 .. 47

Value

Point
Point
Pattern
Mask

Description

Pen location
Pen size
Pen pattern
Pen mask

In this example, we see that the first two elements of the data structure are Points. A
Point is another data structure which we declared above. A Point is an array of two
integers, thus the Point elements occupy four bytes each in the PenState data
structure. The Pattern and Mask are other data structures defined by Quick.Draw.

Routines

The Toolbox is not part of the TML BASIC language, but an integral part of the
Apple lies. The code which implements the Toolbox routines is written in
assembly language and is stored in the Apple Iles ROM (read-only memory) or on
the System Disk and read into RAM (random access memory). As such, the

Appendices Apple IIGS Toolbox Libraries

procedures and functions in each tool set are not defined in the normal fashion
using the DEF PROC and DEF FN statements, nor are they called in the normal way
using the PROC or FN statements. As discussed in Chapter 11, TML BASIC provides
the CALL and EXFN statements for calling the Toolbox procedures and functions.
However, no mechanism is provided in TML BASIC for defining a Toolbox
procedure or function.

Since the Toolbox procedures and functions cannot be defined using legal TML
BASIC statements, the Toolbox libraries are created with a special tool not shipped
on the TML BASIC distribution disk. However, to define each Toolbox routine
name and its parameters we have adopted a special notation based upon the
familiar DEF PROC and DEF FN statements for this appendix.

Each declaration begins with either DEF PROC or DEF FN depending if the routine
is a procedure or a function. Following this is the name of the Toolbox routine.
These names match exactly those documented in the Apple Iles Toolbox Reference.
If the routine is a function then the the name is followed by a type character to
indicate the result type of the function. Unlike normal BASIC functions, a Toolbox
function might return more than one value (using R.STACK, see Chapter 11). In
this case, square brackets are used to indicate the number of function return values.
After this is the list of parameters enclosed in parenthesis. The declaration ends
with the word TOOL followed by two integers separated.by a comma. The word
TOOL indicates that the declaration is a Toolbox routine rather than a normal
procedure or function that would contain code and end with a END PROC or END
FN. The following is the sytnax of a Toolbox procedure and function declaration:

DEF PROC ToolName [(Para.meter {, Parameter})] TOOL FunctionNum, ToolNum

DEF FN ToolName [! I% I@ I &] [[NumReturnValues]]

[(Parameter{, Parameter})] TOOL FunctionNum, ToolNum

A Toolbox routine can be invoked using the CALL statement followed by the name
of the routine as defined in this appendix, or using the CALL% statement using the
routine's FunctionNum and ToolNum.

The parameter names chosen for this appendix are intended to describe the
meaning of the parameter's value. For example, a parameter with the name
UserlD%, indicates that a Memory Manager user id should be passed for the
parameter value. The type character following the name of course indicates the type
of the parameter. In this case, User1D% is an integer parameter.

Often times, a data structure value is passed to a Toolbox routine. In these cases, the
name of the parameter includes as part of its name, the name of the data structure
in italics. For example, the Toolbox function PtinRect% contains the parameter
PointPtr@. Since TML BASIC does not allow array and structure parameters, the
address of the data structure must be passed as a double integer (@) parameter. The

Appendices Apple IIGS Toolbox Libraries

address of a array or structure variable is obtained by using the V ARPTR function.
Whenever the address of a data structure is used as a parameter, its name usually
ends with the letters "Ptr". Toolbox routines sometimes require Handle values for a
parameter. A handle is a pointer to a pointer. While handles are used extensively
in the Toolbox, only in rare occasions does a program have to create a handle value
using V ARPTR since the Toolbox itself creates them and returns the handles to the
program. When a parameter value is a handle, its name ends with the letters
"Hndl".

Appendices Apple IIGS Toolbox Libraries

Control Manager

The Control Manager consists of all the routines which manipulate controls.
Controls include scroll bars, radio buttons, check boxes, etc. When a control is
activated or selected it causes an immediate action to take place or changes a setting
that affects the operation of the application or the window to which the control
belongs.

Special Values

No special values defined for the Control Manager.

Data Structures

ControlColorTbl

The ControlColorTbl structure holds the information used to add color to a control.
Because the parts of a control differ among the different controls, the contents of this
structure vary according to the type of control used. The following is the definition
of the most common form of the ControlColorTbl, for a scroll bar. The bits in each
of the integer elements of the data structure define the colors. For further details,
consult the Apple Iles Toolbox Reference.

DIM aControlColorTbl%(7)

Element Value

0 Integer
1 Integer
2 Integer
3 Integer
4 Integer
5 Integer
6 Integer
7 Integer

Appendices

Definition

Scroll outline color
Color of arrows when not highlighted
Color of arrows when highlighted
Color of arrow box interior background
Color of thumb interior when not highlighted
Reserved
Color of page region interior
Color of scroll bar interior when inactive

Apple IIGS Toolbox Libraries

Control

The Control data structure defines the actual control object. Like the
ControlColorThl data structure, the exact elements of this data structure depends on
the control being defined. The control listed here is for a scroll bar. For further
details see the Apple JIGS Toolbox Reference.

DIM Control! (46)

Element

0 .. 3
3 .. 6
7 .. 14
15
16
17 .. 18
19 .. 22
23 .. 26
27 .. 28
29 .. 30
31 .. 34
35 .. 38
39 .. 42
43 .. 46

Routines

HouseKeeplng

Value

Double Integer
Double Integer
Rect
Integer
Integer
Integer
Double Integer
Double Integer
Integer
Integer
Double Integer
Double Integer
Rect
Rect

Definition

Handle to the next control in the control list
Pointer to the window that owns this control: WindowPtr
Control rectangle
Control flag
Control hilite
Value of the control
Pointer to control definition procedure: ProcPtr
Pointer to control default action procedure: ProcPtr
Data size
View size
Reserved for application's use
Pointer to control color table: ControlColorTblPtr
Thumb rectangle
Page rectangle

DEF PROC Ct1StartUp(UserID%,DPageAddr%) TOOL 2,16
DEF PROC CtlShutDown TOOL 3,16
DEF FN Ct1Version% TOOL 4,16
DEF PROC CtlReset TOOL 5,16
DEF FN Ct1Status% TOOL 6,16
DEF PROC CtlNewRes TOOL 18,16

Appendices 407 Apple IIGS Toolbox Libraries

Creating and Disposing

DEF FN NewControl@
(TheWindowPtr@,
BoundsRectPtr@,
TitleString$,
Flag%,
Value%,
Param1%,
Param2%,
DefProcPtr@,
RefCon@,
ControlColorTablePtr@)

DEF PROC DisposeControl(TheContro1Hndl@)
DEF PROC KillControls(TheWindowPtr@)

Display

DEF PROC SetCtlTitle(TitleString$,TheContro1Hndl@)
DEF FN GetCtlTitle@(TheContro1Hndl@)
DEF PROC HideControl(TheContro1Hndl@)
DEF PROC ShowControl(TheContro1Hndl@)
DEF PROC DrawControls (TheWindowPtr@)
DEF PROC HiliteControl(HiliteState%,TheContro1Hndl@)

Mouse LocaHon

DEF FN

DEF FN

DEF FN

FindControl%
(FoundContro1Hndl@,
XPoint%,
YPoint%,
TheWindowPtr@)

TestControl%
(XPoint%,
YPoint%,
TheContro1Hndl@)

TrackControl%
(StartX%,
StartY%,
ActionProcPtr@,
TheContro1Hndl@)

Moving and Sizing

DEF PROC MoveControl(NewX%,NewY%,TheContro1Hndl@)
DEF PROC DragControl

Appendices

(StartX%,
StartY%,
LimitRectPtr@,
SlopRectPtr@,
Ax i s%,
The Contro1Hndl@)

TOOL 9,16
TOOL 10,16
TOOL 11, 16

TOOL 12,16
TOOL 13, 16
TOOL 14,16
TOOL 15,16
TOOL 16,16
TOOL 17,16

TOOL 19,16

TOOL 20,16

TOOL 21,16

TOOL 22,16

TOOL 23,16

Apple IIGS Toolbox Ubraries

Control Record Access

DEF PROC SetCtlValue(CurValue%,TheContro1Hndl@) TOOL 25,16
DEF FN GetCtlValue%(TheContro1Hndl@) TOOL 26,16
DEF PROC SetCtlAction(NewActionProcPtr@,TheControlHndl@) TOOL 32,16
DEF FN GetCtlAction@(TheContro1Hndl@) TOOL 33,16
DEF PROC SetCtlRefCon(NewRefCon@,TheControlHndl@) TOOL 34,16
DEF FN GetCtlRefCon@(TheContro1Handle@) TOOL 35,16
DEF PROC SetCtlParams(Param2%,Param1%,TheContro1Hndl@) TOOL 27,16
DEF FN GetCtlParams%[2] (TheContro1Hndl@) TOOL 28,16

Mlscellaneous

DEF FN DragRect@
(Act ionProcPtr@,
DragPatternPtr@,
StartX%,
StartY%,
DragRectPtr@,
LimitRectPtr@,
SlopRectPtr@,
Axis%) TOOL 29,16

DEF FN GetCtlDPage% TOOL 31,16
DEF FN GrowSize@ TOOL 30,16
DEF FN SetCtlicons@(NewFontHndl@) TOOL 24,16
DEF PROC EraseControl(TheContro1Hndl@) TOOL 36,16
DEF PROC DrawOneCtl(TheContro1Hndl@) TOOL 37,16

Appendices Apple IIGS Toolbox Libraries

Desk Manager

The Desk Manager is the tool set that allows applications to support Classic Desk
Accessories and New Desk Accessories. Classic Desk Accessories (CDA) are invoked
with a keyboard interrupt generated by the Open Apple-Control-Escape key
sequence. New Desk Accessories (NOA) can only be invoked by applications that
support the desktop environment. NDAs are usually available in the Apple menu
of an application.

Special Values

The following values are the codes passed to a DAActive procedure.

Value

1
2
3
4
5
6
7
8
9

Definition

Desk Accessory Event
Desk Accessory Run
Desk Accessory Cursor
Desk Accessory Menu
Desk Accessory Undo
Desk Accessory Cut
Desk Accessory Copy
Desk Accessory Paste
Desk Accessory Oear

Data Structures

No data structures defined for the Desk Manager.

Routines

HouseKeeplng

DEF PROC DeskStartUp
DEF PROC DeskShutDown
DEF FN DeskVersion%
DEF PROC DeskReset
DEF FN DeskStatus%

State Save and Restore

DEF PROC SaveS crn
DEF PROC RestScrn
DEF PROC SaveAll
DEF PROC RestAll

Appendices 410

TOOL 2,5
TOOL 3,5
TOOL 4,5
TOOL 5,5
TOOL 6,5

TOOL 9, 5
TOOL 10, 5
TOOL 11 , 5
TOOL 1 2 , 5

Apple IIGS Toolbox Libraries

Installation

DEF PROC InstallNDA(IDHndl@) TOOL 14,5
DEF PROC InstallCDA(IDHndl@) TOOL 15,5

Classic Desk Accessory

DEF PROC ChooseCDA TOOL 17,5
DEF PROC SetDAStrPtr(AltDispHndl@,StringTblPtr@) TOOL 19,5
DEF FN GetDAStrPtr@(DAIDNum%) TOOL 20,5

New Desk Accessory

DEF FN OpenNDA% (IDNum%) TOOL 21,5
DEF PROC CloseNDA(RefNum%) TOOL 22,5
DEF PROC CloseNDAbyWinPtr (TheWindowPtr@) TOOL 28,5
DEF PROC CloseAllNDAs TOOL 29, 5
DEF PROC FixAppleMenu(MenuNum%) TOOL 30,5
DEF FN GetNumNDAs% TOOL 27,5
DEF PROC SystemClick

(TheEventRecord@,
TheWindowPtr@,
Flags%) TOOL 23,5

DEF FN SystemEdit%(EditType%) TOOL 24,5
DEF PROC SystemTask TOOL 25,5
DEF FN SystemEvent%

(What%,
Message@,
When@,
WherePointPtr@,
Mods%) TOOL 26,5

Appendices 411 Apple IIGS Toolbox Libraries

Dialog Manager

The Dialog Manager contains routines for manipulating dialog and alert boxes.
These boxes provide clear consistent ways for the application to communicate with
the user. Dialog boxes are used primarily to request certain types of input while alert
boxes warn the user of an impending situation.

Special Values

The first two values listed are the standard dialog item id numbers for the OK and
Cancel buttons. The remaining values are used when creating a new dialog item to
define the type of dialog item to create.

Value

1
2

10
11
12
13
14
15
16
17
18
19
20

Data Structures

Dialog

Definition

Ok
Cancel

Button Item
Check Item
Radio Item
Scrol1Bar Item
User Control Item
StaticText Item
Long StaticText Item
Edit Line Item
Icon Item
Picture Item
User Item

The Dialog data structure is a complex variable size structure containing pointers
and handles to other structures in memory. The contents of the Dialog data
structure are not public. Instead, to manipulate dialogs and their contents, the
programmer uses the standard routines found in the Dialog Manager.

Appendices 412 Apple IIGS Toolbox Libraries

Routines

HouseKeeping

DEF PROC DialogStartUp(UserID%)
DEF PROC DialogShutDown
DEF FN DialogVersion%
DEF PROC DialogReset
DEF FN DialogStatus%

DEF PROC ErrorSound(SoundProcPtr@)
DEF PROC SetDAFont(FontHndl@)

Creating and Disposing

DEF FN NewModalDialog@
(dBoundsRectPtr@,
dVisible%,
dRefCon@)

DEF FN NewModelessDialog@
(dBoundsRectPtr@,
dTitleString$,
dBehindWindowPtr@,
dFlag%,
dRefCon@,
dFullSizeRectPtr@)

DEF FN GetNewModalDialog@(TheDialogPtr@)
DEF PROC CloseDialog(TheDialogPtr@)

Creating and Removing Items

DEF PROC NewDitern
(TheDialogPtr@,
IternID%,
ItemRectPtr@,
IternType%,
IternDescrUNIVPtr@,
IternValue%,
IternFlag%,
IternColorTablePtr@)

DEF PROC GetNewDitem(TheDialogPtr@,IternTemplatePtr@)
DEF PROC RemoveDitern(TheDialogPtr@,IternID%)

Handling Dialog Events

DEF FN ModalDialog%(FilterProcPtr@)
DEF FN ModalDialog2@(FilterProcPtr@)
DEF FN IsDialogEvent%(TheEventRecordPtr@)
DEF FN DialogSelect%

(TheEventRecordPtr@,
TheDialogPtr@,
IternHit%)

DEF PROC DlgCut(TheDialogPtr@)

Appendices 413

TOOL 2,21
TOOL 3,21
TOOL 4,21
TOOL 5,21
TOOL 6,21

TOOL 9,21
TOOL 28,21

TOOL 10,21

TOOL 11, 21
TOOL 50,21
TOOL 12,21

TOOL 13,21
TOOL 51,21
TOOL 14,21

TOOL 15,21
TOOL 44,21
TOOL 16,21

TOOL 17,21
TOOL 18,21

Apple IIGS Toolbox Libraries

DEF PROC
DEF PROC
DEF PROC
DEF PROC

DlgCopy(TheDialogPtr@)
DlgPaste(TheDialogPtr@)
DlgDelete(TheDialogPtr@)
DrawDialog(TheDialogPtr@)

Invoking Alerts

DEF FN
DEF FN
DEF FN
DEF FN

Alert%(AlertTemplatePtr@,FilterProcPtr@)
StopAlert%(AlertTemplatePtr@, FilterProcPtr@)
NoteAlert%(AlertTemplatePtr@,FilterProcPtr@)
CautionAlert%

(AlertTemplatePtr@,
FilterProcPtr@)

Manipulating Items

DEF PROC ParamText
(Param0String$,
Param1String$,
Param2String$,
Param3String$)

DEF FN GetControlDitem@(TheDia1ogPtr@,ItemID%)

TOOL 19,21
TOOL 20,21
TOOL 21,21
TOOL 22,21

TOOL 23,21
TOOL 24,21
TOOL 25,21

TOOL 26,21

TOOL 27,21
TOOL 30,21

DEF PROC GetIText(TheDialogPtr@,ItemID%,TextStringPtr@)TOOL 31,21
DEF PROC SetIText(TheDialogPtr@,ItemID%,TextString$) TOOL 32,21
DEF PROC SelIText

(TheDialogPtr@,
ItemID%,
StartSel%,
EndSel%) TOOL 33,21

DEF FN GetDItemType%(TheDialogPtr@,ItemID%) TOOL 38,21
DEF PROC SetDItemType(ItemType%,TheDialogPtr@,ItemID%) TOOL 39,21
DEF PROC GetDitemBox

(TheDialogPtr@,
ItemID%,
ItemBoxRectPtr@) TOOL 40,21

DEF PROC SetDitemBox
(TheDialogPtr@,
ItemID%,
ItemBoxRectPtr@) TOOL 41,21

DEF FN GetFirstDitem%(TheDia1ogPtr@) TOOL 42,21
DEF FN GetNextDitem%(TheDialogPtr@,ItemID%) TOOL 43,21
DEF FN GetDefButton%(TheDialogPtr@) TOOL 55,21
DEF PROC SetDefButton(ItemID%,TheDialogPtr@) TOOL 56,21
DEF FN GetDitemValue%(TheDialogPtr@,ItemID%) TOOL 46,21
DEF PROC SetDitemValue

(ItemValue%,
TheDialogPtr@,
ItemID%) TOOL 47,21

DEF FN GetAl ertStage% TOOL 52,21
DEF PROC ResetAlertStage TOOL 53,21

Appendices 414 Apple IIGS Toolbox Libraries

DEF FN DefaultFilter%
(TheDialogPtr@,
TheEventRecordPtr@,
ItemHitPtr%) TOOL 54,21

DEF PROC HideDitem(TheDia1ogPtr@,ItemID%) TOOL 34,21
DEF PROC ShowDitem(TheDia1ogPtr@,ItemID%) TOOL 35,21
DEF FN FindDitem%(TheDia1ogPtr@, ThePointPtr@) TOOL 36,21
DEF PROC UpdateDialog(TheDialogPtr@,UpdateRgnHandle@) TOOL 37,21
DEF PROC DisableDitem(TheDia1ogPtr@,ItemID%) TOOL 57,21
DEF PROC EnableDitem(TheDia1ogPtr@,ItemID%) TOOL 58,21

Appendices 415 Apple IIGS Toolbox Libraries

Event Manager

The Event Manager is responsible for handling the possible events which occur
either from the user or from the computer. The Event Manager keeps track of all
events and reports them to the application when requested to do so. Since some
events have a higher priority than others, events are not reported in the same order
that they occurred. A mouse down, a mouse click, double-dick and disk insert are
some examples of events.

