5 sophisticated disk utilities with which you can:

* edit normal or protected disks

* quickly find and recover any intact file, however
badly the disk is corrupted

* list programs directly from any disk - protected or not

* examine textfiles directly from any disk - protected
or not

* analyse the formatting of normal or protected disks

* decrypt commercial software - or encrypt your own

* rapidly auto-search normal or protected disks for
anything you like

* understand &use the latest copy protection methods

* use your Apple as a powerful document retrieval system

* make use of an exhaustive knowledge of disk lore

Includes “THE CIA FILES”, a complete 60,000+ word guide
to the Apple®disk.

THE CIA FILES

COPYRIGHT (C) 1983 BY

GOLDEN DELICIOUS SOFTWARE LTD.,
7 SLOANE AVENUE, LONDON SW3 3JD, ENGLAND

This manual is copyrighted and published by Golden Delicious

Software Ltd. All rights are reserved by Golden Delicious
Software, Ltd. It is expressly forbidden to copy, duplicate,
sell, or otherwise distribute this manual, except by prior

written consent of Golden Delicious Software.

This software and manual are sold "as is” and without
warranties as to performance or merchantability. This software
and manual are sold without any express or implied warranties
whatsoever. Because of the diversity of conditions and hardware
under which this program may be used, no warranty of fitness for
a particular purpose is offered. The user is advised to test the
programs and contents of this manual thoroughly before relying on
them. The user must assume the entire risk of using the programs
and manual. Any liability of Golden Delicious Software Ltd. will
be limited exclusively to product replacement or refund of the
purchase price. Such replacement or refund will be at the
discretion of the directors of Golden- Delicious Software Ltd.

INC The word APPLE is a registered trademark of APPLE COMPUTER,

TABLE OF CONTENTS

CHAPTER ONE - An Introduction to The CIA

CHAPTER ™\O - Tricky Dick

CHAPTER THREE - Intermediate Level Tricks withTricky Dick

CHAPTER FOUR - The Linguist

CHAPTER FIVE - The Secrets of Software Protection

CHAPTER SIX - The Code Breaker

CHAPTER SEVEN - The Tracer

CHAPTER EIGHT - The Tracker

APPENDIX A - Getting on Top of Hex

29

36

58

75

87

112

120

CHAPTER ONE — An Introduction to The CIA

Welcome to the world of the CIA!

The CIA is a group of 5 powerful disk espionage utilities
that will allow you to investigate, analyse, edit, protect,
decrypt, encrypt, locate, list, translate, trace, verify, and
examime programs and datafiles on normal and protected disks.
It contains many new features never before offered to the Apple
computing public. What!s more, much of the disk lore that
appears in this book has never found its way into print until
now.

Herefs what the CIA lineup looks like.

TRICKY,JPI&K is an all-purpose disk editor with a difference
- it can be used both on normal ggj most protected diskettes.
Not only that, it enables you to read in a sector directly from
a disk and list the sector’s contents on your screen or printer
in Integer or Applesoft BASIC, assembler, hex, and ASCIl. Among
may other wuses you will find Tricky Dick’s tricks invaluable for
patching and customizing your own disks, protecting your
software, and reading and altering normal and most protected
programs.

THE LINGUIST dumps a track of raw nibbles directly from aBli
disk - protected or nnT. 1t also decodes address data found on

the disk and translates raw disk nibbles into hex. The
translated nibbles can then be listed by Tricky Dick in BASIC,
assembler, and ASCII. This means that The Linguist makes it

possible for you to list the programs and textfiles from
disk, normal, corrupted, or locked. You can use it to have a
closer look at your favorite games, examine disk formatting, and
recover lost programs no matter how badly the disk they’re on is
corrupted.

THE pmt Nm axclies. normal. and most protected
disks sector by sector for any 1 - 6 strings you specify in ASCII
or hex. It will also sniff out the VTOC, catalog sectors, and

track/sectgr lists on noTTnaX and protected disks. You can choose
oirer -sume, or all of its 9 search options, and The Tracer will
carry them out , scanning an entire disk in 19 -
135 seconds. When it finds something you’re looking for it jumps
back in Tricky Dick and places a cursor on the item it’s located.
This allows you to thoroughly search and edit a disk in record
time.

makes use of a special table in DOS 3.3 and
3.2 to decryjal®Uie.-most pjogular ”secret code” used to hide
commercial programs from prying eyes. What’s more, this book’s
chapter on The Code Breaker tells you how to protect and encrypt
your own files wusing the same method.

TM LTMr.r.M closely shadows the disk arm, reporting its
every move as DOS LOAD'T, SAVES, RENAMES, or does anything else to
a disk. The Tracker leaves on your screen or printer a list of
every track and sector visited, and every read or write operation
carried out during any disk access. You can use this utility to
find out exactly where a disk is crashing, make a permanent
record of your files, and learn more about how DOS works.

THE CIA FILES is this book. It consists of well over 50,000
wordsrTnrrWWPmy a seTT?5~crf extensive and carefully worked
out tutorials designed to turn you into a disk expert. As you
learn to use the CIA utilities, they also become your personal
guides, leading you step by step from a beginner’s knowledge of
the disk to that of a pro. Here you’ll find a wealth of
information relating to disk repair and file recovery, DOS
patches, copy protection, disk formatting, program encryption,
and many other vital topics. Much of the material appears here
in print for the first time.

Xoe £il

In order to make the CIA as flexible as possible, we’ve
adopted a modular approach which works like this. Tricky Dick is
what you might call a chief executive program, in that it
controls the operations of the other CIA utilities. They are

accessed through Tricky Dick, and considerable information gets
passed back and forth as they work a disk over.

The first step ,in using the CIA is to BRUN Tricky Dick.
Then when you need to call upon one of the other utilities, you
simply BLOAD it. A single keystroke transfers control to the
utility you have just summoned and enables it to carry out its
work. During certain oprations, the module in question will pass
data to Tricky Dick for special processing. For example, when
The Tracer finds a string it’s looking for, it automatically
jumps back to Tricky Dick, displays the string, and places Tricky
Dick’s cursor on the first character. Now Tricky Dick is in
charge and needs only a few keystrokes from you to edit the
string and/or the other data in the sector where it resides.

The only exception to this system is The Tracker who works
alone. Complete instructions for wusing Tricky Dick in
conjunction with the modules are given in this book.

GfiAdiB R&iUfiiiaUS
As you may have gathered from the previous discussion, The

CIA programs are NOT copy-protected in any way. However, in
order to give you some hands-on practice using CIA on locked

disks, | have "protected” track $22 and placed a "half-track"
between tracks $20 and $21. Nevertheless, the CIA programn
are copyable, listable, and modifiable. In fact, this book

contains a number of special patches to customize Tricky Dick and
some of the modules.

M MmMmmmMmimmMmm
*

m
'

m

t a
E &
o
-
=
L
—
=
>

This means that before doing anything else you should makE
at least two backups of the CIA disk, You'll need to use FIIT?on
ydtITANINlerysTemMaster disk for this purpose (COPYA won't work
because of tracks $22 and $20 1/2). After reading part of this
book, you will also be able to copy track $22 across to your
backups.

frwba Uselbis Book

Each of the CIA programs has at least one chapter devoted to

it. Near the beginning of each program's chapter you'll find a
concise set of instructions for using that program. |If you are
an experienced disk person, this will be enough to get you going.

However, if you're closer to being a beginner, the way to use
each chapter is to try out its instructions in order to get
familiar with their effect on the program in question. The next
step is to move on to the tutorial which directly follows the
instructions and work your way through it.

As you work through the tutorials from beginning to end of
the book, you'll find that the material becomes more and more
advanced. | set it out this way so that no matter what your
level of expertise, you could find a starting point in this book
from which to progress to greater knowledge about the disk.

If you've already got some experience, you may find that
some of the material in the first couple of chapters is not new

to you, having appeared elsewhere in the literature. Its
inclusion was necessary so that even an Apple newcomer would have
a place to start. So if some of the tricks described in the
beginning of this book look familiar, take heart and move on to
the next chapter - I'm pretty sure that sooner or later you'll
find plenty of things to get your teeth into.

baaalk a Lias

Our goal is to produce good, sound, usuable software for a
wide range of interests, and at a low cost. In order to do that
effectively, we have to know about jfiGUE particular needs and
interests. So if there are any improvements you'd like to see in
the CIA, any similar types of software you'd like see written, or
any bugs you spot in the programs or this book, let us know. Due
to our hectic schedules, | can't promise you a letter in return,
but you can rest assured that we'll take your complaints,
compliments, and ideas seriously when we're putting together
future projects.

If and when any CIA updates emerge, we'll write to and ,
offer them to you at a premium price. We'll also keep you posted!
about any other software we've got going. But in order, to keep
this sort of contact with our customers, we need to know about

you. To make sure we do, if you didn't get this program
directly from Golden Delicious Software, drop us a post card with
your name and address for our records. This is a ploy to

make you a "registered owner" of our software as many program

publishers attempt to do, but rather to enable us to keep you
posted on any exciting new developments in our product line as
soon as they break.

Here's hoping you get many hours of fun out of the CIA!

ft m!

m T
QD *

»
f a
* a
*—

r
* K«
F -

CHAPTER TWO - Tricky Dick

Your first CIA contact is Tricky Dick. So get out a blank
floppy and get ready to enter a new domain of disk doctoring.