Special Values

Value

Event Codes

Definition

-1 Every Event
0 Null Event
1 Mouse Down
2 Mouse Up
3 Key Down
4 Undefined
5 Auto Key
6 Update Event
7 Undefined
8 Activate Event
9 Switch Event
10 Desk Accessory Event
11 Driver Event
12 Application Event #1
13 Application Event #2
14 Application Event #3
15 Application Event #4

Event Mask Equates

2
4
8
32
64
256
1024
2048
4096
8192
16384
-32768

Appendices

Mouse Down Mask
Mouse Up Mask
Key Down Mask
Auto Key Mask
Update Mask
Activate Mask
Switch Mask
Driver Mask
Application Mask #1
Application Mask #2
Application Mask #3
Application Mask #4

416 Apple IIGS Toolbox Libraries

Modifier Flags

1 Active Flag
64 Button 1 State
128 Button O State
256 Apple Key
512 Shift Key
1024 Caps Lock
2048 Option Key
4096 Control Key
8192 Key Pad

Data Structures

EventRecord

The EventRecord is the datastructure used by the EventManager to report the
occurrence of an event and appropriate related information.

DIM anEventRecord! (19)

Element(s)

0 .. 1
2 .. 5
6 .. 9
10 .. 13
14 .. 15
16 .. 17
18 .. 19

Routines

HouseKeeplng

Value

Integer
Double Integer
Double Integer
Point
Integer
Double Integer
Double Integer

DEF PROC EMStartUp
(DPageAddr%,
QueueSize%,
XMinClamp%,
XMaxClamp%,
YMinClamp%,
YMaxClamp%,
UserID%)

DEF FN EMVersion%
DEF PROC EMReset
DEF FN EMStatus%

Description

Event code specifying which event occurred
Event message which has additional information about event
Number of ticks since startup
Mouse location where event occurred
Modifier flags
Task Data for Task Master
Task Mask for Task Master

TOOL 3,6
TOOL 4,6
TOOL 5,6
TOOL 6,6

Appendices 417 Apple IIGS Toolbox Libraries

Acesslng Toolbox Events

DEF FN GetNext Event%(EventMask%,EventRecordPtr@) TOOL 10,6
DEF FN EventAvail%(EventMask%,EventRecordPtr@) TOOL 11, 6

Mouse Reading

DEF PROC GetMouse(PointPtr@) TOOL 12,6
DEF FN Button%(ButtonNum%) TOOL 13, 6
DEF FN StillDown%(ButtonNum%) TOOL 14,6
DEF FN WaitMouseUp%(ButtonNum%) TOOL 15,6

Posting and Removing Events

DEF FN PostEvent%(EventCode%,EventMsg@) TOOL 20,6
DEF FN FlushEvents%(EventMask%,StopMask%) TOOL 21,6

Accessing Operating System Events

DEF FN Get0SEvent%(EventMask%,EventRecordPtr@) TOOL 22,6
DEF FN 0SEventAvail%(EventMask%,EventRecordPtr@) TOOL 23,6

Miscellaneous

DEF FN TickCount@ TOOL 16,6
DEF FN GetDblTime@, TOOL 17,6
DEF FN GetCaretTime@ TOOL 18,6
DEF PROC SetEventMask(TheMask%) TOOL 24,6
DEF PROC FakeMouse

(Changed%,
ModLatchByte%,
XPosition%,
YPosition%,
ButtonStatus%) TOOL 25,6

DEF FN DoWindows% TOOL 9, 6
DEF PROC Set Switch TOOL 19,6

Appendices 418 Apple IIGS Toolbox Libraries

Font Man ager

The Font Manager allows the application to use of different fonts, font styles, etc.
within QuickDraw. Font definitions are found in the SYSTEM/FONTS/ directory of a
bootable System Disk.

Special Values

No special values defined for the Font Manager.

Data Structures

Font

A font is a complete set of characters of one typeface or stylistic variation not
including a size. Fonts are stored in the SYSTEM/FONTS/ directory of a System Disk.
Manipulation of fonts by an application is usually accomplished through handles.

FonHD

DIM aFontID ! (3)

Element

0 .. 1
2
3

FontStatRec

Value

Integer
Integer
Integer

DIM aFontStatRec! (5)

Element

0 .. 3
4 .. 5

Appendices

Value

FontlD
Integer

Definition

Font family number
Style
Point size of the font

Definition

Result ID
Result stats

419 Apple IIGS Toolbox Libraries

Routines

HouseKeeplng

DEF PROC
DEF PROC
DEF FN
DEF PROC
DEF FN

FMStartUp(UserID%,DPageAddr%)
FMShutDown
FMVersion%
FMReset
FMStatus%

Family Access

DEF FN CountFamilies%(FamSpecs%)
DEF FN FindFamily%

(FamSpecs%,
PositionNum%,
FamNameStringPtr@)

DEF FN GetFaminfo%(FamNum%,FamNameStringPtr@)
DEF FN GetFamNum%(FamNameStringPtr@)
DEF PROC AddFamily(FamNum%,FamNameString$)

ManlpulaHon

DEF PROC
DEF PROC
DEF FN
DEF PROC

InstallFont(DesiredIDRecPtr@,ScaleWord%)
SetPurgeStat(DesiredIDRecPtr@,PurgeStat%)
CountFonts%(DesiredIDRecPtr@,Specs%)
FindFontStats

(DesiredIDRecPtr@,
Specs%,
PositionNum%,
FontStatRecPtr@)

DEF PROC LoadFont
(DesiredIDRecPtr@,
Specs%,
PositionNum%,
FontStatRecPtr@)

DEF PROC LoadSysFont
DEF PROC AddFontVar(FontHndl@,NewSpecs%)

Menu and Dialog Fonts

DEF PROC
DEF FN
DEF FN

FixFontMenu(MenuID%,StartingID%,FamSpecs%)
ChooseFont@(currentIDRecPtr@,FamSpecs%)
ItemID2FamNum%(itemID%)

Miscellaneous

DEF PROC
DEF FN
DEF FN

Appendices

FMSetSysFont(TheFontIDRecPtr@)
FMGetSysFID@
FMGetCurFID@

420

TOOL 2, 27
TOOL 3, 27
TOOL 4, 27
TOOL 5, 27
TOOL 6, 27

TOOL 9, 27

TOOL 10, 27
TOOL 11, 27
TOOL 12, 27
TOOL 13, 27

TOOL 14, 27
TOOL 15, 27
TOOL 16, 27

TOOL 17, 27

TOOL 18, 27
TOOL 19, 27
TOOL 20, 27

TOOL 21, 27
TOOL 22, 27
TOOL 23, 27

TOOL 24, 27
TOOL 25, 27
TOOL 26, 27

Apple IIGS Toolbox Libraries

Integer Math

The Integer Math tool set consists of a varied collection of operations for integers,
long integers and signed fractional numbers. These operations include
multiplication, division and various conversions between numeric representations
and strings.

Special Values

No special values defined for Integer Math.

Data Structures

No data structures defined for Integer Math.

Routines

Housekeeping Routines

DEF PROC IMStartUp
DEF PROC IMShutDown
DEF FN IMVersion%
DEF PROC IMReset
DEF FN IMS tat us%

Math RouHnes

DEF FN Muliply@(Left%,Right%)
DEF FN SDivide@(Left%,Right%)
DEF FN UDivide@(Left%,Right%)
DEF FN LongDivide@[2] (Left@,Right@)
DEF FN FixRatio@(Numerator%,Denominator%)
DEF FN FixMul@(Left@,Right@)
DEF FN FracMul@(Left@,Right@)
DEF FN FixDiv@(Dividend@,Divisor@)
DEF FN FracDiv@(Dividend@,Divsor@)
DEF FN FixRound%(Fixed@)
DEF FN FracSqrt@(Frac@)
DEF FN FracCos@(Fixed@)
DEF FN FracSin@(Fixed@)
DEF FN FixATan2@(Vall@,Val2)
DEF FN HiWord% (Long@)
DEF FN LoWord% (Long@)

Appendices 421

TOOL 2, 11
TOOL 3, 11
TOOL 4, 11
TOOL 5, 11
TOOL 6, 11

TOOL 9, 11
TOOL 10, 11
TOOL 11, 11
TOOL 13, 11
TOOL 14, 11
TOOL 15, 11
TOOL 16, 11
TOOL 17, 11
TOOL 18, 11
TOOL 19, 11
TOOL 20, 11
TOOL 21, 11
TOOL 22, 11
TOOL 23, 11
TOOL 24, 11
TOOL 25, 11

Apple IIGS Toolbox Libraries

Numeric Conversion Routines

DEF FN Long2Fix@(Long@) TOOL 26, 11
DEF FN Fix2Long@(Fixed@) TOOL 27, 11
DEF FN Fix2Frac@(Fixed@) TOOL 28, 11
DEF FN Frac2Fix@(Frac@) TOOL 29, 11
DEF PROC Fix2X(Fixed@,ExtPtr@) TOOL 30, 11
DEF PROC Frac2X(Frac@,ExtPtr@) TOOL 31, 11
DEF FN X2Fix@ (ExtPtr@) TOOL 32, 11
DEF FN X2Frac@ (ExtPtr@) TOOL 33, 11

String Conversion Routines

DEF PROC Int2Hex(Int%,BufferPtr@,BufferLen%) TOOL 34, 11
DEF PROC Long2Hex(Long%,BufferPtr@,BufferLen%) TOOL 35, 11
DEF FN Hex2Int %(BufferPtr@,BufferLen%) TOOL 36, 11
DEF FN Hex2Long@(BufferPtr@,BufferLen%) TOOL 37, 11
DEF PROC Int2Dec(Int%,BufferPtr@,BufferLen%,Signed%) TOOL 38, 11
DEF PROC Long2Dec(Long%,BufferPtr@,BufferLen%,Signed%) TOOL 39, 11
DEF FN Dec2Int%(BufferPtr@,BufferLen%,Signed%) TOOL 40, 11
DEF FN Dec2Long@(BufferPtr@,BufferLen%,Signed%) TOOL 41, 11
DEF FN Hexit@(Int%) TOOL 42, 11

Appendices Apple IIGS Toolbox Libraries

Line Edit

Line Edit is used to display a line of text on the screen and allow a user to edit the
text. The editing operations include the standard cut, copy and paste operations.

Special Values

No special values defined for Line Edit.

Data Structures

LERec

The Line Edit Record data structure holds the information needed to store and
manipulate a line of text in memory. A program should not access the LERec data
structure directly, but only through the use of the Line Edit routines.

DIM aLERec ! (52)

Element

0 .. 3
4 .. 6
7 .. 14
15 .. 22
23 .. 26
27 .. 28
29 .. 30
31..32
33 .. 34
35 .. 36
37 .. 38
39 .. 40
41 .. 44
45 .. 48
49 .. 52

Routines

House Keeping

Value

Double Integer
Integer
Rect
Rect
Double Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Double Integer
Double Integer
Double Integer

Definition

Handle to the text to be edited
Length of the text
Destination rectangle
View rectangle
Pointer to GrafPort
Used for highlighting
Used for drawing the text
Start of selection range
End of selection range
Used internally
Used internally
Used internally
Used internally
Pointer to highlight routine: ProcPtr
Pointer to caret routine: ProcPtr

DEF PROC LEStartUp(DPageAddr%,UserID%) TOOL 2,20
DEF PROC LEShutDown TOOL 3,20
DEF FN LEVersion% TOOL 4,20
DEF PROC LEReset TOOL 5,20
DEF FN LEStatus% TOOL 6,20

Appendices Apple IIGS Toolbox Libraries

Creating and Disposing

DEF FN LENew@(DestRectPtr@,ViewRectPtr@,MaxTextLen%) TOOL 9,20
DEF PROC LEDispose(LERecHndl@) TOOL 10,20

Changing the Text of an Edit Record

DEF PROC LESet Text(TextPtr@, Length%,LERecHndl@)

Insertion Point and SelecHon Range

DEF PROC LEidle(LERecHndl@)
DEF PROC LEClick(EventRecordPtr@,LERecHndl@)
DEF PROC LESetSelect(Se1Start%,Se1End%,LERecHndl@)
DEF PROC LEActivate(LERecHndl@)
DEF PROC LEDeactivate(LERecHndl@)

Editing

DEF PROC LEKey(TheKey%,Modifiers%,LERecHndl@)
DEF PROC LECut(LERecHndl@)
DEF PROC LECopy(LERecHndl@)
DEF PROC LEPas t e(LERecHndl@)
DEF PROC LEDelete(LERecHndl@)
DEF PROC LEinsert(TextPtr@,Length%,LERecHndl@)

Text Display

DEF PROC LEUpdate(LERecHndl@)
DEF PROC LEText Box

(TextPtr@,
Length%,
BoxRectPtr@,
TextJustify%)

Scrap Handling

DEF PROC LEFromScrap
DEF PROC LEToScrap
DEF FN LEScrapHandle@
DEF FN LEGetScrapLen%
DEF PROC LESetScrapLen(NewLength%)

Setting HiliteHook and CaretHook

DEF PROC LESetHilite(HiliteProcPtr@,LERecHndl@)
DEF PROC LESetCaret(CaretProcPtr@,LERecHndl@)

Appendices 424

TOOL 11,20

TOOL 12,20
TOOL 13,20
TOOL 14,20
TOOL 15,20
TOOL 16,20

TOOL 17,20
TOOL 18,20
TOOL 19,20
TOOL 20,20
TOOL 21,20
TOOL 22,20

TOOL 23, 20

TOOL 24,20

TOOL 25,20
TOOL 26,20
TOOL 27,20
TOOL 28,20
TOOL 29,20

TOOL 30,20
TOOL 31, 20

Apple IIGS Toolbox Libraries

List Manager

The List Manager is used to create, display and allow selection of a variable amount
of similar data.

Special Values

No special values defined for Llne Edit.

Data Structures

llstMem

The ListMem structure holds the data for one member in a list. Custom members
can be defined by adding more data to the end of the existing data. The list contains
a field that holds the number of bytes in one member.

DIM aListMern! (N)

Element Value Definition

0 .. 3 Double Integer Pointer to string for string member, anything else for custom
4 .. 5 Integer Bit Flags, bit 7=1 if selected, bit 6 = 1 if disabled
• • •
• • •
• • •
N Integer Application data if custom member

Appendices 425 Apple IIGS Toolbox Libraries

ListRec

The ListRec data structure is where information is kept about a List Manager list.
Although the List Manager provides routines to manipulate the list, the actual
structure is provided below.

DIM aListRec ! (35)

Element

0 .. 7
8 .. 9
10 .. 11
12 .. 13
14 .. 15
16 .. 19
20 .. 23
24 .. 25
26 .. 27
28 . .31
32 . .35

Routines

Value

Rect
Integer
Integer
Integer
Integer
Double Integer
Double Integer
Integer
Integer
Double Integer
Double Integer

Definition

Bounding rectangle
Total number of members in the list
Number of members displayed at any one time
List type
The number of the member appearing at start up
Handle of control belonging to the list
Pointer to list's draw procedure : ProcPtr
Height of each member in pixels
Number of bytes in a member record
Pointer to member list which is array of records
Pointer to scroll bar color table

HouseKeeplng

DEF PROC ListStartUp TOOL
DEF PROC ListShutDown TOOL
DEF FN List Version% TOOL
DEF PROC ListReset TOOL
DEF FN List Status% TOOL

ManlpulaHon

DEF FN CreateList@(TheWindowPtr@, ListRecPtr@) TOOL
DEF FN NextMember@(ListMemPtr@, ListRecPtr@) TOOL
DEF FN ResetMember@(ListRecPtr@) TOOL
DEF PROC DrawMember(ListMemPtr@,ListRecPtr@) TOOL
DEF PROC SelectMember(ListMemPtr@,ListRecPtr@) TOOL
DEF PROC SortList(SortProcPtr@, ListRecPtr@) TOOL
DEF FN GetListDefProc@ TOOL
DEF PROC NewList(ListMemPtr@,ListRecPtr@) TOOL

2,28
3,28
4,28
5,28
6,28

9,28
11, 28
15,28
12,28
13,28
10,28
14,28
16,28

Appendices Apple IIGS Toolbox Libraries

Memory Manager

The Memory Manager is one of the most important tool sets in the Toolbox. This
tool is entirely responsible for the allocation, deallocating, and repositioning of
memory blocks on the Apple IIGS. The Memory Manager keeps track of how much
memory is free and what parts are allocated and to whom. Whenever a program
needs memory, it must ask the Memory Manager to allocate it.

Special Values

The following values are used with the NewHandle@ function to specify the
attributes of a block of memory to be allocated.