But first, if you have not already done so, make a couple of
copies of the CIA disk, using FID, and write protect them. Then
put the original away and boot up one of the copies. When the
CIA menu appears, select option £1. | know you’re anxious to get
better acquainted with Tricky Dick, but just before you start,
you might be interested in hearing..

A FIRST WORD ABOUT DISK DATA

If you are already familiar with the differences between a
raw nibble dump directly from the disk and a dISk read usmg
RWTS, you can skip this explanation and jump to "Tricky Dick’s
Instructions™ in the next section. Up to now, these two methods
of reading a disk seem to have been documented in a manner
comprehensible only to those progammers capable of writing
machine code in their sleep. This prompted me to start things
off with a detailed discussion designed clarify disk examination
fﬂr)éou and enable you to get the maximum use and enjoyment from
the CIA.

The first thing you need to know is that when you SAVE or
BSAVE any program, DOS totally alters the program code just
before writing it to the disk. The next time you load or run
that program, DOS changes it right back again to its original
form. The user, naturally enough, never notices this process,
and it is carried out in a manner guaranteed not to interfere in
any way with the running of your Apple.

Why should DOS go to all this extra trouble whenever any
information is put on or taken off the disk? The answer lies
deep in the innards of your machine. The Apple’s hardware (and
that of many other micros) has some innate limitations which
restrict the range of byte values that can be allowed to pass
between the machine and its disk drives.

Now if you type ”CALL -151” into your machine and then list
a large range of memory (by typing, say, "F800.FFFF”) you will
probably notice that almost every byte value from $00 to $FF can
be seen scrolling by (see Appendix A if you feel the need of a
brush-up on hexadecimal numbers at this point). Everything that
is stored in RAM - programs, ASCIlI code, textfiles, etc. - is
represented by a block of one or more hex values in this range.
This means that your machine has 256 different byte values to
make use of for representing information in memory (since there
are 256 different hex numbers in the range $00 to $FF).

Unfortunately, when communicating with its disk drives, your
Apple can’t handle such a large range of values. Because of the
hardware constraints mentioned above, DOS 3*3 only sends to the

disk, or receives from it, values from $96 to $FF (150 to 256 Iri

decimal). Even within this limited range some bytes are
,Fillegal” in that they violate the Apple*s hardware rules.
Others are ™reserved", i.e., set aside for special disk use. In
fact, DOS 3.3 has to represent all the 256 different values that
appear in RAM using only 64 values on the disk. Even more

amazing is the fact that earlier versions of DOS had to make do
with even a smaller range of disk bytes.

Alittle later on, I*m going to explain these mysteries in
considerable depth, but for the moment let*s come back to the

subject of the two different ways of reading a disk. These are
(1) a raw nibble dump, and (2) an RWIS read.

N lbe Blkbls Qubjc

The expression "raw nibbles" refers to the information

as it is represented on the disk - in other words, in the
specially encoded form described above. When you examine this
disk data, you will of course notice (if you are reading a DOS

3.3 disk) that the hex numbers that appear on your screen range
in value from $96 to $FF. So, unless you have built-in boolean
logic in your brain, this will hardly be recognizable as program
or textfile code.

More interestingly, however, you will also see a lot of data
which is flat part of any program. In fact, you will behold
dozens of hex numbers whose sole raison d*etre is to help DOS do
its job in getting information on and off the disk. These "DOS
marks" will tell you a great deal about the disk and will be
covered in detail later on. For now, suffice it to say that when
you do a raw nibble dump, you can summon up a display of anything
on the disk except the label - exactly as it is written on the
track you select for reading,

Xbe BUISBaL)

"RWTS" is an abbreviation for a subroutine in DOS called
"Read and Write Tracks and Sectors". RWTS is the part of DOS

that does all the donkey work involved in putting data on the
disk and getting it back into the machine. One of its more
important jobs is to translate the raw nibbles on the disk back
into code which is intelligible both to the Apple ROMS and to
programmers.

Another function RWIS carries out is filtering out the DOS
marks referred to above. Once a program is loaded into memory,
they serve no further purpose and hence are discarded just after
being picked up by the read/write head. So what you get when you
do an RWTS read iIs a block of data, neatly translated back into
numbers that represent program or textfile code, and without any
superfluous disk information thrown in. Another way of thinking
about this is to remember that when DOS loads or runs any
program, it automatically performs an RWIS read to get the
program into memory. A raw nibble dump, on the other hand,

= M
N

* M m mMmmmmim/IMmMmmm m

M
| —
[

“

fc 3

comes directly from the disk itself, bypassing RWIS and DOS
entirely.

The software on the CIA disk will enable you to read a disk
in either of the above ways. Tricky Dick by itself can only do
an RWTS read. But if you also get The Linguist on the case, you
TO1 also be able to carry out a raw nibble dump on any disk
whatsoever. Much, much more about these functions will be
revealed in due course, but first let's get better acquainted
with Tricky Dick.

TRICKY DICK’S INSTRUCTIONS

This section briefly outlines the commands used in operating
Tricky Dick. If you already possess considerable disk knowledge
and experience, these should be enough to get you going. If you
have somewhat less expertise, the way to use this section is to
work through it fairly carefully trying out the various
commands, and watching their effect on Tricky Dick’s display
After this, you should work through the Tricky Dick tutorial
which follows this section. This tutorial is designed not only
to help you use Tricky Dick as effectively as possible, but also
to put you well on the road to becoming a disk expert.

~ _Ibe Jciskas Diels Disalas: Press any k*ey to get out of the
initial display that appears when Tricky Dick is run. This will

bring up the data viewing area, but will leave intact the three
lines of parameters at the top of the screen and the command line
at the bottom. These will always remain in view no matter what

Tricky Dick is doing. "ALL COMMANDS" at the lower right of the
screen prompts you to enter the instruction you wish Tricky Dick
to execute. Each command is echoed on the right of the to
serve as a reminder of your last input.

UslQ Li ¢ Hitting the '/' key brings up a list
of each command along with its accompanying key stroke.
before a letter indicates that the CTRL key must be pressed at
the same time as the letter. The help screen can be accessed at
any time. Hit any key to get back to the data display.

DQS L2BIm CONTROL D toggles between DOS
versions 3.2 and 3.3, telling Tricky Dick which one is on the
disk it’s going to be working with. The current version is shown
under the word "DOS" at the top of the display.

> Slat* Driifi* and Defies Ssleet Q]MMOImJ) brings the
cursor up next to ,SL=I. If your disk controller card is in slot

6, just hit RETURN; if not type in the correct slot number.
Tricky Dick will check that an Apple disk controller card
actually exists in the slot you specify. |If a card with P5 and
P6 PROMs is present, DOS 3.2 will automatically be brought into
play. The cursor will move to *DRr' prompting you for the number
of the drive which contains the disk you wish to work on. After

? in this information, hit RETURN to go to 'PR=!. The
defaut value (PR=0) means that printer output is disabled. You

only need to enter your printer card's slot number when you are
ready to print out some data from Tricky Dick.

~ Xcsek fled SestflE Selsst LI* £» .2. SCCOVSI- Hittin
brings the cursor to the top of screen next to »T=* Select the

track number you need and hit RETURN. The cursor will move down
next to the *S=', waiting for you to key in the sector you wish
to read. Enter single digit track or sector numbers by typing
the digit followed by RETURN. A RETURN alone in response to "T="
and "S=" accepts the value shown. Alternatively, you can
decrement or increment the track number shown by hitting the e<e
or '>' key respectively (either with or without pressing SHIFT at
the same time). Track numbers wrap around when you get to $22.

In a similar manner, you can clock the sector number forward
or back by hitting the right or left arrows respectively. If you
have selected DOS 3.2, sectors numbers wrap aound when you reach
$0C; with DOS 3.3, wraparound occurs at sector $0F. However, the

command allows you to designate track numbers greater than
$22 or sector numbers greater than $0F/$0C.

n L2Ble Press CTRL R to read the sector you
have selected into Tricky Dick's buffer (an area in memory
specially set side for data storage). The disk you are reading
should be in the drive indicated by 'DR=*. The sector data will
be displayed in the data viewing area on your screen immediately
after a successful read.

The volume of the disk you have just read
will appear under the letters "VOL" in the upper right hand
corner of the screen.

~>CUESfIiE MfiySffICfli U.il.K.U acd . l, I% K and M
move the cursor around the data display in exactly the same way
they do when used for Applesoft editing. When these commands
take the cursor beyond the edge of the screen, scrolling or
wrapping around occurs. For example, pressing 'K when the
cursor is at the end of a row causes it to jump to the beginning
of the next row; pressing 'M when the cursor is in the bottom
line of the display causes the screen to scroll up one line.
Scrolling can be continued until the first or last line of the
sector data appears on the screen. Holding down CTRL and hitting
any of these four keys increases the distance covered, causing
the cursor to jump to the edge of the display.

EdiifJ)LDg Sifiglfi Dytss ifl Disclax: This is accomplished by
placing the cursor over the byte you wish to change, and typing
in the new hex value. Single-digit hex numbers must be entered

with a leading zero (e.g., enter *5f as '05%). If you type the
first digit of an entry and then change your mind, simply hit 'J’
or *K'. This moves the cursor away and cancels the entry.

Similarly, if you type the first digit incorrectly and want to
change it, hit the space bar and start again.

o N T T T T T T T T

M T X « T T T T M 7T T

»1

=

«

r*

L2fm Imti: Just after loading Tricky Dick,
the words "NORMAL HEX" will appear at the lower left of your
screen next to the word "DATA". They mean that you can enter hex
digits from the key board and these digits will appear in the
data display under the cursor. This allows you to edit the
screen display before writing it to the disk.

Keying in the " chaj*cter™ (SHIFT 2) places you in "high
ASCII" mode and causes an inverse "HIGH ASCII" message to appear

in the lower left of yor screen. In this mode, each time you
press aoji key, its corresponding ASCIlI code number with the high
bit set will appear under the cursor, and the cursor will advance

to the next space. This allows you to type alphanumeric
characters into the data display without looking up their
corresponding high ASCII codes. Before you can issue any other
command, you*1l need to hit the CTRL, SHIFT, and *Pf keys .
simul taneoust/~~tx:err). This puts you back into the "**
"NORMAL HEX' mode and allows Tricky Dick to accept your keyboard
commands again.

Inputting a * character XSHIET 7) will place you in *
standard, or "low" ASCII mode (signalled by "LOW ASCII" in the
usual' pTace). VI this mode, each keypress leaves its normal
ASCIl code under the cursor. To return to normal Tricky Dick A"
functioning, hold down the CTRL, SHIFT, and 1P* keys together.
(CTRL g).

\ Ibfi When you boot up Tricky Dick and read a
sector, the data viewing area will show the (i.e., the
first 128 bytes) of the sector data. On therlr tight of the
screen you will also see an eight-column alphanumeric symbol
display. This part of the screen gives an ASCII translation of
the hex data. Contr.ol_ckaxj.QkfiXA slusw. up ojj torse, and all
flashing sy mbols peClclianaad ft rii stm att] »

To view the secj%fldr{iglf of the sector, hit either CTRL Mor
RETURN, bringing tlTe cursor down to the bottom of the screen!
You can now scroll through the remaining data by holding down the
1MV and REPT keys'-together. From there, you can scroll back to
the beginning by hitting CTRL I, followed by pressing *X and
REPT simultaneously. Alternatively, hold down the CTRL key and
press 1F*, fM», and 1F’, in that order. The column of hex
numbers on the far left which are followed by a ** tell you what
portion of the sector data you are viewing. They are offsets in
Tricky Dick’s data buffer and range from $00 to $FF in 8 byte
increments.

2 YEliccicg) DataBiSDtaxsLDEl- 1f _you are inthe viewing mo
described in the preceeding two paragraphs, a CTRL F will erase
the alphanumeric symbols on the right of the scrdtfT and display
all the data in the last sector read. The cursor will remain
over the same byte during the flip. The leftmost column of
numbers indicates buffer offsets, but with the trailing zero
ommitted to retain clear screen formatting.

From this full sector display, you can of course get back to
the partial screen with ASCIlI by simply pressing CTRT”"agai n.
When you do, Tricky Dick displays the next 128 bytes of data,
starting with the row in the full display where you left your
cursor. For example, if your cursor was in the row numbered $5,
then after CTRL F you will see the 16 rows of data and symbols
numbered from $50 to $C8. As before, the cursor will remain over
the same byte during the flip.

EiaUifig LZi» ZII- In either of the above two
displays, CTRL Z replaces the sector data with zeros beginning
with the byW”’over which the cursor is placed, and extending
right to the end of the sector. CTRL X fills the sector from the
cursor to the end with the byte vaTue under the cursor. Note
that these commands do not write anything on the disk itself.

J Sector Data LLI: Hitting fLf disassembles the
sector code beginning with the byte und?TP the cursor and
continuing until the screen is filled. The middle column of the
display gives the ASCIlI translation of the hex data to its left.
Repeated pressing of ,LI carries on the disassembly until the end
of the sector is reached. After disassembling a screenfull of
hex you can return to the previous hex display by hitting the
space bar or some other noncommand Kkey. The cursor will be
positioned next to the last byte that was disassembled.

M m T T T T T T T T Tl

it
f*

* K

m

/ Listingh a o 1 e s a i t sod lotesec Cede L»L. LI- if the sector

data contains Applesoft or Integer BASIC code, a listing can also
be displayed. To accomplish this wunique feat, Tricky Dick
requires only that you select the language you wish to list by
pressing CEBJLJ-» then typing an *Af for Applesoft, an *1* for.
integjer®, or a for assembler. FTnally, hit 1L*~for a listing
wnicTThegins with the byte under the cursor. Keep typing 'L's'
until you have listed all the code in the sector buffer.

~ kcibioebobbe Disk LZil) sobCtrl
key writes the contents of the sector mjffeF'to the sector whose
address shown at the top of the screen. WARNING: Be sure that

all the information shown on the screen is correct before
executing a write - once you do it, the die is cast! If you foul
up here, you will clobber the disk you are working on, perhaps

irreparably. This means checking to be certain you have selected
the correct drive, track, and sector numbers - and that the data
displayed on the screen is the data you want written on the disk.

To help prevent accidents, a unique safety factor has been

built in here. When you hit CTRLJ , you will hear a series of 6

siiort tones over a p”~rToor” nds. Keying" in a 'Y
during this sequence writes to the disk and stops the tone*:;.
"However~ ii' y6UTFTA"TT'pressed CTRL W by mistake (not hard to do,

-since most commands involve the CTRL key), you can simply elect
Lfo do nothing, and when the tones cease, the write instruction is
automatically cancelled. If you don't want to hear 3 seconds of
sound effects, hit any key except *1* and they will stop
immediately.

10

F 49

F

w?

w, fOI#)WERﬂt

F
F

m T T T T T

3

mf

ri

VFfiCCCl ~EE££E&EE: When an error occurs during the operation of
Tricky Dick, a tone is sounded and a flashing error message
occurs inside the *<-->* mark in the -upper right corner of the
screen. Just above, Tricky Dick displays the accompanying DOS
error code inside the ,<00>* A subsequent normal read or write
operation clears both the error message and its code from the
screen. The chart below shows the type of error, its flashing
designator, and its DOS code.

Type of Error e<—>e designation DOS code
Write Protect Error <WP> 10
Drive Error (Read or Write) <10> 40

) DeaXosuith . . . Ueonstaotlacil Seetec back

to the "features of Tricky Dick which allow you chuckle, chuckle,
to read from and write to disks whose formatting has been altered
- either by accident or design. In order to do this with the
least amount of work, you*11 need to use The Linguis.1 to
determine the exact nature and extent of any such alterations.
The instructions for The Linguist are in a later chapter of this
book.

Hit CTRLJLand the cuf£9X wl11%jAIBu j ? t Q f tlhe
sector marksT You can then move the cursor along ‘this data with
thgTYeTF and right arrows. To replace any digit, simply position
the cursor over it and type in the new digit. The change will
appear and the cursor will move to the next symbol. A RETURN
Sets the cursor back to the data display.

In the top line, "D5AA96n is the standard DOS 3.3 address
field header and "DEAA" is the address field trailer. If you have
changed the DOS version to 3.2 the top line will read "D5AAB5"
which is the 3.2 address header, the next line, "D5AAAD" refers
to the data field header and "DEAA" is that field's trailer.

by replacing one or more of the header or trailer *

bytes with a 1001, you can tell Tricky Dick to accept any value”~ P O
in that position. For example, 'DE00* in the first line causes*-*
the second byte of all address field trailers to be ignored”?
during reading or writing.

The third line shows the data field header and trailer (the ~.
latter with an added 1EB* once again. The header and trailer
you select here will appear in the data field of the next sector
you wecifcfi to the disk. This line is used only for writing and
allows you to alter the values in the data field header and
trailer of any sector you write to the disk

Finally, by chaiyinfl the in the [park section to
*N*s* you can tell Tricky Dick to ignore the address field
checksum (the first ’Yf) and/or the data field checksum (the
second 'Y'"). The *0* just below the two 'Y's* indicates that
Tricky Dick will always write a sector of data to the disk with a
data field checksum of $00

1

- >Th

\ Ecifltias Used facx £co» lcickx Dick £2£. £1= Typing ctrl p
allows you to select the form in which you wish the "secfor data

in Tricky Dick’s diplay to be printed. The cursor will jump to
the print select parameter, prompting you to type in one of the
following instructions: 'H for a hex dump with ASCII
translations; *A for an Applesoft listing of the sector code,
1 for an Integer listing and ’*’ for a disassembly. The next
step is to type CTRL 0, followed by two RETURNS. This brings the
cursor in position next to the "PR=" for you to key in the slot
number of your printer interface. Finally, after making sure
your printer is turned on, type ’P’ for the action to begin. |If
you select the wrong slot, you may find that Tricky Dick hangs,
or that other strange things happen.

If you are in the ’#* *A* or *1* modes you will get a
listing from the last cursor position to the end of the sector
data. In the *H mode you get a full sector dump irrespective of

the cursor position.

L2H2ElI MI: Typing a SHIFT_EL_displays a list
of the Tricky Dick coresident modules, their names, and a brief

description of their functions. |If one of the modules is already
in memory, its name will be displayed at the top of the screen
just to the right of the inverse "Tricky Dick". If no module is

in memory, Tricky Dick’s version number will be displayed.