Value

1
2
4
8
16
16384
32768

Data Structures

Pointer (Ptr)

Attribute

Fixed Bank
Fixed Address
Page Aligned
Special Memory
No Bank Cross
Fixed Block
Locked

Definition

must be in a particular bank of memory
must be allocated at specific address
must be page aligned
may not use bank $00, $01, $EO, $El
may not cross bank boundary
can never be move
same as HLock

A pointer in TML BASIC is the address of a array, structure or simple variable. The
address of a variable is obtained using the VARPTR function. A pointer is stored as
a double integer value.

Handle (Hndl)

A handle is also a pointer in TML BASIC, but behaves in a very special way. A
handle always points to another pointer which in tum points to a variable. Except
for very rare cases should attempt to create a handle to be used with the Toolbox
using the V ARPTR function. A program should only obtain handle values by
calling the NewHandle@ function or some other Toolbox routine which returns a
handle value.

Appendices 427 Apple IIGS Toolbox Libraries

Routines

House Keeping

DEF FN MMStartUp%
DEF PROC MMShutDown%(UserID%)
DEF FN MMVersion%
DEF PROC MMReset
DEF FN MMStatus%

Memory Allocation

DEF FN NewHandle@
(BlockSize@,
UserID%,
Attributes%,
LocationPtr@)

DEF PROC ReAllocHandle
(oldHandle@,
BlockSize@,
UserID%,
Attributes%,
LocationPtr@)

DEF PROC RestoreHandle(Handle@)
DEF PROC DisposeHandle(Handle@)
DEF PROC DisposeAll(UserID%)
DEF PROC PurgeHandle(Handle)
DEF PROC PurgeAll(UserID%)

Size lnformaHon

DEF FN GetHandleSize@(Handle@)
DEF PROC SetHandleSize(NewSize@,Handle@)
DEF FN FindHandle@(LocationPtr@)

Locking and Purge Level

DEF PROC HLock (Handle@)
DEF PROC HLockAll(UserID%)
DEF PROC HUnLock(Handle@)
DEF PROC HUnLockAll(UserID%)
DEF PROC SetPurge(NewPurgeLevel%,Handle)
DEF PROC SetPurgeAll(NewPurgeLevel%,UserID%)

Free Space

DEF PROC CompactMem
DEF FN FreeMem@
DEF FN MaxBlock@
DEF FN TotalMem@
DEF PROC CheckHandle(Handle@)

Appendices

TOOL 2,2
TOOL 3,2
TOOL 4,2
TOOL 5,2
TOOL 6,2

TOOL 9, 2

TOOL 10, 2
TOOL 11,2
TOOL 16,2
TOOL 17,2
TOOL 18,2
TOOL 19,2

TOOL 24, 2
TOOL 25, 2
TOOL 26, 2

TOOL 32,2
TOOL 33,2
TOOL 34,2
TOOL 35,2
TOOL 36,2
TOOL 37,2

TOOL 31,2
TOOL 27,2
TOOL 28,2
TOOL 29,2
TOOL 30,2

Apple IIGS Toolbox Libraries

Mlscetlaneous

DEF PROC
DEF PROC
DEF PROC
DEF PROC

BlockMove(SrcPtr@,DstPtr@,ByteCount@)
PtrToHand(SrcPtr@,DstHandle@,ByteCount@)
HandToPtr(SrcHandle@,DstPtr@,ByteCount@)
HandToHand(SrcHandle@,DstHandle@,ByteCount@)

Appendices

TOOL 43,2
TOOL 40,2
TOOL 41,2
TOOL 42,2

Apple IIGS Toolbox Libraries

Menu Manager

The Menu Manager is responsible for the creation, manipulation and disposal of the
pull down menus used in the desktop environment.

Special Values

No special values defined for the Menu Manager.

Data Structures

MenuBar

The MenuBar data structure contains the information needed to manage the
standard desktop menu bar as well as the menus contained within the menu bar.
This is a private data structure and should only be manipulated by calling the Menu
Manager routines.

Menu

A Menu data structure contains the information needed to manage a single
pull-down menu. Again, this data structure is private and should only be
manipulated by calling the Menu Manager routines.

Routines

HouseKeeplng

DEF PROC MenuStartUp(UserID%,DPageAddr%)
DEF PROC MenuShutDown
DEF FN MenuVersion%
DEF PROC MenuReset
DEF FN MenuStatus%

Creating and Disposing

DEF FN NewMenuBar@ (TheWindowPtr@)
DEF FN NewMenu@(MenuStringPtr@)
DEF PROC DisposeMenu(TheMenuHndl@)
DEF FN FixMenuBar%,
DEF PROC CalcMenuSize(NewWidth%,NewHeight%,MenuNum%)

User Interaction

DEF PROC MenuSelect(EventRecordPtr@,TheMenuBarHndl@)
DEF PROC MenuKey(EventRecordPtr@,TheMenuBarHndl@)
DEF PROC MenuRefresh(RedrawRoutineProcPtr@)
DEF PROC DrawMenuBar
DEF PROC HiliteMenu(Hilite%,MenuNum%)

Appendices 430

TOOL 2, 15
TOOL 3,15
TOOL 4,15
TOOL 5, 15
TOOL 6,15

TOOL 21,15
TOOL 45,15
TOOL 46, 15
TOOL 19, 15
TOOL 28,15

TOOL 43,15
TOOL 9,15
TOOL 11, 15
TOOL 42,15
TOOL 44,15

Apple IIGS Toolbox Libraries

DEF PROC FlashMenuBar TOOL 12,15

Menu and Item Shuffling

DEF PROC InsertMenu(AddMenuHandle@,InsertAfter%) TOOL 13,15
DEF PROC DeleteMenu(MenuNum%) TOOL 14,15
DEF PROC InsertMitem

(AdditemCStringPtr@,
InsertAfter%,
MenuNum%) TOOL 15,15

DEF PROC DeleteMitem(ItemNum%) TOOL 16,15

Menu Bar Access

DEF PROC SetSysBar(TheMenuBarHndl@) TOOL 18,15
DEF FN GetSysBar@ TOOL 17,15
DEF PROC SetMenuBar(TheMenuBarHndl@) TOOL 57,15
DEF FN GetMenuBar@ TOOL 10,15
DEF PROC SetBarColors

(NewBarColor%,
NewinvertColor%,
NewOutlineColor%) TOOL 23,15

DEF FN GetBarColors@ TOOL 24,15
DEF PROC SetMTitleStart(XStart%) TOOL 25,15
DEF FN GetMTitleStart% TOOL 26,15
DEF FN CountMitems%(MenuNum%) TOOL 20,15

Menu Record Access

DEF FN GetMHandle@(MenuNum%) TOOL 22,15
DEF PROC SetMTitleWidth(NewWidth%,MenuNum%) TOOL 29,15
DEF FN GetMTitleWidth%(MenuNum%) TOOL 30,15
DEF PROC SetMenuFlag(NewValue%,MenuNum%) TOOL 31,15
DEF FN GetMenuFlag%(MenuNum%) TOOL 32,15
DEF PROC SetMenuTitle(NewTitleStringPtr@,MenuNum%) TOOL 33,15
DEF FN GetMenuTitle@(MenuNum%) TOOL 34,15
DEF PROC SetMenuID(NewMenuNum%,OldMenuNum%) TOOL 55,15

Item Record Access

DEF PROC SetMitem(NewStrgCStringPtr@,ItemNum%) TOOI 36,15
DEF FN GetMitem@(ItemNum%) TOOL 37,15
DEF PROC SetMitemName(ItemTitleStringPtr@,ItemNum%) TOOL 58,15
DEF PROC EnableMitem(ItemNum%) TOOL 48,15
DEF PROC DisableMitem(ItemNum%) TOOL 49,15
DEF PROC CheckMitem(Checked%,ItemNum%) TOOL 50,15
DEF PROC SetMitemMark(MarkChar%,ItemNum%) TOOL 51,15
DEF FN GetMitemMark%(ItemNum%) TOOL 52,15
DEF PROC SetMitemStyle (ChStyle%,ItemNum%) TOOL 53,15
DEF FN GetMitemStyle%(ItemNum%) TOOL 54,15
DEF PROC SetMitemFlag(NewValue%,ItemNum%) TOOL 38,15
DEF FN GetMitemFlag%(ItemNum%) TOOL 39,15
DEF PROC SetMitemID(NewID%,ItemNum%) TOOL 56,15

Appendices 431 Apple IIGS Toolbox Libraries

DEF PROC SetMitemBlink(Count%)

Miscellaneous

DEF FN
DEF PROC
DEF PROC
DEF FN

GetMenuMgrPort@
MenuNewRes
InitPalette
MenuGlobal%(chgFlag%)

Appendices 432

TOOL 40,15

TOOL 27,15
TOOL 41,15
TOOL 47,15
TOOL 35,15

Apple IIGS Toolbox Libraries

Miscellaneous Tools

The Miscellaneous Tool Set consists mostly of system level routines that must be
available for most other tool sets. The tool set includes operations to read and write
the Apple IIGS realtime clock, read and write the parameter memory, low level
mouse operations, interrupts and others.

Special Values

No special values defined for the Miscellaneous Tool Set.

Data Structures

No special data structures defined for the Miscellaneous Tool Set.

Routines

HouseKeeplng

DEF PROC MT St art Up
DEF PROC MT Shut Down
DEF FN MTVersion%
DEF PROC MTReset
DEF FN MTStatus%

Battery RAM

DEF PROC WriteBRarn(BufferPtr@)
DEF PROC ReadBRarn(BufferPtr@)
DEF PROC WriteBParam(Data%,PararnRefNurn%)
DEF FN ReadBPararn%(PararnRefNurn%)

Clock

DEF FN ReadTirneHex%[4] (BufferSize%)
DEF PROC WriteTimeHex(MonthDay%,YearHour%,MinuteSecond%)
DEF PROC ReadAsciiTirne(BufferPtr@)

Vector lnltlallzatlon

DEF PROC SetVector(VectorRefNum%,VectorProcPtr@)
DEF FN GetVector@(VectorRefNurn%)

HeartBeat

DEF PROC SetHeartBeat(TaskProcPtr@)
DEF PROC DelHeartBeat(TaskProcPtr@)
DEF PROC ClrHeartBeat

TOOL 2,3
TOOL 3,3
TOOL 4,3
TOOL 5,3
TOOL 6,3

TOOL 9,3
TOOL 10,3
TOOL 11,3
TOOL 12,3

TOOL 13,3
TOOL 14,3
TOOL 15,3

TOOL 16,3
TOOL 17,3

TOOL 18,3
TOOL 19,3
TOOL 20,3

Appendices 433 Apple IIGS Toolbox Libraries

System Death Manager

DEF PROC SysFailMgr(ErrCode%,MsgString$)

Get Address

DEF FN GetAddr@(RefNum%)

Mouse

DEF FN ReadMouse ! (6)
DEF PROC InitMouse(MouseS1ot%)
DEF PROC SetMouse(MouseMode%)
DEF PROC Home Mouse
DEF PROC ClearMouse
DEF PROC ClampMouse

(XMinClamp%,
XMaxClamp%,
YMinClamp%,
YMaxClamp%)

DEF FN GetMouseClamp%[4]
DEF PROC PosMouse(XPos%,YPos%)
DEF FN ServeMouse%
DEF FN GetNewID%(IDTag%)
DEF PROC DeleteID (IDTag%)
DEF PROC StatusID (IDTag%)

Interrupt Control

DEF PROC IntSource(ScrRefNum%)

Tick Count

DEF FN Get Tick@

PackBytes and UnPackBytes

DEF FN

DEF FN

Appendices

PackBytes%
(ScrBufferPtr@,
ScrSizePtr@,
DstBufferPtr@,
DstSize%)

UnPackBytes%
(ScrBufferPtr@,
ScrSize%,
DstBufferPtr@,
DstSizePtr@)

TOOL 21,3

TOOL 22,3

TOOL 23,3
TOOL 24,3
TOOL 25,3
TOOL 26,3
TOOL 27,3

TOOL 28,3
TOOL 29,3
TOOL 30,3
TOOL 31,3
TOOL 32,3
TOOL 33,3
TOOL 34,3

TOOL 35,3

TOOL 37,3

TOOL 38,3

TOOL 39,3

Apple IIGS Toolbox libraries

Munger

DEF PROC Munger
(DestPtr@,
DestLenPtr@,
TargPtr@,
TargLen%,
ReplacePtr@,
ReplaceLen%,
P adCharPt r@)

Interrupt Enable State

DEF FN GetIRQEnable%
DEF PROC SetAbsClamp

(XMinClamp%,
XMaxClamp%,
YMinClamp%,
YMaxClamp%)

DEF FN GetAbsClamp%[4]
DEF PROC SysBeep

Appendices

TOOL 40,3

TOOL 41,3

TOOL 42,3
TOOL 43,3
TOOL 44,3

Apple IIGS Toolbox Libraries

Note Synthesizer

The Note Synthesizer is a sophisticated tool set which can generate complex musical
sounds based upon instrument definitions. The Ensoniq Digital Oscillator Chip
(DOC) is the hardware that actually creates the sound.

Special Values

No special values defined for the Note Synthesizer.

Data Structures

Waveform

The Waveform data structure defines a wave which contains information about
the allowable pitch and range of a wave. A wave is a component of a wave list
which is needed for defining an Instrument data structure. A wave list consists of a
list of waves.

DIM aWaveForm ! (5)

Element

0
1
2
3
4 .. 5

Instrument

Value

Integer
Integer
Integer
Integer
Integer

Definition

The highest MIDI semi-tone, also named TopKey.
Wave Address to be put in DOC registers
Wave Size
DOC Mode
Relative Pitch for tuning the waveform

The Instrument data structure is used with the NoteOn procedure to define the
characteristics of an instrument whose sounds are created by the Note Synthesizer.
This structure has a variable length which depends on the number of waveforms in
both Wave List A and Wave List B. The LA and LB notation refers to the "Last
element in wave A" and "Last element in wave B" respectively.

Appendices 436 Apple IIGS Toolbox Libraries

DIM aninstrument ! (LB)

Element(s)

0 .. 23
24
25
26
27
28
29
30
31
32 .. LA
LA+l..LB

Routines

HouseKeeplng

Value

Envelope!(23)
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
WaveA!(LA)
WaveB!(LB-LA)

Definition

Envelope
Release Segment
Priority Increment
Pitch bend range
Vibrato Depth
Vibrato Speed
Spare, not used
Number of WaveForm structures in WaveList A
Number of WaveForm structures in WaveList B
WaveList A
WaveList B

DEF PROC NSStartUp(UpdateRate%,UpdateProcPtr@) Tool 2,25
DEF PROC NSShutDown
DEF FN NSVersion%
DEF PROC NSReset
DEF FN NSStatus%

Generator AllocaHon

DEF FN AllocGen%(RequestPriority%)
DEF PROC DeallocGen(GenNumber%)

Note Manipulation

DEF PROC
DEF PROC
DEF PROC

NoteOn(GenNum%,SemiTone%,Volume%,InstrumentPtr@)
NoteOff(GenNum%,SemiTone%)
AllNotesOff

Tool 3,25
Tool 4,25
Tool 5,25
Tool 6,25

Tool 9,25
Tool 10,25

Tool 11, 25
Tool 12,25
Tool 13,25

Appendices 437 Apple IIGS Toolbox Libraries

Print Manager

The Print Manager transforms Quickdraw representations of documents into
printed form. A special print driver is required to use the Print Manager. At the
moment Print Manager drivers exist only for the lmageWriter and the LaserWriter
printers.

Special Values

Value

0
128

16382

0

Data Structures

TPrPort

Definition

Specify draft printing
Specify spool printing

Maximum number of pages in a spool file

The NoError error code

TPrPort specifies the port that the Print Manager uses as it's printing environment.
This data structure is nearly the same as Quickdraw's GrafPort data structure. In
fact, the first element in the TPrPort structure is a GrafPort. The extra fields in the
TPrPort are private and should only be changed using the Print Manager routines.

TPrlnfo

The TPrlnfo data structure is the printer information record which holds page
composition information.

DIM aTPrinfo%(6)

Element

0
1
2
3 .. 6

Appendices

Value

Integer
Integer
Integer
Rect

Definition

Used internally
Vertical resolution of printer
Horizontal resolution of printer
Page definition rectangle

438 Apple IIGS Toolbox Libraries

TPrStl

The TPrStl data structure defines the style information obtained from the user via
the style dialog as well as the job dialog. The fields in this record have different
meanings for different printers.

DIM aTPrSt1% (6)

Element

0
1
2
3 .. 6

TPrXlnfo

Value

Integer
Integer
Integer
Rect

Definition

Used internally
Vertical resolution of printer
Horizontal resolution of printer
Page definition rectangle

The TPrXInfo data structure contains extra information that an application may
require.

DIM aTPrXInfo% (N)

Element Value

0 Integer
1 Integer
2 Integer
3 Integer
4 Integer
• •
• •
• •
N Integer

Appendices

Definition

Used internally
Reserved for internal use
Reserved for internal use
Size in byte of buffer used for spool printing
Additional information for internal use
•
•
•
End of additional information for internal use

439 Apple IIGS Toolbox Libraries

TPrJob

The TPrJob contains pertinent information about one particular printing job. Its
contents are set as a result of the job dialog.

TPrlnt

DIM aTPrJob! (11)

Element

0 .. 1
2 .. 3
4 .. 5
6
7
8 .. 11

Value

Integer
Integer
Integer
Integer
Integer
Double Integer

Definition

First page to print
Last page to print
Number of copies to print
Printing method (ex: 0 = draft printing)
Used internally
Pointer to a background process: ProcPtr

The TPrint data structure is used primarily for grouping most of the other Print
Manager data structures in one place. This data structure is of variable size since
theTPrXInfo is variable size.