V £*IEIf}E IEIEkx Dick I££EE£l« «Cl: Tricky Dick does not tamper
with RESET, so you can use this old standby to jump out any time
(except while writing to a disk, of course). CX&L-X also exits
to BASIC and reminds you that you can restart Tricky Dick by
typing a (or wuse CALL 205-1). CTRL Y (or 803Gl. from the
monitor also gets things going again.”

n IQ £ Mfiflulf L2EX- To load a module while running

P Dick, type "CTRL C" followed by BLPAD (name of, mqdule).
Whefi the disk drive~St.ops sinning, key”in a and you are
ready to roll. When you get back into tricky Dick you will
notice that the name of the module presently in memory replaces
Tricky’s version number in the banner at the top of the screen.
To go into a module you have loaded into memory, type CTEL’E. and
the module’s introductory display will appear on the screen.
Then hit any key and you’re ready for action.

If you hit CTRL Ewith no module in memory, Tricky Dick will
let you know by sounding a rather pleasant tone. When you jump
to one of the modules, the words "TRICKY DICK" at the top of the

screen get changed from inverse to normal. At the same instant,
the fflCfijyifiteS name switches from normal to inverse. This lets you
know at glance which program you,’re "in” - it’s always the. one

myvho.a.e_iuaianNis In Inverse,”.

IMPORTANT NOTE: The DOS modifications which are explained in
the following tutorial and elsewhere in this section of the book
ONLY apply to a standard DOS 3.3. slave disk. If you have a disk
with any other kind of DOS (including 3.2 or one of the speedy

12

fc

fc

fc

fc

—

fc

ft?

fc

IS

W = > 5

rt

fa

«

DOS versions) do not attempt the patches that follow without
making sure the code being written over is the same as in DOS
3.3. The locations for many of the patches are bound to be
different, and you could end up ruining a disk.

THE TRICKY DICK TUTORIAL

This tutorial represents the first leg of your journey
towards disk expertise. Along the way, you'll pick up a lot of
new information, not only about DOS and disk formatting, but also
about the Apple Il in general and how to get even more enjoyment
out of it. I sincerely hope this trip is as much fun for you as
it was for me when | first began exploring the inner world of
DOS.

Boot up the CIA disk, select Tricky Dick from the menu, and
when the initial display comes up, press the '/' Kkey. This
brings up the help screen., a source you can always appeal to if
you need to recall any of the commands described in the last
section.

Before doing anything else, hit the space bar to bring up
the data display. This should show a scTe'enTuTl of $00*s
indicating that Tricky Dick is empty. When you read a sector off
the disk, it is deposited in a specially reserved area of memory
(called the "buffer”), and immediately copied to the screen.

An important feature is the column of numbers on the far
left. This starts with a *00' and ends with a *78f at the bottom
of the screen. Each of these numbers is an "offset" into the
buffer, meaning that it is used to count the bytes found there.
The way this works can best be illustrated by the second row
which starts with *08*

byte numbers: $08 $09 $0A $0B $oc $0D $OE $OF
/ / / / / / / /
2nd row - 08: 00 00 00 00 00 00 00 00

The *08* in the second row tells us that the first byte in
th%t row is the 8th byte in the buffer; the next byte is the 9th,
and so on. ~

Since you can change bytes simply by placing the cursor over
them and typing in the new value, you will rarely have to think
about offsets. However, in this tutorial, | will be using the
numbers that appear in the leftmost column as line numbers. So,
for example, | would refer to the row above not as "the second
row", but rather as "row $08". This notation will ultimately
save you a lot of counting.

As you can see, the numbers referred to above are in

hexadecimal. This a policy | will be following throughout the
book, so if you are a bit rusty on the hex number system, now is
the time to turn to Appendix A for a bit of a brush-up. If you

13

are completely hexed by hex, take heart and dive in to the
appendix anyway. In both the US and England, 10 year old school
kids are learning alternative number systems as part of their
normal class work. If they can do it, so can you!

Now let’s do some disk espionage. Start by making a Elfi
copy of your entire original Apple System Master diskette and
leave it un-writeprotected. Take the CIA disk out of your drive
and put the copy in its place. |If you have two drives, leave the
CIA disk in drive 1 and put the practice copy in the other drive.

vin the latter case, select the drive the copy is in by keying in

* y CTRL 0, RETURN, the drive number, and RETURN in that order. | f

V<2 /Meverything is working O.K., the cursor should have hopped up to

" V*SL=», then down to ’'DR=» after the first RETURN. The drive

number should have been echoed after *DR=* and the last RETURN
should have caused the cursor to jump back into the display.

If you have just booted up, the sector address at the top of
the screen should read "TzO” followed by ”S=0n. So select track
11, sector 0 by typing in the following sequence.

) ; 11 0 RETURN

During this keying-in sequence, the cursor will perform
another series of gazelle-like leaps, finally returning to the
data display. The track and sector parameters at the top of the
screen should now read ”T=11 S=0" and the screen should be filled

with ’0*s’. The last 8 columns on the right of the screen should
be filled with inverse signs. This section of the display
gives the ASCII translations of the sector data.

Ibe iialBs Zable ef Cootebba C

Now press QXRL R and watch the action. After about one
second of disk whirring, some scattered bits of data will appear

among the screenfull of zeros. You are now looking at the
notorious Volume Table of Contents (alias the VTOC), apart of
the disk which, sooner or later inevery Apple enthusiasts life,
gets overwritten with random data.

We’re not going to worry too much at the moment about fixing
a clobbered VTOC, but rest assured that before finishing this
part of the book, you will be able to perform masterful surgery
on this vital diskette organ, even in its most mutilated state.
For now, let’s take a closer look at the very top line of data
which should read: P > fwi N

04 11 COF 03 00 00 FE 00

The first number, *04* has no function and can always be
ignored. The next two numbers give the location where the first
catalog entries have been written. They should read "110F",
telling us that the catalog starts at track $11, sector $0F (it
starts at sector $0C on a 3.2 disk). The '3f tells you that th<*
disk’s DOS verson is 3.3 (a f2f = 3.2). The 'FE1 two bytes along

14

fe

fc

fc

fc

fe

fc

fc

fc

fe

fc

fe

fc

fe

fe

fe

fe

fe

fe

fc

fc

fc

fe

*9

I«

|*

«IT

«n

w (

is the volume number of this disk (decimal 25*0.

The next 3 rows are pretty uninteresting, since they contain
nothing but zeros. The fifth row (numbered with a *20* in the
leftmost column) contains a *7A* as its last byte. This
indicates that each file's track and sector list (we'll talk
about these a bit later on) is allowed to hold up to $7A (decimal
122)track and sector addresses.

After another row of zeros, we come to the following line:
<
12 01 00 00 23 10 00 01

The first number, *12', twtiicates that track $12 was the
last track allocated by DOS for fille storage. The '01" following
it tells us that the next track /DOS will attempt to write to is
$12 + $01 or $13. Now these two lumbers may be different on your
practice copy of the System/Master disk, since any small
variation in the way FID has written out the files could alter
its selection of the next trap: to be used. For example, instead
of a '1', you may see an VEF. This tells you that DOS will
search in a direction, i.e., 12 - 1, for the next
available track. In many implementations, a hex number whose
high bit is set, in other words, whose value is $80 or greater
(see Appendix A), is taken to be a negative number by the system
(in which case it qualifies to bear the impressive title, "signed
8-bit binary number").

Skii)ping over the two unused *00*s' brings us to '23 10*.
This tells us that DOS has formatted $23 (decimal 35) tracks on
this disk and that each track contains $10 (decimal 16) sectors.
The final '00 01' on this line indicates that there are $100
(decimal 256) bytes per sector on the present disk (remember that

the 6502 usually handles two byte numbers in reverse - i.e., with
the high byte last and the low byte first).
/ The Bit Macs

We now arrive at the "bit map" field, the most important
area of the VTOC. This begins on the next line, which should be
numbered $38 on your display, and extends up to line $C8. The
bit maps are a block of data which tells DOS which tracks and
sectors have not yet been written on, and hence are available for
storing files. In order to avoid clobbering your precious
programs, DOS is obliged to take a look at the bit map field each
time you ask it to save any new information on the disk.

The bit maps on the work disk you are now examining will
consist mainly of '0O's* interspersed with a few higher values.
This is not the most helpful configuration for you to learn on,
so let's try a little experiment which should prove more
educational. Here's what to do.

15

(1) Take your work disk out of the drive and put an
unitialized diskette in its place.

(2) Hit "CTRL C".

(3) Type "CALL-151" to go into the monitor.

(4) Type "BEFE:24".

(5) Now "INIT HELLO" the unitialized disk..

(6) Key in CTRL Y, jumping back into Tricky Dick.

(7) Make sure the display reads "T=11", "S=00", and check
that D = the drive which contains the initialized disk.

(8) Hit *CTRL Rf, reading in the diskfs VTOC.

Right away you will notice, if all has gone according to
plan, that the bottom of the screen contains a couple of dozen
'FF's' that were not present in the practice disk’s VIOC data.
This state of affairs makes explaining things much easier.

Now hit RETURN, followed by a series of "Ms, until line $38
reaches the very top of the screen. This scrolls up some more
of the VTOC, exposing another batch of 'FF’s*. Since the bit
maps start with the first byte in row $38 (a *00*), this brings
the largest possible number of them into view. It also brings me
to the meaning of all the »00»s, °'FF’s’, and other hex numbers
scattered around the place.