DIM aTPrint ! (I+29)

Element

0 .. 1
2 .. 15
16 .. 23
24 . .37
38 .. 51
52 . .1
1+1..1+11
1+12 . .1+29

Appendices

Value

Integer
TPrlnfo
Rect
TPrStl
TPrlnfo
TPrXlnfo
TPrfob
Buffer!(18)

Definition

Print manager version
Printer information subrecord
Paper rectangle
Print style information
Used internally
Additional information
Print job subrecord
Generic data structure not used

Apple IIGS Toolbox Libraries

TPrStatus

DIM aTPrStatus ! (22)

Element Value Definition

Total pages in spool file
Current page being printed
Total number of copies requested
Used internally
Used internally

0 .. 1
2 .. 3
3 .. 4
5 .. 6
7 .. 8
9
10

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Double Integer
Double Integer
Double Integer

Boolean value that's true if page has started printing
Used internally

11 .. 14
15 .. 18
19 .. 22

Handle to TPrint print record
Pointer to TPrPort
Handle to a picture: PicHndl

Routines

Housekeeping

DEF PROC PMStartUp(UserID%,DPageAddr%)
DEF PROC PMShutDown
DEF FN PMVersion%
DEF PROC PMReset
DEF FN PMStatus%

Print Records and Dialogs

DEF PROC
DEF FN
DEF FN
DEF FN
DEF FN

Printing

DEF FN
DEF PROC
DEF PROC
DEF PROC
DEF PROC

PrDefault(THPrintHndl@)
PrValidate%(THPrintHndl@)
PrStlDialog%(THPrintHndl@)
PrJobDialog%(THPrintHndl@)
PrChoosePrinter%

PrOpenDoc@(THPrintHandle@,TPPrPort@)
PrCloseDoc(TPPrPort@)
PrOpenPage(TPPrPort@,PageFrameTPRectPtr@)
PrClosePage(TPPrPort@)
PrPicFile(THPrintHndl@,TPPrPort@,TPPrStatus@)

Error Handling

DEF FN PrError%
DEF PROC PrSetError(iErr%)

Appendices 441

TOOL 2,19
TOOL 3,19
TOOL 4,19
TOOL 5,19
TOOL 6, 19

TOOL 9, 19
TOOL 10,19
TOOL 11, 19
TOOL 12,19
TOOL 22,19

TOOL 14,19
TOOL 15,19
TOOL 16,19
TOOL 17,19
TOOL 18,19

TOOL 20,19
TOOL 21,19

Apple IIGS Toolbox Libraries

QuickDraw

QuickDraw is the tool set that controls the graphics environment of the Apple Iles
and draws simple objects and text in the Super Hi-Res grahpics screen. All other
tools which create graphical objects such as the Menu and Window Manager call the
QuickDraw tool set.

Special Values

Transfer Modes

Transfer modes determine how bits are finally displayed when placing an image
over or on top of another image.

Value Description of Value

0 srcCopy
1 srcOr
2 srcXor
3 srcBic

32768 notSrcCopy
32769 notSrcOr
32770 notSrcXor
32771 notSrcBic

Special Text Transfer Modes

The following modes are exclusively used for text transfer.

Value Description of Value

4 foreCopy
5 foreOr
6 foreXor
7 foreBic

32772 notforeCopy
32773 notforeOr
32774 notforeXor
32775 notforeBic

Appendices 442 Apple IIGS Toolbox Libraries

Text Styles

The type style of text characters is determined by the following special values. Some
fonts, including the system font, may not support all the given styles or attributes.

Value Description of Value

0 plain
1 bold
2 italic
4 underline
8 outline
16 shadow

Data Structures

BufSlzeRec

The BufSizeRec data structure is used to store information that Quickdraw uses to
manipulate its internal text buffers.

DIM BufSizeRec%(3)

Element(s)

0
1
2
3

Colorlable

Value

Integer
Integer
Integer
Integer

Description

Maximum width
Text buffer height
Text buffer row of words
Font width

The ColorTable data structure is used to hold information that specifies color
intensities. The table is composed of 16 2-byte entries. The 2 bytes of an entry are
divided into four 4 bit nybbles, of which only the low 3 are used. The lowest nybble
holds the intensity of the color blue, the next nybble specifies the intensity of the
color green and the third nybble indicates the intensity of the color red. Apple has
reserved the high nybble of the high byte for future use. The actual colors achieved
depends on the resolution mode (320 or 640) and also upon the dithering techniques
used.

Appendices 443 Apple IIGS Toolbox Libraries

DIM aColorTable! (31)

Element(s) Value Description

0 .. 1 Integer Entry #1
2 .. 3 Integer Entry #2
4 .. 5 Integer Entry #3
• • • . • .
• . •
30 .. 31 Integer Entry #16

CStrlng

The CString data structure refers to the way the language C specifies a string in
memory. A CString is different from a Pascal counted string in that the CString does
not have a length byte and so does not indicate the number of characters in the
string. Instead of the length byte, the CString has a termination character to specify
where the last character in the string is stored. The termination character is a zero.
Whenever QuickDraw or another toolbox routine refers to this string convention, it
will explicitly state in the documentation, "CString".

DIM aCString ! (N)

Element(s) Value

0 Integer
1 Integer
• • . .
• •
N-1 Integer
N Integer

Cursor

Description

ASCII value of character #1 in string
ASCII value of character #2 in string
•
•
•
ASCII value of LAST character in string
termination character must be zero (0).

The Cursor data structure is a variable length structure that defines a QuickDraw
cursor which is used to indicate the current position of the mouse. The cursor
definition bytes and the cursor mask should be specified row by row. The Hot Spot
coordinates indicate the position in the rectangle that is aligned with the mouse
position; for example, the hot spot of the arrow cursor is the tip of the arrow.

Appendices 444 Apple IIGS Toolbox Libraries

DIM aCursor ! (P+3)

Element(s) Value Description

0 .. 1 Integer Height (in rows) of rectangle enclosing cursor
2 .. 3 Integer Width (in words) of rectangle enclosing cursor
4 Integer Byte #1 of cursor definition
5 Integer Byte #2 of cursor definition
• • •
• • •
• • •
R Integer Byte #R of cursor definition
R+l Integer Byte #1 of cursor mask
R+2 Integer Byte #2 of cursor mask

• • •
• • •
• • •
P .. P+l Integer Vertical position of mouse Hot Spot
P+2 .. P+3 Integer Horizontal position of mouse Hot Spot

FontlnfoRec

The FontlnfoRec data structure is used to hold information regarding the current
font.

DIM aFontinfoRec%(3)

Element(s)

0
1
2
3

FontGlobalsRec

Value

Integer
Integer
Integer
Integer

Description

Ascent : the number of pixel rows above the baseline
Descent : the number of pixel rows below the baseline
Maximum character width of any character
Leading: recommended number of rows between ascent and

descent

The FontGlobalsRec data structure is a variable length structure that holds
information about the current font. The data structure has a dynamic size to allow
for future expansion. The size is returned by the the QuickDraw routine GetFGSize.
The current elements of this data structure are defined as integers although the
implementation could change in the future.

Appendices 445 Apple IIGS Toolbox Libraries

DIM aFontGlobalsRec%(N)

Element(s) Value

0 Integer
1 Integer
2 Integer
3 Integer
4 Integer
5 Integer
• .
• •
• •
N Integer

Graf Port

Description

Family number
Style
Size
Version
Maximum width
Font bounds rectangle extent
•
•

Additional fields that Apple may add.

The current definition of the drawing environment is stored in the GrafPort data
structure. Although the structure contents are defined here, the use of the
Quickdraw routines to manipulate the GrafPort is strongly recommended. A
GrafPort is analogous to the artist's palette or the draftman's drawing board. There
can be more than one GrafPort on the desktop at one time, each with its own
environment settings.

DIM aGrafPort! (169)

Element(s)

0 .. 15
16 .. 23
24 .. 27
28 .. 31
32 .. 63
64 .. 67
68 .. 71
72 .. 73
74 .. 105
106 . .113
114 .. 115
116 .. 119
120 .. 123
124 .. 125
126 .. 127
128 .. 129
130 . .131
132 .. 135

Appendices

Value

LoclnfoRec
Rect
Double Integer
Double Integer
Pattern
qui
Point
Integer
Pattern
Mask
Integer
Double Integer
Double Integer
Integer
Integer
Integer
Integer
Double Integer

Description

Quickdraw drawing location characteristics
Port rectangle
Clip region handle
Visible region handle
Background pattern
Pen location
Pen size
Pen mode
Pen pattern
Pen mask
Pen visible code
Font handle
Font ID
Font flags
Text size
Text face
Text mode
Space extra

446 Apple IIGS Toolbox Libraries

136 .. 139
140 .. 141
142 .. 143
144 .. 147
148 .. 151
152 .. 155
156 .. 159
160 .. 161
162 .. 165
166 .. 169

LoclnfoRec

Double Integer
Integer
Integer
Double integer
Double Integer
Double Integer
Double Integer
Integer
Double Integer
Double Integer

Character extra
Foreground color
Background color
Picture save handle
Region save handle
Polygon save handle
QDProcs pointer
Arc rotation
User field
System field

The LoclnfoRec data structure holds characteristic information about a specific area
of memory that Quickdraw can use as its drawing area.

DIM aLocinfoRec ! (15)

Element(s)

Mask

0
1
2 .. 5
6 .. 7
8 .. 15

Value

Integer
Integer
Double Integer
Integer
Rect

Description

Scanline control byte (SCB)
Reserved for future use
Pointer to a pixel image
Width
Bounds rectangle

A Mask is a data structure that determines how the pixels of an image are actually
displayed. Only the pixels, in the desired display image, that correspond to ON bits
(equal to 1) in the mask are drawn. If the mask has all its bits set to 1, then the entire
original image is drawn. A mask is simply an array of integers where each element
actually represents a bit pattern.

DIM aMask% (3)

Appendices 447 Apple IIGS Toolbox Libraries

PaintParam

The PaintParam data structure is only used in the PaintPixels Quickdraw routine.
This data structure holds information pertinent to transfering a region of pixels
without referencing the current GrafPort.

DIM aPaintParam ! (21)

Element(s)

0 .. 3
4 .. 7
8 .. 11
12 .. 15
16 .. 17
18 .. 21

Pattern

Value

Double Integer
Double Integer
Double Integer
Double Integer
Integer
Double Integer

Description

Pointer to source location information
Pointer to destination location information
Pointer to the source rectangle
Pointer to destination rectangle
Mode
Mask handle (ClipRgn)

A pattern is an array of integers that represent bit patterns used by the Quickdraw
pen for drawing. The pen pattern is pixel aligned so that it forms a continuous
pattern in the areas it appears on the screen. Patterns on the Apple IIGS have
"chunkiness" which means that each pixel is associated with 2 or 4 color bits in the
pattern depending on the current graphics mode. A Pattern is defined as an array of
16 integers.

DIM aPattern%(15)

PenState

The PenState data structure is used for manipulating the current state of the
Quickdraw pen. This is useful for routines that want to change the pen state briefly
and then restore the previous pen values.

DIM aPenState! (47)

Element(s) Value

0 .. 3 Point
4 .. 7 Point
8 .. 39 Pattern
40 .. 47 Mask

Appendices

Description

Pen location
Pen size
Pen pattern
Pen mask

448 Apple IIGS Toolbox Libraries

Picture (Pie)

The Pie data structure is a private data structure which defines a QuickDraw picture.
A picture is a graphical object made up of one or more of the primitive Quickdraw
objects (lines, rectangles, ovals, etc). The picture data structure should only be
manipulated using the appropriate QuickDraw routines.

Point

The point data structure defines a location in the Quickdraw two-dimensional
drawing space.

DIM aPoint% (1)

Element(s)

0
1

Polygon (Poly)

Value

Integer
Integer

Description

Horizontal coordinate
Vertical coordinate

The Poly data structure is a private data structure which defines a QuickDraw
polygon. A polygon is a graphical object made up of one or more connected lines
that together form a closed shape. The polygon data structure should only be
manipulated using the appropriate QuickDraw routines.

QDProcs

It is possible to customize Quickdraw using the the QDProcs data structure. The
QDProcs data structure consists of pointers to low level routines that other
Quickdraw routines will call to accomplish their particular task. For example,
FrameRect, PaintRect, FillRect, InvertRect all at some point call the same low level
routine to draw the rectangle.

Appendices 449 Apple IIGS Toolbox Libraries

DIM aQDProcs@(12)

Element(s)

0
1
2
3
4
5
6
7
8
9
10
11
12

Rectangle (Rect)

Value

Double Integer
Double Integer
Double Integer
Double Integer
Double Integer
Double Integer
Double Integer
Double Integer
Double Integer
Double Integer
Double Integer
Double Integer
Double Integer

Description

Pointer to text drawing procedure
Pointer to line drawing procedure
Pointer to rectangle drawing procedure
Pointer to round rectangle drawing procedure
Pointer to oval drawing procedure
Pointer to arc/wedge drawing procedure
Pointer to polygon drawing procedure
Pointer to region drawing procedure
Pointer to bit transfer procedure
Pointer to picture comment processing procedure
Pointer to text width measurement
Pointer to picture retrieval
Pointer to picture saving procedure

The Rect data structure defines a rectangle given the top, left coordinate and bottom,
right coordinate of the rectangle's comers.

DIM aRect%(3)

Element(s)

0
1
2
3

Region (Rgn)

Value

Integer
Integer
Integer
Integer

Description

Top coordinate
Left coordinate
Bottom coordinate
Right coordinate

The Rgn data structure is a private data structure which defines a QuickDraw region.
A region is an arbitrary area or set of areas on the QuickDraw drawing space. The
outline of a region must be one or more closed loops. The region data structure
should only be manipulated using the appropriate QuickDraw routines.

Appendices Apple IIGS Toolbox Libraries

SCB

The SCB or scanline control byte determines the pixel width and color palette for a
specific horizontal line. Quickdraw also defines a Master SCB that is used by
routines like InitPort to decide what standard values should initially be assigned
into a GrafPort.

String

The string is a sequence of zero or more ASCII characters. The string also contains a
length byte which stores the current number of characters in the string. This byte
precedes the acutal characters in the string. The string data structure is sometimes
called a counted string or a Pascal string. TML BASIC automatically converts BASIC
strings from its string pool into strings which can be used with the Toolbox.

Routines

Housekeeping

DEF PROC QDStartUp(DPageAddr%,MasterSCB%,MaxWidth%,UserID%)
DEF PROC QDShutDown
DEF FN QDVersion%
DEF PROC QDReset
DEF FN QDStatus%

Global Environment

DEF FN GetStandardSCB%
DEF PROC SetMasterSCB(MasterSCB%)
DEF FN GetMasterSCB%
DEF PROC InitColorTable(Co1orTab1ePtr@)
DEF PROC SetColorTable(TableNumber%,SrcCo1orTablePtr@)
DEF PROC GetColorTable(TableNumber%,DestColorTablePtr@)
DEF PROC SetColorEntry(TableNumber%,EntryNumber%,NewColor%)
DEF FN GetColorEntry%(TableNumber%,EntryNumber%)
DEF PROC SetSCB(ScanLine%,NewSCB%)
DEF FN GetSCB%(ScanLine%)
DEF PROC SetA11SCBs(NewSCB%)
DEF PROC SetSysFont(FontHndl@)
DEF FN GetSysFont@
DEF PROC ClearScreen(Color%)
DEF PROC GrafOn
DEF PROC GrafOff

GraftPort Manipulation

DEF PROC OpenPort(GrafPortPtr@)
DEF PROC InitPort(GrafPortPtr@)
DEF PROC ClosePort(GrafPortPtr@)

TOOL 2,4
TOOL 3,4
TOOL 4,4
TOOL 5,4
TOOL 6,4

TOOL 12,4
TOOL 22,4
TOOL 23,4
TOOL 13,4
TOOL 14,4
TOOL 15,4
TOOL 16,4
TOOL 17,4
TOOL 18,4
TOOL 19,4
TOOL 20,4
TOOL 178,4
TOOL 179,4
TOOL 21,4
TOOL 10,4
TOOL 11,4

TOOL 24,4
TOOL 25,4
TOOL 26,4

Appendices 451 Apple IIGS Toolbox Libraries

DEF PROC SetPort (GrafPortPtr@) TOOL 27, 4
DEF FN GetPort@ TOOL 28,4

DEF PROC SetPortLoc(LoclnfoRecPtr@) TOOL 29,4

DEF PROC GetPortLoc(LoclnfoRecPtr@) TOOL 30,4
DEF PROC SetPortRect(RectPtr@) · TOOL 31,4
DEF PROC GetPortRect(RectPtr@) TOOL 32,4

DEF PROC SetPortSize(Width%,Height%) TOOL 33,4
DEF PROC MovePortTo(H%,V%) TOOL 34,4

DEF PROC Set0rigin(H%,V%) TOOL 35,4

DEF PROC SetClip(RgnHndl@) TOOL 36,4

DEF PROC GetClip(RgnHndl@) TOOL 37,4
DEF PROC ClipRect(RectPtr@) TOOL 38,4

Pen, Pattern, and Drawing

DEF PROC HidePen TOOL 39,4
DEF PROC ShowPen TOOL 40,4

DEF PROC GetPen(PointPtr@) TOOL 41,4
DEF PROC SetPenState(PenStatePtr@) TOOL 42,4

DEF PROC GetPenState(PenStatePtr@) TOOL 43,4

DEF PROC SetPenSize(Width%,Height%) TOOL 44,4
DEF PROC GetPenSize(PointPtr) TOOL 45,4
DEF PROC SetPenMode(PenMode%) TOOL 46,4
DEF FN GetPenMode% TOOL 47,4
DEF PROC SetPenPat(PatternPtr@) TOOL 48,4
DEF PROC GetPenPat(PatternPtr@) TOOL 49,4
DEF PROC SetSolidPenPat(ColorNum%) TOOL 55,4
DEF PROC SetPenMask(MaskPtr@) TOOL 50,4
DEF PROC GetPenMask(MaskPtr@) TOOL 51,4

DEF PROC SetBackPat(PatternPtr@) TOOL 52,4
DEF PROC GetBackPat(PatternPtr@) TOOL 53,4

DEF PROC SetSolidBackPat(ColorNum%) TOOL 56,4
DEF PROC SolidPattern(PatternPtr@,ColorNum%) TOOL 57,4
DEF PROC PenNormal TOOL 54,4

DEF PROC MoveTo(H%,V%) TOOL 58,4
DEF PROC Move (DH%,DV%) TOOL 59,4

DEF PROC SetFont(NewFontHndl@) TOOL 148,4
DEF FN GetFont@ TOOL 149, 4
DEF PROC SetFontID(FontIDHndl@) TOOL 208,4

DEF FN GetFontID@ TOOL 209,4
DEF PROC GetFontinfo(FontlnfoRecHndl) TOOL 150,4
DEF FN GetFGSize% TOOL 207,4
DEF PROC GetFontGlobals(FontG1oba1sRec@) TOOL 151,4
DEF PROC SetFontFlags(Flags%) TOOL 152,4
DEF FN GetFontFlags% TOOL 153,4

DEF PROC SetTextFace(TextFace%) TOOL 154,4
DEF FN GetTextFace% TOOL 155,4

DEF PROC SetTextMode(TextMode%) TOOL 156, 4
DEF FN GetTextMode% TOOL 157,4
DEF PROC SetSpaceExtra(SpaceExtraPtr@) TOOL 158,4
DEF FN SpaceExtraPtr@ TOOL 159,4

Appendices 452 Apple I IGS Toolbox Libraries

DEF PROC SetTextSize(Size%) TOOL 210,4
DEF FN Get Text Size% TOOL 211, 4

DEF PROC SetCharExtra(ChExtraPtr@) TOOL 212,4
DEF FN GetCharExtra@ TOOL 213, 4
DEF PROC SetForeColor(ForeColor%) TOOL 160,4
DEF FN GetForeColor% TOOL 161,4
DEF PROC SetBackColor(BackColor%) TOOL 162,4
DEF FN GetBackColor% TOOL 163,4
DEF PROC SetBufDims(MaxWidth%,MaxFontHeight%,MaxFBRExtent%) TOOL 203,4
DEF PROC ForceBufDims(MaxWidth%,MaxFontHeight%,MaxFBRExtent%) TOOL 204,4
DEF PROC SaveBufDims(SizeinfoPtr@) TOOL 205,4
DEF PROC RestoreBufDims(MaxWidth%,MaxFontHeight%,MaxFBRExtent%) TOOL 206,4
DEF PROC SetClipHandle(ClipRgnHndl@) TOOL 198,4
DEF FN GetClipHandle@ TOOL 199,4
DEF PROC SetVisRgn(VisRgnHndl@) TOOL 180,4
DEF PROC GetVisRgn(VisRgnHndl@) TOOL 181,4
DEF PROC SetVisHandle(VisRgnHndl@) TOOL 200,4
DEF PROC GetVisHandle(VisRgnHndl@) TOOL 201,4
DEF FN GetPicSave@ TOOL 63,4
DEF FN GetRgnSave@ TOOL 65,4
DEF FN GetPolySave@ TOOL 67,4

DEF PROC SetGrafProcs(GrafProcsPtr@) TOOL 68,4
DEF FN GetGrafProcsPtr@ TOOL 69,4
DEF PROC SetUserField(UserfieldPtr@) TOOL 70,4
DEF FN GetUserFieldPtr@ TOOL 71,4
DEF FN GetSysFieldPtr@ TOOL 73,4

Drawing lines

DEF PROC LineTo(H%,V%) TOOL 60,4
DEF PROC Line(DH%,DV%) TOOL 61,4

Drawing Rectangles

DEF PROC FrameRect(RectPtr@) TOOL 83,4
DEF PROC PaintRect(RectPtr@) TOOL 84,4
DEF PROC EraseRect(RectPtr@) TOOL 85,4
DEF PROC InvertRect(RectPtr@) TOOL 86, 4
DEF PROC FillRect(RectPtr@,PatternPtr@) TOOL 87,4

Drawing Regions

DEF PROC FrameRgn(RgnHndl@) TOOL 121,4
DEF PROC PaintRgn (RgnHndl@) TOOL 122,4
DEF PROC EraseRgn(RgnHndl@) TOOL 123,4
DEF PROC InvertRgn(RgnHndl@) TOOL 124,4
DEF PROC FillRgn(RgnHndl@,PatternPtr@) TOOL 125,4

Appendices Apple IIGS Toolbox Libraries

Drawing Polygons

DEF PROC FramePoly(PolyHndl@)
DEF PROC PaintPoly(PolyHndl@)
DEF PROC ErasePoly(PolyHndl@)
DEF PROC InvertPoly(PolyHndl@)
DEF PROC FillPoly(PolyHndl@,PatternPtr@)

Drawing Ovals

DEF PROC FrameOval(RectPtr@)
DEF PROC PaintOval(RectPtr@)
DEF PROC EraseOval(RectPtr@)
DEF PROC InvertOval(RectPtr@)
DEF PROC FillOval(RectPtr@,PatternPtr@)

Drawing RoundRect s

DEF PROC FrameRRect (RectPtr@,OvalWidtH%,OvalHeight%)
DEF PROC PaintRRect (RectPtr@,OvalWidth%,OvalHeight%)
DEF PROC EraseRRect (RectPtr@,OvalWidth%,OvalHeight%)
DEF PROC InvertRRect(RectPtr@,OvalWidth%,OvalHeight%)
DEF PROC FillRRect(RectPtr@,OvalWidth%,OvalHeight%,PatternPtr@)

Drawing Arcs

DEF PROC FrameArc(RectPtr@,StartAngle%,ArcAngle%)
DEF PROC PaintArc(RectPtr@,StartAngle%,ArcAngle%)
DEF PROC EraseArc(RectPtr@,StartAngle%,ArcAngle%)
DEF PROC InvertArc(RectPtr@,StartAngle%,ArcAngle%)
DEF PROC FillArc(RectPtr@,StartAngle%,ArcAngle%,PatternPtr@)

Pixel Transfer

DEF PROC ScrollRect(DstRectPtr@, DH%,DV%,UpdateRgnHndl@)
DEF PROC PaintPixels(PaintParamPtr@)
DEF PROC PPToPort

(SrcLocinfoRecPtr@,

SrcRectPt r@,
DestX%,
Dest Y%, mode@)

Text Drawing and Measuring

DEF PROC DrawChar(Char%)
DEF PROC DrawText(TextPtr@,TextLength%)
DEF PROC DrawString(String$)
DEF PROC DrawCString(CStringPtr@)

DEF FN
DEF FN
DEF FN
DEF FN

CharWidth%(Char%)
TextWidth%(TextPtr@,TextLength%)
StringWidth%(String$)
CStringWidth%(CStringPtr@)

TOOL 188,4
TOOL 189,4
TOOL 190,4
TOOL 191,4
TOOL 192,4

TOOL 88,4
TOOL 89, 4
TOOL 90,4
TOOL 91,4
TOOL 92,4

TOOL 93,4
TOOL 94,4
TOOL 95,4
TOOL 96,4
TOOL 97,4

TOOL 98,4
TOOL 99, 4
TOOL 100,4
TOOL 101,4
TOOL 102,4

TOOL 126,4
TOOL 127,4

TOOL 214,4

TOOL 164,4
TOOL 167,4
TOOL 165,4
TOOL 166,4

TOOL 168,4
TOOL 171, 4
TOOL 169,4
TOOL 170,4

Appendices 454 Apple IIGS Toolbox Libraries

DEF PROC CharBounds(Char%,RectPtr@) TOOL 172, 4
DEF PROC TextBounds(TextPtr@,TextLength%, RectPtr@) TOOL 175,4
DEF PROC StringBounds(String$,RectPtr@) TOOL 173,4
DEF PROC CStringBounds(StringPtr@,RectPtr@) TOOL 174,4

Calculations with Rectangles

DEF PROC SetRect(RectPtr@,Left%,Top%,Right%,Bottom%) TOOL 74,4
DEF PROC OffsetRect(RectPtr@,DH%,DV%) TOOL 75,4
DEF PROC InsetRect(RectPtr@,DH%,DV%) TOOL 76, 4
DEF FN SectRect%(SrclRectPtr@, Src2RectPtr@,DstRectPtr@) TOOL 77,4
DEF PROC UnionRect(SrclRectPtr@,Src2RectPtr@,DstRectPtr@) TOOL 78,4
DEF FN PtInRect%(PointPtr@,RectPtr@) TOOL 7 9, 4
DEF PROC Pt2Rect(PointlPtr@,Point2Ptr@,DstRectPtr@) TOOL 80,4
DEF FN Equa1Rect%(Rect1Ptr@,Rect2Ptr@) TOOL 81,4
DEF FN EmptyRect%(RectPtr@) TOOL 82,4

Calculations with Points

DEF PROC AddPt(SrcPointPtr@,DstPointPtr@) TOOL 128,4
DEF PROC SubPt(SrcPointPtr@,DstPointPtr@) TOOL 129,4
DEF PROC SetPt(PointPtr@,H%,V%) TOOL 130,4
DEF FN Equa1Pt%(Point1Ptr@,Point2Ptr@) TOOL 131, 4
DEF PROC LocalToGlobal(PointPtr@) TOOL 132,4
DEF PROC GlobalToLocal(PointPtr@) TOOL 133, 4

Calculations with Regions

DEF FN NewRgn@ TOOL 103,4
DEF PROC DisposeRgn(RgnHndl@) TOOL 104,4
DEF PROC CopyRgn(SrcRgnHndl@,DstRgnHndl@) TOOL 105,4
DEF PROC SetEmptyRgn(RgnHndl@) TOOL 106,4
DEF PROC SetRectRgn(RgnHndl@,Left%,Top%,Right%,Bottom%) TOOL 107,4
DEF PROC RectRgn(RgnHandle,RectPtr@) TOOL 108,4
DEF PROC OpenRgn TOOL 109,4
DEF PROC CloseRgn(DstRgnHndl@) TOOL llO, 4
DEF PROC OffsetRgn(RgnHndl@,DH%,DV%) TOOL 111, 4
DEF PROC InsetRgn(RgnHndl@,DH%,DV%) TOOL ll2, 4
DEF PROC SectRgn(SrcRgnlHndl@,SrcRgn2Hndl@,DstRgnHndl@) TOOL ll3,4
DEF PROC UnionRgn(SrcRgn1Hndl@,SrcRgn2Hndl@,DstRgnHndl@) TOOL ll4, 4
DEF PROC DiffRgn(SrcRgn1Hndl@,SrcRgn2Hndl@,DstRgnHndl@) TOOL ll5,4
DEF PROC XorRgn(SrcRgn1Hndl@,SrcRgn2Hndl@,DstRgnHndl@) TOOL 116,4
DEF FN PtInRgn%(PointPtr@,RgnHndl@) TOOL 117, 4
DEF FN RectInRgn%(RectPtr@,RgnHndl@) TOOL ll8, 4
DEF FN Equa1Rgn%(Rgn1Handle@,Rgn2Hndl@) TOOL ll9, 4
DEF FN EmptyRgn%(RgnHndl@) TOOL 120,4

Calculations with Polygons

DEF FN OpenPoly@ TOOL 193,4
DEF PROC ClosePoly TOOL 194,4
DEF PROC KillPoly(PolyHndl@) TOOL 195,4

Appendices Apple IIGS Toolbox Libraries

DEF PROC OffsetPoly(Po1yHndl@,DH%,DV%) TOOL 196,4

Operations with Pictures

DEF FN OpenPicture@(picFrameRectPtr@) TOOL 183,4
DEF PROC PicComment(kind%,dataSize%,dataHndl@) TOOL 184,4
DEF PROC CloseP icture TOOL 185,4
DEF PROC DrawPicture(myPictureHndl@,dstRectPtr@) TOOL 186,4
DEF PROC KillPicture(myPictureHndl@) TOOL 187,4

Mapping and Scaling Utilities

DEF PROC MapPt(PointPtr@,fromSrcRectPtr@,toDestRectPtr@) TOOL 138,4
DEF PROC MapRect(RectPtr@,fromSrcRectPtr@,toDestRectPtr@) TOOL 139,4
DEF PROC MapRgn(RgnHndl@,fromSrcRectPtr@,toDestRectPtr@) TOOL 140,4
DEF PROC MapPoly(PolyHndl@,fromSrcRectPtr@,toDestRectPtr@) TOOL 197,4
DEF PROC ScalePt(PointPtr@,fromSrcRectPtr@,toDestRectPtr@) TOOL 137, 4

Miscellaneous

DEF FN Random% TOOL 134,4
DEF PROC SetRandSeed(Seed@) TOOL 135, 4
DEF FN GetPixeH (H%, V%) TOOL 136, 4

Customizing QulckDrcw

DEF PROC SetStdProcs(QDProcsPtr@) TOOL 141,4
DEF FN GetAddress% TOOL 9,4

Cursor-Handling

DEF PROC SetCursor(CursorPtr@) TOOL 142,4
DEF FN GetCursorAdr@ TOOL 143,4
DEF PROC HideCursor TOOL 144,4
DEF PROC ShowCursor TOOL 145,4
DEF PROC ObscureCursor TOOL 146,4
DEF PROC InitCursor TOOL 202,4

DEF PROC InflateTextBuffer(NewWidth%,NewHeight%) TOOL 215,4
DEF PROC GetROMFont(ROMFontlnfoRecPtr@) TOOL 216,4
DEF FN GetFontLore(GlobalsPtr@,GlobalsSz%) TOOL 217,4

Appendices 456 Apple IIGS Toolbox Libraries

QuickDraw Auxiliary

The QuickDraw Auxiliary tool set contains additional graphics routines which
complement the QuickDraw tool set. The QuickDraw Auxiliary routines are needed
to use the Print Manager.

Special Values

No special values defined for Quickdraw Auxiliary.

Data Structures

No data structures defined for Quickdraw Auxiliary.

Routines

Housekeeping

DEF PROC QDAuxStartUp
DEF PROC QDAuxShutDown
DEF FN QDAuxVersion%
DEF PROC QDAuxReset
DEF FN QDAuxStatus%

Miscellaneous

DEF PROC CopyPixels
(SrcLocinfoRecPtr@,
DstLocinfoRecPtr@,
SrcRectPtr@,
DstRectPtr@,
Mode%,
ClipRgnHndl@)

DEF PROC WaitCursor
DEF PROC Drawicon(IconPtr@,DisplayMode%,XPos%,YPos%)

Appendices 457

TOOL 2,18
TOOL 3,18
TOOL 4,18
TOOL 5,18
TOOL 6,18

TOOL 9,18
TOOL 10,18
TOOL 11, 18

Apple IIGS Toolbox Libraries

Scheduler

The Scheduler tool set is responsible for delaying the activation of system tasks and
desk accessories until the resources that the task/ desk accessory requires become
available. This library is necessary for writing applications that perform interrupt
handling that access ProOOS 16 or the tool set routines. An example of an interrupt
handler is an application that performs background printing. This library provides
access to the Scheduler's low level system operations.

Special Values

No special values defined for the Scheduler.

Data Structures

No data structures defined for the Scheduler.

Routines

HouseKeeplng

DEF PROC SchStartUp
DEF PROC SchShutDown
DEF FN Sch Version%
DEF PROC SchReset
DEF FN SchStatus%

Queue Access

DEF FN SchAddTask%(TaskProcPtr@)
DEF PROC SchFlush

Appendices 458

TOOL 2,7
TOOL 3,7
TOOL 4,7
TOOL 5,7
TOOL 6, 7

TOOL 9,7
TOOL 10,7

Apple IIGS Toolbox Libraries

Scrap Manager

The Scrap Manager allows the transfering of data between an application and a data
storage area called the clipboard. These routines are used to implement the standard
Cut, Copy and Paste options found in the conventional Edit Menu.

Special Values

No special values defined for the Scrap Manager.

Data Structures

No data structures defined for the Scrap Manager.

Routines

House Keeping

DEF PROC ScrapStartUp
DEF PROC ScrapShutDown
DEF FN ScrapVersion%
DEF PROC ScrapReset
DEF FN ScrapStatus%

Miscellaneous

DEF PROC UnLoadScrap
DEF PROC LoadScrap
DEF PROC ZeroScrap
DEF PROC PutScrap(NumBytes@,ScrapType%,SrcPtr@)
DEF PROC GetScrap(DestHndl@,ScrapType%)
DEF FN GetScrapCount%
DEF FN GetScrapState%
DEF FN GetScrapHandle@(ScrapType%)
DEF FN GetScrapSize@(ScrapType%)
DEF FN GetScrapPath@
DEF PROC SetScrapPath(PathString$)

Appendices

TOOL 2,22
TOOL 3,22
TOOL 4,22
TOOL 5,22
TOOL 6, 22

TOOL 9,22
TOOL 10,22
TOOL 11, 22
TOOL 12,22
TOOL 13,22
TOOL 18,22
TOOL 19,22
TOOL 14,22
TOOL 15,22
TOOL 16,22
TOOL 17,22

Apple IIGS Toolbox Libraries

Sound Manager

The Sound Manager allows access to the Sound hardware without knowledge of the
specific hardware 1/0 addresses. Since the Sound Manager routines can create basic
sounds, other tool sets use it to create more complex sounds.

Speclal Values

No special values defined for the Sound Manager.

Data Structures

ParamBlkSoundRec

The ParamBlkSoundRec data structure contains all the necessary information that
defines a sound for the Sound Manager to pass to the Ensoniq Digital Oscillator Chip
(OOC). The frequency of the waveform playback in structure elements 5 and 6 can
be calculated as follows:

FREQUENCY= ((32 * Playback Frequency in hertz) / 1645)

Waveforms are further defined in the Note Synthesizer library.