Whoever wrote DOS employed a simple and elegant way of
recording the status, full or emptP/, of every single sector on
the disk - and squeezing this vital information into as little
space as possible. He (or she) did this by assigning a two byte
"map" to each track and structuring DOS to vary the maps* values
in a way which signals the track’s available sectors. The
illustration below shows how the maps are linked to their
respective tracks.

trk $00 trk $01

38: 100 001 00 00 100 00! 00 00
trk $02 trk $03

40: i00 00! 00 00 IFF FF! 00 00
trk $04 trk $05

U3 IFF FFj 00 00 IFF FFI 00 00

trk $1E trk $1F
BO. IFF FF| 00 00 100 00! 00 00

16

As you can see, the first *00 00* in row $38 is the bit map
for track $00. DOS skips the following two '00's' and assigns
the third byte-pair to track $01. This process continues
throughout the bit map field.

But how do we translate this succession of seemingly
meaningless data into information about each sector's status?
The answer lies in the fact that all hex bytes are composed of 8
individual bits (see appendix A if you are unclear on this).
Now if we allot each track two bytes for its bit map, we
immediately get 16 bits to play with. This works out quite
nicely, since each track contains 16 sectors. And what is even
more convenient, each bit can take on one of two values - a *0*
or a *1* So if we assign a single bit to each sector in the
track, we can show that a sector is free by setting its bit to a
1 A 'O value for any sector's bit would signal us (and DOS)
that it contains data. The way DOS links bits to sectors is
shown in the example below.

sector numbers: F E D C B A 9 8 7 6 5 4 3 2 1 0
bit values: 0 0 1 1 1 1 1 1 11 1 1 1 1 1 1
byte values: 3 F F F

Assigning »0's' to sectors $0F and $0E shows that these are
in use; the 'l's' paired with sectors $0D - $00 tells us that
they are free. Since your Apple automatically tranlates the
binary number '0011111" into the hex number '3F', and '11111111'
into 'FF', the bit map shows up as '3F FF' in the display.

In fact, if you look at the first two bytes in line $80 on
your screen, you will probably see this very same bit map.
Counting up the bit maps, starting with the one assigned to track
$00 in line $38, would tell us that '3F FF' represents the status
of the sectors in track $12 (decimal 18). Track $12 is where the
HELLO program was placed when you initialized the practice disk
and it occupies sectors $0E and $0F. Note that when DOS writes
data on a track, it always starts with the highest numbered
available sector and works down.

The table at the end of Appendix A allows us to translate
any bit map into a hex value since it gives hex (and decimal)
equivalents for binary numbers. A glance at the table quickly
informs us that if we want to show that all 16 sectors on a given
track are free, we need to set all its 16 bits to 'l', giving us
an 'FF FF' byte-pair. Similarly, to reserve an entire track, we
need to shove a '00 00' into its bit map.

Eeeeioaua lcaek £22

All of which brings me to the reason for asking you to type
in that *BEFE:24' a couple of pages' back. That was a patch to
DOS which told it to initialize 36 (hex $24) tracks instead of
its usual 35. This means you can now make use of track $23

17

(decimal 35), gaining an extra 4K of program storage (remember
that track $23 is the $24th track on the disk because DOS starts
with track $00). Here's how to do it.

Hold down the 'M' and REPT keys until the rest of the VTOC
has scrolled into view and line $F8 appears at the bottom of your
screen. The bit map for track $23 can be found in line $CO as
shown below.

trk $23
CO: FF FF 00 00 '00 00i 00 00

Since DOS isn't used to formatting track $23, it writes
*0*s' in the track's bit map to make sure it doesn't get used.
You are now going to make short work of this trivial obstacle to
greater disk storage.

Using the 'I', 'J* 'K», and 'M' keys, place the cursor on
the byte indicated by the two '**'s' in the above illustration
and type in two 'FF's*. Your display should now look like this.

CO. FF FF 00 00 FF FF 00 0O

Next, type CIRL F to flip screens, CITRL | to jump to the top
of the page, and CTRL F again; this brings you back to the first
part of the VTOC. Now place the cursor over the '23* in line
$30,

30: 12 01 00 00 23 10 00 01

and change it to a '24* to tell DOS that it now has $24 (decimal
36) tracks to contend with.

Finally, check the display to make sure that track $11,
sector $00 is selected, and that 'D=* the drive of the newly
initialized disk. Then hit CTRL W followed by 'Y» before the
tones stop. Finish off by reading back the VIOC with a CTRL R to
make sure your alteration took. You now have an extra track at
your disposal.

Qettias 8csaw Icack £
At this point you may be wondering if it's possible to
reclaim even more disk space. If so, read on because I'm going

to show you how to wrest another 16 sectors from DOS' grasping
clutches, bringing the grand total to 32. Let's begin by looking
at one of the 3 tracks, which, according to page 135 in the DOS
Manual, is exclusively reserved for DOS. Start by selecting
track $02, sector $0F, and reading it in. Follow this with CTRL
F to get the entire sector's data on the screen at once. Notice
anything funny?

~That's right - you are now staring at a sector full of
nothing. Proceed by hitting the left arrow once to decrement the

sector number to $0E and then read this sector in. Again you*Il

see a screenfull of *0*s*, If you continue by alternately
pressing the left arrow followed by a CTRL R you will be able to
do a rapid sector by sector scan of the entire track. This

should reveal that every sector from $0F down to $05 is devoid of
data.

In spite of the fact that DOS only uses 5 sectors ($00 -
$04) on track $02, a quick look at its bit map tells us that the
entire track is reserved. Apple may have done this to leave room
for further expansion of DOS, but for our purposes, the remaining
sectors are going to come in mighty handy for file storage. So
let*s grab them right now by reading in the VTOC and altering the
track $02 bit map as follows.

Start by reading in sector $00 of track $11. You should
still have the full sector display, so press CTRL I, causing the
cursor to jump to the top edge of the screen. Follow this with
CTRL F which takes you back to the display of the first half of
the sector with ASCII. When switching displays in this manner,
remember that the shorter ASCII display will start with the line
in the full display where the cursor was last placed. The cursor
itself will always remain over the same byte through any number
of screen flips.

We are going to work on the bit map for track $02 which is
located in line $40.

trk $02
40: 10000j 00 00 FF FF 00 00

But before we do, we need to figure out which byte values
must be substituted in. Since we want to free up sectors $0F -
$05, the bina% equivalent of the required bit map should end up

e

looking like t following.
sector numbers: F E D C B A 9 8 7 6 5 4 3 2 10
bit values: 11 1 1 1 1 1 1 11 10 0 0 0 o0

byte values: F F E O

The table in Appendix A tells that us that the *11111111*
and *11100000* in the bit map translate into $FF and $EO
respectively. After shoving these bytes in the track $03 bit
map, row $40 should look like this.

40: FF EO 00 00 FF FF 00 00
If it does, and the drive, track, and sector values are

correct, write it to the disk and read it back for verification.
This brings the grand total of liberated sectors to 27.

19

ScatfibiBS bBBCB feoff b@balee leads

The final 5 sectors of the 32 | promised you are going to
come from the catalog track. This is possible because DOS has
provided us with more catalog space on track $11 than we could
ever fill with file names. Even with the disk completely full of
short programs, the catalog hardly ever extends below sectors $07
or $08 (DOS places file names on the catalog starting at sector

$0F and progressing downward). Therefore, it is possible to
safely make use of sectors $01 - $05 for program storage. As
usual, it is necessary to indicate this in the track $11 bit map

which is displayed in line $78.

trk $11
78: FF FF 00 00 !00 00! 00 00

The new bit map which signals the availability of sectors
$01- $05 is: 000 0 00O OO00O0111110. Changing this
into hex gives us f00 3Elwhich should beplugged into the track
$11 bit map to produce:

78: FF FF 00 00 00 3E 00 00

Check everything and then write this to the disk. But don*t
leave yet. You have one important additional detail to attend
to. Each sector on track $11 including the VTOC contains the
address of the next sector DOS is supposed to access during any
operation involving the catalog. Let's have a look at sector $06
as an example of this. Clock the sector count forward by holding
down the right arrow and the REPEAT keys simultaneously. When
you reach $06, do a read and take a lookat row $00. It should
look like this.

$00: 00 11 05 00 00 00 00 00

The *11 05* is a link pointer which tells DOS that the next
catalog sector is track $11, sector $05. If you look at the same
two bytes on sector $07, you will see *11 06* pointing back to
sector $06, and so on throughout the track. In any disk
operation, the VTOC is accessed first, and its link pointer reads
MI OF', telling DOS to begin searching downward from sector $0F
for the requested file name.

Now the one thing we dfIDit want is for DOS to write file
names over any program code that may be stored on track $11.
Fortunately, all we have to do to prevent this is to write two
'GO'S' over the link pointer in sector $06. So you should change
row $00 from the form shown above to the one below.

00: 00 00 00O 00 OO 00 0O 00
Writing this back to sector $06 insures that DOS will never
look at any sectors lower than $06 for free space when placing

file names in the catalog. If all the sectors from $0F to $06
are completely filled (an extremely unlikely possibility), and

20

ft

ft

fc r*

ft

ri

sS

fn

fii

fii

>(->>oo

T w w3

you try to save yet another file, you will simply get a DISK FULL
ERROR", leaving sectors $01 - $05 untouched.