DIM ParamBlkSoundRec! (13)

Element(s)

0 .. 1
2
3 .. 4
5 .. 6
7 .. 8
9

Value Description

Starting address of waveform
Starting bank of waveform
Size of waveform in pages, from 1 to $FFFF
Frequency of waveform playback
Starting address of DOC buffer
Code to specify size of DOC buffer

10 .. 11
12
13

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Starting address of next waveform, 0 if last waveform
Starting bank of next waveform, 0 if last waveform
Volume setting of waveform

Routines

Housekeeping

DEF PROC SoundStartUp(DPageAddr%)
DEF PROC SoundShutDown
DEF FN SoundVersion%
DEF PROC SoundReset
DEF FN SoundStatus%

TOOL 2,8
TOOL 3,8
TOOL 4,8
TOOL 5,8

Appendices Apple IIGS Toolbox Libraries

RAM and Volume

DEF PROC WriteRamBlock(SrcPtr@,DOCstart%,ByteCount%) TOOL 9,8
DEF PROC ReadRamBlock(DstPtr@,DOCstart%,ByteCount%) TOOL 10,8
DEF FN GetTableAddress@ TOOL 11, 8
DEF FN GetS0undV0lume%(Generator%) TOOL 12,8
DEF PROC SetSoundVolume(Volume%,Generator%) TOOL 13,8

Free-Form Synthesizer

DEF PROC FFStartSound(DOCGenMode%,ParamBlkSoundRecPtr@) TOOL 14,8
DEF PROC FFStopSound(Generators%) TOOL 15,8
DEF FN FFSoundStatus% TOOL 16,8
DEF FN FFGeneratorStatus%(Generator%) TOOL 17,8
DEF PROC SetSoundMIRQV(IRQVProcPtr@) TOOL 18,8
DEF FN SetUserSoundIRQV@(newUserIRQVProcPtr@) TOOL 19,8
DEF FN FFS0undD0neStatus%(Generator%) TOOL 20,8

Appendices 461 Apple IIGS Toolbox Libraries

Standard File

The Standard File Operations Tool Set provides a standard user interface for
opening and saving files by supplying standard dialog boxes and routines to
manipulate them.

Special Values

No special values defined for Standard File.

Data Structures

Typellst

The TypeList data structure defines the set of file types which a Standard File
operation uses to determine which types of files to display. If the file type is set to 0,
all file types will be displayed.

DIM aTypeList! (8)

Element(s)

0
1
2
3
4
5
6
7
8

ReplyRecord

Value

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Description

Number of File Type entries in structure
File type 1
File type 2
File type 3
File type 4
File type 5
File type 6
File type 7
File type 8

The ReplyRecord data structure defines the information returned by the Standard
File operations to indicate which file has been chosen. If element O contains a zero
(0) then the remaining elements have no meaning.

Appendices 462 Apple IIGS Toolbox Libraries

DIM aReplyRecord! (149)

Element(s)

0
1
2 .. 3
4 .. 5

Value

Integer
Integer
Integer

Description

Non-zero if OPEN button pressed, 0 if CANCEL
Unused field
The filetype of the selected file
The AuxFileType of the selected file
The selected file's name stored as a counted string 6 .. 31

32 .. 159

Integer
String!(15)
String!(127) 22 The selected file's full pathname stored as a counted string

Routines

HouseKeeplng

DEF PROC SFStartUp(UserID%,DPageAddr%)
DEF PROC SF Shut Down
DEF FN SFVersion%
DEF PROC SFReset
DEF FN SF Status%

Standard Get and Put

DEF PROC SFGetFile
(WhereX%,
WhereY%,
PromptString$,
FilterProcPtr@,
TypeListPtr@,
ReplyRecordPtr@)

DEF PROC SFPutFile

Appendices

(WhereX%,
WhereY%,
PromptString$,
OrigNameStringPtr@,
MaxLen%,
ReplyRecordPt r@)

463

TOOL 2,23
TOOL 3,23
TOOL 4,23
TOOL 5,23
TOOL 6,23

TOOL 9,23

TOOL 10,23

Apple IIGS Toolbox Libraries

Custom Get and Put

DEF PROC SFPGetFile
(WhereX%,
WhereY%,
PromptString$,
FilterProcPtr@,
TypeListPtr@,
TheDialogPtr@,
DialogHookProcPtr@,
ReplyRecordPtr@) TOOL 11, 23

DEF PROC SFPPutFile
(WhereX%,
WhereY%,
PromptString$,
OrigNameString$,
MaxLen%,
TheDialogPtr@,
DialogHookProcPtr@,
ReplyRecordPtr@) TOOL 12,23

DEF PROC SFA11Caps(Al1Caps%) TOOL 13,23

Appendices Apple IIGS Toolbox Libraries

Text Tools

The Text Tools tool set provides an interface between Apple II character device
drivers, which must be executed in emulation mode, and new applications running
in native mode. The tool set also supports redirection of 1/0 to the Apple IIGS ports
as well as dealing with the text screen without switching the 65816 processor modes.

Special Values

No special values for Text Tools.

Data Structures

No data structures for Text Tools.

Routines

Housekeeping

DEF PROC Text St art Up
DEF PROC TextShutDown
DEF FN Text Version%
DEF PROC TextReset
DEF FN TextStatus%

Globals Manipulation

DEF PROC SetlnGlobals(ANDMask%, ORMask%)
DEF PROC SetOutGlobals(ANDMask%,ORMask%)
DEF PROC SetErrGlobals(ANDMask%, ORMask%)
DEF FN GetlnGlobals%[2]
DEF FN GetOutGlobals%[2)
DEF FN GetErrGlobals%[2]

1/0 Direction

DEF PROC
DEF PROC
DEF PROC
DEF FN
DEF FN
DEF FN

Text 1/0

DEF PROC
DEF PROC
DEF PROC
DEF PROC
DEF PROC
DEF PROC

SetlnputDevice(DeviceType%,SlotOrinitProcPtr@)
SetOutputDevice(DeviceType%,SlotOrlnitProcPtr@)
SetErrorDevice(DeviceType%,SlotOrlnitProcPtr@)
GetlnputDevice! [6]
GetOutputDevice! [6]
GetErrorDevice! [6]

InitTextDev(DeviceNumber%)
CtrlTextDev(DeviceNumber%,ControlCode%)
StatusTDev(DeviceNumber%,RequestCode%)
WriteChar (Char%)
ErrWriteChar(Char%)
WriteLine(String$)

TOOL 2, 12
TOOL 3,12
TOOL 4,12
TOOL 5, 12
TOOL 6,12

TOOL 9,12
TOOL 10,12
TOOL 11,12
TOOL 12,12
TOOL 13,12
TOOL 14,12

TOOL 15,12
TOOL 16,12
TOOL 17,12
TOOL 18,12
TOOL 19,12
TOOL 20,12

TOOL 21, 12
TOOL 22 , 12
TOOL 23,12
TOOL 24,12
TOOL 25,12
TOOL 26,12

Appendices Apple IIGS Toolbox Libraries

DEF PROC ErrWriteLine(String$) TOOL 27,12
DEF PROC WriteString(String$) TOOL 28,12
DEF PROC ErrWriteString(String$) TOOL 29, 12
DEF PROC TextWriteB1ock(TextPtr@,Offset%ByteCount%) TOOL 30,12
DEF PROC ErrWriteB1ock(TextPtr@,Offset%,ByteCount%) TOOL 31, 12
DEF PROC WriteCString(CStringPtr@) TOOL 32,12
DEF PROC ErrWriteCString(CStringPtr@) TOOL 33,12
DEF FN ReadChar%(Echo%) TOOL 34,12
DEF PROC TextReadB1ock(TextPtr@,Offset%,ByteCount%,Echo%) TOOL 35,12
DEF FN ReadLine%(TextPtr@,ByteCount%,EOLChar%,Echo%) TOOL 36,12

Appendices Apple IIGS Toolbox Libraries

Tool Locator

The Tool Locator is the most important of the Apple IIGS tool sets. The Tool Locator
allows a program to load tool sets from disk into RAM and is responsible for
locating a tool set routine when a program calls a Toolbox procedure or function.

Special Values

No special values defined for the Tool Locator.

Data Structures

ToolTable

The ToolTable is an array of integers used to describe which Apple IIGS Toolbox tool
sets must be loaded to memory so that a program may use the requested toolset's
routines. The size of the ToolTable structure can vary from application to
application or even within the same application. The routines that use this
structure determine the number of tools to load from the first element which also
indirectly indicates the size of the structure.

Most TML BASIC programs will not use this data structure since the TML BASIC
LIBRARY statement automatically generates a call to the Tool Locator LoadOneTool
procedure in order to load the specified tool set.

DIM aToolTable%(N)

Element(s) Value

0 Integer
1 Integer
2 Integer
3 Integer
4 Integer
5 Integer
6 Integer
• .
•
N Integer

Appendices

Description

Specifies the number of tool sets specified in the table
Tool set number
Minimum version of tool set specified by element 1
Tool set number
Minimum version of tool set specified by element 3
Tool set number
Minimum version of tool set specified by element 5

Minimum version of tool set specified by element (n-1)

467 Apple IIGS Toolbox Libraries

Routines

Housekeeping

DEF PROC
DEF PROC
DEF FN
DEF PROC
DEF FN

Locator

DEF FN
DEF PROC
DEF FN
DEF FN
DEF PROC
DEF PROC
DEF PROC
DEF PROC

DEF FN

DEF FN

Appendices

TLStartUp
TLShutDown
TLVersion%
TLReset
TLStatus%

GetTSPtr@(UserOrSystem%,TSNum%)
SetTSPtr(User0rSystem%,TSNum%,FPTptr@)
GetFuncPtr@(UserOrSystem%,TSFuncNum%)
GetWAP@(UserOrSystem%,TSNum%)
SetWAP(UserOrSystem%,TSNum%,WAptr@)
LoadTools(Too1Tab1ePtr@)
LoadOneTool(TSNum%,MinVersion%)
UnLoadOneTool(TSNum%)

TLMountVolume%
(WhereX%,
WhereY%,
Line1String$,
Line2String$,
Button1String$,
Button2String$)

TLTextMountVolume%
(Line1String$,
Line2String$,
Button1String$,
Button2String$)

TOOL 2,1
TOOL 3,1
TOOL 4, 1
TOOL 5,1
TOOL 6,1

TOOL 9,1
TOOL 10,1
TOOL 11, 1
TOOL 12,1
TOOL 13,1
TOOL 14,1
TOOL 15,1
TOOL 16,1

TOOL 17,1

TOOL 18,1

Apple IIGS Toolbox Libraries

Window Manager

The Window Manager creates the desktop environment and is responsible for the
create and manipulation of windows.

Special Values

The FindWindow% function result reports which part of which window, if any, a
mouse button was pressed in.

Values

0
1
2
3

Description of Value

Mouse button pressed in desk area
Mouse button pressed in content area
Mouse button pressed in go-away area
Mouse button pressed in drag area

The GetWKind % function result returns an integer indicating which kind of
window is the window specified by the passed parameter.

Values

-32768
others

Data Structures

Window

Description of Value

Desk accessory window
Application window

The Window data structure is a private data structure returned by the Window
Manager function NewWindow@. The contents of the Window data structure are
not defined since a program should never actually reference any component of the
data structure, but use the various Window Manager routines instead.

Appendices Apple IIGS Toolbox Libraries

WindowColorTbl

The WindowColorTbl data structure defines the color values for the different
components of a window.

DIM aWindowColorTbl%(4)

Element(s) Value

0 Integer
1 Integer
2 Integer
3 Integer
4 Integer

NewWlndowParamBlk

Description

Window's frame color
Window's title color
Window's titlebar color
Window's grow box color
Window's information bar color

The NewWindowParamBlk data structure defines to the NewWindow@ function
how to create a window. See Chapter 13 for complete information on how to use
this data structure.

DIM aNewWindowParamBlk! (73)

Element(s)

0 .. 1
2 .. 3
4 .. 7
8 .. 11
12 .. 19
20 .. 23
24 .. 25
26 .. 27
28 .. 29
30 .. 31
32 .. 33
34 .. 35
36 .. 37
38 .. 39
40 .. 41
42 .. 43
44 .. 47
48 .. 49
50 .. 53
54 .. 57
58 .. 61
62 .. 65

Appendices

Value

Integer
Integer
Double Integer
Double Integer
Rect
Double Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Double Integer
Integer
Double Integer
Double Integer
Double Integer
Rect

Description

Number of bytes in NewWindowPararnBlk (=74)
Bit vector that describes the window
Pointer to window's title : StringPtr
Application RefCon
Size and position of content when zoomed
Pointer to window's color table : WindowColorTblPtr
Content's vertical origin
Content's horizontal origin
Entire height of document
Entire width of document
Maximum height of content allowed by GrowWindow
Maximum width of content allowed by GrowWindow
Number of pixels to scroll vertically for arrows
Number of pixels to scroll horizontally for arrows
Number of pixels to scroll vertically for page
Number of pixels to scroll horizontally for page
Information bar refcon
Height of information bar
Address of standard window definition procedure: ProcPtr
Address of information bar procedure : ProcPtr
Address of content update draw procedure: ProcPtr
Starting position and size of window

470 Apple IIGS Toolbox Libraries

Window's starting plane 66 .. 69
70 .. 73

Double Integer
Double Integer Address of memory to use for window record

Routines

Housekeeping

DEF PROC WindStartUp(UserID%) TOOL
DEF PROC WindShutDown TOOL
DEF FN WindVersion% TOOL
DEF PROC WindReset TOOL
DEF FN WindStatus% TOOL
DEF PROC WindNewRes TOOL

Creating and Disposing

DEF FN NewWindow@(NewWindowParamBlkPtr@) TOOL
DEF PROC C loseWindow (WindowPtr@) TOOL

Window Record and Global Access

DEF FN GetWMgrPort@ TOOL
DEF FN SetWindowicons@(NewFontHndl@) TOOL
DEF PROC SetWRefCon(RefCon@,WindowPtr@) TOOL
DEF FN GetWRefCon@(WindowPtr@) TOOL
DEF PROC SetWTitle(TitleString$,WindowPtr@) TOOL
DEF FN GetWTitle@(WindowPtr@) TOOL
DEF PROC SetFrameColor(WindowColorTblPtr@, WindowPtr@) TOOL
DEF PROC GetFrameColor(WindowColorTblPtr@,WindowPtr@) TOOL
DEF FN F rant Window@ TOOL
DEF FN GetNextWindow@(WindowPtr@) TOOL
DEF FN GetWKind%(WindowPtr@) TOOL
DEF FN GetWFrame% (WindowPtr@) TOOL
DEF PROC SetWFrame(WFlag%,WindowPtr@) TOOL
DEF FN GetStructRgn@(WindowPtr@) TOOL
DEF FN GetContentRgn@(WindowPtr@) TOOL
DEF FN GetUpdateRgn@(WindowPtr@) TOOL
DEF FN GetDefP roe@ (WindowPtr@) TOOL
DEF PROC SetDefProc(WDefProcPtr@,WindowPtr@) TOOL
DEF FN GetWControls@(WindowPtr@) TOOL
DEF FN GetZoomRect@(WindowPtr@) TOOL
DEF PROC SetZoomRect(WFullSizeRectPtr@,WindowPtr@) TOOL
DEF FN GetSysWFlag%(WindowPtr@) TOOL
DEF PROC SetSysWindow(WindowPtr@) TOOL
DEF FN GetContentOrigin@(WindowPtr@) TOOL
DEF PROC SetContentOrigin(XOrigin%,YOrigin%,WindowPtr@) TOOL
DEF PROC SetOriginMask(OriginMask%,WindowPtr@) TOOL
DEF PROC StartDrawing(WindowPtr@) TOOL
DEF FN GetDataSize@ (WindowPtr@) TOOL
DEF PROC SetDataSize(DataWidth%,DataHeight%,WindowPtr@) ·TOOL
DEF FN GetMaxGrow@(WindowPtr@) TOOL

2,14
3,14
4,14
5,14
6,14
37,14

9,14
11, 14

32,14
78,14
40,14
41,14
13,14
14, 14
15,14
16,14
21,14
42,14
43,14
44,14
45,14
46,14
47,14
48,14
49,14
50,14
51,14
55,14
56,14
76,14
75,14
62, 14
63, 14
52,14
77, 14
64, 14
65, 14
66,14

Appendices 471 Apple IIGS Toolbox Libraries

DEF PROC SetMaxGrow(MaxWidth%,MaxHeight%,WindowPtr@)
DEF FN Get Scroll@ (WindowPtr@)
DEF PROC SetScroll(HScroll%,VScroll%,WindowPtr@)
DEF FN GetPage@ (WindowPtr@)

DEF PROC SetPage(HPage%,VPage%,WindowPtr@)
DEF FN GetContentDraw@(WindowPtr@)
DEF PROC SetContentDraw(ContDrawProcPtr@,WindowPtr@)

Information Bar Access

DEF FN GetinfoDraw@(WindowPtr@)
DEF PROC SetinfoDraw(InfoDrawProcPtr@,WindowPtr@)
DEF FN GetinfoRefCon@(WindowPtr@)
DEF PROC SetinfoRefCon(InfoRefCon@,WindowPtr@)
DEF PROC GetRectinfo(InfoRectPtr@,WindowPtr@)
DEF PROC StartinfoDrawing(InfoRectPtr@,WindowPtr@)
DEF PROC EndinfoDrawing