Before making use of this space, however, there is one last
change that must be made. To protect the catalog, DOS has an
internal safeguard against saving files on track $11. This must
now be disabled, so read in track $02, sector $01, and get line
$90 up on the screen.

90: B3 18 69 11 8D BB B3 8D

Change byte $92 from a f691to an *A9 and write the sector
back to the disk. You now have an extra 8K of disk storage.

QfiUiBg fiid Of U®B

In a final frenzy of greed, you could free another 21
sectors by writing »FF’s’ in the bit maps for tracks $01 and $02
leaving the VTOC display looking like this:

38: 0000 00 OOFF FF 00 00
40: FFFF 00 O00FF FF 00 00

Since this infringes on the disk space occupied by DOS,
eventually part of DOS will get overwritten by your files, and
the disk will no longer boot. You can still access the files,
though, if you first boot DOS from another disk.

Note: freeing track $00 in this manner is of no benefit,
since DOSwill refuse towrite onthis track even ifits bit map
contains ’'FF’s* and all the others are zeroed out.Patching DOS
to write on track $00 is not advisable because if a file’s track
and sector list happens to end up there, the file is likely to be
inaccessible.

fteoaicigg a LIQ

I think you can now see that if a VIOC on one of your disks
accidently gets corrupted, it is a trivial matter to rescue the
files. To demonstrate th|s let’s start by blowing away a VTOC.
Take the newly initialised disk out of your drive and put your
practice copy of the System Master diskette in its place. Next,
read in its VTOC, place the cursor on the first byte in row $00
(probably a $04), and type in *OF'. Place the cursor back over

this byte and press CIRL X The sector will instantly be filled
with *0F*s*. Write this information back to the VIOC of your
practice disk. If you now try to boot it or load a file, you

will get a FILE NOT FOUND error (DOS now thinks that the catalog
begins with sector $0F on track $0F).

To fix this, read in the VIOC from a good disk and place the
cursor on the first byte in line $38. Now press CTRL Z, filling
the display with ’00*s* from the cursor to the end of the sector.
This zero’s out the entire bit map field and thus makes sure that
no files on the disk get overwritten during future use. Finally,

21

write this information onto track $11, sector $00 of the
clobbered disk. It is now perfectly usable again, its only fault
being that no more data can be stored on it. If this were not a
practice diskette, the solution would simply be to FID (not COPYA
because it also transfers the zeroed-out VTOC) all the files
across to a newly initialised disk and reinitialise the one that
got corrupted. However, don’t bother doing this with vyour
practice copy.

UodeleUfig EcagcaKS

The first thing you need to know is that DELETEing a file
does notautomatically remove it from the disk. The onlything
that happens is that acouple of bytes on the catalog track get
changed and the bit maps are adjusted. The file’s name in the
directory and its program code still remain intact. The only
exception to this may occur if you have saved other programs to
the disk since DELETEing the file in question. [If so, DOS may
have overwritten part or all of it.

Put your practice copy of the System Master diskette in a
drive and read in track $11, sector $0F. Rows $08 through $28
should look pretty much like this:

first byte of file name space
/

08: 00 00 00 13 OF 82 G G5 @@@SOBHE
10 C CCCF A0 A0 A0 A0 AD :LLO

(2 more rows of *AO’s* here)
28: A0 A0 A AD 06 00 14 OF : FOTO
/
last byte of file name space

The *130F* in row $08 indicates that HELLO’S track and
sector list (more about these later) can be found on track $13,
sector $0F (but see the next paragraph); the ’82” tells us that
HELLO is a locked Applesoft file. The next five symbols are the
screen codes (i.e., ASCIl numbers with the high bit set -
remember?) for the letters H-E-L-L-0, and the 25 trailing *A0**
are screen codes for blanks. Their purpose is to fill in the
unusued part of the 30 spaces allotted by DOS to each file name.
The fourth *A0* in line $28 is the last byte of file name space.
*06” indicates that HELLO’S length is 6 sectors.

IMPORTANT NOTE: If your System Master is different from
mine, or if your version of FID allocated space in some other way
than mine did when you made your practice copy, the various track
and sector numbers that appear in this book’s illustrations may
not agree with yours. This is no problem, however, since their

on the catalog track or elsewhere will always be the
same. So later on when we start tracking down files from
addresses recorded in various places on the disk, all you need to
do is substitute the information on your disk in place of the

22

fc !!

? fll

IF I

IF fl
IF 4§

tutorials instructions.

Now | want you to do the unthinkable. Get out of Tricky
Dick with a CTRL C, then UNLOCK and DELETE the HELLO file on your
practice diskette. Jump back with a CALL 2051 and hit the space
bar. The display of the HELLO catalog entry, just as it was

before you DELETEd it, will reappear on the screen. Now stare
hard at the two numbers on the screen which were designated in
the illustration above as the first and last bytes of the file

name space. Having fixed these firmly in view, hit CTRL R and
watch the change.

You should have seen the first byte ($13) jump down to
replace the last byte ($A0), and a <FF* appear where the first
byte was. This is all that actually happened during the DELETE.
So here's how your screen should now look.

first byte of file name space
/

08: 00 00 00 FF OF 02 C8 C5 :e@S8SOBHE
10: @C CC CF A A0 A0 A0 AD :LLO

28 A0 A0 AD 13 02 00 14 OF : SBeTO
/
last byte of file name space

All we have to undelete HELLO is to put things back the way
they were. So just type an *A0* over the *13* in the last byte
position and put a *13* in the first byte where the *FF* is.

Lines $08 and $28 should end up looking like the following
illustration.

08: 00 00 00 13 OF 02 C8 G5

28: A0 AD A0 AD 06 00 14 OF
If they do, write the sector back to the disk.

HELLO will now load, run, and appear during a CATALOG just
like before. However, there is still one small detail we need to
attend to. Read in the VTOC sector and bring line $80 into view.
If you zeroed out the VTOC during the first part of this
tutorial, you will probably now find a *FC? in that line instead
of a '00*. This is because DOS has altered the track $13 bit map
to reflect the fact that sectors $0F and OE, previously occupied
by HELLO, are now available.

One way to fix the present VTIOC is simply to write a *00*
over the 'FCL However, changing bit maps is not advisable with
most files, since you are unlikely to know which sectors they
occupied before they got DELETEd. So the best thing to do is to
load the file in question into memory and then save it back again

23

to the disk. When this is done, DOS will automatically adjust
the bit maps for you.

Site Eikafis

Remember that *82* in the third byte position? Notice that
it got changed to »02» after the DELETE. This is the file type
flag; the first value signals a locked, and the second, an
unlocked Applesoft program. Here’s the complete list.

LEehfilad irfifilkd
Text (T) 00 80
Integer (1) 01 81
Applesoft (A) 02 82
Binary (B) 04 84
S-type (S) 08 88
Relocatable (R) 10 90

Sometimes control characters are embedded on purpose (a
rather dated protection measure) or accidently in program names
in the catalog. |If this happens, the name will appear when you
CATALOG the disk, but you won’t be able to access the file. To
see how to deal with this minor nuisance, jump out of the
Tricky Dick. Then UNLOCK and DELETE ANIMALS on your copy of the
system master disk. Now type SAVE followed by these keystrokes:

T CIRL A E CIRLB S ClIRLC T

plus RETURN. This saves a file called ”"TEST” with control
characters hidden between each letter. Now CATALOG the disk.
You will find "TEST” second from the top of the list. However,
if you try to LOAD or RUN TEST you will end up with a FILE NOT
FOUND error.

Incidently, a neat trick for quickly spotting file names
which contain control characters is to type INVERSE, followed by
CATALOG. Do this with your practice disk, and have a close look
at the right edge of the white field in which the inverse catalog
entries appear. Directly opposite TEST you will see a telltale
notch telling you that some hidden characters have used up screen
space without actually appearing on the screen.

Now go back into Tricky Dick, read in track $11, sector $0F,
and look at line $30. In the ASCII section on the right you will
see the file name "TEST” with an inverse ’'Al, *B* and ’'C* in
between its letters. These are the control characters you typed
in when you saved the file. You can still RUN or LOAD TEST by
typing in these extra symbols when you access the file, but this
would be rather troublesome.

Next, place the cursor over the second byte in row $30 (a
’D4’). Next type in SHIFT 2. You will see the inverse message

24

"HIGH ASCII" appear next to the word "DATA" at the bottom of the

screen. This inidicates that anything you now type will be in
screen ASCIlI with the high bit set. Key in the letters T-E-S-T
and follow this with 3 taps on the space bar. You will see the
letters echoed in the ASCII section, and the spaces will appear

in the hex dump as 'AO's*. Now press down the CTRL, SHIFT, and
'P* keys all at the same time. The display at the bottom of the
screen will change to "NORMAL HEX" and you will be back in normal
mode. Finally, write the altered sector to the disk. All those

nasty control characters are gone and the file will now answer to

its real name.
EiuAiui sodLlsaceicea BiaacxEileis Addcess <
This exercise will take us further afield on our jouney

along the Apple disk, and we will be leaving track $11 to trace

the whereabouts of some actual program code.

Read in track $11, sector $0F. Then hit CTRL F, followed
by CTRL Mto get to the bottom of the sector, and finish off with
another CTRL F to flip back to the ASCII display. Lines $D8 and
$E0 should contain the following information.

D8: A ADAD1L 0019 OF 84 :Q0YOD:
EO: C2 CFCFD4 BLB3 AD AD:B0O0OT13

The f19 OF1 in line $D8 tells us where to find the first
sector of BOOT13. The *84* in the same line tells us that we’re
dealing with a binary file. So let’s read in track $19, sector
$O0F and have a look.

We are still in the lower half ofthe sector display (rows
$80 - $F8), but need to get back to the beginning. Holding down
the CTRL key while pressing ’F* *1* and another <F should do
the trick. The 3 rows of numbers starting on line $08 constitute
BOOT13*s track and sector list. As the name implies, this lists
all the tracks and sectors occupied by the file. If your copy is
the same as mine, this should show BOOT13 starting on track $19,
sector $0E, and running down to track $19, sector $06.

08: 0000 0000 19 OE19 OD

18: 1908 1907 19 0600 00

Now hit the left arrow key to get to sector $0E, and do a
read. Your sceen will display the first 128 bytes of the program
code. The first 4 bytes of this data give the address and length
of BO0OT13.

first byte of program code

address length /
00: 100 17! 'FO 08! 20 E3 03 84

25

In the wusual 6502 reverse notation, this tells wus that
B0O0T13 starts at location $1700 in memory and is $8F0 (decimal
2288) bytes long. You can relocate BO0O0T13 so that it BRUNS or
BLOADS at another address in memory simply by changing the first
two bytes. For example, change byte $01 from *17* to *16 and
write the sector back to the disk. Then get out of Tricky Dick,
BLOAD B00T13, and type CALL -151 followed by '1600L*. You will
see the first 3 bytes of the program, *20 E3 03* start at $1600
instead of the original $1700. Do not try to run BO0T13 at this
address, however, because it is not a relocatable program.

You will now have to BRUN Tricky Dick once more, since
B00T13 has blown part of it out of memory. Do this, and read in
track $19, sector $0E again. If you plan on puttlng your

practice copy of the System Master to use later on, you had
better change BO0OT13fs start address back to $1700.

Place the cursor on byte $04 (a *20*) in row $00 and hit the
1L* key. This will give you a disassembly of the first sector's
code. The first instruction should read "JSR $03E3" (meaning
Jump to a SubRoutine which starts at the address $03E3). This is
a kind of indirectly routed GOSUB to a DOS subroutine which
tells DOS the whereabouts of some vital disk reading parameters.

Keep pressing *L' until byte $A9 scrolls into view near the

top of the screen. You should now be able to see the word
"SECTOR” in the ASCIlI display column. The addition of this
ASCIl information to the disassembly enables you to quickly

locate any text in a block of machine code. Keep hitting 'L's'
until you have dissambled your way through the entire sector.

When you reach the end, the lower part of your screen will be
blank and nothing further happens in response to an 'L'.
Usfcifig #c lotetee Bebb k

This works pretty much the same way as the above process.
Read in track $11, sector $0F and find the address of HELLO'S
track and sector list. It should be located on track $13, sector
$0F, so increment the track number by pressing the *' key twice
and do a read. The track and sector information now on your
screen reveals that the HELLO program code starts on sector $0E
and occupies 5 sectors on the same track.

Now read in sector $0E and take a look at the first line.
The illustration below shows how to interpret the data that it
contains.

start of program code
length line no. /
00: 171 04! j19 08i jOA 00! B2 20
\ /
memory location of next line

The first 2 bytes tell us that HELLO is $471 (decimal 1137)
bytes long (no starting address is given at the beginning of an

Applesoft program because it automatically loads at $801). Bytes
$02 - $03 are a pointer indicating that when HELLO is in RAM, the
next line will start at $819* Each line of an APPLESOFT program
starts with this type of pointer, though, of course, you don't
see it when you LIST the code. Moving on, the !0A 00* is the hex
equivalent of the first line number (line 10). Finally, the
program code itself starts with 'B2f, the Applesoft token which
stands for 1REML

Now press CTRL L, followed by 'A*. The cursor will jump to
the top of the screen and change the '<*L>' to a '<AL>'. This
tells Tricky Dick that you want a listing of some Applesoft code.
Put the cursor over the *62* and press ** to list the first
sectorful of BASIC. The continuation of this code can be found
by moving on to sector $0D and typing 'L* again. You can look at
the whole of any Applesoft program by noting in its track and
sector list the sectors it occupies, then working through them as
explained here.

By the way, when you are listing the first sector of an
Applesoft program, placing the cursor anywhere to the left of the
first token may result in a spurious first line number. This is
because Tricky Dick interprets the length and pointer bytes as
BASIC tokens. The rule to follow when LISTing any sector is to
place the cursor on the first byte to the right of the first *00*
in the sector.

Integer listings work almost exactly the same as those of
Applesoft. |If you want to try one, get the address of the track
and sector list for ANIMALS from track $11 (the *81' in front of
the file name tells you that itfs a locked integer program).
The first line in the first sector should look like the following
illustration.

first byte of program
length line no. /
00: |6D 10! 08 !00 00J 5F Bl E8
\

length of first line

The preliminary information tells us that ANIMALS is $106D
(decimal 4205) bytes long, the first line is 8 bytes long, and
its line number is 0.

Type in CTRL L, then *If, to switch on the INTEGER BASIC
lister. Put the cursor over the first program byte (the *5F')
and hit 'L' to display a listing of the first sector.

To return to the assembly listing mode, simply type CTRL L
followed by a You can also get any of the above listings on
your printer as explained under "Printing Hard Copy from Tricky
Dick" in "Tricky Dick's Instructions” in the first part of this
section.

27

If you have followed along with me this far, you will have
put to use most of the Tricky Dick commands in realistic disk
editing tasks. So by now, you should be able to use Tricky Dick
pretty easily and find little difficulty in doing more advanced
work. But what is far more important, you already know more
about the DOS 3.3 disk than about 80% of all Apple users. This
is only the beginning, however. By the time we finish our work
together, 1 hope to elevate your standing from the top 20% to the
top 1% of the DOS intelligensia. So turn off your machine for a
while and take a well-deserved coffee break before we begin

28

~ @ M MmMTTTTTTMTRT T Ty T TTT T T T
~

fe 51
fc 3

CHAPTER THREE — Intermediate Level Tricks with Tricky Dick

These aren't really any more difficult than the things
discussed in the foregoing tutorial, but Ifmé;oing to describe
them in somewhat less detail. So if you already knew something
about disk formatting when you bought the CIA, and found the
tutorial a bit elementary, this is the place to start. But don't
forget that the following techniques apply to DOS 3*3 only unless
otherwise stated.

bUQXdikQy DCS lan&ua&a £fied Clfibbec

DOS 3.3 has particularly pesky subroutine which stores a $00
in the first byte.of the language card whenever we do a PRE6.
This in turn makes DOS think that the language card is empty. So
if you happen to have INTEGER BASIC (or some other program)
there, and then boot up from the keyboard, you always have to
reboot your System Master and hang around while 1t reloads
INTEGER. Most of the time, however, a perfectly good image of
INTEGER is still in the language card in spite of the LANGUAGE
NOT AVAILABLE message you get when you try to call it.

Fixing this is a piece of cake. Just read in track $00,
sector $09, and write 3 'EA's over the '8D 00 EO* in line $DO,
leaving it looking like this.

DO GO A9 00 EA EA EA 4C 44

Then write it back to the disk. Any disk with this patch in
its DOS will leave INTEGER in peace when booting.

IMPORTANT NOTE: | know it seems obvious, but don't forget to
reboot the DOS you've just altered with the following patches if
you want to see them in action.

BELIQ Eilfi

To make this simple alteration, read in track $01, sector
$09. Starting with byte $75 in line $70, you will see the name
of the HELLO program. If you want another file on the disk to
run automatically on boot-up, put the cursor over the first byte
of the HELLO file's name (a 'C8 for 'H* on most disks), and key
in SHIFT 2 (the " character). Now type in the new file's name
and press down the CTRL, SHIFT, and @ keys together, returning to
normal operation. If the name of the new file is shorter than
that of the old one, there will be some unwanted characters
tacked on at the end. Be sure to type 'AO's' (ASCII for spaces)
over these before writing the sector back to the disk.

a Binaw fif £XEfablfi EALLAi EIfi

Normally, when DOS finishes booting into RAM it issues a
RUN command to start the HELLO program. However, if you used the
foregoing method to switch HELLO to a machine language or EXEC
file, you will obviously want DOS to issue the correct BRUN or

29

EXEC command on boot-up. To do this read in track $00, sector
$0D and change byte $42 from a ’OS* to:

(1) a *34* to BRUN a binary HELLO program;
(2) a *14* to EXEC an EXEC file.

Now write the sector back to the disk. You may wish to make
this and the foregoing patch on a COPY of your CIA disk so that
it*s DOS BRUNs Tricky Dick immediately on boot-up. |If you do,
you should leave line $40 looking like the example below.