Window Shuffling

DEF PROC SelectWindow(WindowPtr@)
DEF PROC HideWindow (WindowPtr@)
DEF PROC ShowWindow (WindowPtr@)
DEF PROC ShowHide(ShowFlag%,WindowPtr@)
DEF PROC BringToFront (WindowPtr@)
DEF PROC SendBehind(BehindWindowPtr@,WindowPtr@)

Window Drawing

DEF PROC HiliteWindow(FHilite%,WindowPtr@)
DEF PROC Refresh(ClobberedRectPtr@)

User Interaction

DEF FN FindWindow%(WindowPtr@,PointX%,PointY%)
DEF PROC DragWindow

DEF FN

(Grid%,
StartX%,
StartY%,
Grace%,
BoundsRectPtr@,
WindowPtr@)

GrowWindow@
(MinWidth%,
MinHeight%,
StartX%,
StartY%,
WindowPtr@)

DEF FN TrackGoAway%(StartX%,StartY%,WindowPtr@)
DEF FN TrackZoom%(StartX%,StartY%,WindowPtr@)
DEF FN TaskMaster%(EventMask%,EventRecordPtr@)

Appendices 472

TOOL 67,14
TOOL 68,14
TOOL 69,14
TOOL 70,14
TOOL 71, 14
TOOL 72, 14
TOOL 73,14

TOOL 74,14
TOOL 22,14
TOOL 53,14
TOOL 54,14
TOOL 79, 14
TOOL 80,14
TOOL 81,14

TOOL 17,14
TOOL 18,14
TOOL 19,14
TOOL 35,14
TOOL 36,14
TOOL 20,14

TOOL 34,14
TOOL 57,14

TOOL 23,14

TOOL 26,14

TOOL 27,14
TOOL 24,14
TOOL 38,14
TOOL 29,14

Apple IIGS Toolbox Libraries

Sizing and Positioning

DEF PROC MoveWindow(NewX%,NewY%,WindowPtr@) TOOL 25,14
DEF PROC SizeWindow(NewWidth%,NewHeight%,WindowPtr@) TOOL 28,14
DEF PROC ZoomWindow(WindowPtr@) TOOL 39,14

Update Region Maintenance

DEF PROC InvalRect(BadRectPtr@) TOOL 58,14
DEF PROC InvalRgn(BadRgnHndl@) TOOL 59,14
DEF PROC ValidRect(GoodRectPtr@) TOOL 60,14
DEF PROC ValidRgn(GoodRgnHndl@) TOOL 61,14
DEF PROC BeginUpdate(WindowPtr@) TOOL 30,14
DEF PROC EndUpdate (WindowPtr@) TOOL 31,14

Miscellaneous

DEF FN PinRect@(TheXPt%,TheYPt%,TheRectPtr@) TOOL 33,14
DEF FN CheckUpdate%(EventRecordPtr@) TOOL 10,14
DEF FN WindowGlobal%(ChgFlag%) TOOL 86,14
DEF FN GetFirstWindow@ TOOL 82,14

Appendices 473 Apple IIGS Toolbox Libraries

Appendix D
Comparing TML BASIC with GS BASIC

This appendix is intended for programmers familiar with the GS BASIC interpreter
from Apple Computer who wish to begin using TML BASIC. Since the foundation
for the design of TML BASIC is actually GS BASIC, you should find it quite easy to
begin programming with TML BASIC. In fact, most programs written in GS BASIC
will compile in TML BASIC with little or no changes.

The differences between TML BASIC and GS BASIC can be grouped into three major
categories:

compiler versus interpreter differences,

extensions to GS BASIC, and

TML BASIC compiler issues.

Each of the sections in this chapter addresses these major categories of differences
between GS BASIC and TML BASIC. The final section in this appendix describes the
GS BASIC statements that can be used to export programs out of GS BASIC so that
they can be compiled with TML BASIC.

Compiler / Interpreter Differences

Of course, the most significant difference between these two products is that TML
BASIC is a compiler and GS BASIC is an interpreter. Chapter 1 of this manual
provides a good discussion of the fundamental differences between a compiler and
an interpreter. If you do not understand the meanings of these two words, you
should review that discussion.

One of the biggest differences between an interpreter and a compiler is that an
interpreter tends to confuse the issue of which commands are used for creating
programs and those actually used in a program. That is, it becomes confusing as to
which commands are part of the development system (the interpreter) and which
commands are part of the programming language. For example, the GS BASIC
commands AUTO, EDIT and LIST are not really part of the programming language
like IF, LET and PRINT.

TML BASIC provides a multi-window, mouse-based editing and development
environment. As such, TML BASIC does not require commands for loading, saving
and other operations related to the process of creating programs. These operations

Appendices 475 Comparing TML BASIC with GS BASIC

are available as menu commands in TML BASIC. Thus, TML BASIC does not
support the commands shown in Table D-1 which are typically used in the GS
BASIC immediate mode.

TableD-1
Unsupported GS BASIC Immediate Mode Commands

AUTO
DEL
EDIT
EDIT TO#
EXEC
HUST
INDENT

LIST
LISTTAB
LOAD
NEW
OUTREC
RENUM
SAVE

Unsupported Statements and Functions

,In addition to the commands described in the previous section, TML BASIC does
not support several other statements and functions available in the GS BASIC
language. These statements and functions are not available because they relate
directly to the characteristics of the interpreter which are not appropriate for a
compiled language. For example, the BASIC@ function returns information specific
to the internals of the interpreter such as the author's name, special global variables,
etc. Clearly this information is not applicable to TML BASIC.

The following paragraphs outline these unsupported statements and functions.

BASIC@

CONT

COPY

Appendices

In GS BASIC, this function is used to provide access to various
internal pieces of information related to GS BASIC. This information
is not applicable to the compiled language TML BASIC, and therefore
not implemented.

TML BASIC does not permit an interrupted program to be restarted.
Interrupting a program with STOP or Control-C is the same as
executing the END statement.

In TML BASIC, you can use the powerful Cut, Copy and Paste
operations to copy code between different source files. You may also
use the GS Finder to copy and move files.

476 Comparing TML BASIC with GS BASIC

DIR In TML BASIC, the standard Open File dialog and Save File dialog are
used. Using these dialogs, it is possible to list all the files available on
the disk. A program which needs to list the contents of a directory to
the screen can use the CATALOG statement.

INVOKE TML BASIC does not support Invokable OMF object code files.

LIBFIND TML BASIC resolves all references to Toolbox procedures and
functions during compile time. There is no need to search for
Toolbox names during execution.

NOTRACE TML BASIC provides no means of tracing the execution of compiled
programs.

PERFORM See INVOKE above.

PROGNAM$ This function works with the SA VE command which is not
supported in TML BASIC. A compiled and executing TML BASIC
program should not need the name of its source code file.

QUIT

TRACE

To leave the TML BASIC environment you choose the Quit
command from the File menu.

See NOTRACE above.

Statements Requiring Modification

Finally, there are a few statements and functions in GS BASIC which also exist in
TML BASIC, but behave a bit differently and may require modifying your programs
before they will operate properly under TML BASIC. Chapter 10 identifies the
implementation differences between GS BASIC and TML BASIC for every
statement, function and reserved variable where such a case exists. The following
are the most significant of these. '

CHAIN

CLEAR

Appendices

The CHAIN statement may only transfer control to another compiled
ProDOS 16 application. Further, it is not possible to specify a label for
execution to begin in the chained program. Execution will begin at
the start of the program.

I

GS BASIC chains to other GS BASIC source code programs. Thus, to
use CHAIN in TML BASIC the chained program must also be a
compiled program.

The CLEAR statement in TML BASIC only resets global variables.
The alternate forms of the CLEAR statement used to reset the size of

477 Comparing TML BASIC with GS BASIC

the data segment, library segment or invokable module segments
have no meaning in TML BASIC.

DIM The DIM statement behaves quite differently in TML BASIC. In 1ML
BASIC, the DIM statement is used to create static dimensioned arrays,
and is processed at compile time rather than execution time. To
create arrays with dynamic valued dimensions, the DIM DYNAMIC
statement must be used.

See Chapter 7 for a thorough discussion of the DIM and DIM
DYNAMIC statements.

FRE In GS BASIC, this function returns the amount of memory available
in the interpreter's data segment. In TML BASIC, a "data segment"
does not exist since global variable allocation is restricted only by
available memory. Thus, this function returns the amount of free
memory in the Apple IIGS.

FREEMEM This function is used to return information about GS BASIC's
memory utilization. Much of this information is specific to GS
BASIC as an interpreter and thus, not applicable to TML BASIC. See
Chapter 10 for a complete description of this function in TML BASIC.

RUN This statement is used to quit the currently executing program and
transfer control to another program. In TML BASIC, the next
program must be a compiled ProDOS 16 application, while in GS
BASIC, the next program is the GS BASIC source code for a program.

TASKPOLL In TML BASIC this statement must be executed to determine if an
event has occurred. In GS BASIC, the detection of an event is
automatic. See Chapters 10 and 13 for more information about this
statement.

Execution / Compilation Order of Programs

One of the most significant differences between GS BASIC and TML BASIC is the
manner in which programs are processed. Other than a very crude level of syntax
checking, GS BASIC does not examine the source code of a program until it is
executed; and then only in the order in which it is executed. Thus, the meaning of a
statement depends upon when it is executed. In fact, because a statement is
re-processed when it is executed again, a statement may behave very differently
when it is executed a second time.

For example, the following code fragment contains a "Type Mismatch Error",
however it is not reported by the interpreter.

Appendices 478 Comparing TML BASIC with GS BASIC

myVar% = 1
IF myVar% < 99 THEN PROC reCalc(myVar%)
ELSE myVar% = newVal$

Since the variable myVar% is less than 99, the THEN part of the IF statement is
executed. Thus, the ELSE part is not executed, and the error in the ELSE statement
goes undetected. TML BASIC, however, examines every line of code regardless of
any particular execution order. TML BASIC does this because it must generate code
for every statement in the program in order to create a stand-alone program.
Therefore, it will report this error.

While this error does not seem too dangerous, since it will eventually be found
when myVar% is greater than 99, other errors are not so obvious. For example,
consider the following code fragment.

GOTO doDim

Initialize: Score(15) = 92 Score(16)
GOTO CalcAvg

doDim: DIM Score (20)
GOTO Initialize

83 Score(17) 86

Because GS BASIC processes statements in execution order, the array Score is first
dimensioned with 21 elements and then the statements which initialize the
elements of the array are executed. In this case, the code fragment executes perfectly
in GS BASIC, but such is not the case in TML BASIC. Because TML BASIC processes
the source code one line after the other, from top to bottom, the statement Score(15)
= 92 is processed before the DIM Score(20) statement. Since the array has not yet
been declared, TML BASIC implicitly declares the array, but with only 11 elements.
Thus, the assignment statement causes a runtime error when the program is
executed because the array element Score(15) does not exist. See Chapter 7 for more
information about arrays.

Extensions to GS BASIC

TML BASIC has added two major extensions to the GS BASIC language. In
addition, several existing GS BASIC statements and functions have increased
functionality. The following two paragraphs highlight the significant extensions,
however, you should reference Part II of this manual for a complete discussion of
these and other TML BASIC features.

IF Block Statement

A significant enhancement to GS BASIC is the addition of the ELSEIF and END IF
statements for creating multi-line structured if statements. This feature allows you

Appendices 479 Comparing TML BASIC with GS BASIC

to have several ELSE conditions in an IF statement, each of which may have several
lines of code.

Libraries

TML BASIC allows you to construct programs out of one or more separately
compiled libraries. A library allows you to divide your program into smaller more
manageable chunks. Libraries also provide an excellent means of sharing code
between different programs.

TML BASIC Compiler Issues

Finally, the nature of the TML BASIC implementation presents yet some other
differences to consider. These issues are outlined in the following sections.

The TML BASIC Editor and Large Programs

The mouse-based editor integrated within TML BASIC does not currently allow the
source code of programs to be larger than 32K bytes. While most BASIC programs
should have no problem with this restriction, it is certain that some will. To help
avoid this problem you should be sure to use a small INDENT and LISTI AB value
when exporting a program out of GS BASIC (see section below on how to export
files). This will reduce the number of extra spaces GS BASIC will generate to the text
file it creates, thus reducing its file size.

For very large programs, no technique of squeezing out blanks spaces, comments,
etc. will satisfy the 32K limit of the TML BASIC editor. In these cases, you must rely
on separately compiled libraries. Each of one or more libraries will contain a
portion of the large program. Study Chapter 8 for more in.formation about libraries.

Segmentation

GS BASIC has a single code segment and data segment. The code segment contains
the source code of a GS BASIC program, while the data segment stores global
variables during the execution of a program. The size of these segments are
controlled by the CLEAR statement.

TML BASIC on the other hand generates native 65816 machine code for programs.
Thus, the compiled program must obey memory segmentation rules of the Apple
Iles for programs. The most significant rule is that code and data segments are
limited to 64K bytes in size. If the code for a program grows larger than this, the
program must be segmented into multiple code segments using the compiler's
$CSeg metastatement. Likewise, if a program declares more than 64K bytes of global
variables, the global variables must be segmented into multiple data segments using
the $DSeg metastatement. See Appendix B for more information about segmenting
programs.

Appendices 480 Comparing TML BASIC with GS BASIC

Expression Evaluation

When TML BASIC generates code for an expression, it must decide at compile time
the representation type to use for the evaluation. For example, if a program adds
two integer variables together, TML BASIC generates code which evaluates the
expression using 16-bit integer precision. If the result of the addition causes an
overflow, an error is raised at execution time. For example, the code fragment
shown here will encounter an overflow error when adding x% with 25000.

x% 20000
y@ x% + 25000

The execution of the second statement overflows in TML BASIC because the result
of the addition, 45000, can not be represented as a 16-bit integer value. In order for
this expression to evaluate properly the variable x% must first be converted to a
double integer so that 32-bit double integer arithmetic is used. For example,

y@ = CONV@(x%) + 25000

In GS BASIC, an overflow error is not reported when adding x% with 25000 because,
GS BASIC will, at execution time, convert both values to double integers and
re-evaluate the expression. Whenever GS BASIC encounters an overflow error
during execution, it converts both arguments to the next larger representation and
re-evaluates the expression. This process is repeated until the expression evaluates
properly, or until the largest representation is used and an error still occurs.

In this example, the evaluation of x% + 25000 causes an overflow error when
evaluated using integer arithmetic, so GS BASIC converts both arguments to double
integer and re-evaluates the expression, this time without an error. Of course, if the
variable y@ had been an integer variable, then GS BASIC would generate an
"Overflow Error" on the assignment since the value 45000 could not be stored in the
integer variable.

Exporting GS BASIC Programs Into TML BASIC

GS BASIC stores the source code for programs in a special binary encoded format.
Since TML BASIC stores the source code for programs as ASCII text files, a GS BASIC
program must be converted to a text file before TML BASIC can compile it. To save
a GS BASIC program as a text file requires only a few simple commands using GS
BASIC.

First, the GS BASIC program to be converted must be loaded into memory. Then a
text file which will contain the exported file must be created and opened. The
standard output is then redirected to the open file and the source code listed to the
file. Finally, the output file is closed. The following commands illustrate how to

Appendices 481 Comparing TML BASIC with GS BASIC

accomplish this process for the GS BASIC program named "GSBasicProg" and the
export text file named "TMLBasicProg".

LOAD GSBasicProg
CREATE TMLBasicProg,FILTYP=TXT
OPEN TMLBasicProg, AS #1
OUTREC = 0: LISTTAB = 128
OUTPUT #1: LIST: OUTPUT #0
OUTREC = 80: LISTTAB = 5
CLOSE #1

In this example, the OUTREC=O statement is used to instruct GS BASIC not wrap
the source code lines when listed. TML BASIC supports lines up to 255 characters.
The LISTIAB=128 instructs GS BASIC not to list line numbers with the source code
when the LIST statement is used. The OUTPUT #1 statement redirects output from
the LIST statement to the file opened as #1. The LIST statement then lists the source
code to the export file without line numbers and without wrapping long lines.
Normal output is restored using the OUTPUT #0 statement. The standard settings
for OUTREC and LISTI AB are restored and the export text file is closed.

Appendices 482 Comparing TML BASIC with GS BASIC

Appendix E
ASCII Character Set

This appendix contains a complete list of the ASCII (American Standard Code for
Information Interchange) character set. The characters whose values are greater
than 127 are not actually part of the ASCII standard, but are the character definitions
for Apple IIGS fonts, and so they are included here. While the character definitions
given for values greater than 127 are not necessarily available in every font, they are
the standard character definitions.