40: 03 A9 31\1 DO 05 AD 62 2A
binary HELLO flag

Lasting a Eeqg£3i? Dfis and Buffex:a

Having carried out the preceeding two operations, you might
decide that it would also be useful to place your program in some
secure spot in memory where subsequent loading and running of
other files cannot overwrite it. The best way of doing this is
to move the DOS buffers down and load your program on top of
them. A simple DOS patch will insure their complete safety even
if DOS is coldstarted.

To set things up, read in track $00, sector $0C.
00: D3 1C 81 IE BD IE 75 2A

The next step is to subtract the length of your program in
bytes from $1CD3, the number shown in reverse at the beginning of
line $00. So if your file was, say, $200 (decimal 512) bytes
long, you’d have to work out that $1CD3 - $200 = $1AD3* You
should now reverse the high and low bytes of this result in the
classical 6502 manner, type them over the *D3 1Cl, and write the
whole works to the disk.

00: D3 1A 81 IE BD IE 75 2A
What happens is, the *1A D3f gets changed to !9A D31 on boot

up, moving the buffers down the required amount. This allows you
to fix your program to run $9D00 - $200 = $9B00 in RAM

£liB)IBat*iD& bbe Eauae ducioz a G&XALQG

If you manage to accumulate a large number of files on a
single disk, you may find it useful to have continuous scrolling
during a CATALOG. If so, read in track $01, sector $0D of the
disk whose DOS you wish to provide this service. Then simply
change byte $34 from a *CE* to a ’60* as shown below.

30: 8D 20 ED FD 6(\) 9D 33 DO
changed byte

Write this back to the disk and you will find, after
rebooting, that the patched version of DOS will not stop after

each screenfull of file names during a CATALOG, but will scroll
rapidly through to the end of the list. If you have an autostart
monitor, you can use CTRL S to stop/restart the listing.

Chscgiag ths WOUIUE2 Catalog Message

In order to personalize your disks, you might like to have
some message other than "DISK VOLUME 256" appear when a CATALOG
is executed. If so, read track $02, sector $02 and change the
"DISK VOLUME" message (written backwards!) that begins at byte
$BO. If you write over the space ($3A0) at byte $AF, you can
squeeze in up to 12 characters by hitting SHIFT 2 (the ™ sign)
and typing them in backwards. So if your new heading is to be,
say, "Sammy*s Disk", lines $A8 - $B8 would look like the
illustration below.

firslt byte of entry

A8: 9 Cl C2 p3 D2 CI C (B :1ABSRABK
BO: D3 C9 C4 A0 D3 A7 D9 D :SID S*WM
BS: D Cl p3 04 11 OF 04 00 :MASDQUD@

last byte of entry

If you carried out the preceeding instructions, and
rebooted, you should get the following heading on each CATALOG.

SAMMY*S DISK254

This looks a bit messy, so to get rid of the *254* read in
track $01, sector $0C ain type 3 'EA*s* over bytes $CO0 - $C2,
ending up with:

CO. EA EA EA 20 2F AE 20 2F

After writingi this back to the disk and rebooting, vyour
catalog message will blaze forth in its most pristine form.

Euffiog tieadaaes eo tbs Catalog leads

There are few more frustrating experiences than searching
through dozens of disks for a program you urgently need,
realizing that you have overlooked it, and then having to start
the whole tedious business from scratch once again. Some order
can be brought to disk chaos by inserting headings on the catalog
track and making sure the type of files that they apply to are
placed underneath. For example, it might be useful to get the
following display upon CATALOGIing a disk.

T 000 GAVES

T 000 -

*B 062 PIRATE*S SWAG

*B 071 ROBIN HOOD»S LOOT

31

With a newly initialized disk in the drive, type in the
following sequence: SAVE XXXXX SAVE YYYYY DELETE XXXXX DELETE
YYYYY. Then examine track $11, sector $0F and you will see the
*X and *Y* strings just beneath the HELLO entry. The oX's* will
most likely be in line $30. So start by placing the cursor on
the *FF* in the line above (byte $2E) and type in *24 00 00*.
This should leave your cursor on the first of the 5 'DS's* (ASCII
for *X* in line 30.

Now you can press SHIFT 2 and type in the letters G A M E
S, leaving the string *C7 CI CD C5 D3* in place of the Be
sure to finish this sequence by pressing CIRL SHIFT P (CTRL @ to
gﬁ_t back into normal mode. Lines $28 and $30 should look like
this.

28: ADOAD ADAD 0200 2400 : B@$0:
30: 00 C7 CICD C5D3 ADAD :@GAVES

The next step isto press ,M 3 times to brin% yourcursor
48. :

over the f131 at the endofthestring of ~O’sin line
Type in *A0 00*. This should bring you to the beginning of the
deleted entry for the *Yf program.

Now you have only to repeat the above process. In other
words, just type *24 00 00* over the »FF OF 02* in line $50.
Then follow this with a SHIFT 2 and hit the *-f key 5 times,
leaving a trail of 1AD1s' over the 'D9*sf. After CTRL @ move
straight down to the M4 021 and replace this with an fA0 00*.
Finally, check everything and write the sector back to the disk.
Reboot and do a CATALOG to make sure the heading got set up 0.K,

If you want a flashing instead of a normal heading, press
SHIFT 7 (the 1 character) before typing in the heading's letters.
Inverse characters can be obtained by changing the normal screen
ASCIl numbers as follows:

numbers beginning with a 'C" ... change the 'C' to a *0*
numbers beginning with a *D' ... change the *Df to a *1*
'AD0" (@ SPACE) v change the 'A' toa *2*

If you change the ASCIlI for "GAMES" in this manner, you
would end up with:

30: 00 07 01 OD 05 13 A0 AD :0GAMES

You can now transfer your favorite games to the disk and
they will automatically appear beneath the heading. If after
doing this you still have some space left over, you can easily
use the same procedure to shove another heading underneath the
games on the catalog. Further files can be added below this, and
so on.

By the way, when you SAVEd the »X* and *¥* files, 4 sectors

were set asideby DOS to store their nonexistent data.
Subsequently DELETEing them readjusted the bit maps to reclaim

32

*

ft

F

= -
-

- [
—)

-t
=)

e e et o [i
>

g

«3

1)

ni

til

this wasted space.

Another point to take note of was the *24* we put in the
dummy files* track pointer byte. This was done to prevent the
catalog heading from being accidently DELETEd. If you now try to
access "GAMES” with any DOS command you will get an 1/0 ERROR,
since track $24 cannot be reached on the Apple drives (the *-*s*
are safe in any case because they are illegal <catalog
characters).

tiidiaz Lbe Ueile 00 the Catalog

If you used the foregoing method to create headings and
want to get the word "HELLO” out of the way - or you simply want
to conceal the existence of your HELLO program during a CATALOG -
you can make it do a disappearing act as follows. First, read in
track $11, sector $O0F and put the cursor over the first *AD*
after the HELLO file*s name. Then type in 19 *88*s* and check
your work by counting up the inverse *Hs* which will have
appeared in the ASCIlI display after "HELLO" (or whatever the
file*s name is). There should be 19, since $88 is the ASCII value
for CTRL H

Having done this, you now need to let DOS in on your little
secret so that it can recognize HELLO on boot-up. So what you
now have to do is change the DOS record of the HELLO file’s name
as described a couple of pages back under "Switching the HELLO
File". Follow those instructions to read in track $01, sector
$09 and add 19 *88*sf after the HELLO program’s name. The
program will run automatically when you boot the disk, but of
course, DOS will ignore any direct commands referring to HELLO,
since HELLO now contains 19 extra control characters.

A couple of points are worth noting here. First of all,
it seems that 19 ’'88*s’ is always the correct formula, regardless
of the file name’s length (but you can’t hide files whose names
are longer than 11 letters due to the 30 character maximum
permitted by DOS). Secondly, the reason this method works is
that CTRL H's output backspaces to the monitor. So what happens
is that the HELLO file’s name gets printed for a tiny fraction of
a second, too quick for anyone to spot it. Then along comes the
next filename to completely overwrite it.

Chao&iQg Q05 Eccec Messages

If you feel capable of a more elequent turn of phrase than
the author of Apple DOS, you might like to change the wording of
some of the DOS error messages. These begin on track $01,
sector $08, byte $75, and end on the next sector ($09), byte $3D.
So let’s assume, for example, that you want to change I/0O ERROR
message to CRASH OUT (clearly a far more descriptive choice).
IS_tartﬂslg:);3 reading in track $01, sector $08. The message starts in
ine .

33

C8: 41 54 43 C8 49 2F 4F 20 :ATCHI/0

Position the cursor over the *49* press SHFT 7 (the *
sign) to go into normal ASCIlI mode, and type "CRASH 0U". Now
press CTRL followed by SHFT 2 (the " sign) to switch to high
ASCII (the last character is in high ASCIlI to flag the end of the
message). Type in the final 'T" and write the sector back. Boot
the disk, leave the drive door open, and type "LOAD HELLO". Your
altered message should quickly appear.

This can be done with any of the error messages. Just
remember to end up with a high ASCIlI character, and make sure
your own message’s length does not exceed the one you are
replacing.

idfss toeMasooed Eccgcarnmecs
Here are a few Tricky Dick tidbits that you assembly
language programmers may find useful. And even if you don't know

your way around an assembler too well yet, some of these may
prove helpful.

When you have one of the CIA modules in memory, hitting CTRL
E causes Tricky Dick to jump to it and begin execution. This
feature makes it possible