Decimal Hex Character Names/Comments

0 00 Control-@ NUL,null
1 01 Control-A
2 02 Control-B
3 03 Control-C Break
4 04 Control-D
5 05 Control-E
6 06 Control-F
7 07 Control-G BEL, bell
8 08 Control-H BS, backspace
9 09 Control-I HT, horizontal tab
10 DA Control-J LF, line feed
11 OB Control-K VT, vertical tab
12 DC Control-L FF, form feed, Page
13 OD Control-M CR, carriage return
14 OE Control-N
15 OF Control-0
16 10 Control-P
17 11 Control-Q XON,resume
18 12 Control-R
19 13 Control-S XOFF, screen pause
20 14 Control-T
21 15 Control-V
22 16 Control-U
23 17 Control-W
24 18 Control-X CAN, cancel line
25 19 Control-Y
26 lA Control-Z End of file

Appendices 483 ASCII Character Set

Decimal Hex Character Names/Comments

27 1B Control-[ESC,escape
28 IC Control-\
29 10 Control-]
30 1E Control-^
31 IF Control-_
32 20 Space
33 21 Exclamation point
34 22 Quote

35 23 # Pound sign
36 24 $ Dollar sign
37 25 % Percent sign
38 26 & Ampersand
39 27 Apostrophe
40 28 (Left parenthesis
41 29) Right parenthesis
42 2A * Asterisk
43 2B + Plus sign
44 2C Comma
45 20 Minus sign, dash
46 2E Period
47 2F \ Backlash
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A Colon
59 3B Semicolon
60 3C < Lessthan
61 30 = Equal
62 3E > Greater than
63 3F ? Question mark
64 40 @ At sign
65 41 A

Appendices 484 ASCII Character Set

Decimal Hex Character Names/Comments

66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F 0
80 50 p
81 51 Q
82 52 R
83 53 s
84 54 T
85 55 u
86 56 V
87 57 w
88 58 X
89 59 y
90 SA z
91 SB [Left bracket
92 SC \ Backlash
93 SD] Right bracket
94 SE ^ Caret
95 SF Underscore -
96 60 ` Accent grave
97 61 a
98 62 b
99 63 C

100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 i

Appendices 485 ASCII Character Set

Decimal Hex Character Names/Comments

106 6A j
107 6B k
108 6C 1
109 6D m
110 6E n
111 6F 0

112 70 p
113 71 q
114 72 r
115 73 s
116 74 t
117 75 u
118 76 V

119 77 w
120 78 X

121 79 y
122 7A z
123 7B { Left brace
124 7C I Vertical line
125 7D } Right brace
126 7E Tilde
127 7F DEL delete, rubout
128 80 A
129 81 A
130 82 c;
131 83 E
132 84 N
133 85 b
134 86 D
135 87 a
136 88 a
137 89 a
138 BA a
139 BB a
140 BC a
141 8D c;
142 BE e
143 BF e
144 90 e
145 91 e

Appendices 486 ASCII Character Set

Decimal Hex Character Names/Comments

146 92
147 93 i
148 94
148 95
150 96
151 97
152 98
153 99 0
154 9A
155 98
156 9C
157 9D
158 9E
159 9F
160 AO t
161 Al 0

162 A2
163 A3 £
164 A4 §
165 AS •
166 A6
167 A7
168 AB ®
169 A9 ©
170 AA TM

171 AB
172 AC
173 AD
174 AE
175 AF 0
176 BO 00

177 Bl ±
178 B2
179 B3
180 B4 ¥
181 BS µ
182 B6
183 B7
184 B8 n

Appendices 487 ASCII Character Set

Decimal Hex Character Names/Comments

185 B9
186 BA f
187 BB
188 BC
189 BO
190 BE
191 BF 0

192 co
193 Cl
194 C2 ..,

195 C3
196 C4 I
197 cs
198 C6
299 C7 «

200 CB »

201 C9
202 CA Nonbreaking space
203 CB A
204 CC
205 CD
206 CE
207 CF
208 DO
209 Dl
210 D2 II

211 D3 II

212 D4
213 D5
214 D6
215 D7 0
216 D8

Appendices 488 ASCII Character Set

Appendix F

ProDOS File Types

The following table contains a list of the most common ProDOS file types.

Mnemonic Code

UNK
BAD
TXT
DIR
ADB
AWP
ASP
GSB
TDF
BDF
SRC
OBJ
LIB
516
RTL
EXE
PPI
PTI
NOA
CDA
TOL
DVR
$CO
PIC
WAV
PAS
OS
BAS
VAR

Appendices

File Type

$00
$01
$04
$OF
$19
$1A
$1B
$AB
$AC
$AD
$BO
$Bl
$B2
$B3
$B4
$BS
$B6
$B7
$B8
$B9
$BA
$BB
$CO
$Cl
$El
$EF
$F9
$FC
$FD

489

Description

Unknown
Bad block file
ASCII text file (SOS & ProDOS)
Subdirectory file (SOS & ProOOS)
AppleWorks data base file
AppleWorks word processor file
AppleWorks spreadsheet file
Iles BASIC program file
IIGS BASIC toolbox definition file
IIGS BASIC data file
APW text file
APW object file
APW library file
ProDOS 16 application file (OMF load)
APW run-time library file
APW shell application file
ProDOS 16 permanent Init file
ProOOS 16 temporary Init file
New desk accessory
Classic desk accessory
ProDOS 16 tool set file
ProOOS 16 driver file
Packed Super Hi-Res graphics file
Unpacked Super Hi-Res graphics file
IIGS BASICWavebank data file
Pascal area on a partitioned volume
ProOOS 16 operating system
AppleSoft program file
AppleSoft variable file

ProDOS File Types

A

access mode 127
alphanumeric labels 17.54
Apple Desktop Interface 315.355
Apple IIGS Toolbox 401
Apple Menu 63
arc 342
arithmetic operators 100-102
arrays 94-99

dimensioning 94
dynamic allocation 96
elements 94
implicit dimensioning 96
static dimensioned 96
structure 99
subscripts 98

ascent 345
ascent line 345
ASCII character set 483
assignment statement 55-56
auto save text 78

B

background pattern 336
background pixels 345
bank. memory 397
base line 345
bit planes 349
boundary rectangle 331
buttons 22

C

CALL return stack 324
cancel button 79
Change then Find command 71
character 345-346.483
character files 121
character image 345
character set 85-86
character width 346
check stack overflow 77
Check Syntax command 28-29.74
Chooser command 48.68
chunky pixel 349
Clear command 69
clipboard42
clipping region 333
Close command 26.64
code segments 396.480

color 349-354
color tables 349-350
command.

Change then Find 71
Check Syntax 28-29.74
Chooser 48.68
Clear69
Close 26.64
Copy43.69
CUt69
Delete 50.80
Find Next 71
Get Info 72
Goto Line 71
Goto Selection 71
Last Error 39 .72
New64
Next Window 24.72
Open20.64
Page Setup 47.67
Paste 43.69
Preferences 48.74
Print46.68
Print Options 47-48.66
Quit 26.68
Rename80
Revert 25.66
Save 66
Save As66
Select All 43.70
Stack Windows 24.71
Tile Windows 24.71
To Memory & Run 28.30.73
To Disk 28.31.73
Transfer 51.80
Undo68
What to Find 44.70

command-key equivalent 21.80
comment 55.84
compact memory 79
Compile menu 27.72
Compile Progress Dialog Box 28
Compile to disk comand 28.31
Compile to memory & run command 28.30
compiler 16-17.475-476

errors 35-36385-389
compiling

libraries 32
programs 27-28

components of TML BASIC 33-34
constants 91-92

fixed point 92

floating point 92
null-string 92
numeric 91
string 92

coordinate plane 328
Copy command 43,69
counted string 324
current insertion point 45
current text location 57
Cut command 69

D

data segments 397
data structures 402
debugger 7 6 .84
default prefix 123
Delete command 50,80
Delete Confirmation Dialog Box 51
desender 345
descent 345
descent line 345
DeskTools library 363
desktop elements 357-358

human-computer interactions 357
screen elements 357

detecting events 377
Dialog Box 21

About TML BASIC 63
Compile Progress 28
Delete Confirmation 51
Error 35.72
File Information 72
Find 34.70-71
Get File SO
Goto Line 71
Open File 22,64
Page Setup 47,67
Preferences 7 4
Print Options 47
Put File66
Save File45

directory 122
root 125

disk:
distribution 11
hard 15-16
RAM 16
single 15
working 11

disk files 121
dithering 352

double-clicking 20.42
double integers 88
double-precision reals 89
dragging42
drawing mask 336
drawing pen 336

E

Edit menu 68
editing 43-46
editor errors 34-35,383-385
elements94
empty statement 84
end-of-file 138
EOF 139
Error Dialog Box 35
errors 383-393

compiler 35-36.385-389
editor 34-35,383-385
icons 383
linker 36-37 .389-390
messages 383-392
runtime 37-38,390-393

event-driven programs 315,358
Event Dispatch Table 358.360
Event Manager Events 359 .361
event queue 358
event trapping 77,398
expressions 55-56,99-100

numeric 99
string 99

extended-precision reals 89

F

field 134
File menu 20.64
filenames 121

library 33
program 31

file 121-141
BASIC data 133-136
binary 136-138
character 121
closing 127
disk 121
library 323
manipulating 124-141
naming 124
opening 126

ProDOS489
text 130-132

fllenumber 122
flletype 121 .489

directory 122
fill mode351
Find Next command 71
Find Dialog Box 34
fixed point constants 92
floating point constants 92
font 347

real 348
scaled 348

font families 347
font height 346
font strike 347
foreground pixels 345
free memory 78
functions 107.112-114

ABS 145
actual parameters 114
ANU 146
A'£. 147
ATN 149
BTN 152
calling 114
CHRS 157
COMPI 160
CONV161
cos 162
DATE 166
DATES 167
EOFMARK 139.181
EXEVENT@ 188
EXFN_ 189 .325-326
EXP 190
EXPl 190
EXP2 190
FILE 140.191
FILTYP 140.192
FIX 193
formal parameters 114
FREMEM 198
HEX$ 204
INSTR 217
INT218
JOYX 220
LEFT$ 222
LEN223
LOG230
L0GB% 230
LOGl 230

LOG2 230
MID$232
multiline 112-113
naming 112
NEGATE 233
PDL248
PEEK 249
PFXS 123.250
predefined 143
REC 140.266
REPS 269
RIGHT273
RND274
ROUND275
R.STACK 262,324-325
'£.ALB277
SCALE 278
SGN281
SIN 283
single-expression 112
SPACES 284
SPC285
SQR286
STRS 288
TAB 291
TAN 292
TASKREC% 296
TASKREC@ 296
TEN 293
TIME 299
TYP 140.302
UBOUND:01
UCASE303
VAL305
VAR 306
VAR$308
VARPTR309
VARPTRS 309

function number 322

G,H

Get File Dialog Box 50
Get Info command 72
GETS 58-59
global coordinates 328.334
Goto Line command 71
Goto Selection command 71
graphic ports 328,332
grow box 21.24
human-computer interactions 357
human interface guidelines 355-366

Image pointer 331
Image width 331
Indicator bar 28
Integers 88
Interpreter 16-17 475-476

K

K-byte stack 75
K-byte string pool 76
K-byte symbol table 75
keyboard break 77

L

labels,
alphanumeric 17.84

languages,
compiled 16-17
interpreted 16-17

largest memory block 78
Last Error command 39.72
libraries 85.107, 117-120

compiling 32, 119
predefined 120,321 AOl
Toolbox 321.401-473
using 118-119

library file 323
library search path 78
line339
line numbers 54,84
line number table 398
linker errors 36-37 ,389-390
local coordinates 328,334
location information record 330
logical operators 103
long integers 88-89

M

machine language 16
main event loop 358,377
main menu 20
managers 315
master color values 349
memory bank 397
menu,357

Apple 63
bar369

Compile72
Edt68
File20,64
Identifier 369
Main20
ProDOS 79
Search 44.70
string 370
titles 369
Windows 24,71

menu items, 369
About TML BASIC 63
attributes 371
Desk Accessories 63
identifiers 370
see also commands

Menu Item Dispatch Table 361
metastatments 83,85,395-400

$CheckStack 396
SCodeSegment 396
SDataSegment 397
$Debug397
SEventTrapping 398
SKeyboardBreak 398
$0nError399
$StackSize 399
SStringPoolSize 399

mini-palettes 350
missing characters 347
missing symbol 347
modeless programming 358
modifiable reserved variables 94

N

HPOS206
PREFIX$ 255
SHOWDIGITS 282
VPOS206

New command 64
Next Window command 24.72
null string 91.92
numbers 88-91

double integers 88
double-precision reals 89
extended-precision reals 89
integers 88
long integers 88-89
SANE 90-91
single-precision reals 89

numeric constants 91
numeric expressions 99

0

OK button 79
on error 76
Open command 20.64
operands 55-56
operators 55-56.100-105

arithmetic 100-102
DIV 101
logical 103
MOD 101
precedence 104-105
relational 102-103
string 104

oval342
overflow error l O l

P, Q

Page Setup command 47 .67
Page Setup Dialog Box 47
palette 350
parameter.

actual 114
formal 114
list 110

Paste command 43.69
pathname 122

full 123
partial 123

pen location 335-336
pen mode337
pen pattern 336
pen size 336
picture 344
pixel Images 327.330
pixels 328

chunky349
point 339 ,348,403
polygon 343
port rectangle 332
predefined functions 143
predefined libraries 321
predefined Toolbox libraries 363
Preferences command 48.74
prefix 123

number 123
Print command 46,68
print item 56
Print Options command 47-48.66
Print Options Dialog Box 47-48
print zone 5 7

printer
parallel 46.48
serial 46,48

printer command 48
printing 46-49
procedures 107. l 09- 112

actual parameters 114
calling 114
definition 109
formal parameters 114
global variables 11 o
local variables 11 O
naming 110
parameter list 11 O

ProDOS 121
commands 50-52
filetypes 489
menu79

programming.
line 54.60.130
statement 54.60.83-85
textbook 14
Toolbox 14

programs 85
event-driven 315.358

program counter 108
pull-down menus 357.369
QuickDraw II 327
Quit command 26. 68

R

random file access 130
real font 348
rectangle 340
recursion 115-116
region 343
relational operators 1 02 l 03
Rename command 80
reseNed variables 94. 143

AUXID@150
EOF 180
ERR 183
FRE 197
JOYY220
KBD221
PDL9248
Pl 251
SECONDS@ 279

reserved word 54.86-87
Revert command 25.66
root directory 122.125

running a program 30
runtime errors 37-38.390-393
runtime stack 108,111,116.396

s
SANE 90-91
Save As command 66
Save command 66
Save File Dialog Box 45
scaled font 348
scan-line control byte 331,351
screen elements 357
Search menu 44.70
segmentation 480
Select All command 43.70
selecting text 42

double-clicking 42
dragging42
shift-clicking 42

sequential file access 129-130
shift-clicking 42
single-precision reals 89
splash screen 20
stack Windows command 24.71
statement 54.60.83-85.143

ASSIGN 121.148
BREAK ON 151
BREAK OFF 151
CALL 153,323-324
CALL% 154
CATALOG 126.155
CHAIN 156
CLEAR 158
CLOSE 128-129, 159
CLOSE# 159
CREATE 163
DATA 165
DATES 167
DATE FN 168
DEF LIBRARY 117 .170
DEF PROC 109.172
DELETE 125,174
DIM 175
DIM DYNAMIC 175
00177
ELSE 207
END 179
END LIBRARY 117
ENDPROC 109
ERASE 182
ERROR 184

EVENTDEF 185
EXCEPTION 187
FN = 111.194
FOR 195
GET# 136,199
GET$ 58-59 ,200
GOSUB 107.201
GOTO 202.207
GRAF INIT 203
GRAFOFF203
GRAFON203
HOME205
IF207
IF Block 209
IMAGE211
INPUT 59-60.215
INPUT# 131.216
INVERSE 219
LET55-56.224
LIBRARY 225.322.367
LOCAL 110,227
LOCATE 228
LOCK 126,229
MENUDEF231
NEXT 195
NORMAL234
OFF BREAK 235
OFF EOF# 139 ,237
OFF ERR 238
OFF EXCEPTION 240
OFFKBD 241
OFF TIMER 244
ON BREAK235
ON EOF# 138.237
ON ERR 238,399
ON EXCEPTION240
ON KBD 241,398
ON TIMER 244.398
ON ... GOSUB 108.242
ON ... GOT0243
OPEN 122.127,245
OUTPUT# 247
POKE252
POP 108,253
PREFIX 123,254
PRINT 56-58.256
PRINT USING 258
PRINT# 132,259
PRINT# USING 260
PROC 109
PUT# 137,261
RANDOMIZE 263

READ264
READ# 134,265
REM 54-55,267
RENAME 125,268
RESTORE 270
RESUME 271,399
RETURN 107-108,272
RUN276
SET280
STOP 287
SUB$ 289
SWAP290
TASKPOLL 294,359
TASKPOLL INIT 294
TEXT 297
TEXTPORT 298
THEN 207
TIMES 300
TIMER ON 301
TIMER OFF 301
UNLOCK 126,229
UNTIL 177
VOLUMES 126,310
WHILE 177
WRITE# 135,311

string constants 92
string data 91
string expressions 99
string operators 104
string pool 91,324,399
strings 91
structure arrays 99
subdirectories 122
subroutine 107-109
subscripts 98
Super Hi-Res Graphics Screen 53

T

tab width 78
tag byte 133
TaskMaster Events 361
TaskRecord fields 378
textbook programs 14.53
Tile Windows command 24,71
title bar 21.24
To Disk command 28,31,73
To Memory & Run command 28,30,73
Toolbox procedure,

defining404
Toolbox programs 14.53,315,401
tool sets 315-321,401-473

Apple Desktop Bus 319
Control Manager 318,365,406
Desk Manager 318,365,410
Dialog Manager 318,365,412
Event Manager 317 ,365,416 16
Font Manager 318,365,419
Integer Math 320.421
Line Edit 318.365.423
List Manager 318,365,425
Memory Manager 317,365.427
Menu Manager 318,365,430
Miscellaneous Tools 317,365.433
Note Sequencer 320
Note Synthesizer 320,436
Print Manager 319,365.438
QuickDraw 315.317 ,365.442
QuickDraw Auxiliary 317,365,457
SANE320
Scheduler 319,458
Scrap Manager 318.365,459
Sound Manager 320,460
Standard File 319.365,462
System Loader 319
Text Tools 319,465
Tool Locator 317,467
Window Manager 315.318.365,469

tool set initializing 365-367
tool set loading 365-367
tool set number 322
tool set shut down 368
total system memory 78
Transfer command 51 ,80
transfer modes 337

u.v
Undo command 68
variables 55

integer 38
modifiable reserved 94
procedure 110
reserved 94,143

visible region 333

w
wedge342
What to Find command 43
window,21-26.357,372-376

active 21
creating 373
editing 21

elements 372
open 23
topmost 21

window frame bit vector 374
Window Manager TaskMaster Events 359.361
Windows menu 24.71

